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EFFECT OF OPERATING PARAMETERS
ON PERFORMANCE OF STANDARD THRUSTER

*
by G. Palumbo and R. Vahrenkamp

In an effort to improve thrusﬁér performance by the
reduction of discharge and impingement losses, the effects
of grid Spacing, acceleratot‘potential, cathode flow rate,
and main magnetic field intensify were considered. Through
an investigation of these parameters, a base operating con-
dition has been established.

The interrelation of grid spacing, magnetic field, and
accelerator potential was determined by a variation of these
parameters at a comstant main and cathode flow of 6.1 and 0.7
gn/hr respectively. The keeper current was held constant
at 0.1 amperes. '

Because of warpage, an exact measure of grid spacing was
difficult to achieve with an ordinary feeler gauge. However,
knowing the location and the amount of the warpage of each
grid, ' a reasonable spaéing could be obtained. The range of
spacing was from .045 in, to .085 in. The magnet current,
ranging from 0.1 to 3.0 amps, was varied at each grid spacing,
as was the accelerator potential which ranged from 1.0 to
2.0 kilovolts.

Apparatus

Descriptions of the vacuum facility and experimental
apparatus have been reported previouslyl; here the concern
is mainly in describing the changes that Weré made in order
to facilitate the research and to improve the reliability

of the data. The keeper has been changed from the original

*
Graduate Research Assistant, Master of Science Student



loop of thermocouple wire to a rectangular strip of refractory
metal with a central hole. The advantages of this new keeper

are due to thé exact location of the hole with respect td the

cathode tip and improved resistance to melting. The circuitry
was simplified by eliminating the starter supply so that there
is no need for the diode in series with the low voltage keeper
supply. |

The cathode remains unchanged, but its vaporizer heater
was moved 10 cm. further back in order to prevent heating of
the vaporizer by the cathode heater. Subsequent instability
and difficulty in operating the thruster, probably due to
vapor condensation in the pipe between the heater and the
cathode, forced relocation of the heater to its former position.
" This action corrected the instabilities. ,

The feed system was also improved by adding'a reservoir
and valve for each feed line so that the refilling could be
accomplished during engine operation without turning off the
high voltage. This procedure ensures versatility and safety.

The instrumentation has been improved by using-a digital
voltmeter (D.V.M.) to measure voltage and current for the arc
and magnet. A separate D.V.M. is being used to measure beam
and impingement current. Each D.V.M. has been calibrated
against a calibrated power supply driving a precision resistor.
The currents are measured through the voltage drop across a
precision resistor of 1 ohm, so that the reading in voltage is
equivalent to the current.

An oscilloscope is used to monitor the arc current in
order to observe fluctuations in the discharge. The D.V.M.
for the arc, and magnet measurements{ and the oscilloscope are
isolated from ground and located in a cabinet protected from
the operator's side by a lucite door.

A switch located in the same cabinet can be used to connect
signals from the arc Variables, keeper, and magnet across the
D.V.M. In addition, all these can be visualized on the scope

so ag to isolate the source of instability.



Effect of Grid Spacing

The effect of grid spacing on discharge ev/ion is shown
in Figures 1 and 2 as a function of magnet current and of
accelerator voltage. Data collected at a grid spacing of
.045-in are not presented because of considerable instabilities
at this spacing which preclude operation above a mass utili-

. zation of 85%. The effect of grid spacing, at various voltages,
on impingement was then investigated. The results are shown
in Figure 3.

From the data reported here on the effect of grid spacing,
it is evident that there is a significant decrease in discharge
losses at the closer grid spacings. However, the impingement
seems to be relatively unaffected by grid spacing. It is
believed that the wacuum tank pressure is responsible for'this,
since it is somewhat high in the bell jar. Gauge measurements
in the tank indicate about 1 x 10—5

the thruster, the gauge reading indicates a pressure of 7 x 10

torr, while "upstream" of
5

torr. At the accelerator electrodes, the pressure is probably
intermediate to these two extremes.
The limit of closest operational grid spacing (0.055 inch)

is also assumed to be a function of this pressure.

Effect of Accelerator Voltage

Discharge losses for several sets of accelerator volfages
are shown in Figure 4. From these data it is clear that
discharge losses are significantly reduced for the greater

accelerator voltages.

Effect of Total Flow Rate

at Standard Base Operating Conditions

.

From the foregoing data, the following base condition

for future thruster research was established:



1) The high voltage would be maintained at %2 KV.

