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Summary

The objective cf the investigation was to study the existence,
uniqueness, and construction of solutions for the two-point boundary
value problem of nonlinear ordinary differential equations. The\sexg\of
this report is divided into six parts, each part possessing its own list
of references.

In part I we have attempted to unify the existing methods for
solving linear boundary value problems. Many of the techniques discussed
here have not been discussed in the same publication, but have been
scattered throughout the literature. Since most of the techniques for
solving nonlinear boundary value problems involves solving several linear
problems, the importance of these methods cannot be overemphasized.

Part II continues the techniqes in part I to noniinear problems.
The parallel shooting method is discussed in some detail, and should
prove to be the most fruitful general purpose technique for solving,
boundary value problems.

Parts 1II and IV survey the recent developments in existence and
uniqueness theory, in particular the sub and super function approach.

Part V applies Liapunov and perturbation theory to the problem of
determining interval length in the parallel shooting method. Estimates
are obtained on the interval length which are easily obtained without
actual computation of solutions,

Part VI developes Liapunov theory for existence and uniqueness

of solutions to boundary value problems. The Liapunov conditions for
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uniqueness are of a different form than those for initial value problem

uniqueness. The results of Hartman are obtained as a special case of

our theory by a suitable choice of the Liapunov function.

We would like to thank Dr, Judson Lovingood of MSFC for his able

direction of this project. Also, we would like to thank Dr. L. Weinberg,

S. Banks, and the secretaries of the Mathematics Department for their
help and advice.
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CHAPTER 1

THE SOLUTION OF LINEAR BOUNDARY VALUE PROBLEMS

1. Introduction. ifany techniques have beern proposed for solving
boundary value problems. Excellent sources are Keller [l1], Osbourme [2],
Lee [3], and Bellman and Kalaba [4]. To consolidate and unify many of
the more promising techniques, we shall develop these techniques for a
common equation and boundary condition. This should provide the
advantages and disadvantages of each procedure, since one may be better
than another when used on a particular problem.

We shall discuss the linear problem here, since any nonlinear
problem is usually solved by scme sort of linearization process. That
is, the solutions of a sequence of linear boundary value problems
approach in some sense the solution of the original nonlinear problem.

We shall discuss the nonlinear techniques after developing
thoroughly the linear methods. It should also be mentioned that more
general boundary conditions such as multipoint conditions or mixed
conditions could be imposed, but for simplicity and clarity, we shall

not develop the theory for these conditions, [2].

2. Preliminaries. Consider the ordinary differential equations

(2.1a) u' = A(t)u + B(t)v + h(t),

(2.1b) v' = C(t)u + D(t)v + g(t),




where A(t),B(t),C(t) and D(t) are n x n matrices with continuous
elements on [a,b}, u,v,h(t) and g(t) are n~vectors, and h(t) and
g(t) are continuous on [a,b). Let us asswme that (2.1) 1s subject
to the two point boundary conditions

(2.2a) u(a) = a,

(2.2b) B,u(b) + B,v(b) = B,

where Bl and B2 are constant n x n matrices such that Bl + 82

is nonsingular, and o and B are constant n-vectors,

Let U(t) and V(t) be n xn matrices satisfying
(2.3a) U' = A(t)U + B(t)V,
(" 3b) V' = C(t)U + D(t)V,
and the initial conditions
(2.4a) U(a) = O,

(2.4b) V(a) = I (unit matrix),

3. Reduction to an initial value problem by direct substitution.

Let us denote a solution of (2.1) by the pair (u(t),v(t)). Let
(x(t),y(t)) be the solution of (2.1) satisfying the initial conditions

(x(a),y(a)) = (a¢,0) on the intexrval a < t < b,




Remark. Thir, solution can be obtainéd numerically by any of

several standard routines.

Theorem 3.1. Let (u(t),v(t)) be a solution of (2.1) satisfying

(u(a),v(a)) = (a,d), where d is obtained from

(3.1) [BIU(b) + BZV(b)]d =p - le(b) - Bzx(b).

Then (u(t),v(t)) satisfies the boundary conditions (2.2).

Proof. Consider

(3.2a) u(t) = x(t) + U(t)d,

(3.2b) v(t) = y(t) + v(t)d,

where (x(t),y(t)) 1s a solution of (2.1) satisfying (x(a),y(a)) = (a,0)
and U(t) and V(t) are given by (2.3) and (2.4). 1t 1s easily
verified that (u (t),v(t)) satiafies (u(a),v(a)) = (a,d) and that
(uit),v(t)) satisfies (2.1) for all d. If (2.2b) is to be satisfied,

d must be the solution of (3.1).

Remark. For this technique to be effective, Blu(b) + BZV(b) must
be not only nonsingular but also computable, A method suggested by
Conte [5], (see also [4]), orthogonalizes the solution (U(t),V(t)) of

(2.3) at each integration step when ceutain criteria are violated.

Corollary 3.1 (Hartman [6]). The homogeneous boundary value

problem (2.1) and (2.2) with h(t) =g(t) =0 and a=8=0 has only




the trivial solution (u(t),v(t) = (0,0) 4if and only if

[BIU(b) + BZV(b)] 1s nonsingular.
Proof. (3.1) becomes
(3.3) [Blu(b) + BZV(b)]d =0

which has only the solution d = 0 4{if and only if [nlu<$) + BZV(b)]
is nonsingular.

Then (u(t),v(t) » (U(t)d,v(t)d) = (0,0) -on [a,b] and since this
solution is unique [6] the homogeneous problem has only the trivial
solution. To prove the converse, (u(t),v(t)) = (U(t)4,v(t)d) = (0,0)
implies d = 0., (Since (u(a),v(a)) = (0,d) = (0,0)). Thus from (3.3)

[Blu(b) + BZV(b)] must be nonsingular.

Corollary 3.2. If (x(t),y(t)) satisfies (2.2b) in addition to
the assumptions of Theorem 3.1 and [Blu(b) + BZV(b)] has rank n - k,

then k linearly independent solutions can be found.

Proof. (3.1) becomes (3.3) which has k 1linearly independent

solutions for d.

Remarks. 1. If the linear system (2.1) is unstable, (for example,
if A,B,C,D are constant n x n matrices and ié D has eigenvalues in
the right half plane), then [Blu(b) + Bzv(b)]-1 is extremely difficult
to compute, (see Osbourne [2] and Bailey and Shampine (7]).

2. In remark 1, parallel shooting has been used by Osbourne {2]

and others to alleviate the problem.




4. Reduction to an initial value problem by adjoint equations.

The formal adjoint of (2.1) can be written

(4.1a) x' = - a%(t)x - c*(o)y,

(4.1b) y' = - 8%(e)x - p*(v)y,

where * denotes the complex conjugate transpose. Let X(t) and Y(t)

be n x n matrix solutions to (4.1) ¢n [a,b). That is,
(4.2a) X*' = - X*a(r) - Y*C(L),
(4.2b) Y*' = - X*B(t) - Y*D(Y),

Let us assume also that X(t) and Y(t) satisfy the inicial

conditilons
(4.3a) X(b) = BJ,
(4.3b) Y(b) = B; .

Multiplying (4.2a) by u(t) and (4.2b) by v(t), where (u(t) ,v(t))
is a solution of (2.1), and multiplying (2.la) by x* and  (2.1b)

b§‘ Y . and adding the resulting expressions yields




*! *! * * * *
X u+4Y v+Xu' +Yv' sXh+Yg
or

* * " *
(4.4) é% (Ku+Yvl=Xh+Yg,.

Integrating (4.4) from a to b yields

b
£ (®)ub) + Y (b)v(b) - X (a)u(a) - ¥ (a)v(a) = f
a

(x*(e)h(e) + ¥ ()g(t) Jat
and from (4.3) and (2.2) ye obtain
* * LI *
(4.5) Y (a)v(a) = 8 - X (a)a - f [X (t)h(e) + Y (t)g(t)]lde,
a

We have proved the following result,

Theorem 4.1. Let v(a) = d be obtained from (4.5). Then the

solution of (2.1) with the initial conditicns (u(a),v(a)) ~» (a,d)

satisfies the boundary conditions (2.2).

Remarks. 1. It may not be possible to solve for v(a) 1if Y*(a)
is singular and the right side of (4.5) 1is nonzero.

2. If Y*(a) is singular, it may oe possible that the method of
section 3 would yield a solution for d.

3. 1f the right side of (4.5) is zero, it would be possible, as

*
in section 3, to obtain a solution for v(a) 1if Y (a) 41s singular.

5. Reduction SQ.gg initial value problem by the method of

factorization [8). Let




(5.1) ve Ju+ z,
where (v(t),u(t)) 1s a solution of (2.1), J 1s an n x n matrix
and z 1s an n-vector,(J and 2z both functions of t to be determined).
Differentiating (5.1) we obtain
v a J'u+ Ju' + 2’
or, from (2.1a) and (5.1),

(5.2) v' = Ju + J(A(t)u + B(t)Ju + B(t)z + h(t)) + z',

To insure that (5.2) and (2.1b) are equivalent, let us define J

and z as follows:

(5.3a) J* + JA(t) + JB(t)J = c(t) + D(t)J,

(5.4a) 2' = (D(t) - JB(t))z - Jh(tr) + g(t).

To prescribe appropriate initial conditions, from (5.1)

v{b) = J(b)u(b) + z(b).

Substitution into (2.2b) yields

(5.5) (B, + B,J(5)] u(b) = 8 - B,z(b)
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which we would like satisfied for all u(b). Assume B, 1s nonsingular,

2
1¢
(5.3b) () = - B)'B,
-1
(5.4b) 2(b) = B;'8

are considered as initial conditions for (5.3a) and (5.4b) it i3
possible to solve (5.3) for a solution J(t) on the interval a <t < b,
and then solve (5.4) for z(t) on {a,b]. In this manner J(a) and

z(a) would be obtained, and from (5.1) and (2.2a)
(5.6) d = v(a) = J(@)a + z(a)
would give the missing initial condition in (2.1). This can be

summarized as follows:

Theorem 5.1. Let (u(t),v(t)) be a solution of (2.1) satisfying
(u(a),v(a)) = (a,d) where d = J(a) + z(a) from (5.6). Then

(u(t),v(t)) satisfies the boundary conditions (2.2).

