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ABSTRACT
 

The hardware algorithms are presented which utilize
 

high-speed multiplication and no division to perform the
 

square root operation rapidly. One algorithm is intended
 

for a large general-purpose computer and in addition pro­

vides a second-order division scheme. The second al­

gorithm requires a-special function generator which is
 

presently utilized in certain existing computers. Each
 

algorithm is considered for convergence rate, variance,
 

accuracy and implementation. The effect and importance
 

of the initial approximation is considered. A simulation
 

is performed to compare each to a conventional algorithm.
 

Although both algorithms are intended strictly for hard­

ware implementation, either may find an application using
 

microprogramming, and under certain conditions, one might
 

be implemented in software.
 

iv
 



TABLE OF CONTENTS
 

Chapter 	 Page
 

1. 	INTRODUCTION . . ... . . . . . . ..
 1
 

2. 	SQUARE ROOT TECHNIQUES . .........
 

2.1 	 Direct Methods. . ......... 3
 

2.2 	 Iterative Approximation Techniques 8
 

2.3 	 Approximation to the Taylor Square
 
Root Polynomial. .......... . 8
 

2.4 	 Newton-Raphson Iteration....... 8
 

3. 	ALGORITHM R . . . . . .... 1 l. 


3.1, Motivation..... . ... 11
I...... 


3.2 	Division 14
 

3.3 	 Proof of Convergence ..
 

4. 	SIMULATION STUDIES OF ALGORITHM R 23
 

4.1 Method ...............	 23
 

4.2 Comparison.... ............ 24
 

4.3 Conclusion .......... .... 27
 

5. 	ALGORITHM F ................ 35
 

5.1 Motivation .............	 35
 

5.2 Proof of Convergence ........ 37
 

6. 	SIMULATION STUDIES OF ALGORITHM F . . . . 46
 

46
6.1 	 Method 


6.2 	 Conclusion .............
 51
 

7. 	COMPARISONS OF ALGORITHM F AND ALGORITHM R 
 57
 

7.1 	 General Comparisons .........
 57
 

7.2 	 Comparisons to Conventional Algorithm 
 59
 

v 



Chapter Page
 

7.3 Variance . . 6o
 

7.4 Round-off Error ........... 63
 

8. IMPLEMENTATIONS OF ALGORITHMS F AND R . 65
 

8.1 Algorithm R ......... .... 65
 

8.2 Algorithm R--Division ........ 68
 

8.3 Algorithm F ............. 71
 

9. SUMMARY . ............... 74
 

9.1 Comparisons . .......... . .. 74
 

9.2 Possible Modifications 75
 

9.3 Topics for Further Study 78
 

REFERENCES ................... 79
 

vi 



LIST OF TABLES
 

Table Page 

7-1 Maximum Number of Iterations Required to 
Generate Square Root with an 8-bit 
Initial Approximation .......... . 61 

7-2 Maximum Number of Iterations Required to 
Generate Square Root with a 2-bit Initial 
Approximation .............. 61 

7-3 Maximum Number of Multiplications Required 
to Generate Square Root with an 8-bit 
Initial Approximation ....... ... . 62 

7-4 Maximum Number of Multiplications Required 
to Generate Square Root with a 2-bit 
Initial Approximation .......... 62 

vii
 



LIST OF FIGURES
 

Figure 	 Page
 

2-1 	 Decimal Square Root . . .. .. 4
 

2-2 	 Binary Square Root . ....... ... .. 5
 

2-3 	 Restoring Square Root. ........... 6
 

2-4 	 Nonrestoring Square Root. ......... 7
 

3-1 	 Sequence Diagram for Algorithm R ..... 13
 

3-2 	 An Example of Algorithm R .. 15
 

3-3 	 Maximum Relative Error vs. Iteration Number
 
for a Variety of Initial Conditions--

Algorithm R . ........... ..... 21
 

3-4 	 Minimum Number of Significant Bits vs.
 
Iteration Number Given Maximum Initial
 
Errors B. and Ro--Algorithm R ....... 22
 

4-1 	 Flow Chart of Simulation of Algorithm R . 27
 

4-2 	 Number of Multiplications for a 20-bit
 
Number vs. Accuracy of Initial
 
Approximation ............... 28
 

4-3 	 Number of Multiplications for a 32-bit
 
Number vs. Accuracy of Initial
 
Approximation ............... 29
 

4-4 	 Number of Multiplications for a 48-bit
 
Number vs. Accuracy of Initial
 
Approximation ............... 30
 

4-5 	 Number of Multiplications for a 64-bit
 
Number vs. Accuracy of Initial
 
Approximation ............... 31
 

4-6 	 Number of Multiplications for a 92-bit
 
Number vs. Accuracy of Initial
 
Approximation ............... 32
 

4-7 	 Number of Multiplications for a 64-bit
 
Number vs. Accuracy of Initial
 
Approximation ............... 33
 

viii
 



Figure 	 Page
 

5-1 	 Sequence Diagram for Algorithm-F 38
 

5-2 	 Ecample, of Algorithm F . . . 39........ 


5-3 	 Minimum Number of Significant Bits vs.
 
Iteration Number with Initial Relative
 
Error )Fj - I for Four Values of
 
Reciprocal Generator Accuracy .. 45
 

6-1 	 Flow Chart for Simulation of Algorithm F 50
 

6-2 	 Number of Multiplications for a 20-bit
 
Number vs. Accuracy of Initial
 
Approximation........ ...... . 52
 

6-3 	 Number of Multiplications for a 32-bit
 
Number vs. Accura,cy of Initial
 
Approximation ............... 53
 

6-4 	 Number of Multiplications for a 48-bit
 
Number vs. Accuracy of Initial
 
Approximation .... .......... 54
 

6-5 	 Number of Multiplications for a 64-bit
 
Number vs. Accuracy of Initial
 
Approximation ............... 55
 

6-6 	 Number of Multiplications for a 92-bit
 
Number vs. Accuracy of Initial
 
Approximation ............... 56
 

7-1 Calculated MinimuM Number of Significant
 
Bits of B vs. Number of Iterations and
 
Multiplications for Algorithms F and R 58
 

8-1 	 Data Flow for Algorithm R . 66
 

8-2 	 Data Flow for Algorithm F ......... 70
 

9-1 	 Sequence Diagram for Algorithm R Using Two
 
Multipliers ................ 77
 

ix
 



CHAPTER 1 


The i n c r e a s i n g  u s e  of computers i n  s c i e n t i f i c a l l y  

o r i e n t e d  r e a l - t i m e  a p p l i c a t i o n s  such a s  p r o c e s s  c o n t r o l ,  

ae rospace  n a v i g a t i o n  and guidance,  e t c . ,  h a s  p l aced  new 

demands on computa t iona l  speed.  Therefore ,  t h e  f r e q u e n t l y  

used sof tware  a r i t h m e t i c  o p e r a t i o n s  such a s  d i v i s i o n ,  

square  r o o t ,  and p o s s i b l y  o t h e r  f u n c t i o n s  u s i n g  a  po ly-  

nomial e v a l u a t i o n  have t o  be  performed i n  t h e  hardware.  

I n  t h i s  t h e s i s ,  we a r e  concerned wi th  g e n e r a t i n g  

and implementing t h e  square  r o o t  f u n c t i o n ,  u s i n g  new 

t echn iques  which make use  of f a s t  m u l t i p l i e r s  found i n  

l a r g e ,  fou r th -gene ra t ion  s c i e n t i f i c  machines. [ I ] ,  [ 3 ]  

Most g e n e r a l  purpose s c i e n t i f i c  machines such a s  

t h e  CDC 6600, SDS 930, and t h e  Honeywell 8200 u s e  pro-  

grammed s u b r o u t i n e s  t o  e v a l u a t e  square  r o o t .  These sub- 

r o u t i n e s ,  many of which employ an  i t e r a t i v e  d i v i s i o n  

a lgo r i t hm,  a r e  n a t u r a l l y  v e r y  slow i n  comparison t o  mul- 

t i p l i c a t i o n .  On t h e  o p p o s i t e  extreme some computers 

such a s  t h e  P h i l c o  Transac 1000 have a  b u i l t - i n  square-

r o o t  f a c i l i t y .  Although an  o r d e r  of  magnitude i n c r e a s e  

i n  speed i s  p o s s i b l e  Poy such an  a d d i t i o n ,  t h e  c o s t  of t h e  

a d d i t i o n a l  h a ~ d i v a r e  required can "v p r o h i b i t i v e  because 
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of the complex sequencing that is needed in the square
 

root generation.
 