2) The magnet would be in the 1.7-2.0 amp range. This
allows a wider range of mass utilization to be ob-
tained, without a significant effect on thruster
performance.

3) The grid spacing would be .060 in. This was chosen
mainly for stability reasons, since excessive arcing
was occuring at the closer spacings.

The effect of total flow rate, at these base conditions,
was then determined and the results are shown in Figures 5
and 6. In obtaining these data, both the cathode and main
flows were adjusted so that a constant discharge voltage of
approximately 35 volts was maintained. Any increase in main

flow resulted in a decrease of céthode flow.

Discussion

It is evident from Figures 1 and 2 that the performance
is increased by decreasing the spacing. The distance and
voltage difference between the screen grid and the accelerator
grid set the field strength and the penetration of the same
in the main discharge chamber. Such penetration effects the
extraction surface for the ion and the focusing of the same
out of the chamber.

Increasing the field strength by either increasing the
high voltage or simply by reducing the spacing at a given
voltage will result in an increase of the electric field
strength, and as a consequence a deeper field penetration
and an increase of ion extraction surface area; This will
result in a higher beam current and decrease of discharge
losses. This trend will be effective up to a point beyond
which other detrimental effects will be important, such as
increased accelerator current. The sudden increase of ev/ion
below the 0.055-inch spacing, and the instability in the

running condition, suggest that at the operating pressure the



break-down voltage could be reached at which a discharge
could be set up between the two grids.

The effect of magnet current is closely related to the
Larmor radius of the electrons and to diffusion and instability
effects. By increasing the magnet current, the field strength
increases, the Larmor radius decreases, and thus by confining
the electrons closer to a field line more collisions will
occur and thus will have as é consequence a longer path length
from cathode to anode. The increase of collisions will in-
crease the probability of ionization in the chamber and this
will result in a higher ion density so that at the same arc
pbwer higher beam current can be extracted. The diécharge
losses will decrease because the ratio arc-power/beam-current
will go down. When the electrons have had enough collisions to
lose all their energy before reaching the anode, a further
increase of field strength will not improve the probabiiity of
ionization, and will only increase the possibility of plasma
instability. Plasma instability will increase diffusion of
electrons to the anode thereby decreasing ionization proba-
bility, and an increase of discharge losses will result.

The major effect of increasing the total flow rate is
in the increase of neutral density in the chamber, and thus
higher rate of ionization. This will increase the ion density
and a higher beam-current will result at the same arc power.
-As a consequence, the discharge losses will decrease and the

performance will increase.

Conclusions

The main conclusions from this portion of the investi-

gation are:

1) There is a significant decrease in discharge losses
at the closer grid spacings. '

.2) There is an optimum magnet current, as far as discharge
losses are concerned, but after a certain current is
reached there is little effect over a wide range.

3) In the range investigated, increased total flow rate
tended to increase the performance.



CONICAL BAFFLE

* by R. Vahrenkamp and G. Palumbo

The importance of the baffle is to separate the two

discharge regions that control the thruster performance..

The open area is the most important part of the baffle

region because it influences the impedence of the connection
between the cathode discharge and the main discharge which
controls the voltage drop through which the primary electrons
are accelerated. The voltage at the baffle exit gives the
energy to the electron, thereby controlling the amount of
ionization in the main discharge. '

Little has been done in the present study on the effect
of the baffle open area; attention has been concentrated on
the use of a conical baffle instead of the flat one. The in-
tent of the conical baffle was to decrease the neutral atom
density within the hollow-cathode discharge region by reducing
the resistance to flow of neutrals leaving the pole piece
interior.

Figure 7 is a sketch of the conical baffle configuration
used. in the tests. The conical baffle was designed to present
the same open area to the discharge as the flat baffle used
in earlier tests.

The effect of baffle geometry is summarized in Figure 8
where typical data obtained with a flat baffle and the conical
one are compared. It appears from these data that the increased
surface area of the conical baffle causes degradation in per-
formance that exceeds any improvement which may be realized

because of the geometric effect mentioned earlier.



EFFECT OF POLE PIECE GEOMETRY
AND FIELDS ON PERFORMANCE

‘ *
by G. Palumbo, R. Vahrenkamp, H.R. Kaufman ,
P. WilburT, and W.R. Mickelsen

In the following sections a detailed description of the
studies conducted on the inside region of the pole piece. . will
be given. It is well known that significant increases in
discharge losses result from replacing an oxide cathode with
a hollow cathode in an electron-bombardment ion thruster. It
has been suggested that this increase is due to an excessive
ion flux to the imside walls of the pole piece region (ref.2 ).
Several attempts to decrease these losses will be described.

