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A STUDY OF HIGH PERFORMANCE ANTENNA SYSTEMS
FOR DEEP SPACE COMMUNICATION

I. INTRODUCTION

The objective of this program is to study the most recently de-
fined parameters for a high data rate of communication system which
can operate between an earth station and a vehicle in space over great
distances. An effort will be made to describe and delineate the char-
acteristics of radiating subsystems and their internal sub-divisions
which can satisfy the requisite performance criteria for an S-band sys-
tem. Considerations will be given to the advance technology concerned
with the ground based antenna, and where pertinent, to the spacecraft
antenna as well, An effort will be made to determine the feasible
design approaches for the ground antennas and its component parts.
Appropriate design criteria will be investigated analytically, and
where possible a comparison will be made with empirically determined
resu]ts in an effort to define areas of research and development which

gd 1ong term attention, The data rates of long term jnterest are
to 107 bits/second for a Mars mission and 10% to 100 bits/second
for a Jupiter mission.

The ground-based antennas are discussed in this program as com-
ponents of a link designed to fulfill the specific function of providing
uninterrupted communication from a spacecraft to the earth at planetary
distances. For obvious reasons, the most attention is given the down 1link
aspects using a carrier frequency of 2.3 GHz, since a frequency in this
region has advantages for an all-weather ground station and is presently
in use in the NASA Deep Space Instrumentation Facility., It is assumed
also that future mission plans will require information rates of the order
of 104 to 107 bits/second with a given probability of error, 10-2 to 10-5,
These parameters imply a specific system performance in terms of bandwidth
and signal-to-noise ratio. When the characteristics of the available
transmitter and receiver are evaluated or assumed, the required per-
formance characteristics of the overall radiating system are determined
either directly or by implication, The overall radiating system is taken
to include the combination of the spacecraft and the ground or relay
station antenna equipment in their inevitable environment. Thus, for
this study, certain gain and aperture requirements will be assumed
nominal as parameters to satisfy a variety of space missions.

There are two general areas of concern that must be investigated
relative to the ground-based receiving system which of necessity must
be large compared to wavelength to achieve the desired performance char-
acteristics., The first involves questions about the received signal to
noise level or the gain that must be provided to handle it. Considerations
must be given to methods by which it may be enhanced, and the limitations
that may be encountered during the various phases of a mission, The
second area embraces questions about the contributions made to the noise
of the communications 1ink, the manner in which these are introduced, and




methods by which they may be minimized. These questions are, of course,
interrelated, and the limitations encountered are intensely practical
and economic, as well as theoretical. For this study, emphasis will
be given to the first area and when necessary, results of other investi-
gations into the questions involved in the second area will be used.

The requirement of a minimum signal to noise level forces the sum
of the gains of the space and ground antennas to be of some value that
can be specifically determined for a particular mission. It is im-
portant to be able to allocate the antenna gains at each end of the 1ink
according to reasonable expectations concerning the practical designs
and performance characteristics that can be accomplished in the next ten
to fifteen years. An optimum allocation of these gains is difficult al-
though some progress has been made along these lines, For this study
nominal values shall be used as parameters in an effort to establish
quantitative relationships between pertinent dimensions and techniques.
It has been shown that at 2.3 GHz, dimensions on the order of 600 to
1000 ft or more are probably realistic aperture sizes to consider for
the high data rates and low error probabilities listed above. Using
the plans of the communication link characteristics for the 1971
Voyager Mission at 1AU as a basis for comparison, the sum of the gains
on future missions can be estimated to be about 100 dB to achieve a
data rate of 106 bits/second or a 20 dB increase over the gains
specified in the Voyager link for which a spacecraft transmitter of
50 watts has been postulated. If the spacecraft antenna is postulated
to be capable of 30-40 dB of gain using a transmitter with 50-100 watts
of power, then the ground based receiving system must be studied for
the following range of parameters:

Antenna Gain -- 60 to 80 dB
Data Rate -- 104 to 107 bits/second
Error Probability -- 102 to 10-5

Final results will be given for this entire range of parameters although
nominal values will be used to illustrate and expedite the discussion of
various techniques during the intermediate phase of this program,

Because of the significance of the noise level in determining the
overall gain requirement, many studies have been directed to a con-
sideration of the noise that competes with the signal and is collected
and introduced at the ground end of the down 1ink. The convention of
treating the noise as resulting from an equivalent antenna temperature
has followed in this program. Since the noise level is highest wher
the antenna beam is directed at or near a noise source, attention is
being paid to techniques which can be used to mitigate these deleterious
effects in certain special mission circumstances.
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The characteristics of high gain techniques, either electrical or
mechanical, form essential parts of tradeoffs in system accuracy,
relfabiiity, and cost. Of course practical compromises must be made
for certain aspects of a particular mission. These compromises will
depend on the techniques available for directing or steering the re-
ceiving beam on the ground as compared with those for controlling the
vehicle attitude. Three types of steering mechanisms are possible
for spacecraft antenna systems: mechanical (as for large appendage
antennas); electromechanical; and electronic or inertialess. Elec-
tronic techniques offer the greatest versatility with regard to
communications between a vehicle in space and earth. These are two
generic types: those that require external controls to phase the
elements properly and those that are self-steering., The externally
controlled systems, such as the conventional phase array, need an
external sensor (IR, RF, or ground station) to point the beam, and a
computer, a phasing network, and an attitude sensing device to point
the beam appropriately. In the self-steering system, however, attitude
information is presented to the antenna system by a pilot beam from a
ground station, and electronic circuitry senses the phase of incoming
pilot siynals to position a beam in the direction of these pilot signals,
Multiple beam systems may be accommodated by the use of diplexers and
multiple electronic channels, Each of these spacecraft systems is being
worked on by various research and development groups throughout the country
and abroad. Appropriate results of these efforts will be used to achieve
stated objectives of this program,

II. PROGRAM DESCRIPTION

As has been discussed in earlier reports on this program, there are
basically two fundamental kinds of antenna systems that can be used in
applications requiring large apertures. The first is a large mechanically
steerable paraboloidal reflector or a number of smaller reflectors of this
type which are connected and fed as an array and mechanically steered as
individual radiators. The second is a phased array with stationary or
fixed apertures composed of subapertures whose relative phasing controls
the direction of the antenna beam. Thus, this program considers the
various aspects and organizations of the following generic types of large
ground based antenna systems:

A. A SINGLE LARGE APERTURE -- mechanically steerable,

A system of this type will be discussed in this study only to
provide a basis for the comparison of performance characteristics
with the other systems listed below. Technical descriptions and
data appropriate to this portion of the program have been obtained
from several organizations not directly involved in this study.




B. AN ARRAY OF LARGE DISHES -- each of which is mechanically
steerable.

The appropriate organization of a system of this type is
considered herein with respect to the element spacing and their
interaction.

C. A PHASED ARRAY OF SMALL CLOSELY SPACED ELEMENTS ORGANIZED
INTO SUBAPERTURES -- electronically steerable.

Most of the effort in this program will be concerned with
the various organizations, the feeding techniques, and the elements
appropriate to this type of system.

D. A SELF-STEERING ARRAY -- rapidly switched multiple beams or
adaptive systems. ,

Systems of this type can be used to mitigate the effects of
high intensity noise sources and employed in conjunction with the
system of type C to accomplish optimum mission performance. The
feasibility of application of these techniques for a high data
rate communication system is being investigated during the course
of this program.

Consideration is being given to the capabilities and limitations of each
of the above types during the course of this study and a report made in
the above 1listéd categories.

Although some of the results and information described herein were
obtained in one research or industrial institution and some in anothcr,
this report, as have previous reports, will be written with the idea of
integrating the results of various research efforts and techniques.
Results of this investigation will be described in such a way as to
implement the objectives of the program without regard to the actual
source of the material. It will be the purpose of this report to glean
as much pertinent material as possible and to organize it into a form
which permits a quantitative comparison of the various high performance
antenna systems. The outcome of this study will be a series of recom-
mendations to NASA/ERC concerning the pacing technology which needs long
term research and development. Appropriate design approaches and per-
formance criteria will be suggested, primarily as they pertain to the
ground based antenna subsystems and the subsysteims on the space vehicle
in an effort to optimize the overall performance characteristics of the
down 1ink (toward the earth) portion of the communication channel.

This program has been active for the past thirty months as a
cooperative effort between the personnel of the Center for Research
QCRES) at the University of Kansas, and the ElectroScience Laboratory

ESL) at The Ohio State University. It has uncovered a number of
technical details that need further consideration and invention. More
recent fundamental data now becoming available indicate that the per-
formance characteristics and production costs of low. loss transmission
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1ines, radiating elements, and other subsystem components are not yet

to a level comparable with a reasonable system. This information has
been assessed in terms of these relationships since they are the primary
factors which govern the establishment of criteria for a large scale
antenna design. Further studies of the kind described herein are needed
to firmly establish a viable design approach which is both technically
sound and economically feasible. Thus, this program has been extended
as a NASA grant for the following work statement and personnel organization.

STATEMENT OF WORK (1969-1970)

The ElectroScience Laboratory (ESL) at The Ohio State University
proposes to supply all the personnel and service necessary to continue
the study program according to the fallowing statement of work. This
extension of an ongoing program includes several of the items previously
listed and introduces several new or modified tasks. This axtended
program will include but not necessarily be limited to the following
items as listed:

1. A continuing effort will be devoted to an intensive review
and assessment of the research programs and techniques studies
in progress or recently completed which may have influence on
a high data rate communication system for space applications.
This additional study is to assist ERC/NASA in assuring that
no significant matters or techniques on electronic beam
shaping and steering have been slighted or overlooked.

2. A continuing study will be made of the various types and sizes
of radiating elements, their interaction, and their associated
control circuitry in an effort to evaluate theii potential in
a large ground based array (or special purpose vehicle) antennas
with a large number of elements. This investigation will be
concerned primarily with low noise circuitry to provide the
phase and amplitude control of the elements of the array.

The circuits may include mechanical or ferrite phase shifters
or the use of integrated semiccnductor devices and heterodyning
techniques. Consideration will be given to the state-of-the-art
in techniques for controlling phase individual elements and
groups in techniques for controlling phase individual elements
and groups of elements. An assessment will be made of their
adequacy in providing sufficient control to satisfy the require-
ments of the system.

3. A study will be made of methods for arranging, grouping, exciting
and interconnecting the requisite number of elements to provide
the appropriate radiation characteristics from array antennas.
Particular consideration will be given to the investigation of
novel feeding and phasing techniques which would either sig-
nificantly reduce array cos*s or increase their flexibility.
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A study will be made of methods of achieving a capability to
handle several satellites at planetary distance as well as
rapidly switched multiple beams for communication with near
earth orbital satellites. For this purpose, an intensive
study of adaptive antennas will be made to extend recent
achievements, to establish the basic engineering tradeoffs
involved in the design of this type of antenna, and to
establish the fundamental limitations to its performance.
This {tem will continue the present work on adaptive arrays
with emphasis on the following tasks:

a. Consolidate the results of previous experimental
work on the two-element anilog adaptive array, to present
a unified picture of the capabilities and limitations of
this scheme.

b. Continue tests on the available digital adaptive
array (4-element L-Band array) to obtain experimental data
on the speed of response, convergence properties, errors due
to amplitude and phase quantization, and other properties.

¢. Continue theoretical studies on extremum-seeking
adaptive controls, with the goal of providing a broader
conceptual framework for the experimental results and of
integrating previous experimental work with previous studies
in this area.

d. Study the use of adaptive antennas with coded com-
munication signals. Here the goal is to use coding on the
signals as the basis for distinguishing between “de:ired"
and "undesired" sigrals in the array.

A continuing study will be made of techniques for switching
from a self steering or adaptive array where the pattern is
determined by the size of the subaperture to o.c where the
steering is accomplished by externally controlling the phase
and amplitude between elements so that the pattern is de-
termined by the entire radiating aperture. This switching

is to be accomplished by an appropriate signal processing
scheme which is actuatad by the externally generated noise
or interference level. Such a scheme will produce a system
capable of more efficient performance in the presence of high
external noise and interference levels.

The Electronics Research Center of NASA is currently developing
the capability for computer simulation of communication systems.
It is desired to expand this capability to include array antennas.
The objectives of this study will be to provide the following:




a. To identify and to describe by analytical means the
pertinent parameters which should be considered in the analysis
of array antennas such as element type and configuration gain,
beam-scan angles, noise temperatures, data rate and line loss.
Also included should be the associated computer parameters.

b. The inputs to the analysis will be in the fom of
discrete point inputs. Data will be generated for array

antennas relating weight and costs to the pertinent parameters
which will have been established in a.

ORGANIZATIONAL DESCRIPTION

The proposed study program as extended will be conducted by the
personnel of the ElectroScience Laboratory at The Ohio State University
in cooperation with the personnel from the Optics and Microwave Research
Laboratory of the Electronic Research Center/NASA. The ESL will coordinate
the efforts of this team and will be responsible for reporting to the
ERC/NASA the results of the studies outlined in the Statement of Work,
as well as the overall recommendations for needed long term research and
development along with their relative priorities. The proposed makeup
of the study group is shown in the organizational chart in Fig. 1.

ElectroScience Laboratory
Ohio State University

L. L. Bailin
Laboratory Director

A. A, Ksienski
Program Manager

R. T. Compton
Principal Investigator

L. L. Bailin
R. T. Compton
C. Don
A. A. Ksienski
R.L. Riegler
N.A. Walker
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Director of the ElectroScience Laboratory and Professor
of Electrical Engineering, at 1he Ohio State University.

with S.D. Hamren of Hughes Aircraft Co., "Some Fundamental
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9




PROFESSIONAL
ACHIEVEMENTS:

"Further Factors Affecting the Performance of Linear Arrays,"

- IRE Transactions on Antennas_and Propagation, vol. AP-4,
December 1952, pp. 93-102 (with H.F. O'Neill)

"Radiation Characteristics of a Turnstile Antenna Shielded
by a Section of a Metallic Tube Closed at One End,"

Journal of Applied Physics, vol. 23, no. 6, June 1952,
pp. 0688-696 Ewitﬁ K. Banos and D.S. Saxon).

"An Analysis of the Effect of the Discontinuity in a
Bifurcated Circular Guide Upon Plane Longitudinal Waves,"

Jour. Res., National Bureau of Standards, vol. 47, no. 4,
October, 1951, pp. 315-335.

Oral Presentations

National Radome Symposium, Presidio, San Francisco,
California, August 1951.

International Scientific Radio Union, (U.R.S.I.),
Montreal, Canada, June 1953.

International Scientific Radio Union, (U.R.S.I1.),
Washington, D.C., May 1954.

International Scientific Radio Union, (U.R.S.I1),
University of Michigan, June 195b.

Trident Professional Groups of Southeastern Michigan,
October 1966.

National Convention of Sigma Tau, National Engineering
Society, March 1967.

Grants, Honors, and Awards

Principal Investigator on NASA Grant NGL 36-008-138 to
Ohio State University for $78,000 over a step-funded
period of three years starting November 1969.

Principal Investigator on NASA Grant NGR-17-004-013
for $90,000 to University of Kansas. The technical
effort on this grant started June, 1967 and continued
to November 1969,

Research grant of $2,000 to the University of Kansas
from the Research Laboratories Division, Southfield,
Michigan, of the Bendix Corporation




PROFESSIONAL

ORGANIZATIONS:

Sigma Xi - Research Society of America (RESA).
Pi Mu Epsilon (Math Honorary)

Eta Kappa Nu. (Electrical Engineering Honorary).

Senior Member of the Institute of Electrical and
Electronics Engineers

Member of the Professional Technical Group on Antennas
and Propagation,

11

'I,,WMWWWWm‘wWumummmuumwuw\mu|||i||||nmwwwwwW"""""“""’“" e T

.
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Education: Ph.D. in Electrical Engineering, 1958; M.Sc.E.E., 1952,
University of Southern California; B.E.M.E., 1947, Institute of
Mechanical Engineering, London, England.

Professional Experience: Technical Director for Communication and Information
“Systems, 196/ to present, The Ohio State University ElectroScience

Laboratory; Head of Research Staff, 1965-67, Senior Staff Engineer,
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Lecturer, 1965, University of California at Los Angeles; Research
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Research Resume: Dr. Ksienski's military experience involved the organization

gnd supervision, at the age of 24, of the Israeli Air Force Electrical
chool.

While employed by the Walter Schott Company during 1952 and 1953,
he designed, built, and tested UHF and VHF antennas,

His duties at Wiancko Engineering Company encompassed the de-
velopment of new techniques for measuring fligat parameters of air-
planes and missiles. He also assisted the Chief Engineer in the
evaluation of proposed projects, analyzed difficulties of existing
measuring systems, and recommended solutions.

From 1958 to 1967, Dr. Ksienski was a Senior Staff Member of
the Antenna Department of the Hughes Aircraft Company. There he
merged his interests in Electromagnetic Theory and in Information
Science in a consideration of antennas as information-handling and
decision-making systems.

During 1965, he taught at the University of California an
Electrical Engineering course which was focused to antenna processing
systems, particularly synthetic arrays, correlation arrays, self-
phasing and adaptive arrays, and decision theoretical arrays,

Dr. Ksienski's responsibilities as Head of the Research Staff
of the Antenna Department of Hughes Aircraft were to originate and
supervise research projects in electromagnetic theory, pattern
synthesis, signal-processing antennas, application of information
theory and decision theory to antenna systems.
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"Signal Processing Antennas," The Microwave Journal, Vol. 4,
No. 10, October 1961 (Part I) and Vol. 4, No. 11, November 1961
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"Data Processing and Synthetic Aperture Antennas," Progress in
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"Multiplicative Processing Antennas for Radar Appication,"
presented at the Symposium on Signal Processing in Radar and Sonar
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published in the Proceedings of the Symposium and in the Radio and
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"Information Theoretic Optimization and Evaluation of Nonlinear
Antenna Systems," (co-author, G.0. Young), Chapter in Recent Advances
{n Optimization Techniques, Lavi, A. (ed), John Wiley, 1966.

urvey of Signal Processing Arrays," presented at the 12th
Symposium of the Advisory Group for Aerospace Research and Develop-
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"Space Time Correlation Theory for Information Carryin? Signals,"
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"Antenna Processing for High Resolution Mapping," presented
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ITI. ACTIVITIES DURING THE PERIOD

During this report period, the research activities which were
formerly the results of a cooperative effort between the personnel of
the Center of Research (CRES) at the University of Kansas and the
ElectroScience Laboratory (ESL) at The Ohio State University were fused
together as a single program at the latter research organization. This
transfer was made possible by the fact that the principal investigator,
Dr. Louis L. Bailin and his graduate student, Mr. C. Don, moved to The
Ohio State University in July of 1969. Dr. Bailin has recently been
appointed Director of the ElectroScience Laboratory and consequentiy
was able to bring together all the various people involved on this
program. Mr. Don was able to pursue his studies for a Ph.D. degree at
the University of Kansas by completing his dissertation research at Ohio
State University. Thus, all the personnel presently engaged in working
on the various portions of this grant were all put together under a single
administrative and research activity. '

In this period several aspects of the program description (Section II)
were pursued., Primarily, these concerned efforts on the adaptive array
techniques and to a lesser extent, studies involving aperture blockage
among arrays of closely spaced large dish antennas which are to be mech-
anically scanned. These items are to be summarized briefly in a quali-
tative manner in this section and reported in detail in the appropriate
section of the Technical Summary in Section IV.

1) During this semi-annual period the signal processing equipment
for an adaptive array study was completed and tested. This equip-
ment consisted of a two element S-band array to demonstrate the
feasibility of automatically generating an antenna pattern null in
tiie direction of an interfering signal. A considerable amount of
experimental data including transient response, power density
spectra, antenna patterns, etc., was obtained and analyzed.