6. Reduction to initial value problem by invariant imbedding. As

discussed by Bailey and Wing [9], Lee [3], and Bellman and Kalaba [4],
invariant imbedding is a concept rather than a formal technique, and
hence a collection of several disjoint procedures. Included in this
would be the method of factorization discussed in section 6. A recent

paper by Meyer [10] relates the invariant imbedding principle to the




formal method of characteristics. Following ileyer, let v(t,u) satisfy

(6.1) vt(t,n) + vu(t,u) [A(t)u + B(t)v(t,u) + g(t)] =

C(t)u + D(t)v(t,u) + h(t)

subject to the initial condition (initial manifold)

(6.2) Biu+ Bzv(b,u) =8

for a <t <b, u arbitrary.

Theorem 6.1 (Meyer {10]). The =oiution of (6.1) is generated by

the characteristics (t,u(t),v(t)) satisfying t = b, u(b) = u,

: ) =
Bjud Bzv(b, B.
Since the characteristic equations (2.1) are linear it is easily

shown [10] that
(6:3) v(t,u) - S(t)u + z(t).

Substitution of (6.3) into (6.1) yields an equation which, when
satisfied for all u, gives (5.3a) and (5.4a). Since from (6.3),

v(b,u) = J(b)u + z(b), (6.2) becomes
(6.4) [B1 + BZJ(b)]u =8 - Bzz(b)

which must be satisfied for all .

Thus, the quantity multiplying u in (6.4) and the right side of
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(6.4) must both be identically zero, yielding (5.3b) and (5.4b).
Obtaining theorem 5.1 now proceeds exactly as in section 5. The method
of factorization as developed in section 5 is seen to be a special case

of the invariant imbedding procedure as developed by Meyer [10].

7. Difference methods. Let {t,} be a uniform net on [a,b],

3

where tj =a+ 36 J=0,1,...,N+1,

b~-a

§ = ¥l -

Let ug and vj be "approximations" in some sense to u(tj),v(tj)
respectively. By replacing the derivatives in (2.1) by a difference
scheme, it is possible to obtain a linear system of equations which,

when solved, has a solution "approximating' the solution to (2.1) and

(2.2). To apply the idea to (2.2) consider

Ju, + B(t, )v

(7.1a) 5 A(t:j S Y5

+ h(tj), j=12,.,.,8+1,
Ty " 1.2,...N

(7.1b) 3 = C(tj)uj + D(tj)vj g(tj), h) 225000

and the boundary conditions

(7.2a) u_ = aq,

(7.2b) BluN+1 + BzvN+l = g,




Let

and

ay = GA(tj), bj - GB(tj),
cy = 5C(tj), dj = GD(tj),
Iy \ /a + Gh(tl)
1) l Sg(ty)
! o ! sh(t,)
!’ v, : 6g(t,)
Lo i .
A R
Lo * .
' w | L eneey
vy ety
E w1 ; a Sh(tyyg)
\VN+1j \ 8 /
{ I-a,, =b; o, o0 ,0 ,0 ,
| -cpp 14, O, 1,0 50
-I, O ,I-az, ~b2 ,0 »0
o, -I , =Cy» -I-—dz, 0 +1I o
0 .+ -1, 0, I-ag-by
" 0 o, -1 »=Cy '-I_dN’
I o 0, 0 ,1 ,0 ,
\ o °° o, 0 ,0 ,0 ,

i
i.
|
i
t
i
o o ,
s 0 ’
L] L4 [y
?
0 ’
0
1 4
1-8N+1’-
Bl ’

11
0
o |
0 |

\
o |
- '
.
o
T
P+ |
B, |
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Then (7.1) and (7.2) can be written as

(7.3) LNWN = vy

Now if LN is nonsingular it is possible to solve (7.3) and obtain
WN = I{lel\r To conclude, the relation between (7.3) and (2.1), (2.2)

can be summarized by the Lax equivalence theorem.

1s uniformly bounded (as a

Lax's equivalence theorem [11]. L.;lYN
o'

function of N) 4if and only if u, > u(tj) and v, -+ v(tj) for all

3
J<N+1 as N+ o

Remarks. 1. '"Consistency" [11] is usually a condition required
in this theorem, but we have imposed this condition by our choice of
difference scheme in (7.1).

2. Numerically, the matrices may become quite large, causing error.

3. See [1] for conditions implying uniform boundedness of L;IIYN'

8. Green's function. For the discussion here, let us consider

the vector equation formed by (2.1),

(8.1) u' = A(t)u + h(1),
L fu _ {a(t) B(t) - [n))
vhere 1 {v)’é“) (et peey)> h® (g(:)}*

subject to the boundary conditions
(8.2) él_g(a) + AZ_‘i(b) = a

where A, and A

1 2

constant 2n-vector. The boundary conditions (2.2) are clearly a special

are 2n x 2n constant matrices and o 1is a

case of (2. 2),
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Let U(t) be the 2n x 2n matrix satisfying

(8.3) u' = AU,

Also consider

(8.4a) u' = A(t)uy,

(8.4b) A,u(a) + A,u(b) = 0,

Lemma 8.1. (8.4) has a nontrivial ($0) solution if and only if

[Al_g(a) + _A_zy_(b)] is singular.

Proof. Since u = U(t)d 1s the general solution of (8.4a)
substitution into (8.4b) yields [A;U(a) + A, U(b)]d = O which has a

solution 30 1f and only if [4,U(a) + A U(b)] 1is singular.

Theorem 8.1. (8.1) has a solution u(t) satisfying (8.2) of the

form

P
(8.5) u(t) = J G(t,s)h(s)ds
[o)

where G(t,s) is a 2n x 2n matrix function of t and s such that

G(t,s)h(s) 1is an integrable function of s, if and only if (8.4) has

no nontrivial soluticn.

Proof. Assume (8.4) has only a trivial solution. Then by lemma 8.1,




gy
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N= éig(a) + Aﬁg(b) is nonsingular, The general solution of (8.1) is

t
(8.6) u(e) = U(e) [d + f Ut (e)n(s) ds)
a

which satisfies (8.2) if and only if

b
8.7 [AU) + A,U(b)]d = B - AU(b) f v (s)n(s)ds
a
or
b -1 b
(8.8) d= f L_Bde _ y~lsu(e) f U (s)n(s)ds,
a i a

By substituting (8.8) into (8.6) the function G(t,s) can be
identified and (8.5) obtained. To prove the converse, the alternative
theorem is needed (see Hartman [6] and Stakgold {12]). The Green's
fuuction gives an extremely important representation of the solution,
one which can be used to obtain integral representations of nonlinear

systems.

9. General matrix Ricatti equatim. Consider

(9.1a) L(J) = J'" + JA(t) + JB(t)J - D(t)J - C(t) = O,
(9.1b) J(b) = Jo’
along with (2.3) and the initial conditions

(9.2a) U(b) = Uo’

(9.2b) V(b) = Vo,

o P
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where U 18 nonsingular and J =V U-l.
o o oo

Lexma (Reid [13]). If (2.3) and (9.2) have solutions U(t) and

V(t) on [a,b] and V(t) 4s nonsingular, then J(t) = V(t)U-l(t) is

2 solution of (9.1) on [a,b].

Proof. Since U(t)U'l(t) = I, differentiating both sides with

respect to t yields

' -1 -1 '
(9.3) U'(t)U “(t) + U(e)[Uu “(¢)] =0
(9.4) 3t = v U e + v w ey,

Substitution of (9.3) into (9.4) yields
3'(8) = V(U ) - vouTHOu (v (e
= (cu + vyt - vulau + Byut
= C(t) + D(t)J - JA(t) - JIB(t)J,

An interesting idea proposed by Bellman [14] for solving the
matrix Ricatti equation consists of replacing JB(t)J by an upper and
a lower estimate involving only J, B(t) and an arbitrary matrix S
in a linear combination. By solving the resulting linear equations,

estimates are obtained for the actual solution.
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CHAPTER I1

THE SOLUTION OF NONLINEAR BOUNDARY VALUE PROBLEMS

1, 1Introduction. Nonlinear boundary value problems can be
reduced to the solution of transcendental equations. It is then
possible to apply techniques from numerical analyeis, such as
successive approximation, Newton's method and the method of false
position (Collatz [2]) to obtain a solution. Many sufficient
conditions have been developed to insure convergence of a given
iteration procedure [3,4]. However, solutions of boundary valua
problems and transcendental equations can be obtained by iteration
procedures without having formal convergence criteria. Tl .3, in
practice, iteration schemes are used even though formal convergence
criteria are not satisfied.

Any method for solving nonlinear boundary value problems
relies rather heavily on initial value problems, For example, if
a solution does not exist on an interval ([a,b], it could not
satisfy two point boundary conditions at a and b, We shall assune
the standard theory of initial value problems such as developed by
Hartwan [1].

One of the more important techniques for solving boundary
value problems is the parallel shooting procedure [3,5], Many
problems not previously solvable by shcoting techniques can be

treated by this method.




2. Preliminaries and basic results. Consider the system of

differential equations

(2,1a) u' = F(t,u,v)

(2.1b) v'e G(t,u,v)

subject to the boundary conditions

(2.2a) u(a) = o

(2.2b) H(u(b),v(>)) = 0

Here u,v,F,G,H,a are n-vectors, F and G are continuous
functions defined on a set [a,b] x D, Dc:Rzn, and H 1is defined
on D,

Let (u(t,d),v(t,d)) be a solution of (2,1) existing on [a,b]

and satisfying (u(a,d),v(a,d)) = (a,d). We have the following result.

Theorem 2.1. (2.1) has a solution satisfying (2.2) if and only

if

(2.3) ¢(d) = H(u(b,d),v(b,d)) = 0

for some d,




This procedure for obtaining a solution of boundary value
problem is usually referred to as a shooting method and is solved by
numerical procedures such as Newton's method and its variants, and
multipoint "false position" methods which can often be shown to

converge [2,3],

Theorem 2,2. Let (2.1) be such that solutions exist and are

2n

unique on [a,b] x R Then the boundary value problem (2.1)

and (2.2) has as many solutions as there are distinct roots d = d(v)

of (2.3).

