
TWO SQUARE ROOT ALGORITHMS UTILIZING MULTIPLICATION

AS THE ITERATIVE OPERATOR

w4-k '- i-/f

APPROVED:

N70 -23 320 C3, W
(ACCtSSION NISMBEn) (THRUFI

.....U -) NATIONAL TECHNICAL-

INFORMATION SERVICEU Seporgmen of EVmCE
-_ Springfield VA 22151 -

2

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM

THE BEST COPY FURNISHED US BY THE SPONSOR-

ING AGENCY. ALTHOUGH IT IS RECOGNIZED

THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT

IS BEING RELEASED IN THE INTEREST OF MAK-

ING AVAILABLE AS MUCH INFORMATION AS

POSSIBLE.

TWO SQUARE ROOT ALGORITHMS UTILIZING MULTIPLICATION

AS THE ITERATIVE OPERATOR

by

JAMES RICHARD GOODMAN, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

if the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

ThE UNIVERSITY OF TEXAS AT AUSTIN

August 1969

NOT FILMEO.PAGE BLANKPRECEDING

ACKNONLEDG4ENTS

The subject for this research was suggested by

Professor C. V. Ramamoorthy. In addition, Professor

Ramamoorthy provided invaluable assistance by his guidan

and encouragement. He made many suggestions which were

of great help and for this the author wishes to express

his sincere thanks.

The author wishes to thank Professor C. H. Roth,

Jr.,. for his helpful suggestions and interest as a member

of the committee.

The author also appreciates the guidance rendered

by Professor David M. Young, Jr., in the convergence

proofs.

J' R. G.

August, 1969

iii.

ABSTRACT

The hardware algorithms are presented which utilize

high-speed multiplication and no division to perform the

square root operation rapidly. One algorithm is intended

for a large general-purpose computer and in addition pro­

vides a second-order division scheme. The second al­

gorithm requires a-special function generator which is

presently utilized in certain existing computers. Each

algorithm is considered for convergence rate, variance,

accuracy and implementation. The effect and importance

of the initial approximation is considered. A simulation

is performed to compare each to a conventional algorithm.

Although both algorithms are intended strictly for hard­

ware implementation, either may find an application using

microprogramming, and under certain conditions, one might

be implemented in software.

iv

TABLE OF CONTENTS

Chapter 	 Page

1. 	INTRODUCTION
 1

2. 	SQUARE ROOT TECHNIQUES

2.1 	 Direct Methods. 3

2.2 	 Iterative Approximation Techniques 8

2.3 	 Approximation to the Taylor Square

Root Polynomial. 8

2.4 	 Newton-Raphson Iteration....... 8

3. 	ALGORITHM R 1 l.

3.1, Motivation..... 11
I......

3.2 	Division 14

3.3 	 Proof of Convergence ..

4. 	SIMULATION STUDIES OF ALGORITHM R 23

4.1 Method	 23

4.2 Comparison.... 24

4.3 Conclusion 27

5. 	ALGORITHM F 35

5.1 Motivation	 35

5.2 Proof of Convergence 37

6. 	SIMULATION STUDIES OF ALGORITHM F 46

46
6.1 	 Method

6.2 	 Conclusion
 51

7. 	COMPARISONS OF ALGORITHM F AND ALGORITHM R
 57

7.1 	 General Comparisons
 57

7.2 	 Comparisons to Conventional Algorithm
 59

v

Chapter Page

7.3 Variance . . 6o

7.4 Round-off Error 63

8. IMPLEMENTATIONS OF ALGORITHMS F AND R . 65

8.1 Algorithm R 65

8.2 Algorithm R--Division 68

8.3 Algorithm F 71

9. SUMMARY 74

9.1 Comparisons 74

9.2 Possible Modifications 75

9.3 Topics for Further Study 78

REFERENCES 79

vi

LIST OF TABLES

Table Page

7-1 Maximum Number of Iterations Required to
Generate Square Root with an 8-bit
Initial Approximation 61

7-2 Maximum Number of Iterations Required to
Generate Square Root with a 2-bit Initial
Approximation 61

7-3 Maximum Number of Multiplications Required
to Generate Square Root with an 8-bit
Initial Approximation 62

7-4 Maximum Number of Multiplications Required
to Generate Square Root with a 2-bit
Initial Approximation 62

vii

LIST OF FIGURES

Figure 	 Page

2-1 	 Decimal Square Root 4

2-2 	 Binary Square Root 5

2-3 	 Restoring Square Root. 6

2-4 	 Nonrestoring Square Root. 7

3-1 	 Sequence Diagram for Algorithm R 13

3-2 	 An Example of Algorithm R .. 15

3-3 	 Maximum Relative Error vs. Iteration Number

for a Variety of Initial Conditions--

Algorithm R 21

3-4 	 Minimum Number of Significant Bits vs.

Iteration Number Given Maximum Initial

Errors B. and Ro--Algorithm R 22

4-1 	 Flow Chart of Simulation of Algorithm R . 27

4-2 	 Number of Multiplications for a 20-bit

Number vs. Accuracy of Initial

Approximation 28

4-3 	 Number of Multiplications for a 32-bit

Number vs. Accuracy of Initial

Approximation 29

4-4 	 Number of Multiplications for a 48-bit

Number vs. Accuracy of Initial

Approximation 30

4-5 	 Number of Multiplications for a 64-bit

Number vs. Accuracy of Initial

Approximation 31

4-6 	 Number of Multiplications for a 92-bit

Number vs. Accuracy of Initial

Approximation 32

4-7 	 Number of Multiplications for a 64-bit

Number vs. Accuracy of Initial

Approximation 33

viii

Figure 	 Page

5-1 	 Sequence Diagram for Algorithm-F 38

5-2 	 Ecample, of Algorithm F . . . 39........

5-3 	 Minimum Number of Significant Bits vs.

Iteration Number with Initial Relative

Error)Fj - I for Four Values of

Reciprocal Generator Accuracy .. 45

6-1 	 Flow Chart for Simulation of Algorithm F 50

6-2 	 Number of Multiplications for a 20-bit

Number vs. Accuracy of Initial

Approximation........ 52

6-3 	 Number of Multiplications for a 32-bit

Number vs. Accura,cy of Initial

Approximation 53

6-4 	 Number of Multiplications for a 48-bit

Number vs. Accuracy of Initial

Approximation 54

6-5 	 Number of Multiplications for a 64-bit

Number vs. Accuracy of Initial

Approximation 55

6-6 	 Number of Multiplications for a 92-bit

Number vs. Accuracy of Initial

Approximation 56

7-1 Calculated MinimuM Number of Significant

Bits of B vs. Number of Iterations and

Multiplications for Algorithms F and R 58

8-1 	 Data Flow for Algorithm R . 66

8-2 	 Data Flow for Algorithm F 70

9-1 	 Sequence Diagram for Algorithm R Using Two

Multipliers 77

ix

CHAPTER 1

The i n c r e a s i n g u s e of computers i n s c i e n t i f i c a l l y

o r i e n t e d r e a l - t i m e a p p l i c a t i o n s such a s p r o c e s s c o n t r o l ,

ae rospace n a v i g a t i o n and guidance, e t c . , h a s p l aced new

demands on computa t iona l speed. Therefore , t h e f r e q u e n t l y

used sof tware a r i t h m e t i c o p e r a t i o n s such a s d i v i s i o n ,

square r o o t , and p o s s i b l y o t h e r f u n c t i o n s u s i n g a po ly-

nomial e v a l u a t i o n have t o be performed i n t h e hardware.

I n t h i s t h e s i s , we a r e concerned wi th g e n e r a t i n g

and implementing t h e square r o o t f u n c t i o n , u s i n g new

t echn iques which make use of f a s t m u l t i p l i e r s found i n

l a r g e , fou r th -gene ra t ion s c i e n t i f i c machines. [I] , [3]

Most g e n e r a l purpose s c i e n t i f i c machines such a s

t h e CDC 6600, SDS 930, and t h e Honeywell 8200 u s e pro-

grammed s u b r o u t i n e s t o e v a l u a t e square r o o t . These sub-

r o u t i n e s , many of which employ an i t e r a t i v e d i v i s i o n

a lgo r i t hm, a r e n a t u r a l l y v e r y slow i n comparison t o mul-

t i p l i c a t i o n . On t h e o p p o s i t e extreme some computers

such a s t h e P h i l c o Transac 1000 have a b u i l t - i n square-

r o o t f a c i l i t y . Although an o r d e r of magnitude i n c r e a s e

i n speed i s p o s s i b l e Poy such an a d d i t i o n , t h e c o s t of t h e

a d d i t i o n a l h a ~ d i v a r e required can "v p r o h i b i t i v e because

1

2

of the complex sequencing that is needed in the square

root generation.