It is felt that, somewhere between these extremes
 

lies a host of computational techniques which reduce
 

execution time by making use of the inherent parallelism
 

of the algorithms. Hopefully they could also decrease
 

cost of additional equipment by maximum utilization of
 

existing hardware.
 

The approach of LSI technology promises a reduc­

tion in logic cost in addition to speed and size improve­

ments. It also makes more attractive specialized arith­

metic function generators due to the resultant emphasis
 

on functional partitioning. It is believed, therefore,
 

that a technique as mentioned above, if implementable
 

with LSI-type logic arrays, will be a practical approach
 

to increasing computation speed for the square-root
 

function.
 



CHAPTER 2
 

SQUARE ROOT TECHNIQUES
 

2.1 Direct Methods
 

So far as is known, the only naraware mernoa useo
 

to date to generate square root is a binary equivalent
 

of the paper-and-pencil method everyone learns in grade
 

school. The paper-and-pencil method is as follows:
 

Pair the digits off both directions from the decimal
 

point. Starting with the left-most pair of digits
 

(or single digit) find-the largest number which,
 

when squared, is less than the digit pair. Subtract
 

the square from the digit pair and append the next
 

digitpair. Call this the remainder. The first
 

digit found is the first digit of the answer. The
 

second digit is determined in the following way:
 

Double the answer so far calculated (so far only one
 

digit). Append to that number the largest digit for
 

which the product of the digit and the appended number
 

(i.e., 20 times the answer plus the digit) is less
 

than the remainder. Subtract that product from the
 

remainder and append the next decimal pair.
 

The remaining digits are calculated just as the
 

second one was--finding the largest digit which, when
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&ded to 20 times the answer and multiplied by the
 

(81it is less than the remainder. The decimal point
 

U after the same digit as the number of digit pairs
 

to the left of the decimal point of the initial number..
 

An example is given in Fig. 2-1 for the root of 62,138.
 

2 4 9 2 

6 21 38 oo 

4 
441f2 21 

-1 761 F9I45 38 

44 Ol
 

49821 1 	37 00
 
99 64
 

1[37 36
 

Fig. 2-1 	 Decimal Square Root.
 

The binary algorithm is quite analogous to the con­

\%Antional decimal technique. It is as follows with example
 

i n Flg. 2-2.
 

Pair the number off 'inbits both ways from the binary 

point. If the number is in floating point the exponent 

Must be an even number and the mantissa must be less 

than one and greater than or equal to 1/4. The first 

bit of the result must be ones since the first bit pair 

@f the 'ormalized" number must be 11, 10, or 01. Sub-

Tact one from the first bit pair and append the next
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bit pair to the difference. Double the answer so
 

far calculated (in this case only the bit 1) and
 

append the bit 1 if that number is less than the
 

remainder. Append a 1 also tothe'answer. Subtract
 

from the remainder and bring down the next bit pair.
 

If the number calculated is less than the old remainder,
 

append a 0 to the answer and bring down the next bit
 

pair. The remaining bits are calculated just as the
 

second bit was.
 

. 1 0 1 0 0 1 

\F 10 10 01 00 01 

10 0 77i0 
0 

1001 10 10 
10 01 

10100 T 
00 

1 
0 

Ol 
00 

10100001 1 01 00 
00 0 00 00 

1010001 ' 1 
1 

01 
01 

00 
00 

01 
01 

Fig. 2-2 Binary Square Root
 

In the machine it is difficult to look at the number 

6nd decide if it is larger or smaller than another number. 

TitUs at each stage it is assumed that the next bit is a 

One and the number formedby a one bit appended to twice 
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tha answer is subtracted from the remainder. If it is
 

negative it is added back to the remainder and last answer
 

bit is changed to zero. This is called the restoring
 

square root algorithm. An example is in Fig. 2-3.
 

0' 0 01 2' 1 1 1.1 

10 10 01 00 01
 
1 

*0 10­
- 1 01 

+.l 01
 
0 10 10
 
- 10 01 

-1 01 
10 1 01
 

1,10 0 00 00
 
+ 10 1 O~l 

00 1 01 00
 
-1. 01 0 01
 
1.1 	 0 -10 11
 
+ 1 	 0 10 01 
0 0 	1 01 00 01
 

1 01 00 01
 

Fig. 2-3 Restoring Square Root
 

A variation of this algorithm'which is faster but
 

requires more hardware is the nonrestoring square root
 

algorithm. In this method, again a one bit is assumed,
 

but if the difference is negative the number is not added
 

back in. Instead, on the following cycle the subtrahend
 

is made by appending a pair of ones to the answer thus
 

far, including the zero bit just determined. This number
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then is added, rather than subtracted as would normally
 

This process saves a step in that it combines
be done. 


the addition with the next subtraction for each time 
the
 

number would normally have to be restored. An example
 

is given in Fig. 2-4.
 

0 0 0
 

1lt 10 01 00 01
 
1
 

10
 

- 1 01 
1.71501 Yo
 

10 11
 
1 01
 

- 1 01 01
 
1.1 00 00 00
 

+ 10 10 11
 
11 10 10 "11 Ol
 

1 01 00 11
 
00 007-00 00
 

Fig. 2-4 Nonrestoring Square Root
 

The nonrestoring algorithm has been used more due
 

to the fact that with little more hardware it is sub­

stantially faster. It is used, for example, in many
 

airborne computers such as the Philco Transac-l000. For
 

either algorithm additional hardware is required for
 

Sequencing. In addition a counter is necessary to deter­

nine completion, although presumably if a hardware
 

"'vision scheme is implemented using subtraction as the
 

terative operator, the same counter can be used for both
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with slight mod"fications. The number of iterations
 

required to complete the.square root is fixed generally
 

by the size of the overand.
 

2.2 Iterative Approximation Techniques
 

Due to the complexity of the sequencing of direct
 

methods, most software routines have used certain iterative
 

methods to generate square root. Two of the most common
 

methods are briefly discussed below:
 

2.3 Approximation to the Taylor Square Root Polynomial
 

The'number is classified in one of many ranges and
 

then, using a number of constants, the first few terms
 

of the polynomial are generated. The SDS 930, for example,
 

uses eight ranges with four constants per range to generate
 

a 20-bit square root. [63
 

2.4 Newton-Raphson Iteration
 

After the generation of an initial/approximation 

the Newton-Raphson iteration is usedzecursively, For a 

number N = B%,initial approxima- Ion B., the Newton-

Raphson iteration is of the f' n-: 

il (Bk + N)
•2 Bk 

it can be shown, thgt the.number of places of accuracy
 

doubles with eacht iteration. The Control Data 6600
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computer uses this method after generating an initial
 

approximation with maximum relative error less than
 

2.6 x lo-3 . [3) The subroutine, in addition to requiring
 

the storage of three constants requires over 200 clock
 

periods to generate the initial approximation and go
 

through the four Newton-Raphson iterations required.
 

The SDS 930, which uses the polynomial evaluation
 

for single-precision calculations, utilizes the Newton-


Raphson iteration for multiprecision work. Only one
 

iteration is necessary, however, for double precision,
 

since the polynomial evaluation has already generated a
 

single precision initial approximation.
 