Proof. If ¢(d) = 0 for some d, then (u(t,d),v(t,d))

satisfies (2.1) and (2.2), let d, and d, be distinct points,

2
dy 4 dy. Then (u(t,d;),v(t,d,)) E: (u(t,d,),v(t,d,)), since if not,
uniqueness would be violated. Thus each distinct root of ¢(d) =0

yields a solution to (2,1) and (2.2).

Corollary 2.2, If (F,G) satisfies a Lipschitz condition on

fa,b] x R2n then the conclusion of theorem 2.2 follows.

3. Parallel shooting. [3] We shall develop the parallel

shooting technique for

(3.1) y' = f(t,y)

subject to the linear boundary conditions




3.2) Bly(a) + Bzy(b) =Y

where y,f are 2n-vectors, f is defined and continuous on

{a,bl x D, D Ctnzn, Bl and B2 are constant 2n x 2n matrices,
B1 + B2 nonsingular, and y 1s a constant 2n-vector. Let the

interval [a,b] be subdivided into N subintervals with the points

tj, 3=0,1,2, ... \N, a=t <t; <0<ty <to=b
Let GJ = tj - tj-l and on each interval [tj_l,tj] let
t=-t -1
re -—-—-1-, y,(r) = y(t) = y(ré, + ¢, ,) and
Gj h B 3-1
fj(r,yj(r)) = ij(réj + tj-l’ yj(r)).
Using these changes of variables, (3.1) becomes
dy1
(3.3) =" fj(r,yj) OD<r<l J=1,2, ... ,N

The boundary conditions (3.2) become

(3.4) Blyl(O) + Bzyu(l) =y

Assume also that solutions to initial value problems for (3.1) exist

on every interval |t - t'| < § = max 8§, t' e [abl].

0:p§N




In addition, the solution of (3.1) must be continuous,

requiring that

(3.5)  yy,3(0) =y, D) 1=1,2, o0u M- 1
| TR
. ' . . .
|
let y='|° £(r,y) = ‘ x=| °
\yN £4(0,y) 0

Then (3.3) can be written as

(3.6) y' = £(r,y) 0<rc<l

and (3.4) and (3.5) become

3.7 Py(0) + Qy(l) = y

where




Py

:Bl 0 0 . . . G 0 0 0 . . . 0
:0 I 0 . . . 0 ‘I 0 0 . ® . 0
‘0 0 I [ [ . 0 O -I 0 . . * 0
P-i‘. . . . » Q- . . . .
‘o . . . . . . .
o 0o o . . . 1 o o o .. ., , -I

Parallel shooting, technique I. Consider along with (3.6) the

initial conditions

(3.8) y(@©) =d= |,

Then 1f y(r,d) is the corresponding solution of (3.6) we attempt

to find a d such that (3,7) is satisfied. This will be true if
(3.9) $(d) = Pd + Qu(1,d) -y = O

If Newton's method is used to solve (3.9) for d, the

variational system of (3.6) will be useful. Let W(r,d) = B, g; L




where V(r,d) 4s the 2nN x 2nN Jacobian matrix of Z(r,g_) with
respect to d. (Here i wmust be assumed sufficiently smooth)

Then from (3,6) and (3,8),

S daw _ of
(3.10a) T -a-; (r,y(r, )V
(3.10b) w(,d) =1 (I is the 2oN x 2nN unit matrix)

An iteration procedure for solving (3.9) can now be given by

the following:

(3.11a) d > d v +46d v where

(3.11b) [P+ Qu(l,d )] &d = - 0(d )

To solve this equation, note that (3.6) and (3.8) involve the
solution of N systems of 2n equations where each system is
independent of the others.

Define the 2n x 2n matrix W, as the solution of

h
dw of
N |
(3.12a) Trl 5, (£,3,(x,d))¥,

(3.12b) wj(O) =TI, (I 1is the 2n x 2n unit matrix) 4§ =1,2, ... ,N




Then

W(r,d) = diag (W, (r,d

Let us compute the inverse of [P + QW(1,d V)] allowing a

rolution for Ad v ©° be computed in (3.11), Let

I 0 o [ L 4 L 0

|

0 I 0 ] . L] 0

0 o0 I e . 0
= wa1-x | g ’

N-K

That is, in 'I’K wN-K occupies the N+ 1 - K now and the N - K

column, (T, 1is a 2nN x 2nN matrix). Then

K

(3.13) [P + QW]Tsz oo TN‘]. = R




vhere
: Bl + BZWN o WI’BZWNWN-Z ces wl’BZWNwN-3 o Wl, oo BZWN
0 I 0 cee 0
0 0 I LN ] 0
Re= . .
0 1
1f
BBy - e Ry
0 1 o e e 0
R=
0 0 L ] L] L] I
Then
-1 -1 -1
!{ Rl 3 - Rl Rz . . N - Rl RN \
0, I Lo e 0 \
R_l - ‘ * L ]
b oo .
\' 0 * [ ] L I
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Let
R1 - B1 + th-JN . s e wl
R, = B.WW W

2 2NN=-2 * T

3" B3 e+ o ¥

Ry = Ba¥y
Then
(3.14) [P+ QW] = R 7!
L] N-l [ R N ] 1
-1 ~1
(P+Qu]l " =T, «oo Ty 4R

Parallel shooting, technique II. Assume N 1s even and that

the solution originates at the odd points 1,3, ... ,N -1 in both

directions. Assume the net is fine enough so that initial value

solutions of (3.1) exist in both directions up to the even points.
Let yzj_l(t), yzj(t) be solutions of (3.3) originating at

t to the left and right respectively such that at t2j-1

2j-1

(3.15) y2j-1(0) = YZJ(O) - dj §=1,2, ... ,N/2

and yzj_l(r) extends to t2j-2 and yzj(r) extends to tzj'
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At the points with even indices, t2n’ we must have
(3.16) yzj(l) - yzj+1(1) 32 1,2, «us ,I[N=1)/2

to insure continuity,
The boundary conditions (3.2) become Ayl(l) + Byu(l) .y,

Now suppose the solutions initiating at T satisfying (3.15)

23-1
are denoted by yzj_l(r,dj), YZj(r’dj)' Then (3,15) and (3.2) become

(3.17a) Q,d =1,2, ... ,N/2+1

Y24 j) = y21+1(1'd3+1) i

(3.17b) Blyl(l,dl) + BzyN(l,lez) =y

(3.17) 1s a system of N/2 equations in the N/2 unknowns
dl’ con dN/Z and any of the standard numerical techniques such as

Newton's method can now be used to obtain a solution.

Remark. For computational purposes, arter the points ({t }

3

have been specified, a solution is obtained on the interval of interest

for an arbitrary initial condition £ initiating at ¢t If, for

jl
example, Ily(tj+l){l > R||g|| where R 1s some preassigned constant
depending on accurazy requirements, the grid should be refined and this

procedure repeated,

4. Quasilinearization [6,7]. Let y(t) be a solution of (3.1)

and (3.2). Let us assume that f is sufficiently smooth, so that
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== (t,y) exists and is continuous, Let yv(t) be an "approximation"
to y(t) such that (3.2) is satisfied by yv(t). Let

xv(t) = y(t) - yv(t). Then 1f yv(t) is "sufficiently close" to y(t)

(ola) x5 (e (), + e,y (6)) - y)(E)
(4.1b) lev(a) + B2xv(b) =0 v=1,2, ...

This is a linear problem which can be solved for X, if a

solution exists.

SCHEME. Compute yv+1(t) - xv(t) + yv(t) and replace yv(t)

in (4.1) by yv+1(t), and x, by x

v+l® An iteration is thus

established. Convergence of the sequence generated by this technique

falls in the general category of Newton's method in a function space (2,4].

5. Iteratiom techniques closely rclated to quasilinear equatioms.

Goodman and Lance [8] have devised an iterative technique for obtain-

ing the missing initial condition. In (4.2) let
of
3y (t,y,(t)) = A (t)
- A -
f(t,yv(c)) yv(t) rv(t)

Then (4.1la) becomes

(5.1) x; - A.v(t)xv + rv(t)
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subject to the boundary conditions

(4,2b) B,x,(a) + Byx (b) = 0

Consider the adjoint equation

(5.2) ?; - - XvAv(t), Xv(b) - Bz

where xv is a 2n x 2n matrix continuously differentiable with

respect to ¢,

Then from (5.1) and (5.2)
(5.3) é% (X% ) = X (t)x (¢)

or, integrating from a to b,

(5.4) X, (b)x_(b) - X (a)x (@) = [0 X (t)r (t)de

If dv L] xv(a), d1 is given, and xv(a) is nonsingular, then {(5.4)

and (4.2b) give

(5.5) d = - X @B+ [D X (O ()de)

v s 1|2. coe
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An alternative method for obtaining the missing initial condition would

be to compute the matrix solution to
' =
(5.6) Yv s Av(t)Yv Yv(a) I

where Yv is a 2n x 2n matrxix continuously differentiable with
respect to t,

Tha general solution of (5.1) can be written
(5.7) xv(t) = Vv(t) + Yv(t)d

vhere d 41s an arbitrary coanstant and vv(t) is an arbitrary
initial value solution to (5.1). If (5.7) satisfies the bouadary

conditions (4.2b),
[B1 + BZYv(b)] d = - Blvv(a) - BZVV(b)
and an iteration for d could be

-1
dogp = [B; +B,1 7 {B,[I - Y _(b)]d_ - Byv (a) - B,y (b)}

Roberts and Shipman {9] have shown that the iteration described
by (5.5) is equivalent to Newton's method, Thus the Kantorovich

Theorem [4] can be used to give convergence criteria,

6. Continuity methods. Roberts and Shipman [9] develop the

following procedure for solving (3.1) and (3.2). Let y(a) = d1

and integrate (3.1) as an initial value problem until the solution

becomes excessively large. (For example, ||y(t1)‘| > Rlldvll
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vhere R is given). Let us assume that at t. the solution of (3.1)

1
is sufficiently "well behaved", Solve the boundary value problem

(6.18) y' = f(t9Y)

(6.1b) B,y(a) + Bzy(tl) =y

for yl(t) using any of the techniques mentioned in sections 5 and 6.,

For this solution yl(t) let 4, = yl(a). Now for (6.la) and

2

the initial condition y(a) = 4, integrate past t., until the

2 1

solution becomes excessively large, and assume it is "well behaved"

at tz > t,. Then replace t in (6.1b) and solve the

1 1l 2
boundary value problem (6.1) for yz(t). Letting d3 = y2(a) the

by ¢t

procedure is continued until b 1is reached.