The experimental work was termminated with the completion of
a two element array (rather than with four elements as was the
original intention) partly because of financial reasons and partly
because the basic objectives could be demonstrated with two elements.
Namely, it was experimentally demonstrated that: a) The array
could lock-on to an incoming signal from an arbitrary angle and
automatically track it thru a full 3600 in azimuth; b) The array
could automatically produce an antenna pattern null in the di-
rection of an interfering signal, provided the desired and inter-
fering signals did not come from the same direction and were not
at precisely the same frequency.

Upon completion of the experimental work, the primary effort
was directed at theoretical studies of adaptive arrays. Because
the mathematics of the problem is so difficult (systems of coupled
differential equations with time varying coefficients), an analog
computer was used to help with the analysis. In this program,
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computer simulations have been used to study the effect of various
feedback transfer functions, loop gain and bandwidth, mean square
error, etc.

Currently a noise analysis is being carried out to describe
the performance of adaptive arrays operating in the presence of
uncorrelated noise. During the next semi-annual period, work
will continue on the above fundamental study areas. It is hoped
that the results of these studies will provide the information
needed to be able to specify the optimum configuration for an
adaptive array for use with coded communication systems.

2) A continuing effort is being made to determine quantitatively

the performance characteristics of an array of indenendently steerable
paraboloids by mechanical means. Consideration is being given to

the proper size and separation of large disk antennas to achieve the
requisite high performance characteristics over a + 60° angle of scan,
A minimum separation distance must be determired in order to utilize

a given aperture size most efficiently. However, as the separation is
decreased, the interference between adjacent paraboloids becomes im-
portant, especially at large scan angles. This interference phenomenon
is being investigated by several theoretical approaches in an effort
to determine quantitatively the pattern degradation of closely spaced
paraboloidal antennas which can be mechanically scanned. As the
separation is increasea, the formation of grating lobes in a large
array of parabolic reflectors presents a problem which requires

a detailed study and a quantitative assessment of the results of
overall system performance.

A few results regarding the preliminary investigation of the
performance of an array of closely spaced paraboloidal antennas
have been obtained, such as the minimal element spacing required
for no blockage vs. the angle of scan, the blocked aperture and the
effective aperture sizes vs. element spacing, and the first grating
sidelobe level vs. element spacing. This information is essential
to the quantative assessment of the performance of this system.

The details will be assessed at the proper sections.

The geometrical theovy of diffraction has been very success-
ful to predict radiation patterns of various antenna systems, es-
pecially antenna systems with reflector. The employment of the
geometrical theory of diffraction to solve the blockage problem
associated with an array of closely spaced paraboloidal antennas
has been undertaken in complement with several other approaches,

3) During the period, a continuing effort has been made to uncover
components and techniques that would provide low loss system for a
phased array antenna as described in =ub-section IV-C. In addition,
an effort has been made to orovide for alternative design techniques
which permit the problem areas to be circumvented by appropriate
new inventions whenever they become available. Thus, in sub-section
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IV-C, 5, 6, 7 has been used to discuss various aspects of the
need for a low loss system. This discussion considered the in-
dividual components, the feeding and distribution systems, as
well as the possibilities for combining other scanning techniques
with phase shifters or optical devices to achieve optimum system
performance. Some of these problem areas and components will re-
quire further study and some quartitative improvement before a
large phased array can be desic.ied which will satisfy the basic
objectives of this program. Certain of the techniques and com-
ponents discussed are obviously incompatible with the require-
ments for the desired system. Consequently they are merely pre-
sented for completeness in each discussion and summarily re-
jected because of their inapplicability herein.

There were, in addition, several noteworthy activities somewhat
peripheral to the main effort. These involve the Ph.D. candidacy and
dissertation research activities of the personnel on this program.

Mr. Cheng Don has been accepted as a candidate for the Ph.D. degree

at the University of Kansas, and his thesis topic has been approved

by his dissertation committee to study an array of large dish antennas
with respect to their blocking effect when their spacing is very close.
His research activity, of course, was started during the course of this
program and has continued to where certain pertinent information are
available in this present phase of the program. This work is to be
completed during the next period and submitted as Mr. Don's doctoral
dissertation. Mr. Robert L. Riegler has been accepted as a doctoral
candidate at The Ohio State University with a dissertation topic that

will be selected from some aspect of the adaptive array work which is
described in subsection IV-D. This effort again was started on this grant
and has proceeded through the various phases until it will now become avail-
able as a doctoral dissertation by Mr. Riegler.

Dr. R. T. Compton and Mr. R, L. Riegler have presented papers at
the following meetings concerning their work on adaptive arrays which
were started and continued throughout this grant program.

1) "Adaptive Arrays"
R.T. Compton and R.L. Riegler
USAECOM-AAAA-ION Tech. Symposium on Navigation and Positioning.
Sept. 23-25, 1969, Fort Monmouth, New Jersey.

2) "Adaptive Antennas for Automatic Interference Rejection"
R.T. Compton and R.L. Riegler .
19th Annual I1linois Symposium, Oct. 14-16, 1969, University of
I11inois, Monticello, I1linois.

3) "Adaptive Antennas for Automatic Interference Rejection”
R.T. Compton and R.L. Riegler
Fall 1969 URSI Meeting, Dec. 8-11, 1969, University of Texas,
Austin, Texas




IV. TECHNICAL SUMMARY

The requirement of a constant information rate of the order of 106
bit per second with a given probability of error implies a specific sys-
tem performance in terms of bandwidth and signal-to-noise ratio. In any
communications link, the data rate system parameter, RD’ can be given as
the product of the following three factors

2 1[6.(f)
Rp = [Pth(f)] [( 4::R)2]["("TT: T } ,

where the constant of proportionality directly involves such factors as
data quality which is determined by the information coding method em-
ployed, and inversely the various loss factors in the transmission link.
The bracketed terms 1ist the design system and mission parameters as
follows: the first bracket contains the transmitter parameters; the
second bracket contains the transmission media or free space loss char-
acteristics; the third factor involves the receiver parametars which
are the primary concern in this study. Based on Shannon's work, the
limiting value of the data rate in terms of signal-to-noise ratio and
bandwidth is given by the expression

RD <B logz(l + ROIB)

where
Ro = %~‘ B = information rate parameter

The maximum data rate can be approached with negligible error by a proper
choice of coding technique (Ref. IV-1,2,3,4). A simple and fairly ef-
ficient technique, for example, is coherent biphase coding. The charac-
teristics of this code in terms of signal-to-noise and bandwidth-to-data-
rate ratios, and its relation to the Shannon limit are shown in Figure IV-1.
For small error probabilities, the figure indicated that the bandwidth
required must be comparable with the data rate (B/Rp = 1). Thus an in-
crease in SNR as measured by Ro/Rp is serving to reduce the error probability
without appreciable effect on the bandwidth requirements. Tolerable error
or probabilities range from 10-5 to 10-2 depending on the type of data

(Ref, IV=5). Thus the practical limit for the product of signal-to-noise
and bandwidth, even with a simple code, need not exceed the ideal limit by
more than an order of magnitude to provide acceptable performance. The
expression Ry = (S/N)B = 10Ry will therefore be taken to represent a prac-
tical relationship between signal and bandwidth and the limiting noise level.
(The actual relationship for a specific system design will depend on the
particular coding scheme adopted as well as on error-rate requirements).
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Fig. IV-1. Efficiency of biphase coding.

In view of the background material discussed above, it is possible
tu make some general assessments of the gain and associated aperture
size required to provide nearly continuous communication between the
ground and the spacecraft of future mission. It can be anticipated that
a gain of 60 to 80 dB will be needed for the ground antenna. The diameters
of circular apertures corresponding to these gain values at 2.3 GHz are
200 and 2,0C0 feet, respectively. This is based on the supposition that
the beam formed is always perpendicular to the aperture during the steering
processes and that an allowance is made for taper and other losses inherent
to the antenna type. The 3-dB beamwidths are on the order of 2.2 x 10-3
and 2.2 x 10-4 radians, respectively, In this section consideration is given
to problems associated with satisfying the aperture and gain requirements
with various types of ground based antenna systems. Each of the candidate
types is discussed on the basis of its suitability to long range communi-
cation receiving systems with a generic form as shown in Fig. IV-2. These
antenna types are described whether or not their essential components have
been developed, are in the experimental form, or are only in the conceptual
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or planning stages. Thus, each system is presented in terms of its capa-
bili{ties and limitations even though some of the crucial component devices
and techniques are still being developed. In some cases, the expected
ultimate performance must be discussed in terms of a series of competing
parameters whose final value is as yet unavailable,

In deep space communication systems requiring high data rates it is
necessary to have a very large receiving antenna in order to achieve a SNR
which will yield the error rates described above. Ultimately, as the
distance or data rate increases, the required aperture may become too
large to be constructed as a single antenna element as described in sub-
section A, and it is necessary to array several smaller apertures as
described in subsection B and C, The upper 1limit on the subaperture size
may be imposed by such factors as atmospherically induced wavefront dis-
tortion or unobtainable phase tolerances. An additional advantage of
subdividing the large aperture into smaller subapertures is the possibility
of arraying and processing them in a manner which will give improved per-
formance over that of a single antenna. For example, the weighting factors
on the subapertures as elements of the larger array might be adjusted to
place a null or region of low sidelobes in the direction of an interfering
source, thus reducing the effective array noise temperature. This process,
however, requires sophisticated techniques and will be discussed in
subsection D.
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A. A SINGLE LARGE APERTURE

The steerable paraboloidal reflector has been shown to be economically
and technically practical for antenna aperture size on the order of a few
hundred feet. Such a size will satisfy the lower limit of the above men-
tioned requiramants and is exemplified by the characteristics of the JPL
210-foot paraboloid as given in Table A-1l. These characteristics &«fford
a convenient reference list for comparison, since they represent the state-
of-the-art at 2,3 GHz. However, for aperture sizes on the order of
thousand feet it does not require extensive analysis to show that a single
steerable paraboloid is not feasible in the next ten or even twenty years.
A parabolic dish of this size is relatively impractical, since it must be
assumed to have the same surface tolerance and illumination efficiency as
the 210 ft, JPL dish and to maintain the same noise temperature but greater
pointing accuracy. For a large single reflector spillover, backscattering
and aperture blocking contribute to the noise temperature of the antenna
since the radiation from the warm earth couples to the back Tobes of the
antenna pattern. The effect, of course, varies as a function of scan
angle which may be as much as *600. The upper limit in aperture size for
a large single steerable paraboloid has probably already been reached and
the change of this 1imit would require the discovery of a new structural
material that has a strength to weight ratio several times that of steel.

Paraboloidal antennas are being widely used for deep space communi-
cations, The Deep Space Instrumentation Facility is presently equipped
at five stations with 85 feet paraboloids having gains of 53 dB at 2.3
GHz. A system noise temperature of 559K is provided at each station.

A network of three 210 foot paraboloids is under construction around the
world. The first of these antennas has been completed at Goldstone,
California. The most recent performance expectations of the 210 ft
paraboloid indicate that a noise temperature of 180K can be achieved
with a maser front end and some improvements in the feed design. Since
the costs of both the 85 ft. and the 210 ft. are now well established,
they shall be used as the basic element in Section IV-B, where arrays of
dishes are considered. In addition, as indicated by Figure A-1, these
structures were designed for optimum performance in the S-band range of
frequencies.,
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Azimuth coverage, deg. +300 (from SE at Goldstone)
Elevation coverage, deg. 5 to 88 (tracking sidereal target)
4.5 to 90.5 (final Timits)

Pointing accuracy, deg. 0.02 pointing
0.01 tracking

Maximum angular rate
azimuth, deg/sec 0.5 (wind < 30 mph)
Maximum angular
elevation, deg/sec 0.5 (wind < 30 mph)
Maximum acceleration
azimuth, deg/sec 0.2 (wind < 30 mph)
Maximum acceleration
elevation, deg/sec 0.2 (wind < 30 mph)

Servo bandwidth adjustment,
hz. 0.01 to 0.2

Gain at 2300 MHz, dB 61

Beamwidth at 2300 MHz, deg. %0.13 (2.2 x 10~ radians)

System temperature, * O

18
Antenna temperature, °K Y10
Reflector diameter, ft, 210
Reflector f/D ratio 0.4235

*Includes maser amplifier, receiver, transmission line, listening feed,
and the antenna pointing at a quiet sky.

Table A-1
Expected performance of 210-foot DSIF
altazimuth antenna.
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It has been indicated by JPL (Ref. A-1) that apertures which are
electrically equivalent, but larger than the 200 ft. in diameter class
of paraboloid, are very expensive and are probably not economically
warranted for the next ten to fifteen years. Some consideration is being
given to a 400 ft. dish for radio astronomy application by the CAMROC
group. The CAMROC 400 ft. dish is protected from the environment by a
radome which eliminates wind as a parameter in antenna design; therefore
new design concepts are possible and they are different from the con-
ventional design requirements (Ref. A-2). Thus, for total apertures less
than the aperture of an antenna roughly 250 ft, in diameter, a single
paraboloid should be used. For total apertures in excess of this size by
an appreciable amount, it will be best realized by arrays paraboloids of
optimum size. Several other approaches such as the fixed spherical-
reflector approach and multiplate antenna appear to offer a large aperture
at low cost. In spite of this apparently attractive feature, they have
their respective shortcomings (Ref. A-3, 4 and 5, 6). When used in deep
space communications applications, there appears to be little or no
economic gain over steerable paraboloids. However, these special forms
of optical antennas merit further study in this program.

The reauirement of narrow beamwidths, low sidelobe levels and broad-
band operation for the generation of a pencil-shaped antenna beam has
well been achieved by the system of a point source feed and paraboloidal
reflector. However, the beam axis coincides with the geometric axis of
the paraboloidal surface so that in order to scan the beam, it becomes
necessary to move the whole reflector mechanically. A spherical reflector
employed in a microwave antenna leads to a system whose beam can be
steered without moving the reflector (Ref. A-7), The beam axis coincides
with the radius of the sphere upon which the feed happens to lie. Scanning
is achieved by a single rotation of the feed about the center of the sphere.
Due to the spherical aberration, however, a point source feed cannot be
used unless the primary illumination of the reflector is confined to a
relatively small zone of the spherical surface (Ref. A-3). Aperture
efficiency is then small and total reflector size becomes enormous relative
to an equivalent paraboloid. Several proposals exist, however, for cor-
recting the annoying phenomena of spherical aberration. One approach
utilizes a secondary reflector to refocus the aberrant rays to a true
point focus (Ref. A-8). Another method, analogous to those in present
optical use, requires correcting lenses of the Mangan or Maksutov Type.
The third approach makes use of the fact that a spherical mirror possesses
a line focus. By using a line source, rather than a point source feed,
spherical aberration can be eliminated and primary illumination need
not be confined to the paraxial region of the sphere (Ref. A-2, 10).
The gains of the 10-foot spherical reflectors illuminated either by the
square-aperture horr, at frequency of 11.2 GHz (Ref. A-3) or a combined
1ine source (Ref. A-10) are in the magnitude of 39 dB. This is equiva-
lent to the gain of a uniformly illuminated circular aperture of 31-inch
diameter, or a typical paraboloid of 40-inch diameter. The total useful
angle of scan of the former 10-foot spherical reflector antenna is about
+700 with approximately 1% dB loss of gain at 700 from the zenith. A

27




1000-foot spherical dish was completed in 1962 in Arecibo, Puerto Rico,
for radio astronomy applications. The specific designed 1ine source feed
corrects for the optical aberrations of the sphere and permits off-axis
scanning to 200 with less than 3 dB8 loss of gain (Ref. A-4). It seems
that by use of a fixed spherical reflector to achieve narrow beam of
large aperture antenna, high aperture efficiency and wide-angle scan
designs are mutually exclusive.

A multiplate reflector system is another distinct approach to steer
antenna beams without moving a huge reflector. A multiplate antenna
consists of a large number of independently adjustable reflecting plates
with optimum sizes, which could be used with a fixed feed to form a
steerable beam. For a feed located above the plates which are distributed
over an area, energy radiated from the feed impinges upon the identical
plates which are individually tilted and tipped to redirect the energy
in the desired direction. However, the gaps between plates, the diffraction
around plate edges and the double reflection due to the openings of the gaps
are the kind of problems which the antenna system with a continuous re-
flector surface does not -encounter. The multiplate antenna tested by
Air Force Cambridge Research Lab, suffers from low efficiency and coverage
problems, compounded by high antenna noise temperature (Ref. A-5, 6).
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B. AN ARRAY OF LARGE DISH ANTENNAS

1) Introduction

As it has been mentioned before, an array of independently mechanically
steerable paraboloids with proper size and separation may be one of several
workable approaches capable of achieving the high gain requirement for the
DSCS. To provide the requisite scanning angle of 600 without interference
between adjacent paraboloids, the spacing between reflectors must be kept
at a reasonable distance which is larger than the diameter of the paraboloids.
Thus, a minimum separation distance must be determined which utilizes a
given aperture size most efficiently. As the separation is increased, the
formation of grating lobes in a large array of parabolic reflectors con-
stitutes a serious difficulty for which no generally satisfactory solution
has yet been developed. The problem can be visualized if the array pattern
is considered as the product of an element pattern and an array factor.

The element pattern consists of the radiation pattern produced by a
parabolic reflector, while the array factor is the pattern of an array
of isotropic radiators which is a two-dimensional grating lobe pattern.
The array factor can be steered electronically by shifting the phase be-
tween elements while the element pattern is directed by the mechanical
movement of the individual dishes. In the ideal case, the element pattern
and a single lobe of the array factor will both point in the desired
direction. Multiple beams appear, however, when more than one grating
lobe falls within the main beam of the element factor; this condition
occurs when the array spacing is substantially greater than the diameter
of the subapertures.

It can be easily shown that the spacing of the grating lobes from
the main beam can be increased by a decrease in the separation of the
parabolic reflector antenna elements. However, if this spacing is de-
creased, the diameter of the reflectors must also be decreased so that
the effective scan range can be maintained, whiie at the same time more
array elements must be added to meet the gain requirement. The end
result will be a broader element pattern which in turn will ensure that
the grating lobes will have essentially the same amplitude relative to
the main beam. The beamwidth of both the main beam and the grating lobes
will, for all practical purposes, remain the same as long as the overall
array dimensions remain unaltered. The fine grain structure around the
various lobes will change, however, as more elements are added. Simiiarly,
if the spacing between the elements is increased, and the diameter of the
reflectors is increased ccrrespondingly, the grating lobes will be moved in
closer to the principal beam. Once again the relative amplitude and beam-
width of all the grating lobes should remain essentially constant.

There are some esoteric techniques available to suppress the size
of the grating lobes. A possibility exists that the grating lobes
adjacent to the principal beam may be reduced in amplitude by the use of
random spacing among the array elements. However, it is anticipated that
the selection of such a design will prove tc bz an extremely difficult
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problem. Another means of suppressing the grating lobes might involve
the use of an auxiliary array that could be steered and phased to cancel
out any given lobe. A major difficulty that might be anticipated from
such a scheme would be the obtaining of sufficient gain from the
auxiliary array.

The juxtaposition of spacing and reflector size discussed above
is predicted on little or no interaction between the elements as a
function of scan angle. When this interaction effect is taken into
account an entirely different solution may be obtained for the com-
peting parameters. Thus, it shall be the purpose of this section to
study the problems associated with being able to analytically determine
a spacing and antenna size which is optimum between the interference
effects at minimum separation, and the grating lobe effects at a maxi-
mum distance commensurate with high aperture efficiency. Since the
theory and manipulation of the array factor and element pattern is
available elsewhere, the effort herein shall be concerned with methods
and techniques for analyzing the interaction effects between large .
parabolic reflectors in a relatively closely spaced array. ¢

An analysis of the blocking effect of a closely spaced array ob-
tained by the consideration of the geometric optics only has been done
in paragraph (3). First, the field in Franhofer region for an antenna
system of two closely neighboring paraboloids has been formulated; then
the field for a linear array of N-paraboloid is obtained. In these ex-
pressions, they show clear evidence of the interaction between neigh-
boring paraboloids due to the close separation between them.

