General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
RELATIVE MOTION OF TWO PARTICLES IN ELLIPTIC ORBITS

E. R. LANCASTER

APRIL 1970

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND
RELATIVE MOTION OF TWO PARTICLES
IN ELLIPTIC ORBITS

E. R. Lancaster

April 1970

Goddard Space Flight Center
Greenbelt, Maryland
CONTENTS

NOMENCLATURE .. 1
SOLUTION ... 2
SUMMARY .. 8
NUMERICAL EXAMPLE 9
REFERENCES .. 10
RELATIVE MOTION OF TWO PARTICLES
IN ELLIPTIC ORBITS

E. R. Lancaster*
Goddard Space Flight Center
Greenbelt, Maryland

NOMENCLATURE

\(\vec{r} = \) position vector at time \(t \), \(r = |\vec{r}| \)

\(\vec{v} = \) velocity vector at time \(t \), \(v = |\vec{v}| \)

\(E = \) true anomaly at time \(t \)

\(a = \) semimajor axis, \(b = 1/a, c = a^{1/2} \)

\(k^2 = \mu = \) gravitational constant

\(\vec{r} \cdot \vec{v} = \) scalar product of \(\vec{r} \) and \(\vec{v} \)

Over the past decade a number of papers\(^{1-6}\) have presented approximate solutions to the problem of the relative motion of two particles in elliptic orbits in an inverse-square central force field. These papers have assumed that the relative position and velocity vectors are quite small compared to the position and velocity vectors of the particles, and several have further assumed one of the particles to be in a circular\(^{1,2}\) or nearly circular\(^{3,4}\) orbit. We derive below an exact solution to this problem, subject to no restrictions. The results

* Aerospace Engineer
have applications to problems of rendezvous, nonlinear error analysis, station keeping, targeting, surveillance, and satellite clustering.

SOLUTION

Kepler's equation for elliptic motion and the updating equations for position and velocity can be written in the form:\(^7\)

\[T = C + A (1 - \cos C) - B \sin C \] \hspace{1cm} (1)

\[\vec{r} = \left[1 - H (1 - \cos C) \right] \vec{r}_0 + \left[D (1 - \cos C) + N \sin C \right] \vec{v}_0 \] \hspace{1cm} (2)

\[\vec{v} = - (P \sin C) \vec{r}_0 + \left[1 - S (1 - \cos C) \right] \vec{v}_0 \] \hspace{1cm} (3)

where

\[A = \frac{\vec{r}_0 \cdot \vec{v}_0}{k c}, \quad B = 1 - r_0 b, \quad T = k t b/c \]

\[H = \frac{a}{r_0}, \quad D = \frac{(\vec{r}_0 \cdot \vec{r}_0)}{\mu}, \quad N = r_0 c/k \]

\[P = \frac{k c}{r r_0}, \quad S = \frac{a}{r}, \quad C = E - E_0 \]

and a zero subscript indicates the value at time 0.

Let subscript 1 on a symbol designate the value of that symbol for particle 1 in orbit 1 and subscript 2 the value for particle 2 in orbit 2. We define
\[\gamma = C_2 - C_1, \quad \bar{\varepsilon} = \bar{r}_2 - \bar{r}_1, \quad \bar{\lambda} = \bar{v}_2 - \bar{v}_1 \]

\[\tau = T_2 - T_1, \quad \alpha = A_2 - A_1, \quad \beta = B_2 - B_1, \quad \eta = H_2 - H_1 \]

\[\delta = D_2 - D_1, \quad \nu = N_2 - N_1, \quad \rho = P_2 - P_1, \quad \sigma = S_2 - S_1 \]

