PURDUE UNIVERSIT
SCHOOL OF ELECTRICAL ENGINEERING

( N
\%\ 09:_,” LA
wad [E g z
) S/
rm g \
: ?? QE ~
- z ,),
Q| M ﬁ
g \Q ONE -
= (CQ*;SE Lafayettie, Indiana 47907
;'%‘ g Reproduced by the

CLEARINGHOQUSE !
for Federal Scienfific & Technica
09 WHOed Alruovs J Information Springfield Va, 22151

LY




CODES FOR PROTECTIOR FROM

SYNCHRONIZATION LOSS AND ADDITIVE EREORS

G. R. Redinbo
P, A, Wincs

TR~EE 63-43
Novewber, 1969

School of Electricsl Enginsering
Purdue University
Lafayette; Indisna 47907

This work was partially supported by ARPA and Joint Services Eleetronics
Program NOOOl4«67~-4~0226 modification AR, and by NASA grant NGR 15~-005-087.



1ii ERECEDING PAGE BLANIK

FABLE OF CONTENTS

LIST OF 'IABIIES L N N L A R T T T T T I I T I S

LIST OF FIGURES D.O‘...’..Qté.‘.H‘.WCB.GO&EOIOGBOﬁGGOCQIIQ.IQ;ﬁ
ABSTRACT LA AN NN RN N Y R T T R R R R T T Y

MPTER 1 - ‘INTRODUGTIO§ s.s...lu'u!-.I----00-&00-0tevo.l’o:.btiu.-.t

Tl‘le Prﬂblem lﬂd"...“!l.lIt'lﬁl.n.t.-lﬁ.'lb.‘ﬁld'.ll.l.-.t
Hotation and Prelimindries .v.vieecsvasvivsnvnncnanensnnsss

CE{A?TER 2 - COSET CODES L R N N N N N  F E E R R R E R )

Results for General Cyclic €odesS c.vieeveresevevreonnnosns
Reed"solﬁmon codes TS E LRk BT E AP EBSES ST EERA G

EXE.II‘IP}.ES LA N AR A RN R NN N NN I I N R - O S R A I A N ]

GHAPIER3 - SUBSET CODES LA N L R R R N N N A Y R T ]

Cosets of Expurgated Codes vuvcuvesesscsonanvorvvoresssoren
A Subset Code Containin® a Fixed PAtBeIDl veeececevansvecns
comparison O’f I{ESults LA BB B L AT B BY BN N RN I RN A O B K N A IO R R B A )

CMPTER 4 - LENGTH ALTERED COBES L L N A I N e A N I I N Y

Shortened €odes w.vvvvivrcacerionnssetsssecncannannaonanece
Extended Subsel 00des .i.ivevreeereniaroancortsnncasnnsose
Extended Coset Codes L R O O R N N W A
Comparison of Results CEE ORI OrEIENEIOERAREREEAOENRBOOabRANES

CHﬁPTER 5 - INTERLEAVED AI\YD CONCATE-N’ATED CODES st THEPTREAGVEIOR DG
Interleaved Coaes L Y Y R R R R A
Concatenated Codes L Y R R I I I

Gomparison and Examples LR N N R I I RS

CHAPTERG "SU}ﬂ'IA.RY Q‘..Q‘I.‘UGDEOQ.'ID.hitﬁ‘th!‘luo.el.-‘....‘

REFERENCES IOIi}".0'ﬁ-..lhCeﬁ.D.'&OuhBﬁ‘b..ﬁO.'..G.D.OUOCUOCCIG

NOT Rimep,

Page

iv

L Lam

11
27
36

43
44
54
57
60
61
71
78
85
89
90
95
59
107

112



iy

LIST OF TABLES
Table~ Page

" 2.1 Performance Capabilities of the Coget Codes of Several
Binary Cyclic Codes cessssssceovonsossvsosoranssnscsssen 37

2.2 Performance Capabilities of the Coset Codes of Several
Feed~Snlomon Codes over GF(Z ) CEDSEEOUECGNORUCEETHSEO NS 40

5.1 Performance Capabillities of Several Concatenated Codes . = 104



Figure

1.1
1.2

3.2

4.1

5.1

LIST OF PIGURES

Illustration of the Problefl cvoevsscocvvcovescsvvonesen
Visualization of the NHotation caao‘eoaae;eaoeeyteeooooe
Bocoder Stratefy for THOOTER 3.3 csscocecessscscorsssny
Typical Rate and Erver Eerfcrmggce of Subset Codas suee

Typical Bate and Ervor Performances of Length Altered

COGR8 csvvovanwscectsaucoetoccedassbodoenctcecesbssscres

fllvstration of Concatenntion ¢e.:uownouaooeoouoco-eqivtao

Paga

.30
59

88
28



wi

ABSTRACT

Cyclic codes are practical and efficient codes which protect
against the effects of additive ervors. However their eifectiveness,
1ike that of block codes, reguires correct word synchronization at‘tﬁé
decoder. Cyeclic codes with symbols from a gemeral finite field afé’
modified so that éhay are also capable of protecting against misframing
at the decoder, These codes are modified by altering their distance
structure, There are & number of techniques which can be employed.

Each method affects different aspects of the code'’s performance; there-
fore a complete and comprehensive coverage of all techniques is given.

Resuits for each modification approach are given for three types of
protection from the simultanecus occurrence of additive erroxrs and syn-
chronization errors. 7The first type is the detection of somegkind of
error, the second is the detection and the classification of the nature
of the error, and the third is the corresction of beth kinds of errors.
Furthermore for each approach results are presented for the cases of
symmetrical and unsymmetrical ranges of synchronization errovs. The
proofs of all results indicate the general strategy for decoding the
modified code.

A& voset of the original code allecates part of its error-protecting

capabilities to synchronization., Results are given for the general class
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of cyclic codes. Stronger conclusions are possible when the special
case of Reed-Solomon codes is considered. In this case protection from
slips of half the code's lemgth in either direction awe permitted,

A subset code is derived from a code by removing certain of its
vectors so &g to produce a code with fewer mewbers which are less
sensitive to misframing. Two appreoaches to subset codes are demon-
strated., One is & coset code of an expurgated code while the other is
a code with a fixed pa%tern imbedded in the information digits.

'Changing the length of a code when combined with other techniques
is another modification approach. The work here improves on the few
known resulits and introduces many new ones so as to complete and conso-
lidate all aspects of this type of approach. Results concerning
shortened codes are developed, subset codes are extended to yield
another modification approach, and coset codes are lengthened to produc
2 new schema, ’

Two approaches for achieving wide-range slip protection are pre-
sented, One uses interleaving while the other combines interleaving
with concatenation. With either technique slip protection ranges of
half the code's length are possible. The interleaving technique may be
coupled with any other approach giving the net effect of greatly
éxpanding the slip protection range of that approach. Combining conca-
tenation and interleaving accomplishes the same result without increas-
ing the complexity of the encoder and decoder to the extent to which
they would be if only interleaving were used. "It is shown that for
wide-range slip protection the error-protecting performance of either

approach is superior to any other known approach.



CHAPIER 1
INTRODUCTION

A great deal of reaaax:ch has been devoted to the problem of design-
ing efﬁicient and practical schemes by which information can be coded
for reliable transmissian through communication chawnels which corrupt
the message with noise. The general class of codes for which the most .
useful. results and congequently the largest bmly of knowladge has been
dmlaped is a class whose members have fized length, i.e., black cedes.
Thess results indicate that the move algebraic structure a class of
codes possesses, the easier they are to implement,

Linear codes are a subclase of the block codes. A linear code is
squivalent to a gubspace of & vector spsce. The vestor spacs. is over a
finite field with = prime or the power of a prime number of eletsents [t
Linear codes are &esigaeﬁ to protect ggainst the types of errors mse&
by chaunel noise which are called substitution errors. A auba;ig:ggtion
error occurs whenever & aymbol of the code is changed from its true,
vélue. Substitution errovs and additive ervors sre equivalent because
of the sdditive structure cf & vector space.

A subclass of the linear codes ig the eyclic codes, COyelic codes
have :'%ve:? mora algebraic structurs: becsuse in &&&iﬁ:{.;a to being equiva~
‘lent to :l vector subspace they have the property that any cyclic

permatation of the symbols of sny code word iz also a code word (closure
, ugnde? -avsh:lft:ing oparation). Oyelic ecodes sre practical because they



mey be implemented by linear feedback shift registers (Chapter 8 [27).
Because of a cyclic code's easy implementation end structure it will be

considered throughout the following work.

The Problem
Cyclic vodes are used to combat the effects of zdditive errors
“introdiuced by a communication chammel., Heowever all the benefits are
predicated 'upon the assumption that word synéhrcnizatién is maintained;
wnfortunately this is not always true. In any aawmﬁnieétiens system
there 'is generally a hiersrchy of synchronization levels. Carvier or
Sohip® synéhronié;tion in the modulation and demﬁdulaticn‘pracesses is
requived in coherent syatems.* Symbol oxbit synchrcnzzatzeﬁ is the next
higher level. Finéiiy the establishment of word or hlock synahrouizatiau
is necessary. A genexal discussion oﬁ all these synchranization lavels
#nd their iﬁtercannectieu is contained in a paper by Galsﬁb, et si. 3%
" In this wark i€ will be assumed that the lower levels of ﬁynchruniw

zatfon have been determined. Therefore the problem is to establish and
waiftain word synchronization even in the g:ese#éélgf a&dztiva errors.
Loss of word synchronization at a receiver mey vesult for a number of
reasons. Timing insccuracies or jitter in the clocking circuiéxy at

any level of gyachronization could propagate to tﬁe %axd‘sygghronization
level. The Iuss could occur at the start of tranamission because the
recaiver gendrally must accsmnlish the synchronization levels in sequence
wifh word synchronization being the last level. The receiver could be
in synchronous operstion and then lose synchroniza&ion because of the
insertion or delstion of symbols in the incoming data stream. Two

possible suses of this gxaﬁlemfa:e the physical ﬁéeﬁamﬁéé in the chamnel



of fading or multipath.

" The net and lasting effect of any loss of word synchronization is
equivalent to the sequen&e of words being misframed of"slippeé’at'the
decoder. Of course this excludes the direét*cah§i&eration of any word

‘with insertions or deletions. However by investipsting the framing of
the preceding and succeading words it is possible to determine the -
aggregate effect of insertions and deletions in & code word. The study
of codes for the correction of insertion or deletion errors has been
undertazken by several authors {4+7]. However the direction of the work
to be presénted here 18 to medify known error-protecting codes so that
they are ‘also capdble of protecting against misframing or aliﬁfat the

decoder. The pzéblem is dépicted below. 'The temm synchrouizétion

BHCODER pemeipoed ADDITIVE fommmmrtomt 2 DELAY i) DECODER
ERRORS .
Figure 1.1 Illustration of the Problem

error will be synounymous with misframing.,

This problem partially motivated the early work on comme-free
codeg [8-12]. Comma-free codes are codee which have the property that
the misframing of-any two adjacent code words cannot produce a code -
member, But all of this work discounted the effects of doise., It is
unrealistic to ignore the effects of additive errors in the synchroni-
zation problem of codes which are designed to combat errors. However
the work on the'noiseless case did sérve as a foundarion for later '

work: Reference to other pertimehnt publications will be given at the



ﬁﬁg?gbégiahgiplgcee in the body of this report. _én-ezcellegt overview
qf(;p; higtory of the work on this problem way be found in a book by
stiffler [13].

The results to be presented in the following chapters will be
given in a very genéral,setting_bgcause no particular type of channel
noise will be assumed. The results will be applicable to any channel
which mzy be modeled a8 one that introduces substitution éﬁrors., The
éédes wﬁich will be exﬁib;te& have the capability of protecting sgainst
the simﬁltanecus oscurrence of additive errors and symbol slippage in a
given d;éection. The results will be given as the maximm mmber of
each which-mag_be protected. The work will deal with the modification
of eyelic codes with symbols from a general finite field, €F(q}

There are =2 number of ways in which a given error-protecting code
may be modified gso 28 to give it ggnc-protecting;q&p&bilitgeg also.
However each method extracts & price in the form of & degradation in
certain aspects of the original code's perfermance. One way to claggify
the various metheds is according to the tecﬁniéue'by which the céde"is
altered. The results will be presented alomg this type of outline.
The advantages of one technique in.a set of circumstances wmgy be
disadvant&ges'in another situztion. Thezefore & complete. and «compre-
hensive coverage of all métho&s will be given. xge regulta. for each
modification approach will be concerned with three types of protection
from the conjoint occurrence of edditive errors and synchronizaticn
errors. The firat will be the detection of some type of erxwor, the
second will be the detsction énd the classification of the type of -

error, and the third will be the correction of both types. Furthermore



regsulis for esch modification technique will be given for situations
of symmetrical and unsymmetyical syne-protection ranges.

The design and constmat'ion of modified codes will be performed
upon £he basis of the distanve structurs of the original code, The
proofe of all the vesults will not be siomply existence proofs bug will

indicate the general stretesy for deceding the modified codes.

Hotation end Preliminaries

.Yectorsz over & finlte f£flald, GF{g)}, (A Caloie Wield {i&]} will be
denoted by & letter from the English alphabet with a bay underneath
it, e.g., g.. If the vector space has dims;nsiou n over GF{q), then
every vector mey be represented as an n~tuple, e.g., 5—““‘9**”1’“"%&}
with cfié GF{q). The Herming weight of & vector is defined as follows

{pg. 204-205 [15]):
-1

@ = ) wle)
1=

(1.1)

0 if'% = {3

u, fe,) = ;
BT {1 1l %0

The Hamming distance between sny twoe vectors g and b, d{g,b) is defined

in terms of the weight.
d(a,by = wig-b) (1.2}

‘The Hemming distence is 2 motyic on the vector spzce (pg. 19 [2]).
Therefore 2 vector is the zers vecter if and anly 1if the Homming weight

of 1t is meve, i.e., go0 if and only if wig)=0. 7This fact and the ome



given below will be used in meny of the proofs in the Zollowing work.
If I is any subset of. the set of imtegers {0,1,...,m-1}, then the

following inequality iz true.

wig) » & Eag(&’{) (1.3)
iey N

It will be presumsd that the veader iz femiliay ‘with the funda~
mentsl properties of cyclic codes. There are a2 nuiber of scurces which
may be consuited [2,15-177. Every code vector of a cyclic code with
length n has an‘ equivale;,nt representation as & poly&omiél in the residue
class ving of polynomials miirdulé the polynomial (ﬁn-i) . Thus the code

word R = (Beﬁsr‘”’%-ﬁ may be represented as

i

B} = By F ByX heest B =" modulo (x"=1) .. CL.4)

The same Enalish letter with the same subscript will be used in each
ropresentation, €.g8.., 25. 43 y.i(g).

The nature of the problem reguires dealing with fie misframing of
code gzoﬁds. The following desariptive notation will be adopted. lat
the {gﬂ,jg_l,.,.,gﬁ_l} ba the ecde words of a block coede of length n.
For a positive slip =, }éz} is the vector whose first {(n-z) components
ave ‘the fast {n-g) elm;zts of j?_j. and whoge iaat 8 ccmpnr_:gnts-?xe the
firet g of E{ze Whereas for a negstive sglip s,,_i;_‘,f;} has-the last s
couponents of gk in its fivst p places and the fira; f_:}-s) components
‘of }_:_j in the remsining plsces. Figure 1.2 iz an illus-;cration of this
notation. - In siany cages it will be necassary to consider the cyelic

permutation of a vector b. g(g} will denote 3 eyclic shift of b fo

the zight if s is negative or to the left if s is positive.



The results in the following chapters will be-displayed using the

following bracket nmotation. Let y be any real number.

4 ify>0

v3={ (1.5)

undefined 1fy <O

z is the -smallest positive integer such that z <v.



! s+ \ ng |

I -
(s}
_ik
s< 0
b, B,
f "3 ng | n-g
] 8 iw! 3]

FIGURE 12 . VISUALIZATION OF THE NOTATION.




CHAPTER 2

COSET CODES

The purpose of this chapter is to demonstrate one type of code
design technique used to modify any cyclic code so that it has synchron-
ization error-detecting or error~correcting capabilities in additioun to
its additive error-detecting or error-correcting abilities. -This type
is the coset code, A coset code is obtained from a linear code by the
addition of a fixed vector to every code word. If fb }i*ﬂ’ M=, 1
an (n,k} linear code and ¢ is any fixed vector in the same n-dimensional
space, then {b +-§3§:$ is a coset code and ¢ is called the c;set
generator, 5bviously if ¢ were a code vector, the resulting coset code
would be the original code; but this situation will be avoided tﬁrough«
out the chapter.

The first coset code was designed by Stiffler [183. This result
was based upon th; tacit sssumption that additive errors and synchroni-
zation errors do not occur simultaneously. An average over several
code words is required t; determine if & word timing error has occurred.
A dlfferent approach was used by Levy [20] in deSLgning self-synchron-
izing codes when he defined the sllp-detecting characterlstic [s 8]
for block codes. A code has [s,8] if for all overlap sequences caused
by misframing any sequence of code words by s units or less, the

Hamminquistance from this overlap sequen&e to any valid code word is

at least §. Thus both types of errors were not allowed to occur
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gimultaneously, He gave a sufficient condition on the coset generator
for altering cyclic codes to obtain the [s,8] characteristic, but he
did not give any explicit form for this vector,

However Tong [19,33] did give such forms for the generator. He
also extendad the work to provide for correction as well as detection
of synchronization errors. But again this work separated the two types
of errors. In the special case of Reed-Solomon codes Solomon [21]
uged the coset approach to achieve a self»synchfonizing property, but
an averaging operation is prescribed in order to achieve thia effect
in the presence of additive errors.

