' ATTON
TWO SQUARE ROOT ALGORTTHMS UTILIZING MULTIPLICAT
AS THE ITERATIVE OPERATOR

ok L e
MJEVZ%Q/Z Z‘/;“/ 4 f/

APPROVED:

—

FACILITY FORM 802

N70-233é0mm

L 1
ok J0G% 39 i

ATEGHRY) T —
TNASA CR ORITMX CR AOYHUMBER) CRTES e .

NATIONAL TECHNICAL

¥

Deporiment of Commerce
Springfield VA 22151

“ 1
i INFORMATION SERVICE -

N O T 1 C E
THIS DOCUMENT HAS BEEN REPRODUCED FROM
THE BEST COPY FURNISHED US BY THE SPONSOR-
ING AGENCY. ALTHOUGH IT IS RECOGNIZED
THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT
IS BEING RELEASED IN THE INTEREST OF MAK-
ING AVAILABLE AS MUCH INFORMATION AS
POSSIBLE.

TWO SQUARE ROOT ALGORITHMS UTILIZING MULTIPLICATION
AS THE ITERATIVE OPERATOR

by

JAMES RICHARD GOODMAN, B.S.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
f the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN
August 1969

Ly \77}“‘

PRECEDING PAGE BLANK NOT FILMED:

ACKNOWLEDGMENTS

The subject for this research was suggested by
Professor ¢. V. Ramamoorthy. In addition, Professor
Ramamoorthy provided invaluable assistance by his guldanc
and encouragement. He made many suggestions which_were
of great help and for thils the author wishes to express
his sincere thanks.

The author wishes to thank Professor . H. Roﬁh,
dr., for nis hélpful suggestions and interest as a member
of the committee, -

The auvthor alsc appreclates the guldance rendered
by Professor David M. Young, Jr., in the convergence

proofs,

August, 1969

111

ABSTRACT

The hardware algorithms are presented which utilize
high-speed multiplication and no division to perform the
square root operation rapidly. One algorithm is intended
for a large'general»purpose computer and in addition pro-
vides a second-order division scheme. The second al-
gorithm requires a-special function generator which is
presently utilized in certain existing computers. Each
algorithm is considered for convergence rate, variance,
accuracy and implementation. The effect and importance
of the initial approximation is considered. A simulation
is performed to compare each to a éonventiona} algorithm.
Althéugh both algorithmé are intended strictly for hard-
ware implementation, either may find an application using
microprogramming, and under certain conditions, one might

be implemented in software.

iv

Chapter ‘

1, INTRODUCTION . . . & « « v v o v « o & &

2., BSQUARE ROOT TECHNIQUES « « . .
2.1 Dirvect Methods « + « « « « &
2.2 Iterative Approximatlion Techniques
2.3 Approximation to the Taylor Square

Roo%t Polynomial_. v e e e e e e e e

2.4 Newton-Raphson Iteration , . . . -

31 ALGORITHM R . ; e e e s e e e e e e e
3.1, Motlvation T
3.2 Division . . . « ¢ ¢ v v v e e e e
3.3 Proof of Convergence . . + + « « o

I, SIMULATION STUDiES OF ALGORITHM R . . . ;
Bl Methof . .. ke e e
L. 2 Comparison‘. . e
B,3 cConelusion« v o o 0w oe .

5. ALGORTTHM F . . o v v v 4 v v v v v v 4
5.1 Motivatlon 4w . .4 e
5.2 Proof of Convergente . . .« + o o o«

6. SIMULATION STUDIES OF ALGORITHM F
6.1 Method 4 0.0 e e e e
6.2 Conclusion « . + 4 +

7 CQMPARISONS OF ALGORITHM F AND ALGORITHM R

TABLE OF CONTENTS

7.1 General Comparisons «
7.2 Comparisons to Conventlional Algorithm

v

Page

oo W W

Qo

11
11.
14
1k
23

ok
27
35
35
37
46
16
51
57

59

Chapter

7.3 Variance

*

7.4 Round~off Error .

8. IMPLEMENTATIONS OF -ALGORITHMS F AND R

8.1 Algorithm R .

*

*

-

8.2 Algorithm R--Division .

8.3 Algorithm F .

.

Possible Modiflcations

Toplics for Further Study

9. SUMMARY e
0.1 Compérisons .
9.2
9.3
REFERENCES . . .

vl

*

.

.

»

*

Page
60
63
65
65
€8
71
T4
Th
75
78
79

Tahle

72

7~3

7-4

LIST OF TABLES

Page

Maximum Number of Iteratlons Required to
Generate Sguare Root with an 8-bit
Initial Approximation 61

Maximum Number of Iterations Reguired to
Generate Sguare Root with a 2-bit Initial
Approximabion v 4 4 v 4 e e e . 61

Maximum Number of Multiplications Required
to Generate Sguare Root with an 8-bit
Initial Approximation . . .« .+ v « « o o & 62

Maximum Number cf Multiplications Reguilred

to Generate Square Root with a 2-bit
Initial Approximation . . + .« +« « + 4 & 62

vii

LIST OF FIGURES

Figure

2-1 Decimal .Sguare Root « « .+ .
2-2 Binary Square Root « . « + s o
2-3 Restoring Square Root

2-4 Nonrestoring Square Root

3-1 Seduence Diagram for Algorithm R
3-2 An Example of Algorithm R

3-3 Maximum Relative Error vs. Iteration Number
for a Variety of Initial Conditions--
Algorithm R - * - - * . - - - * L - . _ L] L]

3-4 Minimum Number of Significant Bits vs.
Tteration Number Gilven Maximum Initial
Errors Bg and Ryp-~Algorithm R

4-1 Flow Chart of Simulation of Algorithm R .

g Number of Multiplications for a 20-bit
Number vs. Accuracy of Initial
Approximation . . + v v v v 4 4 4 4 e e e s

L3 Number of Multiplications for a 32-bit
Number vs. Accuracy of Initilal
Approximation o 4 e e . e .

h-4 Number of Multiplications for a 48-bit
Number wvs, Accuracy of Initial
Appr O-X ima ti on . < L] - L] * * - L] L] L 3 L +* L -

4-5 Number of Multiplications for a 6L-bit
Number vs. Accuracy of Initial
Approximation e e e e

-6 Number of Multiplications for a 92-bit
Number vs., Accuracy of Inltial
Approximation ¢ ¢ v v e v e e e

-7 Number of Multiplications for a 64- bit

Number vs. Accuracy of Initial
Approximation . . . , . . ., . .

viil

13
15

21

22
27

28
29_
30
31
32

33

Flgure Page
5-1 Sequence Diagram for Algorithm?® ., 38
5-2 Example‘of Algorithm F b e e e e e e ke 39

5-3 Minimum Number of Slgniflcant Bits vs.
Iteratlon Number with Initial Relative
Error [F| < 1 for Four Values of
Reciprocal Generator Accuracy « .« . 45

6-1 Flow Chart for Simulation of Algorithm F . 50

6-2 Number of Multiplications for a 20-bit
Number vs. Accuracy of Initial S
Approximation0 0 0 . e .. 52

6-3 Number of Multiplications for a 32-bit
Number vs, Accuracy of Initial
Approximation v . ¢ 4 4 e e e 4 e 53

6-4 Number of Multiplications for a 48-bit
Number vs. Accuracy of Inltial
Approximation oL . 0. L 54

6-5 Number of Multiplications for a 64-bit
Number vs, Accuracy of Initial
Approximation v 4 4 4 4 e e e e s 55

6~6 Number of Multiplications for a 92-bit
Number vs, Accuracy of Initial
Approximabtion . . . v . 4 . 4 e e v e e 4 55

T-1 Calculated Minimut Number of Significant
Bits of B vs. Number of Iterations and

Multiplications for Algorithms F and R . . 58
8-1 Data Flow for Algorithm R « . . . 66
8-2 Data Flow for Algorithm F oo v v v e e e e 70

0-1 Sequence Dlagram for Algorithm R Using Two
Multipliers + « « « & . . 77

ix

CHAPTER 1
INTRODUCTION

The increasing use of compubters in scilentifically
oriented real~time applications such as process control,
aerospace navigation and guidance, etc., has placed new
demands on computational speed., Therefore, the frequently
used software arithmetic operations such as division,
sduare root, and possibly other functions using a poly~
nomial evaluation have to be performed in the hardware,

In this thesis,'we are concerned with generating
and implementing the sguare roob functiﬁn, using new‘
techniques which make use of fast multipliefs found in
large, fourth-generation scientific machines., [1], [3]

Most general purpose scientific machines such as
the CDC 6600, SDS 930, and the Honeywell 8200 use pro-
grammed subroutines to evaluate sguare root, These sub-
routines, many of which smploy an lterative division
algorithm, are naturally very slow in comparison %o mul-
tipllcation. On the opposlite extreme some computers
such as the Philco Transac 1000 have a built-in square-
root facility. Although an order of magnitude increase
in speed is possible for such an addltion, the cost of the
additional hardware required can be prohibitive because

1

of the complex sequencing that i1s needed in the square
root generation.