Eaoh of these methods reveals inherent problems
 

for hardware implementation. The polynomial approxima­

tion requires a large number of constants, the number of
 

which increases faster than the word length. The Newton-


Raphson technique requires a division bn each iteration,which
 

makes the iteration very slow. Division is a very -,low
 

operation. For example, in the CDC 6600 computer it takes
 

7.25 times as long as an addition and nearly three times
 

as long as a multiplication. It is so slow, even compared
 

to multiplication, that in some of the newer machines [1)
 

it is being performed using multiplication as the itera­

tire operator Instead of the traditional subtraction.
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Thus the software Newton-Raphson iteration becomes
 

limited by the division rate.
 

It seems clear, therefore, that if an algorithm
 

can be derived which eliminates division in the iteration,
 

a considerable speed-up can be realized.
 



CHAPTER 3
 

ALGORITHM R
 

3.1 Motivation
 

If a simple method could be obtained to find.the
 

reciprocal of Bk, the Newton-Raphson iteration could be
 

performed sans division. Clearly the Newton-Raphson
 

iteration for the reciprocal could be nested in the square
 

root iteration, i.e.,
 

given N = B2 - B, Rk,o B
Bo 


Rk,j+l = Rk,j(2-Rk,jBk) J=l,2 ... 1 (3-1)
 

1 (3-2)
 

Bk+l 
 k=,2,.. n
 

for sufficiently large m and n.
 

However, since two multiplications are required for each
 

iteration of R, a large number of multiplications would
 

be required per iteration of B.
 

Now suppose that,only one iteration for R were.
 

made between calculations of B and that the previous value
 

of R were used for the approximation. It intuitively
 

seems wasteful to produce -many iterations of Rk for early
 

values of Bk when Bk is only a rough approximation. If
 

l1
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the two-iterations converge at approximately the same
 

rate, the accuracy of Rk would be of the same order as
 

Bk after one iteration. This is the motive for Algorithm R
 

which is:
 

,R
= 1 BB RGiven N = B2 R2 nB,R 


The iteration Rk+l = Rk(2-BkRk) (3-3)
 

Bk~ =2 . k l
Bk+a = i(Bk-+NRk) (3-4) 

converges rapidly to Bm = B, Rm = R. It will be shown
 

later in the proof that this algorithm convergesif the
 

relative errors of Bo and Ro are each less than .208
 

Also in the proof the convergence rate will be calculated.
 

It was assumed that some sort of a table look-up would
 

be used to generate B. and Ro to within specified tolerances.
 

A flow chart for algorithm R is presented in Fig.
 

3-1. Initially Ro and B0 are multiplied together. This
 

product is then gated into the multiplier as a two's
 

complement, forming the term 2-BoRo, and multiplied by Ro
 

forming R1 . R1 is then multiplied by N and added to Bo;
 

If it is shifted left one place during the addition, it
 

comes out as B1. Thus an iteration requires 3 multiplica­

tion times plus an addition. With a little care, the
 

addition can be fixed point, since the multiplicand and
 

the multiplier were both normalized.
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BkR
k
 

Multiply
 

Multiply 

N Bk 

Multiply 

Add 

k+1 

Rk+l = Rk (2 - BkRk) 

Bk~l !(Bk 
2 

+ NRk+I ) 

Fig. 3-1 Sequence Diagram for Algorithm R. 



An example of algorithm R is given in Fig. 3-2.
 

Along with the results of the calculations for Bk and Rk 

is given the relative errors Fk - =Bk-B 
k _ an k -'N-w * 

As shown in-the Example 1E5 1 is greater than E4 . That 

is, for this particular iteration Rk actually diverged 

slightly. This is not unusual. Both Bk and R-k occasion­

ally diverge. However, just as in this example, whenever
 

IEk increases, jFkI decreases dramatically, and vice
 

versa.
 

3.2 Division
 

A feature of the R-algorithm is that division can
 

easily be performed using no additional hardware other than
 

that required for aigorithm R. Since Rk+ 1 is the Newton-


Raphson iteration for the reciprocal of Bk, if a number
 

D is inserted in place of Bk and only the iteration for
 

Rk is performed, Rk will converge at a second order rate
 

to R = l/D. If D is the divisor in a fraction N the

D
 

quotient may be determined by multiplying N NxR.
 

3.3 Proof of Convergence
 

The nondividing algorithm R converges to the square
 

root of a number for an initial value sufficiently close.
 

However, it does not converge for all initial values and
 



N=.45313
 

B(0)= .6875000000000 


B(1)= .6729772656250 


B(2)= .6729852071246 


t(3)= .6731492586061 


B(4)= .6731492948254 


B(5)= .67314931M7883 


B(6)= .6731493147883-


B(7)= .6731493147883 


B(T)= .6731493147883 


F(O)= 2.13E-02 R(0)= 1.500000000000 


F(1)=-2.56E-o4 R(1)= 1.453125000000 


F(2)=-2.44E-04' R(2)= 1.485209870510 


F(3)=-8.35E-08 R(3)=. 1.485916425943 


F(4)=-2.97E-08 R(4)= 1.485554545152 


F(5)=-l.o6E-14 R(5)= 1.485554553332 


F(6)=-5.28E-15 R(6)= 1.485554509276 


F(7)=-5.28E-15 R(7)= 1.485554509276 


R(T)= 1.485554509276
 

Fig. 3-2 An Example of Algorithm R
 

E(0)= 9.72E-03
 

E(1)=-2.18E-02
 

E(2)=-2.32E-04
 

E(3)= 2.44E-04
 

E(4)= 2.41E-08
 

E(5)= 2.97E-08
 

E(6)= 1.91E-!4
 

E(7)" 4.78E-15
 



it does not converge uniformly. For example, if k ever
 

happens to be exactly zero, then since it is a factor of
 

Rk+l will be zero and Rk will converge to zero.
Rk+l , 


if the product RkBk is greater than two, Rk+l is nega­

tive and the sequence will diverge. However, for this
 

algorithm, since the argument N is assumed to be normal­

ized so that 1/4 N < 1, initial values may be assumed
 

to be in the following ranges:
 

1/2 Bo < 1 (3-5) 

1 < Ro < 2 (3-6) 

The proof will make the assumptions that the rela­

tive errors of R. and Bo are less than-QW-6 9 = .208 .... 

It is assumed that any implementation using this method 

would have at least this accuracy in the initial approx­

imation. The first bit of N, i.e., the information that 

1 > N > 1/2 or that 1/2 > M> 1/4 is sufficient to 

generate an approximation of this accuracy. For ex­

ample, if N is known to be between 1/2 and 1, the 

values Bo = 2 (.2-) RReo = 2(2-12) 0 1.171572 

each have relative errors of ± (3-24) t t .17157 for N = 

and N 1/2. The same is true for 1/4 < N < 1/2 if Bo 

2 - J2 .585786, Ro = 4(1-1) t 1.656856. If a five-bit 

approximation is used, the-maximum relative error pos­

sible is 2-5 = t.03125. Thus a five-bit initial approximation
 



1.7
 

and R. has a maximum relative error
of these values of Bo 


of less than .208 and will converge.
 

Similarly, if the two first bits of N are considered,
 

values of Ro and BO can be obtained with relative error
 

of .072 or less. For this case, only a three-bit approxi­

is necessary to guarantee convergence.
mation to R. and Bo 


The proof of convergence is not straightforward because
 

neither of the sequences Bk nor Rk converges uniformly
 

towards its limit. Thus, it was necessary to introduce
 

a function k which is the sum of the magnitudes of the
 

The theorem and proof follow:
relative errors of Bk and Rk. 