2) Theoretical consideration of the interaction between
neighboring paraboloid antennas

a) Introduction - It has been learned thai some mutual
coupling measurements on neighboring paraboloid antennas has been done
by Andrews (Ref. B-1) for Collins Radio Co. and a similar measurement
also has been done recently by Reiche (Ref. B-2) at the Hughes Aircraft
Co. It seems, however, that there is no literature concerning theoretical
analysis available, Therefore, it is desirable to develop the analytical
form which governs the fields of a paraboloid antenna as a function of
scag angle in the presence of neighboring array elements of an identical
kind,

The far field transmitting and receiving patterns of the neighboring
paraboloidal antennas with their vertices far apart will be the vector
sum of individual contributions at the field point and the vector sum of
the receiving fields at individual feeds respectively. In fact, the
transmitting and receiving patterns of the paraboloidal antennas system
in Fraunhofer region are the same in this case. As the positions of the
vertices of the paraboloidal antennas get near enough, the interaction
between them can no longer be negligible. The interaction between the
paraboloidal antennas for which the system being used for transmitting
function and that for which the system being used for receiving function
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will constitute different problems which merit separate investigations.
In this report, however, the following paragraphs are devoted to the
interaction between the paraboloidal antennas for transmitting function.
The case for receiving function will be included in a future report.

For transmitting function, the interaction may be approximately
solved by considering the second paraboloid as a disklike obstacle in the
near field of the first paraboloid. The surface current distribution on
the disk due to the first paraboloid can be calculated; this current
distribution on the disk then sets up a secondary surface current distri-
bution on the surface of the first paraboloid. This secondary current
distribution then becomes a modification factor on the primary current
distribution due to the feed of the first paraboloid and thus modifies
its far-field pattern.

The surface current density K on the disk due to the primary cur-
rent distribution of the first paraboloid and the secondary current
density K' on the first paraboloid due to the current density K on the
disk have been formulated in paragraph (b) and paragraph (c) respectively.
In paragraph (d), the electric field EB due to the secondary current
density K' on the first paraboloid has Been found. Also, the electric
field Ep due to the primary current distribution of the first paraboloid
and the électric field Ep, due to the primary current distribution of the
second _paraboloid have begn found in paragraph (e). The total electric
field E, in the far-zone region of these neighboring paraboloidal antennas
is the Vector sum of Epl’ EBI, and Ebz.

b) The surface current distribution on the disk The coordi-
nate of the current distribution on the disk is P'(u,a,6) in the spherical
coordinate with the origin at the focus, Fy, of the first paraboloid and
also is P'(R',8"',s') in the fixed spherica} coordinate with the origin
at point 0. The source point Q on the surface of the first paraboloid
is Q(p,&,y) with the origin at the focus Fy; the axes of the paraboloids
are in iel;¢1) direction as shown in Fig. 1 and Fig. 2.

Considering the case where the disk being in the far-zone region
of the first paraboloid, the electric field at point P' on the disk is

1 3
. -jku L

- wy € 3 T
(B-1) E‘p. = - .gn_ E— [8(5) .4_“]

-jkp[l-au-ap]

| tegten® 2
g,

. [- cos 3 & + (m-&))5; s’

p
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where

(B-2) .
— = [ ] -— + Y . -— + ———
8, =sinacos ga, +sinasinga, +cosaa,
— = ° — + - o — - —-—
a =sinycos ga, +sinysinga, -cosya,
3;,3; = - COS a cos y + sin a sin y cos (B-£)

and

£ permittivity of the medium
U permeability of the medium

Pr the total power transmitted by the feeds of the
parabolcids

Gf(g,w) the directivity of the feeds of the paraboloids-

n  the unit normal vector to_the surface of the paraboloids,

- - — +
which is nxax nya.y + nzaZ

the polarization of the reflectéd wave from the paraboloids,

e +

which is €13y ¥ elyay €,3,

Si the propagation direction of the reflected wave for the
resent case,

= = » — + . 'y - + -_—
1 az. sin 91 Cos ¢1 ax sSin 61 Sin ¢1 ay cos 91 az

)
g

ds!' tEe element of the surface of the paraboloids, which is
p- sin y sec y/2 dy dg

F the focal length of the paraboloids

To the first approximation, the electric field at P' on the disk becomes

Y P9 . .
| : :_§R' SKF cos(gy-o'
(B-3) FE,=- wy [8(_&:_) T}J e J eJ cos ¢1 ')

P T u R!
o{ Ti + Té }
where
(B-3a) 2n ¥ -jkp [l-iu-é'p]
3 -
T, - J [ [Gf(e:.w)]*e S [-COS%’- e,]
=0 y=0

. p2 sin y sec %-dw de
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2n ¥ -jkp [l;iu-ip]
T, = f f [6¢(5,0)]7 &

P

Thus, the magnetic field at point p' on the disk becomes
(8-4)

pr =8 (/18 =] TR e

ar ¥ -jko[1-3,7 ]

j ] [6e(£,9)1% & cos %
£=0 y=0 g

2

- [e%a,,] . 0% siny sec-‘g—dzp dg

Then, the surface distributed current density K on the conducting disk is
(B-5)

. 5 i P -jkR'  jkF cos(¢,-9")
- Jouf e € T e 1
- - (el [ 5

2 oy -3ko [1-7,°3 ]
S I RERY L
=0 y=0

. cos 12"- [32 \ x(E’lxiz )]

. p2 sin ¢ sec%dw dg
Let

(B-6) [a,.x(e;xa )] = Aa, + Aya‘y +Aa,

where

(B-6a) A, = sin @, sin ¢; (e1x sin 6 sin ¢; - ey sin 6, cos ¢1)

[(F-EI)EZ.] . p2 siny sec % d; dz

~—




(B-6b) Ay = €Os 8, (e1.y cos 6, - e, sin 0, sin ¢1)

- sin 8, sin ¢; (elx sin o, sin ¢; - ey sin o, cos ¢1)

(B-6c¢) A, = sin 8, cos ¢, (e12 sin o, cos ¢, - e, €Os el)
- sin 8y sin $q (ely cos &) - e, sin 8, sin ¢1)
Finally, the surface current density K on the conducting disk becomes
i Ae-ij' jkF cos(¢1-¢') _ _ _
(8-7) K= —gr— e [I,a, + Iyay + 1]

where
o necol-g() ) ]

2 ¥ -jke [l-au.-é-p]
1) 1= | [ mlean® &
£=0  v=0

1]
Ax cos 3

. p2 sin y sec'% dy dg

-jko[1l-a .3 ]
2m ¥ L J u p
_ s e
(B=7¢) I = I J [Gf(g,w)] > Ay c05<%
g=0 =0

p2 sin y sec %- dy dg

m v -j kp [1-'3_".-a_p]
@700 1,5 [0 [ eplen® S
£=0 y=0

. p2 sin y sec %-dw dg

¥
3 Az cos 5




c) The Secondary Surface Current Distribution on the
 First Paraboloid "The surface distributed current density K at point
P' on the conducting disk will again set up a secondary current density
K' on the surface of the first paraboloid. This secondary surface cur-
rent density will become a modification factor to the far-field pattern
of these neighboring paraboloid antennas system,

The magnetic field at Q' on the first paraboloid due to the cur-
rent density K at P' on the disk is

(8-8) Hb. = i%ﬂ- L, 3; + Ly 3} +L 3}]

where
2r ¥ -j2R'  JKF cos(¢1-¢')
eo - [T €20
o yheo (R
« [sin o' sin ¢' I, - cos e Iy]
. ejkB1
jkB
oe 2
. ejkB3
. (p')2 sin y' sec p dy' dg¢'
2
21 v -J2KR'  JKF cos(s;-¢')
(R-8b) Ly = J — e [cos 6'I -sin o' cos ¢'I]
) gl.-_.o wl:O (R')
. ejkBl
. ejsz
B ejk83

. (p')2 sin y' sec %l- dy' dg!




2 v o-J2kR! jkF cos(¢1-¢')
(B-8¢) L, = — e [cos 6'I,-sin 8' cos e'Iz]
Ll £'=0 y'=0 (R')

jkB

F e kB1
Jj

« £ 2
jkB

« 8 3

: . (") sin ' sec %l- dy' dg'
§ with
(B-8d)

B, = sin o' cos ¢'[F sin 6,c05 ¢; +;p'(A1 sin y' cos g' +

A, sin y* sin g' - A, cos v')]

(o]
n

p = sin o' sin ¢'[F sin o;5in ¢ + p'(A4 sin y' cos g' +

Ag sin ' sin g' - Ay cos v')]

oo
"

3 = COS 6'[F cos oy + p'(A7 sin y' cos £'+ A8 sin ' sin g' -

A9 cos ¢')]

o}
o
)
&
>
Baud
|}
w

= sin 8, COS ¢,

>
]

2 sin 01 sin ¢1 COS 6, = Sin 6, SN ¢, oS 04

>
w
"

sin 81 sin 61

>
n

4 sin 0, sin by

>
"

5 sin 8, COS ¢, COS 09 - sin 8y COS ¢y COS 6,
A6 = sin 09 sin ¢
A7 = c?s 8o .
A8 = sin g, sin 6,
A9 = C0S 8




The angles 81» 415 0os ¢, are defined as follows:

a,. = sin 6, COS ¢, 3, + sin 8, sin 2 ay + cos 92 a,
a,, = sin 8, cos ¢, a, + sin 6, sin ¢, a, +cos 8 a,

a, = a,, X 5;.

Thus, the secondary current density K' on the first paraboloid
due to the current density K on the conducting disk becomes

(8-9) K =248 Ten,L, - nt)

+ ay(nzLx - nxLz)

+ az("xLy - nny)]

d) The Electric Field in Fraunhofer Region due to_ the
Secondary Surface Current Distribution The electric field at ob-
servation point‘E}R,e,¢)’fﬁ’the‘?ar-field zone due to the secondary
current density K' on the surface of the first paraboloid is

(B-10) ,
. k% kA -3kR
A

_ 2n v
|2y, I J [(nyLz-nzLy)-C sin v cos ¢le
. elgo wtgo

jk W' -a-R

. (p')2 sin w"sec %l' dy' de!
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2 ¥ jk 00" . a
+ 3& I " I [(n.L.-n.L_)-C sin o sin ¢]e R

27X X2
£'=0 y'=0
. (p')2 sin y' sec %F- dy' de'

- 2n o ¥ jk 00 - ER
ta, [ J [(nxLy-nny)-C cos 6] e
g'=0y'=0

. (p')2 sin y' sec %:- dy' de'

where
(B-11a)
C = sin o cos ¢ (nyLz-nzLy) + sin o sin ¢ (nzLx-nxLz)
P cos o (nxLy-nny)
(8-11b)
- ap = sin 6 cos ¢ a, + sin o sin ¢ a, +cos 62,
(B-11c)
M"=Fa,+p'a’

z P
= Ek[F sin 8y cos ¢, + o'(A; sin y' cos &' + A, sin y' sin ¢’

- A5 cos v')]
+ 3&[F sin e, sin ¢; + p'(A4 sin y' cos ¢' + Ag sin ¢' sin ¢
- [}
Ag COS ¥ )]
+ EE[F cos 6, + p'(A7 sin y' cos g' + Ag sin y' sin g
- Ag cos v'))

Notice that the equation for E; involves three surface integrals.
1




e) The Electric Field of Neighborigg_?araboloid Antennas
{n Fraunhofer Region e electric field at observation point P due to
the primary current density of the first paraboloid is
(8-12)

P -jkR jKF cos(¢,-¢)
T 1
E"l - [8(%7 "]“ e .
-Jkp [l'a-ug °-a-p]

o

. 4 S s e
;Io wio )

. [- cos% El + (n . é'l)'é'z.] . p2 sin y sec % dy d¢

where

(B-13)
SL. = sin a' cos B' 3;. + sin o' sin B! E&. + cos a' 3;.
3; = sin y cos ¢ 3;. + sin y sin ¢ 3&. - €0S ¢ 3;.
Eh. . 3; = - cos a' cos ¢ + sin o' sin y cos(B'-g).

The electric field, for the first approximation, at observation
point P due to the primary current distribution of the second paraboloid
is

(B-14) P % jkR
7T | e
AR ORI
. ejkL sin é sin ¢

JkF[cos o cos o, + sin o sin 8, cos(¢-¢1)]

.e
-jk kf- sin 6, sin 9
« €
2 ¥ =Jkop [1-35°3 5]
: GelE,sy,) * &
FlE20¥7 0

£2=0 ¢2=0
2 — , (=== 2 ¥2
+ [-cos 5~ € + (n-el)az.] + 0y Sin y, sec 3= dy, de,
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where

(B-15)
3“2 = sin a, cOs B, a,, * sin a, sin 3, Ey. + cos a, a,,
3;2 = sin y, cos &, E;. + sin y, sin &, 3}. - oS Y, Eé.
Ehz . 3;2 = -C0S a, COS y, + sin o, sin y, cos(sz-gz)

The parameters for calculating the electric field at P(R,0,4) due to
the contribution of second paraboloid is shown in Fig. 3. The sepa-
ration between vertices of the paraboloids is L.

The total electric field at observation point P, Eb, is the vector
sum of the following components which are found in the previous para-
graphs:

E_  The electric field at P due to the primary current
P1 distribution of the first paraboloid.

E' The electric field at P due to the secondary current
P1 distribution of the first paraboloid.

E The electric field at P due to the prmimary current
P2 distribution of the second paraboloid.
Thus
B-16 E=FE +E' +E
( ) P P Py P,

(E), + 3,(E), + T, (E),

where (Ef)x, (Eb)y and (E'p)Z are defined in the following pages.
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(B-16a)

_%'91 8512 Pr] iR
™ u 4n R

. ejkL sin 8 sin ¢

o .
: r o Ve Pr 2 e-JkR jkF cos(¢1-¢)
[ (p)x"n[s(:zr; = ®
2n IW (.0 L -jkp[l+cos o' cos ¢ - sin a'sin ycos(g'-£)]
. Gele,w)]
p
£=0 y=0
* [-cos 529 e * ("xelx + nyely + ezelz)sin 6, cos ¢1]
. p2 sin y sec-% dy dg
. %k_z_ joka e KR
. T Qawe  An
5 2n ¥ K OQ" - 3y
. { .E.JO J [(nyLz-nzLy) - C sin 8 cos ¢Je
- = w‘:
. 1ﬁ . (p')2 sin y' sec %ﬂ- dy' dg'
. Yy

jkF[cos 6 cos 6, + sin & sin 6, cos(e—¢1)]
. e

.. LF _. .
. e-Jk gsin 61 sin ¢1

on -y . e-jkpz[1+c05a2cosw2-s1'nazsimpzcos(Bz-gz)]
b 2
e 52'-‘0 “’2=0 P

« [- cos 7 e+ ("xe1x+"ye1y

+nzelz)sin 81 €OS ¢,]

. p2 sin ¢, sec fg- dy, dg
2 2 2 2 72

a5




(B-16) P12 _-jkR  JKF cos( ¢1- ¢)
j w € T - oSt 9= ¢
Eply = - 1 [B(Tj ﬁ] e

2 Y .

* J j [Gf( Es \D) ]2 2
£=0 y=0

. [- cos gfely + (ne) 4ne 4 nee, )sin o sin ¢

-jk p [1*cos o' cos y~ sina'sinycos( g'- ¢) ]
o

. 0% sin y sec~§ dy de
W2 . -jkR
jk~= Jj2kA e “
- TWeE k) ii

jk 0Q*-ap

2n ¥
. J [(n.L -nL_)-C sin g sin ¢] e

ZXx Xz
£'=0 y'=0
)
. (p')z sin y' sec %L- dy' de'

N
_ Juu gf€ 2 PT e-JkR
& | \y) In R

. ejkL sin 6 cos ¢

§
me«m»u

§ it

jkF[cos 6 cos o) + sin 6 sin 6 cos(¢-¢1)]

e T T

. e

-jk(FL/R)sin 6, Sin ¢,
- e

or oy . e-jkp2[1+cosa2cos¢2-sinazsinwzcos(32-52)] i

2
¢ I [ [Gf(gz,wz)] P2 B
52=0 ¢2:0
v2 : .

- [-cos — ely + (nxe1x + neeqy + nzelz)s1n o sin ¢;]

2 . ¥2
- P, Sin y, sec >~ dwz dgz
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(B-16¢)

b Pr] o=JKR  JKF cos(¢;-¢)

(Eb)z T %%E [8(5) 'T?]'_TT_' ¢

2m ¥ y, o~Jko [I+cosa' cosy-sina'sinycos(g'-£)]
: j [Ge(E9)] 2
£=0 y=0

p

« [~cos %'elz + (neq, + ne, * n.e;,)cos o]

. p2 sin y sec_%-dw dg

k% joka en3KR
dnwe  4n R

2n V¥ jk "ETZEk
. J J [(nxLy-nny)-C cos 8] e
£'=0 y'=0

i '
[ . (p')2 sin y' sec %— dy' de'

Lo .
. ofc L fl e-JkR
4y u/ 4n R

. ejkL sin o sin ¢

jkF[cos 8 cos 6, * sin 6 sin 6, c05(¢-¢1)]
. e

. e-jk(FL/R)sin 81 sin ¢1




= jkp, [1+€0S 0,y COS Yy=5 Ny s TNy, c0s (8)=£,) ]

2n ¥
. J J [Gf(izs‘i‘z)]% & by
52=0 y=0 .

Y2

2 . V2
* Py SN Y, S€C 5= dwz dgz

3) The Blocking Effect of a Closely Spaced Array

(a) Consideration of the Coordinate Systems - The fixed coordinate sys-
tem (X,y,z) with origin at point 0 will be used to define the observation
point in space. The paraboloid coordinate system (x',y',z') with origins
at the vertex of each paraboloid will be used to define the source points
in space. The condition of the paraboloid coordinate system is specified
in such a way that when the axis of the paraboloid (z'-axis) points in
its zenith direction (in the direction of z-axis) the remaining x' and y'
axes coincide with the fixed x and y axes respectively. That is, when
paraboloid is at its zenith direction, the coordinates x', y' and z'
coincide with the fixed coordinates x, y and z respectively. In order
to define uniquely the pointing direction of the paraboloid in the
direction (8',4') in the fixed coordinate, the axes of the paraboloid

are being rotated as follows: first, x'-axis is rotated by an angle ¢'
in azimuth direction with z-axis as the axis of rotation., Hence,

the angle between axes y' and y is ¢'. Next, z'-axis is rotated

by an angle 6' with y'-axis as the axis of rotation. Thus, the angle
between axes z' and z is o' and the angle between x-axis and the pro-
jection of x'-axis on the xy plane is ¢'.

Let the direction of the projection of x'-axis on the xy piane
be £, then

3&,3&. = ¢
3%;5& = ¢
E;;E}. o'
3;.,3; 6
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By these two rotations, the paraboloid coordinates have been uniquely
defined in the fixed coordinate system. Hence,

(B-17)
3;. = 5& cos ' cos ¢' + E& cos o' sin o' + E@}-— sin o')
3&. = 3} (- sin ¢') + E& cos ¢' + 3; 0
3;. = 3; sin 8' cos ¢' + E& sin ¢' sin ¢' + @, cos o'

b) Fields in Fraunhofer Region for an Antenna System of Two
Neighboring Paraboloids

A Two Neighboring Paraboloidal Antenna System is shown in Fig.