It is felt that, somewhere between these extremes
lles a host of computational technigues which reduce
executlion time by making use of the inherent paralle;ism
of the algorithms, Hopefully they could also decrease
cost of additional equipment by maximum utilization of
existing hardware.

The apﬁroach of L3I technol&gy promises a reduc-
tion in logic cost in addition to speed and slze improve-
ments. It also makes more attractive specialized arith-
metic function genefators due to the resultanf emphasis
on functional paftitioning. It is believed, therefore,
thét a techniqué as mentioned above, 1if implementable
with LSI-type logic arrays, wlll be a practical approach
o increasing computation speed for the squarewfoot

function,

CHAPTER 2
SQUARE HROCOT TECHNIQUES
2.1 Direct Methods

So far as 1is known, the only hardware metnod used
to date to generate sguare root 1s a binary equivalent
of the paper-and-pencil method everyone learns in grade
school, The paper-and-pencil method is as follows:

Pair the digits off both directions from the decimal
point, Starting withvthe left-most pair of digits
(or single digit) find-the largest number which,
when squared, is less than the digit pair. Subtract
the square from the digit pair and append the next
digit pair. Call this thé remainder, The first
digit found is the first diglt of the answer. .The
second digit is determined in the following way:
Double the answer so far calculated {so far only one
dlgit). Append to that number the largest digit for
which the product of the diglt and the appended.number
(i.e., 20 times the answer plus the digit) is less
than the remainder. Subt%ract that product from the
remainder and append the next decimal pair,

The remaining digits are calculated Just as the

second one was~--finding the 1érgest digit which, when
‘.2

a#dded to 20 Times the answer and multiplied by the
@iglt is less than the remainder. The decimal point

ig after the saﬁe digit'as the number of diglt pairs

%o the left .of the decimal point of the initial number._
An example is glven in Fig. 2-1 for the root of 62,138.

2 4 9. 2
N 6 21 38 . 00

"
[T 27 21
-1 76
565{ b5 38
4l o1
4o82| 1 37 00
7 99 6k

137 36
Fig. 2-1 Decimal Square Root.

The binary algorithm 1s quite analogous to the con-
wentional decimal technique. It is as follows with example
im Fig. 2-2, _

Pair the number off *n bits both ways from the binary'
voint. If the number is in floating point‘the exponent
nust be an evén number and the mantissa must be less
than one and greater than or equal to‘l/ﬂ. The first
bit of the result must be one; since the first bit pair
&f the "mormalized" number must bé 11, 10, or 01l. Sub~-

fract one from the first bit pair and append the next

bit pair to the difference, Double the answer so

far calculated {in this case only the bit 1) and

append the bit 1 if that number is less than the
remalinder, Append a 1 also to'tﬁesanswef. Sﬁbtract
from the remainder and bring down the next bit pair.

If the number calcglated is less than the o0ld remainder,
append a 0 to the answer and bring down the next bit
pair. The remaining bits are calculated Jjust as the

second bilt was.

.1 0 1 0 o0 1
\ 1 10 10 01 00 Ol

1

10 OF 10

0
1001 |10 10

10 01
10100 | 1 01
000 00
1010000 | 1 01 00
000 00 00
1010001 | 1 01 00 01
1 01 00 01

Fig. 2-2 Rinary Sguare Root

In the machine it is difficult to look at the number
ind decide if 1t is larger or smaller than another number,

thus at each stage 1t is assumed that the next bit is a

°he and the number formed by a one bit appended to twice

the answer is subtracted from the remainder. If it is
negative it is added back to the remainder and last answer
bit 1s changed to zero. This 1s called the restoring

square root algorithm. An example is In Fig. 2-3,

0 0
¥ 1 ¥ ¥.1
i\ 1 10 10 01 00 oL

1
o 10
-1 01
101
+.1 01
010 10
- 10 01
101
10 1 01
1,70 0 00 00
+ 10 1 G
00 1 01 00
-1 0°10 01
1.1 0 -10 11
+1 0 10 01
00 1 01 00 01
1 01 00 01

Fig., 2-3 Restoring Square Root

A variation of tﬁas algorithm which is faster but
requires more hardware 1is the nonrestoring square root
algorithm, In %this method; again a one bit is aséumed,
but if the difference 1s negative the number is not added
back in. TInstead, on the following cycle the subtrahend
1s made by appending a palr of ones to the answer thus

far, including the zero bit just debermined. This number

then 1s added, rather than subtracted as would normally
pe done. This proceés saves a step in that 1t combilnes
the addition with the next subtraction for each time the
number would normally have to be restored, An example

i gilven in Fig. 2-4.

0 0 ©
1 ¥ 1 Y ¥ 1
N1 10 10 01 00 Ol
1 . ;
10
-1 01
171701 1o
10 11
T 01
-1 01 01

1.1 00 00 00
+ 10 10 11
11 10 10 11 0l
1 01 00 11
00 00 -00 00

Fig. 2-4 Nonrestoring Square Root

The nonrestoring algorithm has been used more due
to the fact that with little more hardware 1t 1s sub-
stantially faster. It is used, for example, in many
gdirborne computers such as the Philco Transac-1000, For
¢ither algorithm additional hardware is required for
sequencing. In addition a counter 1is necessary to deter-
wine completion, although presumably 1f a hardware
¢ivision scheme is implemented using subtraction as the

£ % .
~verative operator, the same counter can be used for both

with slight modifications. The number of iteretions
reduired to complete the .square root is fixed generally

by the size of the operand.
2.2 Iterative Approximation Technigues

Due to the complexiity of the sequencing of direct
methods, most software routines have used certain iterative
methods to generate square root. Two of the most common

methods are briefly discussed below:
2.3 Approximation to the Taylor Square Root Polynomial

‘The‘number is classified in one of many ranges and
then, using a number of constants, the {irst few terms
of the polynomial are generated. The SDS 030, for example;
uses eight ranges with four constants per range to generate

. a 20-bit square root. [6]
2.4 Newton-Raphson Iteration

Afteér the generation of an initial approximation
. /"J
the Newton-Raphson iteration is used récursively. For a
number N = BS, initial approiifay'on B,, the Newton-

Raphson iteration is of the form:

Tt can be shown that the .nmumber of places of accuracy

doubles wj_th- each iteration. The Control Data 6600

computer uses this method after generating an initial
approximation with maximum relative error less than

2.6 x 10°3. [3] The subroutine, in addition to requiring
the storage of three congtants requires over 200 clock
periods to generate the initial approximatioh and go
through the four Newton-Raphsdn 1terations required.

‘ The SDS 930, which uses the polynomial evaluation
for single-precision calculatlons, utilizes the Newton-
Raphson iteration for multiprecision work. Only‘one
iteration is nécessary, however, for double preoision;
since the polynomlal evaluation has already generated a
sinéle precision initial approximation. .

Each of these methods reveals inherent problems
for hardware implementation. The polynomial approxima-
tion requires a large number of constants, the number of
which increases faster than the word length. The Newton-
Raphson technidue requires a division on each iteration,whilch
makes the lteration very slow. Division is a very sloﬁ
operation. For example, in the eDC 6600 coﬁputer it takes
7.25 times as long as an addition and nearly three times
as long as a multiplication. It iz so slow, even compared
to multiplication, that in some of the newer machines [1]
it is being performed using multiplication as the ltera-

tive opevator instead of the traditional subtraction.

10

Thus the software Newton-Raphson iferatlion becomes
1imited by.the division rate.

It seems clear, therefore, that if an algorithm |
can be deri?ed which eliminates divislon in the iteration,

a considerable speed-~up can be realized.

CHAPTER 3
ALGORTITHM R
3.1 Motlivation

If a2 simple method could be obtained to find. the
reciprocal of By, the Newton-Raphson iteration could be
performed sans division., Clearly the Newton-Raphson
iteration Tfor the reciprocal could be nested in‘the équare

root iteration, l.e.,

2
glven N =B%, By B, Ry o=
Rk’ 3+1 = Rk,j(g-RkJ jBk) jzl)g PR 1 (3_1)
) —
Biyr = B(BytNRy,m) (3-2)

._k=l_,2; «e I
for sufficlently large m and n.