= B2 = 1
Theorem R: For a number N R2' 14 < N - < 1, 

given a pair of numbers B0 and Ro
 

such that B0 I RI , 6V59 

B IRI 6 

and the iteration
 

Rk+l = Rk(2-BkRk) (3-7)
 

(3-8)
Bk+l = !(Bk+NRk+l), 


then lim Bk = lim IRk = n (3-9)
 

Proof: Define error functions as follows:
 

k =Rk-R (3-10) 
-R 

E Bk-B (3-li)B
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Substituting equation (i) into (2) gves
 

= R 2 

Rk+1 = Rk(2-Blk) = 2Rk-- Bkk 2 (3-13) 

Bk+l = ![Bk+N(Rk) (2-Bkl)3]B2l (3-14)
 

=N + 2Bk - t'BkRk2 N(3-15) 

Bk+ = B2Rk + iBk - -Bk 2B (3-16) 

Rk+l-R _ (2Hk-BkRk2 )-REk+l - R R (3-17)
 

.Substituting Rk = (Ek+l)R = Ek+l 
B 

and Bk = (Fk--l)B = Fk- gives 

R
 
EFk~l
 

Ek+l _2EkR+2£R _(Ek2Fk+2EkFk+Fk+Ek
2±2Ek+1 )R-R
 

(3-18)
 

which simplifies to
 

Ek+l = -Fk-Ek22EkFk-Ek2Fk (3-19)
 

Likewise for Fk+l
 

Bk+I-B = (B Rkt-BkT-Bk B)-B
Fk+l = -


B B
 

B 2 (Ek "1i-) EF+El)++ 
B2 (Ek+) I ( -+Fk 1 B (Ek2Fkc2EkFk+Fk+Ek2+2Ek+) - B 

2B 2 


B
 
(3-20) 
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which simplifies to
 

(3-21)
Fk+l Ekk2 -kFk- I Ek2Fk 


Define the composite err6r sum function
 

(3-22)

k = IEkj + IFkI 

It is clear that
 

11m 6k 0 (3-23)
 

implies that lim IEkI= r IFkI= 0
 

k (3-24)
 

which will prove the theorem.
 

Using equations (3-19) and (3-21), the triangle
 

IkFkI
inequality guarantees that
 
1 2k 


IEk+l- 1Lk+l = IFk+l! + u lE 21 + IE 

Ek2FkI
jEkFkJFFki+ + IEk2 I + 2 IEkFkI + 

(3-25) 

I 3 IEk 2 EOki + 2 Ekk2FI (3-26)1Fkj 1 + 3 

+2 2
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Assuming that IEk. IFk : - -9 = .2086 

2U-5-9 'T 3( liff% 9')2] E 

(3-28) 
which simplifies to
 

k+l SjFki + 1 IEk4 
< ck 
 (3-29)
 

if &k = 0, gk+l = 0. Otherwise, clearly
 

if both fEkland IFk 
are not greater than
 

EI--- 9 , and one is strictly less than that

6
 

number, k+l <Sk
 

Q,E.D.
 

Using equations (3-19) and 
(3-21) of the proof,
 
and calculating maximum values for JE.1 
and IF?1 it is
 
possible to calculate the maximum error for any iteration.
 
This has been done for a few initial values and plotted
 
on Fig. 3-3. 
Fig. 3-4 shows the number of significant
 
bits generated after each iteration, Clearly, this
 
algorithm converges very rapidly. 
Although it is not
 
second order, it does increase the average number of places
 
of accuracy of Bk
 and Rk by more than 50% per'iteratiponr
 



2-3
 
-
i0


O E0 <.1 F0 < 

o Eo 0.01 Fo 

-- Eo Po.1<.0026 o 


Eo :5.i Fo <.01
 

0 E o .01 1o OJ
 
10n-3 : 
 )E O :S.I F < 0026 

0 

o .0026 Fo <.006
 

0-4
 

0 

r- -6 
410 

10-7
 
10-8
 

I0-9 1 . ­

1 2 4 5 
Iteration Number 

Fig. 3-3 Maximum Relative Error vs. Iteration Number for a
 
Variety of Initial Conditions--Algorithm R,
 



22
 

80
 

6o 
60 

4o
 
4­

m
'r-1,., I 

19C) .0'
 

CO
 
CH 

sat)10 

6 0 8-bit initial approximation 

A 6-bit initial approximation 

0 4-bit initial approximation 
4 

A 2-bit initial approximation 

2 , -------


2 3 4 5 6 7 8 9 
Iteration Number
 

Fig.3-4 Minimum Number of Significant Bits vs. Iteration
 
Number Given Maximum Initial Errors Bo and Ro--Algorithm R.
 



CHAPTER 4
 

SIMULATION STUDIES OF ALGORITHM R
 

4.1 Method
 

In order to establish some of the characteristics
 

of the nondividing algorithm R and compare it to other
 

methods a simulation was performed on the CDC 6600. The
 

algorithm was studied, varying the simulated word length,
 

and initial approximation accuracy.
 

Word length variations were simulated by routding
 

the word after a fixed number of bits. After each mul­

tiplication the product was rounded after a prescribed
 

number of bits. The same subroutine rounded initial
 

approximations in order to study their effect on the
 

convergence rate.
 

The numbers were assumed to be fixed point, since
 

all numbers except N are between 1/2 and 2--a very narrow
 

range. N will be normalized so that 1/4 :.N < 1. The
 

assumption was made to speed up the addition, since fixed
 

point addition is much faster than floating point.
 

The initial approximation was generated in the
 

following way: The number N and the true square root of
 

that number was determined, using the Fortran library
 

function. The reciprocal of this number also was calculated
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and these two numbers were rounded after P places to
 

represent P-bit approximations to B and R respectively.
 

This simulates a look-up table using P bits of N to
 

generate P-place approximations Bo and Ro .
 

4.2 Comparison
 

In order to rate algorithm R, a conventional method
 

was simulated, assuming a division algorithm of the type
 

used in the IBM 360/91. [1] This machine uses recursive
 

multiplication after an initial approximation from a look-up
 

table. It was assumed a standard Newton-Raphson iteration
 

using division is used in the conventional method. The
 

criterion considered for comparison purposes was the
 

number of multiplications required.
 

The IBM 360/91 contains an extremely fast multiply/
 

divide unit which performs division in the following way:
 

For fraction N/D, generate R., an approximate reciprocal
 

to D, using combinational logic. Multiply both the
 

numerator and denominator by Ro. The numerator product
 

is now approximately equal to the quotient, while the
 

It can be
denominator product is very close to unity. 


shown [1] that taking the two's complement of the new
 

denominator and again multiplying both numerator and
 

denominator by this complement, the denominator will
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approach unity at a second order rate, i.e., its number
 

of consecutive ones or zeros will double with each itera­

tion. This algorithm can be represented thus:
 

Q 	 N.RO . R1 R2 .. NQ (4-1)
 
D Ro R RN 1
 

where R0 is a P-bit approximation to 1/D
 

k 
and Rk+l = 2 - D IT Rj (4-2)J=l
 

The criterion used for stopping both iterations 

was when IBk-BI : 2 C (4-3) 

where ( is the value of the least significant bit of the
 

simulated machine.
 

Initially, a large number of values for N were
 

used. These numbers were evenly spaced between 1/4 and
 

1. Later a random number generator wa's used to generate
 

an array of 1000 random numbers. No variations in con­

vergence rate were detected with rebpect to the size of
 

the number N. The first method, using evenly spaced
 

values of N, had a somewhat wider variance, due to the
 

fact that it hit some perfect squares, such as I/4,
 

which require no iterations, This, of course, did not
 

happen often with random numbers and the variance was
 

extremely'small, usually less than 0.2 and in many cases
 

less than 0.1.
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The simulation was performed twice--once 
to find
 

the average number of iterations required 
and once to
 

A flow chart for the simvlation is
 find the variance. 


The abbreviation I.A. is for initial
 shown inFig. 4-I. 


an integer which represents the
 approximation, i.e., 


•

number of significant bits of B. and Re
 

The comparative numbers of multiplications
 

required (3 per iteration'for algorithm 
R, 2 per itera­

tion for the conventional algorithm) are 
plotted on Figs.
 

4-2, 4-3, 4-4, 4-5, and 4-6, for word lengths 
of 20, 32,
 

In virtually all cases, algorithm R
 48, 64, and 92. 


The greatest advantage
requires fewer multiplications. 


is realized in the larger machines, 
which is particularly
 

remarkable since the conventional algorithm is 
intended
 

for large machines.
 