It is felt that, somewhere between these extremes

lies a host of computational techniques which reduce

execution time by making use of the inherent parallelism

of the algorithms. Hopefully they could also decrease

cost of additional equipment by maximum utilization of

existing hardware.

The approach of LSI technology promises a reduc­

tion in logic cost in addition to speed and size improve­

ments. It also makes more attractive specialized arith­

metic function generators due to the resultant emphasis

on functional partitioning. It is believed, therefore,

that a technique as mentioned above, if implementable

with LSI-type logic arrays, will be a practical approach

to increasing computation speed for the square-root

function.

CHAPTER 2

SQUARE ROOT TECHNIQUES

2.1 Direct Methods

So far as is known, the only naraware mernoa useo

to date to generate square root is a binary equivalent

of the paper-and-pencil method everyone learns in grade

school. The paper-and-pencil method is as follows:

Pair the digits off both directions from the decimal

point. Starting with the left-most pair of digits

(or single digit) find-the largest number which,

when squared, is less than the digit pair. Subtract

the square from the digit pair and append the next

digitpair. Call this the remainder. The first

digit found is the first digit of the answer. The

second digit is determined in the following way:

Double the answer so far calculated (so far only one

digit). Append to that number the largest digit for

which the product of the digit and the appended number

(i.e., 20 times the answer plus the digit) is less

than the remainder. Subtract that product from the

remainder and append the next decimal pair.

The remaining digits are calculated just as the

second one was--finding the largest digit which, when

4

&ded to 20 times the answer and multiplied by the

(81it is less than the remainder. The decimal point

U after the same digit as the number of digit pairs

to the left of the decimal point of the initial number..

An example is given in Fig. 2-1 for the root of 62,138.

2 4 9 2

6 21 38 oo

4
441f2 21

-1 761 F9I45 38

44 Ol

49821 1 	37 00

99 64

1[37 36

Fig. 2-1 	 Decimal Square Root.

The binary algorithm is quite analogous to the con­

\%Antional decimal technique. It is as follows with example

i n Flg. 2-2.

Pair the number off 'inbits both ways from the binary

point. If the number is in floating point the exponent

Must be an even number and the mantissa must be less

than one and greater than or equal to 1/4. The first

bit of the result must be ones since the first bit pair

@f the 'ormalized" number must be 11, 10, or 01. Sub-

Tact one from the first bit pair and append the next

5

bit pair to the difference. Double the answer so

far calculated (in this case only the bit 1) and

append the bit 1 if that number is less than the

remainder. Append a 1 also tothe'answer. Subtract

from the remainder and bring down the next bit pair.

If the number calculated is less than the old remainder,

append a 0 to the answer and bring down the next bit

pair. The remaining bits are calculated just as the

second bit was.

. 1 0 1 0 0 1

\F 10 10 01 00 01

10 0 77i0
0

1001 10 10
10 01

10100 T
00

1
0

Ol
00

10100001 1 01 00
00 0 00 00

1010001 ' 1
1

01
01

00
00

01
01

Fig. 2-2 Binary Square Root

In the machine it is difficult to look at the number

6nd decide if it is larger or smaller than another number.

TitUs at each stage it is assumed that the next bit is a

One and the number formedby a one bit appended to twice

6

tha answer is subtracted from the remainder. If it is

negative it is added back to the remainder and last answer

bit is changed to zero. This is called the restoring

square root algorithm. An example is in Fig. 2-3.

0' 0 01 2' 1 1 1.1

10 10 01 00 01

1

*0 10­
- 1 01

+.l 01

0 10 10

- 10 01

-1 01
10 1 01

1,10 0 00 00

+ 10 1 O~l

00 1 01 00

-1. 01 0 01

1.1 	 0 -10 11

+ 1 	 0 10 01
0 0 	1 01 00 01

1 01 00 01

Fig. 2-3 Restoring Square Root

A variation of this algorithm'which is faster but

requires more hardware is the nonrestoring square root

algorithm. In this method, again a one bit is assumed,

but if the difference is negative the number is not added

back in. Instead, on the following cycle the subtrahend

is made by appending a pair of ones to the answer thus

far, including the zero bit just determined. This number

7

then is added, rather than subtracted as would normally

This process saves a step in that it combines
be done.

the addition with the next subtraction for each time
the

number would normally have to be restored. An example

is given in Fig. 2-4.

0 0 0

1lt 10 01 00 01

1

10

- 1 01
1.71501 Yo

10 11

1 01

- 1 01 01

1.1 00 00 00

+ 10 10 11

11 10 10 "11 Ol

1 01 00 11

00 007-00 00

Fig. 2-4 Nonrestoring Square Root

The nonrestoring algorithm has been used more due

to the fact that with little more hardware it is sub­

stantially faster. It is used, for example, in many

airborne computers such as the Philco Transac-l000. For

either algorithm additional hardware is required for

Sequencing. In addition a counter is necessary to deter­

nine completion, although presumably if a hardware

"'vision scheme is implemented using subtraction as the

terative operator, the same counter can be used for both

8

with slight mod"fications. The number of iterations

required to complete the.square root is fixed generally

by the size of the overand.

2.2 Iterative Approximation Techniques

Due to the complexity of the sequencing of direct

methods, most software routines have used certain iterative

methods to generate square root. Two of the most common

methods are briefly discussed below:

2.3 Approximation to the Taylor Square Root Polynomial

The'number is classified in one of many ranges and

then, using a number of constants, the first few terms

of the polynomial are generated. The SDS 930, for example,

uses eight ranges with four constants per range to generate

a 20-bit square root. [63

2.4 Newton-Raphson Iteration

After the generation of an initial/approximation

the Newton-Raphson iteration is usedzecursively, For a

number N = B%,initial approxima- Ion B., the Newton-

Raphson iteration is of the f' n-:

il (Bk + N)
•2 Bk

it can be shown, thgt the.number of places of accuracy

doubles with eacht iteration. The Control Data 6600

9

computer uses this method after generating an initial

approximation with maximum relative error less than

2.6 x lo-3 . [3) The subroutine, in addition to requiring

the storage of three constants requires over 200 clock

periods to generate the initial approximation and go

through the four Newton-Raphson iterations required.

The SDS 930, which uses the polynomial evaluation

for single-precision calculations, utilizes the Newton-

Raphson iteration for multiprecision work. Only one

iteration is necessary, however, for double precision,

since the polynomial evaluation has already generated a

single precision initial approximation.

Eaoh of these methods reveals inherent problems

for hardware implementation. The polynomial approxima­

tion requires a large number of constants, the number of

which increases faster than the word length. The Newton-

Raphson technique requires a division bn each iteration,which

makes the iteration very slow. Division is a very -,low

operation. For example, in the CDC 6600 computer it takes

7.25 times as long as an addition and nearly three times

as long as a multiplication. It is so slow, even compared

to multiplication, that in some of the newer machines [1)

it is being performed using multiplication as the itera­

tire operator Instead of the traditional subtraction.

10

Thus the software Newton-Raphson iteration becomes

limited by the division rate.

It seems clear, therefore, that if an algorithm

can be derived which eliminates division in the iteration,

a considerable speed-up can be realized.

CHAPTER 3

ALGORITHM R

3.1 Motivation

If a simple method could be obtained to find.the

reciprocal of Bk, the Newton-Raphson iteration could be

performed sans division. Clearly the Newton-Raphson

iteration for the reciprocal could be nested in the square

root iteration, i.e.,

given N = B2 - B, Rk,o B
Bo

Rk,j+l = Rk,j(2-Rk,jBk) J=l,2 ... 1 (3-1)

1 (3-2)

Bk+l
 k=,2,.. n

for sufficiently large m and n.

However, since two multiplications are required for each

iteration of R, a large number of multiplications would

be required per iteration of B.