B-4, where ay,, ay, and ap are unit vectors in the direction of vi,

V? and R respéctivély. Both paraboloids point in the direction of

-axis. Let the field distribution over the circular aperture be
des1gnated by

(B-18)  Flp,p) = Alp,y) edk¥(psv)
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with amplitude distribution A(p,y) and phase distribution ¥(p,v);
where o and y are the variables for the polar coordinates on the
aperture,

7" P(X,Y,2)
P(R,8,4)
Evz
V2
1'\
- Y

F.ig. B"4o

For the far-zone region, the field due to a single aperture is
given by

(B-19)

L o-JkR

jkz v
p 2x R (1+y)e °

2n (a .
. I I F(p’w)eJkp[a cos y + g sin y] odo dy

where v=0 p=0
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sin o sin 6' cos (¢-¢') + cos o cos o'

Y=
a = sin o cos ' cos (¢=-¢') - cos 6 sin ¢’
B = sin o sin (¢-¢')

For the configuration in Fig, B-4, the total field at observation
point due to the identical aperture distribution F(p,y) on apertures
No. 1 and No. 2 is
(B-21)

U

]
[t
| e

+
P P P,

. -jkR jkz v
"2]')\' -e-—r(lﬂ)e 0

2n (d . .
. j I F(p’¢)e3kp[a cos ¢ + B sin ¢] odo d
0

g-ij jkz

‘Y o . o
+ %K' v (1+y)e 0 eJkd sin 6 sin ¢
2 ra jko[a cos ¢ + B sin ¢]
. f J Flo,o)e pdp do
o o

Equation (B-21) is the total field at observation point without considering
the blocking effect. In the case that the separation between the neighboring
paraboloids is not large enough, the blecking effect due to the geometric
optics obstacles has to be taken into account when the system scans away
from its zenith direction, In the latter case, the first aperture of the
paraboloid with vertex at origin is partially blocked by the presence of

the second aperture of the second paraboloid with vertex at A in Fig. B-4.

If it is assumed that the beam diameter equals the element aperture

diameter, the separation between two adjacent elements required for no
blockage is given by

_ 2a
(B-22) d = Eiﬁ??i;
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where

separation between elements (parabolic antennas)
radius of element apertures

maximum polar angle coverage for which no aperture
blockage occurs when scanning,

d
2
®m

Theoretically, for an angle coverage up to 90 degrees, the separation d
has to be infinity in order to have no blockage. The normalized minimal
separation with respect to the diameter of element apertures vs the maxi-
mum polar angle coverage is shown in Fig., B-5, It is seen that for an
aperture diameter of 30 ft with maximum angle coverage e, of 60 degrees,
the minimal separation required for no blockage is 60 ft (twice the size
of the aperture); however, for oy, of 87 degrees (i.e., for an elevation
angle of 3 degrees above horizonT, the separation increases up to approxi-
mately 600 ft (20 times the size of the aperture),

On the other hand, with a given aperture radius "a", the blockage will
not occur until the array pointing direction ¢' reaches certain value for
a given element separation d = pa in terms of the aperture radius by a
constant p. Let this "certain value" of array direction ¢' for a given
d = pa be 6y, Then ey can be obtained as

_ -172a\ _ -172
(8=-23) et')-cos (1- = COS (p)

For the scan angles less than or equal to 6p, there exists no blockage in
a geometrical optics sense; for scan angles larger than ep, blockage occurs.
The dependence of eB on the element seraration d is shown in Fig. B-6.

Considering the blocking effect due to the geometrical optics obstacles,
the field in far-zone region can be taken care of as follows: Tlooking back
along z'-axis toward the vertices, the overlap portion of the adjacent |
apertures due to scanning away from its zenith direction is shown in Fig.

B-7. The distance d' can be found as

(B~24a) d' =4d Jﬁ - sine sinZ;'

and

(B-24b) d = 2a-d'=2a-d A - sinle' sine’

where d' is the distance between the axes, which is the projection of

the separation d of the vertices of the paraboloids on the plane per-
pendicular to z'-axis, when the axes point at (e',¢') direction and

d% is the overlap distance alorng this projection, It is noted thac if

d¥ is larger than or equal to the aperture diameter, there is no blockage.
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The blocka?e occurs when the corresponding d' for an arbitrary array pointing
direction (6',4') is less than the aperture diameter. For the latter case,
the overlap angle ¢ is given by

d
(B-25) £ = cos~1 (1 - zéi)

The blocked area Ap which is the shaded area in Fig. (B-7) can be found as

2 dn
(B-26) Ay =2 a.s-(a-—é-) a sin a]

Hence, the blocking effect can be taken care of by subtracting the part
of contribution due to the blocked aperture; thus

J . i e-ij jkzoy

(8-27) U = 4 Ep— (I+y)e

2n . .
.‘{I [a Flo,v) eJkp[a cos y + B sin y] o dody

LR
i I I Fp,y)edkpla COS.y + 88T 9] dpdw}

-E a-d2

Therefore, the total field at observation point due to apertures No. 1
and No. 2 with blocking effect is

(B-28) U

Up1 (partially blocked) + Up2 (unblocked)
. -jkR jkz
%‘; g'jr- (1+y)e

P
oY

[}
-jkR jkz vy .
e (1+Y)e 0 eJkd sin o
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Fig. B-7o

¢) Fields in Fraunhofer Region for a Linear Array of N-Paraboloid

The array is composed of N identical paraboloids and it is assumed
that they point 1n the same direction simultaneously without delay.

The total blocked area Ay for a linear array of N identical parabo-
loidal antennas is the sum of the first (N-1) blocked area for the sys-
tem of two-element array given in Equation (B-26). Hence, Ab becomes

2
(B-29) A = (N-1) - 2a? [¢ - Beos o' (1-5- cos? 9')% |

The total aperture A of an array of N-element with no blockage is given
by

(B=30) A = N(xa?)

The total effective aperture Au of an array of N-element with blockage
thus becomes
2

(B-31) Au = a2 {Nr - 2[¢ - ;_ cos o' (1 - %—-cos2 8') 15]}
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where

number of elements in an array

radius of individual aperture

angle of overlap defined in Equatic. (B-25)

a constant defined by the relationship given as d = pa,
where d is the separation between adjacent elements

8' = angle of scan or the pointing direction of an array.

Twm™m o =

It is desirable to know the percentages of the blocked and the effective
apertures over the total aperture A with no blockage. Let ry and r, be
the ratios of Ab/A and Au/A respectively, then they are given as

N-1

2
(B-32a) Lt t .%-[g - g-cos o' (1 - Ez-cos2 8') & ]

" 7N

(B-32b) r 1- s

u

It is noted that the ratio ry and r, are functions of parameters N, p
(or d, the element separation), and the array pointing direction 6'.
They are independent of the aperture size,

The ratios rp and ry vs the element separation for a given array
direction ' have the same significance of the curve op vs the element
separation as given in Fig. B-6. It has shown that for the scan angles
less than or equal to the corresponding angle ey given in Equation (B-23),
there exists no blockage, rp = 0 and r, = 1. For the scan angle larger
than e}, the blockage occurs. On the other hand, for the case of the
smallest element separation of which the element separation is equal to
the diameter of the aperture and it correspcnds to the best case of the
grating-lobe-problem, the ratio ry vs the scan angle is shown in Fig., B-8
for the array elements of 2, 10, 20, and 200. The percentage of the ef-
fective aperture of an array r, is equal to (1-ry) as shown in Equation
(B-32b). It is, therefore, obtained that r, is 100% for any number of
elements in an array when the array is pointed at zenith. However, when
the array is pointed horizontally, r, becomes 50% for two-element arrays,
10% for ten-element arrays, 5% for twenty-element arrays, and 0.5% for
two-hundred-element arrays. The dependence of r, on parameters N and &'
is tabulated in Table B-1.
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Number of
Elements
Pointing N
Direction o' 2 10 20 200 2000
0° 100 100 100 100 100
40° 93.45 |88.21 87.56 | 86.97 86.91
ryt 60° 80.45 |[64.81 62.86 | 61.10 60.92
80° 60.99 |29.80 25.90 | 22.39 22.04
90° 50 10 5 0.5 0.05

TABLE B-1,
The effective aperture r, in percentage for various
array elements and array pointing directions

The total field at observation point due to a linear array of N-
aperture with the arrangement in Fig., B-9 will be the sum of the con-
tribution of the first ?N-l) partially blocked apertures and the last
unblocked aperture, thus

(B-33)

N-2

b D (partially blocked) + Up (unblocked)
=0 e ke ol N2 -1

%A e — (1+y)e 0 [ ) oJknd sine

n=0

2n (A . )
. J J F(p’¢)e3kp[a cos ¢ + 8 sin o] 4 g4,

. o3kR Kz Y o rn .
+ L& (1+y)e” © eJk(N 1)d sin o

F(p’¢)ejkp[a cos ¢ + B sin ¢] pd(‘ d¢

or
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Fig. B-9,
(B-34)
. ~-jkR jkz y| N-1 . .
e 0 jknd sin ¢
U, = —— (1ty)e [ e ]
p %T R nzo
2r A . .
' j I F(o,0)elkela €os ¢ + 8 sin o] o4 4,
0o o0
. . N-2
. - _=JkR jkz y[ 7 . }
e 0 jknd sin o
-%T T(I+Y)e n:.-Oe
+& a . ‘
) I [ F(o,o)edkelo €05 6 + 8 sin o] 4 4
~£ a--d2
Let
(B-35a)

T a . o
I = J I Flp,)edkelo cOs ¢ + 8 sin ¢j 4 do
0 0




(B-35b)

+E a
Ib = j J F(p.¢)eJkp[a cos ¢ + B sin 3] odo do
- a-dg
Hence,
(B-36)
. ~-JkR jkz vy N-1 . .
Up = %.)\_ .?_R__ (1+Y)e 0 I[ zo eJknd sin 9]
n:

-JkR N-2

. jkz vy
= %— £ R (1+'Y) e ° Ib[

eJknd sin e]
n=0
N1 skmd sin e
where the factors I and | e’ are the element factor and
the array factor reSpectqsgly for a linear agray cf N-paraboloid

without blocking effect; the factors I and Y eJkmd SN 6 4re the
n=0

element factor and the array factor respectively for taking into ac-

count the blocking effect; where «, 8, y, are given in Eq. (B-20).

d) Consideration of a Simple Case

In order to observe the pattern of the system in Fraunhofer region,
first we consider a simple case in which the array lies along the y-axis
and the scanning will perform in the right corner sector of the yz-plane.
For this given condition, ¢ is /2, and ¢' is w/2. Thus from Eq. (B-20)

y = cos (6 - o)
a = sin (6 - 8')
g =0,

Hence from Eqs. (B-35a) and (B-35b) we have

2n ca : : _at
-3 1= [ [Fo.0ele sin(e-6')cos o 4, g
o o
+E ca G
(B-38) I = J F(p:¢)eJk° sin(e-0')cos ¢ pdp do
- a-d2

For the aperture distribution F(p,y), it is assumed that the feeds are
normally designed to illuminate the paraboloidal reflectors with an
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intensity at the reflector edges that is approximately 10 dB below that
at center. Thus

2
(B-39) Flo,u) = 1 = (1-8) 92- for o < a
a

For this 10 dB tapered illumination, the value of § has to be equal
to 0.1,

To obtain the desired aperture distribution, in the present case,
the 10 dB tapered aperture illumination, is itself an attractive problem
namely aperture synthesis. For the purpose of analyzing the blocking
effect of the closely spaced linear array of N-dish, it is assumed
that the desired aperture distribution has been achieved without
worrying about the actual technique to obtain it, The effect of
tapering the illumination down toward the edge is: reduction in
gain, increasing beamwidth, and reduction in side lobes as com-
pared with the uriform aperture distribution, and reduction of the
energy spilled over the edge.

To perform the integrations in Eq. (B-37) and (B-38), a change
of variables is done as follows: Let

- -
(B 40) r %
u = ka sin (9-9')

Then the aperture distribution becomes
(B-41)  F(ry) = 1 = (1-8)r2
with 6 = 0.1 for 10 dB tapered illumination and the factor

(B-42)  edke sin(e-e')cos v _ jur cos y

Thus, Eqs. (B-37) and (B-38), respectively, become

(B-43)
2 2n 1 . 2 2n,1 5 i
I=a I I eJur €08 ‘Prdrdw - a7 (1-6) f I rcedU’ €05 ¥ prgrqy
0 0 00
J,(u J,(u)
=2 a25 lu + 4naz(1-6) -33—-




+£ 2
J 2zejz cos ¥ dz dy
-E 21

2 ) +E 02
_a glagL j f 2.3 Jzcos vy, dy

u £ 7

When integration is performed, Ip will be a complex number, hence Iy
may be denoted by its reai pa:t Ibr and imaginary part Ibi; thus

(8'45) Ib = Ibr + j Ib1
with

(B-452)

+£
J f z sin{z cos v)dz dv
ol 3

2 +E
- é_iliél J 23 sin(z cos y)dz dy

u -€

ka sin(e-6')

ur = kp sin(6-8')

S

u

23 - d cos ¢

-1\];2 '( a=-
tan
dl

i

2
)




radius of the circular aperture

Q.
"

separation between the adjacent paraboloids

. 21
k A

The array factors in Eq. (B-36) are

kNd sin @ k(N-1)d sin o
Nil gJknd sin 6 _ sin == ej %
n=0 sin kd sine
S
K(N-1)d sin & . k(N-2)d sin o
" eknd sine 51" — ST 2
= kd sin &
n=0 sin >
Let
sin kNdzsin 9
(B-462) F,(e) = K sTno
2

sin k(N-%)sin 9
Fple) = 1 KdSin s

Therefore, the total field U_ at observation point in Eq. (B-36)
becomes P

(B-47)
. _=jkR Kz y
bt S e’

j k(N-1)d sin ¢ j jk(N-2)d sin o

. Fl(e) le - Fz(e) Ib e

The angular distribution g{e,s4) of Up is
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(B-48)

g9(9,¢) = (1+y) [Fl(e)I-Fz(e)( I, cos 59—%1-'3-—9-+ I; sin kd sin 3"‘ 9)]2

1y
. kd sin ¢ cos kd sin o
*[Fz(e)( Lyesin=—=——- 1, == )f I

jkzy + 3 k(N-1)d sin @

e O 2

. kd2sin o kd sin e]
ej tan'l Fz(e)[ Ibr sin —— - I; cos -—-7?——}:
: kd sin o |- . kd sin o
Fy(0)I-Fy(0) [ 1y, cos KESTNO 47y s XE2T0 7]

Let the amplitude and phase distributions of g(e,¢) be denoted by
A(e,4) and v(e,¢) respectively, then

(8-09)  g(0,0) = A(o,¢) eJ¥(8>¢)

with
(B-49a) )
A(o,¢) = (1+Y)‘ﬂ}1(6)1-F2(6) (Ibr coc kd251" 0, Ip;sin 597513-9)]
. kd sin o kd sin ?)
+[F2(9) (ibrs1n 5 -Ibi cosS — }2
(B-49b)

V(6,¢) - kon + k(N-l%d sin o

. kd sino kd sine
-1 Fz(e)[lbr51" —— - Ibi cos =

kd sine . kd sineo
Fl(e)I-FZ(e)[Ibrcos kd siné . ----}

+ tan

2 bis" T 7

where Fl(e) and Fy(e) are defined in Eqs. (B-46a) and {B-46b) respectively;

Ipy and’Ipi are deflned in Cgs. (B- 45a) and (B-45b) respectively and I
is defined in Eq. (B-43),
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With the help of IBM 7094 digital computer, some preliminary results
have been obtained. Several main beam patterns for parabolic antenna
of aperture diameter D = 14, 30, 60, and 100 ft are shown in Fig. B-10.
These patterns are obtained for frequency of 3 GHz and 10 dB tapered il-
lumination (&6 = 0.1) with the parabolic antenna pointing at zenith. It
is seen that the larger the aperture size, the narrower the main beam,
Also, the main beam patterns of various tapered illuminations, 10 dB
(s =0.1), 3 d8 (5 = 0.5 approximately) and uniform (s = 1.0), are
shown in Fig. B-11 for frequency of 3 GHz and both aperture sizes D =
14 and 60 ft. The reason for choosing these two particular paraboloid
antenna sizes is that they are currently used to support satellite
missions at various tracking stations throughout the wuild by United
States Air Force. It is noted that the half-power beam widths for
two extreme cases, uniform illumination (6§ = 1.0) and 10 dB tapered
illumination (6 = 0.1) are 0.7 degrees and C.82 degrees approximately.
The difference is 0.12 degrees. For larger aperture sizes, however,
the half-power beam width difference for the extreme cases mentioned
above is less than 0,12 degrees. With aperture size of 60 ft, the dif-
ference is less than 0.05 degrees. Morc numerical results for this
simple case will be included in the next report.

The following steps are going to be taken in the course of this
study:

1) A continuing effort will be devoted to the theoretical study
of this problem. The current-distribution and aperture-
distribution methods, and the geometrical theory of diffraction
will be applied to solve the proposed problem.

2) A comparison between the results obtained by using different
methods will be made in order to observe any discrepency and
hopefully it may be interpreted.

3) During the above investigations, it may be necessary to look
into the possibility to apply a combination of the afore-
mentioned methods at different stages along the course of
solving the proposed problem in order to obtain better results.

4) While the theoretical study being performed, an experimental
array of two dishes with a diameter of a few feet will be
designed and tested in S-band (or in X-band depending upon
the availability of equipment) in order to compare the meas-
ured data with theoretical results predicted by the above
methods.

5) An experimental array of more elements, four or six dishes
(again, depending upon the availability of equipment) may
be tested in order to observe any unusual behaviors which
are not predictable by a two-dish array.
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Fig. B-10, Parabolic antenna pattern vs angle ¢ for
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illumination factor &,
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It is hoped that through this study it may draw some criterion
which governs the optimum performance of a closely spaced linear array
of antennas of reflector type with element spacing, element aperture
size, and scanning angle as parameter. The techniques thus established
in this study may also be extended to treat a linear planar array of
reflector antennas.,
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C. A PHASED ARRAY OF SMALL CLOSELY SPACED ELEMENTS
ORGANIZED INTO SUBAPERTURES

1) Introduction

Although the present state-of-the-art in extremely large phased
arrays, especially at S-band, is behind that for large dishes, there
is no fundamental reason that limits the size of an array except the
questions of signal to noise ratio, availability of low Toss trans-
mission line, and the basic cost of the individual components. At
present these questions concerned with the fundamentals of organization
versus economics is one of the problems to which this program has been
addressed during its entirety. There will be more discussion of this
point at a later date after some of the results obtained in the section
can De analyzed and compared with the corresponding results from the
other types of antenna systems. These problems coupled with the prac-
tical problems of distribution and feeding techniques, element type,
and scanning techniques require some special consideration when the
array is divided into an appropriate number of subapertures, It is the
purpose of this report to delineate some of the studies and to present
the information that has been uncovered in the area of phase array
technology which must be advanced to make such an array feasible for
the DSCS program, An additional purpose is to relate the problem
areas of various phased array techniques and to establish avenues
for the solution in each of the problem areas to have the highest
probability of success.

69




An important consideration in the design of such a large array
is how the cvstem should be organized; i.e., how the individual
elements should be combined, phase shifted and detected to obtain
the required specifications at the minimum cost., In order to quanti-
tatively study this problem and obtain some numerical results, a
dense array of dipoles over a ground plane was chosen as a receiving
antenna model; this choice of a model was made partly because it could
be analyzed rather easily and partly because it represents a practical
high gain element which could be economically mass produced by de-
positing or photoetching techniques. A1l the calculations ieported
here were made for uniform distribution broadside condition (equal
amplitude and constant phase) and linear polarization. Phase snifters
were included in the models, however, so that the results could validly
be extended to the beam steering mode of operation and used for problems
in adaptive systems.

It was assumed that for large arrays or subarrays with fixed inter-
element spacing the effective collecting aperture is proportional to the
number of elements and, in fact, is equal to the physical array size.
This assumption is verified in Appendix I. Thus an interelement spacing
was fixed at A/2 (center to center) in both directions and elevated A/4
over a ground plane; thi$ choice was made because it represents a model
commonly used in practice, and because it avoids any spurious or grating
lobes.