The chénges made to the hollow cathode region include
changes in the volume of the discharge region and magnetic
and electric fields. The physical geometry of the pole @iece,
cathode and keeper were not altered. ‘Preliminary investigation
of the effect of a magnetic field inside the pole piece has
been reported (ref. 3), and another similar investigation is

being conducted elsewhere (ref. 4).

Simple Solenoid

An improvement was made to the pole piece region by
changing the magnetic configuration inside by applying an
internal magnetic field thereby reducing electron migration
to the walls. It was presumed that the changes in the ion-
drift electric field caused by reduction of the electron current
to the walls would in turn reduce the ion wall flux, in a manner

similar to that observed in the main chamber.
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The internal field was applied by the use of a 21-turn
solenoid winding of diameter close to the pole piece diameter
as shown in Figure 9. When the current in the cathode pole
piece coil is such that its field opposes the main field,
the field configuration of Figure 10 was obtained. Performance
data are presented in Figure 11. The data show a decrease in
discharge losses as the cathode field is increased. For con-
venience, the effect of such a field on performance at 90% mass
utilization is given in Figure 12, while Figure 13 shows the
effect of the field on discharge voltage and beam current.r

When the cathode-pole-piece coil is carrying a current
in such a direction as to aid the main field in the cathode
pole piece, the magnetic field configuration of Figure 14 was
" obtained. The performance data obtained with such a field and
with the 5-cm diameter shield in place(shields are discuséed in
a later section) are presented in Figure 15. These data show a
general decrease in performance with increasing cathode field.

By examination of Figures 10 and 14, it is evident that
when the cathode magnetic field opposes the main field, the
resulting field lines tend to diverge just upstream of the
baffle. This divergence of field lines appears to be such as
to encourage electron flow toward the annular opening between
the baffle and the pole piece. The ultimate field configuration
may be one where a critical field line reaches from the cathode
to the baffle aperture, much as suggested in reference 5 for the
main discharge. As an approach.to this concept, a double

solenoid configuration was tried, as described in the next section.

Double Solenoid

From inspection of Figure 10, it can be seen that the
magnetic field lines that pass near the baffle aperture do
not originate near the cathode. Displaéement of these field
lineg inwards to be near the cathode could be accomplished by

the addition of another solenoid coil as shown in Figure 16 (a).



Typical magnetic field configurations with the secondary coil
are shown in Figure 16 (b) shows the magnetic field shape when
the secondary coil is aiding the main field, and when the
single-solenoid coil is opposing the main field.

The magnetic configuration shown in Figure 16 (b) approaches
most nearly the intent of forming a critical field line reaching
from the cathode to the baffle aperture. Coil currents used
in obtaining the patterns shown in Figures 16 (b) and (c) were
greater than those used in thruster operation. From inspection
of the field pattern shown in Figure 16(b), it can be surmised
that the thruster data was taken at less-than-optimum field
strengths.

The results obtained with this coil are shown in Figure 17,
where it is evident that the performance is improved by increasing
the secondary-coil magnetic field strength. However, as shown in ‘
Figures 17 (a) and 17(b), the mere presence of the secondary coil
tends to increase the discharge power. This degradation of per-
formance by the presence of the secondary coil might be avoided
by the use of a conical shield, which is discussed in a later
section. The most pronounced effect was the impossibility of
running the thruster when the cathode pole piece field was
opposing the primary cathode field. As illustrated in Figure
16 (c), such a configuration tends toward restriction of electron
flow from the cathode. '

Simple Solenoid
with Baffle Solenoid

A coil was placed on the main-discharge side of the baffle
in an attempt to shape  the field lines in the baffle aperture
thereby reducing electron impingement on the baffle. The design
of the baffle coil is shown in Figure 18.
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Figure 19 summarizes the effect of the baffle coil. Data
are presented for one main and primary pole piece field condition
and various baffle secondary coil field conditions. Here, too,
the increased surface area exposed to the main discharge causes
a degradation that exceeds any anticipated improvement. In
addition, the coil may not have béen sufficiently large to
deflect electrons away from the coil to the extent anticipated.
For this experiment, there are discrepancies in the sets of data
presented. In Figure 19(a), it seems that the baffle coil had
a positive effect in reduéing discharge losses, while in Figure
19 (b), the baffle coil seems not to have any effect at all. The

causes of these discrepancies are not known at the present time.