The Poincare continuity method [3] involves introducing a new

system
(6.2a) z' = of(t,2)
(6.2b) B,2(a) + Bzz(b) =y

Here, 1f o0 = 1 we are back to (3.1) and (3.2)., Let 2z(t,d,0)
be a solution of (6.2a) satisfydag e(a) = 4, To amolve (6,.2b) we

must have

(6.3) ¢(d,0) = Bld + Bzz(b,d,o) -y=0
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Now clearly at o = 0 the solution of (6.,2) is z(t) = (B1 + Bz)-ly,

1
a constant, Also det ‘ 3¢(g&0?§ = det [B1 + BZ] + 0., We would like

to obtain a solution of (6.3) vhen o = 1, Since det L_ gg Oi} t0,

continuity implies det t;—-ﬁbfgj 4+ 0 for o] < e. By the implicit

function theorem, there exists a continuous function d(c) on la] < ¢

such that
(6,4) $(d(0),0) = O

for all o such that |o| < ¢
By assuming suitable conditions on f and the boundary conditioms,
it is possible to insure that € > 1 so that o =1 1s a satis-

factory solution.

7. Galerkin's method. For (3.1) and (3.2) assume a system of

approximating functions {wk(t)} to the solution of (3.1) and (3.2),

where wk(t) are orthonormal and pilecewise continuously differentiable

(t)‘l’k(t)dt =4 i, = 1,2, ...

fa 3 ik

Let u(t) = Z E,4
ya1 379

where El’ see ’EN are arbitrary. To determine these numbers, compute

2 fuh(e) - £(e,u ()] 9 ()t =0 K=1,2, ooo ,N =1
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and
BluN(a) + BzuN(b) -y

which 18 again a nonlinear system of N equations for the N

unknowns El’ oes ,EN.

8. Power series methods. If £(t,y) in (3.1) is analytic, a

solution would be of the form

(8.1) ye) =d + Ja (e - a)”
k=1
and conditions (3.2) become
(8.2) B,d + B E ®-a)f=y
. 1 2 L%

k=1

Since the a, are functions of d, (8.2) is a transcendental
system of equations in d, Of course convergence becomes a
problem, since the series (8.1) is not known to converge for all
t, a<t<b. If we assume that
N k
uN(x) =d+ kzlak(t - a)
is an approximation to y(t) then (8.2) could be "approximately"

solved [3].

Leavitt [10] has considered a solution of the form

N M K3
(8.3) yiey = J F apyt d
k=0 3j=0
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where d 4s the initial condition, j,1 are nultiindices, and

3 13 In

d’ = dl d2 ces dn . Then substitution into (3.2) yields
N M

(804) Bid + 32 z Z ak tkdj =y
k=0 j=0

which is a nonlinear system of equations in dl’ ves ,dn.

9, Miscellaneous methods. Several of the techniques discussed

earlier in chapter 1 for linear systems can be applied to nonlinear

systens,

Difference methods can be used if avsolution of both the

difference equation and the original equation, is known to exist,
The theory of "approximate" systems developed by Kantorovich and
Akilov [4] could be used to show convergence. Since the formal
mechanics of obtaining the difference equations are the same in
the linear and the nonlinear case, it will not be done here., See
Keller [3] for a derivation of the equations. The technique of

invariant imbedding is discussed from the characterist’-~ surface

standpoint bty Meyer [11] for nonlinear systems. Since invariant
imbedding has already been discussed briefly in chapter 1 for linear
equations, we shall not go further into this subject,

A novel technique discussed by Bellman and Kalaba [6] is
based on backwards and forward integration. For example, assume (2.1)

and (2.2), with (2.2b) replaced by u(b) = 8. Then an initial

condition v(a) = d1 is chosen, (2,1) is integrated forward to b,
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and (ul(b),vl(b)) is obtained. Then the problem is integrated
from (B,vl(b)) backwards to a, and (uz(a),vz(a)) is obtained.
Then from (a,vz(a)), (2.1) is integrated forward to b and an
iteration procedure is established. Convergence is claimed in
some instances [6].
Summarizing, inventing techniques for solving boundary

value problems is limited only by the imagination of the researcher,

10, Convergence. Convergence must be mentioned in any
discussion of iteration techniques for solving equations. By
reducing the boundary value problem to that of solving a system
of nonlinear equations, many standard techniques are available.
Among these are fixed point theorems, such as the contraction
principle and Schauder's theorem, [2,3,4}. Since ¢ 'iteria for
convergence are given in these references [2,3,4] we shall not
repeat them here. Again it should be mentioned that often a given

iteration procedure will converge without satisfying any of the

known sufficient conditons for convergence,
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CHAPTER III
SUBFUNCTION APPROACH TO THE (WO~POINT BOUNDARY VALUE PROBLEM

1. Introduction. We consider the two-point boundary value

problem (BVP),

(1.1) y'(x) = £(x,y(x),y' (x))

1.2) y(a) = A,y(b) = B

The subfunction approach to the boundary value problem is to develop
the properties of subfunctions, and then to use these to extend local
existence theorems to global existence theorems. This apprecach
originated in the work of rerron [7], where he uses subharmonic
functions in the study of the Dirichlet problem for harmonic functions
with bounded plane domains. The actual application of this approach
to the BVP 1is relatively recent, and it is primarily due to the efforts
of Bebernes [1), Fountain and Jackson [4], and Jackson [5].

This chapter will deal with the definition of and elementary
properties of subfunctions, local existence theorems and their
generalization to global existence theorems, and the relationship

between subfunctions and functions satisfying differential inequalities.

]
Throughout we will assume that £(x,y,y ) is continuous on




{a,b] x (=w,®) x (~»,«), [a,b] a compact interval,

2, Preliminaries, A function ¢{x) 1is said to be a subfunction

with respect to solutions of y" = f(x,y,y') on an interval I 1in

case for any [xl,le <. I and any solution vy € C(z) (xl,le,
y(x,) > 6(x,) for 1 =1,2 implies y(x) > ¢(x) on [xl,le. A

function y(x) 1s said to be a superfunction with respect to

L
solutions of y' = f(x,y,y ) on an interval I in case for any

. 2
[xl,le <1 and any solution vy ¢ C( )[xl,le, y(xi) < w(xi) for

1=1,2 implies y(x) < ¥(x) on [xl,le.

We will give our results in terms of subfunctions, although there
will be exactly analogous results in terms of superfunctionms,
To give the reader an intuitive idea of a subfunction, we list

some properties.

Remark, First note that a subfunction need not be continuous,

(as required by some earlier authors).

Lemma 2,1. If ¢ 1is a bounded subfunction on J < I, them ¢

L.as at most a countable number of discontinuities on J.

Lemma 2.2, If ¢ 1s a bounded subfunction om J C.I, themn ¢

has a finite derivative almost everywhere (a.e) on J,

Theorem 2.3, Assume that the collection of subfunctions

{¢,:a € A} on the interval J< I 1s bounded above at each point of J.




Then ¢°(x) = sup, . Adaa(x) is a subfunction on J.

Proof: Assume [xl,xZICJ and assume that y(x) € c(z)[xl.le

is a solution on [xl,le with ¢o(x) <y(x) at x = X)0%p0 Then
from the Jefinition of ¢°(x) it follows that oa(x) < y(x) at

X= xl,xz for each a ¢ A, Since each oa is a subfunction on J,
we conclude that %(x) < y(x) on [xl,le for each a € A, This

implies ¢o(x) < y(x) on [xl,le and oo is a subfunction on J.
From the definition of a subfunction, it is natutéi'to consider

the relationship between subfunctions and differential inequality

theory. Necessary and sufficient conditions for subfunctions to satisfy

the differential inequality

inf 6'(x+5)3§ $' (x=8) > £(x,6(x),6'(x)) have been

De'(x) = lim

§+0

derived, These will be discussed later,

3. Local Existence, The local existence that we will need is

summsivized as the following:

Theorem 3.1, Let M >0 and N >0 Pﬁgiven real numbers and

let q be the maximum of |£(x,y,y')| on the compact set

{(x,y,y' ):a < x < byl < 2M,]y' | < 2N}, ZIhen, if

= min[(s—z-i)llz,zg], any BVP y' = f(x,y,y'), y(xl) = Yy» y(x,) = x,




4
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with [xl'le = [a,b], X=X <45, lyl, b IY2' <, I ,‘;17;‘; l <N

has a solution y(x) ¢ C(z) {x

l,le. Furthermc.e, given ¢ > 0 there
is a solution y(x) such that |y(x) - w(x)| < ¢ and
fy'(x) - w'(x)] < e on (x,,x,) provided x, - x; 1is sufficiently

small where w(x) 4s the linear function with w(xl) = Yp» w(xz) " Yoo

Essentially, Theorem 3.1 says that on a sufficiently small interval
with admissible boundary conditions, the boundary value problem can
be solved, and that, furthermore, the solution can be made arbitrarily
close to the straight line connecting the boundary points.

Now, using Theorem 3,1 along with some of the properties of sub-
functions and superfunctions, we can obtain the following theorem
about properties of bounded functions which are simultaneously sub-

functions and superfunctions.