In order to make some quantitative evaluation of the merits of the
different organization schemes scme numerical values were established
for the communicatior link, These are

Frequency 2.3 GHz
Transmitted power 50 watts
Transmitter antenna gain
(30' parabolic dish with

55% aper, eff.) 44 dB

Data rate 106 bits/sec

Maximum bit error

probability 10-° o
Modulation Biphase modulation 70

During the course of this program, an economic analysis was de-
veloped for the array of dipoles. A computer program was written that
calculates the required system cost as a function of component cost
using the subarray size as a parameter. Several choices and values
for each component can be analyzed simultaneously; the program determines
how to construct the array with the minimum total cost and also tabulates
the cost and size of the remaining possible system configurations. Of
course, the results are highly dependent upon component characteristics
and costs which require frequent review and update, However, the technique
for this economic analysis can be easily applied at any time to new date
points since the computer program is listed in its entirety in Appendix II.
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2) Theoretical SNR Considerations

a) Received Signal Power - The total signal power received at the
output of an antenna system is given by the one-way transmission
equation:

G.P
(€C-1)  Sp= "E—T( ﬁﬁ)z Gr

where
SR = signal power received GT = transmitter antenna gain ‘
GR = receiver antenna gain PT = transmitter power
A = signal wavelength R = transmission pathlength
L = transmission losses (greater than unity)

The factor~(7ﬁhi is commonly called the free space 1oss and has a value

of -264 dB at 2.3 GHz for 1 Au., The signal losses, L, included in the
transmission equation comprise small losses due to inefficiency of trans-
mitting and receiving antennas, feeds, etc., and transmission losses due
to the fundamental propagation characteristics of the earth's atmosphere,
The signal losses due to atmospheric attenuation, as well as those due
to plasma effects during atmospheric entry and exit by high velocity
vehicle are discussed elsewhere. The effective gains, Gt and Gg, of
transmitter and receiver antennas, respectively, may be limited by at-
mospheric propagation effects as well as by practical limitations on
achievable fabrication tolerances. Wavefront distortions due to at-
mospheric inhomogeneities across the aperture will have an effect
similar to that caused by deviations in the antenna surface. The
problem of illumination errors across large apertures is discussed by
Bailin and Hanren (Ref. C-1).

The division of power between the carrier and the spectrum which
carries useful information depends on the particular type of modulation
used. For example, the biphase modulation scheme considered here yields
about 10% residual carrier when the modulation swing is +700; this repre-
sents a loss in useful signal power of only 0.5 dB. The residual carrier
is used by the phase lock system to coherently combine the subarrays to
produce a single array output. There are techniques available in which
no carrier is required, for example the squaring Toop (Ref. C-2); but
since an improvement in SNR would be 0.5 dB maximum, it was felt that the
more commonly used technique of locking to a carrier could be used without
significantly effecting the result.




b) Received Noise Power - The signal power required at the receiver,
however, 1s determined by the required data accuracy and by the total
noise present, due both to external sources and to the receiver itself,
Almost all of the noise power is contributed by three general sources;
antenna noise, noise produced by lossy components, and excess noise
generated in the receiver mostly by the first amplifier. Thus noise
presents a fundamental limitation on system performance and can be
accounted for in terms of the ideal noise limit (Ref. C-3)

(c-2)  Np=hf 1+ ("/KT . 1)7dy g

where
h = Planck's constant
f = ¢/» = signal frequency
k = Boltzmann's constant
T = effective absolute temperature of the receiver
B = receiver bandwidth,

In the microwave region where kT >> hf, this expression converges to the
familiar quantity kTB. For non-ideal systems detection efficiency and
the additional noise contribution due both to external and internal
noise sources can be included by taking T as the equivalent system
noise input temperature of the receiver. This temperature is the sum

of various contributions as discussed below.

bl) Antenna Temperature - The antenna noise temperature in the
direction % is given by (Ref. C-4)

2 r2‘n’ il
D[ menterensin et dot g
(C-3) T..e)_ i=1 o o
ant'’ o T m -
) J fi(e',¢')sin o' do' d¢'
i=1 0 0

where fl(e',¢') is the normalized anterna power pattern measured with
the design polarization and Ty(6) is the temperature of radiation
impinging on the antenna with that polarization; fp(e',4') is the
antenna pattern for polarization orthogonal to the design polarization
and Tz(eg is the incident radiation of the corresponding polarization.
For a well designed antenna the cross polarized component contributes
only a degree or two. This equation assumes that the pattern does not
change significantly over the frequency band of interest; if this as-
sumption is not valid the integration must be carried out over the fre-
quency domain as well as the spatial domain, For an array of elements
the above expression is still valid and the appropriate power pattern
to be integrated is the product of the element pattern and the sub-
array factor. :

72




[—,

It s interesting to note thav the effective array temperature
is quite insensitive to array size when the array is looking in the
zenith direction with no interference from the sun., This is due to
the slowly varying form of the radiometric sky absorption temperature
distribution. An expression for this distribution which has been
shown to agree quite well with measurements is given by (Ref, C-5)

(C-4)  Tgle) = (1 - €€ %) T

where

to is the fractional transmission of atmosphere at zenith (¢ = 0)

Tm is the mean absorption temperature

At S-band the normal zenith temperature is about 3°K; at 60° from zenith
it has increased to only 69K, Thus, the component of antenna tempera-
ture due to this type of noise for a large array is not much different
than from a single dipole element. This excludes the contribution from
other sources such as the sun,

b) Noise Produced by Lossy Components - The total output noise
contribution from any matched network of reciprocal lossy elements is
given by (Ref. C-6)

N
(C-5)  Teps = 1.21 TiP;

where
N = number of elements in the network
Ti = temperature in the i-th element
P. = fraction of power received by the i-th element when unit

! power is sent back in the system from the output terminals

(igl it 1)

Thus the effective output temrerature is the sum of the contributions

from each of the elements weighted by the amount of power absorbed when
unit power is delivered to the network. For a single lossy element this
reduces to the well known expression

(C-6)  Typ=aTy *(1-0a)T,

73




where (1 - o) 1s the fraction of power absorbed by the element at T,
and T;, 1s the effective input temperature to the element. The loss
factors for several types of transmission lines and their effects on
performance are discussed in the subsection on distribution networks.

b3) Excess Noise Produced by Amplifiers - The excess noise produced
by several commonly used amplifiers is shown in Table C-1 (Ref. C-7).

TABLE C-1
Ampl, type Physical temp. Noise temp. Te
TWT 290°K 400°K
TDA 290° 380°
Transistor 290° 625°
Paramp 290° 80°
Paramp 20° 20°
Maser 59 10-15°

The amplifier's noise figure F is related to its excess noise
temperature Te by

_ _ 0
(c-7) Te = (F - 1) To where T = 290"k

c) Relationship Between SNR and Bit Error Probability - One of the
most important considerations for evaluating a communication link is the
bit error probability. For a given modulation and detection scheme this
parameter can be related to the SNR, which is a more convenient parameter
to work with, Figure C-1 shows this relationship for several coherent
and noncoherent binary systems (Ref. C-8)., It can be seen that for
large SNR the bit error probability decreases quite rapidly. For a
system utilizing binary phase shift keying (PSK), a SNR of 10 dB is
adequate to assure an error probability of approximately 10-5, This
SNR is sufficient for both coherent and differentially coherent PSK,
but not for either of the frequency shift keying (FSK) systems.
Therefore, a nominal value of SNR = 10 dB was chosen for the analysis
and comparison of the systems examined below.
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Fig. C-1, Error rates for several binary systems.
(Reference C-8).

3) Predetection vs. Postdetection Combining

There are two basic ways in which the detection process can be per-
formed. The first, as shown in Fig, C-2, consists nf summing the properly
adjusted IF outputs from each subarray and then getecting the resultant
to obtain a series of ones and zeros at the modulation rate. The second
scheme, as shown in Fig. C-3, consists of detecting the output of each
subarray at the IF level and then using a majority count to make the
final decision as to whether a one or a zero occurred. The first, the
coherent addition scheme, will obviously be more efficient than the
second, but the latter system has several advantages which merit closer
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consideration; ror example, the time delay can be a digital device such
as a shift register. The summation is also done digitally at the base
band frequency rate, rather than at IF,

(=7 [T [T [T

AMPLIFIER

PHASE LOCK : |
RECEIVER

TIME IF OUTPUT
DELAY

SUMMER

DETZCTOR

Y

BINARY OUTPUT

Fig, C-2, Predetection combining program.

An analysis has bien done on these two schemes (Ref, C-5) waich
showed that for the limiting case where the SHR of each subarray is
very small, but the SNR of the combined subarrays is large, the post-
detection summing require: a total SNR n/2 (2 dB) greater than the
predetection combining in order to produce the same bit error proba-
bility. Since this establishes the relationship between the two
processes the remainder of this report will be concerned with coherent
predetection combining system,
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{1 Fig. C-3. Postdetection combining diagram,

4) Array-Subarray Organization

The subarray model consists of dipole elements which are phase
shifted and combined to form a single output at the RF frequency. Due
to the relatively large beamwidth of a single subarray, it is expected
that the proper phase adjustment can be performed with a special purpose
computer using a priori knowiedge of the source location.

The number of elements required to achieve the specified 10 dB T
SNR will, in general, be a function of the phase shifter loss and £

temperature, feed 1ine losses, amplifier noise temperature, and sub-
array size,

e 2

i i
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a) Maximum Subarray Size If phase control is used for combining,
rather than time delay compensation, the total time delay across the
subarray must be less than the modulation period in order that each
element simultaneously receives the same information bit. For an
information rate of 100 bits per second this time delay must be much
less than 1y sec, which limits the maximum subarray size to about 30
meters (1p sec has spatial length of 300 meters) if the system is re-
quired to operate at low elevation angles. This does not represent a
stringent limitation; for the antenna model considered here a subarrray
of this size would contain about 200,000 elements.

b) Minimum Subarray Size For any adaptive scheme each subarray must
produce a SNR wnich 1s sufficient to lock on the signal during the
acquisition mode and maintain lock during the information transfer
mode, For a typical phase lock system using coherent addition the
following equations can be used to obtain a comparison between dif-
ferent organizational parameters:

(c-8) SNRTOT =N . SNRSA = 10
(C-9)  CNR.,, = K - SNR o

PLL SA BPLL
where

SNRTOT = total numeric signal-to-noise power ratio
taken to be 10 in order to produce a bit
error probability of 10-°

N = number of subarrays

CNRPLL = carrier to noise ratio in the phase lock loop
of each subarray receiver

K = fraction of power transmitted at the carrier
frequency

By = bandwidth of the IF, taken to be 0.5 x 10° Hz

to receive 106 bits/sec using matched integrate
and dump detection

BPLL = bandwidth of phase lock loop, taken to be 10 Hz.

During the acquisition time all the power can be transmitted at
the carrier frequency (K = 1) so that

(C-10)  CNR.,, = SNR “1F_, 10°
- PLL SA By - N
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From experience (Ref, C-9,10), it has been shown that about 6-7 dB
CNRpy | is required for acquisition; using this criteria and the above
conskants yields the minimum SNRgp = -40 dB to obtain lock. However,
during normal operation of this subarray, when most of the power is
contained in the modulation components, the CNRp | would drop to -3 dB
which is not sufficient to maintain phase lock. Hence the actual
minimum SNRsA is not set by the acquisitior requirement but rather by
having to maintain lock during the signaling. Requiring a 3 dB SNRsA
during normal operation constrains the minimum SNRSA to be -34 dB.

c¢) Feeding Techniques Two types of feed systems were considered; the
commonly used modified series-series shown in Fig. C-4 and the equal
length corporate feed shown in Fig. C-5. The effective noise tempera-
ture and SNR at the subarray output are now calculated for both feeding

systems.
!
PHASE SHIFTER  DIPOLE ELEMENT
3 3 3 3
7 7 . 3 . 3
7 3 7 7
} 3 : 3 3
a 3 - 3 ?
\ \ \ L

\ AMPLIFIER [—2>=

/ SUBARRAY

FEED NETWORK OUTPUT

Fig., C-4, Series-series feed system,
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Fig. C-5. Equal length corporate feed system.

Series-series model - Consider an arbitrary unit of power delivered
to this subarray (Fig. C-4). The fraction of power delivered to the
phase shifters is

-8
(C-11) = —

N (nzl i )2

number of elements in the subarray

where

N2

n

o transmission coefficient for a A/2 section of the feed line.




Hence the fraction of power absorbed by the feed system is 1 - I, The
fraction absorbed by the phase shifters is (1 - ag)r , where a4 is the
transmission coefficient of the phase shifters, and the fraction of
power which is delivered to the dipole antennas is a4 T.

Finally, the expression for the total effective noise temperature
of the subarray is

+
r Tam

(C-12) Teff = [1 -] T0 + T¢ [1 - a¢]r + Ta a

¢ P

where

T = physical temperature of the feed structure assumed

O constant at 2900K
T¢ = physical temperature of the phase shifters
Ta = antenna temperature = 9% for the dipole model
Tamp = effective amplifier noise temperature.

For a transmitted power of 50 watts and a thirty-foot transmit
antenna two Au from the array the resulting expresion for the subarray
SNR in dB is

- 2 1
(C-13)  SNRg, = -144 - PSLDB + 10 log;N° - 10 log, =

where
PSLDB = phase shifter loss in dB
k = Boltzmann constant
B = bandwidth = 0.5 x 10° Hz

~Equal length corporate model A similar analysis yields the ef-
fective temperature for this subarray model:

(C-14)  Tope = LT + L, [Ty = Tyl + [1-L) To+ Ty

¢ ¢ P

where
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L

exp [-2.3LDB/10]

1ogz(N-1)
LDB = LPF(3/2) [2 Tog N + ] 21
i=0
LPF = Attenuation of the feed in dB per foot

The resulting SNR in dB at the subarray is:

(C-15)  SNR = -144 - LDB - PSLDB + 10 10910N2

As shown in the numerical results the equal length system is slightly
less efficient than the series-series system; it has the advantage of not
requiring any phase shifting devices if the subarray panels are to be
mechanically pointed.

5) Numerical Results of System Analyses

This subsection contains some typical results obtained for various
subarray organizational models of a large aperture, These numerical
results were obtained from a system analysis of previous subsections
using typical values for the key parameters and a computer program of
the appropriate equations.

Figures C-6 and C-7 present the subarray performance for the two
feeding models utilizing stripline and wavegu1de and lossless feeds.
The important range of §ubarray SNR loss is between -20 and -30 dB
which corresponds to 10° and 104 subarrays in order to sat1sfy the
10 dB SNR for the communication link. It can be noted in Fig. C-7
presenting the performance for 4 Au, that an increase in the number of
elements will not improve SNR beyond a certain point if stripline is
used. In contrast the waveguide fed subarray improved its SNR pro-
portionally to the number of elements almost as well as a lossless
feeding system.

Figures C-8 and C-9 describe the effect of phase shifter loss for
various feed loss parameters. Note that the use of phase shifters
incurring 0.5 dB of loss may require twice as many elements as would
be needed for lossless phase shifters, For the case of stripline feeds
that are quite lossy the increase in required number of elements is
not as sensitive to phase shifter loss.

Figures C-10 and C-11 present the array performance as a function
of amplifier temperature. Note the linear variation of SNR with the
number of elements. This linearity is due to the lack of build up
with increased number of elements which occurs with feed 1lines. For
large values of amplifier temperature where its effect is dominant the
SNR declined, as expected, linearly with amplifier temperature.
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Figure C-12 presents the functional relationship between the number
of subarrays and subarray SNR required to satisfy a 10-9 bit error .
probability for the communication system.

Some of the graphical results in this section have been condensed
in Table II. This shows some of the tradeoffs involved in selecting the
system parameters. For example it is not possible to use a stripline
feed system at 4 Au for 0.25 dB phase shifter l1oss using 1000 su.arrays,
even with the best maser amplifiers; however this system will be possible
if 10,000 subarrays are permitted, in fact the maser may be replaced by
an amplifier which has 4 times more noise. Using the larger number of
subarrays means the size of a single subarray can be smaller and the
cumulative effect of feed loss is not as great as with a larger sub-
array.

6) System Cost Analysis

The cost analysis of this receiving array model is quite difficult
due to the large number of parameters irvolved; moreover these parameters
interact in a non-linear manner. For example as the aperture size is
doubled the SNR does not double due to an increase in the feed line at-
tenuation and the related thermal noise contribution.

Once the theoretical analysis has oeen performed it is not difficult
to generate a large number of graphs comparing the system performance and
cost as the different parameters are varied; for example see Figs. C-13
to C-16. This type of study is hard to interpret simply due to the large
number of curves necessary. A more desirable approach used here was to
arrange this multiparameter problem into a format in which a computer
- could be utilized to compare and analyze a large number of cases and
present the reduced results in a manner which could be readily used.

" The computer program is listed in Appendix II. It requires input
; data for the following parameters:

. Range in Au

. Data Rate

Phase shifter 1ass and cost
Feed line loss and cost
Amplifier temperature and cost
. Number of subarrays desired

. Element cost

SNOYOY B WM =
L]

The first two input data remain fixed during a given computer run.
The last five component and system characteristics represent the parameters
to be varied; several values of each may be entered to determine the variation
of the total array size and cost with that parameter.
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To illustrate how the program might be used, consider the following

example, Figure C-17 shows the input data selected; the fixed value of

2 Au and 106 bits per second were chosen. Two choices for phase shifters
were entered, a ferrite device with .25 dB insertion loss at a cost of $20
and a diode type with .75 dB loss but costing $5. The choices for the feed
system were a waveguide network (.05 dB/ft) costing $5/element and a
stripline one (.15 dB/ft) costing on]y $0.5/element., Two amplifiers were
considered, a 150K maser at a cost of $10,000 and a 500K paramp at
$1,000. To determine how sensitive the cost was to subarray size,

arrays composed of 1,000 and 5,000 subarrays were considered, The
maximum number of subarrays permitted is bounded, as discussed pre-
viously, by requiring sufficient SNR at each subarray to maintain phase
lock. For the model discussed here the maximum is about 20,000. The
fixed element cost was set at $5/element and $50/elzment. This includes
the cost of all the components not considered above, such as IF amplifiers,
control circuitry, etc. Obviously the choice of Towest element cost will
result in the lowest overall cost; the purpose of selecting several
choices is to study some intangible factors. For example, the first
choice might be the minimum possible element cost, the second might be
for a system with automatic error detection circuitry to detect and
lTocate system malfunctions such as component failures. For the 5
parameters Tisted above, each having two possible choices, there are

32 = 25 distinct ways of construct1ng the array to obtain the specified
error rate or output signal to noise ratio. The computer then calcu-
lates the required number of elements and the total cost for each of
these systems and displays the output in the increasing cost format
shown in Fig. C-17. Referring to this figure it can be seen that for

the selected input data the most economical array would be obtained
by using the .75 dB phase shifter, a waveguide feed, a maser amplifier,
the $5 element cost, and 1,000 subarrays. It is interesting to observe
that using these same values except increasing the number of subarrays

to 5,000 would have produced a more efficient system which contained

20% less elements but cost almost twice as much. The size reduction

is due to the individual subarray being smaller so that the cumulative
effect of feed line loss is less; the increase in cost is due to the
increase in required number of expensive masers. Another perhaps
surprising observation is that the economically best three systems all
utilized the .75 dB phase shifter rather than the higher performance

.25 dB one. Th1s is due of course to the difference in cost ($5 vs.

$20).