However, since two muitiplications are redquired for each
iteration of R, a large number of mulbtiplications would
be required per iteration of B, |

Now suppose that,only one lteration for R Qere
made between calculations of B and that the previous value
of R were used for the approximation, It intuitively
seems wasteful to produce many Iteratlicns of Ry for early
values of.Bk when By is only a rough approximation. If

11

12

the two iterations converge at approximately the same
rate, the aécuracy of Rk would be of the same order as
Bk after one iteration. Thils is the motive for Algorithm R

which is:

Given N =B2=2_, B =B, Ry =R

Eé' 0
The iteration Ry ., = R, (2-ByRy) (3-3)
1
By = 3By Ry) (3-%)

converges rapidly to B, = B, R, = R. It will be shown
1ate§ in the proof that this algorithm convergés'if the
relative errors of By and R, are each less than .208
Also in the ﬁrogf the convergence rate will be calculated,.
It was assumed that some sort of a table look-up wéuld
be uséd tp generate B, and R, o within specified tolerances,
A flow chart for algprithm R is presented in Fig.
3-1. Initially R, and B, are multiplied together. This
product is then gated into thg multiplier as a two's
complement, forming the term 2-ByRg, and multiplied by RO;
forming R, . R1 is then multiplied by N and added to B,:
If it is‘shifted lelf't one place during the addition, }t
comes out as El‘ Thus an iteration requires 3 multiplica-
tion times plus anigddition. With a little care,. the
addition can be fixed point, since the multiplicand and

the multipller were both normalized.

13

R
B, Kk
Multiply
é!!lg.
Multiply
4
Multiply
i
! J24
, Add

Br+1

Risp = By (2 - ByRy)

1

Fig. 3-1 Sequence Diagram for Algorithm R.

14

An example of algorithm R is given in Fig. 3-2.

Along with the results oft the ca;culations for Bk and Rk

_ By-B _ Rp-R
—-...B......._. and Ek—-ﬁm-'.

As shown in-the Example |E5| 1s greater than Ej. That

is given the relative ervors Fy

is, for this particular iteration Rk actually diverged
slightly. This is not unusual. Both By and Ry ocoasion-
ally diverge. However, just as in this example, whenever
|Ex| increases, |Fy| decreaseg-dramatically, and vice

versa,
'3.2 bivision

A feature of the R-algorithm is that division can
easlly be performed using no additional hardwaré other than
that required for algorithm R. Since Ry,q is the Neﬁton—
Raphson iteration for the reciprocal of Bk’ if a number
‘D is inserted in place of Bk and only the iteratlon for
Ry 1is performed, Rk will converge at a2 second order pate
to R = 1/D. If D is the divisor in a fraction ¥ the

D
guotient may be determined by multiplying % = NxR,

3.3 Proof of Convergence

The nondividing algorithm R converges to the square
root of a number for an initial value sufficiently close.

However, it does not converge for all initial values and

N=. 45313

B(0)= .6875000000000
B(1)= .6729772656250
B(2)= .6729852071246
B(3)= 6731492586061
B(4)= :6731493948254
B(5)= .6731493147883
B{6)= .6731493147883"
B(7)= 6731493147883
B(T)= .6731493147883

F(0)= 2.
F(1)=-2.

"F(2)=-2.

F(3)=-8.

CR(M)=-2.

F(5)=~1.
F(6)=-5,
F(7)=-5.

Fig. 3-2 An Example of

13E-02

58E-04 -
Lum-ob

35E-08
97E-08
06E~1L4
28E-15

2§E—15 .

R(0)=
R{1)=
R(2)=
R(3)=.
R(4)=
R(5)=

- R(6)})=
R(T)=.

R(T)=

=

R e R = = A S

500000000000
153125000000
.185209870510
.185916425943
.48555U545152
485554553332
485554509276
1485554509276

. 485554509276

Algorlthm R

E(0)= 9.728-03
E(1)=-2.18E-02
E(2)=-2,32E-04
E(3)= 2.44m-04
E{(4)= 2.418-08
E(5)= 2.978-08
E(6)= 1.91E-14
E(7)= 4.78E-15

ST

16

it does not converge uniformly. For example, if Ry ever
happens to be éxactly_zérol then since it is a factor of
Rys1s By will be zero an&‘Rk will con%erge Lo zero.

If the product Ry By is graater than two, Rk +1 1s nega-
tive and the sequence will diverge. However, for this
algorithm, since the argument N is assumed to be normal-
jzed so that 1/ < N < 1, initial values may be assumed

to be in the follbwing ranges:
1/2 < By, <1 {3-5)
1<R, <2 {(3-6)

_The proof will make the assumptions that the rela-
tive errors of Ry and B, are less than.}@@ET;;g_= 2208 ...,
Tt is assumed that any implementation usingathis method
wonuld have at least this accuraéy in the indtial approx-
imation. The first bit of N, i.e., the information that
1> N> 1/2 or that 1/2 > N > 1/h is sufficient to
g?ﬁer&ﬁe an approximation of this scouracy. For ex-
ample, if N is known to be between 1/2 and 1, the
2 {(VZ-1) ~ .828428, RO = 2(2-Y2) = 1. 171572
each have relative errors of * (B“EQM' ~ 1+ 17157 for N = 1°

values B,

and N = 1/2. The same is true for 1/h < N < 1/2 if B, =
2 -2 ~ .585786, Ry = A(W2-1) ¥ 1.656856. If a five-bit
approximation is uséd, the maximum relative error pos-

sible is 27 = +,03125. Thus a five-bit initial approximation

17

of these values of B, and R, has a maximum relative error
of less than .208 and will coﬂvefgeg
Similarly, if the two first bits of N are considered,
values of Ry and B, can be obtained with relative error
of .072 or less. For this case, only a three-bit approxi-
mation to R, and B, 1s necessary to guarantee convergence.
The proof of convergence is not straightforward because
neither of the sequences B nor By converges uniformly
towards its limit. Thus, it was ﬁecessary to introduce
"a function { which is the sum of the magnitudes of the
relative errors of By and Ry. The theorem and proof follow:
Theorem R: TFor & number N = B2 = ié, % <H<1i,

given a pair of numbers B, and R,

such that BOfE} RO“R1 < MI05-9
5 | 1R 6

and the iteration

Rpi1 = Ry (2-ByRy) (3-7)

Bk_}.l = %{Bk+ﬂgk‘?‘1) 3 (3"8J

then 1lim B, = lim 1/R =VN (3-9)
k— oo k- o=
Proof: Define error functions as follows:
B
- R
BR-B
B

Ek = {3“16}

By = (3-11)

18

Substituting equation (1) into (2) gives

' 2
Ryyy = Re(2-ByRy) = 2Ry = ByRy (3-13)
Biyr = S[BtN(Ry) (2-Byiy)] (3-14)
- 1 1 2
= NR, + 5Bk - 38Ry ¥ (3-15)
- _ |2 1 1 2 _
Byy] = B°Ry + EBk - EBkRk B (3-16)
g = Nl R (2 -ByRi®) -R (3-17)
k+1 . R - R N
' Eptl
. Substituting R, = (B, +1)R =
: K Kkt B
S F+1
and B, = (F, +1)B = —— glves
.k k R

. 2B R+2R~(B) 2P A28 Fi+F) 4B, 212E) +1)R-R

Epe1 = -
: R
(3-18)
which simplifies to
Byl = ~FeoB 2B Fi-By Py (3-19)

Likewise for Fk+1

=IO I -
_ Bri1-B _ (B RuHBr-5BrRk B)-B
Ry, = Dkl o (B RicHBi-sBiRK)-B _
B B
BY(Eyt1) | g 1 2 2
—— E-B(1+Fk) -5 B(E, “F| A2, F) 4T 4B, “+2E,+1) - B

B
(3-20)

19

which simplifies te

_.lg 2 142 -
Prpp = < 5 Ty ByFy- 5 By T (3-21)

Define ﬁhe‘comboéite‘efrér sum function
8, = IEic] + [Fyl (3-22)
It is clear that

lim §, =0 (3-23)

k— o<

implies that 1im |Epl= 1im [F]= O
K> o k—>so '(3_21”

which will prove the theorem.

Using equations (3~19) and_(3«215, the triangle

ineqﬁality guarantees that

= 1 1 2
gk+l - [Fk-}-ll + IEk+1| -":—'é' [Ek i + IEkaI +

> EIR |+ IRl E2] +2 [BF |+ |52F]
- (3-25),

-3 ' 2 | 3 2‘ _
< (Pl 2 BT+ 3 BT B Pyl (3-26)

s | o
Crpg = 1Pl + 3 Bl + 3 Il + 2 IBF D B (3-27)

20

Assuning that [E |, |F | = mﬁigs-@ = .208

P \05-9 , . Y105~ 3({V105-0\2
gkﬂi [Pl + [g-mgéw?-wm, %ﬁ + §<_M5 9)}%

6
{3-28)
which simplifies to
diery =lE] 41 12l <$y (3-29)

It Sk = O, 5k+1 = 0. Otherwise, clearly
1f both [E)]ang |¥,.| are not greater than

059 | and one is strictly less than that
&

number, 5k%1 < Sk

Q.E.D,

Using equations (3~19) and (3-21) of the proof,
and caleulating maximum values Tor on! ang fFGl it is
possible to calculate the maximum error for any 1teration.
This has been dﬁme for a few initial values and plotted
on Fig. 3-3. Fig. 3-4 shows the number of signifieant
bits generated after each iteration. Clearly, this
algorithm converges very rapldly. Although it is ?pt
seacond crder, it does increase the average number of places

LY

of accuracy of By and Ry by more than 50% per'itefatinn:

| ¥y]

Relative Error

I
1 2
Tteration Numbher

Fig. 3~3 Maximum Relative Error vs. Iteration Number for a
Variety of Initilal Conditions--Algorithm R.