(2)

Theorem 3.2, Assume that f£(x,y,y') 1s such that C solutions

of boundary-value problems, when they exist, are unique. That is,

(2)

2 [xl,le are solutions

assume that, if (x,,x,] <1 and y,,y, €C

of y" = £(x,y,v") on [x;,x,] with y(x)) = y,(x)) and
¥;(x,) = y,(x,), then y,(x) = y,(x) on [x,x,]. Assume that z(x)

1s bounded on each compact subinterval of J< I and that 2z(x) is

gimultaneously a subfunction and a superfunction on J. Then 2z(x)

1is a solution of y" = f(x,y,y') or an open subset of J the

complement of which has w-asure zero. Furthermore, if x ¢ 1°

is a point of continui’ f z(x) at which 2(x) does not have a

——y it W —— —

finite derivative, ., elther Dz(xo+) = Dz(xo-) =+ o or




Dz(xo+) - Dz(xo-) - o, If zo(xo +0) > z(xo - 0),
Dz(x°+) = Dz(xo-) = 4+ o, and {if zo(xo +0) < z(xo - 0),
Dz(xo+) - Dz(xo-) . -,
These properties of 2(x) will be needed later in the study of

boundary value problems by the Perron method.

4. Study of boundary-value problems by subfunction methods.

A bounded real-valued function ¢ defined on {a,b] is said to be

an underfunction with respect to the boundary-value problem

y" = f(x,y,y'), y(a) = A, y(b) = B (4.1)

in case ¢(a) < A, ¢(b) < B, and ¢ 1is a subfunction on [a,b]

with respect to solutions of y" = f(x,y,y'). The bounded function
P(x) defined on [a,b] 1is said to be an overfunction with respect
to the BVP in case y(a) > A, y(b) > B, and ¢ 1is a superfunction on

{a,b] with respect to solutions of y" = f(x,y,y').

(2)

Theorem 4.1, Assume that C golutions of BVP'a for

y" = £(x,y,y') on subintervals of [a,b] are unique in thec sense

of Theorem 3.2, Assume that there exists both an overfurction

‘po and an underfunction ¢o with respect to the BVP (4,1) and

that d»o(x) :wo(x) on [a,bl. Let ¢ be the collection of all

underfunctions ¢ such that ¢(x) < ¢ (x) on [a,b). Then
EEEE—— S————— —-— o —— —————

z(x) = gup oce? (x) 1is simultaneously a subfunction and a super-

function on [a,b].




Definition 4.3: The function 2z(x) defined in Theorem 4.1
depends on the BVP (4.1) and on the overfunction wo(x). It will be

designated by z(x,wo) and will be called a generalized solution

of the BVP,

Remark. The justification of the title “generalized solution"
follows from Theorem 3,2, which is applicable since z(x,wo) is
both a subfunction and a superfunction,

The other properties given in Theorem 3.2, also apply to
z(x,wo). The behavior of z(x,wo) at the endpoints of [a,b] is

given by the following theorem.

Theorem 4.2. Assume hypotheses of Theorem 4.1 are satisfied,

and let z(x,wo) = z(x) be the correspondiug generalized solution

of BVP (4.1), Then z(a) = A. If Dz(at) =+ =, z(a + 0) < z(a).
If z(a + 0) < A, Pz(at) = - », Hence, if Dz(at) is finite,

z(a + 0) = z(a) = A. Similar scatements apply at x = b,

.ith the above results, ve can divide the study of the BVP
by the subfunctlon approach into two parts: First, to establish the
existence of an overfunction wo and an underfunction ¢o such
that ¢°(x) :_wo(x) on [a,b] (this gives us a candidate for a
solution, z(x,wo) 3; second, to establish conditions under which the
generalized solution z(x,wo) is of class C(Z)[a,b] and 18 a
solution of the boundary value problem on [a,b]. Theor:as 3.2, 4.1,

and 4.2 play a major role in achieving the second part, since they

AR



tell us it is sufficient to show Dz(x+) 1is finite on [a,b)
and Dz(x~) 1s finite on (a,b].

A function a(x) 1s called a lower solution of the differential

equation y" = f(x,y,y') on an interval I 1in case

ax) € NP %), 1° the interior of I, and

' - a’'(x 4+ 8) - a'(x - 8)
Da'(x) = lims_,oinf 3

Similarly, B8(x) is an upper solution if

> £(x,a(x),a'(x)) on 1°

DB'(x) = 1lim, .sup Bl0x + G)T; Bl(x = 6) < £(x,8(x),8'(x)) on 1°.

&0
Proceeding along the line of argument (in the two parts)

mentioned above, we obtain first Lemma 4.3, and then Theorem 4.4,

Lemmg 4.3. Assume that f£(x,y,y') 1is non-decreasing in y

on [a,b)-x (~=,4&) x (~w,4=)  for fixed x,y' and is such that lower

and upper solutjons of the differential equation are subfunctions

and superfunctions, respecti..ly. Further assume that there is a

S P —————— —

k > 0 such that |£(x,0,y") - £(x,0,0)] < k|y'] on a<x<d
for all y'. Thep there exists overfunctions and underfunctions

with respect to every BVP on [a,b}. With the aid of this lemma,

we can then show

Theorem 4,4, Assume that f£(x,y,y') 1s non-decreasing in y

on [a,bl x (-»,4=) x (-=,4=) for fixed »,y' and assume that

£(x,y,y') satisfies a Lipschitz condition with respect to y'

on each compact subget of [a,b] x (-»,4») x (-=,+=) or that




solutions of _itial-value problems are unique. In addition

assume that there is a k > 0 such that |f(x,0,y') - £(x,0,0)| < k|y'|

on f{a,b] for all y'. Then for any boundary-value problem on

[a,b] with an asgociated overfunction wo(x) the generglized

solution z(x) = z(x,wo) belongs to C(z)(a,b) and 2" = £(x,2,2")

on (a,b).

Proof: (sketch). Lemma 4.3 guarantees us that with respect
to a given BVP on [a,b], there is an overfunction wo(x) and an
underfunction ¢o(x) with ¢°(x) i_wo(x) on [a,bl. Consequently,
the generalized solution z(x) = z(x,wo) is defined, Furthermore,
the hypotheses imply that solutions of BVP's when they exist, are
unique; hence, the conclusions of Theorem 3.2 apply to 2z(x).

Thus, to complete the proof, it is sufficient to show that Dz(xo+)
and Dz(xo-) are finite at every point of (a,b).
Ocher representative theorems which can be obtained in this

manner are the following:

Theorem 4,5, Assume that f(x,y,y') 1s nondecreasing

in y on {a,b] x (~=,+») x (-=,4+») for fixed x,y' and satisfies

a uniform Lipschitz condition with respect to y' on [a,b] x (-»,+=)

x (-»,+»), Then for any A,B, the boundary-value problem (4.1)

has a unique solution y(x) ¢ C(z) [a,b].

Corollary 4.6. If f(x,y) 1is continuous on ([a,b] x (-=,+=)

and is nondecreasirg in y for fixed x, then for any A,B, the




boundary-value problem y" = f(x,y), y(a) = A, y(b) = B has a

unique solution y ¢ C(Z)[a,b].

Using the subfunction approach, Jackson was able to show a
result first proved by Opial and Lasota in 1967, which is that

uniqueness of solutions of BVP's implies their existence.

Theorem 4.7, Assume that I < Reals 1is an interval and that

f£(x.y,y') 1is continuous on I x Rz. Assume that for every

(xo,yo,yo') eIx RZ, the initial-value problem y" = f(x,y,y'),

y(xo) = Y» y'(xo) = yo' hag a unique solution y(x) ¢ C(z)(I).

Further, assume that, if for any [xl,xz] <1 and any A,B, the

BVP (*) y" = f(x,y,y"), y(xl) = A, y(xz) = B has a solution

y(x) € C(z)[x +%X.], then that solution is unique, Then for any
1°727 —— —

proper subinterval [xl,le &1 aud any A,B, the BVP (4.1) has a
solution,

The basic idea behind the subfunction approach of working in
the ‘'small', and then using these results to obtain gome in the
'large’', is quite well established and produces fruitful 1esuits.,
So far, practically all theorems obtained in this manner have been
already known. In this sense, little new is being added, and it
seems certain that any result which has been shown otherwise could
also be shown using subfunctions, The important thing to keep in
mind is that the subfunction theory is relatively new and may well

be leading the development in the field of BVP's in the coming years.

5. Relation between subfunctions and differential inequalities

An interesting question is, what is the relationship between
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subfunctions and differential inequalities? A function a(x) 1is

called a lower solution of the differential equation y" = f(x,y,y')

on an interval I in case a’x) £ C(I): C(l)(Io) and

- a'(x + 8) = a'(x = 8)
Da'(x) = 11m6+oinf 33

(Similar definition for upper sclution).

> f(x,a(x),a'(x)) on °.

Theorem 5.1, Assume that ¢ ¢ C(I)( C(l) (I°) is a subfunction

on I with respect to solutions of y" = f(x,y,y'). Then ¢ 1is a

lower solution of the differential equation on I,

That is, a sufficiently smooth subfunction is a lower solution.

The converse, that a lower solution is a subfunction, is not
true under just the assumption of continuity of f. To see this,
assume so, i.e, that every lower solutior. is a subfunction., Then,
since a solution is a lower solution, we have that every solution is
a subfunction, By the definition of a subfunction, this implies
that the solution to the BVP must be unique. It is easy to think
of a BVP with non-unique solut.ions, Thus, we have that a theorem
which gives sufficient conditions for a lower solution to be a sub-
function is automatically a theu.em giving sufficient conditions for
solutions of BVP's to be unique,

Along these lines, we have

Theorem 5.2, Let f£(x,y,y') be non-decreasing in y for

fixed x,y' and satisfy a Lipschitz condition with respect to y'

on each compact subset of [a,b] x Rz. Then a lower solution ¢

on a gubinterval I C [a,b] 1is a subfunction on I,
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If we retain the non-decreasing assumption and alter the other to
assuming that solutions of IVP for y" = f(x,y,y') are unique, then
the conclusion is still valid,

As a last result, we have

Theorem 5.3. Asgsume that solutions of BVP for y" = f(x,y,y'),

when they exist, are unique (i.e,, 1if Y1s¥, € C(z) [xl,le are

solutions on [xl,le {a,b] with yl(xi) = yz(xi), i~1,2,

then yl(x) yz(x) on [xl,le). Assume also that each IVP for

y" = £(x,y,y') has a solution which extends throughout [a,b]. TIhen,

if 1< [a,b] and ¢ € C(l) (I) is a lower solution on I, then
¢ 1s a subfunction on I.
As an example of results obtained using lower and upper solutiomns,

we have

Theorem 5.4, There exists a solution y of y" = £f(x,v,¥"'),

y(a) = A, y(b) = B, which is in C(Z) [a,b] provided the following

conditions hold:

(1) There exists o,B € C(l) (a,b] N C(Z)[a,b] with o

jo

lower solution and B an upper solution on {a,b]. Also

a(x) < 8(x) for x e [a,b] and a(a) < A < B(a), a(b) < B < 8(b).