Initially it was believed that the use of stripline would not be
possible due to its large attenuation factor (.15 dB/ft.). It can be
seen, however, that the third best system utilizes a stripline feed
network. Even though this system requires considerably more elements
(nearly twice as many) the total cost is only slightly more than
optimum,




COST ANALYSIS FOR S BAND PMASED ARRAY OF DIPOLE ELEMENTS

ENTER DISTANCE IN AV

2

ENTER DATA RATE IN MEGABITS PER SECOND

)

ENTER NUMBER OF CMOICES FOR EACH COMPONENT

2
ENTER PHASE SHIFTER LOSS(DB) AND COST(S)
CHOICE i
«25%5,20
CHOICE 2
e715,5
ENTER FEED LINE LOSS(DB/FT) AND COST/ELEMENT
CHOICE 1
«05%5,9%
CHOICE 2
e155¢95
ENTER AMPLIFIER TEMP AND COST
CHOICE 1
15,10320
CHOICE 4
50,1309
ENTER NUMBER OF SUBARRAYS DESIRED
CHOICE
1000
CHOICE 2
5000
ENTER FIXED COST PER ELEMENT
CHOICE 1
S
CHOICE 2
59
FOR THE ABOVE PARAMETERS THE POSSIBLE SYSTEM CONFIGURATIONS AND THEIR
COST ARE: ‘
PHASE AMPLIFIER FEED ELEMENT NUMB REQUIRED TOT
SHIFTER LINE CcoST SeA. NO.ELEM COST
LOSS TEMP s DB s
03) /FT MILL S
.75 S 15 18000 0435 5.0 s 1000 2252900 43.78
: 8.75 S5 5@ 1830 3+.05 5.0 5 5309 2760002 46.4)
. .75 5 S@ 1203 0.15 2.5 S 5300 3945000 46 « 42
: 2.25 20 15 10230 2.5 5.0 ) 1232 1310000 49.30
0.75 S S8 1000 0.35 5.0 S 1022 3262000 49.93
. 2425 23 SO 1000 2.35 5.0 ) 5299 18102002 $9.32
i 3.25 23 SO 1030 2.25 5.2 ) 1002 2201000 67.23
: 3.25 20 50 1022 B8.15 3.5 ) 5900 2150239 75.12
.75 S5 15 120920 2.15 0.5 ) 1022 6341200 76.58
. 0.75 S 15 12223 3.35 5.3 S S932 1 842900 77.69
} .75 S 15 10020 .15 3.5 5 5232 2825322 719.66
i 3.25 22 15 13282 2.35 5.2 5 5323 11803392 85.42
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Fig. C-17. Typical example using computer analysis.

97

|




It should be emphasized that the comments on system cost in this
example are dependent on the particular component values and element
cost selected; these values were considered reasonable at this time but
by no means exact. The significant contribution of the analysis and
computer program is that given updated values of these components and
desired data rate at any time in the future, the optimum way can be
obtained to combine these components so as to minimize the total cost.

7) Subarray Components and Techniques

The optimum antenna system for the ground terminal is one that
maximizes the signal-to-noise ratio under the practical constraints im-
posed by tolerance, reliability, noise environment, and cost. The
antenna must have a low equivalent noise temperature and must provide
a high-gain pattern which is steerable through a wide angle (+600), It
will be the purpose of this section to consider the circuit components
and techniques appropriate to the design of a large phase array and to
delineate their characteristics as parameters in determining sub-
aperture size and performance characteristics. A phased array consists
of radiating elements, a power distribution or collection network, a
beam-steering or phasing system, and an optimal number of low noise
preamplifiers. Each of these antenna components plays an important
and interdependent role in the determination of the overall antenna
performance. There exists a variety of beamsteering techniques ap-
plicable to a large antenna of phase array type; these include the
use of a phase shifter at each element, and the use of a mixing scheme
that translates a phase shift from the operating frequency to a con-
venient frequency band., Those areas in phased-array distribution and
component technology that must be advanced to make the large arrays
practical are to be discussed and delineated in this section. In
addition, some consideration is being given to other types of scanning
techniques in an effort to provide an optimum response to communication
signals under a wide variety of environmental conditions.

a) Feed Systems The feed system or distribution network collects the
signal Trom each of the radiating elements and phase shifters of the

array and brings them to a common receiving port so that they combine

in phase with a minimum of loss or distributes the energy to the individual
radiating elements from the signal generator with proper phases and mini-
mum loss in order to obtain a desirable radiation pattern. The distribution
network largely and sometimes wholly determines the antenna aperture distri-
bution; hence, it determines the antenna pattern, sidelobe level, and
directivity. In the present study where the applicability of any par-
ticular overall system technique is determined by the various loss fac-

tors discussed above, the nature of the distribution network is most
critical since it can shift the balance of effectiveness from one type

of ground based system to another; a few tenths of dB/100' of loss in a
transmission line can change the desirability of a particular technique
since there are many hundreds of feet involved in the overall signal
distribution. Distribution systems to be considered herein will include
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those which are essentially optical and the several types of transmission
lines as shown in Table C-III (see Ref, C-11). The various types of
distribution networks to be evaluated in this phase scanned system can
also apply to multiple-beam system where Tow-noise is an essential feature,
At this stage in this study, it is already obvious that performance fig-
ure of merit of a large phased array will be largely determined by the
characteristics of the distribution network and that further study and
development beyond the present state-of-art in low loss transmission

lines will be needed to satisfy the requirements of this program,

There are several distribution networks for feeding a phase array.
The basic principles of each is briefly described as follows:

Constrained Series Figure C-18 shows several types of series feeds. In

all cases the path length to each radiating element has to be computed
as a function of frequency and taken into account when setting the phase
shifters., The series feed lends itself to simple assembly techniques.
Figure C-18a is an end-fed array. It is frequency sensitive and leads
to more severe bandwidth restrictions than most other feeds, Figure
C-18b is center fed and has essentially the same bandwidth as a parallel
feed network (Ref. C-14), Sum and difference pattern outputs are avail-
able, but they have contradictory requirements for optimum amplitude
distribution that cannot both be satisfied, As a result, either good
sum or good difference patterns can be obtained, but no reasonable com-
promise seems possible that gives good sum and difference patterns
simultaneously, At the cost of some additional complexity the difficulty
can be overcome by the method shown under Fig. C-18c. Two separate
center-fed feed lines are used and combined in a network to give sum
and difference pattern outputs (Ref. C-15). Independent control of the
two amplitude distributions is possible, For efficient operation the
two feed lines require distributions that are orthogonal within each
branch of the array, that is, in each branch the two feed 1ines give
rise to patterns where the peak value of one coincides with a null from
the other and the aperture distributions are respectively even and odd.

A very wide band series feed with equal path lengths is shown in
Fig. C-18d, If the bandwidth is already restricted by the phase shifters
at the aperture, very little advantage is obtained at the cost of a con-
siderable increase in size and weight. The network of Fig. C-18e permits
simple programming since each phase shifter requires the same setting.
The insertion loss increases for successive radiators and the tolerances
required for setting the phases are high., A modified series phase
shifters technique, series-series feed system, has been investigated in
Sec. 4C for feeding an array of subarrays. The signal to noise ratio
(SNR) of individual subarray in terms of number of elements in the
subarray, phase shifter loss, the fraction of power delivered to the
phase shifters and the total effective noise temperature of the sub-
array has been obtained in Eq. (C-13), Curves of subarray SNR versus
phase shifter temperature, which were computed from Eq. (C-13), for a
100-element subarray for each range, 1AU and 2AU are shown in Fig, C-22.
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Fig. C-18, Series feed networks.

Parallel Feeds Figure C-19 shows a number of different parallel feed
systems, They would usually combine a number of radiators into sub-
arrays and the subarrays would then be combined to form sum and dif-
ference patterns.

Figure C-19a shows a matched corporate feed which is assembled
from matched hybrids, The out-of-phase components of mismatch reflec-
tions from the aperture and of other unbalanced reflections are ab-
sorbed in the terminations. The in-phase and balanced components are
returned to the input, and no power reflected from the aperture is re-
radiated. To break up periodicity and reduce peak quant1zat10n lobes
(Ref. C-14), small additional phase shifts may be introduced in the
individual lines and compensated by corresponding readjustments of
the phase shifters. An equal length corporate feed system has also
been investigated in Sec. 4C for feeding an array of subarrays. The
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signal to noise ratio of individual subarray has been obtained in
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Fig. C-19, Parallel feed networks.

With nonreciprocal phase shifters the two-way path length is a
constant, independent of the phase shifter setting. Under these con-
ditions the performance of a reactive corporate feed is similar to
that of the matched corporate feed. However, if additional phase
shifts are added to the individual arms or if reciprocal phase shifters
are used, then the out-of-phase components of the reflections due to
the aperture m :match will be reradiated (Ref. C-14), Figure C-19b
shows a schemaiic layout for a reactive power divider in which wave-
guides may be used. A stripline power divider is shown under Fig. C-19c.
A constrained-optical power divider using an electromagnetic lens is
shown under Fig., C-19d. The lens may be omitted and the correction
applied at the phase shifters. With nonreciprocal phase shifting, a
fraction of the power reflected from the aperture will then be re-
radiated rather than returned to the input. The amplitude distribution
across the iiorn is given by the wave-guide mode. It is constant with
an E-plane horn as shown.

101




In this section of the report, transmission line feeding systems
have been considered which to date are deemed appropriate for large
phased arrays. From a manufacturing viewpoint strip-line is by far
the most desirable type of transmission line because it is readily
adaptable to mass producing techniques. However, its extremely high
loss relative .to coax and waveguide is due to dielectric losses rather
ohmic conductor loss. One of the most useful low loss high frequency
dielectrics is Teflon (polytetrafluoroethylene). Because pure Teflon
has such a poor coefficient of thermal expansion it is usually mixed
with glass or quartz; it is this additive which seriously degrades its
attenuation properties. It is expected that considerable improvements
will be made in dielectric materials and will make stripline devices
more desirable.

TABLE C-III
Attenuation in dB/100' at 2 GHz

Brass Wzveguide 0.6
Rigid and Semi-rigid coax 1.2.5
Flexible coax - RG 20 6
Flexible coax - RG 9 12
Flexible coax - RG 58 35
Microstrip 19
Stripline (Triplate) 18

A11 subsequent calculations will be made using nominal values of
feed 1ine loss ranging from a lossless line to that of the coax.

Optical Feed Systems Phased array apertures may be used in the form of
Tenses or reflectors,as shown in Fig. C-20, where an optical feed sys-
tem provides the proper aperture 111um1nat1on The lens has input and
output radiators coupled by phase shifters. Both surfaces of the lens
require matching. The primary feed can be optimized to give an ef-
ficient aperture illumination with 1little spillover (1 to 2 dB), for
both sum and difference patterns. If desired the transmitter feed can
be separated from the receiver by an angle a, as shown. The antenna

is then rephased between transmitting and receiving so that in both
cases the team points in the same direction. The phasing of the antenna
has to include a correction for the spherical phase front. To the
first approximation this correction is

e[Jed g £ [-4) ]

x x 4

With a sufficiently large focal length, the spherical phase front may
be approximated by that of two crossed cylinders, permitting the cor-
rection to be applied simply with row and column steering commands,
Correction of the spherical phase error with the phase shifter reduces
peak phase quantization lobes (Ref. C-14), Space problems may be
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encountered in assembling an actual system, especially at higher
frequencies, since all control circuits have to be brought out at
the side of the aperture.

MULTIFLE
PRIMARY

A r
SHORT
i i CIRCUIT
pX -
-7 | \
Qg ’/ ' ] \
- - i ! \ ‘\
AAS /« /, | : \ \\
2 N7 PHASE __} \
A SHIFTER ™ _ !
A s
— PHASE
By SHIFTER
p>
Bus
(@) LENS (b) REFLECTOR

Fig., C-20, Optical feed systems.

Multiple beams may be generated by adding further primary feeds.
A11 the beams will be scanned simultaneously by equal -amounts in sin o,

The phased array reflector shown in Fig. C-20B has general
characteristics similar to those of the lens. However, the same
radiating element collects and reradiated after reflection. Ample
space for phase shifter control circuits exists behind the reflector,
To avoid aperture blocking, the primary feed may be offset as shown,
As before, transmit and receive feeds may be separated and the phases
separately computed for the two functions. Multiple beams are again
possible with additional feeds.

The phase shifter must be reciprocal so that there is a net con-
trollable phase shift after passing through the device in both directions.
This rules out nonreciprocal phase shifters and this type of device.
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b) Scanning Techniques There are several techniques for electronically

scanning a beam presently being employed in various systems for diverse

applications in both radar and communications. Since the basic ob-

jectives of this program may require implementation of a combination of

gh?se techniques, the basic principles of each is described briefly
elow:

Phase Scanning., This is the principle technique discussed in this sub-
section. Here the beam of an antenna points to a direction that is
normal to the phase front. In phased arrays this phase front is ad-
justed to steer the beam by individual control of the phase of excitation
of each radiating element. This is indicated in Fig. C-21a. The phase
shifters are electronically actuated to permit rapid scanning and are
adjusted in phase to a value between 0 and 27, With an inter-element
spacing s, the incremental phase shift y between adjacent elements for

a scan angle o6 _ is

0
_ 2n .
v =3 s(sin eo).

If the phase y is constant with frequency, then the scan angle 64 is
frequency dependent such that (sin eo)/x is constant.

ny
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Fig, C-21. Generation of scanned beams.
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Time Delay Scanning, The simple discussion above indicates that phase
scanning is fundamentaily frequency sensitive. Time delay scanning is
independent of frequency. Delay lines are used instead of phase
shifters, as shown in Fig, C-21b, providing an incremental delay from
element to element of t = s/¢ sin 89, Individual time delay circuits
(Ref. C-14) are normally too complex to be added to each radiating
element. A reasonable compromise may be reached by adding one time
delay network to a subarray of elements that have phase shifters. This
type of compromise may provide a lower loss factor for the entire sys-
tem,

‘Frequency Scanning, Frequency rather than phase may be used as the
active parameter to exploit the frequency sensitive characteristics
of phase scanning. Figure C-21lc shows the arrang2ment. At one par-
ticular frequency all radiators are in phase. As the frequency is
changed, the phase across the aperture tilts linearly, and the beam
; is scanned. This type of scanning may be used for "fine tuning" of
§ the scau angle.

: IF Scanning. When receiving, the output from each radiating element

i may be heterodyned (mixed) to an IF frequency. A1l the various methods
‘ of scanning are then possible, including the beam switching system
described below, and can be carried out at IF where amplification is
readily available and lumped constant circuits may be used. Equiva-
lent techniques of mixing may be used for transmitting.

"y

Beam Switching. With lenses or reflectors, a multiplicity of inde-

¢ pendent beams may be formed by feeds at the focal surface. Each beam
has substantially the gain and beamwidth of the whole antenna. Allen
, (Ref. C-16) has shown that there are efficient equivalent transmission
i networks that use directional coupiers and have the same collimating
property. A typical form after Blass (Ref. C-17) is shown in Fig,
C-21d. The beams may be selected through a switching matrix requiring
(M-1) SPDT switches to select one out of M beams. The beams are
stationary in space and overlap at about the 4 dB points. This is 1in
contrast to the previously discussed methods of scanning, where the
beam could be steered accurately to any position. The beams all lie
in one plane. Much more complexity is required for a system giving
simultaneous beams in both planes.

; C) RF Phase Shifters, Beam steering for a conventional phased array
requires some type of phase shifting device at each element. The
primary requirements for such a device are that it be capable of 360
degrees of phase shift and that it has an extremely low insertion
loss, preferably less than 0,1 dB., In addition these devices must
be relatively inexpensive since their requisite number is proportional

: to the total aperture size, be capable of being packaged to fit within

i the array element spacing, and be temperature insensitive to ambient
environments,
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At present, there is no phase shifting device that will meet all
of these requirements. Typically, electronic phase shifters such as
ferrite and diode devices have insertion losses on the order of 0.5 dB.
While this loss does not greatly reduce the incoming signal strength,
i{t does contribute considerable noise and consequently seriously de-
grades the SNR which influences the required aperture size. As shown
in Fig., C-22 which was computed from Eq. (C-13§ (series-series model)
considerable improvement in SNR is possible by cooling the device.
This seems :ike a particularly feasible approach for the diode type of
phase shifters where a Peltier cooling device could be incorporated
as an integral part of a semiconductor ship. Several commercial
manufacturers are presently developing and manufacturing Peltier
cooling devices for inclusion in a diode phase shifter and for
direct attachment to the semiconductor,

The devices that are presently available for phase arrays fall
into three general groups which require consideration and some
critical observation. A preliminary discussion of these groups,
their advantages and disadvantages is given below and will be up-
dated as new pertinent information becomes available:

- Diode Phase Shifters - Digital diode phase shifters are small, light-
weight devices that are insensitive to temperature and can be switched
from one phase setting to another in a few nanoseconds., Two types of
digital phase shifters are in current use. One uses a transmission
line structure in whick different susceptances are switched across
the line to produce incremental phase shift. The other design con-
figuration is a reflection structure that may be converted to a trans-
mission component by the employment of a 3 dB coupler or a circulator.
Diode phase shifters are, at present, somewhat costly because of the
cost of the diodes and their mounting structure. P-i-n diodes are
typically used as the control elements because of their high power
handling capability. Since high power is not of prime concern in a
receiving system, other arrangements of solid state materials may be
more desirable although to date there has been no stimulus for such
analysis and design. The engineers of the Texas Instrumental
Corporation who are involved in the MERA module and system design
report that they have been able to produce IC phase shifters with
1.2 dB insertion loss as the average value of a large group with 1.5
dB as a maximum value,

Ferrite Phase Shifters - Ferrite phase shifters (Ref, C-12) are typi-
cally waveguide size, moderate in weight, somewhat temperature sensitive,
can be switched from one phase setting to another in a few microseconds,
and require significant drive energy. They are somewhat costly because
of the cost of the ferrite material., Two general configurations are
available. One uses a transverse magnetizing field; the second uses a
Tongitudinal magnetizing field. The former is reciprocal only for cer-
tain configurations while the latter is intrinsically reciprocal, a
property desirable in arrays to be used for both transmission and
reception. Phase shifters that use longitudinal magnetization also
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produce greater phase shifts at lower levels of applied magnetic field
than do those that use transverse magnetization., General characteristics
of ferrite phase shifters that affect spacecraft scanning applications
are reciprocity impedance matching, frequency dependence of phase shifts,
temperature sensitivity, and hysteresis effects. Weight can also be

a great problem with ferrite phase shifters for a space-borne array

with large numbers of elements. However, weight is only a secondary
problem in a ground array compared to the temperature effects.

Novel Devices - There are several new devices which are not being

developed whose progress bears some observation. Ferroelectric phase

shifters are quite small and l1ight weight. They are, at present,

extremely temperature sensitive, due to the sensitivity of the ferro-

electric crystal, and they have very high insertion loss characteristics.