Another characteristic which becomes 
more apparent
 

when the comparisons are plotted on 
linear paper is that
 

not as
 
the slope of the R algorithm is much 

smaller, i.e., 


much is lost by a less accurate initial 
approximation.
 

This is shown in Fig. 4-7 for a 64-bit 
machine.
 

Also on graphs 4-2 to 4-6 is shown 
the required
 

number of multiplications necessary 
to guarantee conver­

gence from the initial approximation. 
Although for small
 

machines it is greater than the conventional algorithm,
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it is much smaller on the large machines, barely greater
 

than the average number.
 

4.3 Conclusion
 

Algorithm R converges very rapidly, with its most
 

impressive advantage in a large machine. It does not
 

require an extremely accurate initial approximation to
 

converge rapidly.
 



CHAPTER 5
 

ALGORITHM F
 

5.1 Motivation
 

In the simulation of algorithm R a comparison was
 

made with the Newton-Raphson square root method employing
 

In this machine a high
the IBM 360/91 division scheme. 


speed look-up table was available, implemented in com­

binational logic. Algorithm R assumed a similar look-up
 

and Bo , although it
table to generate initial values Ro 


shown that a much smaller table could be used.
was 


The question arises, would it be possible to use
 

the 360/91 look-up table or a similar one more effectively
 

Thus algorithm F was developed,
to generate square root? 


assuming that an approximate division could be performed.
 

The algorithm may be stated in the following way: For
 

B, the iteration
normalized number N = B
2 , 174 N < 1, B0 


Bk+l = Bk + fp(Bk) (N-Bk2 ) (5-1)
 

where fp(B k ) is one-half the reciprocal of Bk rounded
 

This requires the 360/91 reciprocal generator
to p bits. 


The justifica­with an output shifting it right one place. 


tion for Algorithm F is this: The Newton-Raphson
 

iteration may be written
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!(Bk + N ) (5-2) 

2=1 Bk_Bk+a 

= (2Bk + N Bk) (5-3)
Bk 

1Bk k2 

- Bk + gjjN-Bk2) 
Bk +
-(N-IC2(5-5) 

The term is essentially a weighting factor for the
2Bk
 
correction term N-Bk2 . Conceivably, as in algorithm R,
 

it could-be iterated to greater accuracy, also. However,
 

algorithm F converges very rapidly, using only the rounded
 

approximation. The proof, given later, shows that if
 

the value of Bk has at least as many significant bits as
 

the reciprocal generator, i.e., p+l bits, that the con­

vergence rate will be at least p bits per iteration.
 

For specific cases, where the maximum initial error is
 

given, it is possible to calculate the maximum possible
 

error after each iteration which demonstrates an even
 

greater convergence rate.
 

A sequence chart forFis shown inFig. 5-1 Two mul­

tiplication and two additions are required per iteration.
 

However, since one factor in each multiplication, Bk in
 

the first and fp(Bk) in the second, are already normal­

ized, no ncrmalization is necessary either in the
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multiplication or in the addition. Thus the time required 

is approximately the time needed for two multiplications. 

An example of algorithm F is given in Fig. 5-2 for 

algorithm R in Fig. 3-2. A 6-bit reciprocal generator 

(p = 6) was assumed. The example converges at approximately 

the same rate as for algorithm R under these conditions. 

5.2 Proof of Convergence
 

Theorem F: For a number N=B 2 1/ s N < 1, given 

an initial approximation 1/2 _ < 1B0 


and the iteration 

Bk+l = Bk + fp (Bk) (N-Bk2 ) (5-6) 

where fp (x) is any function such that 

pfp + 2P­

(5-7)
 

then lim Bk=B. Furthermore, if
 
k ;­

0 < Bk-B < 2 -p-1 Bk+-B < 2 -p 
K I Bk-B 

(5-8)
 

Proof: Define again relative error function 

Fk = B (5-9) 
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Multiply 

Add 

E 
 f 

Multiply
 

F
 

Add
 

Bk+l Bk + fp (N -Bk 2 )
 

Fig. 5-1 Sequence Diagram for Algorithm F.
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N=.45313
 

B(O= ,6875000000000 F(O)= 2.13E-02
 

B(1)= .6734655078125 F(i)= 4,70D-04
 

B(2)= .6731528181247 F(2)= 5.20B-06
 

B(3)= .6731493544089 F(3)= 5.89E-08
 

B(4)= .6731493152365 F(4)= 6.66E-ao
 

F(5)= 7.53E-12
B(5)= .6731493147934 


B(6)= .6731493147884 F(6)= 8.44E-14
 

B(7)= .6731493147883 F(7)=-5.28E-15
 

B(T)- .6731493147883
 

Fig. 5-2 Example of Algorithm F.
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Then
 

Bk±+f(BR)[N-B(FR+1) 2 3 - B (5-10) 
Fk+l = B (5-

SubstitutIng B2 = N and Fk = Bk - B 

Fk+1 = F - fp(Bk)'Fk • (2+Fk ) B (5-11)
 

From hypothesis we can see that either
 

k
 
IFkifsF- 2 

(1 - 2 -P-1) Fk (2'-Fk) B I (5-12)

D 


or 

IFk+l < Fk - I (I + 2 -P-) Fk (2 -Fk) B} (5-13) 

k)BBkk
k12 


(5-12)and 5-13) may be combined as
 

IFk+,jI_IF--2L(Fkj (-kB + F-2-P-2 (Fk)(2-Fk) (5-4 

-14)k Bk k)(-k)II kOJ 


Substituting for B k and rearranging gives
 

2

IFk+1 1IF F1k I+Fk (2B+Fk)2-P- (5-15)
 

Fk+l _ 2B+2Fk-z + (2B+Fk)2 -p-2 (-16) 

Fk 2B+2Fk 

Fk+a Fk (2B+Fk)B.2(1
 

Fk 2C1+Fk)+
 



From (2.12) we know 

Now Lf 1/2 2 Bk -< 1, 1/2 ' B '  1 

.Consider the  funct ion  Fk/(l+lk) over the  domain 

- 2 ~ ~ 1 .~t i s  a  monototiically increas ing funct ion 

with extremes of -1 and +1/2 a t  Fk = -1./2 and Fk = 1 

respec t ive ly .  Thus 

Hence from (5-18) 

I f  P 1 t h i s  r a t i o  i s  l e s s  than one and the  s e r i e s  

converges. 

Case 1: 0 < Fk 

Clear ly  a l l  terms of r i g h t  s ide  (5-17) a r e  pos i -  

t i v e ,  so'che absolute  values can be dele ted  from t h e  r i g h t  

s ide  : 
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Fk~l Fk B 2l-B
 
- p - 2 

- p - -F k -2+ B+ B• • 2 I 

jFk1 :i F 


Fk 2T£(l-I-k) (5-2)
 

Expanding the first term in a Maclaurin series
 

Fk 1 F _ . (5-23) 
2(l+Fk) 2f k k27f 

1 Fk - Fk Fk (5-24)
 
F+ 2 1 FkFk 

2Fk Flf--­
- p - + B Fk 2-p-2 

1 F k+B 2
Fk+I 1 

(5-25)
 

P 1
Bk-B 2 ­

0<Fk B -B <2 (5-26) 

Since the last term is negative, it may be dropped. 

F-1 < .-2 - p - 2 + B • - P - - 2p2 1 + 2 (5-27) 

IFk+l -P-. 1 +-p+11 (5-28) 

Fk 2 

Now consider the function 

(5-29)g 1+/ + Ck 

where C is a constant.
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Its maximum value on the interval s B 11 is at 
2 
­

B=1 where g(B) = 3 +2 C (5-30) 

Substituting this value in (5-24) gives
 

SFk+l (I + 2-P+')-	 (5-31)2-P-1 


If p > 3 

3 + 2-p+1 	 < 3 + 1 < 2 (5-32) 
-2 I7­2 

Therefore, for Fk > 0
 

lFk+ll< P-p 	 (5-33)
 

Fk
 

Oase 2: Fk < 0
 

The first 	term on the right hand side of (5.17) is
 

negative while the second term is positive.
 