Tavares [227] and Tavares and Fukada [23,24] considered all the
situations arising from any combination of additive and synchronization
errors including the conjoint cccurrence of both. Their work dealg
with the modification of cyclic codes and is basgically algebraic in
nature and substance. The key point used repéatedly by them is that
an {n,k) ecyclic code cammet have a vector that has a burst ofﬂlength
less than (n-lk+l) (pg. 152 {2]). However the approach to bé’applied
here is based upon the distance properties of the code.

A coset code which ﬁas a self»synchrcnizing capability has an
important property. When it is known that the code has been éynchrcn-
ized, it will operate with the full érror»correcting power of the c;ée
from which it was derived. Even though cyclic codes are extfemeiy
sengitive to synchromization errors, coset codes may not be., The very
structure which makes them so sensitive is used in the désign of Ehé
coszet code. It is for these two reasons that coset codes derived

from cyclic codes have been studied and used [25].
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Results for general eyclic codes are presented in the next section
and & special class of cyclic codes, the Reed-Solomon codes, are con-
gidered in the following section of this chapter. Host results are

believed to be new, and some represent a sharpening of previous work.

Regults for General Cvclic Codes

There are instances in which the detection of additive errors or
synéhronization errors is enocugh. ¥For éxampie, in a two-wvay communi-
cation system with low probabilities of either type of error, the
detection of an error and the retransmission of the erroneous part of
the message may be sufficient,

The first result is similar to one given by Tevares apd Fukada
(23,247,

Theorem 2.1

A coset code may be derived from any cyelic {un,k) code with
minimum distance d which has the ability of detecting the simultaneous
oceurrence of g or less additive errors and t or less bits of slip if

the following holds.

_ dnted 2Tt =3 .
e“mi“{[ 2][ ey ]} (z.1)

The coseat generator ig

41 e £+
e = (0,00s0,850,000,80 00 050,05 00,180,000 ) {202)

§§§ blocks

The source of the error is not determined by the deeader.
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Proof

The coset generator ¢ exists if

n> ( + 1) (e+3) 2n;i§ -3 (2.3)

However (2.2) satisfies this inequality.

let the slipped and corrupted vector y be received.

veb® e vy 2.6

% is the additive error vector with w(r) < e and the slip s is

restricted such that |s| < t.

In order to detect 2 slip, or an error or & combination of both,

it 15 sufficient to require the following condition:

0<min. wv-g_—]g_i} (2.5)

for s # 0 or £ # 0. This insures that a received vector will not be
a code vector. Notice how the code-is designed so as to reflect the
affects of a slip into a vector which resembles a coset-code vector
with an error added.

It suffices to consider the following two cases.

a) r#0and s =0

min w(y - ¢ - }g.i) = w{r) {2.6)
i

Sinece ¢ ;—‘ Q, w(z) >0, Thus the inequality of (2.5) is fulfilled for
this case,

Define

$ o s ba = p(8)
5={s by = b{> 2.7)
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Since the code is cyelic, bs is also a member. w'(y) is the minimm
of the weights of y with either the first s or the last s elements set

to zZero,

") tzlsi>0

w(g-g-h,) 2 min{ W0 @] - [a-tv'eP-0-v'w] }
(2.8)

The first term In the minimum expresgion is from the condition of i=§

while the second covers the remaining situations. FPor the ¢ of (2.2)
e +3pw (g(_s)-_q)ze-é-z for 0 < ] < ¢ (2.9)

Minimizing (2.8} over the index i and employirng the appropriate bounds

from the equation gzbove yields the following result.

min w(y_-gu-}_s_i) > min {{et2-e] , [d-t-(et3)-e]} (2.10)

However from (2.1}, e gé-%ﬁ. Thus d-t-Ze=3 > 1 > 0. So inequality

(2.5} is satisfied.
Q.E.B.

By requiring a stronger hypothesis the previous theorem will pro-
duce a stronger result..
Theorem 2.2

An (n,k) cyclic eode has a2 coset code which is capsble of detect-
éﬁg the conjoint occurrence of at most e additive errors and t bits of
slip and moreover it has the ability to classigg the nature of the
error asg either additive errorg or additive errors and/or slippage.
Ihe‘follqwing relationship is sufffcient for the'existénce of such

codes,
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e = mn { [552]. [555°] ) z.11)

The coset generator is

£+l 41 t+1
_c_ = (O,(-no,0,0,0-65031’05n.-.’a’l,'o’bQlecce’glso,oocgggl
o (2.12)
{e+1} blocks
Proof
n 3 (eH)(i) or EELs. (2.13)

permits this form of ¢.
In order to insure the detection of additive errors, slippage or

both, require that

0 <uin w( _g’ +¢® vp-p, - o) (2.14)
for w(r) < e and any j and k and either 0 < |sf <t or x # 0 and
[si < t. This requires sll detectable errors to be within a neighbor-
hood of a coset code word, The structure of the coset code is such
that glips are transformad into detectable error patterns.,

It "suffices to consider the same two cases as in the previous
theoram, For case a) the proof is identical and for case b}, (2.8) is

still-valid. But for this choice of ¢ as in (2.12),
m_r"(g(s)- g =2 +1 forG<ls]gt (2.15)
Thus it follows that

min w(Q(s)-%-c(s}ﬂ«E-gi} > ain {[2e+l-e], [d-t-2e-1-e7}
i (2.16)
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Since e < d";i-z from (2.11),

_ .
d-t-3e-1 > T2 31 5 0. (2.17)

Since for w(z) < e, any received vector that is perturbed by
additive errors only is on or within & distance of e from some coset
code vector, it suffices to reguire that when the received vector

containg 2 slip the follewing must be true.

min w(_l_g(s}-%- c(s)+r -b, - c)>e + 1 for 0 < is{ <t
i jk = i SV =

(2.18)
Thus any combination of both types of errors can be distinguished from
the occuzrence of additive errors alone. Since (2.16) is still true,
it only remains to show that d-t-3e~1 > ebl, But (Z.11} jwplies

4e £ d-t«2. Therefore

d=t-2e-12b4etl-Be=c+l (2.19)
G.E.D.
The main thrust of the previous theorem is directed at detection
and clasgification of the nature of the errors. If the decoder has
provisions for storing 2t additional bits, it is possiblie to use this
theorem to perform slip and error correction by increasing the decoder
complexity. The technique iz outlined as follows.
1)} Determine the distance between the received vector, v, and the
cleogest coset code word, i.e., compute min w(y_»-hi-g} = J.
2} If this distance, J, is less t‘nin or equal to the code design

quantity e, an additive exror has occurred. The minimizing code vector

is the minimem distanee choice for the transmitted one. Note e <-g'
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from (2.11}.

3) However if J is greater than e, the decoder wiii reframe the
received ve;tor ¢(hence the requirement that the decoder have extra
storage capacity) and cowpute the distance from it to the clgsest coset
code veetor. If this distance is still greater than e, reframe again,
When the correct slip ig encountered, this distance will drop to e or
less. The vequivement (2.18) in the proof of the theorem gusrantees
that the drop will only occur for the correct value of slip.

Therefore if the decoder. strategy described above is used, Theorem
Q.Q ﬁay be strengthened and extended to provide for correctiom. The
results are stated below in the foxrm of a theoren.

Thaeorem 2,3

Any (n,k} cyclic code has a coset code which can gimultancously
corr;ct e or less additive errors and & or less bits of slip if (2.11)
holds.

1t is believed that neicher this theorem nor the previous one has
ever been stated before. These results emphasize the usefulness of
the approach taken here=~the design of codes f%om a éistaﬁée ?iewpoint.
The iﬁportant property of the coset codes employed in these theorems is
that additive errors always occcur within a distance of e from a coset
code word whiielslip and additive errors produce vectors with distance
greater than e from & word.

A disadvantage of the type of decoder required to Implement the
abova strategy ia that the processing time may be prohibitively large.
This i{s a result of the iterative procedure involved. However if the

complexity of the decoder is increased, another decoding strategy is
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employed in oxder to obtain the following result. This ig gimilar to
one due to Tavares and Fukads [24].
Theorem 2.4

A coset code may be devived from amy cyelic (a,k) code with mini-
mum distance 4 which is capable of gimultaneously gorrecting e or lese

additive errors and t or less bits of slip provided the following holds:

e = min { [dnzt_?’] s n;t:_;z] } {(2.20)

The coset generator is given by

2e41 2e41 ) 2e41
c = (1 Ogoboga 0,09.30 1 g,bﬁo,a 1 G,oto’l Q,ooc,G;l}
. (2.21)
(e-+1) blocks
Exoof
The existence of ¢ is guaranteed by requiring
Dy (etl)(2eH) ¢ 1 or e g BibiZ (2.22)

241

Suppose the corrupted end slipped vector presented to the deceder

is given by:
v=Db ; +¢ % +2 €2.23)

I rTepresents the additive error vector with w(z) <e and fs | <t.
Without loss of generality it is ﬁasaible to take g = 0. The decoder

inplements the following atrategy.,

{j,k 8 (v - b{s} } is 2 minimm with ‘s <t }
(2 24)


http:rn-2-21(2.20

13

Hence ‘it suffices to show

(s, ) {S ) {s )}
w(z) s w vnbj !\ ) 4 i < 1(5} & W(‘V b(s‘ “(3})

jo
{2.25)
for any j ;n’&jo, k #ko and & #50, Es‘;{t.
Consider five casges which exhaust all the possibilities.
2) 3¢ 3 oendany Kk
() (s 2 (s_} (s} (s )
o o o o o .
Ijk E?W('Ejk - Ejk +e =L } - w(x)
gd-aawezd«tuegf&a-ﬁ-z (2.26)
G (s,
There are at least (d-so) nonzers rverms in _h;_j - ij Prom (Z.20)

d=2t-3 > 4e, and since d-t > d-2t-3, the last inequality results.

iet

(s 3
= (s} .
i={s: *Pys TPy j @.27)

b) fandanykand{}}szut

(s} (s}
i 2w, § re O -pl) - 2@ e
c o

€s°)

zo{e @ - &) 2w 2 20(0) 2 etz (2.28)

) ()
There are at least w(g_ - ¢ ) - % nonzero components in
{3 } {9 ) S} (s) . i
j lc + ¢ “bg ‘-~ ) from the sth to the (nw-s 3th beacause in

this range the definition of § guarentees that bf cancéls the elements

of b, and because the form of ¢ excludes two nonzZero terms of

-njo
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(s )
(5_:_ ° . g_(s})‘ from this range. Furthermore because of its form

w(g{u)— 9_(5)) = Zw(e) = 2(et2) for u ¢ s and jui, {s] gt

(2.29)
¢y 3§ and any k and s#e, tzs20.
(s, } (s )
.g;:) > w(b +c ¢ . Egli}“ 5(3)) « w{x)
{2.30)

{s ) - :
2 W(E. o 9..{3)) «3-w7{x} > 2w(e) =~3~e = odl,

O (s )
In the first (n-max (s,s )} components of (b _Ig‘glz}-&- [ o E_(S})

(&, }
at least the nonzero elemants of ( (s) must appear because of
the definition of §. There are Zw{g)-3 of them. Egquation (2.29)
completes the equality,

dy j#ismdanykand 0>8 >t

{s) w( (so} {ao) (s} {s)

g Z ‘9.3.0{{0 + e By =& = W@
(s} (s}
2a- (s ) - (e - V2w (2.31)

>d -2t ~3e¢e -2 e+l

(s }

There are at least (d«Z(s «=g}) nonzere elements of b - b(s}) from

(s}
(e

the gth to the {nns }th component of which ° . cis?) can cancel
at most w( ( } (3)) - 2. Eguation (2,20} implies that d-2t > 4ed3
and the last- inegquality follows.

e) j¢# fondonyk, and s =s8a, t >8>0,

(so}“ £<s}),3)"w )

>d-t~3e~1pe+l (2.32)

I§;) >d - m(s,so} - (w(g
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The minimm number of nonzero terms of (g;izi -(%éé}) in its first
(nemax(s,so)) elements is (d-max(s,so)), and|(g'.° -‘E(S}) can cancel
at most 2w{g)-3 of them. Since d-2t-3 > 4e, d-t-1 > 4ei2. The
validity of all five cases has been demonstrated and the proof is
completa,
Q.B:D.
The decoding strategy above is to estimate the slip snd classify

both the transmitted word and either the preceding or succeeding one

depending on the divection of the siip, i.e.,
{j,k,s: wly - hfz) - c(s)) is & miniom, |s} 5-1:} (2.33)
J
v is the received vector. It is possible to employ a less complex
decoding scheme at the price of reduced performance and alzo to
waintain errvor and syuchronization corvecting sbility. The decoder

agtimates the slipand only the code word cccupying the largest povrtion

of the received vector. Hence its function is described by:
{j,s: W(g - kgi)— c{B}) is & minimum, js] < t}' (2.34)
>

Corollary 2.1

The conclusion of Theorem 2.4 remains true vhen 2 joint decoding

stratepy is employed if

Cowof[E] (][]} ean

and
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2¢-41 2e41 2e+1L

e = (1,0,000,0,0500030,L,07. . 010,1,0,-. 2,00, rern0,1)

(2.36)
(wl{ﬁi'i ) blocks
5]
Proof
Cbviously

11 n-1-(1 52 ) 2es)

el > (2t+1)(e+1-{-—-§—] or e < il (2.37)

The deceder strategy is (2.34). The preof follows the exact out-
: (s )
1ine of the theorem except that the value of w(g._ °. _g‘:s)) is changed.

For this form of ¢

o670+ £ @Y = (o) = e )

for s # s, and [sf, |s | <t

(2.38)

With this substitution the lower bounds in the five cases conmsidered

in the theorem are given as:

{s )
a) zj j Z d-t-e > 3et3tt (2.39)
by I %) > e+242 F—;—fﬁ] > edt2 (2.40)
c) 1:3'“:%} > ebl42 [—t—’g—l] > edttl (2.41)

a) g) > aw2e-f BL] -3e-2 5 d-20et-l-3e-2 ettt (2.62)

) 17 za-te S ] el 2 dutot-lude-l zetatiz (2.43)

Two facts were used in the above inequalities. The first is that
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t £ 2[1:% < t+1 and the second is that from (2.35) e g [k-%&'&]

£ 95%%. Now the correct values j and s lead to
(s )
I, j < etk (2.44)
do’o

The conclusion easily follows.
0.B5.B.
Several comments are in order concerning the strategies of (2.33})
and (2.34). As may be seen from the pr;af of Theorem 2.4, the set of

triples from (2.33) may not be 2 singleton under the conditions of the

{s )
theorem., For example, it is possible that Ej ; also produces the same
(2 ) ol
minimum value as deea b, ® pecause b, and b, are identical in the
"3oka —ka "ki

first S, places, {Recall s, was assumed to be positive.) Thus the
items (jo’ ko, so} and jo, kl’ aﬁ) are both in the set. For small
vaives of 8, the number of triples cap be large. HNevertheless jo and
N always remain fixed. Hence there is a number'of anewers which z2re
21l consistent with the strategy given in (2.33). However no multi-
plicity of pairs belongs to the set defined by (2.34) under the condi-
tions of Corollaxy 2.1, The item {jo, so} is the single member.

One method for implementing the strategy of (2.33) is to use a2
syndrome decodimg technique (pg. 36 [2)). Using the equivalent poly-
nomial representation, this tachnique will be described. The decoder
subtracte the coset generator c{x) from the recejived and framed vector,
v{x), and computes the syndrome of this difference, i.e., the vemainder
polynemial from (v{x)} ~ c(x)) after division by g(x) modulo {xnul). A

table of syndromes is consulted, and when the identical ome iz found,
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the decoder then has determined the walue of the slip (so) and an
error pattern compesed of an additive ervor (L) and terés from the
adjacent code word of which a plece is framed in vi{x)j. Kext the error
pattern determined sbove is suhtra&te& from {(v{x) « c{x}). .The result
is the ecode word bgjgz (=5. Siniz gg has been determined from the
table of syndromes, a shift of bic?g {x} gives the true code word.

It can be shoen that the syndromes from (vix) < c(z}) are ail
distinet for distinct values of 9y in the raage [-t.t] even for diff-
erent succeeding or preceding code words (see Theorem 7 [247] or Theorem
3.6 {227y, However this dees not mean that the synéromes are unaffected
by the errvor vectors snd the parts ¢f the other w&zd. Let {£{x)] denote
the remainder teym of the division of £{x} by g{x) module an—l}. Thus
the syndrome of {vw(z} - o{x}} is expressed as {v(x) -~ efx)}l. Since

{a

)
hj ? =y for x Ghj ()} 42 a nmevwber of the code and thus is divisible
ovo o

by gz}, the syndrome becomes:

CI £ 8,
{b? DG ~by ] @ e (x %)+ rG) (2.46)
‘o0 o o
(s} (s
How the term (b. & (x} - b, {x}) is dependent only on the code
IsT0 jojs .
word bk (2}, 8o if bp {x) werae replaced by'hy (=} vwhoge first 8  terms
o o L
ware not identicel with those of b, (%), this term and the new syndrome

¥

would be different. In either case, it still would indicate that &
glip g, had occcurred. In conatructing the teble of syndromes and in
partitioning it into clazses according to the mapgaitude and sign of

the slip, the terms from bk () aad the error terms From r{x} are both
o

used. Thus these two factorvrs ave at least implieitly determined whene

ever a particular gyndrome is chosen from the table. In certain cases



there is another error r'{x) which when combined with the effects of
the first g, terms of bkzix}, will produce the same syndrome. Since
the table is normally constructed go as to give the result containing
the least number of additive ervors, zmy asbiguity is eliminated. It
may be seen from (2.48) that the meximum number of syndromes in this

scheme is:

(2td® + 13 (Z &) | (2.47)
120

A scheme for performing the joimt decoding prescribed by (2.34)
under the conditions of Corollary 2.1 is outlined. First the syndrome
of (v(x) - c(x)) with the first and the last t terms set to zero is
computed. ¥rom this syndrome the value of the slip 8, and the errov
pattern from (v(x} - c(x)) which has the first and last t. terms equal
t& zere givea the code word b?j?i{x}e

The syndrome of (w{x} - ¢{x}) with the 2t terms set to zero may

be represented by:
8

(s ) o

fo SR G +x el + i) - el - ) - v} (2.48)
oo

- U(=2) eliminates the last t terms of {v(®} - c{x)) while u{x) eliminates

the firet ¢. %The pumber of syndromes in this scheme cannot eXceed:
@
(2e41) Z ¢9) (2.49)
1=
It remsing to show that the syndromes are all distinct for distince

values of &  &s long as le | < t. Consider amother received and framed

vactor.
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(31} 8

viE)=b (=) + = 1 elx) + viix) {2.50)
1 i

3k
’ . - L4

Let w(r') g e, and o, # s, with Esli <€, end i, aud k, be arbitrary

indices. ¥t suffices to show that {v(x} - e} # {v/(x) - c(x}}

where the first snd last t terms in each expression have bee-ﬁf eliminated.