If we place a subscript 1 on all symbols in (1), (2), and (3) and subtract the resulting equations from the set with subscripts 2 on all symbols, we obtain

\[T' = \gamma + \alpha' (1 - \cos \gamma) - B' \sin \gamma \quad (4) \]

\[\bar{\varepsilon} = (1 - H_1 F) \bar{\varepsilon}_0 + (D_1 F + N_1 G) \bar{\lambda}_0 \]

\[- (H_2 Q + \eta F) \bar{r}_{20} + (D_2 Q + \delta F + N_2 R + \nu G) \bar{v}_{20} \quad (5) \]

\[\bar{\lambda} = -P_1 G \bar{\varepsilon}_0 + (1 - S_1 F) \bar{\lambda}_0 \]

\[- (P_2 R + \rho G) \bar{r}_{20} - (S_2 Q + \sigma F) \bar{v}_{20} \quad (6) \]

where we have defined

\[F = 1 - \cos C_1, \quad G = \sin C_1 \quad (7) \]

\[T' = \tau + \beta G - \alpha F \quad (8) \]
\[A' = A_2 \cos C_1 + B_2 \sin C_1 \] \hspace{1cm} (9)

\[B' = B_2 \cos C_1 - A_2 \sin C_1 \] \hspace{1cm} (10)

\[Q = \cos C_1 (1 - \cos \gamma) + \sin C_1 \sin \gamma \] \hspace{1cm} (11)

\[R = \cos C_1 \sin \gamma - \sin C_1 (1 - \cos \gamma) \] \hspace{1cm} (12)

To obtain equations for \(a, \beta, \tau, \eta, \delta, \nu, \rho, \) and \(\sigma \) which do not suffer a loss of significant digits due to the subtraction of nearly equal numbers, we proceed as follows.

\[k \cdot c \cdot A = \vec{r}_0 \cdot \vec{v}_0 \]

\[k (c_2 A_2 - c_1 A_1) = \vec{r}_{20} \cdot \vec{v}_{20} - \vec{r}_{10} \cdot \vec{v}_{10} \]

\[k \left[c_2 (A_2 - A_1) + A_1 (c_2 - c_1) \right] = \vec{r}_{20} \cdot \vec{v}_{20} - \vec{r}_{10} \cdot \vec{v}_{10} \]

The last equation can be solved for \(a \). Equations for the other quantities can be obtained in a similar manner. The full set follows.

\[k c_2 a = \vec{r}_{20} \cdot \vec{v}_{20} - \vec{r}_{10} \cdot \vec{v}_{10} - k A_1 (c_2 - c_1) \] \hspace{1cm} (13)

\[\beta = r_{10} (b_1 - b_2) - b_2 (r_{20} - r_{10}) \] \hspace{1cm} (14)
\[c_2 \tau = -k \ t \ (b_1 - b_2) - T_1 \ (c_2 - c_1) \] (15)

\[r_{10} \eta = a_2 - a_1 - H_2 \ (r_{20} - r_{10}) \] (16)

\[\mu \delta = a_2 \ (r_{20} \cdot \vec{v}_{20} - r_{10} \cdot \vec{v}_{10}) + (a_2 - a_1) \ r_{10} \cdot \vec{v}_{10} \] (17)

\[k \nu = c_2 \ (r_{20} - r_{10}) + r_{10} \ (c_2 - c_1) \] (18)

\[r_{10} \ r_1 \rho = k \ (c_2 - c_1) - \mathcal{P}_2 \ [r_2 \ (r_{20} - r_{10}) + r_{10} \ (r_2 - r_1)] \] (19)

\[r_1 \sigma = a_2 - a_1 - S_2 \ (r_2 - r_1) \] (20)

\[r_{20} \cdot \vec{v}_{20} - r_{10} \cdot \vec{v}_{10} = \vec{v}_{10} \cdot \hat{r}_{10} + \vec{v}_{20} \cdot \hat{r}_{20} \] (21)

\[r_{20} - r_{10} = \vec{r}_0 \cdot (\hat{r}_{10} + \vec{r}_{20}) / (r_{10} + r_{20}) \] (22)

\[r_2 - r_1 = \vec{z} \cdot (\hat{r}_{10} + \vec{r}_{20}) / (r_1 + r_2) \] (23)

\[c_2 - c_1 = (a_2 - a_1) / (c_1 + c_2) \] (24)

\[a_2 - a_1 = a_1 \ a_2 \ (b_1 - b_2) \] (25)

\[b_1 - b_2 = 2 \ (r_{20} - r_{10}) / r_{10} \ r_{20} + \lambda_0 \cdot (\vec{v}_{10} + \vec{v}_{20}) / \mu \] (26)
In the derivation of (26) use was made of

\[b = \frac{2}{r} - \frac{v^2}{\mu}. \]

