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CONFORMAL MAPPING PROCEDURE FOR TRANSIENT AND STEADY-STATE
TWO-DIMENSICHNAL SOLTIDIFICATION

R. Siegel, M. E. Goldastein, and J. M. Savino
NASA Lewis Research Center, Cleveland, Ohio

Abstract

A conformal mapping method was developed for anclyzing two-dimensional tran=-
slent and steady-state solidification problems. The method was applied to the
solidification which takes place on a cold plate of finite width immersed in a
flowing liquid and to the solidification inside of a cooled rectangular channel
which contains a warm flowing liquid. The transient and steady-state shapes of
the frozen regions are investigated.

INTRODUCTION

A method was developed for solving two-dimensional transient and steady state
solidification problems. The method is applicable to the case where a warm
liquid at a temperature above its equilibrium freezing point flows steadily
over a surface which is cooled below the freezing point. This may occur, for
example, inside the conduits of certain rectangular heat exchangers. The
method is applied to two specific cases which are illustrated in figures 1
and 2. The first of these consists of the frozen region formed on a cooled
plate immersed in a warm flowing liquid. The second consists of the frozen
region which forms inside of a rectangular channel when the channel walls

are maintained at a constant temperature which is below the freezing tem-
perature of the liquid.

In general, the flowing liquid supplies energy by convection to the solid-ligquid
interface. The shape of the frozen region adjusts so that this energy along
with the latent heat of fusion, which is released in the transient situation,
can be removed by conduction through the frozen region to the cold boundaries.
In the transient situation there is also internal energy removed as the frozen
material is cooled below its freezing point. In the present analysis this en-
ergy of subcooling is neglected. This assumption is a reasonable one to make
because in a great many solidification problems, the latent heat released at
the solid-liquid interface is much greater than the energy of subcooling.

It is also assumed that the solid-liquid interface is at the ecuilibrium
freezing temperature.

SYMBOLS
A dimensionless half width, (ha/k)[(ty -tp)/(te = t,)]
A, time dependent coefficients in mapping

a half width of plate; half width of long side of channel

B dimensionless half width, (bb/k)[(ty -te)/(ts - t,)]
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o) half widtk of short side of channel
c,d intermediate mapping parameters
E complete elliptic integral of the second kind
F normal elliptic integral of the first kind
h heat transfer coefficient from flowing liquid to frozen interface
t + Yté -1 1/2
I(cl,cz) 5 dt
ey L% - (8 + ep) (6 = ey)
Ig frozen region in Z=-plane
Tg frozen region in W«plane
K complete elliptic integral of the first kind
n/2
Kn / coszw db, n-o, l’ 2’000
0 \/i - g sin%w
I3 thermal conductivity of solidified material
L frozen region in € plane

(PAg - A)/1n Y1 - B2

n outward normal

Q heat flow rate through frozen layer per unit length
?s position vector to frozen interface

T dimensionless temperature, (t - t,)/(t; - t.)

t temperature

tf freezing temperature

ty liquid temperature

tw surface temperature of cold plate or channel wall
W analytic functiom, T + iy

XY dimensionless coordinates, (x/a)A, (y/a)A

X,y Cartesian coordinates in jhysical plane

Z dimensionless complex physical plane, X + iY

z physical plane, x + iy

a time dependent coefficients in mapping equation
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¢ time dependent parameter in mapping

Pinitial initial value of 8

r frozen region in eplane
n
rn defined by 2 rkrn-k =an;n=20,1, &) » s o
k=0
bii Kronecker delta
¢ quantity defined as [=(3T/0X) + 1(3T/0Y)]~1

e dimensionless time (hz/kpA)[(tl - tf)z/(tf - tw)]U

e time

b4 imaginary part of W

A latent heat of fusion

3 parametric variable

o density of solidified material

Y) intermediate mwapping plane

w argument in {l-plane
Subscript:

s on frozen interface
Superscript:

SS steady state

GENERAL ANALYSIS

According to the model adopted the sclid-liquid interface is at a constant
(with both time and position) temperature t,. Since the shape of this
interface is unknown it is necessary to Specify an additional boundary con-
dition along it. Assume that the heat transfer coefficient h at the solid
liquid interface is constant. Then at steady state the heat flux into the
frozen region KA.Vt 1is uniform along the interface and equal to the convec=-
tive heat supplied by the floving liquid h(t; - tp). During the transient,
however, the rate of freezing is in general nonuni¥orm along the interface
and the heat flux entering the frozen material is an unknown function of
position and time which is determined from the condition

KDVt - h(t, - tp) = pAR-OF, /06 (1)
that results from applying an energy balance at the solid-liquid interface.