(s .} . {32

Since b 3 2 () and b {z)} are both vode words, the requirement way
o’o

iydq
be written as:

{c{z}(x% - ::31) +r{e) « ') - y(x) - 2(:5} 9% 0 (2.51)

¥{x) eliminates the first t terms of (v{x) - v'(x)) vhile y(r) removes
the last . It will be shown that the polynomial in {2.51) is not a

representstion for a code vector and so 1t is not divisible by glx).

(s ) (s,
'93(2. o i

- drar’uy-Y) 2w
e L Zﬂl‘ Ll

(s } (s.)
(e ol L -3} + wiz-g”)

£+1 ] .
< 2{er2d] J)wé-th-f-Ze
< bet2etttl £ d-t-3. {2.52)

The lagt inequality follows from (2.35}.

W(s(s°)~s(81)4§~£’~z~§,) 2 v(s.(s°}~g{s")~z-_g) - ez

Z 2(3'5‘24[%1] )-aa«ze = 2[%1-'»] >t

(2.53)

Since the polynomial in (2.51) couresponds to & vector whose weight is
neither zZero nor greater than {(d-1iy, it cannot be a code vector.
The previous theovem and coroliary deal with the situation of

symmetric slip, f.e., when the range of slip is from -t to +$t. This
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may not always be the case. 1In fact the slip may be only unidirection-
al, e.g., a receiver may lose bits as it attempts fo achieve bit syn-
chronization. So these results may be too general for & given.pxoblem.
However a refinement of these results which will cover all problems is
possible.

fet ¢ be the number of bits of negative slip and ¥ be the nusber
of bits of positive siip. Further let £, € 4 t& end £ max(t+,t_).

Qorollary 2.2

ay If the blocks in ¢ of (2.21) are (tt+1) long instead of

(2t+1) and if
-28 -2

e {553 (R

then there i{s a eoset code vhich can simultaneously correct e or less

dbt -3

additive errors and t4}bits of slippage in the positive direction oY
t~ in the negative.

b} Also if the blocks in g of (2.38) are (t +i) long and there
t +1

] of them, and if

e { (520, (B3] [ 9)) esw

then a joint decoding strategy used with 2 coset code will gorrect e

are e+l

g t ~2t wd

or less additive errors and simultaneously determine the magnitude
and direction of either t bits of positive slip or t bits of negative
slip.

Each of these results follows easily from their respective proofs.
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Reed~Soclomon Codes

Since Reed-Solomon codes are cyclic, they can be made gelf-gyn-
chronizing by any of the preﬁicus techniques. However for this class
of codes there is a more powerful approach. These regsulis vill be
used in Chapter 5 when concataﬁa§ed codes are considered,

et I'= {gﬁ,,.,,gﬁ}, M= qui, be an (H,K) Reed-Solomon code
generated by the polynomial: G{z) =§i§ (z—hi) over GF{g). A is a
primitive Nth root of uanity. For Reed-Solomon codes vrecall that Neg~1
and that the minimum distance Bs=i-R41l, i.e., & meximme-distance
‘separeble code,

Theoxem 2.5

There is 8 coset code derivable from an (N,K} B~5 code which can

simultaneously coxrrect E or less additive exrors and T or less bits

of slippage where
o TR-R-27-1
g = [RR2D-L] (2.56)

as long as either K{ﬁ or if it does, then require ¥ > 2KT, ‘The coset

generator is given by
g = (1,;}-{,}kmsoebesdtonovlwith ;A(H.‘l)g) (2'57)

Proof

First it will be shown that if 2R < W, € is in a (H,K+l) Reed-
. Solomon code, I'’, which contains [' as a proper subcode, Thus the
 minfmon distance of I is D’=N-R. Let the generator of I*/ be

¢ D’-1 i K)
G (=) = {z-1") over GF{q ). Por any }, 0 < } < N-K-1
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cauly = 1+ AT 4 2R p (8-1) (&51)

1oy EHIN
1_1333

{2.58}

=

since X is primitive Nth root of unity and since AK+3% 1 because

§ < N-R. Therefore g € I'', but G ¢ T because CON ) = %140,
Suppose, just for the sake of definiteness, that the corrupted

and slipped vector presented to the deccder is given by

(s ) (s )
+¢ ° +x (2.59)

- o]
Y=,
00

x represents the error vector and T 2 & > 0. The decoder strategy is

{j Jeys3 w(}{ - _B;(s) - §_<3?) is a minimum with [e] < T}

ik
{2.60)
Thus it suffices to show that
(e ) (s) (s {s) {s}
1, 8yly-39 ¢ °))<3:§“’)Qw(v-s -c )
(Z.6L}
for j # 5, k¥ k? and & # 8_, [s] < T, vhenever w(z) < E.
(s
Clearly 1 3 ; < E. Furthermore
I
c-c=@-3"g¢g (2.62)

8o
N ifepOmdiH

NP C) A
W(G ¢ ) {3 if 5§ = G mpd W (2-63)

Now consider the following cases which exhsust &ll the possible

combinarions of j,k, and s.
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a) j%j and any k

) {s )
Ijk ‘>w(}3 k ji. - wizr}

(s, 3 (s )
8ince the code is cyclic, the first (zx-s ) ccomponents of Ej k -Jic )

are equal to the first (E'!-s ) elements of & code word of I‘,,ami because
j# i, it is mot the zero word. In addition it followe from the max-
immedistance separsble property [267] theve cam be {€~1) zexos at most

in these positions.

(s} .
ik sH-K=-T=B+1 (2.64)
(sa}
From (2.56), H-R-27-1 » ZE, snd S0 Ijk > B424T, Let
(e, -
= 5832
5 {j 5= 8 3 (2.65)

b) §ami any k and 0 >8 > T
¢ (s,)
‘%;} >1x3\(,‘- - c(s)) =2Tewr{z) > H=-2I~E {2.66)

The definition of § implies that at most ‘only the first s and last s
(80} (3) 4 {s e) (s)‘)

components of kgj - Bf‘k can cancel elements.of (€

However from (2.56} H'-ET-KnE. > 28; this Iéi}z EE+l.
I:%;) 3 H=T=E 2 EH0HI4T . {2.67}

This resuits from an argument analogous to the ome im b) sbove.

d) Anyj%faadanykan&anys%so,‘1‘252&

(s}
k zw(a } +¢ ° - g{s)) - iz



(s} (s.)
The f£irst (N-maxz(s,s )} comycnents of the vector ( j k B§;) g‘s)>

are the first (W-max(s,s )) elements of a code word in F because
each veector in the sum iz 2 wember of that eyelic code. In addition
they are not from the zerc vector since j # 5 and s # s, Because

! &= ¥-K, there cen be at most K zeros in these positions. So

1) g - R-max(e, s} cE>N-K~7T«E 2.68)
ik = o -
Since N-2T-K-1 > 2E, 1‘.:;) > BT,
e) Any j # § and any k and any & <0, ‘s‘ < T
(s }
The {s¥+i)th to {ﬂns }th elements of (B };) (S})

and the corresponding portion of a nonzero code vector in I''. By

gimilar reasoning a3 in d) above,
I(s)>N-F«(s-s}-E>H-I’~2‘T-E (2.69)
jk_- c9 0 o £ .

Again since N-2T-R-1 > 2R, 1§;) > B,
Thus {2.61) is verified for all the cases and the theovem is
proved.
Q.E.D.
Again the deceder in this theorem performs triple ciassi?icgtion
(2.33)., ZIf however its complexity is reduced by programming it for
double classification (2.34), & gelf-synchronizing capability is still

ohiained,

Corollary 2.3

If a joint decoding strategy is used, the conclusien of Theorem

2.5 is gstill valid if
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g = [ﬁlﬁ;‘ﬁﬁ-ﬁﬁl (2.70)

The coset genevator remsins the same as (2.57)
Proof

The dscecder strategy is given by (2,.34). The lower bounds on

1__;;? for all 3§ & jg and s # sc, [s‘ < T is the seme as in each of the
five cases in the theorem. But
(s,)
Ij F <E+T (2.71)
o’
(s ) -
Note thet 1557 B+ T » 1, 0.
i3 = T3,

Q.E.D.
This theorem immediately yields a cozollary concerning the bound
on the distsnce from any misframed vector to any code word in this
coset ecode,

%
Corpllary 2.4

The coaet code derived from & Reed-Solomon code 8s inm Theorem 2.5
has the propewty thst

{so) (= )

o
W gjaka + e - B. ;(}_) >¥ - K uin (& Esa‘} (2.72)

for any 8y # 0 moduleo H as long as K{N or excluding those 8, = 0 modulo

T if ¥ = K.

*This regult wag first presented by Solomon {217, but he omitted the
recessary condition that KiN. There are numerous counterexsmples.
A{63, 9) R-8 code over GF(64) with slip of &7 and adjacent § vectors
gives a zero weight.
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Broof

Without loss of genevality agsume 8 > 0., The fizst (ﬂ-so)
elements of (_B_,;s;) + g{s"} - _3_5 - g) are the relative elements of a
code vector in the ['code. Since 8, % 0 mod ¥ and K{N, this vector
is nonzerc in I'’. Thus there can be at most K zeros among these
positions. (See case d)y of the theorem.y Also since the code is
cyelie the last s elements are nonzero and can have at most min

(®, fsof) zeros among them, Therefore

(so) (sa)
w(B <+ 0 - B —c).zﬂuﬁ-min‘(z{, is ])
oo
QOE.D!
Stronger results are also possible when detection or when detec-
tion a2nd classification ares desired of Reed~Sclomon codes.

Theotem 2.6

For any ({,K) Reed~Solomon code thexeis a coset code vwhich can
detect the concomitant occurrence of E or less additive errors and
either any amount of slippege 2s long as RN or T or less bits if

¥ = E(T+1).
EeN=28.1 (2.73)

The coset gererator is given by (2.57).
Proof

st

y= Ej{i) +g 4 p (2.74)

‘with w(r) < B. X represents the additive error vector. In order to

detect either or beth types of errors it is sufficient that



a3

0 <min w({ - gi - 0) {2.75)
i

for * # 0 or s # 0 mod W(|s| < ™)

a) Ifxr#0and s=0medN

min w( ~ B, - O = wiz) >0 (2,763
s v

because x % 0,

b) Ifs #0mod N (8] 5T
w(¥ :. B, - g} zw(géz) - B, +§(3} - 5_:_) - w(z) (2.77)

However Corollary 2.4 applies and so using (2.73),
min w(V - B, - £ > N-K»m;in(K, js)-8 5 H-2K-E = +1 (2.78)
¢.E.D.
Theorem 2.7
An (N,K) Reed-Solomon code has a coset code which is capable of
concurrently detecting B or less additive errors and either [-15-] bits
of slippage if K{N or at most T bits if K = K(¥+l)., Moreover itp1 :;:an

clagsify the nature.of.the ervor.

g = [EoZEol] (2.79)

The coset generator iz (2.57).
Proof

The; proof of the Qgtection claim follows the proof of Theorem 2.6
s;n‘ce the_value of E here is less than or equal to the value given by
(2.73).

Since w(x) £ E, any received vector containing only additive

errors is a Hamming distance of at most B from some coset code word.
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Thus it is sufficient to require

min w@*ﬁi-g)zﬁi-l for s £ 0 mod N {2.80)
i .

Hence the occurrence of additive errors alone can be distinguished
from slip errors with or without additive errors.

Again using Corollary 2.4 and employing (2.79},

min w(y - B, ~ €) 2 (N-2K} - E > 2B+1-E > B4l (2.81)
i
Q.E.D

As in the case of ganeral cyclic codes it is possible to use
this theorem to simultaneously perform additive and 8lip error correc-
tion. ‘ The decoder must have gn additiomal storage of 2T wor N code
bits depending on whethey K'H or not. Anr outline of the decoding steps
is given below.

‘i) Compute the distance, J, betweend the received vector V and
the closest coset code word, i.e., d = m;.n w(V -3, -.8).

2) If J <B, an additive error hdas.occurred and the minimm °
distance decoder choice is given. Note E < (E-g-;-} for the R-S codes by
observing (2.79).

3) However if J » E, the decoder will reframe the received
vector (thus the extra storage requirement) and compute the distance’
Jl’ between it and its nearest coset code neighbor., If J 1 > B, reframe
and. compute agairn. When the correct slip is found, J s SE The last
part of the proof insures the uniqueness of the slip value as- found by
this procedure.

Therefore if the decoding atratégy outlined above is iwplemented,

the results of Theorem 2.7 can be used for slip and additive error” s«
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. egrrection,
Theorem 2.8

For any (N,K} Reed~Solomon code there is & coset code wﬁich can
gimulteneously correct E or less ad&itive erxrorg and either [%] or

-t .

leas bits of slip when K{R or T or less bits of slip if N = R(T+1)
- [E‘;:%S:}.] (2.82)

The coset geneéator is given by {2.57).

Just as Corollary 2.2 provides results for thgﬁggneral eyelic
code when the slip is not symmetrical, tﬁe ﬁoLlcging,corollary,tréats
the same circumstances when Beed-Sclomon codes. are invélved. Let T
be the number of bits of slip in the positive direction while 7"
denotes the number in the negative direction. Furthef define
T, =max (£7,T7) and T = T*#-;'.

Coroliary Z.5

There is a coset code derivable from an (N,K) R}SAcode which can
simultaneously correct E or less additlye errors and (8), T%;dffieaﬁ

bits of positive slip and T  or less bits of negative slip where

N~R=T -1
R L I (2.83)
2 2
as long as either K%'N or -g? -2 Tm' (b} either [—g—] or less bits of slip

in either direction if Kﬁﬁ or T+ or less of positive slippage and T

of negative 1f N = K(Tmfi}.

E = [““ZZK"l] (2.84)

Part {(a) is a vefinement of Theorem 2.5 and likewise (b} is one
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of Theorem 2.8. The proof of this corollary follows ecasily from the

regpective theorems.