11

SHIELDS

- *
by G. Palumbo, R. Vahrenkamp, and D. Fitzgerald

Attempts to improve performance by variations of the pole
piece geometry were mainly focused on decreasing the volume of
the discharge region by adding shields of different diameters
and shapes so as to decrease the area exposed to the cathode

region ion flux.

Cylindrical Shields

The pole piece volume was varied by inserting stainless
steel shields of various diameters in the manner illustrated
in Figure 20, The baffles used with each shield were selected
so the ratio of open-area to colsed-area between the cathode
and main discharge region was roughly constant. All baffles
and shields were allowed to float.

In Figure 21, data taken with the cylindrical shields
are summarized. They suggest that a reduction of surface
area in the discharge region of the pole piece does reduce
the discharge losses by reducing ion flux to the walls up to
a point. Further reduction in surface area by reducing the

shield is ineffectiwve.

5-cm diameter shields. The combined effect of both the

5-cm diameter shield and a cathode field is illustrated in

Figure 22. This figure shows a decrease in discharge losses
with increasing cathode field, but the improvements are not
as significant as when the cathode pole piece works alone.
This effect is better visualized in Figure 23 in which the
effect of cathode field at 90% utilization on the performénce

is summarized. It indicated there is an optimum cathode field

*
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for each main discharge field. {This is confirmed in Figure 24,
where the effects of field on arc voltage and beam current are
reported. The arc voltage and beam current are both increased
by about 4%; in comparison, the configuration without shield
(Figures 9 and 13) had an increase of about 6.5% of both arc
voltage and beam current when the cathode field was applied.
This difference might be due to experimental error, although
the consistency of the data suggests there may be an actual
trend. Baffle open areas with various configurations are
listed in Table I. Presence of the coil in the single—solenoid
configuration may have been responsible for a reduction ih the
open area shown in Table I, but it can be concluded that the
open area is considerably less for the 5-cm shield configuration,
which implies a greater impedence between the cathode discharge
and the main discharge for that configuration. This is borne
out by comparison of Figures 13 and 24 which shows that the
5-cm shield configuration has a higher base (zero cathode

coil current) discharge voltage. However, the presence of

the 5-cm diameter shield in the baffle open-area region may

be inﬁerfering with the magnetic field configuration (see
Figure 10) as indicated by the data in Figure 25 which is dis-
cussed below. If this reasoning is correct, then greater
changes in beam current and arc voltage should be expected for
the single-solenoid configuration with no shield. Definite
reasons for these trends can be established only with additional
data.

Small cylindrical shield. The effects of the smaller

shield (3.5-cm diameter) are given in Figure 25 and it is
evident that with this configuration'thé effect of the coil
on performance is reversed, since the ev/ion increases with
increasingrcathode—pole-piece field. As discussed above, it
is believed that the presence of shields near the baffle open

area may interfere with the magnetic field inside the pole piece
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thereby increasing the discharge power. Future experiments

with shortened shields may bear out this explanation.

Conical Shield

The last attempt to change the pole piece geometry was
made by using a conical shield as in Figure 26. This shield
seems to reduce the discharge losses at high mass utilization
as is apparent in Figure 27. In this figure, three cases are
compared; the 5-cm diameter cylindrical shield with and without
a secondary coil, and the conical shield, all with no cathode
field applied. From this graph it appears that the conical
shield is slightly more effective than the cylindrical shield
at high utilization. ' .

The effects of floating surfaces and grounded surfaces in
the cathode pole piece region, are compared in Figure 28. These
data were obtained with the conical shield grounded and floating,
and they indicate a slight improvement in performance when the
shiela is floating.

| The effect of both conical shield and cathode-pole-piece
field are shown in Figure 29 for the case of this shield at
cathode potential and in Figure 30 for the shield at floating
potential. These figures show that slight improvements in
performance can be achieved by applying a magnetic field in
the cathode discharge region with shields present.

Al jllustrated in Figure 31, the difference in performance
due to holding at cathode potential or floating the shield is
minor. Comparison of these data with those of Figure 27 shows
the conical and cylindrical shields are equally effective in

improving performance.
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PLASMA FLUCTUATIONS

by D. Fitzgerald

An x-y oscilloscope was installed in the facility several
months ago to monitor the voltagemahd current characteristics
of the arc, magnet, and keeper power supplies in order to
ascertain the amount of ripple present during thruster operation.
The oscilloscope was also used to observe the voltage-current
characteristics of a Langmuir probe and the voltage response
of a floating emissive probe positioned within the thruster.