(11) £ satisfies the Napgumo condition on set

E={(x,y) : a <x<b, alx) < y(x) < B(x), where o,8 € C[a,bl};

thct is, there is a positive continuous function h such that

l€£x,y,v") ] < h(ly'D for all (x,y) ¢ E, and ly*] < + =, where

o

s
f)‘ 0] ds > max [a,b]B(x) - minx ¢ [a,b]a(x) with




JHORXIONN

A = max {|a(b) - B(a;|/(b-a), (b=-a)

Furthermore, the

— e — o —————

M
{a,b], where f}\ % dg = max, . [a,b]s(x) - mi.nx . [a’b]a(x).

12
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CHAPTER IV
LITERATURE SURVEY OF EXISTZNCE AND UNIQUENESS THEOREMS

1. Introduction. The literature survey conducted by Mr. York
centered on the investigation of techniques used to prove uniyueness
and existence theorems for boundary value problems. Basically, the
survey dealt with three main areas: (1) contraction mappings,
which yield both existence and uniqueness; (2) distance between
zeroes, which resulted in improved estimates of uniqueness intervals;
and (3) comparison theorems and differentia’ inequalities, which
yield bounds on solutions along with existence and uniqueness results.
Of the three, the one that seems to offer the most promise for future
investigation is the last. Many of the more recent papers in the ‘
field of boundary value problems utilize a subfunction or superfunction
approach which 1s in reality part and parcel of the comparison theorems

and differential inequalities.

2. Preliminaries. Before proceeding with the actual findings,

it will be advantageous to introduce some terminology which we will

employ throughout. Consider the differential equation:

(2.1) y'(t) + £(t,y(t),y'(t)) = 0 ¢ ¢ [a,b].




By a solution to ‘ae first boundary value problem (denoted lst BVP),
we will mean a solution of (2.1) satisfying the imrosed boundary
condition, y(a) = A and y(b) ©« B, A, B real numbers. By a solution
to the second boundary value problem (denoted 2nd BVP), we will mean

a solution of (2.1) satisfying the boundary condition y'(a) = m

and y(b) = B, Included in this case, of course, is the boundary
condition y(a) = A, y'(b) = m.

Throughout, we will always assume that f(t,y(t),y'(t)) 1s a
continuous function on [a,b] x (-=,») x (~=,»), unless otherwise
stated., Additional assumptions on the function £ will be stated
fully wvhen needed. Frequently, we assume f to be Lipschitzian,
i.e., there exist two non-negative constents K and L such that
whenever (t,y,y') and (t,x,x') are in the domain of f, then
the inequality |f(t,y,y") - £(t,x,x")| §,K|y - x| + Lly' - x'| holds.
Remark: 1f £(t,y,y') 1s linear in y and y', then £(t,y,y')
is Lipschitzian for t confired to some finite closed interval.

More generally, if f(¢,y,y') has bounded partial derivatives,

%% (t,y,v"), %53 (t,y,y'), then f£(t,y,y') 1is Lipschitzian with

K = sup |—2 £(t,y,y')] and L = sup {—27 £(t,y,v')].

9 )
(t,y,y") 7 (cy,y) 7
By a solution to the initial value problem (IVP), we mesn a solution

of (2.1) satisfying y(a) = A, y'(a) =m or y(b) =B, y'(b) = m.

3. Linear and nonlinear boundary value problems.

Before proceeding to the three main areas, let us give some

preliminary results concerning nonlinear vs. linear problems,




and boundary value problem vs. initial value problems. By studying

such simple BVP's as the linear problem

y'(t) + y(t) = 0

y(0) = 0 y(b) =B
and the nonlinear problem

y'(t) + jy(t)| =0

y(0) = 0, y(b) = B,

we find the following: (1) for linear problems, for fixed a,
existence and/or uniqueness fail for exceptional values of b; while
(2), for nonlinear problems, both existence and uniqueness may fail

for all b grester than or equal to a certain bo.

4. Application of initial value theory to boundary value problems.

Frequently, much use is made of the theory of the initial value
problem in obtaining theorems for the boundary value problem. The most
used results atve that continuity of f£(t,y,y') guarantees existence
of a solution, and the added assumption of the Iipschitz condition
implies uniqueness and continuabili.y of the solution. Also, under
the same assumptions, we have the continuous dependence on initial
conditions and parameters. As an example, we can use these results

of IVP theory to prove

Theorem 4.1. If f(t,y,y') satisfies a Lipschitz condition on

[a,b] x (-»,4») x (~e»,») and is bounded, i.e., I£(t,y,¥y") | <N

for every (t,y,y'), then the lst¢ BVP has a solution.




Remark: The assumption of boundedness, here, is rather restrictive,
but the theorem does illustrate how knowledge of IVP's implies that
of BVP's.

Also, we can make certain assertions concerning the relation

between existence and uniqueness intervals for the two BVP's.

Theorem 4.2, Let a < c < b, If uniqueness holds for all

2nd BVP y(a) = A, y'(c') = m whenever c' ¢ (a,c], and if

uniqueness holds for all 2nd BVP y(b) = B, y'(c’') = m whenever

¢' € [c,b), then uniqueness holds for the lst BVP on [a,b].

Let a < ¢ <b. Then we have that: if all IVP on [a,b] have
unique volutions, and if both 1st and 2nd BVP have unique solutions
on f{a,c] and also on ([c¢,b]), then the lst BVP has a unique solution
on {a,b]. This result is oy importance later in establishing the

best uniqueness interval for the 1lst BVP.

5. Contraction mappings. We are now ready to study the contraction

mapping approach. Let S be a normed linear space S witl norm
denoted by ||+||. The space will be called complete if every Cauchy
sequence converges to a point in S. An operator T mapping §

into § will be called a contraction mapping if there is a nunber

@, 0 < a <1, such that, for all x,y ¢ S, ||Tx - Ty]| < allx - y]].
The whole idea behind the contraction mapping approach is contained

in the following theorem.

Theorem 5.1. Every contraction mapping T defined on a

complete normed linear space S has one and only one fixed point




(A

(i.e., y = Ty has exactly one solution). In this one theorem,

we have both the assertion of existence and uniqueness of a solution.
Our problem then is how to view the BVP as a map.

We can accomplish this end by employing a Green's function to
revrite our differential equation as an integral equation. The

Green functions we will use are

b-tis-a) | gcech

b-a
G(t,s) = |
b-8)e-2a) ,.¢cqch.
¢ b ~-a - - -
and
s-a ac<s<t ﬁ_b
H(t,s8) =
t-a a<t<s 5.b.

Hence the lst BVP with zero boundary conditions is equivalent to

y(t) = ]2 G(t,s) f(s,y(s),y'(s)) ds a<t<b

and

b 3G

y'(e) = [ ¢ (5,8) £(s,5(s),y'(s)) ds.

For non-zero boundary conditions, we would add to the right-

hand side of the first equation the linear function

Lty = PAS anb+-(2 - At
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whicl satisfies £(a) = A, £(b) = B, and 1s a solution of y"(t) = 0.

For this reason, boundary conditions may be taken to be zero without
loss of generality. Similarly, we would add £'(t) to the right-hand
side of tue second equation.

When A= 0 and m = 0, the 2nd BVP is equivalent to

y(t) = f: H(t,s) £(s,y(s),y'(s)) ds

and

y'(©) = [2$2 (t,8) £(s,7(s),y" (D) ds.

For A and m not zero, we add to the right-hand side of the
first equation, the solution of y"(t) = 0 which satisfies y(a) = A,
y'(b) = m, namely, A + m(t - a), and its derivative to the second.

The properties of the Green's functions that we will need are
2
b (b - a b 9G b-a
Ia G(t,s) j_————g—l- and Ia tsg (t,s)| ds e

Just as Picard did some seventy years ago, we can define an
iterative procedure as follows: starting with any continuously

differentiable function, we define yn(t) as the solution of
" U = -
Yo (t) + f(t,yn_l(t),yn_l(t)) 0 n=1, 2, ...

yn(a) = A yn(b) = B.




Here, in effect, we have defined a map T, Yq © Tyn-l’ on the space
of all continuously differentiable functions into itself. We need
now to investigate under what assumptions will T be a contraction
mapping. If T is, then the fixed point y, y = Ty, will be the
unique solution to the original BVP,

We first consider the special case of the lst BVP in which y'
does not appear. Take S to be the space of all continucus functious

on [a,b] with norm ||u}| = max |u(t)]. S 1is then a complete
a<t<b

norwed linear space. We arrive at

Theorem 5.2. Let £(t,y) satisfy a Lipschitz condition.

Then the 1lst BVP has 3 unique solution whenever b - a < J87K.

This result is not best possible meaning that existence and/or

uniqueness may not fail when b - a = V8/K.
To obtain a sharper estimate, we change the norm by introducing a

non-negative weight function w(t), which we later choose. Define

a new norm ||u||, = max l!ﬁ&ll . With the appropriate choice
1 a<t<b w(t)

of w(t), we £find that

Theorem 5.3. Let f(t,y) satisfy a Lipschitz condition.
K(b - a)?
Then the lgt BVP has a unique solution whenever —— < 1.
n
This result is best possible. The important point here is that

in this special case, i.e., no y', the Picard iterations do
converge on the best possible uniqueness and existence interval.

This result does not hold in the general case.




For the more general case with y' 1included, we introduce
the space S of continuously differentiable functions on [a,b]

with porm ||u|| = max (K|u(t)} + Lju'(t)|), where K and L
a<t<b

are the Lipschitz constants.

Theorem 5.4. Let f(t,y,y') satisfy a Lipschitz condition.

2
K(b - a) L(b - a)
if gt 3

solution. This result, however, is not best possible.