Number of Significant Bits

60

20"+

® 8-bit initial approximation -
A 6-bit initial approximation
O U4-bit initial approximation

/A 2-bit initial approximation

2 - T (] 1§ Y (] 1} T T T
1 2 3 b 5 6 7 3 9
Iteration Number

Fig. 3~4 Minimum MNumber of Significant Bits vs. Iteration
Number Given Maximum Initial Errors 3B, and Ry~~Algorithm R.

CHAPTER 4
SIMULATION STUDIES OF ALGORITHM R
4.1 Method

In order to establish some of the charagteristics
of‘the nondividing algorithm R and compare it to other
methods a simulation was performéd on the CDC 6600. The
algorithm was studiled, varying the simulated word length,
and Initial approximation accuracy.

" Word length variations were simulated by rounding
the word after a fixed number of bits. After each mul-
tiplication the product was rounded after a prescribed
number of bits. The same subroutine rounded initial
approximations in order to study their effect on thg
convergence rate.

The numbers were assumed to be fixed point, since
all numbers except N ére between 1/2 and 2--a very narrow
range. N will be normalized so that 1/4 < N < 1, The
assumpti&n was made to speed up the addition, since fixed
point addition is much faster than Tloating point.

The initial approximation was generated in the
following way: The number N and the true square root of
that number was determined, using the Fortran library
function. The reciprocal of this number also was calculated

23

24

and these two numbers were rounded after P places to
represent P-bit approximations to B and R respectively.
This simulates a lock-up %table using P bits of N to

generate P-place approximations B, and R,
k,2 Comparison

Tn order to rate algorithm R, a conventional method
was simulated, assuming a division algorithm of the type
used in the IBM 360/91. [1] This machine uses recursive
multiplication after an initial approximation from a look-up
table. It was assumed a standard Newton-Raphson iteration
using division is used in bthe conventional method. The
criterion considered for comparison purposes was the
number of multiplications required.

The IBM 360/91 contains an extremelﬁ fast multiply/
divide unit which performs division in the following way:
For fraction N/D, generate Ry, an approximate reciprocal
to D, using combinational loglce, Mhltiﬁly both The
numerator and denominator by R,. The numerator product
is now approximately egual to the quotient, while the
denominator product is very close to unity. I% can be
shown [1] that btaking the two's complement of the new
denominator and again multiplying both numerator and

denominator by this complement, the denominator will

25

approach unity at a second order rate, i.e., 1ts number
of consecutive ones or geros will double with each itera-

‘tion. This algorithm can be represented thus:

@=Y.Ro .M. R .. Fy._Q (1)
0 i 2 N

where Rq is a P-bit approximation %o 1/D

k
and R = 2 «D¢* T R

J=1

1 (4-2)

J
The criterion used for stopping both iterations
was when [B,-B| 2 2¢ {(4-3)

where € is the value of the least significant bit of the
simulated machine. X

Initlally, a large number of values for N were
used, These numbers were evenly spaced between 1/ and
1., Iater a random number genergtor wa's used po generate
an array of 1000 random numbers., No variaﬁioné in con-
vergence rate were detected with respect to the size of
the number N. The first method, using evenly spaced
values of N, had a somewhat wider variance, due to the
fact that it hit some perfect squares, such as 1/4,
which reguire no lterationg, This, of course, dié notb
happen often with random numbers and the variance was
extremel§%small, usually less than 0.2 and in many cases

lass than 0.,1.

26

The simulation was performed twice--once to find
the average number of iterations required and once to
find the variancel A {low chart for the simvlation is
<hown in Fig. -1, The abbreviation I.A. is for initial
approximation, 1.e., an integer which represents the
number of significant bits of BO and Rg.

The comparative numbers of multiplications
required {3 per iteration for algorithm R, 2 per ltera-
tion for the conventional algorithm) are plotﬁed on PFigs.
bep, 4-3, b-#, B-5, and 4-6, for word iengths of 20, 32,
hg3, 64, and 92. In virtually all cases, algorithm R
requlires fewer mulbiplications. The greatest advantage
is realized in the larger machines, whilch is particularly
remarkable since the conventional algorithm is intended
for large machines.

Another characteristic which becomes more apparent
when $the comparisons are plotted on linear paper is that
the slope of the R algorithm is much smaller, 1.e.. not as
mich is lost by a less accurate initial approximation; '
this is shown in Fig. 4-7 for a 64-bit machine.

Also on graphs U4-2 to B-6 is shown the required
number of mulbtiplicablons necessary %o guarantee conver-
gence from the inltial approximation. Although for small

machines it is greater than the conventional algorithm,

Generata 1000Element
Random Array

Set Word Length to 20

|

Ta

] Set IA to 2 Bits]

|

27

A

Selact Array Element
Calculate By, R

0
Using IA

{

Calculate By, ,
Rk 4 for Algorithm R

Increment
k

No

Record Error

n wip?

Calculate Bk+l

For Conventional
Aleorithm Using
Same B, .

| Record o~ if Possible I

L7y

Set Rrray
Pointer to O

.

;alculate
Average

Increment
Ylord Length

Inciement

Average Erroxr,

Print NAveragak, Maximum K,

Haximum Ervor, g for
for All Cases

Fig. 4-1 Flow Chart of Bimulation of Algorithm R

[T

28
A Average for simulation using
Conventional Algorithm

O Average for simulabion using
Algorithm R

® Maximum reguired to guarantee
convergence

20.

=
i

umber of Multiplications
(]
o
I

T
]

!

] i ! N

2 L 6 8

Number of Significant Bits of
Initial Approximation

Pig. 4-2 Number of Multiplications for a 20-bit
Number vs. Accuracy of Initial Approximation.

29

A Averapge for simulation using
Conventional Algorithm

O Average for simulation using
Algorithm R

® Maximum required tc guarantee
convergence

30 .

20
0
£
o
o
b

o 15"
-
et
joN
e
)
=

£ 104
Gy
o

g, B4
[}
e
g
2

6.

L

| | I

2 I 6 é

Number of Significant Bilts of
Initial Approximation

Fig, 4-3 Number of Multiplications for a 32-bit
Number vs, Accuracy of Initial Approximation.

30

A Average for simulation using
Conventional Algorithm

O Average for simulation uslng
Algorithm R

@ Maximum required %o guarantee
convergence

4o

30

201 O\O SR\
15- \\}—:__——_—::g

10 -

Number of Multiplications

i I i

j
2 b 6 8

Number of Significant Bits of
Initial Approximation

Fig. U4-4 Number of Multiplications for a U48-bit
Number vs, Accuracy of Initlal Approximation.

31

4\ Average for simulation using
Conventional Algorithm

- Q Average for simulation using
Algorithm R

O Meximum reguired %o guarantee

convergence
Lo -
30 -
o
o 20 4
]
o
I
[
<
a 15 -
-
E]
E
=
&
o 10 -
[
@
B
=
=

:‘ i I |
2 il 6, 8
Number of Significant Bits of
Initial Appricximation

Fig, 4-5 Number of Multiplications for a 64-bit
Number vs, Accuracy of Initial Approximation.

32

A Average for simulation using
Conventional Algorithm

Q Average for simulation using
Algorithm R

© Maximum required to guarantee

50 + convergence
Lo .
30 ~

v

o

o

B

S 20 -

Q

o

—

o,

Nl

b

~

=

=

€

o

e

@ 10

O

=

=

=

[] I]
2 Y 6 8

Number of Significant Bits of
Initial Approximation

Fig. 4-6 Number of Multiplications for a 92-bilt
Number vs. Accuracy of Initlal Approximation,

33

40

30
9]
£
o
|
42
o
Q
or
=
£,
ot
3
&
= 20 -
Geg
o)
£
)
)
£
=
p=ay

10 4

& Average for simulation using
Conventional Algorithm
O Average for simulation using
Algorithm R

0 1 ¥ i i
' 2 h & !
Number of Significant Bits orf
Initial Approximation

Fig. 4-7 Number of Multiplications for a Gl-bit
Number vs. Accuracy of Initial Approximation,

34

it is much smaller on the large machines, barely greater

than the average humber.
4,3 Conclusion

Algorithm R converges very rapldly, with 1ts most
impressive advantage in a large machine, It does not
require an extremely accurate initial approximation to

converge rapldly.

CEAPTER 5
ALGORITHM F
5.1 Motivation

Tn the simulation of algorithm R a comparlson was
made with the Newbon-Raphson square roob method employing
the IBM 360/91 division scheme. In this machine a high
speed look-up table was avallable, imﬁlementeé in com=-
binational }ogic. Algorithm R assumed a similar look-up
table to generate initial values Ry and By although 1%
was shown that a much smaller table could be used.