Examples

" Several examples will be pregented to demonstrate the xesults of
this chapter, They are given in Table 2.1 and Table 2.2, All the
repults deal with the simultaneous corrvection of botﬁ additive errors
and slip. In order to demonstrate the approach for general cyclic
codes, binary BCH codes (pz. 164 [2] or pg. 176 [15]) are used, The
codes have length n, information content k and a lower bound é on the
ninimm distance, Siéce the bound in some instances iz not ﬁﬁé true
mininum distanca [33}, the additive error performance sg inéicated in
?able'2.1 way be a lower bound on the trus performance, Table 2.2
gives the results using Rsed-Solomon codes over the field G?(Zk).
Since X does not divide N in any of these examples, the slip rénge of
Theorem 2.8 is fg} independent of the value of T. These sxamples will
be combined to give some exsmples of another approach in Chapter 5.
The tabla; are ;ntended to show the versitility of the techniques of

this chapter, but they by no means begin to exhaust the possibilities,
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Table 2.1. Performance Capabilities of the Coset Cades of Several
Binary Ovelic Codss

Stip Masimm Bumber of Correctsble Addie
Code Parameters Correction tive Errors, e, Using the Technique
Range of ’
Theoremn Theorem Corollary
{m k) d t 2.3 2.4 T2
(31,6} 15 I3 3 2 i
3 2 1 %
g 1 % *
{63,36) i1 i 2 1 O
2 1 L ¥
5 i e %
(63,30} i3 i 2 2 1
3 2 1 *
7 1 * %
{63,24) 15 1 3 2 1
4 2 i *
9 1 % *
(63,18} 21 1 4 & 4
3 4 3 1
¥ 3 1 %
il 2 & &
13 1 * *
{127,99) g i 1 1 0
3 1 g &
{127,778 15 1 3 2 3,
2 b4 2 0
3 2 1 *
% 1 * %
{127,158} 55 H i3 1z 11
) 2 12 12 i0
3 12 1L 9
5 i2 10 7
6 11 8 5
3 il 6 2
10 i6 5 o
i4 7 3 *
20 5 2 *
24 4 i *
30 3 # *
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Table 2.1, {Continuved)

. Theorem Theorem Corollary

{B ’k) d t 2 ] 3 2 &&' 2 L 1
&1 2 * *

49 1 % %

(31,16) 7 1 i 0 W
(127,92) 11 i 2 1 0
5 i & *

{127.64y 21 3 & 4 3
2 4 3 Zz

3 & 3 1

5 3 2 #

7 3 1 *

i1 Z & &=

15 1 % %

(127,36) 31 i 7 & 5
3 & S 3

5 6 & 1

8 5 3 %*

10 & z &

17 3 % *

23 2 % ®

25 1 o &

(15,5) 7 1 1 4] *
(45,5 21 1 4 4 3
Zz & 3 2

3 4 3 i

5 3 2 %

7 3 1 #

i1 2 W *

is i +* o

{63,45) 7 1 i o %
{63,390} 13 i z Z I
3 2 1 %

ri 1 % &

{63,10) 27 i & 5 13
3 5 & pA

8 & 2 &

13 3 * &

17 2 ¥ *

2% 1 * %



Table 2.1. {(Continued)

35

) Theorem Theorem _Corollary
(a,k) d t 2.3- Z.4 2.1
(127,85} 13 1 2 2 1

3 2 i *

7 1 v w®

(127,50} 27 i & 5 4
3 5 & 2

6 4 3 *

3 & 2 *

10 3 1 %

17 2 * %

21 i * Tk

(63,7) 31 1 7 6 5
' 3 6 5 3

5 6 4 1

9 5 2 ®

31 & 1 *

20 2 % *

25 1 * *®

(127,8) 63 1 15 14 i3
5 14 10 7

8 13 6 2

10 10 5 0

13 8 3 *

17 6 2 *

20 5 2 *

24 4 1 %

28 3 1 &

41 2 * *

57 L # *
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Table 2.2, Performance Capsbilities of the Coset Codes of Several
Reed-Solomon Codes over GF(2K)

Slip Maximmsm Number of Correctable Addi-
Lode Parameters Correction tive Errors, B, Using the Technique
Range of

Theorem Theorem Corollary
I {N,K) b3 T 2.8 2.5 2.3
3 (7,2} & i 1 1 0
3 1 & de
3 {7.1) 7 i 2 1 1
3 2 ® e
& (15,7 9 2 0 1 0
4 (15,8 12 1 3 4 3
2 3 3 2
& 3 1 %
7 3 & %
4 (15,2} 14 i 5 5 [
2 53 & 3
3 8 3 1
5 5 i %
7 5 % %
5 £31.18) 17 & i} 1 *
5 (31,10) 22 2 5 & 5
4 5 6 &
5 5 5 2
& 5 & i
7 3 3 %
15 5 % *
5. 31,7y 25 2 8 9 8
& 3 7 5
& 8 5 2
8 8 3 &
15 8 % %
5 (31,3) 29 1 12 12 12
3 12 10 g
5 1z g &
7 12 6 3
16 12 3 #
135 12 ® ®
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Table 2.2, {(Continued)

Theorem Theorem Coroliary
k (¥,K) b T 2.8 2.5 2.3
&  (63,31) 33 14 o 1 *
6 (63,24) 40 2 7 8 7
& 7 8 7
6 7 8 5
8 7 8 4
10 ? 8 3
i2 7 7 b3
14 7 3 *
16 7 3 *
i8 7 1 ®
31 7 * ®
& (63,16} 48 2 15 16 15
& 15 16 14
8 15 15 11
10 15 13 8
12 i5 11 5
16 15 7 *.
20 i$ 3 *
31 15 & *®
6 {63,8) 56 2 23 24 23
5 23 22 19
10 23 17 12
15 23 12 G
20 23 7 *
25 23 2 *
31 23 * *
7 - {127,63) 65 4 0 1 0
. 30 0 i *
7. (127,45) 83 2 18 19 18
5 13 19 16
10 18 19 14
15 18 19 il
20 18 19 9
25 18 15 3
30 18 i0 *
335 18 5 *
63 18 * *
7 (127,16) 112 2 47 48 47
10 &7 45 40

20 &7 35 25
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Table 2.2, (Continued)

Theorem Theorem Corollary

k (N,K) D T 2.8 2.5 2.3
30 47 25 10

40 ¥ i5 *

50 47 5 *®

63 47 % *

8 (255,127) 129 2 0 1 0
62 0 i *

8 (255,95) 1s61 2 32 33 32
10 32 33 28

20 32 33 23

30 32 33 18

40 32 33 13

50 32 29 4

60 32 19 *

70 32 g *

127 32 e *

8 (255,63) 193 2 &4 65 64
: i0 64 65 60

30 64 65 50

50 64 45 ,20

60 64 35 5

70 64 . 25 *

80 64 15 %

90 64 5 *

127 64 ) * *

8 (255,35) 221 2 92 93 92
ig 52 93 -88

30 92 79 64

50 92 59 34

60 92 49 19

70 92 39 4

80 92 29 %

90 02 19 *

100 a2 g %

127 92 * %
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CHAPTER 3

SUBSEY CODES

The coset codes of the pravious chaépter provide synchronization
detection or correction capabilities by suitsbly choosing the coset
generator. Hence each origimal code vector is tranglated. However
the price of obtaining the additional capsbilities in this manner is
that the additive ervor detecting or covrectiag efficiency of such
cedes is reduced whenever additive errors and bit slippage occur
together. The codes of this chapter are derived from cyclic codes by
removing certain vectors from the code before any other zlteration iz
applied. The intent is to delete some of thoese vectors which axe
eyciie shifts of a subset of the originsal code, The effect of this is
to obtain a subeode which is 1eés sensitive to bit sliépageo Never-
theless even after modification the rate of the resuiting code is
reduced, However this decresse in the vate performance is reflected
either in the total or partial lack of & decrease in the sdditive eryor
detecting or correcting efficiency whenever both types of exrors oceour
simultancously. Hence thexe is a trade-off between these two perfor-
mance standards.

only a3 smell amount of work om detection or correction of syn-
chronization errors b§ these subset codes has been done, and all of
that is quite recent [22,27,287]. It is believed that moet of the

resules in this chapter are original., PFurthermove they are presented



in a logical sequence beginning with those which pextain to the detec-
tion of any type of ervor and culminating in the presentaztion of those

which deal with the correction of beoth additive and slip ervors.

Coget of Expurgated Oodes

Befinition 3.1

iet A be an (n,k) cyclic code with minimum distance d generated by
g{x). Let A’ dencte the cyclic code generated by the composite
(F)elz)). The deg £(x) = a and £{0) # 0, anéd furthermore it has
exponent u, L.e., ffz}f{zuml} but f(x){(xtwl} for any £ <u (1,29

The eyclic code A’ is formed by expugating the code A (pg. 335
[157). Thus 4° 2 a {n,kws) subeode of A. The code to be transmitted
will be a coset code derived from A’ by using g &+ g{x) as the.coset
generator, 8o the modified subset cede to be considered in this

section ig given by:
o ’
fb, +5:5, €4'} (3.1)

Tt will be convenient to define a subset I of the iadex integers for

the vectors of A.

I = {integers % ¢ b, € 473 (3.2

Buploying the code of (3.1) it is possible to give z result con-
cerning the concomitant detection of both types of exrors.
Theorem 3.1

Given an (n,k) -cyelic code theve is a coset cede of an (n,k-a}
eyclic code which can detect the concurvent cccurrence of (el bits of

slippage in either direction and efs) or less additive errors if
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d - js} - 1=els) {3.3)

and

le] €u - (3.4)

Moreover u £ qa'- 1 and eguality is possible if and ouly if £(x) is a
primitive polynomizl.
Proof

Let the corrupted and slipped vector which is received be desig-

nated by:

vebg +59 4z (3.5)

T represents the additive errvors with w(z) £ es) and j and k are both
in the set I defined by (3.2). In onder to be able to éetect either
an additive error or a synchronizaticn error or both, it suffices to

require that

min w(g = b, = £) >0 (3.6)
I

for g # 0 or 0 < |a] <u - 1. Thus no subcode coset vector can be’
obtained by misframing the corrupted incoming data gtream,

a) Forr#Qends=29

min (¥ b ~g) =wz) >0 )
I

B) For any r and any s such that 0 < |s| g u - 1, consider the

following inequality which holds for any 1 € 1.

wigbg 2 w(p b 45g) - Jef - v (3.8)
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Since § € 1, ;_:é”e 4’ and so (p__,fs}-ga,i) €n'e mut g-g) €47 15
sl gu-1. A proof of thiz fact follows. Suppose this is not the case.
(g(s}-g} € 4° 1f und only if Qgig)fg) & z{x) st-l} mudglo (xn-l) is
divisible by (£(x)s{x)) modulo (z"-1). However this ié pessible if
and only 1f £(=) |(z°-1) modulo (<7-1), But 'f(x)q(xt-i) mod {x%-1)
for any Jt| <u. Note 1f t <0, (x'-1} m ™" (& °-1) modulo (s"-1).
This contradiction esteblishes the fact,

Therefore (§§S}1k£ﬁg(8){5) # 0 for eny i € I, But it is a code

vector of A. So it follows that:

min wiy = b, ~ gy 2d - fs] « a(e) (3.9)
I

The right hand side‘is strictly positive by using {3.3).

The %horeover gstatement easily fclléws from the definition_of'the
exponent of a polynam1a1 and 2iss from the defianition of 2 primitlve
polynomial (Thm, 13 pg. 130 [1] or section 29 [29]). The existence of

primitive polynomizls over any finite field is well known.

Q.E.n.
It must be noced that in this theaxem the addictive exror detection
capabilitieg, e(a}, of this block code are a functxcn of the megni tude
of the slip that has actually oceurred, If there is no slip, ‘the
usual bound on error detection is the result,
Theorem 3.7

Egery {n,k} cyclic code can be modified into an (n.k-2) block
éoée which i3 capable of detecting‘the simultanecus occurrence of at
most ¢ additive exzors snd t or less bits of slippage éind;pendeni of

direction} if
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. = [-‘-l-:t'::l] (3.10)
3 . :
where
Eeu=-1<q -2 (3.11)

Furthermore this block code can digtinpuish between additive errors
and a conbination of both types of errors. BRquality caﬁ be achieved
in ¢3.11) by using a primitive polynomial to generate the expurgated
‘code,
Proof

The block code is the coset code given in (3.1}. Let the generic
form of the received vector, v, be given as in (3.5). The detection
part of this theorem g well ag the existence of the equality in (3.11)
is proved in the same manner as in the previous theorem,

To be able to. distinguish between additive errors alone (s=0) and
any combination of both {s8#0) it suffices to require for any s,

0.< {s| 2 v-1, and any 2, w(x) < e that:

nin w{v -
I

b, &) ze +1 (3.12)

t

This is evident Ffrom the fact that if s=0, all received wvectors are
within a distance of etl of a coset code member,

Again ag in the proof of Theorem 3.1, (3.9) is valid.
min wly-h, ~g) zd- |sl-ezesil (3.13)
The right inequality results from (3.10) which implies d-|sf-1 > 2e.

Q.E BBG

Just as it was possible in Chapter 2 to use Theorem 2.2 as a basis for
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a correction scheme, the results of the previous theorem dealing with
detection and classification of errors will be extended so as to permit
the simultaneous covrection of beth additive errérs and slippage. This
extension necessiteates increassing the complexity of the deceder to take
advantage of the gode's structure.
Theorem 3.3

For any (n,k) cyclic code there is an (n,k~a) block.code which
can correct the conjoint occurrence of e ox less additive errors and t

or less bits of slip - independent of the dizection -~ if

dmtel
eu[ =] (3.14)
and
, .
t = u-l g g2 (3.15)

Bquality will hold if the only if £(x) iz a primitive polynomial.
Broof

'The'validity of all the conclusions of the theovem is demonstrated
once the decoding strategy is outlined. The steps of this strategy
are given below as well as being depicted in‘figure 3.1,

1) Compute the Hamming distance between the framed vector 3;
and the closest member of the block code. That is determine the

quantity JQ.

I = mén wly, - b, -2 13.16)

2}  if the received vector is within a distance of efl from a
possible block code vector, i.e., Jo55 e, only an additive errer has

occurrad, Then the block code vector ﬁhich gives J; in (3.16) is the


http:rdt-l~l(3.14

49

minimm distance choiece as the transmitted one.

3} However if 50 is greater than ¢, & combination of errors has
occurred, So the decoder must reframe, obtsining ¥y» and determine the
distance J, to the closest neighbor. Continue reframing and computing
the distance Jk until the distance iz lesz than etl. Then the slip is
correctad and moreover any additive errors are also corrected by
choosing the minimizing block code merber. The uniqueness of the
solution is guaranteed by the stipulation (3.12) in the previcus
thaorem's proof.

G.E.D,

The Important feature of the code's design is that additive errors
always result in a received vector that is within a gphere about the
true coset code vector vwhereas for any slip in the designated range the
recelved one is within a concentvic shell sbout some coset code vector.
The decoding schems is sn iterative one. iﬁe cholce of the sequence
of values of slip by which it seavches fs generally guided by any
statistical knowladge about the slip. ‘

If 2 lesy complex decoding strategy is used, correction of con-
jointly occcurring errors is possible but at a degradation in both
additive erroy and slip correction performance. This result is
equivalent to one due to Tavares [22].

Theorem 3.4

Any (n,k)} eyelic code may be modified inte an (n,k-a) block code

as defined in (3.1) which ggs phe capability of simultaneously gorrectw

ing e or less additive ervors and t or less bits of slip where:

e = [ﬁé&] - (3.17)
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and
a

& 52,;;53__._;2 (3.18)

a
Furthermore L = [g,_%g_] if £(x) of Definition 3.1 is primitcive.
Proof

Suppose that the framed vector is given by:
+r (3.19)

X represents the additive errors with w(z) ge and s < t.

The decoding proceduze is outlined.

1) Determine b,€A such that w(y - b,) is & minimum,

o -Ihi(x} n

2} Deterxmine the remainder term of .M moduls {x-1). This
term corresponds to a value fboth magnitude and sign} of the slip s.

3) Then the transmitted veector is gé“sju

It suffices to show that if v in {3.19) is decoded as above, the

rasults ave ﬁj and s.

a) For eny b, €

wirt) s w2l 048) + Jobue < w(.;b.ji-hi) ¥ tie

(3.20}
Row gj = gg}-z- %(3} is in A. Therefore
1
m:’.nwv-gi}g't-%-es%i (3.21)
i . .

8o. the unique choice of a vector in A which satisfies this inequality

is b 34 because of (3.17). bj {x)

, ! et
B} The vemainder term of e l) must be considered.,
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by (s} = % by ) + % glx) mod (1) (3.22)
1

New %° b 3 (z) is in A’ and so 1s divisible by £6z)g(x) module (x -1).
Hovever f{z}g{x) divides xsg(x) if and only if £(x) divides x° with all

divisions modulo (xn-l). Thus the remainder term required is exactly
3

'( '

to establish z unique correspondence between values of slip and the

' L8
the eemainder of Thiz term will be dencted as {ﬁ;—g}. To be able

remaindar temms, It must be shoum tlmt ifués mzd im| ang Isi are

)1 r R .
both less than «— 3 then Ve }} g { F {R}j wad (;: 1), Or equivalently
show {M} £ 0 mod (&=1), But £{x) 'fxy for’ any integer y since
£6o o
E(0) ¢ 0. So Finally me)_&} £°0 mod (2™ -1) is sufficient for the
uniqueness. Hovever [sem| < u ahd £(x3 J(¥-1) for y < u from the
definition of exponent. Thus the remeinder terms in this rar;ge are

distinect,

e} The unique choice for the trensmitted vector is
EJS;} =b, +g
as meationed in the proof of Theorem 3.1, the ewponent u < q&-f..
Q.E.D.

The decoder in this scheme performs decoding =s if the original
cede were being used., Thie removes the additive ervers. It then takes
advantage of the fact that some of the cyclic shifes. of the original
code vectors have been removed., OF the {qa-l} qk°a x're'ctors which have
" been removed, u-l are made vo correspond with a synchronization error,
The vector g corresponds to s=, The computation of the remainder tewm
is equivalent to determining a symdrome (pg. 36 [2]) in the &° code.

Thus 5=0 corresponds to 1, The decoder must have a memory faculty in
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order to chtain the value of alip from the syndrome,

Ag wae pointed out im chapter Z, results for a syzmnei:ric' Wiip
range may be of limited use., 8o the previous theovem will be refined
to include the case when the slip corvection rangs 1z uvnsymmetyi cal,

Corollary 3.1

1€

e=[5E]- ¢, (3.23)
and

tt§u~1§q3-—2 {3.28)

then there is a {n,k-a) Block code derivabie frum any cyeclic {(n,k) code
which can conjointly correct ¢ or less sdditive errors and at most t’th

bits of positive slip and & bits of megative slip. In sddition

t, = e " and t, = max (s:'z',z:") 3,25}

Broof

The value of g in {3.19) {8 vestrieted by ap” Ls = i:i ‘ Bguation
{3.20} is vrue 1f t is replaced by R With this change part &) of the
proof is the same. Alsse demonstrating that {%;:;——ﬁ} %0 mc&{xn»i}
where s $mand & <8, m < ¢ 18 sufficient to conplete the prooi.
But Jeem| <t, and £ <uw. Thue £65) {G&°T-1) modulo (67-1) and so
the remainder £z nonsero,

Q.R.B;

Even though the decodar styategy remains the gama, it must be pointed

out that in step Z the correspondence between a particular remaindew

term and the value of a £lip may change when the vesults of the
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corollary are applied. Of course, the remainder of 1 still corresponds

to s=0,

& Subset Cods Containing a Fixed Pattern

Since woxd synchronization is valuable information, at least
directly to the receiver, it can be sent as part of the message content
of each code word. As it will be demonstrated, the error correcting
aﬁility oflthig type of code will be equal to the parent code, However
the rate will be altered in & manmer directly proportional to the slip
correcting range of these codes.