The following observations are for the present mdstly qualitative
for ‘'reasons which will be given below.

The power supplies under scrutiny mentioned above were
tested beforehand with purely resistive loads. The resisﬁors
were chosen such that the load would be comparable to ﬁhe
maximum power requirements which might be met during thruster
operation. The amount of ripple present under maximum current
conditions was not considered unreasonable (about 10% for the
magnet and keeper, and less than 5% for the arc supply).

The same parameters taken under actual thruster operating
conditions were found to be characterized by the presence of
high frequency disturbances {on the order of 20 kc). All three
power supplies showed current fluctuation amplitﬁdes that were
considerably larger (on the order of the DC current signal itself)
than the keeper current disturbance.

The fhruster was normally run with the magnet current at
about 1.7 amperes where the observed frequency was approximately
20 kc. The frequency of the disturbance increases in nearly .

a linear fashion with increases in magnet current over a range
from about 0.5 to 2.5 amperes (where the discharge becomes highly
unstable). The disturbance appears to change mode and couple to
a lower frequency (pulsing) signal at less than 0.5 amperes.
magnet current. The amplitude of all these fluctuations appear

to be dependent on the level of arc current and to a lesser extent
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on the magnet current. The amplitude and frequency are reduced

by a factor of two when the beam is not being extracted. These
observations were made during experiments directed at other areas;
therefore, there was neither time nor the proper facilities to
completely explore this phenomena. Many changes were made on the
power-supply filters in an attempt to remove these fluctuations.
These changes benefited the keeper power supply but had little
effect on the magnitude and freguency of the magnet and arc current
fluctuations. The lack of any significant effect on frequency
during these changes apparently rules out the likelihood of a
resonance between the discharge and the power supply. The facility
is presently being equipped with a regulated arc supply on loan
from the Jet Propulsion Laboratory. This change will hopefully
settle the guestion of power supply resonance. "

A Langmuir probe placed within the thruster was swept with
a saw tooth waveform with respect to cathode potential. The
waveform was +60 volts maximum at a frequency of about 2 kc.

The current-voltage characteristics were displayed on the x-y
oscilloscope utilizing a 10 ohm shunt resistor to measure the
probe current drawn. The resulting display indicated the pre-
sence of oscillations similar to those found by previous
workers (Fijure 9 of reference 6)

A floatlng emissive probe, s1m11ar to the one described in
reference 7 was placed in the same position as the Langmulr
probe. The current to the emissive probe heater was increased
up to a point where the floating probe potential (with respect
to cathode) did not change significantly with further increases
-in heater current. When this condition was met, the probe was
assumed to be at or near the local plaéma potential. The mean
value of the plasma potential was about the same as the arc
voltage (30 volts) and it demonstrated characteristics almost
identical to the arc voltage in the magnitude (about 5 volts)

and frequency of the fluctuations present. The size of the

noise envelope on the Langmuir probe characteristics mentioned
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above is in line with this 5 volt figure; therefore, it may be

substantially eliminated by referencing the Langmuir probe

sweep to the local plasma potential. Assuming the addition of

the regulated arc supply does not eliminate these fluctuations,

the following future experiments are suggested from the obser-

vations mentioned above.

(2)

(B)

(C)

(D)

The plasma potential throughout the thruster will
be compared to the arc voltage to determine whether
correlations exist in the wave shape and phase.
This experiment would necessitate the use of a dual
trace oscilloscope and a movable emissive probe.

A Langmuir probe will be swept with respect to the
local plasma potential by means of an emissive
probe in close proximity to the Langmuir probe.
This reguires the use of an emitter-follower
amplifier in conjunction with the emissive probe
to establish the plasma potential reference.

The frequency power spectrum of the disturbance
should be measured as a function of thruster
parameters and the relationship between the
power spectrum and thruster performance should
be established.

Similarities between these phenomena and other
observations commonly referred to as plasma turbulence.
should be explored. In particular, innovations

which have succeeded in reducing the turbulence
should be attempted. For example, certain types

of instabilities have been suppressed by the addition
of a quadrupole magnetic field applied transverse
to the axial magnetic field in a Penning discharge
(reference 8). A quadrupole magnetic field also has
been applied to a mercury bombardment thruster
(reference 9), and was found to attenuate the
fluctuations. h
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CONCLUDING DISCUSSION

It has been pointed out that a conical baffle or the use
of a field cecil on the outside of a flat baffle results in a
degradation in performance. It appears this occurs because of
the increase of surface area exposed to the discharge on which
ions can recombine. The coil had the further disadvantage of
being at cathode potential and it therefore distorted the
electric field lines within the main discharge region.