<-Fk+ - __ + B-P-1 + B ",Fk 2 -p-2 (5-34) 

Fk 22(1+FkT 

Again, expanding the first term gives
 

Fk+l <- F+ B.2- 1 BP2 2 2 + 1 F Fk 

F- Fk + BFk - 2 kl+Fk 

(5-35)
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Dropping the third term of (5-35) and noting that 

-Fk < 2-P- (5-35) 

and
 

Fk ry . < k5-36) (F 

gives
 

I- • +-Fk+1 2 -p--2 ± B 2 -p- 1 (5-37)(s-P ) 

This is equation (5-24) so that we may conclude
 

that for 0 < I FkI <B -1 (5-38) 

Fk+l 2-Pp(3)
 
F- - p P -:3 (5-39) 

<2 

Q.E.D.
 

Using equation (5-17) and assuming an initial
 

error Fo :S 1, the maximum error after each iteration was 

calculated for four values of p. The results are plotted 

in Fig. 5-3. 
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CHAPTER 6
 

SIMULATION STUDIES OF ALGORITHM F
 

6.i Method 

A simulation of algorithm F was performed using
 
virtually the same procedure as the simulation of
 
algorithm R. 
A major change was made in that a new
 
initial approximation method was used.
 

Since algorithm F is greatly enhanced by an accu­rate initial value, it was desired to generate an accurate
 
initial value without the necessity of a second look-up

table, i.e., utilize the reciprocal generator already

available. 
Numerous methods were considered and 
one
 
method which is quite satisfactory, if not optimal, was

selected. 
 It is adapted from a software initial approx­
imation developed by Maehly 153 
known as the best-fit
 

method.
 

Maehly1s algorithm is of the form
 

Bo= + ­ (6-1)

for constants a 
= 2.185183, P 
= 3.022900 
 1.545158.
 
In this form it guarantees a relative error of less than
 

-
2.6 x 10 3, 
i.e., nine significant bits. 
The adaptation

is to assume a, 
, and 7 
are wired constants and use the
reciprocal generator to generate . Xand a have P
 

46
 



significant bits and P has P/2, then Bo will have P 

significant bits if P < 9. 

This was simulated in the algorithm by rounding 

a and to P places, P to P/2 places. The result Bo then 

was also rounded to P places. 

This method required two addition and one multiplica­

tion times, but it was felt that it is probably justified 

unless a look-up table for square root is to be implemented. 

Quite possibly an improved algorithm could give as great
 

or greater accuracy faster or with fewer constants
 

required, but this is considered out of the realm of this
 

paper. This adaptation is sufficient for the simulation.
 

Another change in the simulation resulted in the
 

fact that, by its nature, algorithm F has an easy test
 

for convergence. The term E = fp(B k ) (N-Bki
2 ) is the
 

correction factor, and as Bk converges it approaches zero.
 

An easy test for convergence is to test E. IEI less than
 

guarantees that IBk-BI< 2(. This can be shown as follows:
 

JE = 1Ifp (Bk) (N-Bk2)1 < (6-2) 

Bk+l= Bk + E (6-3)
 

E = Bk+l - Bk = B (Fk+l - Fk) (6,4) 

IFk+ - Fk! LI B (6-5) 



Now if Fk+l and Fk have opposite signs then
 

+
I k+l IFkI < B 	 (6-6)B
 

< (6-7)
 

IBk+- B I < ( (6-8) 

If, however, Fk+l and Fk have the same sign then 

-
since from (5.17) we know if Fk is small compared to 2 P,
 

IFkll S. 22-P IF 
 (6-9)
 

if 	Fk _t0 we -know \
 

Fk+1 < B22-PFk 61o) 

B2 FR.2-P) 

2 (6-11)
B k k l1 Fk (2 


If 	P_ 1
 

0 <_Fk < 2(

B 	 (6-12)
 

Bk - B'< 2 (. (6-13) 

If.Fk :S 0 likewise 

Fk+a > B22-PF k (6-14) 

-
Fk+1 - Fk > Fk (B2 2 - a) > - F (6-15) 
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If P - 1 

0 Fk _ 2(- - (6-16) 

o Bk - B -2E (6-17) 

IBk-_B < 2 

For algorithm F, this test was used, Where ( was
 

the value of the least significant bit. One result
 

of this is that for all simulations, one extra iteration
 

was required, i.e., Fk was tested on iteration k+l for
 

convergence. As a result, in some case the maximum
 

required number of iterations guaranteed by the initial
 

approximation was actually exceeded by one iteration. In
 

fact, for cases where the algorithm converged very fast,
 

e.g., when the reciprocal generator produced a large
 

number of significant bits, the average number of itera­

tions made was greater than the maximum required number.
 

The same test was made for the conventional
 

algorithm for convergence, i.e., stop if lBk+l - BI <
 

This resulted in a slightly higher value for this
 

algorithm, also, than in the comparison with R.
 

The flow chart for the algorithm F simulation is
 

shown in Fig. 6-1. Only random numbers were used in this
 

simulation-. The initial array size was 1000, but was
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reduced to 100 after early results indicated little
 

variation in data for the two sizes. The results of the
 

simulation for word length of 20, 32, 48, 64, and 92 bits
 

are shown in Figs. 6-2 through 6-6. Included are the
 

data showing the number of iterations after which con­

vergence is assured. 

6.2 Conclusions
 

Algorithm F converges very rapidly--requiring in
 

some cases, as little as 40% of the number of multiplica­

tions as the conventional algorithm. However, it is even
 

more dependent on the initial approximation than the con­

ventional algorithm, particularly for guaranteed con­

vergence.
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CHAPTER 7 

COMPARISONS OF ALGORITHM R AND ALGORITHM F 

7.1 . General Comparisons
 

Both algorithms R and F provide distinct advantages
 

over conventional methods. Algorithm R is capable of 

generating the square root with fewer multiplications 

than a standard method and requires no large look-up 

table. Algorithm F utilizes existing special hardware 

similar to that in the IBM 360/91 to more than double 

the speed of the square root calculation. 

On a standard machine a software square root
 

function is a complicated procedures An initial approx-\
-

imation must be made, calling up constants, an iteration 

must be made and either a check made for convergence or 

a 6ounter kept to determine completion. Considering the 

inherent speed advantages of a hardware implementation, 

it is felt that either algorithm can significantly decrease 

computation time for square root without a great addition 

of hardware. 

The two algorithms are hard to compare, because
 

they are designed for different puroposes. Algorithm F is
 

intended as an addition to a computer with a multiply/
 

divide unit of the type employed in the 360/91. It
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requires little additional hardware. Algorithm R assumes
 

only a fast multiplier and creates a division scheme of
 

its own. As a result, it does require considerable
 

additional hardware.
 

Some comparisons can be made between the two
 

algorithms. Fig. 7-1 shows convergence rates for the
 

two algorithms Algorithm F has a steeper slope initially
 

and is much smoother, but due to the fact that it only
 

increases P bits per iteration, its slope declines. On
 

the other hand, although the slope of R is erratic, it
 

nevertheless is fairly constant over 
several iterations,
 

increasing the number of significant bits by about 55%
 

per iteration. It may be possible to take advantage of
 

its erratic behavior to produce ,a considerably higher
 

rate, since the values plotted are worst case.
 

7.2 Comparisons to Conventional Algorithms
 

An attempt has been made to compare algorithms F
 

and R and also to compare them to the conventional
 

algorithm. The basis of comparison was the minimum
 

number of significant bits generated after each iteration
 

for both algorithms. For purposes of comparison it was
 

assumed that (1) maximum errors for B. and R. of algorithm
 

R were the'same as maximum errors for B0 of algorithm F
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and the conventional algorithm and (2) Algorithm F utilized
 

a reoiproca'l generator generating the same number of bits
 

as the initial approximation,.
 