The question arises, would 1% be possible o use
the 360/01 iook-up table or a similar one more effectiﬁély
to generate square root? Thus aigOPithm ¥ was developed,
assuming ﬁhat an approximate dlvision could be performed.
The algorithm may be stated in the following way: For

normalized number N = BZ, 1/4 < N < 1, B, ¥ B, the iteration
B}g{»l = B;{ + fp (BK) ' (I\T“Bkg) (5"'1) -

where f,(Bg) is one-half the reciprocal of By rounded
to p bits. This requires the 360/91 reciprocal generabor
with an output shifting it right one place. The Justifilca-
tion for Algorithm F is this: The Newton-Raphson

iteration may be wpltten

35

36

By = lm + 1) (5-2)
= (o + %I{— - By) | (5-3)
= By +%G§E - %E) (5-4)
= By + pp(N-B,2) (5-5)

The term is essentially a weighting factor for the

L.
2By
.correction term N—Bkg. Concelvably, as in algorithm R,
1t could- be iterated to greater accuracy, also. Héwever,
algorifhm F converges very rapidly, using only the rounded
approximation. The proof, glven later, shows that if '
the value of By has ét least as many significant blts as
the reciprocal generator, il.e., p+1 bits, that the con-
vergence rate will be ét least p blts per iteration.
For specific cases, where the maximum inltial error is
given, it is ?ossible to calculate the maximum possible
error after each iteration which demonstrates an even
greater convergence rate,

A sequence chart for Fis shown InFig. 5-1 7Two mul-
tiplication and two additions are required per iteration.
However, since one factor in each multiplication, By in

the first and fp(Bk)'in the second, are already normal-

1zed, no normalization is necessary elther in the

37

multiplication or in the addition. Thus the time redquired
is approximately the time needed for two multiplications,.

An example of algorithm F is given in Fig. 5-2 for
algorithm R in Fig. 3-2, A 6-bit reciprocal generator
(p = 6) was assumed. The example converges at approximately

the same rate as for algorithm R under these conditions.

5.2 Proof of Convergence

2

Theorem F: For a number N=B“, 1/4 < N < 1, given

an initial approximation 1/2 < B, <1

and the iteration

2
Brsr = By + fp (By) - (N-B,7) (5-6)
where fp(x) is any function such that

1 (}. - 2'9“1) =Ty (%) = % (} + 2“13'1\

2 \X X /

(5-7)

then lim BK;B. Furthermore, if

kK— oo
- B -B -
0 < Bk“B < 2 p-1 s _ktl =< 2 p
- Bka
(5-8)
Proof': Define again relative error function
By~-B

By = - (5-9)

38

Multiply

Add

Multiply

Agd

By = Bie + T, 0 (W - By

Fig. 5-1 Sequence Diagram for Algorithm F.

=. 145313

B{0)}= .6875000000000
B{1)= L6734655078185
B(2)= .6731528181247
"B(3)= 6731493544089
B{4)= ,6731LG53152365
B(5)= .673149314793%
B(6)= 6731493147584
B{7)= .6731493147883

B{T}= 6731403147883

F{0)= 2.13E-02
#(1)= &,70D-04
F{2)= 5.208~06
F{3)= 5.808-05
P{4)= 6.668-10
F{5)= 7.53E-12
F{6)= 8,L4E-14
F(7)==5.28E-15

Pig. 5-2 EBxample of Algorithm F.

39

Lo
Then

Bk + I (Bl)fN—B(Fk+1)2] - B
Flgl = B (5-10)

Substituting B® = N and Fy = B, - B
Frpp = P = fp(B)) Fye - (24Fy) * B (5-11)
From hypothesis we can see that either

-p-1 .
1P| < 17y - 2 (%1 -2 my (27-7) B (5-12)
<

or

o1

Pal < 1P - 3 G+ 2777 7 (2) B (5-13)

k

(5-12) and 6-13) may be combined as

1Py 1= Py s Fy) (2-Fy B [+[Fy -2 P2 (R) (2-Fy)B| (5-14)

Substituting for B, and rearranging gives

X
. 2FF -P -2 (5-15)
|Fyepq |<]7, FKE;,E_|+]F (2B+F))2 |
F 2B+2F,, ~ e
kil LJ»--§Q§'- (2B+Fy)2 P2 (5-16)
Fk 2B+2F Kk
Frqa P
+1(2B p"P2 -1
P [S|2(iemy) || BT (5-17)

41

From (2.12) we know

Fy
1+Fk

1

Frrn) _ 1
-

Fyr

+ 2Pl |7, | oP-2 (5~18)

Now if 1/2 = B_=< 1, 1/2 2B < 1

—

k
By, -
'1/2-5-Fk == 1 <1 (5-19)

Consider the function Fy/(1+F,) over the domain
-1/2<Fy=<1. It is a monotonically increasing function
with extremes of -1 and +1/2 at Fj = -1/2 and F, = 1

respectively. Thus

1t P2 (5
= < = -20)
2 Fk 1 e
Hence from {5-18)
Del | 1,1 o L. o (5-21)

If P > 1 this ratlo is less than one and the series

converges.
Case 1: 0O < Fy

Clearly all terms of right side (5-17) are posi-
tive, sothe absolute values can be deleted from the right

Siée:

4o

Fria
Fy

3 -
k Lo Pty . py . 2P0
ST e A k

(5-22)

Expanding the first term in a Maclaurin series

F
k lp -lplylw3 -2
(A 2 kK~ 5 Tk 5 Tk (5-23)
1 1 Fy
I e F Y — F -
2 "k 2 KT (5-24)
Fiee] 1] “p-1" . . nmP-2 _ l‘. _}_?_].’5_
: < LFerB -2 + B« Fp c 2 5 Tk Ty,
k
(5-25)
By-B 2"P"1 .
O<Fr=——2=x§ < 2 (5-26)

Since the last term is negatlve, it may Be dropped.

F oy . i _ . -

kil 5%2p2+5-2p1+221° (5-27)
Fk .

P o _

Fral| 2 P-1¢ 1 4 p 4 27PF (5-28)

¥ow consider the functlion

g(B) = 25 + B+ C (5-29)

where ¢ is a constant.

43

Its maximum value on the interval %,i B=< 1 is at

B=1 vwhere g(B) = %.+ C - (5-30)

Substituting this vaiuve in (5-24) gives

Frail . ,-p-1 (3 -p+ly
v I (3 +27577) (5-31)
If p> 3
-g- + 7Pl i% + %Ff' 2 (5-32)

Therefore, for Fk > 0

Fraa
Fy

< o™ P (5-33)

Case 2: Fyp < O
The first term on the right hand side of (5.17) is

negative while the second term is positive.

Fr+1 Fi - -p-e
bt . — P-‘l » 4 p -
7| < BT + B +B L F 2 (5-34)

Again, expanding the first term glves

Fyey
Fy

1 ..p -1 ..p ..2 1 Fk
<-1F +B2 + B'R, 2 +L1p K
g K k 2 " KitFy

(5-35)

L

Dropping the third term of (5-35) and noting that

...p_.l
Fy < (5-35)
and
1 Fi 2
gives

Fe| pp-2

+p - 0Pl P! (5-37)

Fy | ~ B
This is equation (5-24) so that we may conclude
..p..l
that for 0 < |Fyl < £ (5-38)
F
W+l -

Q.E.D.

Using equation (5-17) and assuming an inltial
error F, < 1, the maximum error alter each iteration was
calculated for four values of p. The resulbs are plobbted

in Filg. 5-3.

Number of Significant Bits

45

100 G

7,

90 -
80 ~
70 +
60 -
50 -
Lo
30
20

10 -

T i 1 T [I [i | !
1 2 3 4 5 6 7 8 g 10 11 12 13 14
Iteration

Fig. 5-3 Minimum Number of Significan{ Bits vs. Iteration
Number with Initial Relative Error |FOI < 1 for Four
Values of Reciprocal Generator Accuracy.

CHAPTER 6
SIMULATION STUDTRS OF ALGORTYHM 7
6.1 Method

& silmulstion of algorithm P was rerformed using
virtvally the same procedure as the simulation of
algorithm R, A major change was wade in that a new
initial approximation method was used,

Since algorithm F is greatly enhanced by an acey-
rate Initial vVaiue, it was desired to generate an scourate
initial value without the Necessity of a second look-up
table, 1i.e., utiiizg the reciprocal generator already
avaliable. Numerous methods were considered and one
wethod whieh 1s guite satvisfactory, if not optimal, was
selected. 7T% 1g adapted from a software initial approx-
imation Geveloped by Maehly (5] known‘as the best-rit
methogd,

Maehly's algorithm is of the form
By = g + B {6-1)
R £

for constants g = 2.185183, g = 3.022900, ¥ = 1.545158,

In this form 1% guarantees a pelative error of less than

2.6 x 1073, 1.2, nine significant bits. The adapbasion

is to assgme o, B, and 3 afe wired constants and use the
1

reciprosal generator to gensrate TIF - If ¥and a have P

46

)._lf“('-

significant bits and B has P/2, then By will have P
significant bits if P < 9.