Since they are still in the experimental stages, production costs are

unknown. At present, it appears that a major improvement will be re-

quired in the basic crystal before these devices can be considered for

use in an array. As in the case of the ferroelectric phase shifter,

the plasma phase shifter.is still in the experimental state., It is

moderate in size and weight with a negligible temperature sensitivity. -
The insertion loss is comparable to that of the ferrite and diode pnase J)
shifters, but a significant reduction may be possible. At the present '
time, it is not a low cost device and requires significant drive energy;

both factors are due to the need for the generating and sustaining of

a plasma,

The high loss associated with the electronic phase shifting device
can be eliminated or reduced by either mechanically scanning the sub-
arrays, by using mechanical phase shifting devices such as a line
stretcher, or by some form of simple air filled guide which may employ
a multi-moding technique to properly gather the signals from numerous
input ports. Each of these schemes needs further study and experimentation
to develop the low loss feea system required by a high data rate com-
munication link,

From the preceding equations it can be shown that one of the most
important components which influence the required aperture size is the
phase shifters. Electronic phase shifters such as ferrite and diode
devices typically have insertion losses in the order of 0.5 dB instead
of the more desirable 0.1 dB., While this loss does not greatly reduce
the incoming signal it does contribute considerable noise and con-
sequently seriously degrades the SNR. As shown in Fig. C-22 for a typical
set of parameters, considerable improvement in SNR is possible by cooling.
This seems particularly feasible for the diode type phase shifters where
a Peltier cooling device could be an integral part of the semiconductor
chip. The Peltier cooling effect is a thermo-electric phenomenon in
which heat is absorbed or generated by current passing through a semi-
conductor junction. Several companies (Ref, C-13) are presently develop-
ing and manufacturing Peltier cooling devices for inclusion in the diode
case and for direct attachment to the semiconductor chip. These prob-
lems will require further study and work is now in progress to examine
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the results using parameters that are more closely related to values
which are possibilities for the future,

Time Delay Networks Figure C-23a shows a time delay network that is
digitally controlled by switches. The total delay path length that
has to be provided nondispersively amounts to 'a sin 6pax'' where

dmax 1S the maximum scan angle for the aperture 'a'. The smallest bit
size is about A/2 or A, with the precise setting adjusted by an ad-
ditional variable phase shifter, A 10 beam scanned 60°, for example,
requires a time delay of 6 or 7 bits, the largest being 32 wavelengths,
as well as an additional phase shifter. The tolerances are tight,
amounting in this case to a few degrees out of about 20,000, and are
difficult to meet. Problems may be due to leakage past the switch, to

a difference in insertion loss between the alternate paths, to small
mismatches at the various junctions, to variations in temperature or to
the dispersive characteristics of some of the reactive components. Pain-
staking design is necessary. The switches may be diodes or circulators.
Leakage past the switches may be reduced by adding another switch in
series in each line. The difference in insertion 1oss between the two
gaths may be equalized by padding the shorter arm. The various prob-

ems are comprehensively assessed and analyzed by Temme and Betts

(Ref. C-18). /

Figure C-23b shows another configuration that has the advantage of
simplicity. Each of the switchable circulators connects either directly
across (counterclock wise) or via the short-circuited length, Isolation
in excess of 30 dB is required, and the higher insertion loss of the
longer path cannot easily be compensated. Each time delay network would
therefore, precede a final power amplifier on transmitting and follow a
pg?amp]ifier on receiving or a special design which is as yet unavail-
able,

Only the edge elements or edge subarrays of the antenna require the
full range of time delay. The center does not need any time delay, only
a biasing line-length. The amount of delay required increases as the
edge of the aperture is approached. This is shown in Fig. C-24,

A further method of providing delay is possible by translating the
problem from the microwave decmain and delaying at IF since the insertion
loss of time delay circuits is usually too high for most practical
systems at RF,

I-F Phase Shifting Techniques. Because of the modular nature of the
electronically steered systems being considered for this study, it will

be possible to employ I-F phase shifting techniques. These techniques
(Ref. C-1) offer several advantages as compared with R-F phase shifting
techniques. First, requirements on the phase-shifting components may

be relaxed as compared with requirements on corresponding R-F com-
ponents. In addition, since the phase shifting for reception is performed
after frequency translation and I-F amplification, losses in the phase
shifters do not degrade system noise figure nor do they contribute to

109




VARIABLE PMASE
SHIFTER

o

-h\—\li
_-.o

. Ol
N $POT sPOT
(e) TIME OELAY BY CHOOSING UPPER OR LOWER PATHS

(SPOT s SINGLE-POLE, DOUBLE=~THROW SWITCH)

;NORT CIRCUIT

SWITCHED
CIRCULATOR

VARIABLE PHASE
SHIFTER

(b) TIME DELAY USING SWITCHED CIRCULATORS

Fig. C-23. Time delay configurations.

reduced system gain as would R-F phase shifters without individual R-F
preamplifiers. The phase shifting for transmission can be done at low
power levels with I-F phase shifters so that the power handling capa-
bilities and losses of the phase shifters do not present problems.
Typically, each complete moduie includes an antenna element, an R-F
diplexer, a mixer, an I-F amplifier, and a phase shifter for reception;
for transmission a similar set of components is required with the
addition of a high-power R-F source. A number of configurations are
possible to accomplish the desired performance characteristics but
each requires I-F phase shifting devices., These devices are dis-
cussed in the following paragraphs.
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The simplest type of I-F digital phase shifter is that composed
of discrete sections of delay lines that can be switched in and out
with electronically controlled single-pole, double-throw switches.
Such a device is illustrated in Fig. C-23a. The various delay lines
could be distributed or lumped parametric types depending on the
particular frequency raages being used, The 1800 phase step is ob-
tained merely by reversing the polarity of the 1ine connections at
that point.

d) Other Solid-State Components. During the past years, technical
1iterature has reported significant improvement in solid-state devices
and circuitry for electronically steered arrays, Typically, improve-
ments have been effected in phase shifters, I-F amplifiers, microwave
power sources, mixers, filters, and circulators,

Filters., Excellent filters are commercially available in the fre-

quency range up through X-band and beyond. These include filters
employed in communication systems; for example, bandpass (nominally
flat), band rejection, diplexers, and high Q stabilizing cavities.
In these higher frequency ranges the structures may be waveguide,
strip transmission line, coaxial, or microstrip; but for space ap-
plications, the small, lightweight strip transmission 1ine coaxial
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devices, or microstrip, are most attractive, The performance of
the latter, in terms of loss, needs improvement to be competitive
with waveguide filters.

Preamplifiers There are two possibilities for the preamplifier that

Tend themselves to microstrip application: tunnel diode amplifiers

(TDA's) and transistor amplifiers. With the present state-of-the-art

at 2 to 10 GHz and above, the TDA is slightly lower in noise figure

than available transistors. Since a TDA must use a circulator, a

0.5 dB insertion loss must be added to the noise figure to give a

value of 4.5 dB and perhaps 30 dB of gain. In comparison present

day transistors can give a noise figure of 5.2 dB and 20 dB of

gain.* At present, at 1 GHz, transistors have 3.5 dB noise figures,

but manufacturers (KMC Corporation and NEC) anticipate that devices

with better noise figures will be available within a year, Such

devices would give a receiver noise figure of 4.4 dB at S-band. A

transistor amplifier can be fabricated into a smaller package than

the TDA due to the use of microcircuit lumped elements. The TDA

uses at least one circulator which, with present technology, has a L)
minimum size of about 1 inch square. Thus, on a size and weight =
and future performance comparison, the transistor amplifier is the

preferred device.

At X-band a tunnel diode amplifier will give the best noise
figure. However, because a mixer is simpler, lighter in weight,
and lower in cost and has a competitive noise figure, it is an-
ticipated that it will remain the preferred component at the higher
frequencies for several years,

Mixers The element that most determines the design of the receiver
is the mixer., Present conventional balanced mixers have produced
single sideband noise figures of less than 5 dB at S-band. However,
this value represents carefully matched low loss conditions which may
be hard to achiezve in mass production in microstrip.

An alternative design for the conventional mixer with a low-
noise preamplifier is the image enhancement mixer. Recently at MIT**
an S-band image enhancement mixer was measured with less than a 3 dB
single sideband noise figure and 0 dBm saturation level. The local
oscillator power and complexity of this device is greater than that of
the conventional mixer. A local oscillator drive of 50 mw was reported;

* Nippon Electric Co,, SM153 Gallium Asenide Schottky Barrier Diode.
I-F amplifier noise figure assumed to be 1.5 dB,

**R P, Rafuse and D. Steinbrecher as reported in Sprint, MIT Quarterly
Progress Report and by private communication.
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this figure compares with 1 or 2 mw for normal operation. This type of
mixer will need further development before its merits can be fully
evi uated.

Ac the integrated circuit technology advances, solid-state
devices are being developed for integration into array antennas to
form and phase beams and also for amplification. Microstrip trans-
mission circuits have been developed that contain various microwave
circuit elements such as circulators, switches as well as amplifiers,
mixers, and multipliers (Ref. 19). With these devices, systems become
possible where muny relatively low power transmit amplifiers are used
and distributed over the aperture with each amplifier connected tc a
radiating element. The expected advantages of integrated antennas
include high reliability and Tow cost, simple low voltage power supplies
for the RF amplifiers and a system which is simple and light in weight
and yet capable of operating with relatively high RF power,

e) Summary Since the objectives of this present program are completely
dependent upon adequate phase shifting devices and technigues, a con-
tinuing effort will be made to assess the perfoimance parameters of the
present state-of-art devices as well as to evaluate the potential of
newly discoverad structures. The 1isting shown in Table C-iV describes
the nominal performance pearameters of various genetic types of phase
shifters at X-band frequencies since these devices are readily available
and extensively used in radar systems. As may be seen from the table,
many of the devices have relatively high insertion insses for the present
communication application, These large 1uss vaiues are due partly to

the universal requirements of fast switching speed and high power handling
capacity as dictated by radar application, Neither high-speed nor high-
power capability are necessary for a ground based communication syster.,
and consequently it can be expected that spacial designs of the above
devices may be available with a substantially lower loss than the values of
.6 to 3.0 dB for 3600 of phase shift as shown in Table C-IV. However,

for the present studies a nominal insertion loss value of .5 dB shall be
used until analysis and the appropriate experimental hardward are avail-
able to reduce the insertion loss ‘' the desired value,

The results for phase shifters that are designed primarily for use
at X-band are given only as a temporary ernedient until precise descriptions
of the correspor.ding devices operating at S-band frequencies can be ob-
tained., In Table C-V, a listing of commercially available S-band phase
shifters is given with only some of the pertinent performance character-
istics. More information will become available as these devices are
employed in varicus array applications. Most of the electronically con-
trolled phased arrays in current operation or in the planning stage are
for use in radar systems where power handling capability is one of the
primary concerns. The cost and electrical performance o1 phase shifters
specifically designed for use in communication receiving arrays is as
yet quite difficult to obtain. Table C-VI presents a summary of a recent
article in Microwaves (April '69) c.ncerning the cost and performance of
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TABLE C-IV

MICROWAVE PHASE SHIFTERS (MAY 1968)

_— |

P-1-N Diade
Reflection
Digital « with
3-4b Coupler

X-band

363°
92° steps
(2-bit)

200°/e>

Neglijidle

Negtigiotle

1. Suscep-
tidle to
Suraout

2. High loes
for largs
auriber
of phase
bits

21513 SHa

Ferrite Ferrvite Ferrite P-1-N Diode | P-I-N Died
hngitu_li!ul Transverse Longitudinal Transmission l’cnut:en.
Oarect Field, Digutat, Field, Cigutal, | Fuetd, Digutal, Digital Digitat - One
recteristic Recipracal Nuareciprocal Reciprocal (Striplire) Port Cevice
| o ————— ——
Froquency X-bard X-band X-band X-band X-baad
Phase Shik 360° 360° 360° o 3 "
. .0
Maximum) continueus 22.5° steps 22.3° stepe 22, 3° steps 9° steps
4-bit) (4-0it) TEYY (2-3)
Figare of Maerit | £00°/dd $00°/db 350*/4» 100 /dd 100°/d»
Temperature $*/°C 1°=3°/°C $*4°C Negligivie Negligidla
Sensitivizy
Excess Noise L2 rK K Negligidle Negligidle
Temperature
Ceatret Power | 0.1 want Suy 1074 107 0.1 wate 8. 05 wate
watlesec. watt ~gec
Time Censtant 100 psec. 210 paec. 2-10 pssc. 9. 210 0.2-18
poec, naec,
olze (inches)® Sby i by Shy il by Toy L by 10byldy 1071 by
[ Y23 172 e 172 0.02%
Weight 2-t/202 ¢ 2-1/203. » Sox. ¢ 1-1/2 oz. /2 es.
waveguide waveuide waveguide
Dissdvantages 1. Requires 1. Nonreci- 1. High i. Requires 1. Sascep-
magnetic procal curreat large tible to
shielding driver aumbets Surnout
of diodes
2. Requires 2. Higt 2. Regquires 2. Difficult 2. High loss
temperature current temperature to package for large
slabilizatian driver stalnlization surrcher
of phase
bits
3. Requiras 3. Suscept-
continuous . ible te
botdirg burnout
power
Range of free 2to %0 CHa Tto 40 CHz 2t2020CKs "} 0. 110 10CHx | 2¢0 18 CHle
quencies at
which practicel
devices can be
buile
® Assumaes davice siips into solid-etate array.




$S93BTIFSSY IABMOIOTW - VW »

3TING 3q ued

saotAap TedT3oexd
YoTum 3e satouan

ZHO0°v-0°C ZHOT°€-6°C ZHOT*€-6°2 ZHOT*€-6°2 ZHOT"€-6°C ZPOT°€-6°2 -baxgy 3o abuey
sabejueapesiqg
Iybram
921§
s g°Q si v°0 sh v°0 s 0 sl p°Q sl v*0 JuUeISUOY BWTL
VW] 3® ACOZ- |VWI 38 AOOZ- | vWT 3e A00Z- | VW 3 A00T- | VUI 3€ AOOZ- | YWT 3e ADOC-
VP°E 3 AG+ VE 3 AG+ vO'T 38 AG+ | YWO08 38 AG+ | VWOOv 38 AG+ | YWOOT 38 AS+ IsMog TOI3U0D
aanjexadwiy
atqibriben a1q1bT162N a1qtb11baN 31q1bTT108N a1q1bT (BN a1q1bTT1baN 3STON $S99X3
AYTATITSUSS
a1q1b1 162N 21q1b11baN arqtbriben a1qtbTTbAN 21q1bTT1baN a1qtbriben sanjexaduway
(ap ut
(4N SA wnuwixepn)
GL T £°2 €°C £°C £°C €°C }TI3N jo 8InbTg
sdais  _9°G sdays g°2Z sdajs 22 sda3s,G°22 sda3s,G°22 sda1s5,G°22 (wmuxen )
. 09¢€ . 09€ .081 .06 o GV ,6eee 33TYs 9seyd
pueg-S pueg-g pueg-S pueg-9 pueg-S pueg-~S Aduanbaxg
1e3tb1g Te31b1@ Te31b1Q Te31b1q Te3tb1g Te31b61Q
apoTg G268 apo1g XTG8 apoIg XTGY apotg XTSZ apotg XTGT apoIg XGO 513stIaOEILYD
9GEB-YW 9GE8-YW 9GE8-YW 9GE8-YW 9G€8-YW 9GE8- %YW
"A-0 318Vl
. W L i u AR s §§

115




MX € Jeed

uaaLb jou

J

(psanjdejnuew

s3Lun 000Y)
1505 |enjoe

00°0G1$

uaatb aou

00°06$

uaaLb jou

uaalb jou

93 L4434
apLnbaaem

*ALQ SABMOUD LY

Aaaadg
UOSLAJRH °9

MX T SAe

MY 001 >eed

gp 0°T - §°
A=S

(s3tun 0001
uo paseq)

00°86%

00°81$
00°0S$

00°01$

00°02$%

9314494
apLnbaaep

qe7 uLosut
LIW
suwa] *H°d

“:.1 ™™ )

M G 3Ae

M 00T Xead WM Geg »ead M00Z Yead
ap 2> uaALb jou uaalb jou
uaaLb jou uaaLb jou ny ¢3 ¢s

(situn 0001

(s3tun 0001

(s3tun 000°01

uo paseq) uo paseq) uo paseq)
G2 8¢c$ 00°281$ 00°0S$
ajewLlsd
3S0D ulL papn|oul
4ou uaALb jou 00°8T$ 06°22$
00°0€$ 00°Sv$ 0S°t $
00°9% 00°6€$ 00°01%
(s403Loeded ssedAq
. pue sapolp 9T) (sspolp 91 404)
08°v$ 00°08% 00°8%$

9114434 avUR|4 OpOLQ PASNOH |eIdW

ULWoUd LW 3polQ
*duo) yo4easay
K3LSa3ALUf dsndeuAS
awooy °1°9

SJUBWNAJISUT Sexaf
UL3tAy "Wl

*20SSY SARMOUD L}
9ILYM “4°0

(SOARMOUD LW 696T LL4dy wouy usxe3 ejeq)

JONYWY0443d ONY LSO0D ¥3LJIHS 3ISYHd 40 AJAINS
IA-J 319Vl

A31|1qeded
Bul|puey 4aamod

SSO| UOLIAISUT

Aouanbau4

3U0 404
1500 pajewl}sy

buryssl

‘aogel ‘piaLaA
d9A14(

parOq €83eRU4lSqns
fursnoy €burbeiyoeyd

spelddjew 93Laud}
A0 S3pOLp JO0 150)

4933LYs aseyd jo adky

UOLIRULOJUL JO dD4NOS

116




I A

phase shifters. The values given are not those presently available but
represent a best estimate by an expert in each company about what can
be made available if the need presents itself.

8. Preliminary Considerations of
Subsystem Organizations

This study has demonstrated that the required array size and cost
is extremely sensitive to the phasing and feeding components. The
critical part of the feed network is at the subarray level. The prob-
lem is how to combine and phase shift the individual elements to form
a subarray output. Any attenuation and noise which occurs after the
subarray amplifier is relatively unimportant,

After considerable study of the various possibilities described in
the previous subsections, it became apparent that a typical receiving
system organization would require certain specialized characteristics.
Thus Fig. C-25 shows a simplified diagram of a characteristic receiving
system which can be used .independently or in conjunction with an adaptive
mode to provide for periodic interference from a large noise source or
from coherent interfering signals. Course scanning of each subarray
Jould probably be achieved by computer programming for two reasons:

1. The desired look angle is usually known quite accurately or
can be determined by raster scanned search techniques or by
using information from only one portion of the available
aperture,

2. The SNR at the output of each element in the subarray of a
large array would be considerably below the threshold of
any adaptive combining scheme.

The output of each subarray is amplified by a low noise device
such as a maser or paramp to reduce the noise degradation due to the
feed lines and the signal processing equipment which follows it. Each
anplified subarray is then multiplied by a complex weighting coefficient
(amplitude and phase) before being combined to produce the array output.
The value of the weighting coefficients could either be determined by
the open loop techniques ?computer program) or by closed loop feedback
techniques such as phase locking, minimizing mean square error or any
such operational techniques. The choice, of course, depends on the
array environment. For example, if undesired or interfering signals
were present, the proper choice would be the adaptive mode using the
LMS technique as described in Section IV-D to generate array nulls
in the direction of the interference. Finally, the array output is
decoded or detected to recover the desired information,

A corporate feed network has been studied and the need for low
loss transmission feed 1ines was demonstrated in this subsection.
Stripline, one of the most appealing materials iirom the cost aspect
since it is ideal for mass production was shown to seriously degrade
the subarray performance, ’
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Fig. C-25, Block diagram of receiving array,
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An alternatz type of feeding and phasing arrangement which might
eliminate some of this problem is the reflector feed shown in Fig.
C-26, Each subarray would have a horn which is essentially an optical
feed to receive the energy scattered by the subarray elements. The
scattered waves are focussed at the collecting horn by phase shifters
behind each element. For example, if the antenna elements were open
ended waveguides the phase shift could be obtained by turning on the
proper diode switch (see Fig. C-27) to produce a variable length
short. This reflect array technique is being employed in many of the
modern phased array radars,

To design a phase shifting technique for dipole elements is con-
siderably more difficult since any impedance changing scheme will
detune the dipole and greatly reduce the amplitude of the scattered
wave. Active devices might be used to solve this problem but the large
noise contribution from any of these devices would probably make this
approach uncompetitive with the corporate feed scheme. Additionally,
their fabrication is more complicated and consequently more costly.

An analysis of the various studies and inputs that have been con-
ducted in this subsection bring to light many problems that still need
solution. The problem of limiting the noise (or attenuation) in a sys-
tem that has to be distributed over vast amount of real estate is still
a difficult one to decide on how to proceed. It is to be hoped that
the solution will be reached or that some invention or technique will
be forthcoming which will permit a design to circumvent this difficulty.
However at present, only more conceptual effort is called for at this
stage. Consequently, it is one of the purposes of this program to
investigate all recent developments in both components and techniques
in an effort to solve the subarray distribution problem.
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Fig. C-27, Scheme for phase shitting,
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APPENDIX I
RELATIONSHIP BETWEEN GAIN AND SIZE FOR
THE DIPOLE ANTENNA MODEL

To calculate the gain of the two dimensional array shown in
Fig. Al it is convenient to use the concept of array multiplication,
that is the total pattern can be calculated as

Fr = FF F F

T 'EXylZ
where

F

E element pattern of a single dipole

FX,FY = array factor for an array of isotropic elements
along the X, Y axis

-n
1}

array factor for two isotropic elements along the
Z direction,

For Dx = D-y = A/2 and Dz = A/4 the resulting expressions are:

F _'cos(m/2 sin_ 6 cos @)
Jfl - sinze cosz¢

F, = sin(n/2 cos 8)
(No-l)/Z
Fp=142 ] cos(Kn sin 8 cos ¢)
k=1
(No-l)/Z
Fp=1+2 ] cos(Kr sin 6 sin ¢)
k=1
where
N0 = number of elements on a side (assumed odd).