Now suppose that,only one iteration for R were.

made between calculations of B and that the previous value

of R were used for the approximation. It intuitively

seems wasteful to produce -many iterations of Rk for early

values of Bk when Bk is only a rough approximation. If

l1

12

the two-iterations converge at approximately the same

rate, the accuracy of Rk would be of the same order as

Bk after one iteration. This is the motive for Algorithm R

which is:

,R
= 1 BB RGiven N = B2 R2 nB,R

The iteration Rk+l = Rk(2-BkRk) (3-3)

Bk~ =2 . k l
Bk+a = i(Bk-+NRk) (3-4)

converges rapidly to Bm = B, Rm = R. It will be shown

later in the proof that this algorithm convergesif the

relative errors of Bo and Ro are each less than .208

Also in the proof the convergence rate will be calculated.

It was assumed that some sort of a table look-up would

be used to generate B. and Ro to within specified tolerances.

A flow chart for algorithm R is presented in Fig.

3-1. Initially Ro and B0 are multiplied together. This

product is then gated into the multiplier as a two's

complement, forming the term 2-BoRo, and multiplied by Ro

forming R1 . R1 is then multiplied by N and added to Bo;

If it is shifted left one place during the addition, it

comes out as B1. Thus an iteration requires 3 multiplica­

tion times plus an addition. With a little care, the

addition can be fixed point, since the multiplicand and

the multiplier were both normalized.

13

BkR
k

Multiply

Multiply

N Bk

Multiply

Add

k+1

Rk+l = Rk (2 - BkRk)

Bk~l !(Bk
2

+ NRk+I)

Fig. 3-1 Sequence Diagram for Algorithm R.

An example of algorithm R is given in Fig. 3-2.

Along with the results of the calculations for Bk and Rk

is given the relative errors Fk - =Bk-B
k _ an k -'N-w *

As shown in-the Example 1E5 1 is greater than E4 . That

is, for this particular iteration Rk actually diverged

slightly. This is not unusual. Both Bk and R-k occasion­

ally diverge. However, just as in this example, whenever

IEk increases, jFkI decreases dramatically, and vice

versa.

3.2 Division

A feature of the R-algorithm is that division can

easily be performed using no additional hardware other than

that required for aigorithm R. Since Rk+ 1 is the Newton-

Raphson iteration for the reciprocal of Bk, if a number

D is inserted in place of Bk and only the iteration for

Rk is performed, Rk will converge at a second order rate

to R = l/D. If D is the divisor in a fraction N the

D

quotient may be determined by multiplying N NxR.

3.3 Proof of Convergence

The nondividing algorithm R converges to the square

root of a number for an initial value sufficiently close.

However, it does not converge for all initial values and

N=.45313

B(0)= .6875000000000

B(1)= .6729772656250

B(2)= .6729852071246

t(3)= .6731492586061

B(4)= .6731492948254

B(5)= .67314931M7883

B(6)= .6731493147883-

B(7)= .6731493147883

B(T)= .6731493147883

F(O)= 2.13E-02 R(0)= 1.500000000000

F(1)=-2.56E-o4 R(1)= 1.453125000000

F(2)=-2.44E-04' R(2)= 1.485209870510

F(3)=-8.35E-08 R(3)=. 1.485916425943

F(4)=-2.97E-08 R(4)= 1.485554545152

F(5)=-l.o6E-14 R(5)= 1.485554553332

F(6)=-5.28E-15 R(6)= 1.485554509276

F(7)=-5.28E-15 R(7)= 1.485554509276

R(T)= 1.485554509276

Fig. 3-2 An Example of Algorithm R

E(0)= 9.72E-03

E(1)=-2.18E-02

E(2)=-2.32E-04

E(3)= 2.44E-04

E(4)= 2.41E-08

E(5)= 2.97E-08

E(6)= 1.91E-!4

E(7)" 4.78E-15

it does not converge uniformly. For example, if k ever

happens to be exactly zero, then since it is a factor of

Rk+l will be zero and Rk will converge to zero.
Rk+l ,

if the product RkBk is greater than two, Rk+l is nega­

tive and the sequence will diverge. However, for this

algorithm, since the argument N is assumed to be normal­

ized so that 1/4 N < 1, initial values may be assumed

to be in the following ranges:

1/2 Bo < 1 (3-5)

1 < Ro < 2 (3-6)

The proof will make the assumptions that the rela­

tive errors of R. and Bo are less than-QW-6 9 = .208

It is assumed that any implementation using this method

would have at least this accuracy in the initial approx­

imation. The first bit of N, i.e., the information that

1 > N > 1/2 or that 1/2 > M> 1/4 is sufficient to

generate an approximation of this accuracy. For ex­

ample, if N is known to be between 1/2 and 1, the

values Bo = 2 (.2-) RReo = 2(2-12) 0 1.171572

each have relative errors of ± (3-24) t t .17157 for N =

and N 1/2. The same is true for 1/4 < N < 1/2 if Bo

2 - J2 .585786, Ro = 4(1-1) t 1.656856. If a five-bit

approximation is used, the-maximum relative error pos­

sible is 2-5 = t.03125. Thus a five-bit initial approximation

1.7

and R. has a maximum relative error
of these values of Bo

of less than .208 and will converge.

Similarly, if the two first bits of N are considered,

values of Ro and BO can be obtained with relative error

of .072 or less. For this case, only a three-bit approxi­

is necessary to guarantee convergence.
mation to R. and Bo

The proof of convergence is not straightforward because

neither of the sequences Bk nor Rk converges uniformly

towards its limit. Thus, it was necessary to introduce

a function k which is the sum of the magnitudes of the

The theorem and proof follow:
relative errors of Bk and Rk.

= B2 = 1
Theorem R: For a number N R2' 14 < N - < 1,

given a pair of numbers B0 and Ro

such that B0 I RI , 6V59

B IRI 6

and the iteration

Rk+l = Rk(2-BkRk) (3-7)

(3-8)
Bk+l = !(Bk+NRk+l),

then lim Bk = lim IRk = n (3-9)

Proof: Define error functions as follows:

k =Rk-R (3-10)
-R

E Bk-B (3-li)B

18

Substituting equation (i) into (2) gves

= R 2

Rk+1 = Rk(2-Blk) = 2Rk-- Bkk 2 (3-13)

Bk+l = ![Bk+N(Rk) (2-Bkl)3]B2l (3-14)

=N + 2Bk - t'BkRk2 N(3-15)

Bk+ = B2Rk + iBk - -Bk 2B (3-16)

Rk+l-R _ (2Hk-BkRk2)-REk+l - R R (3-17)

.Substituting Rk = (Ek+l)R = Ek+l
B

and Bk = (Fk--l)B = Fk- gives

R

EFk~l

Ek+l _2EkR+2£R _(Ek2Fk+2EkFk+Fk+Ek
2±2Ek+1)R-R

(3-18)

which simplifies to

Ek+l = -Fk-Ek22EkFk-Ek2Fk (3-19)

Likewise for Fk+l

Bk+I-B = (B Rkt-BkT-Bk B)-B
Fk+l = -

B B

B 2 (Ek "1i-) EF+El)++
B2 (Ek+) I (-+Fk 1 B (Ek2Fkc2EkFk+Fk+Ek2+2Ek+) - B

2B 2

B

(3-20)

19

which simplifies to

(3-21)
Fk+l Ekk2 -kFk- I Ek2Fk

Define the composite err6r sum function

(3-22)

k = IEkj + IFkI

It is clear that

11m 6k 0 (3-23)

implies that lim IEkI= r IFkI= 0

k (3-24)

which will prove the theorem.

Using equations (3-19) and (3-21), the triangle

IkFkI
inequality guarantees that

1 2k

IEk+l- 1Lk+l = IFk+l! + u lE 21 + IE

Ek2FkI
jEkFkJFFki+ + IEk2 I + 2 IEkFkI +

(3-25)

I 3 IEk 2 EOki + 2 Ekk2FI (3-26)1Fkj 1 + 3

+2 2

20

Assuming that IEk. IFk : - -9 = .2086

2U-5-9 'T 3(liff% 9')2] E

(3-28)
which simplifies to

k+l SjFki + 1 IEk4
< ck
 (3-29)

if &k = 0, gk+l = 0. Otherwise, clearly

if both fEkland IFk
are not greater than

EI--- 9 , and one is strictly less than that

6

number, k+l <Sk

Q,E.D.

Using equations (3-19) and
(3-21) of the proof,

and calculating maximum values for JE.1
and IF?1 it is

possible to calculate the maximum error for any iteration.