(27)

SUMMARY

Given \(\vec{r}_{10}, \vec{v}_{10}, \vec{v}_0, \vec{\lambda}_0 \) at time 0, the steps for finding \(\vec{v} \) and \(\vec{\lambda} \) at time t follow.

1. Compute \(\vec{r}_{20} = \vec{r}_{10} + \vec{r}_0, \ \vec{v}_{20} = \vec{v}_{10} + \vec{\lambda}_0, \ r_{10} = (\vec{r}_{10} \cdot \vec{r}_{10})^{1/2}, \ \vec{v}_{10} = \vec{v}_{10} \cdot \vec{v}_{10}. \)

2. Compute \(A_1, B_1, T_1, H_1, D_1, N_1 \) (equations after (3)), \(a_1 \) and \(b_1 \) from (27).

3. Solve Kepler's equation (1) for \(C_1 \). If \(C_1 \) is given rather than \(t \), (1) is used to compute \(T_1 \).

4. Compute \(\vec{r}_1 \) from (2) and \(r_1 = (\vec{r}_1 \cdot \vec{r}_1)^{1/2} \).

5. Compute \(P_1, S_1, A_2, B_2, H_2, D_2, N_2 \) (equations after (3)), \(a_2 \) and \(b_2 \) from (27).

6. Compute in order \(\vec{r}_{20} \cdot \vec{v}_{20} - \vec{r}_{10} \cdot \vec{v}_{10}, \ r_{20} - r_{10}, b_1 - b_2, a_2 - a_1, \ c_2 - c_1 \) from (21), (22), (26), (25), (24).

7. Compute \(a, \beta, \tau, \eta, \delta, \nu \) from (13), (14), (15), (16), (17), (18).

8. Compute \(F, G, T', A', B' \) from (7), (8), (9), (10).

9. Solve (4) for \(\gamma \).

10. Compute \(Q \) and \(R \) from (11) and (12).

11. Compute \(\vec{v} \) from (5).

12. Compute \(\vec{r}_2 = \vec{r}_1 + \vec{v}, \ r_2 = (\vec{r}_2 \cdot \vec{r}_2)^{1/2} \).
13. Compute P_z and S_2 (equations after (3)).

14. Compute ρ and σ from (23), (19), (20).

15. Compute λ from (6).

Since γ will usually be small, $1 - \cos \gamma$ should be replaced by $2 \sin^2 (\gamma/2)$ for computational purposes.

NUMERICAL EXAMPLE

We assume the two particles to be in coplanar circular orbits with units chosen such that $a_1^3 = \mu$. The initial conditions are

$$x_{10} = 1, \quad y_{10} = 0, \quad x_{10}' = 0, \quad y_{10}' = 1$$

$$\epsilon_{x_0} = 0.001, \quad \epsilon_{y_0} = 0, \quad \lambda_{x_0} = 0, \quad \lambda_{y_0} = -0.004996253122$$

If we let $t = \pi / 4$, solve for \vec{r}_1, \vec{r}_2, \vec{v}_1, \vec{v}_2 at time t and compute \vec{e} and $\vec{\lambda}$ from the differences $\vec{r}_2 - \vec{r}_1$ and $\vec{v}_2 - \vec{v}_1$, we obtain

$$\epsilon_x = 0.0015394491, \quad \epsilon_y = -0.001262154,$$

$$\lambda_x = 0.0011853623, \quad \lambda_y = 0.004778069.$$
\[\varepsilon_x = .001539449086, \quad \varepsilon_y = -.0001262154558, \]
\[\lambda_x = .001185362260, \quad \lambda_y = .0004778069038. \]

A ten-digit calculator was used for these calculations.

REFERENCES