The codes to be constructed belew arae cyelic codes in which t?e
information bits zre located in special blocks with respect to each
word. Iu addition certain of these will giﬁays contain a fixed patiem.
This pattern eunables the decoder to detect if a syuechronization logs has
occurred and moreover to determine its mapnitude and dirsction. There
iz nothing esoteric about the pattern to be emploved here, It has been
used by Mandelbaum {27} in 2 technique very similar to the ons to he
presented below, It wae imtroduced by Sellers [5] in a different
context for correcting bit-loss and bit-gain ervors with burst error
cérrecging codes.

| Suppose therz is an {(n,kt) cyclic code. Keecall the definition .of
t+, £, £ and tm from Covollary 3.1. Any ecycliie ccde is combinator-
ially equivalent to a systematic cyelic code which has at least &
information slote in the beginning components and at least t+41 infore
mation bits in the last elements of avery code vector, Hence a
necessary assumpiion is k 2t + 1. 4 subset code with qk-t -% members

is constructed by choosing all of the vectors from the systematic code



which have zeros in the first ¢ places and alsc ones in the last
(t¢¥1} pogitions, That iz Eﬁ’ a member of this subset code, 19 given
by:

- +
5w [ £+l

=3 Ut LA TCET L IO L s ) (3.26)

Thus the pattern is t zeros first and {t+41} ones last,

This subget code will be transmitted and the decoddr will perform
the operation prescribed for the (n,k} systematic cyclic code, If D
and Ek are in the subset code and {f £+ >s5 >0, then bgi} has the
following form.

(s) ( Tes o £ 5 )
Oseecsls §58™407 227§ nee®e2°T, 0.7, 0,.,.,0

L €3.27)

But this iz nothing more than a cyelic shift of a code word bj which

(5)

was in the systematic code. The same is true of the fomm of b if
(") «s <0, Note that the magnitude and direction of the Sllp s

ig easily determined. Let the received vector v be giﬁen by

y = %}+r (3.28)

Then the additives exror vector, r, is correctable by the decoggr‘since
b?i) is a code vector., This result is sumearized by the following
theorem,
Theorem 3.5

Given any {n,k) cyclic code there is an (n,k~t“~t+?1) block code

which can simultanecously correct e or less azdditive errozs and ﬁ+ bits

of positive slip or t  bits of negative slip.
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- {-4-;_-3‘_] ' (3.29)

The technique presented above is equivalent to another method
which is a coset code of an expurgated code. A subcode of the system-
atic cyclic code is formed by sélecting those members which have ¢
zeros in the first components and (t+41) zeros in the last positions.

The coset generator is given by:

t +1
c = (0,.'...’0 1 1’5."1) {3.30)

-

Therefore a generic term of this coset code is depicted in (3.26)., If
the addltive error-correctlng decoding algcrithm normally used for the
systematic cycllc code is employed on the coset code, all additive
errors within % will be corrected, The effects of any slip upon the
coset generator ¢ is easily detected, and the reSulés of Theorem 3.5
are obtained, Another choice of a coset generator is given by:

+
t

¢ = (o,,....,m, 1) (3.31)

If this generator is used {or equivalently this pattern), the codes
of Shiva and Sequin [28 ] which they call the ‘Modified Version" are
combinatorially equivalent to this coset co&e. However the results
here are much stronger. '

Although this equivalence exists between subset codes with a
fixed pattern and coset codes derived from subcodes, the fixed pattemm
viewpoint is preferable, It is the cholce of the pattern wﬁich is

embedded in the information bits of the code that is important. This

pattern must be chosen such that slips are detectable,
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Comparison of Results

The best choice of self-synchronizing subset ccdes depends upon
the cxiteria which the codes must meet. The various results of this
chapter were achieved by compromises between ervoy correchion capa-
bilities, slip correction capabilities, and cede rate., In zddition
the complexity of the decoding strategy may be modified, and this
effects the other performance factors.

There are three main results in this chapter which deal with the
simultaneous correction of both additive ervors and bit slippage.
They are given by Theorems 3.3, 3.4, and 3.5. A cowparison will be
made between the additive error performances and also between the
rates with the siip correction range t as the independent variable.
In Theorems 3.3 and 3.4 £ will be allowed to assume its maximm value,
i.e., £ = qawz in Theorem 3.3 and 2t = qawz in Theorem 3.4. Let e,
dencte the maximum number of correctable errors as given by Theorem
3.1 and let Ei be the corresponding rate, The following quantities
are displayed in figure 3.2 for a typical (n,k) cyclic code. Even
though t is an integer valued variable, it will be allowed to be xeal

valued here for the sake of graphic clarity.

o = "ﬂ&tnl] « R o= (iliigﬁffjiz)
3Lz ’ 3 n
_ k~log (2842)
e, = é:l] -ty R, = ( 3 )
4 L2 * (4 n
= mﬁ‘.‘i‘.&] s R, o= (1..,.....__..‘""2!:'1
i R (O T n
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The error performance of Theorem 3.5, e s is always superior to
the others but ite rate is always inferior. Also its correction range
is larger than either o6f the others, The performances of Theorem 3.3
is slightly better than those of Theorem 3.4. However the former

requires an iterative decoding procedure.
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[""é’”} Slip t

FIBURE 3.2. TYPICAL RATE AND ERROR PERFORMANCE
OF SUBSET CODES.
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CHAPTER 4

LENGTH ALTERED CODES

Codes which have immunity to synchronization loss as well as ﬁb
additive error corruption have been constructed in the previous
chapters from a knowm code by modifying some aspects of its structure.
However noné of these techniques changes the length of the original
code, ‘The concept of lengthening a sequence of information digits.by
appending check digits so as to protect against additive disturbances
has a counterpart in dealing with synchronization errors. Iwo sections
of this chapter dezl with construction techniques which extend a known
code by afixing additional digits to each member so as to check for
synchronization loss. Thg regultant code.retains the errqr-ca?recting
ability of the original cede. This is in contrast to the insertion
between words of special synchronization sequences, e.g., Barker
sequences, These gequences are very often sensitive to add?tive*errors.

There is no analogous concept in coding theory te indicate that
shortening a known code would diminigsh its vulmerability to synchroni~
zation errors. However it will be demonstrsted that by removing cer-
tain portions from every code word the synchronization sensitivity of
the code is reduced even in the presence of additive errors. Shiva
and Seguin [28] were the first to present any results concerning the
shortening of codes for the correction of synchronization errors

whereas Caldwell introduced the concept of extending codes for the
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same purpose in his work with BCH cedes [31,32]..

Hone of the methods employing length alteration use that technique
solely, It is always used in comjunction with some other approaches,
The additive error paréormance of these codes iz uniformly better than
the coset codes or the subget codes of the preceding chapters. But
thelr rates are reduced, and furthermore when no synchronization errvors
are present, the efficiency of these codes is lower than the parent
codez from which they were derived. The dedoding strategies recom-
mended for the codes in this chapter have two general procedures in
common, First befﬁrelany other processing the receiver always returns
the length of the received vector to that of the ur;gin&l co&e by
either adding or deleting digits depending on the nature of the length
alteration: The remaining steps in the decoding are based upon the
séructuré of the original code which generally is better known than
that of the altered code. '

The results in each section start with the problem of detecting
either or beth types of erzors and conclude with those pertgini;g to
the simultaneous correction of both types. In order nét to obscure
the saliént properties of these codes, in most cases the,resulgs con-
cerning symmetrical glip are presented befere the unmsymmetric case is
considered, Th;s dichotomy does not overwhelm the reader with details

vhich can be presented easily as an elsboration of the simpler-case

with little orx no further proof.

Shortened {odes

The basic procedure for shortening a code to be used in this

section may be asucei outlined ia two steps., TFirst select a set of
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vectors which have predetermined values either in their leading or
trailing positions or in both places. Second remove those positions
frem every vector transmiteed,

et 4 be an (n,k) cyclic code which is generated by the polynomial

g{x}. Pirst cheose z subset defined as:

{E’-i &b i(x} = (xty(x}g{x} +*- &ixknlg(x)) mﬁd(xnwl)
s deg y(x) <k-tel, Y(0) # O and o # c} (4.1)-

Thia is a subset code consisting of those vectors which have t zeros
in the firat plaees a nonzerc term in the (t4l)st component sinf::e
g{0) # 0 and ‘}'(G} # 0 and finally 2 nonzero term in the last place

gince ey # 0. These aze (g-1} qk“tuz

1

‘choices of informarion bits
represented by w{z) and (g~1) choices of oy # 0. Thue the subset has
? t- 2(4; 1) menﬁ:ers. Secondiy shorten all the vectors in the subset
{4.1) by removing the fivst t bits. The result {s 2 block code of
length .n topet.

Definition 4.1

let T denste the block code of length n‘=n-t and with qk“t-z(q-l)z

members as constructed in the preceding peragraph.
Hote that there is a one - one niapping from § Into the original
code 4. Xt will be coavenient to desigmate the following subset of

ti;e indices of A,

T = {index i: _mi&‘, and the shortened version of b, is in o1
(4.2)

So it is possible to enumsrste the members of £ as @13161 where g, is

an n’;i:upie and each 8, corzesponds to ewactly one j;_ie.c.. Vectors from
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z‘f will be transmitted. Howewver the decoder will add t zeros to the
beginning of esch received vector zo as to transform every n-ftup'le
into an n-tuple. Suppose that the rveceived and framed n’-tuple iz

given by

. {s)
vieag v ‘ {4.3)

~g” is the additive error n’-tuple and {s| < t. Note that j and k ave
both in I.of {4.2)., After v’ has been prefixed by t zeros the result

iz an n-tuple denoted as y. Now v msy be written as:

=3 +p-

By z (426

where p_j corresponds to & 4 and r is the n-tuple resuleing from pre-

fizing the n'-tuple ' with t zevos.

E-5 " 8 .
O,...,0, &, other termg, 0,...,0 B, other temms)’?

ifs >0
&= (%.5)
~8 bis -8 .
{other terms, ¥ 0,...,0, other terms, 1, 0,...,0)’

ifs <0

& is the nonzero term in the {(&+l)st position of _113, and p ig the non-
zero term in the (t+l)st place of _b_t: whtich corresponés‘ to & - Wher easg
g is the nomzero term of -b-j in the nth place and 1 is the nth term of

_i_z_k (nonzers of course).
Theoxem &.1

Suppose there is an (n,k) .cyclic code which can detect a burst of
length at mwost ¢ in the Ffiret t components and also detect another

burst of length at most t positiong, and in addition detect at most e


http:Howev.er

additive errors in the last (n-t) positions. Then there iz a block
code of length n’'= n-t and with (¢-1)° 52 menbers which can detect
e or less additive errors and € or less bits of slippage im either
direction aven if both occcuy simltaneously.
Broof

The hlock code to be used iz £ in Befinition 4.1. ﬁs.sume that the
received vector v’ 1s ss given by (4.3) with w(z') g e: The decoder
will operate on ¥ given in (4.4). It sufficee to show that an additive
error is detected if 0 < |s] £t or x # 0 with w(z) < e.

8) r#8ands=0

Since ¥ # 0 and wig) £ e, ¥ has an additive error in the last
{n~t) places and no bursi errors, i.e., z = 0. So by hypothesis the
errvor is detectable.

) 0 < s} 2t and any x with wiz) e

%incé éié ¢, it follows from {&.5) that z has one burst of length
g in tes first t positions and aunother one of length s in eithex the
next t places or the last t places. So 3 is & detectable pattern as
well as r since w(r) < e and since z begins with t zeros,

Q.E.D.

Cozolliaxy &.1
If there is ar (n,k} cyclic code, with minimem distance d, and if

e=d~2t«1 (4.6)

then there exists a block code of length n' = n-t with (q—l)z k-t-2
g

vectors which can detect the concurrent occurrance of ¢ or less addi-

tive errors and t or less bits. of siippsge in either direetion.
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The block code is ¥ eonstructed from A as ghove Definition 4.1.
The proof follows easily fvom the theorem becazuse any errvor-correcting
code of minimum distance d will detect the occurrence of two bursts
of length £ and e additive efrovrs if e + 2 £d = L,

G.E.D.

Theorem 4,2

et § be an (n;k) eyclic code which can correct a burst of length
‘st"most t in the £lrst t positions and correct & second burast of langth
at most t either in the second t places or in the last t plates.
Furthermore 4 ean correct at most e additive arrors in the last {n-t)
pésit:icmsu Then it ie possible to derive 2 block code from § which
has the capability of simultaneously goxpeciing t or less bits -of
slippage in either direction and e or less additive erzozs, This

2 qk-t-2 menbers.

modified code hes lenmgth n'= a-t and contaims (g-1)
Ezoof

Conglder the ¥ code as derived frem the A code in & manner as
degeribed sbove Definition 4,3.'. é.ssmn.za that the slipped and corrupted
w'-tuple received at the decoder is v’ given by (4.‘3}. The decoder
strategy iz outlined below.

1} Butend v’ o v given in (4.4) by adding t zeros to the
beginning of v’

2} Correct the additive and buyst errvors by using the A code as
‘a basis for this correction.

3} If the corrected vector from sbove has & nonzero teim anywhere

in the first ¢ positions, reframe the received n’-tuple and stavrt at
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step 1) again. On the other hand if this corrected vector has t zero
in the first places, the additive and ¢lip ervovs have both been
corracted. After step 1} the decoder investigates the n-tuple ¥ as
given by (4.&). 2z of {4.3) has two bursts which are correctable by
the hypothesis. If w(t) £ e, then ¥ represents a correctable additive
error pattern. So the decoded vector in step 2} is g§3} where gi
corresponds to 2y But if & # 0 snd }s} < ¢, gés) is & eyelic shift
of & wewber of A which has s nongero. term somevhere in the first t
positions by the very comstruction of I. However if s = 0, gj has ¢
zeros in the first places. Since yj corresponds to 2y the correct
vector has been determined.

QCE‘B.

Coroliary 4.2

1f there iz an {n,k} cyclic code, A, with miniwmmm distance d,

and 4£
o = [S8E2L] %.7)
then there iz = block code (length n' and {q~1}2 qk'tﬁz mewbers) which

can conjointly correct e or less additive ervors snd ¢ or less bits of
slippage (Independent of directien).

Proof

% is the block code. If e + It 5;§§§3 the cyclic code has sll of

the properties of the one required in the theorem.

G.E.D.

Coroliary 4.3

There is & block code which can concurrently correck e or less

additive errors and»t+ or legss bits of slip in the positive direction
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and ¢ or leams bits 6Ff negative slip. A& sufficient condition for this
is the existence of an (n.k) eyelic code whiech is capabls of correct-
ing 2 burst of leagth at most i E&K(i:'g‘,t—} in the first €, positions
2nd & secoud buvst either in the next £ places of length at most t
or in the last 2;‘5; positions of length at most t+, znd also e or less
additive errovs in the last zftf;tg; components. This code has length
(n«tm} and contsing ~(q-1}2 q- B merbers.
Broof

?he bleek code ie one derived from the cyclic code by the method
above Definition 4.1 except m‘.;.:h t replaced by £« The decoder
stvategy is the seme 23 in the theovem except again with t veplaced
-by B The garémf' is obvious by n;:tiﬁg' the location of the bursts in

Zs

Q.5.D,

' The syachrdﬁizaticn correction techniques inherent in- the

previous zésuie's are achieved by an iterative procedure. It may be
deai;abie to determine both the mégnituée‘ and direction of the slip
;iife;:tly at the decoder without any'sart of search. In order to
asr;om;};ish this an {u,k} eyelic cocia, &, generated b¥ the polynomial
g{x}; ;:amst be modified in a slightly different fashion from the way

the 'code., %, of I}efiﬁitien L.1 was dez‘iﬁeé. The subset to be

shortened is givetzz by
; £
‘ {g__i w b ) = x y{x}g_{x)maqfnn

: deg plx) < k-Zt-L and (0) ¥ O} (4.8)

The vectorz of this subset code sre those vectors of A vhich begin
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and end with t zeros and have a nonzers term in the (t+l)st pesition.’

These sre {g-1) ék—zt'l

vectors in this subset. Wow shorten the
subset cods by removing the £irst and last t positions of esech vector,
fence & block of length n'’= n-2t has been constructed.
Definition 4.2

tet ¢/ denote the block code constructed sbove. 8o v’ is the

r: )
set of n’’-tuples, {éi}ielﬂﬁhere each g, correspoads to exactly one

giE& snd whare

1’ = {index 1 : b,€A 2nd its shortened version is in £’}

(4.9}

This block cede can be useé for additive error and slip error corvec-
tion even if both types of erzers cecur in the same vector.
Theorem 4.3

Suppuse there exists an {n,k} eyclic code whicﬁ has the capa~
bilisies of correcting e cr less additive errors occurting in the
middle (n-2&) pusitions.of any vector and two burgts éach at wmost t
bits long with ome occurring somevhere in the first 2t places and the
other somewhers in the last 2t places. Then there iz a block code of
(g-1y 27

oualf corvect e of legss addifive errors and t or less bits of slip

mewbers each of length n’’= n-2& which can simultane-

repardless of direction.

Broot

Suppose the slipped end corrupted n’’-tuple received at the

desodar iz given as:

u‘z-, {a} i
¥ 25 T {4.10)
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&9
Ef' represenie the additive errors gncountered during transmissiom,
Aseume thet w(t'’) £ e and that |s] € £. Reczll that j and k ave
both in the set I’ of (4.9).