This has been done for a few initial values and plotted

on Fig. 3-3.
Fig. 3-4 shows the number of significant

bits generated after each iteration, Clearly, this

algorithm converges very rapidly.
Although it is not

second order, it does increase the average number of places

of accuracy of Bk
 and Rk by more than 50% per'iteratiponr

2-3

-
i0

O E0 <.1 F0 <

o Eo 0.01 Fo

-- Eo Po.1<.0026 o

Eo :5.i Fo <.01

0 E o .01 1o OJ

10n-3 :
)E O :S.I F < 0026

0

o .0026 Fo <.006

0-4

0

r- -6
410

10-7

10-8

I0-9 1 . ­

1 2 4 5
Iteration Number

Fig. 3-3 Maximum Relative Error vs. Iteration Number for a

Variety of Initial Conditions--Algorithm R,

22

80

6o
60

4o

4­

m
'r-1,., I

19C) .0'

CO

CH

sat)10

6 0 8-bit initial approximation

A 6-bit initial approximation

0 4-bit initial approximation
4

A 2-bit initial approximation

2 , -------

2 3 4 5 6 7 8 9
Iteration Number

Fig.3-4 Minimum Number of Significant Bits vs. Iteration

Number Given Maximum Initial Errors Bo and Ro--Algorithm R.

CHAPTER 4

SIMULATION STUDIES OF ALGORITHM R

4.1 Method

In order to establish some of the characteristics

of the nondividing algorithm R and compare it to other

methods a simulation was performed on the CDC 6600. The

algorithm was studied, varying the simulated word length,

and initial approximation accuracy.

Word length variations were simulated by routding

the word after a fixed number of bits. After each mul­

tiplication the product was rounded after a prescribed

number of bits. The same subroutine rounded initial

approximations in order to study their effect on the

convergence rate.

The numbers were assumed to be fixed point, since

all numbers except N are between 1/2 and 2--a very narrow

range. N will be normalized so that 1/4 :.N < 1. The

assumption was made to speed up the addition, since fixed

point addition is much faster than floating point.

The initial approximation was generated in the

following way: The number N and the true square root of

that number was determined, using the Fortran library

function. The reciprocal of this number also was calculated

23

24

and these two numbers were rounded after P places to

represent P-bit approximations to B and R respectively.

This simulates a look-up table using P bits of N to

generate P-place approximations Bo and Ro .

4.2 Comparison

In order to rate algorithm R, a conventional method

was simulated, assuming a division algorithm of the type

used in the IBM 360/91. [1] This machine uses recursive

multiplication after an initial approximation from a look-up

table. It was assumed a standard Newton-Raphson iteration

using division is used in the conventional method. The

criterion considered for comparison purposes was the

number of multiplications required.

The IBM 360/91 contains an extremely fast multiply/

divide unit which performs division in the following way:

For fraction N/D, generate R., an approximate reciprocal

to D, using combinational logic. Multiply both the

numerator and denominator by Ro. The numerator product

is now approximately equal to the quotient, while the

It can be
denominator product is very close to unity.

shown [1] that taking the two's complement of the new

denominator and again multiplying both numerator and

denominator by this complement, the denominator will

25

approach unity at a second order rate, i.e., its number

of consecutive ones or zeros will double with each itera­

tion. This algorithm can be represented thus:

Q 	 N.RO . R1 R2 .. NQ (4-1)

D Ro R RN 1

where R0 is a P-bit approximation to 1/D

k
and Rk+l = 2 - D IT Rj (4-2)J=l

The criterion used for stopping both iterations

was when IBk-BI : 2 C (4-3)

where (is the value of the least significant bit of the

simulated machine.

Initially, a large number of values for N were

used. These numbers were evenly spaced between 1/4 and

1. Later a random number generator wa's used to generate

an array of 1000 random numbers. No variations in con­

vergence rate were detected with rebpect to the size of

the number N. The first method, using evenly spaced

values of N, had a somewhat wider variance, due to the

fact that it hit some perfect squares, such as I/4,

which require no iterations, This, of course, did not

happen often with random numbers and the variance was

extremely'small, usually less than 0.2 and in many cases

less than 0.1.

26

The simulation was performed twice--once
to find

the average number of iterations required
and once to

A flow chart for the simvlation is
 find the variance.

The abbreviation I.A. is for initial
 shown inFig. 4-I.

an integer which represents the
 approximation, i.e.,

•

number of significant bits of B. and Re

The comparative numbers of multiplications

required (3 per iteration'for algorithm
R, 2 per itera­

tion for the conventional algorithm) are
plotted on Figs.

4-2, 4-3, 4-4, 4-5, and 4-6, for word lengths
of 20, 32,

In virtually all cases, algorithm R
 48, 64, and 92.

The greatest advantage
requires fewer multiplications.

is realized in the larger machines,
which is particularly

remarkable since the conventional algorithm is
intended

for large machines.

Another characteristic which becomes
more apparent

when the comparisons are plotted on
linear paper is that

not as

the slope of the R algorithm is much

smaller, i.e.,

much is lost by a less accurate initial
approximation.

This is shown in Fig. 4-7 for a 64-bit
machine.

Also on graphs 4-2 to 4-6 is shown
the required

number of multiplications necessary
to guarantee conver­

gence from the initial approximation.
Although for small

machines it is greater than the conventional algorithm,

27

Generate 00 Element
Random Array

Sat Word Length to 20

L BitsSet IA to 2

.L
Select Array Element

Calculate Be, Re

for Algoriohm U

CCalculateBkk

InIncremeNont

I cr-iPossible

n NB esamB
k co e Y Converge

Averageg

Pointer to 0A

SPrint Ptvar-Aa It MaNximum. I,
Avenge Error, Tbximum Error, ofor

for All Cases

Fig. &-i Plo Chart of Simulation of Algorithm It

28

A Average for simulation using
Conventional Algorithm

0 Average for simulabion using
Algorithm R

@ Maximum required to guarantee
convergence

20­

0
.q15­
04.)
C's

i0
P4

4-)

H- 10­

8-1

6­

82 4 6

Number of Significant Bits of

Initial Approximation

Fig. 4-2 Number of Multiplications for a 20-bit

Number vs. Accuracy of Initial Approximation.

29

SAverage for simulation using

Conventional Algorithm

0 	Average for simulation using

Algorithm R

O 	Maximum required to guarantee

convergence

30

20­

0

4­
'"15­

.r

r-i

CH

0

%4 	 8-

S6­

4­

2 6

Number of Significant Bits of

Initial Approximation

Fig. 4-3 Number of Multiplications for a 32-bit

Number vs. Accuracy of Initial Approximation.

30

Average for simulation using

Conventional Algorithm

o 	 Average for simulation using
Algorithm R

O 	Maximum required to guarantee

convergence

40.

30­

20­
0

4-)
0CU

" 15­

0 10

S8­

6

4-,

2 4 68

Number of Significant Bits of

Initial Approximation

Fig. 4-4 Number of Multiplications for a 48-bit

Number vs. Accuracy of Initial Approximation.

31

A Average for simulation using
Conventional Algorithm

0 Average for simulation using
Algorithm RC

O Maximum required to guarantee
convergence

40

30

o 20
4->
Cd
C.

4.
.- i
CH

o 10

I ' I !I

2 4 6. 8
Number of Significant Bits of

Initial Apptoximation

Fig. 4-5 Number of Multiplications for a 614-.bit
Number vs. Accuracy of Initial Approximation.

32

AAverage for simulation using

Conventional Algorithm

O 	Average for simulation using

Algorithm R

o 	Maximum required to guarantee

50-	 convergence

40­

30

C
0
43)
C6 20

H
0

CH

0

a) 10

2 4 6 8
Number of Significant Bits of

Initial Approximation

Fig. 4-6 Number of Multiplications for a 92-bit

Number vs. Accuracy of Initial Approximation.

33
4o­

30

to

140
P,

.1

Conventional Algorithm

0

2 6
Number of Significant Bits of

Initial Approximation

Fig. 4-7 Number of Multiplications for a 64-bit
Number vs.
Accuracy of Initial Approximation.

34

it is much smaller on the large machines, barely greater

than the average number.

4.3 Conclusion

Algorithm R converges very rapidly, with its most

impressive advantage in a large machine. It does not

require an extremely accurate initial approximation to

converge rapidly.

CHAPTER 5

ALGORITHM F

5.1 Motivation

In the simulation of algorithm R a comparison was

made with the Newton-Raphson square root method employing

In this machine a high
the IBM 360/91 division scheme.

speed look-up table was available, implemented in com­

binational logic. Algorithm R assumed a similar look-up

and Bo , although it
table to generate initial values Ro

shown that a much smaller table could be used.
was

The question arises, would it be possible to use

the 360/91 look-up table or a similar one more effectively

Thus algorithm F was developed,
to generate square root?

assuming that an approximate division could be performed.