The power density S = F$ and the directivity is

1r/2
J S(6,4) sin o do d¢
0

o‘——'ﬁ
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. _A°D
The effective aperture Ae =T -

Defining the physical aperture is somewhat arbitrary, for example,
a single dipole has zero physical area, However for large arrays
each element occup1es on the average A2/4 area, hence the total
physical aperture is defined as A N2 ) 2/4, Figure A2 shows the
relationship between Ag and A Rote %hat the effective collecting
aperture rapidly approaches tRe physical size.

8 .

GROUND PLANE
AT ¢z 0

Fig. Al, Dipole array model.
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APPENDIX 11
COMPUTER PROGRAM

This appendix includes a 1isting of the computer program dis-
cussed in the report. A simplified flow diagram is included to show
the order in which the data is entered, calculation are performed,
and reduced data is displayed.

No particular attempt was made to minimize the computer
execution time; casual programming was used throughout for simplicity.
The example discussed in the report with 32 possible system configura-
tions required two minutes (about $5) using a commercial time sharing
computer,
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ENTER RANGE IN Au

FNTZR DATA RATE

i .

ENTER NUMBER OF CHOICES 1
FOR EACH COMPONENT
ENTER CHOICES FOR PHASE SHIFTER :
LOSS AND COST
ENTER CHOICES FOR FEED LINE
ATTENUATION AND COST
ENTER CHOICES FOR AMPLIFIER i
;g TEMPERATURE AND COST :
I ENTER NUMBER OF SUBARRAYS DESIRED
{ ENTER FIXED COST PER ELEMENT
GENERATE COEFFICIENTS FOR
i ALL POSSIBLE ARRAY CONFIGURATIONS
,, CALCULATE REQUIRED NUMBER OF
{ ELEMENTS AND COST FOR EACH CONFIGURATION
: SORT IN ECONOMIC ORDER BEGINNING
i WITH THE LEAST EXPENSIVE
l DISPLAY ORDERED LIST OF SYSTEM
CONFIGURATION AND RELATED COST
1 Fig. A3, Simplified flow diagram of computer listing,
125 :
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|
2.
Je
4.

Se
6o
Te

Be
9.
10 .
11.
12
13.
14.
15.
16.
17.
18.
19.
20«
21l.
22«
23.
24.
25
26«
27.
28e.
29.
39 .
31.
32.
33.
34.
35S
36.
37

38
39

40 .
41 .

42 »
43 .

44.
45.
46 ¢
47

C:COST OF PLANAR RECEIVING ARRAY OF DIPOLES FOR VARIOQOUS PARAM.

C: COMPUTED FOR 59 #ATTS TRANSMITTER, 32 FOOT DISH i
C: MAX BIT ERROR PFROB=10=*x-5 (19 DB SNR) o
DISPLAY{ *COST ANALYSIS FOR S BAND PHASED ARRAY OF DIPOLE ELEMEN
TS") <5
DISPLAYL® *) -
DIMENSION PSLDB(S),»CPS(S),DBPF(S),»TAMP (5),CAMP (S5)»NSA(S)
DIMENSION LL(C(S)LIFC(S)LFEC(S),SNR(99),C0O0ST(99),CFL(S)

DIMENSION IC(99),NELEM(99)

99 FORMAT(FS¢2-,214519,FS5:25F4:1517,110,112,F9.2)

DISPLAY[ "ENTER DISTANCE IN AU"])-

ACCEPTCLAU] i
DISPLAYL "ENTER DATA RATE IN MEGABITS PER SECOND') o
ACCEPTIDR]

DISPLAYL "ENTER NUMBER OF CHOICES FOR EACH COMPONENT') H
ACCEPTINC) <
TANT=9

DISPLAY( *ENTER PHASE SHIFTER LOSS(DB) AND COST($)>"]) 1
DO 13 I=1,NC-

DISPLAYL* CHOICE'",11]-

19 ACCEPTIPSLDB(1I),CPS(I)] _
DISPLAYL 'ENTER FEED LINE LOSS(DB/FT) AND COST/ELEMENT'") ;
DO 15 J=1,NC o
DISPLAY(* CHOICE",J]-

1S ACCEPTIDBPF(J),CFL(J)]

DISPLAYCL "ENTER AMPLIFIER TEMP AND COST*)
DO 22 K=1,NC

DISPLAYL®* CHOICE*,K] i
20 ACCEPTLTAMP(K),CAMP(X)]

DISPLAYL 'ENTER NUMBER CF SUBARRAYS DESIRED'"]
DO 25,L=1,NC 71
DISPLAYL' CHOICE'",L] f
25 ACCEPTINSA(L)Y] ’ -
DISPLAY( "ENTER FIXED COST PER ELEMENT'™)

DO 26 M=1,NC

DISPLAYL* CHOICE'",™M]

26 ACCEPTLFEC(M)]) :

DISPLAYL* FOR THE ABOVE PARAMETERS THE POSSIBLE SYSTEM CONFIG
URATIONS AND THEIR COST ARE:'"1] -

DISPLAYL® ]

DISPLAY[L®' PHASE AMPLIFIER FEED ELEMENT NUMS3 RE
QUIRED T0T'*)

DISPLAYL* SHIFTER LINE COST SeA. NO
«ELEM COST']
DISPLAY( *'~=recrccccccncncnccna

[}
s
s e

DISPLAYCL 'LOSS $

DISPLAYL *(D3)
MILL s$'"])

NV=1

DO 5 MM=1,5

S5 LL(MM)I=1

6 I=LL(1)

i




43« - J=LL(2)

49. K=LL(3) :
5. L=LL ¢4) 3
51 M=LL(5) :
52 DSNR=12+%ALOG12(13./NSA(L)) :
53. FLL=1 e=DP3FF(J)*e23%,22

54. T0=299

55 PST=29)

55 A=-168-27*%aL0G13(AUI=-PSLN3CI) .

57 BA=Cle38%10%%~23)% (e SkDR%]1D%%5) H
S8. PSL=EXP[~2«3%PSLD3(¢1)/192] i
59 N=19 :
63 32 SuUM=2 i
61 I1=N/12 E
62 DO 35 NK=1,N- - i
63 35 SUM=SUM+FLL**(NK~-1)- :
64. Z= (FLLZ CN¥N) I *SUM*SUM

65 SIG=A+13*%ALOGIIIN*NI-19*AL0OG13(1/Z])-

66 TNOS=12*ALOGIALI3K* (TO* (1 =Z)+PST*(1-PSL)*Z+ TANT*PSL*Z+TAMP (X)) 1+

32 '

67, SNRCII)=SIG-TNOS

68 17 (SNRCIII-DSNR) 43, 42,45

69. 43 N=N+132

79 « GO To 33

71 45 SLOPE=CC1O*11)*%2-C12%(IT1-1))%%2)/(SNRCII)=-SNR(II~-1))

72 YINTERCEPT=(19*I11)%%2-SLOPE*SNRC¢II)

3. NELEM(NV)=SLOPE*DSNR+YINTERCEPT

74, GO TO 59

75. 42 NELEM(NV)=N*N

76 53 COSTI(NV)I=(NELEM(NV)*(CPSC(I)+CFL(J)+FEC(M)I+CAMP (K))*NSA (L)

17 ICI(NVI=NV :
78 NVz=NV+1 !
79« IF(NV.GT.NC*x*5) GO TO 923 .
82 . CALL COM3[LLsNC»51]

81 o GO TO 6

82 o 93 CONTINUE

83« CALL TPLSORTL1sCOSTs»ICoNELEMs1,NC*%5)

84 CONTINUE

8BS DO 91 NV=1sNCx*5- :
86« DO 92 MM=1,5 : i
87, 92 LL(MM) =1 ¢
88 . 1Z2=1 3
89 95 I=LL 1) :
93 . J=LL (2) :
91. K=LL(3) i
92 L=LLC4) :
93. M=LL(5) H
94, IFCIZEQ.ICI(NV)) GO TO 94- -
95. CONTINUE

96 CALL COM3CLL»NC,5)

97. 1Z=1Z+1

98 GO TO 95

99, 94 CONTINUJE

127

‘ m G WWW“WWWW"W i




183.

101 .
102.
133.
184.
125.
106.
107,
108.
109.
110.
111.
112,
113,
114.
115.
116

117.
118.
119.
120 »
121.
122
123
124.
12S.
126
127
128
129
130 .
131
132
133.
134.
135.
136.
137.
138,
139.
140 .
141.
142.
143.
Y44,
14S.

91 WRITEL1,99) PSLDB(I)»CPS(1)» TAMP (K),CAMP (K),DBPF(J)»CFL(J)»F

EC

(M) > NSACL) »NELEMINVI®NSACL) ,COSTINV)I/10%%6

CONTINUE
END

1J

SUSROUTINE COMBLLL,I,»J]
=1 '

9 LLC(1J)=LL(1J)+]

IF
LL
IJ
IF
GO
EN

Ct
C:
C:
C:
MS
Ct
C:
C:
1F

(LLCIJYeLE.]I) RETURN
(1J)X=1}
=1J+1
(1J¢GT+J) RETURN
TO 9
D

SUBROUTINE TPLSORTLKODE,SEEDS,FOLLO, TAKE: JAXsLAX]
IF KODE=1,ASCENDING SORT. IF KODE=2,DESCENDING SORT.

SEEDS 1S THE ARRAY TO BE SORTED.-

FOLLO AND TAKE ARE TWO ARRAYS WHICH ARE TO BE REARRANGED
ACCORDING TO THE NEW ORDER OF SEEDS, SO THAT THE PROPER ITE

AILL STILL BE CORRECTLY ASSOCIATED WITH SEEDS.
JAX IS BEGINNING LOCATION TO SORT FROM.
LAX IS END LOCATION TO SORT TOe.
(LAX<EQe1) RETURN
IFCIJAXGT«83)GOTO7
JAX=1
7 IFCKODEeLLT el eORKODE.GT2)GOTO6
DO 1 JO=JAX,LAX-1
D02 KI=JO+1,LAX

GOTO(3,4)K0ODE
3 IF (SEEDS(JO) «LE.SEEDS(KI))GOTO2
S SAVE=SEEDS(JO)-

SEEDS(J0O)=SEEDS(KI)-
SEEDS(K1)=SAVE
TEMP=FOLLO (JO)
FOLLOCJOI=FOLLO(KI)
FOLLOCKI)=TEMP
HOLD=TAKE (JO)-
TAKE(JO)=TAKE(KI)
TAKE (KI)=HOLD-
GOTOo2
4q IF (SEEDS(JO)+LE.SEEDS(KI))»GOTOS
2 CONTINUE
1 CONTINJUE
RETURN

‘6 DISPLAYL "ILLEGAL CODE IN CALLING SEQUENCE.'"]

DISPLAYL® KODE=',KODE]-
STOP
END-
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D. ADAPTIVE ARRAYS

1) Introduction

An invesiigation of adaptive arrays is being pursued in this
program because an array, composed of either dishes or small elements,
can of fer improved performance, and perhaps lower cost, over a single
large dish antenna. This section briefly discusses the theory, experi-
mental results, and application of the LMS adaptive array. A more
complete discussion can be found in a separate report (Ref. D-4)
which is to be considered a portion of this program and, consequently,
this report.

Previous to this study there were two ways to combine the outputs
of the subarrays in order to form an array pattern:

1) A programmed technique in which the required phase shift
for each subarray is calculated from known ephemeris data.

2) A phaée lock technique in which all of the subarrays are
automatically made to have the same phase at the carrier
frequency so that coherent combination can be achieved.

A third way has now been suggested, the LMS approach, which
offers some additional improvement not possible with the above two
techniques. If an interfering signal (or signals) is present in the
environment of the array (for example in the sidelobes, near field,
etc.) the LMS technique will automatically phase the subarrays in such
a manner to direct a null of the array pattern at the interference.

In principle this null pointing is also possible with programmed com-
bining but not feasible since the array geometry, mutual coupling, and
direction of interference is not usually known with sufficient accuracy.
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Phase lock and LMS are both "self steering" techniques since
they point the array main beam in the direction of th2 desired signs’
but they perform quite differently in the presence of the interfering
signals, In fact, a phase lock system makes no attempt to reject inter-

ference, i1t merely aligns the phase of the carrier signal from each
subarray betore adding them,

2) Theoretical Description of an Adaptive Array

An "adaptive antenna" may be defined as one that modifies its own
pattern, frequency response, or other parameters, by means of internal
feedback control, while the antenna is operating. Such automatic control
of the antenna characteristics may be used (1) to exclude interfering
signals from the output of the antenna, or (2) to maintain antenna
performance in the presence of a changing near-field environment, as
explained below. Other uses for such antennas are also discussed in
subsection IV-D,

The work to date in this area has concerned an adaptive array as
shown in Fig. D-1 and is based on a feedback algorithm for least mean
square error (LMS) as discussed originally by Short (Ref, D-1) and also
by Widrow, et al, (Ref. D-2, D-3). In the basic form of such an antenna,
x%(t), «oe, xp(t) represent the signals received from the individual
elements of the array. These signals are multiplied by weighting
coefficients, wi, -+, W, and then added together to produce the array
output s(t). In order to control the weighting coefficients wj, the
output signal is compared with a "desired signal" d(t) to produce an
error signal e(t) = d(t) - s(t). (The question of how d(t) is obtained
is discussed below.) The error signal e(t) along with the signals x4(t),
«evs Xp(t) are used as inputs to a feedback system which adjusts the
weighting coefficients w;. The feedback operates in such a way as to
minimize ¢2(t), i.e., to make the output of the array approximate the
desired signal d(t) as closely as possible, in a minimum squared error
sense. The operation of the fedback loop may be described as follows:
since the output from the array is (see Fig. D-1)

s(t) = J wx;(t)
i

the error signal is
e(t) = d(t) - } wix,(t)
i
and hence the "squared error" is

2 _ 42
e“(t) = d°(t) - 2d(t) g wixi(t) + ; g "i"j”i(t)xj(t)
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Fig. D-1.

ez(t) is always a positive quantity and may be used as a performance
criterion for the array. The lower ¢Z, the better is the array ad-
justieat. At any given time, ¢2 is a quadratic function of the weights
Wi, 50 the surface defined by plotting 2 versus the wi's is a "bowl-
shaped" surface with a well-defined minimum, The value of wj can be
adjusted to keep the array operating near the bottom of the bowl, i.e.,
to minimize 2. To do this, w; is adjusted according to a steepest
descent method by computing the gradient of e2 with respect to the

W{, and moving the w; in the maximum downhill direction.* Specifically,
compute v(e2) from

2 2
2y 3 ;o435 a v L s 2 g
v(e) = aWy Wyt oW, Wy ¥ + oW "n

*Comparison of the work of Shor (Ref. D-1) and Widrow (Ref. D-3) also
shows that this is (dentical to a steepest-ascent ontimization of
signal-to-noise ratio,
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" and then adjust each v, s0 that

dw 2
i _ 2\ _ de
dt ksvi(e ) = kg oW,

2
where kg 1s a negative constant. Thus, if %&— indicates a large sen-

sitivity of e to Wi, Wi 1s changed quickly tg move toward the bottom
of the bowl. If (aeé)/zawi) is very small, w; changes very siowly.
Since

Vi(cz) = Zevie = -ZEXi

the feedback rule is actually

dwi
a-i— = -2ks C(t)xi(t)

or

wy () = =2k [ e(t') X (t)dt" + ;o)
0

3) Summary of Experimental Results

Cne type of adaptive array which automatically rejects undesired
or interfering signals has been studied and experimentally implemented.
The complete description of this system and the measured data obtained

are presented in a separate report (Ref. D-4), The array behavior is

controlled by an adaptive feedback system, whose operation is based on
a steepest descent minimization of error,

A two element S-band array of this type was built and the report
discusses its experimentally measured antenna patterns for various

desired and interfering signals. Its transient response behavior as

well as the relationship of the received signal and reference signal
spectral properties to the array behavior is also discussed.

BT

The results show that such an antenna system is capable (within
certain basic constraints) of automatically rejecting interfering

signals under a wide variety of conditions. No a priori information f
concerning the angles of arrival or the detailed spectral properties i
(except the carrier frequency of the desired signal) are required.

s i35
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4) Possible Applications for Adaptive System

Although the prime motivation for studying adaptive arrays with
respect to high performance communication systems has already been
mentioned, it is certainly worthwhile to consider how such an antenna
type can be used in other applications. Since it is a versatile tech-
nique, it needs some further consideration before its total value is
clearly understood. A number of applications have occurred to the
workers on this program, and as the behavior of these antennas
becomes clearer and the performance characteristics becom: more
definitive, more applications become apparent, These applications
are worth discussing because they provide the motivation and justi-
fication for working in this portion of the program. However, it has
now become apparent that adaptive arrays have versatility which can be
employed successfully in othar areas, Consequently, this subsection
will be devoted to a qualitative description of some of the areas where
adaptive antennas appear to be useful,

The first and perhaps most important application of adaptive an-
tennas will be as a "design tool" for conformal arrays--for arrays
whose elements must be placed on a curved surface. In practice, it is
difficult to design the phasing networks for a conformal array (par-
ticularly if the antenna beam must be electronically scanned) because
the element patterns and mutual impedances are different for each
element. Adaptive antennas offer a possible solution to this problem.
A conformai array can be built on the surface on which it is to be
used, 2nd then by going through a special test procedure, while the
antenna is operated in an adaptive mode, the optimum set of weighting
coefficients can be found. The test procedure would consist of il-
luminating the antenna with a test signal from various directions in
space, while using the same test signal for the desired signal d(t).
The adaptive feedback will find, for each direction of illumination,
the best set of weighting coefficients, In other words, the antenna
will design its own aperture distribution. The coefficients found
can be stored and used later in a normal scanning mode.

A second use for adaptive antennas is in situations where the
antenna is subject to a changing near-field environment, and it is
necessary to recalibrate or readjust the pattern of the antenna during
such changes. There are many examples of this. For instance, antennas
used for aircraft control around airports must have patterns which are
accurately known. After such an antenna is installed and operating,
it may happen that at a later date airport officials would like to put
up a new building, but are unsure what effect the presence of the
building may have on the antenna pattern. If the antenna could be
operated in an adaptive mode, it could be recalibrated periodically
as the building is being constructed, using a test procedure similar
to the one outlined above.

A third use for adaptive antennas is for communication antennas
that are resistant to jamming and other forms of interference. By
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providing a "desired sici«1" d(t) and a test signal on each element
of the array with a phase corresponding to a given "lock angle", an
adaptive antenna has the property that it receives signals from the
desired direction, but tends to form nulls on signals arriving from
other directions. (This behavior is described by Widrow, et al.,

Ref. D-3). If an interfering signal appears from a certain direction,
the weighting coefficients ir the array readjust themselves to form

a null in that direction,

As a fourth possibility, the same technique as used for anti-
jamming antenna above can also be used to eliminate low-angle clutter
from a radar antenna. The requirement for operating an antenna at
low elevation angles results in a difficult pattern synthesis problem,
namely, the synthesis of a main beam with a nonsymmetric sidelobe
structure. The sidelobes on the "ground" side must be minimized at
the expense of the "sky" sidelobes. The adaptive array achieves the
desired characteristics in an optimum way by minimizing the undesired
power return from wherever it may arrive and at the same time maxi-
mizing the desired signal,

Mary other possibilities exist. It is clear that the applications

for adaptive arrays, although of a special nature, are sufficiently
numerous that study in this area is worthwhile,
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