The conventional algorithm is not compared directly
 

to the R and F on Fig. 7-1 because of the fact that it
 

requires two convergences--one for the hardware division
 

convergence and-one for the software Newton-Raphson square
 

root convergence. However, calculations were made to
 

determine the maximum number bf iterations required for
 

convergence, assuming the number of significant bits
 

doubles with each iteration. They are shown in Tables 7-1
 

and 7-2, In Tables 7-3 and 7-4 they are converted to
 

required number of multiplications--a fairer comparison
 

since R requires 3 multiplications while the conventional
 

altorithm and F require but 2.
 

7.3 Variance
 

As mentioned earlier, on the simulation the variance 

in the number of iterations was calculated. All three 

algorithms had a low variance with variations seeming more 

dependent on the particular machine size and initial 

approximation than anything else. In general, however, 

surprisingly,R tended to have the lowest variance, par­

ticularlv on the larger machines. For example, on a 92-bit 



TABLE 7-1
 

MAXIMUM 	 NUMBER OF ITERATIONS REQUIRED TO GENERATE
 

ROOT WITH AN 8-BIT INITIAL APPROXIMATION
SQUARE 

Machine Size
 
64 92
20 32 	 48 


9 16
4 4 	 9
Conventional Algorithm 


5 10
2 3 	 7
Algorithm F 


3 5 5 7
Algorithm R 	 3 


TABLE 7-2
 

MAXIMUM NUMBER OF ITERATIONS REQUIRED TO GENERATE 
SQUARE
 

ROOT WITH A 2-BIT INITIAL APPROXIMATION
 

Machine Size
 

64 92
20 32 	 48 


25 36
16 16 	 25
Conventional Algorithm 


8 10 16 21 30
Algorithm F 


Algorithm R 5 7 8 9 
 9 
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TABLE- 7-3 

MAXIMUM NUMBER. OF MULTIPLICATIONS REQUIRED TD GENERATE,
 
SQUARE ROOT WITH AN 8-BIT INITIAL. APPROXrIATTQN
 

Machine Size
 

20 32 48 64 92
 

Conventional Algorithm 8 8 18 18 32
 

Algorithm F 4 6 10 14 20
 

Algorithm R 9 9 15 15 21
 

TABLE 7-4
 

MAXIMUM NUMBER OF MULTIPLICATIONS REQUIRED TO GENERATE 
SQUARE ROOT WITH A 2-BIT INITIAL APPROXIMATION 

Machine Size
 
20 32 48 64 92
 

Conventional Algorithm 32 32 50 50 72
 

Algorithm F 16 20 32 42 6o
 

Algorithm R 15 21 24 27 27
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machine with 2-bits initial approximation R had a variance
 

of only 0.07 compared to .20 for the conventional
 

algorithm and .22 for F.
 

The low variances are related to the fact that
 

the average number of iterations was very close to the
 

actual values for both R and F. This indicates that
 

probably a counter will be a more effective method for
 

terminating iteration than a test, particularly for
 

algorithm R which would be very hard to test.
 

7.4 Round-off Error
 

None of the iterative methods studied were able
 

to guarantee the last bit. If iteration is continued
 

after convergence, the last bit will frequently alternate
 

and, in the case of algorithm R, the last two bits alter­

nated on occasion. This was attributed to round-off
 

errors caused by the truncation due to multiplication.
 

This error was measured in the simulations by squaring
 

Bk after it had converged and comparing it to N. It was
 

found that both algorithms had smaller errors, on the
 

average than the conventional algorithm, with F slightly
 

better. However, R had a significantly larger variance
 

than the others and its greatest error was generally as
 

large as or larger than the conventional algorithm. This
 

was expected, from observations described earlier.
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Although it is difficult to compare any of these
 

square root techniques to direct'methods mentioned in
 

Chapter 2, some observations can be made. 
 (i) Direct
 

methods are linear, generating a fixed number of sig­

nificant bits per unit of time, 
 While Algorithm F is
 

also linear, Algorithm R is nearly second order--it
 

increases 'significantbits at a higher rate with each
 

iteration. (2) 
Direct methods are clearly limited in
 

their rate--even complicated techniques used to generate
 

two bits at a time require considerable decoding time
 

On the other hand, algorithm F is not so limited. It
 

can be made to converge at an arbitrary rate by increas­

ing the accuracy of the reciprocal generator and the
 

initial approximation. The breakeven point is when F
 

produces as many significant bits in one iteration as
 

the direct method can in the same 
time--the time for two
 

multiplications. 
For example, if the reciprocal generator
 

produces eight significant bits and a multiplication time
 

is 4 cycles, a direct method would have to produce one
 

bit per cycle to be competitive,
 



CHAPTER 8
 

IMPLEMENTATIONS OF ALGORITHM F AND R
 

Although all of the details of an implementation
 

of algorithms F and R have not been worked out, a pos­

sible configuration has been designed for each algorithm.
 

8.1 Algorithm R
 

Since algorithm R incorporates its own division
 

algorithm the organization was designed such that both
 

division and square root could be performed rapidly.
 

The multiplier is given a special characteristic not
 

normally found on a multiplier, but not believed difficult
 

to implement. It was given the ability to add in a fixed
 

point number to the product if desired, i.e., it could
 

generate (X * Y) + Z. This would be a valuable ability
 

for other operations as well. It was assumed that the
 

multiplier has three registers, X, Y, and Z. The multi­

plicand is entered in X while the multiplier is in Y.
 

The product is left in Y which is actually a double
 

length register, although only the most significant half
 

is necessary for square root and division. The Z register
 

Contains a number which, upon command, is added to the
 

Product during multiplication. This result may be
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Common Data Bu. 

Fig. 8-1 Data Flow for Algorithm R.
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delivered shifted right one place, i.e., 1 L(X) (Y) + (Z)].
2 
With this scheme, as shown in Fig. 8-i, both multiplication 

and division could be expedited very rapidly. 

For square root, the operand is initially found 

in register W. It is assumed that at this point the 

number has been normalized so that the exponent is ever 

and the mantissa is greater than or equal to 1/4 and less 

than 1. A test will have been performed to check for a 

negative operand, in which case an error diagnostic 

would be transmitted. In addition, if a zero were detected, 

the result register will be set to zero and the instruc­

tion will be completed. 

Register W could be used to generate the addresses 

in memory for the approximation B. and RO . However 

since algorithm R has been shown to be not highly dependent 

on the initial approximation, it would probably be much 

faster to generate a small initial approximation for Be 

and R0 using combinational logic. This approach has 

been assumed for the implementation. 

The sequencing for square root would be as follows: 

1) From contents of register W, generate Bo in Y 

and Ro in X. 

2) (Y)-- Z3 (TXTT2Y--Z. The value Bo is stored 

for later use in Z. The 2's complement of RoB o 

is stored in Y. 
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3) (x) * (Y)- y, (W)--,X. Rk is being multiplied 

by the term 2-BkRk to generate Rk+I- Meanwhile 

the operand N is being moved to X for the next 

4) 
operation. 
(X) * (Y) + (z)R8HIy, (y)--x. The term 

Bk+l = 1 (Bk + N * Rk+l) is being formed in Y 

while Rk+1 is being transferred to X for the
 

next cycle. The contents of Y transferred to
 

X are the contents before the multiplication.
 

5) Steps 2, 3 and 4 are repeated a fixed number
 

of times until the desired accuracy of B. is
 

guaranteed.
 

6) The result B is in register Y while its reciprocal
 

R is in register X.
 

8.2 Algorithm R--Division
 

For division little additional hardware is required.
 

A look-up table in combinational logic is assumed for the
 

initial approximation to the reciprocal RDo. The dividend
 

is assumed to be initially in register Z while the divisor
 

is in register W.
 

i) From contents of register W (divisor) generate
 

RDo in X, and transfer the partial contents
 

of W (same number of significant bits as RDo)
 

to Y.
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Y)-Y. The two's complement term 

2 - DRDk is being generated. 

3) (X) * (Y) --?Y, (W)--* X. RDkI is generated 

2) 	(X)----


while D is being transferred to X for the next 

iteration. 