The algorithm may be stated in the following way: For

B, the iteration
normalized number N = B
2 , 174 N < 1, B0

Bk+l = Bk + fp(Bk) (N-Bk2) (5-1)

where fp(B k) is one-half the reciprocal of Bk rounded

This requires the 360/91 reciprocal generator
to p bits.

The justifica­with an output shifting it right one place.

tion for Algorithm F is this: The Newton-Raphson

iteration may be written

35

36

!(Bk + N) (5-2)

2=1 Bk_Bk+a

= (2Bk + N Bk) (5-3)
Bk

1Bk k2

- Bk + gjjN-Bk2)
Bk +
-(N-IC2(5-5)

The term is essentially a weighting factor for the
2Bk

correction term N-Bk2 . Conceivably, as in algorithm R,

it could-be iterated to greater accuracy, also. However,

algorithm F converges very rapidly, using only the rounded

approximation. The proof, given later, shows that if

the value of Bk has at least as many significant bits as

the reciprocal generator, i.e., p+l bits, that the con­

vergence rate will be at least p bits per iteration.

For specific cases, where the maximum initial error is

given, it is possible to calculate the maximum possible

error after each iteration which demonstrates an even

greater convergence rate.

A sequence chart forFis shown inFig. 5-1 Two mul­

tiplication and two additions are required per iteration.

However, since one factor in each multiplication, Bk in

the first and fp(Bk) in the second, are already normal­

ized, no ncrmalization is necessary either in the

37

multiplication or in the addition. Thus the time required

is approximately the time needed for two multiplications.

An example of algorithm F is given in Fig. 5-2 for

algorithm R in Fig. 3-2. A 6-bit reciprocal generator

(p = 6) was assumed. The example converges at approximately

the same rate as for algorithm R under these conditions.

5.2 Proof of Convergence

Theorem F: For a number N=B 2 1/ s N < 1, given

an initial approximation 1/2 _ < 1B0

and the iteration

Bk+l = Bk + fp (Bk) (N-Bk2) (5-6)

where fp (x) is any function such that

pfp + 2P­

(5-7)

then lim Bk=B. Furthermore, if

k ;­

0 < Bk-B < 2 -p-1 Bk+-B < 2 -p
K I Bk-B

(5-8)

Proof: Define again relative error function

Fk = B (5-9)

38

Multiply

Add

E
 f

Multiply

F

Add

Bk+l Bk + fp (N -Bk 2)

Fig. 5-1 Sequence Diagram for Algorithm F.

39

N=.45313

B(O= ,6875000000000 F(O)= 2.13E-02

B(1)= .6734655078125 F(i)= 4,70D-04

B(2)= .6731528181247 F(2)= 5.20B-06

B(3)= .6731493544089 F(3)= 5.89E-08

B(4)= .6731493152365 F(4)= 6.66E-ao

F(5)= 7.53E-12
B(5)= .6731493147934

B(6)= .6731493147884 F(6)= 8.44E-14

B(7)= .6731493147883 F(7)=-5.28E-15

B(T)- .6731493147883

Fig. 5-2 Example of Algorithm F.

4o

Then

Bk±+f(BR)[N-B(FR+1) 2 3 - B (5-10)
Fk+l = B (5-

SubstitutIng B2 = N and Fk = Bk - B

Fk+1 = F - fp(Bk)'Fk • (2+Fk) B (5-11)

From hypothesis we can see that either

k

IFkifsF- 2

(1 - 2 -P-1) Fk (2'-Fk) B I (5-12)

D

or

IFk+l < Fk - I (I + 2 -P-) Fk (2 -Fk) B} (5-13)

k)BBkk
k12

(5-12)and 5-13) may be combined as

IFk+,jI_IF--2L(Fkj (-kB + F-2-P-2 (Fk)(2-Fk) (5-4

-14)k Bk k)(-k)II kOJ

Substituting for B k and rearranging gives

2

IFk+1 1IF F1k I+Fk (2B+Fk)2-P- (5-15)

Fk+l _ 2B+2Fk-z + (2B+Fk)2 -p-2 (-16)

Fk 2B+2Fk

Fk+a Fk (2B+Fk)B.2(1

Fk 2C1+Fk)+

From (2.12) we know

Now Lf 1/2 2 Bk -< 1, 1/2 ' B ' 1

.Consider the funct ion Fk/(l+lk) over the domain

- 2 ~ ~ 1 .~t i s a monototiically increas ing funct ion

with extremes of -1 and +1/2 a t Fk = -1./2 and Fk = 1

respec t ive ly . Thus

Hence from (5-18)

I f P 1 t h i s r a t i o i s l e s s than one and the s e r i e s

converges.

Case 1: 0 < Fk

Clear ly a l l terms of r i g h t s ide (5-17) a r e pos i -

t i v e , so'che absolute values can be dele ted from t h e r i g h t

s ide :

42

Fk~l Fk B 2l-B

- p - 2

- p - -F k -2+ B+ B• • 2 I

jFk1 :i F

Fk 2T£(l-I-k) (5-2)

Expanding the first term in a Maclaurin series

Fk 1 F _ . (5-23)
2(l+Fk) 2f k k27f

1 Fk - Fk Fk (5-24)

F+ 2 1 FkFk

2Fk Flf--­
- p - + B Fk 2-p-2

1 F k+B 2
Fk+I 1

(5-25)

P 1
Bk-B 2 ­

0<Fk B -B <2 (5-26)

Since the last term is negative, it may be dropped.

F-1 < .-2 - p - 2 + B • - P - - 2p2 1 + 2 (5-27)

IFk+l -P-. 1 +-p+11 (5-28)

Fk 2

Now consider the function

(5-29)g 1+/ + Ck

where C is a constant.

43

Its maximum value on the interval s B 11 is at
2
­

B=1 where g(B) = 3 +2 C (5-30)

Substituting this value in (5-24) gives

SFk+l (I + 2-P+')-	 (5-31)2-P-1

If p > 3

3 + 2-p+1 	 < 3 + 1 < 2 (5-32)
-2 I7­2

Therefore, for Fk > 0

lFk+ll< P-p 	 (5-33)

Fk

Oase 2: Fk < 0

The first 	term on the right hand side of (5.17) is

negative while the second term is positive.

<-Fk+ - __ + B-P-1 + B ",Fk 2 -p-2 (5-34)

Fk 22(1+FkT

Again, expanding the first term gives

Fk+l <- F+ B.2- 1 BP2 2 2 + 1 F Fk

F- Fk + BFk - 2 kl+Fk

(5-35)

44

Dropping the third term of (5-35) and noting that

-Fk < 2-P- (5-35)

and

Fk ry . < k5-36) (F

gives

I- • +-Fk+1 2 -p--2 ± B 2 -p- 1 (5-37)(s-P)

This is equation (5-24) so that we may conclude

that for 0 < I FkI <B -1 (5-38)

Fk+l 2-Pp(3)

F- - p P -:3 (5-39)

<2

Q.E.D.

Using equation (5-17) and assuming an initial

error Fo :S 1, the maximum error after each iteration was

calculated for four values of p. The results are plotted

in Fig. 5-3.

45

i00 o P 8

P=4
80­

1 0

90 - A.p

o40

Uo
4o­
r 50­

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

Fig. 5-3 Minimum Number of Significant Bits
Number with Initial Relative Error 1F.1 5. !
V7alues of Reciprocal Generator Accuracy.

vs.
f or

Iteration
Four

CHAPTER 6

SIMULATION STUDIES OF ALGORITHM F

6.i Method

A simulation of algorithm F was performed using

virtually the same procedure as the simulation of

algorithm R.
A major change was made in that a new

initial approximation method was used.

Since algorithm F is greatly enhanced by an accu­rate initial value, it was desired to generate an accurate

initial value without the necessity of a second look-up

table, i.e., utilize the reciprocal generator already

available.
Numerous methods were considered and
one

method which is quite satisfactory, if not optimal, was

selected.
 It is adapted from a software initial approx­
imation developed by Maehly 153
known as the best-fit

method.

Maehly1s algorithm is of the form

Bo= + ­ (6-1)

for constants a
= 2.185183, P
= 3.022900
 1.545158.