The decoder performs the following strategy. It adds a prefix
and suffix to each received n’’-tuple of t zeros., The ;esulting
vector v is deccded with respect to the minimum distance procedure
relative to the cyelic code A. The position index of the first non-
zero term of the desoded vector is subtracted from the valve (t+1),
and it gives the magnitude and the dirvection of the slip.

it is possible to write the extended version of v'' as:

z= §.§s) +z-2 (4,113

b ‘corresponds to 2 €n’ and g is the n'’~tuple '’

1
t zeros to the begimaing and to the end.

extended by adding

L8 g ; 8 i .
Fyeea, b, 0ther. terms 0,...,0,8,0ther tarms,@;,m.,o)’

if 820

( t -8 “g _tts )
G,...,0,0ther torms,0,...,0,0ther texms,0,...,0/’
ifasg0
{4.12})

o is the first nonzero tewm of b g vhile b is that of .

'(gﬁg} is & vector consisting of a cowbination of additive and
burst evrors which is correctable by the hypothesis. Sc the decoded
vector is gés). But yj begins and ends with t zeros and has a nonzero
term in the (+l)st position. Thevefore gés) begins with (t-s} zeros

and alwaeys hes a nonzevo term im the (t-g+l) position. Subtracting it

from the quantity {(841) gives s.
qu y (&4) g Q.E.D.
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Since any code of mintmm distance d cea correct the two bursts and
the additive errors required by the hypothesis of the theorem if

4k > e 4 2t, the proof of the following corollary parallels that of

2
the theorem.

Corallaxy 4.4
Let A be ap {n,k} cyeclic code with minfmum distance d. If

o [e4] -

then there isz'a block of length nf’s p-2t which is derivable from A
and waich is capeble of simulteneously gorresting at most e additive
errors gnd at most t biis of glip (independent of the direction).

This dode is composed of {(g~I) qk—zn';-z_

vectors and & decoder can
determine both the magnitude and the divection of the slip without any
gearch procedure,

An alterarion of the code comstruction technlque used for the
symmetrié. caée produces gimilar results when the expected glip is in

an unsymnetrical reuge.

Corollary 4.5

There. s a block code which has the cogrection capabilities of at

wost ¢ additive etvors and either at most f:'% bits of positive glip or
a_i:, most & bits of negaéiva glip. & sufficient condition for this is
the exfstence of sn (n,k) eyelic cede which can corrset e or i:ess
additive errers sceurring in those places from the (t'g'-f-i}st tc‘r the
{unﬁ"}st inciusively aud algo can corvect either a buwst ia the first
¢t positions and & secomd one betwsan the {ﬁ“t+“t-}ﬁh and the (n-t 41}

places or & burst batusen the +¥th place and the ¢t Tae 1) en place and
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& second burst in the last ¢ pocitions, Ret t_ = t:+ 4t . The length

&
) k-f, =1
of this bloek code iz n''= w&tt and it has {(g-1) q €

members.
. Preof

The subset code to be shortened is the collection of thosge
vactors vwalch begin with t+ zeros aad end with ¢ zeros and hm;e a
nonzers -texm in the (t%%l)st pasiéica. The subset is shortened by
removing the firet ¢t poeitions snd the last ¢ positions.

The decodar adds zevos in these places and afver additive ervor
correction the position index of the first nonzero term im the decoded
vactor is gubtracited from i:'*”-z-l to cbtain the magnitude and divection
‘of the slip. The proof -is obvious omce the form of 2 in an equation

similar to (4.11) for the raceived vector after the zeros have beea

added is glven for these circumsiznces.

( £ =g & g £ )
8500 ;,0,tv,0ther terms,f,,..,0,8,0ther terms,0,...,0/°

ife>0
E -3
s ~g g t s\,
Ts0ee,0, other terms, 0,...,0, other terms, 0,...,0/°
if s <0
{(4.14)
QGE.D.

Extended Subset Codes
Each code'word is lengthened by buffering it with s.;equences which
are sultably chosen parts of the word itself. This reduces the effects
of synchronizdtion errors, but it does not add enough redundancy so

that their effects mzy be confused with or camcelled by those due to
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addizive errors. Hovaver gelecting & subset of the originsl code
allows the separstion of the effects of both types of erroxe.
Lot 4 ané A’ be codes as defined im Definition 3.1. TFurthermove

define the set of integera J as:

I = {index § = b€k 1 {4.15)

A8 in several cases before, let £ be the wsximm nurher of bits ox
“pbeitive slip to be corvected vhile £ demotes the negative slip.

i E?ur{h'emre dafine two other syabels.

A - E -
&, = £ o+t and L ma:z(t"},t h] {4,163

How congider the coset of the svbeode A’ &3 given in {3.1), i.e.,
{;bd%g}i&s This coset will be cyclically extended to yield a2 block
eode of iengeh n'= w:%:s: by affining & prefin of t hite and 2 suffix of
‘¥ bats to eash eode word. The prefix is the last t~ elements of the
wogé in the came ral&ti:ve pogition 1f & < ox i; [%5 régatitéms of
the t:':ux& praeedoed ?s:;r the last (t“«niﬁ%} plaoces of the word in the powe
l;ar&e:;g}%?"ﬁ ﬁ‘_ﬁa r.:; Similariy the suffiz iz the fivegt t+ posigions if

t+ < oor is ﬁf?} vepatitions of the vord followed by the fivst
'ét%-n%‘g} plagas 6f the word if t+ wa. This eyelie extension teehni-
que is made more graphic in the following ewplanztion., If b is &

member of the coset eode (3.1}, its extended version ¢ is & meuber of

a (\:r%tt s k<a) bBlosk cede.

i,;—‘, = {bc 323’13 L .;,&?3"1}

t; , ot 4,173
E;Eveem E;*J%c&ﬂm
E‘”‘" b - - }“0"& - ’g:ue’?;gh,k,ntc’:ﬁh’k ,tst:;b ‘%‘ 3
A=k ’ﬁ‘ﬁg‘gj“l n-1 2 t+~ﬁ{f§f}i'
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The above constructién proceduve is implicitly contained in the
‘foizmeing definition.
Definivion 4.3

Lat B degote thie eyclically extended code with members g
corresponding to (i .fg) for each- 163,

The & code will be transmitted., Throughout this section the first
atep in the decoding strategy will be to treat the received word as if
no ‘81ip had occurred and then to remsove the appended parts of the
’a“-’i_:i:gle, i.2., the decoder fremes the u bits from the {t +1}st position
‘t;:e the (a-%t“)st place i..uc?,usivély of the received vector. Suppose that

the veceived n'-tuple is given by y’.

)
E' = Sf.jk F .1."'.’ (4.18)

3

g" raprasents additive errore, and it will be sssumed that it has at
mugt"a ponzerc compousnts in any burst of length n or iesa. Purther-
Eore asgume "thaé: e* & 3t , Wotice that j and k ave both in the
:.;.et I, {&.ﬁé}.g The first step of the decoding strategy willi yield an
.n-tupie, ¥s Because of the cnast:mtf;'.oa of members of 2, v may be

"written as follows,
N R T AL (4.19)

r has the (& 41t to the {nit 38t components of ¥ in ite n positions

while Ej-sg carreépoa&s to the cyc}.icallﬁ' eztanded vector ¢ 5 Also s

is given by:

g = 8, (1 w T}T [—‘i%i]) (4.20)

o
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Theoren 4.4

S.upéase theve iz an (n,k) cyelic code with mintwum distance d. It
: ?_ts' pozsible to construct an (ﬁ-ﬁtt, k-a} bleek which can detect the
a:'igézlt:sﬂeow caourrancse ;af at most e additive errors and either t+
bite of-slip s the positive direction or t~ bite im ‘éhe negative

direction as long 28 the follewing ave satisfied:

ofe
th nfﬁ-jgu =1 2q -2
- {4.21)
- £ 1
tenfClge-1gq -2
and
e =d -1 (4.22)

Furthermore equality is possible ia {4.21) 1f and only if £4x) is &
pri@i'tive‘ polynomizl,
Broof
The fivst step of the deceding process gives v of (4.19). The
next step 15 to perform additive atvor detection on v as if the code
were the coset code of A as given in (3.1). It suffices to consider
tws casaes which arve mutvally exclusive and exhaust all the possibilities,
2y ré¢Qends=0

Since e = de1, normal arrer detecting procedures indicate an error
since (b m)EA’.
e - oto 4t - L
BY 8% 0 with (& -n[-;}) <s gt -n[g}) for ~t" 28 £t
From (4.203).
If under these conditions the following inequality holds, the

decoder will have detectad sn evror.
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- min . wly «51:_'1 =g} >0 {(4.23}
e ,
However
V@b B 2 a(;g?’}-:-" g - p; - 2) - v (25

But: (Q_.gg) * g;(s)) cannot be & meuber of the ceset of the subcode A’ by
an grgument -identical with part by of the proof of Theorem 3.1, 5o

,w(_&}:s}.g. E(S} - Q'i " .g) 2 ¢ for anmy iég. .: Thus {é,%}-.bécms:
i w(g?‘)-a- 5(3) =By~ g‘) >d~e (4.25)

Yow dee =1 £rom (4.3%). The “furthermove” statement follows as it
.did in Theorem 3.1,
Q.E.B,

This theovem suggests. sun approsch for the correction’ of both types
of errors.
Theorem 4.5

The conclusion of Theorem &.5 ig velid for the conjéint correction
of bogh types of ermr‘s,_,’uudar: the sawe hypothesis except that the

- ezpredsion for e in {&.22) 4o replaced by:

e [21] : (%.26)
. Proof

The £lrst step performed by the decoder is as before to freme an
a=tuple, ¥, from the recatved n’-typle, v/. Wext it performs additive
error correction by treating the framed vector as & corvupted vector
form the coset code of {3.1). If the number of sdditive errors which

have oceurred is legs them or equal to e, the decoder has determined
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the tranemitted vector. However if the nummber of errors exceeds e,
then the strategy will have the decoder reframe and perform the additive
error-correcting step again.

Consider the two ecases below:

ay s=0

Then
win w(gap_i-_-g)sw@_) <e ' (4.27)
ied

g -
Y & #0with & -alE] 28 2 -"-0lD

Bquation (4.25) from part b) of the'previous proof is still valid
and is pertinent here, But from (4.26), d-e > d- -(d—;-l'-l = %4-% > etl.
Hence using the iterative decoding strategy outlined above gives the
proper vector.

Q.E.D.

hlrering the decoding strategy employed in the previous theorem
legds to a different result. The decoding procedure uged here gives
the mégnitude and direction of eny clip as well as the coset word.
However this extra feature requires an increase in the decoder's
complexity and allows a smaller slip—correctiqn range. This result was
first presented by Weldon [34], who generalized the work of Celdwell
[31] and Bose and Cladwell [32].
Theoren 4.6

From any (n,k) cyclic code with minimum distance d, it is possibie
to construct an {n-i-tt, k-a) block which has the capability of simul-
tauecusly correcting ¢ or lass additive errors ‘and either t' bits of

positive slip or t bits of negative as long 28 following conditions



77

are fulfilled:

et e a
t - n{f«ﬁ-j % [-E}} <u-1<cqg ~2 (%.28)
and
o = [%3:] (%.29)

Equality 1s achieved in the first equation if and only 1f £f{x) is a
primitive polynomial.
Broof

The firstlstep in decoding is to frame the n-tuple. ﬁext additive
error correction with respect to the larper code A is performed,
Einally;the syndrome with respect to (F{x)g(x)) mad#lc (x"-1) is com-
puted. The valve of this syndrome gives the Qﬁgnitude and direction
of the slip.

According to this strategy if w{r) < e in ¥, the decoder decides

that §§S} 4-3‘8} was transmitted. Just as in the proof of Corcllary
G, (&) + gle))=®

1 fz)g(x)

distinct if the total range of s is less than or equal to u-l. Thus

3.1, the syndromes {the remzinder term of ) are
+ -
the total range is (tt-n([-f;] + {g’])}e
Q.E.D.

It is appavent that the codes of this section can be used even
when the range of the slip is quite large and even when 1t 1ig multiples
of the original lemgth. Of course the rate is directly and ad#ersely
effe::cted. The problem of dealing with wide-vange slips is treated in
the following chapter; so any discussion shout these codes from that

viewpotut will be transposed to there.



78

" Bxtended Coset Codes

In this section the coset of a code will be cyclically extended.
This modification technique'yields t;OEieS wt;ich have a higher rate than
those of the previeus section at larger siip values vhich are still
leass than 52?5. This approach is a compromise bcaittf:een the reduction of
rate which is found in the extended subset codes and the rgduction of
additive error correction capability vesulting from the use of the
copet codes of Chapter 2, This technigque temds to moderate the loss
in each of the performance criteria,

Consider 2 coset of an (a,k) cyclic eode, A, which has minimum
:ﬁiistaﬁce 4. 'let ¢ be the gemeric coset generator. So {1_:{1- g}ii;;,
with ¥ = qk, is a coset code which will be cyclically extended by
prefixing each n-tuplé. by its last t elements, maintaining thelr
respective order, and suffixing each one by its first & components in

their order.

Definition 4.4

Le;'. {3 be the (n’,k) bleck code constructed from the coset code
{p{{- .c_:.}lf;é Sy cyciically extending it st each end by t gso;;i‘tion.
n'= né2t. TFurthermore let _gien correspond to (b,+ ¢) of the coset
code., ‘

The block code 0 will !;e used for transmission. Hence a typilcal

received n’<tuple is y’. -

¥ = .«ﬁﬁ) + ! (4.30)

r' represents the additive errors. £ 5 and gk are both im Q. It will

be assumed throughout the remaining parts of this section that [s| <t
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and that every burst of length m or less of x‘ has weight of e or less.
The first step in every decoéingl strategy tc¢ be discussed here will be
to disregard the first t aad the- last t components of v’ in order to
obtain an n-tuple v. It is cbvious from the construetion of () that ¥

has ths following form.

v = gés} + £+ g_{s} (4.31)

Because of the assumptions concerning ¥/, w(z) ge and o] < t. The
remaining steps of the decoding strategy will always process the
n-tuple, v, uvsing the structure of the coset code. The form of the
coset generator ¢ and the exact decoder operations are independént
veriables at tchis point.
Theorem 4.7 7

The existence of an (n,k) eyelic code with minimm distance d and

the reqﬁiremeni: that

== {7 [BE] 432

are sufficient to imply the existence of an (u#2t, k) block code which

can detect the conjoint occurrence of at most e additive errots and
or legs bits of slip (in either direction).
Proof

The form of 2 coset generator is given by:

gty L4l 4l
@ = (0 )

,---,8,0,-»-,9,1,0,-..,0,1,9,......--,G,l,egoee,e,l

[—E-}z- blocks “(4.33)

This form exigts &f
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np (o) {2 o 2Ll o, (4.34)

It 1z sufficlent to require thst the zeceived vector ¥ of (4.31)
.is not & member of .the coset vode if 2 % 0 or 0 < |s| £ t. Under these

conditions this is equivalent td the statement dbelow.
miﬁ wg~b g >0 : {&.35)

All situations are covered by two cases.

8) r#¥0ands =0
min wig -, - ) =wiz) >0 (4.36)
i T

) 0 < js| £t end any z such that w(x) < e
wigby-0) 2 minfule@egrr), (1P b w0}

2 ninf(w(e®-grme), (a~w@(s3~g)-ej} (4.37)

From {4.33), w(g(S}ug) = 2[5%%] ag long a8 s # 0, ls| < t. Furthermove

edl £ 2 [5-;3-} Xetl., Combining these statements gives:

‘min wiy - b, - 2) > min {{etl-a), (d~(ei2)-e)} {6.38)
i

Bowever (4.32) implies that ¢ :;%«3*-; g0 d-2e-2 » 1.

8.E.D.
Theoren 4.8
Again ssguming the existence of A, there iz an (n<2t,k) block
. cote vhich has the ability of not only detecting the simultaneous

ptesence of At most e-additive errors and at most t bits of slip
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{independent of direction) but also clagsifying the nsture of the errors

provided that:

- =i { [52]. [3552]} .59)

Proot

The coset generator iz specified below.

41 e+l = T
C = (9,,..,9 @,..9,9 1 0,;.:.,0 1 e,evo-a.ogo 1 6,-;‘,0 1

{e+1) blocks {&.40)
Thus 2 suffilcient condition for this form of ¢ is:

n > (efl) (t41) or (“;j;_;l) > e [ (4.41)

The proof of the detection part parallele that of the previous ome.
Thus its proof will be comdensed. The proof of case a} is identical
and (£.37) of case b) is still valid, However w(gfg)-g_} = 2{e+l) if
0<is{ge. 80
win (¥ - - ¢} >uin {(Zetl-e), (d-2(esl}-e)} (4 .52)
1

2 {(e42), (eti}}

The last inequality comes from the use pf (4.39) which implies 4e < d-3
or equivalently d-3e-2 > ail,

1f the veceived vecterfs only corrupting influence has been
additive er;'oz.‘sg it will be within a Hamming distance of at most e
from a coset veetor. The equaliey fn (4.35) demonstrates this. However

if any olip has occurxed, {(4.42) above shows that the received vector
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must be at lemst a dfstance of (e#l) from any coset vector. Therefore
it is possible to distinguish between the occurremce of additive errors
alone snd sny covbimstion of nonzero slip and additive errers.

Q.E.D.

1f the decoder strstegy outlined for Theorem 2.3 is employed with
the vector v, the previous tnearem is the basis for a correcfion pro-
cedure, BEquation (4.42) in the above proof guarantees the. uniqueness
ioﬁ correct slip. This result will be stated as a theorem but the proof
;:ill bemomitt:ea ;ince it is obvious from the steps of the stratepy and
the steps of the previcus pr_cmf..