< 1, then the 1lst BVP has one and only one

To obtain results for the 2nd BVP, we let S consist of the
space of all continuously differentiable functions on [a,b], with

norm

Hull = max jmax lueyl O

?
'aitib w(t) a_<_t_<_b v(t)

in which we introduce weight functions for both the function and
its derivative. Let us introduce the following notation. If wu(t)
is any non-trivial solution of u"(t) + Lu'(t) + Ku(t) = 0 which

vanishes at t = a, then its derivative vanishes at t = a + a(L,K),

where
: cos } L 1f 6k -1%50
‘ -1 _L_ 2
{ cosh if 4K-1L"<0,L>0,K>0
F2 AK)!{, 2k
G(L,Y) = l;
"2 2

N otherwise




Then we can show

Theorem 5.5. 1f £(t,y,y') satisfies a Lipschitz conditionm,

then, 1f b - a < a(L,K), then the 2nd BVP has one and only one

solution. This result is best possible.

In conclusion, Picard's iteratives converge on largest possible
interval for the 2nd BVP, but only in the special case for the 1st
BVP. By employing results on relations between uniqueness intervals

for BVP's, we get

Theorem 5.6. Let f(t,y,y') satisfy a Lipschitz condition.

If b~ a < 2a(L,K), then the 1lst BVP has one and only one solution.

Result is best possible.

In some sense, the above can be considered a global result.

By requiring that T be a contraction mapping not on the whole space

but on some ball, we can obtain local existence and uniqueness of

solutions.

Theorem 5.7. Let f£(t,y,y') be continuous on

4N 4N
{a,b] x [-N,N] x [~ +—0 §—

], and satisfy a Lipschitz condition

there. let m = max |£(t,0,0)], M = max [£¢e,y,y"! for

ast<b
2
Iylf_N,ly'[i%,te[a,b]. Then if a_K@gga) +L(b-2-a)<1
alb - a)2 M(b - a)?
and either < N(1 -a) or < N, then the lst
/== === 8 -~ 8 - L2 L L

BVP has one and only one solution y(t) such that |y(t)| <N,

ly'(e)| < fNa for te [a,b]. If f£(t,y,y') 1is continuous and

bounded on f{a,b] x D, D C Rzn, then by the Shauder fixed point
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theorem, local sclutions exist. A more general rixed point theorem
might well result in existence and uniqueness theorems with less

conditions imposed on the function £(t,y,y').

6. Estimates of uniqueness intervals.

The second main area of constderation was obtaining better
estimates of the uniqueness intervals. To this end, we introduce
a generalized Lipschitz condition. Instead of just the two constants
K and L, we now have four constants Kl, Kz, Ll, L2 and linear
functions G, and G2. Then

1

G, (y ~ x,y' - x") < f(t,y,y") - £(t,x,x') £ Gy - x,y' - x')

where
B ] ]
{KIY + Lly if y>0 and y' >0
'jx1y+L2y' 1f y>0 and y' <0
Gl(y’y') = .
:K2y+L2y‘ if y<0 and y' <0
ley + Lly' if y<0 and y'>0
and

ikzy + Lzy' if y>0 and y'>0
Ky + Ly' 4if y20 &nd y' <0
. ;
GZ(YaY ) = ,
Ky + Lly' 1f y<0 and y' <0

: K,y + Lzy' i1f y<0 and y' > 0.
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Note that if we have —Kl =- K2 1

have the usual Lipschitz condition. The advantage of this approach

= K, and -L, = L2 = L, then we just
is simply that more information is contained in four constants than
two. Now, we can distinguish between such differential equations as
y'~y=0 and y"' +y = 0, The lst BVP for the first equation
has unigue solutions on all finite intervals [a,b]; whereas, the
1st BVP for the second equation has a unique solution only on intervals
of length less than =#, With the old Lipschitz condition, these two
equations fell into the same class.

One of the most fundamental results is what might be called

an 'alternative'

Theorem 6.1. The maximum interval on which all of the equations

in the family (Kl, Kz, L specified) have unique solutions to all

1’ L
first boundary value problems coincides with the minimum interv~l

on which none of the "urforced" equations in the family has a non-
trivial solution with two zerces. We say that an equation

y"'(t) + £(t,y(t),y'(t)) = 0 1is unforced if £(t,0,0) = 0. Similarly,
uniqueness holds for all the second boundary value problems in the
class, if and only if, none of the unforced equations has a non-
trivial solution such that both it and its derivative have a zero

on the interval. The main idea here is that without loss of generality,
when considering the question of uniqueness, it is sufficient to

study the distance between zeroes of unforced equations.

When considering the family of all differential equations

associated with given Lipschitz constants (Kl’ KZ’ Ll, Lz), it is
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By studying the relationships between u(t), v(t), and y(t), we

arrive at the following uniqueness theorem.

Theorem 6.2.

a generalized Lipschitz condition.

Suppose f(t,y,y') 1s continuous and satisfies

(1) If 0<b ~-acx< n(Lz.l(z), then the 2nd BVP

y'(t) + £(t,y(t),y'(t)) = O

y(a) = A, y'(b) = m

has one solution at most.

(2) 1f 0<b-a<B(L,K,), the 2nd BVP

y'(t) + £(t,y(t),y'(t)) = O

y'(a) = m, y(b) = B

has one solution at most.
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(3) If 0<b=-acx u(Lz,Kz) + B(Ll,Kz). then the lst BVP

y"(t) + £(t,y(c),y'{t)) = 0

y(a) = A, y(b) = B

has one solution at most. These results, (1), (2), (2), are

best possible.

7. Comparison theorems. Chapters 5 and 6 of Bailey, Shampine,

and Waltwan's book develop comparison theorems based on differential
inequality theory and use them to prove existence of solutions to

boundary value problems. A sample comparison theorem would be:

Theorem 7.1. Let v(t) be a twice continuously differentiable

function on [a,b) satisfying

v'(t) + £(t,v(t),v'(t)) > 0.

(Assume f continuous on ({a,b] x (-»,4=) x (~=,+=) and that all

IVP's and all BVP's have unique solutions existing throughout the

interval {a,b}).

(1) If u(t) 1s a solution of u"(t) + h(t,u(t),u’'(t)) = 0 (7.1)

which agrees with v(t) 1in both value and slope at some point

t e (a,b], then v(t) > u(t) for t ¢ t,-
(2) If wu(c) 1s a solution of (7.1) which agrees with v(t) in

value at a and at b, then v(t) < u(t) for t ¢ a,b.
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Although of interest in itself as Theorem 7.1 relates solutions
of the differential equatioan with functions satisfying the assc:iated
differential inequality, this comparison theorem caa be used to

prove

Theorem 7.2. Suppose f£(t,y,y') 4is continuous and satisfies

a general Lipschitz condition. Then the second boundary value

problem

y'(t) + £(t,y(t),y'(t)) = 0, y(a) = A y'(b) =m

has a unic-e solution whenaver 0 < b - a < a(Lz,Kz). Result

best possible. Note that this result is not new, as it has been

obtained before ugsing fixed point theorems.

References

{1] P. Hartman, Ordinary differential equations, Wiley, New York,

1964.

[2] P. Bailey, L. Shampine aud P. Waltman, Nonlinear two-point

boundary value problems. Academic Press, New York, 1968.




PERTURBATION THEORY USEFUL IN PARALLEL SHOOTING METHODS1

By John H. Georgex*

1. Introduction. Shooting methods are techniques for solving
boundary value problems by reduction to initial value problems.
They have been the subject of numerous recent papers, (see Roberts
and Shipman [1}, Osbourne [2], Bailey and Shampine [3] and Keller {4]).
The main computational advantage of shooting methods is the avail-
ability of sophisticated numerical procedures for integrating initial
value problems. The difficulties in the use of shooting methods
occur because (i) the initial value problem is "unmstable", (for
now, unstable means a small variation in the initial conditions gives
rise to large variations in the corresponding solution) and (ii) {1t
is difficult to obtain "good" starting values for most iterative
techniques used to solve nonlinear problems. Osbourne [2] shows
how the parallel shooting technique (see Keller [4] for a comprehensive
explanation of parallel shooting) makes positive contributions to
both of these problems.

Bailey and Shampiue [3] have given several concepts closely
related to stability and boundedness (as in Hahn [5]) of initial
value problems. In their trea'ment a Lipschitz condition is assumed
on the differential equation. Using differential inequalities

obtained from the Lipschitz condition, solution bounds are obtained.

1
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*Department of Mathematics, University of Wyoming.




In this paper Liapunov theory will be applied to the shooting
methods to ¢obtain solution estimates. These estimates will then be
used to determine a suitable interval length in the parallel shooting

technique.

2, Preliminaries. Let us consider the system of n differential

equations

(2.1) y' = f(t,y), '=-—,

where £(t,y) 1is defined and continuous on [a,b} x D, DC Rn,

subject to the boundary conditions

(2.2) Bly(a) + Bzy(b) = c

where B1 and 32 are n Xx n matrices, B1 + B2 is nonsingular,
and c¢ 1is a constant n vector. Let us assume that (2.1) and
(2.2) has a unique : olution and that the initial value problem

(2.1) and
(2.3) y(a) = o
has a unique solution on (a,b]}.

A real valued function ¢(r) belongs to class K (¢ e K)

if it is defined, continuous, and strictly increasing on 0 < r < =,




and ¢(0) = 0. The solution y(t) of (2.1) and (2.2) can always
be transferred to the solution u(t) = 0 of a new equation as
follows:

Let 2z(t) be any solution of (2.1) and (2.3). Then if

u(t) = z(t) ~ y(r),

(2.4) u' = £(t,u + y(t)) - £f(t,y(t)) = g(t,u)

and g(t,0) = 0. Thus, u(t) = 0 1is a solution of (2.4).

The solution u(t) = 0 of (2.4) is uniforrly stable if there

exists a function ¢ € K such that if u(t,a,a) 1is a solution of
(2.1) and (2.3), then ||u(t,a,a)]] §_¢(||u|!), a<tc<b. If

¢(r) = Lr then L 1is called a growth factor. Obtaining growth

factors by Liapunov theory can then be used to estimate the interval

length in the parallel shooting technique.