This was simulated Iin the algorithm by rounding
o and L to P places, B to P/2 places. The result By then
was also rounded to P places.

This method required two addition and one multiplica-
tion times, but it was felt that 1t is probably justified
unless é look-up table for square root is to be implemented.
Quite possibly an improved algorithm could give as great
or greater accuracy faster or wi?h fewer constants
required, but this is considered out of the realm of this
paper. This adaptation is sufficient for the simulation.

Another change in the simulation resulted in the
fact that, by 1ts nature, algorithm F has an easy tes?y
for convergence. The term E = £ (By) (N-B,2) is the
correction factor, and as Bk converges 1t approaches zero.
An easy test for convergence is %o test E. |E| 1less than ¢

guarantees that [B,-Bl<2¢. This can be shown as follows:

lEl = 1f5 (By) - (N—Bk2)| < € (6-2)
B,y = By + E (6-3)
E =By - B = B (P -~ Fy) (6-4)
= €
Frp1 = Fol = l%L B (6-5)

48

Now if Fk+1 and F. have opposite signs then

_ k
Prsa] + Ful < & (6-6)
IF) < & (6-7)
IBrsn - Bl < € (6-8)

Tf, however, Fk+1 and Fk have fthe same sigp then

since from (5.17) we know if F is small compared to 27F,
Fral = B°27° |Fy| (6-9)

If F). = O we know A

D, - :
Fieqp < B727PF, {6-10)
f.9 -pr >7F, (1-5%P) > lr (6-11)
B~ ok kil Tk = 5 Tk :
If Px1
OiFkS_g-g
B (6-12)
B, - B'<2¢{. (6-13)

If Py = O 1likewise

Fipy > BP2PF (6-14)

Fyy1 - Fy > Fp (B%27P - 1) > - % Fy . (6-15)

il

49

If P> 1
_ 2¢€

0xfrE - % (6-16)

0x=B, ~-B>-2¢ (6-17)

| B -B] < 2¢

For algorithm F, this test was used, where & was
the value of the least significant bit, One result
of this is that for all simulatiéns, one extré iteration
was required, i.e., Fk was tested on iteration k+l for
convergence, As a result, in some case the maximum
required number of iterations guaranteed by the initial
approximation was actually exceeded by one iteration. In
fact, for cases where the algorifhm converged very fasty,
2.g., when the reciprocal generator produced a large
number of significant bits, the average number of itera-
tions made was greater than the maximum required number.

The same test was made for the conventional
algorithm for convergence, l.e.,-stop if |Bp,; - B] < €.
This resulted in a slightly higher value for this
algorithm, also, than in the comparison with R,

The flow chart for the algorithm F simulation 1is
shown in Fig. 6-1. Only random numbers were used in this

simulation. The initial array size was 1000, but was

Generate 100 Elemont
Random Array
Set Vord Length to 20

shals

| ses Ta to 2 Bits |

50

ar

Select Array Element
Calculate Bo Using IA

Incroement
k

Yo

b4
Calculate B,
For AlgorithmF

Record Error

2
58,2,

Record 0 if Knowm

For

Yes

" J; e
Calculate Bk-!-l .
Conventional
Algorithm Using
Same B
E_“N Increment
k No ‘ k F_J

?

Record Error N-B,Z
Record e« if Xnowun

Have
A1l KRumbers

AN

Been Tested

Set Array
Pointer to o
Calculate
Average

Increment
Word Length]

Length 92
?

Yes

|

Print Average k,
Max k, ¢v, Average Error, Max Error
For All cases

Fig., 6-1 Tlou Chart for Simmletion of Algorithm I

51

reduced to 100 after early results indicated 1little
variation in data for the two sizes. The results of the
simulation for word length of 20, 32, 48, 64, and 92 bits
are shown in Rigs. 6-2 through 6-6. Included are the
gata showing the number of iterations after which con-~

vergence 1s assured,
6.2 Conclusions

Algorithm F converges very rapldly--requiring in
some cases, as little as LO% of the number of multiplica-
tions as the conventional algorithm, However, 1t is even
more dependent on the initial approximation than the con-
ventional algorithm, particularly for guaranteed con-

vergence.

52

4 Average for simulation using
Conventional Algorithm

G Average for simulation using
Algorithm F including one extra
iteration to test for convergence

® Maximum required to guarantee
convergence

30 -

15 -

10 -+

Number of Multiplications

3 T I T i
2 4 6 8
Number of Significant Bits of
Initial Approximation

Fig., 6-2 Number of Multiplications for a 20-bit
Number vs. Accuracy of Initial Approximation.

53

A Average for simulation using
Conventional Algorithnm

O Average for simulation using
Algorlthm ¥ including orie exbtra
iteration to test for convergence

ho ® Maximum required to guarantee
convergence

30~

20 —

15

10 ~

Number of Multiplications

n o

3 ¥ T 1 I
2 4 6 8

Number of Significant Bits of
Initial Approximation

Fig. 6-3 Number of Multiplications for a 32-bit
Number vs. Accuracy of Inltial Approximation.

sk

50

Lo -

30

20 =

Multiplications
-
Ul
1

10 - \\T\?%

¢
o -
0 _
_g g - A Average for simulation using
§ Conventlonal Algorithm
z -
6 O Average Tor simulation using
N Algorithm F including one extra
iteration to test for convergence
D - :
@ Maximum required to guarantee
y convergence
3 T] 1 1
2 b 6 3

Number of Significant Blts of
. Initial Approximation

Fig., 6-4 Wumber of Multiplications for a 48-bit
Number vs. Accuracy of Initial Approximation,

55

3
i

60 -
50
40 -
30 -
10}
o
o
T 20
w
O
-
e~
2oy
T 15
e
=
Gy
<
o 10 -~
QO
B
2 8 A Average for simulation vusing
= Conventional Algorithm
5 O Average for simulation using
7 Algorithm F including one extra
iteration to test for convergence
5 -
® Maximum required to guarantee
convergence
4 - -
3] R l]
2 4 6 8

Number of Significant Bits of
Initial Approximation

Flg. 6-5 Number of Multiplications for a 64-bit
Number vs. Accuracy of Initial Approximation.

100 -~ 156

90 -
80 -
70 -
60 -
50
Lo -
a2
o 30
-
)
o
[
i
B
oo 20 -
2
&
=
g 15 -
%4
Q)
L
=
=
10 o
8 A Average for simulation using
N Conventional Algorithm
6 O Average for simulation using
7 Algorithm F lncluding one extrs
iteration to test for convergence
5 -
® Maximum redulred to guarantee
i convergence
3 ; T i T
2 4 6 8

Number of Significant Bits of
Initial Approximation

Fig. 6-6 Number of Multiplications for a 92-bit
Number vs, Accuracy of Initial Approximation,

CHAPTER 7
COMPARTSONS OF ALGORITHM R AND QLGOR$THM P
7.1 . General Comparisons

Both algorlithms R and F providas distinet advantages
over conventional methods. Algorithm R is capable of
generating the square root witﬁ fewer multiplications
than a standard method and requlres ﬁa large look-up
table. ﬁlgérithm F utilizes existing special hardwars
similar tc that in the IBM 360/91 to more than double
the speed of the sguare root célculatian.

On a standard machine a software square roob
function is a complicated procedure; An initiél approx=- .
imation must be made,; calling up cconstants, an iteratlon
must be made and either a check mads for convergence or
a édﬁnter_kept to determine completion, Considering the
inherent speed advantages of a hardware implementation,
1t is felt that either algorithm can significantly decrease
computation time for squaré root without a great addition
of hardware.

“ The two algorithms are hard to -compare, because
they are designed for different purposes. Algorithm ¥ is
intended as an addiftion to a computer with a multipiy/
dlvide unit of the type employed in the 360/91. It

57

100

90 —

80 4

70

60 -

50 -

4o -

30 4
jan]
&y
o
0
5 20
Mo
5
=
©
8]
il
G-t
oo
.
8
ot
0 . -
¢ O Algorithm F
o Fo, < .0026
;s b=8
2 0 Algorithm R
e 35, Fo = 0026

O Algorithm F
Fq < ,125

P=2

A Algorithm R

Eo, Fo = »125

Number of Iterations
3 b 5 6 7 8

3 | |
1L|5 6 7|8 910‘1112 13
0 A Y N S OO

10 15 20 25
Number of Multiplications

Filg. 7-1 Calculated Minimum number of Significant Bits of B
vs. Number of Iterations and Multiplications for Algorithms
F and R.