4) (X) * (Y)- Y, (Y) - X. The two's complement 

term 2 - DRDk+ I is generated and RDk+l is gated 

into X for generation of RDk+2. The contents
 

of Y transferred to X is the contents before
 

the multiplication. 

5) Repeat 3 and 4 until required accuracy for 

RDk+l lLwill.be obtained on following iteration, 
D 

6) (X) * (Y) ->Y, (V) -X. Generate 2 = 

while the dividend is being transferred for
 

multiplication.
 

7) 	(X) * (Y)- YY, (Y)->X. The quotient is placed
 

in register Y while its reciprocal is left in
 

X. 	Again (Y) means before the multiplication.
 

Steps 6 and 7 are identical to 3 and 4 except that V is
 

gated to X instead of W on step 6 and the product, rather
 

than the two's complement of the product is entered in Y
 

on step 7.
 



Ruet p lie 

Muliper 

Fig. 8-2 Data Flow for Algorithm R. 
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8.3 Algorithm F
 

A reciprocal generator of the type used in the
 

IBM 360/91 was assumed for the Implementation of algorithm
 

F shown in Fig. 8-2. As for algorithm R, it was assumed
 

that a sum could be added to a product in the multiplier
 

without a great loss in speed. Although two multiplica­

tions are necessary for each iteration, one would be
 

extremely rapid since the multiplier is the P-bit approx­

1
imation to and contains only P significant bits.
 

This is true even for the final iterations where Bk has
 

a large number of significant bits.
 

As was assumed in the simulation an approximation
 

was generated for Bo, using constants, a, P, and V,
 

probably wired, in registers X, Y, and Z respectively.
 

The operand N is in register W and has been checked to
 

see if it is positive. By some means the contents of W
 

is added to X, either through an adder (possibly the
 

adder in the multiplier) or through combinational logic
 

since the sum will have only a few significant bits.
 

This sum is entered in the combinational logic reciprocal
 

generator and its approximate reciprocal is deposited in
 

X. X is multiplied by Y and the sum Z is included.
 

The result, B., is stored in Y. The sequence is thus:
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1) f [(W) + (X)]->X. Generate 1 

2) (X) * (Y) + (Z)--X, 'Y. Generate B = + I 

3 RSHI

3) f()-z M (x) (-) + W- Y 

B2 , 
 _ IteminX 

= 1 termin X,
Generate N -'Bk , prepare fp 

by generating reciprocal and gating the output 

on place right. 

4.) (X) * (Y) + (Z)-->X, Y. Generate Bk+l = 

Bk + fp (N-Bk2 ). 

until required accuracy is
5) Repeat 3 and 4 

The result, B, is in register Y.guaranteed. 


For.both algorithms it is possible to speed up
 

the multiplications considerably, during the early itera­

tions because of the small number of significant bits.
 

In addition, for algorithm F, as mentioned earlier, only
 

one multiplication per iteration requires a full multiplica­

tion and this would only be required on the final iterations.
 

For both algorithms some method is required to de-


For algorithm F,
termine when convergence has been reached. 


an easy test is to consider the magnitude of the product
 

In
fp -(N-Bk 2 ). No such simple test exists for R. 


addition, for F it was shown that in many cases, the
 

average number of iterations required was so close to
 

the maximum necessary that it is actually faster to do a
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fixed number of iterations than to test for convergence.
 

Thus for all cases with R and most cases with F the most
 

efficient way to stop the algorithm is to iterate a pre­

determined number of times. This would require a small
 

counter.
 



CHAPTER 9
 

SUMMARY
 

9.1 Comparisons
 

Two algorithms have been proposed which-could
 

significantly reduce execution time for the squre root
 

By their nature they are not easy to compare
operation. 


either to each other or to a more conventional method.
 

Algorithm R converges very rapidly, though not quite at
 

a second order rate. The algorithm requires a unique
 

organization but includes a high speed division algorithm.
 

Algorithm'F utilizes a special reciprocal generator and
 

converges at a linear rate. It may be forced to converge
 

at any rate desired by brute force, i.e., its rate is
 

.dependent on the accuracy of the reciprocal generator
 

and the initial approximation. Both algorithms are
 

believed to have some profitable applications, speeding
 

up square root execution without a great expense of hard­

ware.
 

The comparison of algorithms F and R with a con­

ventional algorithm was based on the number of multiplica­

tions required. In some respects, this may be an unfair
 

comparison, because division execution time is considerably
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less than the product of the number of multiplications
 

and the multiplication execution time. For example, in
 

the IBM 360/91, despite the fact that a multiplication
 

requires 6 clock cycles and 9 multiplications are required
 

for division, only 18 clock cycles are necessary, i.e.,
 

two per multiplication. This is a result of the fact that
 

all but the last multiplication require only part of the
 

multiplier because they involve fewer significant bits.
 

It is believed that the same techniques can be used with
 

algorithms R and F to speed up square root time, and for
 

algorithm R to speed up division.
 

Both algorithms were shown by simulation to be 

faster than conventional iterative techniques, particularly 

on large machines. In particular, algorithm R was shown 

to have its greatest advantage for a bad-initial approx­

imation, since its convergence rate was not greatly 

affected. These results were also shown from calculations 

of the maximum number of iterations required to guarantee 

an arbitrary accuracy. 

9.2 Possible Modifications
 

In addition to the implementation suggested, a
 

number of other possibilities exist. If more than one
 

miultiplier were available, an additional speedup would
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be possible for algorithm R. However, by the nature of
 

the algorithm, two multiplications would.still have to
 

be performed alternately as shown in Fig. 9-1 unless a
 

multiplication of three factors were available.
 

With some modifications, algorithm F might be 

made to converge at a nearly second order rate with a 

second multiplier available. While the Bk2-N term was 

being generated, the reciprocal approximation f = 1 
2Bk
 

could be used to generate a better approximation by use
 

of the Newton-Raphson reciprocal iteration, f = f (2-2fBk),
 

or some modification. This approximation to 7rE1 will
 

clearly be better than the approximation from the generator

i
 

which will not change from
 

On a machine for which multiplication is very fast
 

compared to division, R might be micro-programmed or even
 

implemented completely in software. It is possible,
 

also, that a machine such as the 360/91, containing a
 

table look-up reciprocal generator, might be micro­

programmed to do square root by algorithm F. For example,
 

with an eight-bit initial approximation, algorithm F
 

would require only 6 iterations to converge. The use of
 

the same approximation and the Newton-Raphson iteration
 

would require 4 divisions. Algorithm F requires an extra
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SN
 

Multiply 

Rkk
 

Add 

Multip ly
 

Rk2Bk~l
 
A d 

Bk+l 	 - (Bk + R 

Rk+I 	 = Rk (2 - Bk+lRk) 

= 2Rk - Rk 2Bk+l 

Fig. 9-1 Sequence Diagram for Algorithm R Using
 

Two Multipliers.
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addition but no shift for the factor 1/2 in the Newton-


Raphson iteration. Thus, for a six-cycle multiply and
 

an 18-cycle divide, each would, take 72 cycles plus the
 

time required for other manipulations, If any speed-up
 

in multiplication could be achieved, algorithm F would
 

be faster. For example, -if the multiplication involving
 

fp were reduced to two cycles, the multiplication time
 

would be only 48 cycles or 2/3 as much.
 

9.3 Topics for Further Study
 

The use of multiplication as a recursive operator
 

for square root extraction demonstrates that complex
 

functions can be generated rapidly by these techniques.
 

Pany algorithms of this type could be developed for
 

other functions, Algorithms F and R might be generalized
 

so that it is possible to generate an arbitrary root
 

by this method. In addition, this approach may be valu­

able in generating other functions which can be found by
 

iterative techniques.
 

Another topic for further study would be the use
 

of more than one multiplier. It was shown that both
 

algorithms can be improved by the use of multiple units,
 

though neither was developed with this in mind. Quite
 

possibly a more efficient square root technique could be
 

implemented if additional multiplication units were
 

available.
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