It is convenient to introduce a nondimensional temperature T defined by
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T=(t-t)/(ty = t,). ALl lengths are nondimersionalized by
k/h(ty = tw)/(tz -tp) and the time is made nondinensional by

(kon/n?) [(te = t,)/(t; = t4)2). The dimensional guantities are denoted by
lower case letters and the dimensionless quantities are denoted by the corree-
sponding capital letters.

With the subcooling neglected the heat flow in the solidified region is
governed by the two-dimensional Laplece's equation (in normalized coordinates),
that is, at each instant of time the temperature T within the solidified re-
gion is a harmonic function of pcsition. Hence, let ¥ be the harmonic func-
tion which is conjugate to <T. Then the complex function W = T + i¥ 1is a
function of time and at each fixed instant of time is an analytic function of
the complex variable Z = X + 1Y. In view of this we use the notation W/32
to denote the ordinary derivative of the analytic function W with respect

to the complex variable Z.

It ie convenient to introduce the complex variable ({ defined by

c = 5 (2)

Clearly, at each instant of time ¢ 1is an analytic tunction of the complex
variable Z. The function ( is related to the reciprocal ol the complex
temperature gradient in the frozen region since

1 _ oW oT oT
E=5§='3f+13? (3)

At each instant of time the functions W and { may be thought of as map-
pings of the instantaneous frozen region Ig in the physical plane into a
region Jg in the complex W-plane and a region Lg in the complex f-plane,
respectively. Specifying boundary conditions on the functions W and ¢
along the complete boundary of I 1s equivalent to specifying the shapes

of the reglons Jg and Lg. Once the shapes of Jg and Lg are krown,

it is possible, at least in principle, to introduce an intermediate variable
N1, choose a certain region I' in the (Q-plane and then to find the functions
=W and Q- t whichmap I' into Jg and Iy, respectively. When these
functions are known the integral

Z = /g g% df? + function of time, (&)

obtained by integrating equation (2), can be evaluated. The integral and the
known function O - W relate W to 2 through the parametric variable Q.
Hence, at each instant of time, the temperature is known at each point of the
region Ig 1n the physical plane. Since the solid-liquid interface corre-
sponds to a particuler isotherm this correspondence determines the shape of
the frozen region in the physical plane. Thus, on:e the shapes of the re-
gions Jg and Lg are known the solution to the problem can be found.

Some important differences between the steady state and transient cases

should be noted. For the steady state cases the regions in the ¢ and W
olanes can be determined directly from the boundary conditions. This is be-
cause the uniformity of the heat flux at the solid-liquid interface implies
that |g| is constant there. In the transient freezing problem the shapes

of the regions Jg and Ig change with time, however, it i1s convenient to
fix I’ so that its shape and size are independent of time. Also, part of the
boundary of Lg is unknown and must be determined by solving a nonlinear
equation. If the region I' is suitably chosen; however, the mapping O = (
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can be represented by a Taylor series with real coefficients which are funce

tions of time only. These coefficients can be determined by substituting this
series into the boundary condition (2).

ANALYSIS FOR FREEZING ON PLATE

The method 1g best illustrated by considering the situation depicted in fige
ure 1. The cross section of the frozen layer configuration 1s shown in none-
dimensional coordinates in figure 3. The nondimensional boundary conditions
are all shown on the flgure except for the one given by equation (1). The
boundary conditions expressed in terms of the complex variables W and ¢ are

~~
fe W(z,0) = -1; Z € FAB

~
ReW(Z,0) = 0; 2Z€ EDC

Imi(2,0) = function of time; Z € fE

Jmi(Z,0) = function of time; Z € B .
—~

Imt (2,0) = O {52% (7)

Re t(2,0) =0 7 € e (8)

1 +6ﬁ«[§é—§-m]=|g(z,@)| zcﬁ (9)

Equations (5) and (6) show that at each instant of time the region Ig in

the physical plane maps into the rectangular region Jg a& indicated in fig-
ure 4. The height of the rectangle Jg varies with time and must be deter-
mined from the solution to the problem. Equations (7) and (8) show that the
region Ig in the physical plane meps into the region Lg in the {-plane

as shown in figure 5. In the transient case the shape of the curve is
unknown and must be determined by applying equation (9). However, for steady
state equation (9) becomes |[f| = 1 and this shows that ﬁ%g is then a semi-
circle.