59

requires little additional hardware, Algorithm R assumes
only a fast multipller and creates a division scheme of
its own. As a result, 1t does require consideradble
additional hardware,’

Some comparisons can be made between the two
algorithms. PFilg. 7-1 shows convergence rates for the
two algorithms. Algorithm ¥ has a steeper slope initlally
and Is much gmoother, but due Ho the fact that 1t only
increases P blts per iteration, its slope declines, On
the other hand, although the slope of R is erratic, it
nevertheless 1g fairly constant over geveral iterations,
increasing the number of significant bils by about 55%
per iteration, It may he possible to take advantage of
its erratic behavior to produce a considerably higher

rate, since the values plotted are worst case,
7.2 Comparisons to Conventional Algorithms

An attempt has been made to compare algorithms T
and R and also to compare them to the conventional
aigorithm. The basis of comparison was the minimum
number of significant bits generated after each iteration
for both algorithms. For purposes of comparison 1t was
assumed that (1) maximum errors for B, and R, of algorithm

R were the same as maximum errors for BO of alzorithm F

60

and the conventicnal algorithm and (2) Algorithm F ubilized
a reclprocal generator generating the same number of bits
as the Inltial approximation.

The conventional algorithm 1s not compared directly
to the R and F on Filg., 7-1 because of the fact that it
requires two convergences«-oné for the hardware division
convergence and. one for the software Newton-Raphson square
root convergence. However, calculations were made to
determine the maximum number of iterations required for
convergénce, assumling the number of significant bits
doubles with each iteration. They are shown in Tables T-1
and 7~2, In Tables 7-3 and 7-4 they are converted %o
requlred number of ﬁultiplications~-a falrer comparison
slnce R requires 3 multiplications wh;le the conventional
altorithm and F require but 2.

T.3 Variance

o
As mentiloned earlier, on the simulation the variance
in the number of iterations was ealeulated. All three
algorithms had a low variance with variations seeming more
dependent on the particular machine size and initial
approximation than anything else. In general, however,
surprisingly,R tended to have the lowest variance, par-

ticularly on the larger machines., For example, on a 92-bit

61

TABLE 7-1

MAXTMUM NUMBER OF TITERATIONS REQUIRED TO GENERATE
*SQUARE ROOT WITH AN 8-BIT INITIAL APPROXTIMATION

B e e A e T S S S S

Machine Size
20 32 48 6l 92

Conventional Algorithm L i 9 9 16

Algorithm F 2 3 5 T 10

Algorithm R 3 3 5 5 T
TABLE 7-2

MAXIMUM NUMBER OF ITERATIONS REQUIRED TO CENERATE SQUARE
ROOT WITH A 2-BIT INITIAL APPROXIMATION

e e e e e
Machine Size

20 32 48 64 92

\i

Conventional Algorithm 16 16 25 25 36
Algorithm F 8 10 16 21 30
Algorithm R 5 7 8 9 9

62

TABLE- 7~3

MAXIMUM NUMBER OF MULTIPLICATIONS REQUIRED TC GENERATE
SQUARE ROOT WITH AN 8-BIT INITIAL APPROXTMATIQN

T ety e i R
o

Machine Size
20 32 48 6l g2

Conventional Algorithm 8 8 18 18 32

Algorithm F 4 6 10 14 20

Algorithm R Q 9 15 15 21
TABIE 7~

MAXIMUM NUMBER OF MULTIPLICATIONS REQUIRED TC GENERATE
SQUARE ROOT WITH A 2-BIT INITIAL APPROXIMATION

Pttty iy Warereimerrrini

MachE;e Size”
20 32 48 &l 92

Conventional Algorithm 32 32 50 50 72
Algorithm F 16 20 32 hp 60
Algorithm R 15 21 ol 27 27

63

machine with 2-bits initial approximation R had a variance
of only 0.07 compared to .20 for the conventional
algorithm and .22 for F.

The low varignces are related to the fact that
the average number of lterations was very close to the
actval values for both R and F. This indicates that
probably a counter willl be a more effective method for
terminating iteration than a test, particularly for

algorithm R which would be very hard to test.
7.4 Round-off Error

None of the iteratlive methods studied were able
to guarantee the last bit., If iteration is continued
after convergence, the last blt will frequently alternate
and, in the case of algorithm R, the last two bits alter-
nated on occasion. This was attributed to roung-off
errors caused by the truncation due %o mul@iplication.
This error was measured in the simulations by squaring
By after 1t had converged and comparing 1t to N. It was
found that both algorithms had smaller errors, on the
average than the conventional algorithm, with F slightly
better. However, R had a significantly larger varlance
than the others and its greatest error was generally as
large as or larger than the conventional algorithm, This

was expected, from observations described earlier,

€4

Although 1% is difficult %o compare any of these
square root technigues %o direct methods mentioned in
Chapter 2, some cbservations can be made. {1) Direct
methods are linear, generating a Pixed number of sig-
nificant bite per unit of time, While Algorlthm F is
also linear, Algorithm R is nearly second order--it
increases significant bits at a higher rate with esch
iberation. (2) Direct methods are clearly limited in
thelyr rate--even complicated Techniques used to generate
two bité at a time require considerable decoding time
On the other hand, algorithm F is not so limited. Tt
can e made to converge at an arbitrary rate by increas-
ing the accuracy of the recivrocal generator and the
initial approximation, The breakeven point is when R
produces as many significant biis in one iteration as
the direct method can in the same time-~the time for two
multiplications, Por example, if the reciprocal generator
produces elght significant bits and a multiplication time
is & cycles, a direct method would have o produce one

blt per cyele to be competitive.

CHAPTER 8
IMPLEMENTATIONS OF ALGORITHMS F AND R

Although all of the detalls of an implementation
of algorithms F and R have not been worked out, a pos-

sible configuration has been designed for each algorithm,
8.1 Algorithm R

Since algorithm R incorporates its own division
algorithm the organization was desilgned such that both
division and square root could be performed rapidly.

The multiplier is given a speclal characteristic not
normally found on a multiplier, but not belleved difficult
to implement. It was given the ability to add in a fixed
point number %o the product if desired, i.e., it could
generate (X ¥ Y) + Z. This would be a valuable ability
for other operations as well. It was assumed that the
multiplier has three registers, ¥, Y, and 2. The multi-
plicand is entered in X while the multiplier is in Y.

The product is left in ¥ which is actually a double

length register, although only the most significant half
is necessary for square root and division., The Z regilster
contains a number which, upon command, is added %o the

Product during multiplication., Thils result may be

AR

66

\'i
b

~] Multiplier

.

== Adder

Y

k'

Combinational Logic
to generate RO,BO,RDO

n

Fig.

Common Data Bus

8-1

Data ®low for Algorithm R.

67

delivered shifted right one place, i.e., % [{xy - (YY) + (2)].
with this scheme, as shown in Fig. 8-1, both multiplication
and division could be expeéited very rapidly.

For square root, the operand is initially found
in register W, It is assumed that at this point the
number has been normslized so that the exponent is ever
and ghe mantlssa is greater than or egual to 1/4 and less
than 1. A test will have been performed to check for a
negative operand, in which case an error diagnostic
would be transmitted. In addition, if a zero were detected,
the result register will be set to zero and the instruc-
tion will be completed.

Register W could be used to generate the addresses
in memory for the approximation B, and R,. However,
since algorithm R has been shown to be not highly dependent
on the initial approximation, it would probably be ruch
faster to generate a small initial approximation for By
and R, using combinational logic. This approach has
been assumed for the implementation.

The sequencing for square root would be as follows:

1} From contents of register W, generate B, in Y

and Ry in X.
2} (Y)— 2, X7 % (¥) —+ Y. The value B, is stored
for later use in Z. The 2's complement of RyB,

is stored in Y.

€8

3) (X)) ¥ (Y)Y, (W)X Ry is being multiplied
by the term 2-BxRk to generate Ry,,. Meanwhile
the operand ﬁ is being moved to X for the next
operation,

B (x) % (¥) + (2)FHly, (v) —=X. The term
Byiy = %-(Bk + N ¥ Ry,q) is being formed in Y
while Ryiq 1s being transferred to X for the
next cycle. The contents of Y transferred to
X are the contents before the multiplication.

5) Steps 2, 3 and U4 are repeated a fixed number
of times untill the desired accuracy of By 1s
guaranteed,

6) The result B is in register Y while its reclprocal

R is in register X.
8.2 Algorithm R--Division

For division little additional hardware 1s required.
A look-up table in combinational logic -is assumed for bthe
initial approximation to the reciprocal Rpg. The dividend
1s assumed to be initially in register Z while the divisor
i1s in register W.
1) From contents of register W (divisor) generate
Rpy in X, and transfer the partial contents
of W.(same number of significant bits as Rpe

to Y.

2} TX)Y ¥ (¥J-> Y. The two's complement term

2 - DRDk is being generated.
’ X)) #(Y) —Y W)y—X. R is generated
3) (%) * (¥) =Y, (W) Dy, 15 8

while D is being transferred to X for the next
iteration.
by () = (Y)=- ¥, (Y} —-X. The two's complement

term 2 - DR is generated and R is gated
Dpyy B Dysa
into X for generation of RDk+2' The contents

of Y transferred to X is the contents before
the multiplication.
5) Repeat 3 and 4 until required accuracy for

RDjyq = %,‘will.be obtained on following iteration.