In this form it guarantees a relative error of less than

-
2.6 x 10 3,
i.e., nine significant bits.
The adaptation

is to assume a,
, and 7
are wired constants and use the
reciprocal generator to generate . Xand a have P

46

significant bits and P has P/2, then Bo will have P

significant bits if P < 9.

This was simulated in the algorithm by rounding

a and to P places, P to P/2 places. The result Bo then

was also rounded to P places.

This method required two addition and one multiplica­

tion times, but it was felt that it is probably justified

unless a look-up table for square root is to be implemented.

Quite possibly an improved algorithm could give as great

or greater accuracy faster or with fewer constants

required, but this is considered out of the realm of this

paper. This adaptation is sufficient for the simulation.

Another change in the simulation resulted in the

fact that, by its nature, algorithm F has an easy test

for convergence. The term E = fp(B k) (N-Bki
2) is the

correction factor, and as Bk converges it approaches zero.

An easy test for convergence is to test E. IEI less than

guarantees that IBk-BI< 2(. This can be shown as follows:

JE = 1Ifp (Bk) (N-Bk2)1 < (6-2)

Bk+l= Bk + E (6-3)

E = Bk+l - Bk = B (Fk+l - Fk) (6,4)

IFk+ - Fk! LI B (6-5)

Now if Fk+l and Fk have opposite signs then

+
I k+l IFkI < B 	 (6-6)B

< (6-7)

IBk+- B I < ((6-8)

If, however, Fk+l and Fk have the same sign then

-
since from (5.17) we know if Fk is small compared to 2 P,

IFkll S. 22-P IF
 (6-9)

if 	Fk _t0 we -know \

Fk+1 < B22-PFk 61o)

B2 FR.2-P)

2 (6-11)
B k k l1 Fk (2

If 	P_ 1

0 <_Fk < 2(

B 	 (6-12)

Bk - B'< 2 (. (6-13)

If.Fk :S 0 likewise

Fk+a > B22-PF k (6-14)

-
Fk+1 - Fk > Fk (B2 2 - a) > - F (6-15)

49

If P - 1

0 Fk _ 2(- - (6-16)

o Bk - B -2E (6-17)

IBk-_B < 2

For algorithm F, this test was used, Where (was

the value of the least significant bit. One result

of this is that for all simulations, one extra iteration

was required, i.e., Fk was tested on iteration k+l for

convergence. As a result, in some case the maximum

required number of iterations guaranteed by the initial

approximation was actually exceeded by one iteration. In

fact, for cases where the algorithm converged very fast,

e.g., when the reciprocal generator produced a large

number of significant bits, the average number of itera­

tions made was greater than the maximum required number.

The same test was made for the conventional

algorithm for convergence, i.e., stop if lBk+l - BI <

This resulted in a slightly higher value for this

algorithm, also, than in the comparison with R.

The flow chart for the algorithm F simulation is

shown in Fig. 6-1. Only random numbers were used in this

simulation-. The initial array size was 1000, but was

50

Conerate 100 Element
Random Array

Set tlord Length to 20

Se I o 2Bits

Calculate, B +
For AlgorithiF

k Change

For Conventional

Algorithm Using
S Some So .

'Yes Ba No kTnc~e

SRecord Erro~r MN-Bk2

Racerd' ifKnm

Been To tod

Set Array I

Pointer to0o Ko vrg Yes

Calculate Ko

Average

" Print Average k,"

Max k, -Averag.e Error, Max Error
I c"All cases

Fig 6-1 Flowl Chart for Simulation of AlgorithmF
.

51

reduced to 100 after early results indicated little

variation in data for the two sizes. The results of the

simulation for word length of 20, 32, 48, 64, and 92 bits

are shown in Figs. 6-2 through 6-6. Included are the

data showing the number of iterations after which con­

vergence is assured.

6.2 Conclusions

Algorithm F converges very rapidly--requiring in

some cases, as little as 40% of the number of multiplica­

tions as the conventional algorithm. However, it is even

more dependent on the initial approximation than the con­

ventional algorithm, particularly for guaranteed con­

vergence.

52

* 	Average for simulation using

Conventional Algorithm

O 	 Average for simulation using
Algorithm F including one extra
iteration to test for convergence

o Maximum required to guarantee

convergence

30

20­

0

o 15
C­

0
PA

.ri
4)
H S10

,0

6

5­

14

2 4 6 8

Number of Significant Bits of

Initial Approximation

Fig. 6-2 Number of Multiplications for a 20-bit

Number vs. Accuracy of Initial Approximation.

53

A 	 Average for simulation using

Conventional Algorithm

0 	 Average for simulation using

Algorithm F including one extra

iteration to test for convergence

4o-	 0 Maximum required to guarantee

convergence

30

20

0

.,

Cd 	 15

. 4-P

.,
 10

0

-	 8

6

5

3­

2 4 6 8
Number of Significant Bits of

Initial Approximation

Fig. 6-3 Number of Multiplications for a 32-bit

Number vs. Accuracy of Initial Approximation.

50

0

54

4o -_

30

~'20

.H

4)-

S10-

A 54 oAverage for simulation using
me8 Conventional Algorithm

6 I Average for simulation usIngAlgorithm F including one extra

iteration to test for convergence
5

0 Maximum required to guarantee

4 convergence

2 4 68

Number of Significant Bits of

.Initial Approximation

Fig. 6-4 Number of Multiplications for a 48-bit

Number vs. Accuracy of Initial Approximation.

55

6o

50

4o

30

0
,j

• 15

10

*5­

8 A 	 Average for simulation uising

Conventional Algorithm

6 0 Average for simulation using
Algorithm F including one extra

5 iteration to test for convergence

SMaximum required to guarantee

4 convergence

2 4 6 8
Number of Signiflicant Bits of

Initial Approximation

Fig. 6-5 Number of Multiplications for a 64-bit

Number vs. Accuracy of Initial Approximation.

56
100

90

80

70

6o

50

4o

0
' 30

4-,
Cd,H

0

H 20 ­

0 ~''15 ­

10

8 A Average for simulation using

Conventional Algorithm

0 Average for simulation using
6
 Algorithm F including one extra

iteration to test for convergence

5

0 Maximum required to guarantee

4 convergence

3 .I - - - I

2 4 6 8

Number of Significant Bits of

Initial Approximation

Fig. 6-6 Number of Multiplications for a 92-bit

Number vs. Accuracy of Initial Approximation.

CHAPTER 7

COMPARISONS OF ALGORITHM R AND ALGORITHM F

7.1 . General Comparisons

Both algorithms R and F provide distinct advantages

over conventional methods. Algorithm R is capable of

generating the square root with fewer multiplications

than a standard method and requires no large look-up

table. Algorithm F utilizes existing special hardware

similar to that in the IBM 360/91 to more than double

the speed of the square root calculation.

On a standard machine a software square root

function is a complicated procedures An initial approx-\
-

imation must be made, calling up constants, an iteration

must be made and either a check made for convergence or

a 6ounter kept to determine completion. Considering the

inherent speed advantages of a hardware implementation,

it is felt that either algorithm can significantly decrease

computation time for square root without a great addition

of hardware.

The two algorithms are hard to compare, because

they are designed for different puroposes. Algorithm F is

intended as an addition to a computer with a multiply/

divide unit of the type employed in the 360/91. It

57

58

100_
90A

8o

70­

6o­

50­

40­

30­

0CH

%­

0

O Algorithm F

1 0 	 Fo < a0026

10 8 0 	 Algorithm R

30, FO < .0026

6-	 0 Algorithm F

FO S .125

5- P=2

A Algorithm R

4- Eo FO 5_ .125

3 	 Number of Iterations

5 6 7 8 9 R
1 2 -3 4

I 	 I1 I j I I

1 2 3 4 5 6 7 8 9 lO 2 13 F

5 1O 15 20 25
Number of Multiplications

Fig. 7-1 Calculated Minimum number of Significant Bjts of B

vs. Number of Iterations and Multiplications for Algorithms

F and R.

59

requires little additional hardware. Algorithm R assumes

only a fast multiplier and creates a division scheme of

its own. As a result, it does require considerable

additional hardware.

Some comparisons can be made between the two

algorithms. Fig. 7-1 shows convergence rates for the

two algorithms Algorithm F has a steeper slope initially

and is much smoother, but due to the fact that it only

increases P bits per iteration, its slope declines. On

the other hand, although the slope of R is erratic, it

nevertheless is fairly constant over
several iterations,

increasing the number of significant bits by about 55%

per iteration. It may be possible to take advantage of

its erratic behavior to produce ,a considerably higher

rate, since the values plotted are worst case.