The region I' in the Q=-plane is chosen to be the semicircular region of unit
radius shown in figure 6. Notice that at steady state the mapping Q = ¢
merely involves multiplication by a n-gative constant. In the transient situa-
tion, however, the mapping function is unknown, but an examination of figures

5 and 6 shows that we may expect this mapping to be continuous on the bounda-
ries of TI' since these are no singularities which can occur there. Hence,

the mapping function can be expanded in a Taylor series about the origin

which can be expected to converge on the boundaries of TI'. Tt also follows
from figures 5 and 6 that this series must have the form

£(4,8) = =K (\/1 - az) : an0é0td (10)
n=

where the unknown functions of time f and e o058
are real valued. FElementary mapping techniques can be applied to show that
the function which maps T' into Jg 1in the manner indicated in figures 4
and 6 is defined by:
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6
;! = A
k(Vi-p2) Yo+ @ - - pha - i)

A0
Substituting eguations (10) and (11) into equation (4) and choosing the ori-
gin o7 the coordinate system in the physical plane to be at point D ylelds
after performing the integration

BAn =A 2 2 2 -

, 0 ) M +(1+0%) + (1-p%)(1 =

2(0,0) & encmm— 1n W ( )+ (1-57)( ) +ﬁ(n) E AyeR
1n\/1 -l 2\/1 - n=

(11)

(12)

o 2
with X(2) = (1 + #)" = (1 = p2)(1 = 08)° and the A, are related to the
On bY

a
an=z; (2= (122 -p2) 1+ 1= Dy +5,0 e
< - 8

BAg = A

;n 50,1,2’. . .

(13)

To determine B and the A, (and hence, the a,) as functions of time, equa-
tions (13), (12), and (10) are inserted into the boundary condition (9).
Since O = ei‘”(o SW< ) rer 0 Cm the resulting expression involves
sines and cosines of ®, To eliminate the @ dependence of this expression
it ! mltiplied through by cos(2pw) for p=0, 1, 2, . . . (the restric-
ticn this subset of the complete set of sines and cosines is dict %ed by
symmetr; requirements) and integrated petween ®w = O and n/2. Upor per-
forming these operations we obtain the following infinite set of firs. order
ordinary differcatial equations which determine p and the A, as functlons
of time.

o0

8 I L (2) S (2)
de Kk 1l - Bz Jo:i’P 4 g Aan!k’p : a0 ath’k’p
n=0

k=0 n=0 k=0

a0

2nd
= (1 + 8y0) E TaTosp *+ 0 ; p=0,1,2,... (14)
k(Vh - 62)

n=0
where
K K ]
#{O) = zﬁ,———z [( O ERRE XA
,P ,,2k+p +1 2k-p +l 30120-0
ln l-BQ P p b b

(l) = + k = O’tl,iz,c . .
Hk,P I(k*'p Kk-p

and
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min(2,r]

(1 g -b 2 , 0
Tarko * & ; i LN (CVLURNCI D) [ SO et
3=0

r=1,2,2% and n, k, p=0, 1, 2,. . .

The initial values of B and A, for these differential equations are cho-
gen so that the desired initial configuration of the frozen region is given
by equation (12).

It is not hard to show that the heat flow through the frozen region can be
computed from

Q _ _k(p)
2k(t, - t) (15)

KY1 - po

nce [ 1s known. The shape of the frozen region can be computed from
equation (12) with 0 = ol®,

RESULTS FOR STEADY STATE

The results for steady state can be obtained as a special case of the pre-
ceding analysis by letting the time dependent coefficients A, be zero and
letting P be independent of time. 1In this case the shape of the solid-
liquid interface of the frozen layer is given parametrically by

\
2
X8 = . A 1affcos @+ V1 - % sin 0swgn/2
in \/1 - pe Vi - pe 3
2
Yes o . A ® + tayi =(1 = f Jein ® -rf2 < tan™ £ 0
1n V1 - ge £V - B% sin%w + cos @

(18)

The boundery condition ou the solid-liquid surface now determines B in
terns of the physical quantity A. Thus,

= lr Vl-B;

- (17)

(VT F)

The heat flow through the frozen region is still given by equation (15).
For a given A as determined by the imposed temperatures and heat transfer
coefficient, B can be found from equation (17). This value of B can
then be used in equation (16) to compute the shape of the frozen region and
in equavion (15) to compute the heat flow through the frozen region.