% s . 1 _
6) (X) * (¥)—Y, (V) —X. Cenerate <= RDm_l

while the dividend is being transferred for
multiplication.
7) (X)) % (¥)— ¥, (Y)-->X. The quotient is placed

in register Y while i%s reciprocal is left in

X. Again (Y) means before the multiplication.
Steps 6 and 7 are identical to 3 and 4 except that V is
gated to X instead of W on step 6 and the product, rather
than the two's complement of the product is entered in ¥

on step 7.

¥

Reciprocal]
f

Generator
\\\
¥ 3
Multiplier]
v
1 Adder

Fig. 8-2 Data Flow for Algorithm R,

71
8.3 Algorithm F

A reciprocal generator of the type used in the
IBM 360/91 was assumed for the implementation of algorithm
F shown in Fig, 8-2, As for algorithm R, it was assumed
that a sum could be added %o a product in the multiplier
without a great loss in speed. Although two multiplica-
tions are necessary for each iteration, one would be
extremely rapid since the multiplier is the P-bit approx-
%E; and contains only P significant bits.
This 1s true even for the final iterations where By has

imation to

a large number of significant bits,

As was assumed in the simulation an approximation
was generated for By, using constants, o, B, and 5,
probably wired, in registers X, ¥, and Z respectlvely.
The operand N 1s in register W ang has been checked to
see 1f 1t is positive. By some means the contents of W
is added to X, either through an adder (possibly the
adder in the multiplier) or througﬁ combinational logic
since the sum will have only a few signifilcant bits.
This sum is entered in the combinational logic reciprocal
generator and its approximate reciprocal 1s deposited in
X, X is multiplied by ¥ and %the sum Z is included.

The result, B,, is stored in Y. The sequence 1is thus:

12

1) fp[(w) + (X)]—>X. Generate f%ﬁ |
2) (X) * (¥) + (2)—=X, Y. Generate B, = o +fp - A

3) £, (OBEX, Oz, (1) ¢ (7)) + WY

Generate N —'Bkg, prepare fp = §%.,.term.in X,

+k
by generating reciprocal and gating the output
on place right.
4y (x) * (Y) + (2)>X, Y. Generate By =

2

5) Repeat 3 and ¥ until required accuracy 18

guaranteed. The result, B, is in register Y.

For. both algorithms it is possible to speed up
the multiplications considerably, during the early itera-
tions because of the small number of significant bits.
in addition, for algorithm F, as mentioned earlier, only
one multiplication per iberation requires a full multiplica~
tion and this would only be required on the final iterations.
For both algorithms some method is reguired to de-
termine when convergence has been reached. For algorithm F,
an easy test is to consider the magnitude of the product

2). No such simple test exists for R. In

fp + (N-By
addition, for ¥ it was shown that in many cases, the
average number of iterations required was so close to

the maximum necessary that it is actually faster to do a

73

fixed number of lterations than to test for convergence.
Thus for 811 cases with R and most cases with F the most
efficlent way bto stop the algorithm 1s to iterste a pre~
determined nuwber of times, This would require a small

counver.

CHAPTER 9
SUMMARY
9.1 Comparisons

Two algorithms have been proposed which:could
significantly reduce execution time for the squre root
operation. By their nature they are not easy Lo compare
either to each other or to a more conventional method.
Algorithm R converges very rapidly, though not quite at
a second order ratbte, The algorithm requires a unique
organization but includes a high speed division algorithm,
Algorithm 'F utilizes a special reciprocal generator and
converges at a linear rate, t may be forced to converge
at any rate desired by brute force, i,e., its rate is
.dependent on the accuracy of the reciprocal generator
and thg initial approximation. Both algeorithms are
believed to have some profitable applicatlons, speeding
up square root execufion without a great expense of hard-
ware,

The comparison of algorithms ¥ and R with a con-
ventional algorithm was based on the number of multiplilca-
tions required. In some respects, this may be an unfair

comparison, because division executlon time is consideratly

Th

75

1ess than the product of the number of multiplications

and the multiplication execution time. For example, In
the IBM 360/91, despite the fact that a mulbtiplication
requires 6 clock cycles and 9 multiplications are required
for division, only 18 clock cycles are necessary, i.e.,
two per multiplication. This is a result of the fact that
all but the last multiplication require only part of the
maltiplier because they involve fewer significant bits.

It is believed that the same techniques can be used with
algorithms R and F to speed up square root time, and for
algorithm R to speed up dlvision.

Poth algorithms were shown by simulation to be
faster than conventional iterative techniques, particularly
on large machines. In particular, algorithm R was shown
to have its greatest advantage for a bad initial approx-
imation, since its convergence rate was not greatly
affected. These results were also shown from calculations
of the maximum number of iterations required to guarantee

an arbltrary accuracy.
9.2 Possible Modificatlions

In addition to the implementatlon suggested, a
number of other possibilities exist. If more than one

miltiplier were avallable, an additional speedup would

76

be possible for algorithm R. However, by the nature of
the algorithm, two multiplications would.still have to
be performed alternately as shown in Fig. 9~1 unless a
multiplication of three factors were available,

With some modifications, algorithm F might be
made to converge at a nearly second order rate with a
second multiplier available, While the Bkg-N term was

belng generated, the reciprocal approximation f = 5%_
k

could be used to generate a better approximation by use
of the Newton-Raphson reciprocal iteration, f = f (2-2fB,),

or some modification. This approximation to Eg%_i will
i+

clearly be better than the approximation from the generator

. . 1
i r—
which will not change from 55

On a machine for which multiplication is very fast
compared to division, R might be micro-programmed or even
implemented completely in software. It is possible,
also, that a machine such aé the 360/91, conbaining a
table look-up reciprocal generator, might be micro-~
programmed to do square root by algorithm F. For example,
with an eilght-bit initial approximation, algorithm F
would require only 6 iterations to converge. The use of
the same approximation and the Newton-Raphson lteration

would require 4 divisions. Algorithm F requires an exbtra

Ryy1 =

Fig. 9-1 Sequence Diagram for
Two Multipliers.

77

Multiply

Add

Multiply

Add

1
Ry (2 - BiaRy)

L R2
Ry = By By

Algorithm R Using

78

addition but no shift for the factor 1/2 in the Newton-
Raphson iteration. Thus, for a six-cycle multiply and
an 18-cycle divide, each would take 72 cycles plus the
time required for other manipulations. If any speed-up
in multiplication could be achieved, algo;ithm F would
be faster. For example, 4f the multiplication involving
f_ were reduced %o two cycles, the multiplication time

D
would be only 48 cycles or 2/3 as much.

9.3 Toples for Further Study

The use of mulfiplication as a recursive operator
for square root extractlon demonstrates that complex
functions can be generated rapidly by bhese techniques.
Many algorithms of this type could be developed for
other functions. Algorlthms F and R might be generalilzed
80 that 1t is possible to generabte an arbitrary root
by this method. In additioﬁ, this approach may be valu~
able in generating other functions which can be found by
iterative techniques.

Another topic for further study would be the use
of more than one multiplier. It was shown that both
algorithms can be improved by the use of multiple units,
though neither was developed with this in mind. Quite
possibly a more efficient sqguare root technique could be

implemented if additional mulbiplication units were

available.

REFERENCES

Anderson, S. F., J. G. BEarle, R. E. Goidschmidt¢, D.
M. Powers, "The IBM System/360 Model 91:
Ploating Point Execution Unit, " IBM Journal,
January, 1967.

Barnes, George H,, Richard M. Brown, Majo Kato,
David J. Kuck, Danlel L. Slobnick, Richard A.
Stokes, "The ILLIAC IV Computer,” IEEE Trans-
sotions on Computers, vol. C-17, No. 8,
August, 1968,

Control Data Corporaticn, 6600 Computer Sysﬁem/ﬁibrary
Fugction Manual Publicabtion #601 14500, Rev. A,
1865,

Flores, Ivan; The Logic of Compubter Arithmetlc,
Englewood CLifrs, New Jersey, Prentice-Hall,
Tnc., 1963.

Maehly, Hans J., "Approximations for the Control
Daga 1604, " Control Data Corporation, March,
1960, ;

Scientific Data Systems 920,/930 Programmed Operators
Magual, Publication #SDS ©C0020¢, January,
1565,)

79

FACILITY FORAM 802

THO SQUARE ROOT ALGIRIMHMS UTILIZING MULTIPLICATION

AS THE TIERATIVE OPERATOR

APPROVED:

Nwo - 2833920 -
(ACCEZSIOM HUMBER), (THRU)
L]
}J | (PACES) - (CODE)
(b /04439
ANASACR OTHX €% A5 SanER CATESE aY)
e e e et e e e e 1 v e e Reproduced by the

CLEARINGHQUSE
for Federal Scienhfic & Technical
Information Springfreld Va. 22151