Theorem 4.9

Suppose there ig an {n.k) cyclic code with minimm distance d.
Then it ig possi};lel to cyclically extend it to fom an (nd2t,k) block
code which can-qcncurfantly_correct at most e additive errors and at
most & bita of slip regardlesi of its direction whenever (£.39) is
true,

The decoding ﬁecﬁaiqﬁe employed for correction may be ﬁﬁappealing
in cert:ezin gsitvations. So anat:her result which requires a different
decc&ing strategy s yresem:ed. It in@lements a deccding procedure
which determinee the pairs of integers which comprise the following

get.
{M, . (v_b{ o {ar)) A L , 18 a minimim for 0 < § S M-1

end |7} < t} (4.43)

_Under suiteble conditioms it will be shown that this set’ is a gingleton

for each received vector v, (4.31).
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~ Theoren 4,10

It is possible to comstruct an (n+2t,k) block code from any (n,k)
eyelic code having minimm distance 4. 18 block code hag the ability
of corzecting e o legs additive ervors and ¢ or less bits of slip -

both in direction and magnitude - if

e = min { [$2] , [32171 (4.44)

Eroof
The block code iz of course the I code of Definition 4.4 using

the form of ¢ given here.

241 2t41 2641
¢ = (o,..,,o,a,,..,a,z,o,,..,9,1,0,,....,.,0,1,0,..'.",'0',"1“)

{et+l) blocks {4 .45)

This and similar forms of ¢ will exist because from (4.44),

e BHL oo (1) 2e41) <.

It suffices to consider three cases which exhaust all situationa

and show that L. > I’js for any combination of i and 7 such that 1 # j

or T #s, It 6.

8y 143 and ¢ =s
(s)_ . (a)
by 2 9(2”- 2{7) - e
>d~e2be+3~c=3etl) (4.46)

The use of {4.44) gives the last inequality. let



B4

- {i L pi8) |y

233 " 243
) i=3 andrés
tg, 20(e- ) - v (64T

However as long as |s}, {2} <t, and s # #,

w(g (s3, g‘ﬂ ) = 2(et+l) (4.48)
Ly, 2 2(etliwe = o2 (4.,49)

e} 141 and v #e, and s, I¢] <t
oy 2o 57) e - ) -
>d - 2(etl) ~e>e+1 {4.50%

Again the last inequality results from {4.44),

Row L:}.S <e and so the required condition for a1l of these cases

true.

QsEQBO
The extension of this vesult to the gituation in which unsynmetric
slip is allowed is straightforward and so its proof is omitted,

Corvollary 4,6

The theorem is valid for £@ bits of positive and £ bits of negative

slip if the variable 2t is replaced by t, = ef 4 e, (¢ is of the same

form as (4.45) except that 2t is exchanged for tt}'
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Comparison of Results

In order to present a comparison of the three techniques intro~
duced ir this chapter, a result from each of the three sections will
be comsidered. ﬁil‘will deal with the simultaneous cokrectiom of
symmetric slip and additive errors. and each represents the most
powerful wesult For its type of protection. The results are given by
Corollary 4.2 (Shortened Codes), Theorem 4.5 {Extended Subset Codes),
and Theorem 4.9 (Extended Coset Codes). A comparison among the
additive error performances of these three and among the rates will
be made using the slip correction ranpe t as the independent varisble.

The subscripting of certain variables will be accowplished by
uging the'last digit of the mumber of the theorem or corollary to
which it pertains, The error performance, €y and the rate, Rz, of

Corollary 4.2 are given by:

o = [du&swl]
2 2

_ keteg
R, = 2= (4.51)
Q = 2(1 - log (4-1)) (4.52)

The maximum mumber of correstable errors using the technigus of

Thaeorem 4.5 is ey

e = [%—1} (5.53)

Since the situation of symmetwic slip is being considered, the slip

correction range is constrained by the following inequality.
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t - n{-f;j <q® -2 (%.56)

It will be assumed that t <n and that t always is maximem with

respect to these conditions, i.e., tﬁqa~2. Then the rate is given by:

k1 42
x oggf )]

5 = n¥2e (4.55)

The results for extended coset codes from Theorem 4.9 are given below.

= ([ ]}

ey =
-k
Ry = mge 4.56)

These quantities are compared in Figure 4.1 for a typiecal (n,k) cyclie
code. The independent varisble t is allowed to be real valued instead
of in;eger valued so that curves and not series of dots appear in the
figure. Employing the bound on the minfmum distance, d < n-k+l {26],
it is possible to show that [% < [%] and that é_fi < 34—2 So the
'position of [éi;] to the left of [%]‘will always be true and the [ézéj
term in the expression for eg> (46.56), will always bé dominant for

t <1,

Shortened codes have a better error correction performance, €y
at small values of slip range than that of the extendgd coset codes ege
But the rate of the former, R2’ is poorer than that of the latter, Rg.
The shortened codes always are inferior to the extended subset codes,
and they also have a limited useful slip correction range. HNeverthe-

less in certain instances shortened codes may require less complexity

to implement than either of the others. The rate Rg of extended coset
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codes is always superior to that of the extended subset codes.
.However the Qupefiority of the error correction performances is:

reversed,
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FIGURE 4.1 . TYPICAL RATE AND ERROR PERFORMANCE
OF LENGTH ALTERED CODE.
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CHAPTER 5
INTERLEAVED AND CONCATENATED CODES *

The codes to be constructed in this chapter are designed to protect
against slips which lie in a range of at least half of the code's length
Por example if a block code has length 2, then there are codes which
will be able to protect against the conjoint occurrence of additive

. errors and slips in the range from -[%] to [f}'bits. The terms *pro-
tection” or "security! are used thr&ughout thiz chapter iu a2 general
sense to mean either detection, detection and classification, or
correction capabilities when dealing with some type -of exrvor.

Two different approaches for achieving a wide range of slip pro-
tection will be presented. One uses an intexleaving technique while
the other combines concatenmation with interleaving. The interleaving
of codes has been used in conjunction with burst error porteg;ion.
Concatenating two codes was introduced go that the advantages'oﬁ long
codes for additive error protection could be gained by a more economical
implementation, The extended subset codes constructed in Chapéer 4 can
also protect against large values of slip. So they will be compared
with the two approaches to be developed hers, However it will be shown
that these approaéhes are superior in performance.

The results to be presented are of a very general nature. They
may be coupled with any of the other codes contained in previous

chapters. Therefore the followlng definition is necessary.
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Pefinition 5.1

Let A denote z block code of length £ which can proteect against
the simultaneous cccurrence of e or less additive errovs and t or less

bits of slip in either direction. Denote the-M members of A by

M-1
(£ }isg-

Intefleaved Codes

In order to protect against burst'errors, one apﬁfba&h is to
interleave or interlace the components of several code words into 2
new order before transmitting them.' Then the receiver reorders the
components to reconstruct tﬁé original code words before any decoding
is performed, 7The intent of‘such a‘scheme is to véduce the sffects of
a burst of errors on each,c;&e word by Spéaading the errors over several
words. Similar logic can hé applied to the case of synchronization
drrors. Smaller values of slip may be allotted to each of several cods
words by interleaving them. If a code is used %ﬁich'éffers synchroni-
zation aud additive error protaction, then the overali performance of
this .code when it is interleaved always is increased.

One Tepresentation of the output of the encoder of the code is a

stream of f-dimensional vectors

vt\’f

fruaty

- ""?.,f‘. Q_f__. PR
S AT

w1 , Tem

Q"f

¢
-

,ﬁ- a_f‘.. R

..f.‘ ,cuo,é, T ye v d (5;1)
1 o -1 3

£
i m-1 jm 3223-3. =T

Instead'of‘sending this stream, it will be interleaved to order m.

This process is described by dépicting the interleaving of the n
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A-tuples, gj ,...,gj . First form the (mxf} array X which has these
o .

m-1
vectors 4s Tows.

£,
30

Iy = X=(x ) (5.2)
- ,J 0 S j S;m-l

£ 0<i<al
m=1

Now perform the interleaving by sending each column, of ¥ in succession

instead of each row. Hence the stream of elements is:

eesX x ceusX x vesX % -
0,071,010 Y0, 1,17 50,27

first columm second columm

‘-

..-,Ko,ﬂnl,...,x -l,zﬁl"..‘...-' (5.3)

last column

If there were no errors or slip, the receiver would reconstruct
the array X and then the decoder would extract the'ipﬁormation bits
from each row (a code word). However suppose that additive errors are
introduced and that there is a positive slip so. It is possible to
write 8,3

s, T {s-1) mtu, s >1, 0 gu <m (5.4}

The array Y formed at the receiver becomes:
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I %

£{s-1) + r

mJu’jm-h.l e

VFS"I), 4 r .3

b=14 201 e .

=Y .5

f,(s)‘ (5.5}
-Jo’:jm + ,Eo

f(s) + r

3p-12 dmriu-1 “u-1
L. d

The g~tuples account for the additive errors. If the slip Sq is

2]
negative, it may be written,

so=sm+u s <0, 0<u<n (5.6)

Then the array Y is:

| £ (s . + v
ujm-u Jou -}u-u
(s)
£ + r
jm—l :j -1 “m-1
_ =Y {5.7)
£ st'Hf) + T
MJO 2] -m -0
. : .
f(sﬂ) + T
_-—jm-u—}. 3 ~u-1 -m-u-
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The decoder operates on the rows of the array Y in either case.
If thexe ig no more than e additive errors occurring in every buwrst of
length £ or iless, then w(gi} <e for O < i <m-l in (5.5) or (5.7).
Moreover if the value of s {n (5.4) or (5.6) is such that |s| <t,
then each vow of Y is protected against either type of errer because of
the capabilities of the code, A, in Definition 5.1. Therefore the
interiecaved code has total protection ability of at most S bits in

either direction.
§ = m{t+ly-1 (5.8)

Thig general result may be swmarized in a theorem.
Iheorem 3.1

Suppose there is a block code of length § which provides security
from e or less additive errors and t or less bits of slip regardless
of direction. Then if this code is interleaved to order m, the resulg-
ing performance it protection against at most e additive errors and at
most S bits of slip independent of direction. & is given in (5.8},

It is possible to couple this general result employing interleaving
with any of the codes which bave been constructed in the three pre-
ceding chapters. Pirst consider all of the results concermed with a
symmetric s8lip range. The conclusion in every theorem and corollary
would state that there is a particular type of code which can protect
against (detect, detect and classify, or correct) the simulianeous
occurrence of at most e errovs and § bite of slip, However in the
iﬁypathesis of each thecrem or eovollary t 13 replaced by ([ggi] ul).
Note that ineveuszing the interleaving ovder m decresses the vaiua of the

symmetric slip range required by the hypothesis while the value of §
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in the conclugion re&ains unchanged, The net effect is to increase

the slip range without degrading the error performance. Two.examples
of coupling the interleaving technique with other approaches will be
given as corollaties to the theorem. Their proofs are obvious from
Thesrem 5.1 onece the other rasult from 2 previous chapter is identified,
The first one is based upon Theorem 2.3. '

Cozxollary 5.1

Any (n,k} eyclic code has a coset code which, when interleaved to
order m, can simuitanecusly correct ¢ or less additive errors and S or

less bits of slip if

Sy
e = min { ot 2 ’ 1] s [tﬁgij ~1] } {5.9)
m

Increasing the interleaving ovder increasas the error performance.
Since these are derived from coset codes, they will perform as normal
{u,k) cyclic codes whenever it can be determined that there is mo slip.
Another exemple is provided by considering Theorem 3.3 which deals
with subset codes. The symbols u and £{x} ave given in Definition 2.1,

forollary 5.3

For any (n,k} cyclic code it is possible to interleave to order
m an (n,k-2) block code which in the aggregate has the capability of
conjointly correctine e or less additive errors and 5 or less bits of

siip if

SH1
d-[2ZE
e = [ 2"‘ (5.10)

and

El-vsgq -1 (5.11)
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The inequality becomes an equality if and only if £(x) is a primitive
polvaomial.

The results which deal with the situation of an unsymmetric slip
range can also be extended by using interieaving. In any theorem or
corollary the conclusion would have t+ the positive slip range replaced
by 87 and £” the negative slip ravge replsced by § . But in the
hypothesis t$ is replaced by ([ﬁigz]-l), respectively. For example a
result from Chapter 4 on shortened codes, Corollary 4.5, can be coupled
with the interleaving approach.

Corollary 5.3

There is a block code, interleaved to order m, which has the
gorrection capabilities of at wost e additive errors and either at most
S+.bits of positive slip or at most § bits of negative slip. & suffi-
clent condition for this is the existence of an (n,k) cyelic code which

can correct e or less additive errors occurring in those places from

=N «
the [5 +1]st to the (n ([S +1] 1>)st inclusively and alsc can correct

either a burst in the first.q?immé] ) pogitions and 2 second one between

the ( [S +i] [S +i1“2)nd and the (ﬂ [S +1])th places oxr a burst

between the ([S +1] l)st place and the ([S %1] [S +1] l)st place and

a second buwrst in the last ([ 41] 1) positions. Let

t, = ([S +§] [S +l] 2) Then the length of the block code before the

¢ k-t twl

interleaving is n'’'= n-t,, and it has (g-1) ¢ members.

foncatenated fodes

The comcatenating of codes for error correction was introduced by
Forsey [35). One of the advantages of this approach is that the com-

plexity of the encoder and the decoder is reduced. Concatenation and
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interleaving will be combined to provide a2n Increase in slip and
additive errvor protection ranges while the complexity of the decoder
and encoder is not lnereased to the extent that it would be if inter-
leaving aloune were employed. This combination ean produce slip pro-
pection in execess of Qﬁgj bits where £ ig the length of & bloeck code
and-q is zn integer.

The bagic idea of concatenation is simple, Informatriod digits
fram.GF{ék) are ensoded and then each element of the code vector is
treated as a get of information digits from GF(g) and encoded again.
The net result is & long code word with components from .GF(q). The
decoding ig performed in two steps just as the encoding was done except,
of course, it is performed in reverse order. The code over GF(qk) is
knovm as the ocuter code while that over GF{g) iz the inner code, The
inner code will be interleaved ags developed in the previous section.
The outer code will be a coset code of a Reed-Solomon code, The simpler
cagse of gymmetzic slip will be treated fivgt. The results for unsym-
metric slip will be presented 2t the conclusion of this section.

The general principle of concatenated codes as will be used here
iz depicted in Figure 5.1. Additive errors end slip are introduced
by the immer chamnel. The outer channel is & convenient dichotomy for
deseribing the comcatenstion eoncept, Let ' = {gi}?:%, M= qu, be an
{B,K) Reed-Solomon code over GF(qk}. Thus N = qk#l and the minimum
. distance D = N-E+l. Purther let KQGF(QR) be a primitive Nth réot of

unity. HNow zny element a&cy(qk} may be written as: {{14] or section 13
[29 ]

Bo=x +xhot xz?-,z Fooot xk‘_i?f"l (5.12)
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Each xiQGF(q), So B may be equivalently represented over GF(q) as a k-

tuple:
B o= (xo, Tys Rysoees xk_l) (5.13)

Let § be the coset generator given by (2.66). From Chapter 2 it
i3 known that the coset code, {§i+c}§:§ is capable of protecting against
{detacting, detecting and classifying, and correcting) the simultanecus
securrence of at most E additive errors and at most T bits of slippage.
Each N-tuple of this coset code is comprised of alements from GF(qk)
~ which may be represented as z k-tuple over GF(g).

From Theorem 3.1 it is possible to obtain a special (n,ak) code by
t interleaving which has the capsbility of simultaneously protecting
-agaiﬁst e or lesg additive errors and § or less bits of slip where
g > E%], Now enceode a of the components of an N-tuple into an n-tuple
over GF{y}.%* The total code length through the inner channel is nN.
At the special decoder the sywmbols in the N-tuples are secure if e or
less additive ezrors have cccurred in each n-tuple through the inmer
channel. They could be misframed though because of the ambiguity
associated with élips which are integer wultipies of [%]. But the
outer code can protect against T or less bits of slip 1f the inmer
decoder hés not made move than E%] mistakes with the inmexr code. There-
fore the overall system is secure from U or less bits of glip in the
inner channel if the adéitive errors are such that move than e cceur

in a framed n~tuple in the inmer chamnel at most [%j times. The

%
The integer a iz the interlacing order for the concsatenated codes.
When a = 1, this is conventional concatenated coding.



Kng&%

Output

¢hg,K)
Coset
Encoder

Symbols
From GF{g")

(M, K)

Goset
Decoder

o T PO T

e {n, ok)

Special

Outer Channel

wq’ummmwmmmq&wmmmmmmmmaw—mmm‘-w—mmﬂ?

Encoder

Symbols
From GF{ g}

Special

(o akd ot

Decoder

it iy il ol Gulol dovetia dint Lryai BT RS Attt

FIGURE 5.1, TLLUSTRATION OF CONCATENATION.

Inner
Channel

T S LAY .

86



99

quantity ¥ iz given by:

U= +nll] (5.14)

Thekd are sumerous combinatioms of types of protection which are
poseible by udsing concatenated codes. The code for the imner cﬁanuel
is a result of Theovem 5.1, snd any code in the previous chapters can
be used with that theorem. The outer code is a cozet code of a Beed-
Solemon code to which a section of Chapter 2 is deveted. The results
in éﬁ&t gection concern detection, detection and clagsification, and
correction.

The extension of the results of this seccion to the case of'an
uasymnetrical slip range is presented. The overall positive sliﬁ pro-
tection range iz denoted as Uﬁ'while i reaﬁasents the neéaéEVe one.
Zecall that S*'an& 8" are the respective slip ranges of the inner coede
ag discussed in the previous section and that T* and T are the omes
for the outer code as given above Corollary 2.5. Thus the following
velationships-ave true.