7.2 Comparisons to Conventional Algorithms

An attempt has been made to compare algorithms F

and R and also to compare them to the conventional

algorithm. The basis of comparison was the minimum

number of significant bits generated after each iteration

for both algorithms. For purposes of comparison it was

assumed that (1) maximum errors for B. and R. of algorithm

R were the'same as maximum errors for B0 of algorithm F

6o

and the conventional algorithm and (2) Algorithm F utilized

a reoiproca'l generator generating the same number of bits

as the initial approximation,.

The conventional algorithm is not compared directly

to the R and F on Fig. 7-1 because of the fact that it

requires two convergences--one for the hardware division

convergence and-one for the software Newton-Raphson square

root convergence. However, calculations were made to

determine the maximum number bf iterations required for

convergence, assuming the number of significant bits

doubles with each iteration. They are shown in Tables 7-1

and 7-2, In Tables 7-3 and 7-4 they are converted to

required number of multiplications--a fairer comparison

since R requires 3 multiplications while the conventional

altorithm and F require but 2.

7.3 Variance

As mentioned earlier, on the simulation the variance

in the number of iterations was calculated. All three

algorithms had a low variance with variations seeming more

dependent on the particular machine size and initial

approximation than anything else. In general, however,

surprisingly,R tended to have the lowest variance, par­

ticularlv on the larger machines. For example, on a 92-bit

TABLE 7-1

MAXIMUM 	 NUMBER OF ITERATIONS REQUIRED TO GENERATE

ROOT WITH AN 8-BIT INITIAL APPROXIMATION
SQUARE

Machine Size

64 92
20 32 	 48

9 16
4 4 	 9
Conventional Algorithm

5 10
2 3 	 7
Algorithm F

3 5 5 7
Algorithm R 	 3

TABLE 7-2

MAXIMUM NUMBER OF ITERATIONS REQUIRED TO GENERATE
SQUARE

ROOT WITH A 2-BIT INITIAL APPROXIMATION

Machine Size

64 92
20 32 	 48

25 36
16 16 	 25
Conventional Algorithm

8 10 16 21 30
Algorithm F

Algorithm R 5 7 8 9
 9

62

TABLE- 7-3

MAXIMUM NUMBER. OF MULTIPLICATIONS REQUIRED TD GENERATE,

SQUARE ROOT WITH AN 8-BIT INITIAL. APPROXrIATTQN

Machine Size

20 32 48 64 92

Conventional Algorithm 8 8 18 18 32

Algorithm F 4 6 10 14 20

Algorithm R 9 9 15 15 21

TABLE 7-4

MAXIMUM NUMBER OF MULTIPLICATIONS REQUIRED TO GENERATE
SQUARE ROOT WITH A 2-BIT INITIAL APPROXIMATION

Machine Size

20 32 48 64 92

Conventional Algorithm 32 32 50 50 72

Algorithm F 16 20 32 42 6o

Algorithm R 15 21 24 27 27

63

machine with 2-bits initial approximation R had a variance

of only 0.07 compared to .20 for the conventional

algorithm and .22 for F.

The low variances are related to the fact that

the average number of iterations was very close to the

actual values for both R and F. This indicates that

probably a counter will be a more effective method for

terminating iteration than a test, particularly for

algorithm R which would be very hard to test.

7.4 Round-off Error

None of the iterative methods studied were able

to guarantee the last bit. If iteration is continued

after convergence, the last bit will frequently alternate

and, in the case of algorithm R, the last two bits alter­

nated on occasion. This was attributed to round-off

errors caused by the truncation due to multiplication.

This error was measured in the simulations by squaring

Bk after it had converged and comparing it to N. It was

found that both algorithms had smaller errors, on the

average than the conventional algorithm, with F slightly

better. However, R had a significantly larger variance

than the others and its greatest error was generally as

large as or larger than the conventional algorithm. This

was expected, from observations described earlier.

64

Although it is difficult to compare any of these

square root techniques to direct'methods mentioned in

Chapter 2, some observations can be made.
 (i) Direct

methods are linear, generating a fixed number of sig­

nificant bits per unit of time,
 While Algorithm F is

also linear, Algorithm R is nearly second order--it

increases 'significantbits at a higher rate with each

iteration. (2)
Direct methods are clearly limited in

their rate--even complicated techniques used to generate

two bits at a time require considerable decoding time

On the other hand, algorithm F is not so limited. It

can be made to converge at an arbitrary rate by increas­

ing the accuracy of the reciprocal generator and the

initial approximation. The breakeven point is when F

produces as many significant bits in one iteration as

the direct method can in the same
time--the time for two

multiplications.
For example, if the reciprocal generator

produces eight significant bits and a multiplication time

is 4 cycles, a direct method would have to produce one

bit per cycle to be competitive,

CHAPTER 8

IMPLEMENTATIONS OF ALGORITHM F AND R

Although all of the details of an implementation

of algorithms F and R have not been worked out, a pos­

sible configuration has been designed for each algorithm.

8.1 Algorithm R

Since algorithm R incorporates its own division

algorithm the organization was designed such that both

division and square root could be performed rapidly.

The multiplier is given a special characteristic not

normally found on a multiplier, but not believed difficult

to implement. It was given the ability to add in a fixed

point number to the product if desired, i.e., it could

generate (X * Y) + Z. This would be a valuable ability

for other operations as well. It was assumed that the

multiplier has three registers, X, Y, and Z. The multi­

plicand is entered in X while the multiplier is in Y.

The product is left in Y which is actually a double

length register, although only the most significant half

is necessary for square root and division. The Z register

Contains a number which, upon command, is added to the

Product during multiplication. This result may be

66

multiplier)y

> Adder

. Combinational Login

e----],1generate Ro,Bo R~o

Common Data Bu.

Fig. 8-1 Data Flow for Algorithm R.

67

delivered shifted right one place, i.e., 1 L(X) (Y) + (Z)].
2
With this scheme, as shown in Fig. 8-i, both multiplication

and division could be expedited very rapidly.

For square root, the operand is initially found

in register W. It is assumed that at this point the

number has been normalized so that the exponent is ever

and the mantissa is greater than or equal to 1/4 and less

than 1. A test will have been performed to check for a

negative operand, in which case an error diagnostic

would be transmitted. In addition, if a zero were detected,

the result register will be set to zero and the instruc­

tion will be completed.

Register W could be used to generate the addresses

in memory for the approximation B. and RO . However

since algorithm R has been shown to be not highly dependent

on the initial approximation, it would probably be much

faster to generate a small initial approximation for Be

and R0 using combinational logic. This approach has

been assumed for the implementation.

The sequencing for square root would be as follows:

1) From contents of register W, generate Bo in Y

and Ro in X.

2) (Y)-- Z3 (TXTT2Y--Z. The value Bo is stored

for later use in Z. The 2's complement of RoB o

is stored in Y.

68

3) (x) * (Y)- y, (W)--,X. Rk is being multiplied

by the term 2-BkRk to generate Rk+I- Meanwhile

the operand N is being moved to X for the next

4)
operation.
(X) * (Y) + (z)R8HIy, (y)--x. The term

Bk+l = 1 (Bk + N * Rk+l) is being formed in Y

while Rk+1 is being transferred to X for the

next cycle. The contents of Y transferred to

X are the contents before the multiplication.

5) Steps 2, 3 and 4 are repeated a fixed number

of times until the desired accuracy of B. is

guaranteed.

6) The result B is in register Y while its reciprocal

R is in register X.

8.2 Algorithm R--Division

For division little additional hardware is required.

A look-up table in combinational logic is assumed for the

initial approximation to the reciprocal RDo. The dividend

is assumed to be initially in register Z while the divisor

is in register W.

i) From contents of register W (divisor) generate

RDo in X, and transfer the partial contents

of W (same number of significant bits as RDo)

to Y.

69

Y)-Y. The two's complement term

2 - DRDk is being generated.

3) (X) * (Y) --?Y, (W)--* X. RDkI is generated

2) 	(X)----

while D is being transferred to X for the next

iteration.

4) (X) * (Y)- Y, (Y) - X. The two's complement

term 2 - DRDk+ I is generated and RDk+l is gated

into X for generation of RDk+2. The contents

of Y transferred to X is the contents before

the multiplication.