An analysis similar to the one discussed above shows that at steady state in
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the case of freezing insiae a rectangular duct the shape of the frozen region
is given parametrically by

| N
ol d +¢)(l +%} l/d B
x88 A d+cF[‘3m '/d+1“c+ ’ d +c
S L I(a,c)
>; -1 <g <1 (18)
2 ol (d + ¢)(l - c +1
yss d+c F[‘“" '/(1 Feta-¢) Yo+ c]
A
B I(a,c) ¢

The constants ¢ and d are given in terms of the physical parameters of the
problem by

ﬁz%w%.z
B I(4,c b

g { @-u@-u]
V(e +1)(d + 1) (¢ +1)(da +1) X te -ty

T(d,C) = hb tl - tr

oo Lo

The heat flow through the frozen region is glven br

K i 2(c + d4) ]
Q _\/G +1)(da +1)

4k(tf -t,) = i ﬁ‘/(c e 104 =

5 6
c+1l)(d+1

QUASI-STEADY SOLUTIONS

In most cases a good approximaticn to the full transient solution discussed
above can be obteined by setting all the A,'s equal to zero and letting B
be the only unknown function of time. This approximation amounts to assuming
that the heat fiux is uniform over the solid liquid interface. 1In this case,
the bouncary condition on the solid-liquid frozen layer surface implies that
B 1s given as a function of time by

p

£ .. K x(gl . kz) E(k)1n V1 - k° + k2K(k)
24° 1-8 (1 iT ) k(Y - 1) + 1n VI - 2

Binitial

dk

where PBipnjtial 1s the value of B at © = 0. This approximation to the
solutlon requires that the frozen region pass through a succession of steady
states during its transient growth. Thus, the initial configuration must be
chosen to be a particular steady state frozen region shape. The value. of
Pinitial 15 the value of B determined from the steady state analysis which
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glves the desired initial steady state shape. Setting By,i44g91 = 1 corre-
sponds to starting the transient when there is no frozen 1ayer on the plate.

RESULTS AND DISCUSEION

™n all the ™ll transient solutions which were carried out the initial con-
figuration of the frozen region was taken to be a steady siate configuration,
hence, the initial conditions on the An and B were taken to be An = 0

and B = By it1a1 Where Bypitial 18 determined from the steady state
analysis in the same way as for the approximate solution discussed above.

A typical set of transient growth curves for the frozen lay.r forming on a
flat plate are shown in figure 7. The results give a quaiitative idea of the
rate at which solidification occurs. The rate is most rapid at early times
when the frozen region has the least thickness, and hence, Lhe least resis-
tance to heat flowing through it. As the frozen region becomes large com=
pared with the width of the plate its shape becomes circular tending toward
the axisymmetric solution where the heat removal is through a line sink at
the center of the solidified region.

Only the steady state case was considered for freezing inside a rectangular
duct. A typical set ol steady state contours of the frozen region are shown
in figure 8. The curves on this plot are drawn for various values of the
controllable physical parameter B = (hb/k)[(tz - tf)/(tf - t,)]. For thin

layers B 1is large and the layer is of constant thickness except close to
the corner. As B 1is decreased (this corresponds to increased cooling) to
a value of about 2.5 the frozen layer thickness increases fairly uniformly
around the Jduct. Then as B 1is decreased by a very small amount, the thick-
ness along the short side increases substantially while that of the long side
remains almost constant. For thick frozen regions the interface approaches

a circular shape.

One of the interesting aspects of the profiles in figure 8 is that there is
a minimum value of B equal to about 2. This phenomena occurs for ducts

of all aspect ratios. For smaller values of B (i.e., larger cooling) there
are no steady state solutions and the liquid in the duct would freeze com-
pletely.

The fact that there is a minimum value of B leads to the most interesting
feature of figure 8. For each value of B above the minimum there are
mathematically two possible frozen region configurations. It can be shown,
however, that the thicker regions are unstable to small disturbances and
hence, will not occur physically.
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Figure 6. - Intermediate §-plane.
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Figure 7. - Transient solidification starting from an initial layer;
Binitial = 0. 995, A=0.2
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