& . 1
. g if 8§ <[2‘]
v={ .

s+ n[ﬁ-j if st > 21
T {5.15)

5 i£8 < t-"%j
Y= {

8" % n[%} 18 » 27

Gomparisons and Examples

One covbination of the possibié types of protection available from

concatenated cedes will be chosen as a basis for comparison with the
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other approaches. The outer and the inmer code will both be coset codes
capable of simultaneous correcticn of both additive errors amd slip in
a symmetyic vange. So if synchyronous opetat%Qn is quaranteed, the
uvatali code way operate with its full error-correciing capabilinias.
Furthermore the decision as to the mode of the code's operation is

made gt the decodar. It iz for these rvezsons that coset codes will be
considered in this section., Specifically the inmer code is an inter-
leaved code derived according to Theorem zlé, gnd the outer code con~
forme to the construction given in Theowem 2.5.

Since concatenzted codes way be viewed as long block codes over
the iosner channel, the guestion arises as to whether it might be
possible to acﬁigve better error snd slip performance by considering
ionger codes in the first place. There ave three other approaches with
which one could construct these longer self-gynchronizing codes. PRach
represents the most peweéful known technique of its type. They are
coset codes {Theovem 2.3}, subset codes (Theorem 3.3) and extended zub-
set codes (Theovem 4.5). It will he shown that concatenated codes aée
superior to esch of these whet congidered as wide-range self-synchroniz-
ing codes, Consequently it will be seen that .interleaved codes are
alsa superior.

In order to provide a basis for comparison of these approaches it
will be assumed that the lengths andrrates of each, congidered as a
code over GF{q), are equél and that the alip correction ranges, again
over GF{q), are also equal. The performance criterion.for compééison
will be the error-corvecting chpabilities as the slip correction range,

U, imcreases. PFor the concatenated approsch the maximum aumber of
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coxrectablie additive ervovs over GF({gq} (in the inner channel} is under=~
bound by max {B,E~j} It follows from the two theorems (Theorems 2.4

and 2.5) on which these codes were based that this quantity is:

maxfe, (2]} =

m{mm( [&-2?: -3 ]'ant:-ZJ ). [’“i“( [N zm—z] [N-Kaﬂ“i] )] }

PLT 7Y
{(5.18)

The dependence between U, t and T is obiained from (5.8) and (5.14)

end i3 given by:
T = m(eH) - 1+ afE] C{5.17)

Note that there iz an extra degree of freedom in the choice of U in the
form of the interleaving order, m. Thus it is possible to increase U
without altering the lcwer bound given in (5.18).

. To use the coset approach on a code of equal length and rate
reqﬁirea the existence ¢f a cyclic {(nN,akE) code. Just for the sake
of argument, the required existence will be assumed. The minimum
distance of this cyelic code is at most (nN-akR+1) [26]. 8o from
Theorem 2.3 lts ervou-correcting capasbility iz st most the following

expression:

'miu{ [(pﬁkazfl}nﬁuzj , [nH—U 1] } '€5=13)

U+l

Thig¢ 18 strictly monotone decreasing in U, znd thus the concatenated
approach has guperior error performance as U increases and all other

factors remain identical.
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Por the subsel ecodes of Theorem 3.3 to have the sams rate and
length ag the concatenated codes, there must be a cyeclic code over
GF{q} of lengih n¥ and information content of ‘at least kK%iagq(Uéﬂ}.
Assumz such a cyelic code exists, Ysing 2 bound due to Singleton [26],
the minimm distance of this code is at most {nﬂ-ékﬁ+1agq(v%2})+&}.

8o From (3.14) the nmumber of covrectable additive exrors is &t most:

nNHCkK+1oga(U%2})%iuUﬂ1
e

5 (5.19)

Since this overbound of the true error performance of subsek codes is
strictly decreasing in the corxrecteble slip U, the superiority of
coneatenated codes Ig established.

The cyclic extension of subset codes is 3 technique which has
unlimited alip correction capabilities. Again assume that the proper
cyclic code exists. Referring to Theorem 4.5 it is seen that its length
must be (nR-2U05 whiie‘the information content mmist be at ieasé
kRﬁiogq{ﬁ«nﬁ[ﬁ%}%Q}. Beploying the same bound on the minfmum distance

as gbove, the errer performance given by (£.26) is a2t most:

(nli~20- (ko (U 12 )41
‘ )

(5.20)

Again‘as U incresses (5.20) always decresases and is exceeded by (5.18);
so the concatenated approach to wideerange self-synchronizing codes
has better performance than its most powerful competiters,

The veraitility snd capgbilities of this approach will be demon-
strated by several exomples which arz presented in Table 5.1, They

result from concatenating coset codeg derived from Reed-Solomon codes
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over éF{Zk) with intérleaved coset codes devived from binary cyclic
codes. In all cases both the imner and the ocuter code ls designed

for the simultaneous ccrrecgian‘of both types of exrors. 'Some of the
examples used in Table 2.1 2nd Table 2.2 are concatenated to produce

the examples given ia Table 5.1. Hence there are three possible choices
of inner‘;o&e additive error performance and thyee for the outer code
for the same value of overall slip correction range. Since the
information content, K, of the outer code does not divide its length,

N, in these examples, then the outer channel's error performance using
the technique of Theorem 2.8 iz fized for any slip range in the outer

channel of less than [%3.
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Table 5.1, Performance Capsbilities of Several Concatenated Codes

Parameters of Inter-  Maxinem Nuwmber of HMoximm Numher of Overall

Outer TImmer leaving Additive Ervors Additive Brrors S1ip
Code Code  Order Coryectable by the Correctable by the Correc-

over,  over for Inner Decoder Ysing Outer Decoder Using tiom

G¥(2™) ¢Gr(2) Imer the Technique of the Technigue of Range

Gode
Thm., Thm., Cor. Thm. Thm. Cor.
ck (ELKY (n,ak) m 2.3 2.4 2.1 2.8 2.5 2.3 g

3 (7,2 (31,6} 8 3 2 1 1 * *® 46

) 2 1 s L4 1 % * 50

(63,18} 18 & 4 & L ® * 31

& 3 1 % 1 * % 31

(127,15} 32 i3 12 11 1 # % 63

8 11 6 2 1 *® * 71

4 5 2 * 1 % * 83

z 1 * % 1 % %, 99

4 (15,4) (63,36) 16 2 1 0 3 4 3 31

6 1 % * 3 & 3 35

{(63,24) 16 3 2 1 3 4 3 31

7 2 1 * 3 * * 57

{127,8}y & 13 6 2 3 3 2 198

8 13 6 2 3 1 * 325

8 13 6 2 3 * w® 452

4 (15,2) (63,36) 16 Z 1 G 5 5 4 31

6 1 % * 5 5 & 35

{127,8) 11 14 10 7 5 5 & 65

11 14 16 7 5 & 3 192

5 8 3 #* 5 ® ® 456

5 (31,10){15,5} 8 i 0 v 5 6 5 45

8 1 0 * 5 4 1 105

, 8 1 0 ¥ 5 * 3 240

(45,5 12 4 & 3 5 & 5 113

3 3 1 % 5 4 i 293

3 3 1 % 5 * * 698

2 i % ® 5 % % 706

5 (31,10)(63,10) 15 6 5 & 5 & 5 o4

1 & Z %* 5 3 1 224

& & Z % 5 # * 476

2 1 ® # 5 * % 484

(127,50} 32 6 5 & 5 5 2 63

i6 5 4 2 5 * % i90

{127,153 32 £3 12 1L 5 & i 317

131 12 16 7 5 & 1 319
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Teble 5.1, {(Continued)
Thm. Thm. Cor. Thm. Thm. for.

k {N,R} (m,ak) m 2.3 2.4 . 2,1 2.8 2.5 2.3 U
&6 {63,16){31,63 8 3 2 i 15 15 i1 263
& 2 1 % is i1 5 387

b4 L * L iz i L 484

(63,24 15 3 2 1 15 i1 5 220

7 2 1 * 15 7 * 286

& i w & 15 * *® 480

{127,356} 11 6 4 i i5 13 5 319

4 3 ® % i5 % * 706

& (63,8) {31.6) 8 3 2 1 23 17 iz 325
4 2 3 L 23 7 & 635

2 i # ® 23 % % 980

(63,18} 16 & 4 & 23 12 4 346

& 3 1 % 23 12 &. 346

2 1 ¥ % 23 # s 661

{127,78) 32 3 2 1 23 12 4 190

is b4 L L3 23 * # 317

{127,358} 11 & 4 1 23 12 % 3i9

4 3 % w 23 % * 706

7 €127,313(63,75 1% 7 6 5 32 33 3z 157
6 6 & 1 32 27 17 1295

3 % 1 * 32 7 & 2555

2 z % L 3z * & 4010

8 {255,355{31,16) 8 i o * a2 93 82 46
8 i 0 * a2 g * 1565

(63,24) 16 3 2 i 92 79 64 661

7 2 1 & a2 49 ig 1294

& i w #* 92 * ® 2685

{127.64) 16 & 3 i 92 93 B& 180

11 3 2z * 92 59 34 827

5 7 % & g3 29 & 13431

& i ® & a2 g & 1587

{127,8) 11 % 10 7 92 a2 88 1335

& i3 & 2 52 79 64~ 3881

5 8 3 ® 92 48 19 7689

3 & 1 % a9z 28 % 10234

2 1 & & 92 * #* 16244
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CHAPTER 6
SUMBARY

The results given in this work have been presented in a2 very general
context because no particular system's model has been assumed. The
codes which have been developed have the capability of protecting
against the simultancous cccurrence of a&ditive errors and of the loss
of §aaitions from true synchronization in & given divection (bit
siippage}. The results are given a; the maximum number of each which
may be ﬁratected. This work has dealt exclusively with the modification
of cyclic codes with charscters from a general finite field, GF(q), This
type of code haa been used because of its added algebraic structure and
easy implementation.

There are a number of ways in which a given error-proteéting code
may be mo&ified g0 as to endow it with sync-protecting capabilities.
However each method extracts a price in the form of a degradation in
certain aspects of the original code's performance. The vgriéus methods
ave classified according to the parameters of the code that are altered,
and the results here are presented along this type of outline. The
advantages of one mathod in one get cfﬂcircumstsnces may be digadvantages
in another set. fTherefore a complete and comprehensive coverage of all
methods is given. Besults concerming the detectioﬁ of additive errors
and slippage, the deteetion and.the classification of the nature of the

error, and the correction of both types of errors are exhibited for each
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modification approach. The situations of symmetrical and unsymmetrical
glip ranges are alsc considered.,

The design and construction of these modified codes is performed
from the viewpoint of minimm distance decoding. Therefore the proofs
of all the results are not simply existence proofs but offer the general
strategy for decading such codas,

One strategy which is used to obtain new énd superior correction
results Is an iterative ome, If a2 veceived vector is within a pre-
scribed spheré around any modified code menmbex, that member is the
optimum choice for the recelved one in the sense of & minimm distance
eviterion. However 1f the reecaived vector is within z concentric shell
sbout the prescribed sphere, then the decoder must reframe and cheeck to
determine if this yields a vector within some other sphere. This
strategy is analogous to the correlation of synchronization sequences
except in the case zbove 2 decrease in the distance is sought instead
of an increzse in the correlation value.

Joint and triple estimation schemes zare also employed to obtain new
results. The joint estimator iz a less complex version of the triple
one, and so the results in the joint case are not as powerful.

T@e technique of employing a coset of the original code allscates
part of the error-protecting power of a code to synchranizatgon protec~
tion, The construction of coset codes imvolves the proper choice of a
coset generator - the fixed vector which is added to %11 code members.
The length and rate of the original code are not changed. This approach
has a very important advantage. Whenever synchrenous operation is main-

tained, the code may operate with its full error-protecting capsbilities.
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The decision as to thé mode of the code's operation is made at the

decoder which is an appealing prospect for ome-way commmication systems.
New vesults for all types of protection are given for the coset codes of
general cyclic codes. Even though Reed-Solomon codes fit this category,
stronger results than those which could be obtained gbove are presented
for this special case; There are three theorems dealing with Reed-Solomon
codes which permit protection from slips of half the code's iength in
either divection. One theorem deals with detecticn of both tyges of
errors, one with detection and claggifiestion, and one with correction.

Subset codes ave derived from cyclic codes by removing certain
vectors before any other modification is spplied. The purpose of thesge
deletions is to eliminate some of the vectors which are cyclic shifts of
a subset of the original code. Since synchronization logs appesrs as &
ghift or glip, the effect of this modification is to produce a subset
code which is less sensitive to slippage. The rate of the subset codes
is less than that of the original code. However the protection ranges
for both additive errors and slip are much better than that which is
poszible by using coset codes.

Two approaches to subset codes are demonstrated. The first combines
expurgating or vemoving members with the use of a coset generator. The
second inbeds a fixed pattern in the information digits of the code.

In either case the initial step in the decoding strategy is the same.

It treats the received vectors as if only additive errors have perturbed
them. The remusining steps in the strategy separate the type of error if
more than detection of some kind of error is being considexe#. The work

in this chapter repregents the most comprehensive treatment of subset
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codes known.

The concept of lengthening a sequence of information digits by
inserting check digits is the basis of additive error-protecting codes.
"It has a counterpart when protection from less of synchronization is
desired. Extending the length of a cyclic code always allows the decoder
to frame a portion of only ome word. Ancther approach is to shorten
the code at the encoder. Since the added length is zppended at the
decoder, a portion of an adjacent word is located in the body of the
code vector and not at either end.

None of the methods employing length alterations use it exelusively,
it is aiéays used in comjunction with some other modificstion, e.g.,
lengthening a coset code. -The additive error and slip protection
parformance of length altered ecodes is better than that of coset codes,
but in general neither these codes nor subaodes exhibits a universal
superiority over the other., Length altering a code diminishes its rate.
When these codes are operating synchronously, the additive errox
performence is lower than that of the parent ceodes from which they were
derived. The decoding strategies for length altered codes have a common
feature. The original Ilength of the code is recovered at the decoder
by adding or deleting digits depending upon the nature of the length
alteration. The remaining steps are based upon the structure of the
parant code.

There have been very few xesults previously presented on length
altered cadgs. The work here shows Improvements on these scattered
results and intvoduces new results so as to complete and consolidate all

agpects of this area. Results concerning shortened codes are developed,
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subgset codes are lengthened to give another approach, and coset codes
are extended to produce a new modification scheme., This last approach
offers a compromise between the reduction of rate which is inherent-in
extended subset codes and the reduction in additive error and siip
protection capsbilities in coset codes., There is a moderation in the
loss of each of these performance crlteris.

The extended subset codes have capsbilities of wide~range slip
protection. Two other approaches for achieving this are presented,

One uses an interieaving technique while the other combines concatena-
tion with interleaving. With either construction, slip protection ranges
of up to half of the code's length ave possibie‘ The interleaving
approach as introduced here is & method which may be coupled with any
other technique contained in this work for protection from additive ervors
and slippage. The net effect is to greatlyfexpand the slip ﬁrbtection
range capabilities of the other technique., Interleaving allows smaller
values of slippage to be apread over several code words rather than the
total amount effecting each and every word.

Goncatenation and interleaving are combired to provide an increase
in the’slip protection range. This is accomplished without increasing
the complexity of,the encoder and decoder to the extent te which they
would be if interleaving alone were ugsed. It is ghown that for wide
range slip protection the errvor nerformance of either comstruction is

superior to any other know zpproach.
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general finite field are modified so that they zre also canablie of protecting against
misframing at the decoder, These codes are modified by alterins their distance ’
structure, There are a number of techniques which can be employed. Hach method
affects differant aspects of the code's performance: therefore a complete and comnre-
hensive coverage of all techniques-is given,

Results for each wmodification approach ave given for three types of protection
from the simultancous occurrence of additive errors and svnchronization errors, The
first type is the detecticn of some kind of error, the second is the detection and
clagsification of the mature of the ervor, and the third is the correction of both
kinds of errows. Furthermore for each approach tesults are presented for the cases
of symmetrical and unsymmetrical ranges of gynchronization errvors. The proofs of all
results indicate the general strategy for decoding the modified code,

A coset of the original code allocates part of its ervor—protecting capabilities
to synchronization. Results are given for the general class of cyclic codes.
Stronger conclusions are possible when the special case of Reed-Solomon codes is
considered. In this case protection from slips of half the code's length in elther
direction are permitted,

A subs i i
et code is derived from a code by removing cextain of its vectors so as to
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produce a code with fewer members wiich are less sensitive to misframing. Tve
approaches to subset codes are demonstrated, (ne 18 a coset code of an expurga-—
ted code while the other is a code with a fixed pattern imbedded in the infor-
mation digits.

Changing che length of a code vhen combined with other technicues is anothe
modification approacih. The vork here improves on the few knovn results and i
introduces nany nev ones so as to complete and consolidate all aspects of this
type of approach. Results concerning shortened codes are developed, subset
codes are extended to yleld another modification apnroach, and coset codes szre
lengthened to produce & new scheme.

Two approaches for achieving wide-range slip protection are nresented. One
uses interleaving vhile the other combines interleaving with concatenation,
ith either technique slip protection ranges of ualf the code's length are
possible, The interleaving technique mav be counled wvith any other apprnach
giving the net effect of greatly expanding the slip protection range of that
approach, Combining concatenation and interleaving accommlishes the same result
wvitlhiout imcreasing the complexity of the encoder and decoder to the extent to
which they would be if only interieaving vere used, It is shown that for wide-
range slip protection the error—protecting performance of elther anproach is
superior to any other known approach.