5) Repeat 3 and 4 until required accuracy for

RDk+l lLwill.be obtained on following iteration,
D

6) (X) * (Y) ->Y, (V) -X. Generate 2 =

while the dividend is being transferred for

multiplication.

7) 	(X) * (Y)- YY, (Y)->X. The quotient is placed

in register Y while its reciprocal is left in

X. 	Again (Y) means before the multiplication.

Steps 6 and 7 are identical to 3 and 4 except that V is

gated to X instead of W on step 6 and the product, rather

than the two's complement of the product is entered in Y

on step 7.

Ruet p lie

Muliper

Fig. 8-2 Data Flow for Algorithm R.

71

8.3 Algorithm F

A reciprocal generator of the type used in the

IBM 360/91 was assumed for the Implementation of algorithm

F shown in Fig. 8-2. As for algorithm R, it was assumed

that a sum could be added to a product in the multiplier

without a great loss in speed. Although two multiplica­

tions are necessary for each iteration, one would be

extremely rapid since the multiplier is the P-bit approx­

1
imation to and contains only P significant bits.

This is true even for the final iterations where Bk has

a large number of significant bits.

As was assumed in the simulation an approximation

was generated for Bo, using constants, a, P, and V,

probably wired, in registers X, Y, and Z respectively.

The operand N is in register W and has been checked to

see if it is positive. By some means the contents of W

is added to X, either through an adder (possibly the

adder in the multiplier) or through combinational logic

since the sum will have only a few significant bits.

This sum is entered in the combinational logic reciprocal

generator and its approximate reciprocal is deposited in

X. X is multiplied by Y and the sum Z is included.

The result, B., is stored in Y. The sequence is thus:

72

1) f [(W) + (X)]->X. Generate 1

2) (X) * (Y) + (Z)--X, 'Y. Generate B = + I

3 RSHI

3) f()-z M (x) (-) + W- Y

B2 ,
 _ IteminX

= 1 termin X,
Generate N -'Bk , prepare fp

by generating reciprocal and gating the output

on place right.

4.) (X) * (Y) + (Z)-->X, Y. Generate Bk+l =

Bk + fp (N-Bk2).

until required accuracy is
5) Repeat 3 and 4

The result, B, is in register Y.guaranteed.

For.both algorithms it is possible to speed up

the multiplications considerably, during the early itera­

tions because of the small number of significant bits.

In addition, for algorithm F, as mentioned earlier, only

one multiplication per iteration requires a full multiplica­

tion and this would only be required on the final iterations.

For both algorithms some method is required to de-

For algorithm F,
termine when convergence has been reached.

an easy test is to consider the magnitude of the product

In
fp -(N-Bk 2). No such simple test exists for R.

addition, for F it was shown that in many cases, the

average number of iterations required was so close to

the maximum necessary that it is actually faster to do a

73

fixed number of iterations than to test for convergence.

Thus for all cases with R and most cases with F the most

efficient way to stop the algorithm is to iterate a pre­

determined number of times. This would require a small

counter.

CHAPTER 9

SUMMARY

9.1 Comparisons

Two algorithms have been proposed which-could

significantly reduce execution time for the squre root

By their nature they are not easy to compare
operation.

either to each other or to a more conventional method.

Algorithm R converges very rapidly, though not quite at

a second order rate. The algorithm requires a unique

organization but includes a high speed division algorithm.

Algorithm'F utilizes a special reciprocal generator and

converges at a linear rate. It may be forced to converge

at any rate desired by brute force, i.e., its rate is

.dependent on the accuracy of the reciprocal generator

and the initial approximation. Both algorithms are

believed to have some profitable applications, speeding

up square root execution without a great expense of hard­

ware.

The comparison of algorithms F and R with a con­

ventional algorithm was based on the number of multiplica­

tions required. In some respects, this may be an unfair

comparison, because division execution time is considerably

74

75

less than the product of the number of multiplications

and the multiplication execution time. For example, in

the IBM 360/91, despite the fact that a multiplication

requires 6 clock cycles and 9 multiplications are required

for division, only 18 clock cycles are necessary, i.e.,

two per multiplication. This is a result of the fact that

all but the last multiplication require only part of the

multiplier because they involve fewer significant bits.

It is believed that the same techniques can be used with

algorithms R and F to speed up square root time, and for

algorithm R to speed up division.

Both algorithms were shown by simulation to be

faster than conventional iterative techniques, particularly

on large machines. In particular, algorithm R was shown

to have its greatest advantage for a bad-initial approx­

imation, since its convergence rate was not greatly

affected. These results were also shown from calculations

of the maximum number of iterations required to guarantee

an arbitrary accuracy.

9.2 Possible Modifications

In addition to the implementation suggested, a

number of other possibilities exist. If more than one

miultiplier were available, an additional speedup would

76

be possible for algorithm R. However, by the nature of

the algorithm, two multiplications would.still have to

be performed alternately as shown in Fig. 9-1 unless a

multiplication of three factors were available.

With some modifications, algorithm F might be

made to converge at a nearly second order rate with a

second multiplier available. While the Bk2-N term was

being generated, the reciprocal approximation f = 1
2Bk

could be used to generate a better approximation by use

of the Newton-Raphson reciprocal iteration, f = f (2-2fBk),

or some modification. This approximation to 7rE1 will

clearly be better than the approximation from the generator

i

which will not change from

On a machine for which multiplication is very fast

compared to division, R might be micro-programmed or even

implemented completely in software. It is possible,

also, that a machine such as the 360/91, containing a

table look-up reciprocal generator, might be micro­

programmed to do square root by algorithm F. For example,

with an eight-bit initial approximation, algorithm F

would require only 6 iterations to converge. The use of

the same approximation and the Newton-Raphson iteration

would require 4 divisions. Algorithm F requires an extra

77

SN

Multiply

Rkk

Add

Multip ly

Rk2Bk~l

A d

Bk+l 	 - (Bk + R

Rk+I 	 = Rk (2 - Bk+lRk)

= 2Rk - Rk 2Bk+l

Fig. 9-1 Sequence Diagram for Algorithm R Using

Two Multipliers.

78

addition but no shift for the factor 1/2 in the Newton-

Raphson iteration. Thus, for a six-cycle multiply and

an 18-cycle divide, each would, take 72 cycles plus the

time required for other manipulations, If any speed-up

in multiplication could be achieved, algorithm F would

be faster. For example, -if the multiplication involving

fp were reduced to two cycles, the multiplication time

would be only 48 cycles or 2/3 as much.

9.3 Topics for Further Study

The use of multiplication as a recursive operator

for square root extraction demonstrates that complex

functions can be generated rapidly by these techniques.

Pany algorithms of this type could be developed for

other functions, Algorithms F and R might be generalized

so that it is possible to generate an arbitrary root

by this method. In addition, this approach may be valu­

able in generating other functions which can be found by

iterative techniques.

Another topic for further study would be the use

of more than one multiplier. It was shown that both

algorithms can be improved by the use of multiple units,

though neither was developed with this in mind. Quite

possibly a more efficient square root technique could be

implemented if additional multiplication units were

available.

REFERENCES

J. G. Earle, E. E. Goldschmidt, D.
.1. Anderson, S. F.,

M. Powers, "The IBM System/360 Model 91:

Floating Point Execution Unit," IBM Journal,

January, 1967.

2. Barnes, George H., Richard M. Brown, Majo Kato,

David J. Kuck, Daniel L. Slotnick, Richard A.

Stokes, "The ILLIAC IV Computer," IEEE Trans­

actions on 	Computers, Vol. C-17, No. 8,

August, 1968.

Control Data Corporation, 6600 Computer System/Library
3. 	
Function Manual Publication #601 14500, Rev. A.,

1965.

Flores, Ivan; The Logic of Computer Arithmetic,
4. 	
Englewood Cliffs, New Jersey, Prentice-Hall,

Inc., 1963.

5. Maehly, Hans J., "Approximations for the Control

Data 1604," Control Data Corporation, March,

1960.

6. Scientific Data Systems 920/930 Programmed Operators

Manual, Publication #SDS 9000200C, January,

1965.

79

TWO SQUARE ROOT ALGORfITHMS UTILIZING NULTIPLICA tiON

AS THE ITERATIVE OPERATOR

C,-¢-/,IV'

APPROVED:

C- ---------­

(CO*,CqY

. Reproduced by Ihe
C I. EA. RIN t U S E

for Federal Scientific & Technical
Information Springf~cd Va. 22151