Shields installed within the cathode pole piece have been
shown to be an effective means of improving performance.
Improvements of about 30 ev/ion at 90% utilization have been
- achieved apparently because of the reduction in surface area
within the cathode discharge region. The shape of the shield
(conical or cylindrical) seems to have minor effect on.perfor—
mance, and floating shields tend to produce very slight im-
provements above the case of shields held at cathode potential.
Very small diameter shields produce increases in discharge
losses. It 1is possible that this degradation of performance
occurs because of the opposing effects of reduced surface area
inside thevpole piece, and of increased ion density. As shield
diameter is decreased, the surface area decreases in proportion
to diameter d. However, the flow éross—sectional area decreases
in éroportion to &2, hence ion'density increases faster than
surface area is decreased. '

Significant improvements in‘performance (about 20 ev/ion
at 90% utilization) have been observed when an axial magnetic
field is applied within the cathode discharge region. This is
probably due to increases in electron densities and electron
energies in the main discharge region. These effects were
discussed in reference 2. There are two possible reasons why
the field is most effective when it is opposing the main field.
The field aids in extraction of electrons from the pole-piece
region into the main discharge thereby increasing the number of
priméry electrons in the main chamber. Such increase in primary
electrons will result in a higher ionization probability (and

higher ion density), and therefore a larger beam current.
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The other effect that is evident is an increase of discharge
voltage and therefore higher energy primary electrons. These
effects reach an optimum beyond which the cathode pole-piece
field is ineffective.

Reductions im shield area have the tendency to decrease
the discharge losses to a point, beyond which further reduction
is ineffective or even deleterious. A possible explanation
of this area effect is that the reduction of area exposed
to the discharge reduces the ion flux to the walls. As the
shield diameter is decreased,'however, the cross-sectional area
for propellant flow is also reduced, thereby increasing the ion
density. The overall effect is one where very small shield
diameters may cause excessively high ion densities, with a net
~increase in ion loss to the walls.

The second possible explanation could be the comparison be-
tween the solid angle for electron escape to the main discharge,
and the area effect. As long as the area reduction does not
greatly affect the solid angle, increases in performance will
result. A further reduction of area will reduce the solid angle
to a point where the electron path will be greatly affected, and
a decrease in performance will result.

" The effect of combination of shield and single-solenoid
could be explained by considering the arc voltage and beam current.
The performance increages as beam current is increased at the same
arc power. The beam current can be increased by an increase in
ionization in the chamber and ionization is effected by the number
of primary electrons and the energy given to them.

It has been pointed out previously that a single-solenoid
magnetic field has the tendency to increase the arc voltage
and therefore increase the energy given to the electrons. Also,
reduction of wall area by use of shields has a tendency to
increase the arc voltage. However, these trends are not additive;
perhaps because large reductions in shield diameter require much
greater magnetic field strengths inside the pole piece region for
the same improvement in electron extraction. From the data ob-
tained so far, the effecf ofﬂa secondary coil is not clear.
_Further data should be taken over a wider range of magnetic field

strengths, and supported with field-pattern measurements.
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TABLE I - Baffle open areas for various configurations

(including baffle¥support blockage) .

configuration

pole-piece alone
single-solenoid coil

. 5-cm shield

3.5-cm shield

conical shield

: baffle

inside baffle open flow

diam., diam., area, area,

cm. CIm. sg. cm. sqg. cm.
6.35 5.4 6.4 31.6
5.6 5.08 9.0 24.7
5.08 4,26 3.6 20.2
3.5 3.1 1.8 10.2
5.08 4,26 3.6 20.2
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(b} secondary goil aiding singlé—solenoid coil,; both opposing
main field; secondary coil current, 30 amperes; single-
solenoid coil current, 10 amperes.

(c) secondary coil opposing single-solenoid coil, single-coil
opposing main field; secondary coil current, 30 amperes;
single—~solenoid coil current, 10 amperes. -

FIG. 16 - (cont.)
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(b) secondary coil current reversed direction,
single-solenoid coil current, 0 amperes.
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