3. Liapunov theory. A Liapunov function wv(t,u) 1s a real

valued continuous function which is locally Lipschitzian on [a,b] x D,

DC R%, Let

im sup<%[v(t + h, x + hg(t,x)) - v(t,x)] .

vi(t,u) = 1
& h » ot

Then, as in Yoshizawa [6], it can be shown that

vi(t,u) = %% (t,u(t,a,a)) .
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Theorem 3.1. If there exists a Liapunov function v(t,u) such

that
o;UlulD < vie,u) < o, (flulD), 6,00, € K

and v'(t,u) < 0, then u(t) = 0 1is uniformly stable.

Proof. This is a standard theorem [5], but since the proof
indicates how growth factors could be determined, it will be included.
Since vé(t,u) <0, v(tl,u(tl,a,a)) Z_V(tz,u(tz,a,a)) for
t £ty Then

o lalD 2 v(a,0) 2 v(t,u(t,a,00) 2 ¢, (]ult,a,0|]) .

By the properties of class K, ¢11 exists and ¢11¢2 e K, {5].

Then
[fu(t,a,a) (] 5_¢11¢2(Hall) = o(|{all), ¢ = ¢;1¢2 e K.

Remark. If an L can be found so that ¢('|“|‘) f_Llldll
then L would be a growth factor. For example, if ¢1(r) = clrz,

2
¢2(r) =C,T, €56, > 0, then L = ¢c17c2 .

4, Perturbation theory. In the study of perturbations, the most

widely used methods involve the construction of Liapunov functions

for the perturbed system [5,7,8]. Other methods are based on the




variation of parameter technique [9,10]. Several of the more useful

theorems will be given here.

Let A(t) be an n x n matrix with continuous elements
on ([a,b], let AT(t) be the transpose of A(t), and let A(A(t))

denote the largest eigenvalue of %(A(t) + AT(t)) on {a,b].

Lemma 4.1 (Wazewski [11]). Every solution 2z(t) of the linear

system

(4.1) z' = A(t)z

satisfies

6.2) {lz(e)}] < |lz(a)}] exp [j: A(A(s))ds], a <t <b .

Proof. Let v(z) = z'z = |lz|lz. Then

vl (2) = (2172 + 272" = 2T[A(D) + AT (D)2 < A,

Thus by solving this differential inequality, (4.2) is obtained.

Let u(t,a,a) be a solution of (2.4) through (a,a) and let
gu(t,u) represent the Jacobian matrix. Let A(gu(t,u)) denote
the largest eigenvalue of %[gu(t,u) + gﬁ(t,u)] and suppose

(4.3) A(gu(t,u)) <h(t) for a<t<b, ueb

where h(t) 1s a continuous function defined on {a,b}. Then in

S

ST UEIE



an analogous manner to Lemma 4.1 we have

Lemma 4.2 (Brauer [9]). If a ¢ a convex subset D of D

then for all t for which all solutions with initial values in

13 remain in D,

(4.4) |lu(t,a,0) || < |la}] exp (f; h(a)ds] .

Consider
4.5) 2' = A(t)z + F(t,z) ,

where A and f are matrix and vector functions respectively.

Assume A(t) 1is continuous on a <t <b and F(t,z) 1is

continuous on a <t <b, z ¢ D. Let Z(t) be the fundamental

golution of (4.,1) satisfying Z(a) = I.
Theorem 4.1 (Coppel [10]). Let the solution 2z(t) = 0 of

(4.1) be uniformly stable, and let F satisfy

HECe, 2] < v(o) [fzH] »

where vY(t) i1s a continuous non-negative function satisfying
f: Y(t)dt < *. Then there exists a positive constant L such that

for any solution 2z(t,a,a) of (4.5) through (a,a),

Hz(c,a,u)” .<_LH0'”’ ast f-b .
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Remark. If ||B]| = sup ||Bx|}, and 1f || z(t)zfl(s)|| <K
X wl

for a<s<t<b, then L =K exp [K f: r(s)ds] 1s a growth factor

[10]. These results should give conmservative estimates of L.

5. Applications. Holt [12] and Osbourne [2] consider the

differential equation

(5.1a) S-a+thy=o,
de
(5.1b) y(©) =1, y(®) =0 .

According to Holt, the solution of (5.1) cannot be obtained

for b > 3.5 by conventional shooting methods. Reverting to (4.1),

/y\ ‘ ./ 0 l:\'\
B R WY

AGA(E)) = 2 + t2, and from (4.2)»
3
Hz(e)|] < |lz(a)|] exp [2t + -3], 0<tc<b,

3

, then exp [2t +-£§] <L-= 105

If L= 10°

holds for t < 2.7,
If L= 103 as is suggested by Keller [4, p. 68], then t < 2.
The interval length of 2.7 is a reasonable estimate to the

interval length 3.5 obtained by Holt by numerical computation.

P ST




Consider the problem

(5.2a) y" + siny = sin 3% ,

(S-Zb) Y(o) - oi Y(b) a0 ’

considered for b = 3.1 by Bailey and Shampine [3].
Suppose y(t) 1is a solution of (5.2) and 2z(t) 1is a

solution of (5.2a) and
(5.3) y(0) = 0, y(a) = o .
Then letting v(t) = z(t) - y(t) we have
v"' & - sin(v + y(t)) + sin y(tr) .

Wricing
) \

/ \ I’ v
h= ’ g(t,U) = ’
v' = sin(v + y(£)) + sin y(t)

we have

! o 1\‘

g (t’“) =
u (- cos(v + y(t)) 0}

and




‘A(gu(t.u)) =1 - cos(v+y(t)) <2,

From 4.4, if u(t,0,a) 1s a solution of u' = g(t,u) through

{0
\a at t = 0, we have
(5.4) {lu(t,0,0) || < |a| exp 2t ,

and 1f exp 2t < L = 10%, then t < 2.3.

Remark. A disadvantage of this method is that singularities
must be known beforehand. For example, in (5.2) there is a singularity
at b = r which would not appear in (5.4). In any case, because
of the ease of application, 1t is felt that the described methods
should yield useful information in many parallel shooting problems
as, for example, in the method for determining the parallel
shooting interval length as described by Keller [4, p. 68].

Use of a quadratic Liapunov function and the theory of first
approximation would yield other estimates of a similar nature to

those already given.
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J. il. GEORGE and W. G. SUTTON, Application of Liapunov theory to

boundary value prchlems.

Abstract: The theory of Liapunov's direct method is developed for
boundary value problems occurring in ordinary differential equatioms.
Conditions are given in terms of a Liapunov function which are sufficient
to iasure uniqueness and existence cf aolutions to boundary value
probiems. A suitable Liapunov function {s obtained to give conditions
obtained by Hartman as special cases.
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Application of Liapunov Theory to Boundary Value Problems

By J. H. George and U. G. Suttonl

1. Introduction. Many techniques and theories developed for
boundary value problems. of ordinary differential equations originated.
as initial value concepts. For example, fixed point theorenms [1], Picard's
iteration {4] and differential inequalities {2,3,4] are commonly used
techniques in both initial and boundsry value problems.

A theoretical technique that has proved extremely useful in
initial value theory [5], but does not seem to be given ite due in
boundary value theory, is the direct method of Liapunov. In initial
value problems, since necessary and sufficient Liapunov function
conditions are obtained for many types of solution behavior, the theory
can be considered as a unifying concept. That 1s, all known sufficient
conditions can be obtained by choosing the proper Liapvaov function, as
is done by Yoshizawa {5, p.10] for the Lipschitz condition as a
uniqueness criterion. (See George [7] for a Liapunov function for
more general uniqueness theorems). Yoshizawa [3] has obtained a
Liapunov result for boundary value problems, giving necessary and
sufficient conditions for the boundary value solutior to remain
between two estimates obtained by differential inequalities.

We shall develop a Liapunov theory for existence and uniqueness
of solutions of boundary value problems. Also the existing theory of
Hartmap will be shown to be included in our theory by a suitable

Liapunov function selection.




2. Preliminaries and notation. Let us consider the system of

ordinary differential equations
Q1) x" = £f(t,x,x')

where x and f are n-vectors, ' = -ad; and f 1is a function defined

and continuous on a domain D = {a,b} x D, where [a,b] i1s an interval

on the real line and D ¢ R2D,

The boundary value problem is that of finding a solution x(t) of
(1) on f[a,b) satisfying for b > a,

(2) x(a) = A, x(b) = B,

The corresponding initial value problem is obtaining a solution

x(t) of (1) satisfying the initial values

3 x(a) = A, x'(a) = a.

A Liapunov function V(t,x,x') 1is a continuous, locally Lipschitzian
with respect to (x,x'), real valued function. Corresponding to
v(t,x,x') define

Vi(t,x,x') = 1lim 4inf h-I[V(t.*'h,x'i'hx' ,x"+hf(e,x,x')) - V(t,x,x")].
£ 0¥

Lemma 2.1. (Yoshizawa, [5, p. 4]). 1f V(t,x,x') 1s a Liapunov




function and x(t) is a solution of (1), then V(t,x(t),x'(t)) 1s
nonincreasing (nondecreasing) if and only if

Vé(t,x,x') <0 (VE(t.x,x') 20).

Lemma 2.2. Let x(t) be a solution of (1) satisfying
4) x(a) = 0, x'(a) = 0

and either x(t) £ 0 or x'(t) $0 on [a,b]. Then there exists an
open interval I C [a,b) such that both =x(t) 4 0 and x'(t) 0 on 1.
Proof. Suppose x(t) $0 on [a,b]. Then by continuity of x(t)
there exists an open interval I1 - (to.tl) such that x(t) # 0 on
I,, and x(to) « 0. Assume x'(t) 20 on I, Then x(t) =c¢ on I,
vhere ¢ 1s a constant, and ¢ = 0 since x(to) = 0, Since x'(t) 1is
continuous there exists an open interval 12C I1 vhere x'(t) # 0.

Thus on I =1,N I, x(t) #0 and x'(t) 4 0. If x'(t) $0 on

1
{a,b] a similar argument concludes the proof.
Let ( x.y) be the stendard inner product in a Hilbert space and

let ||x] |2 - (x.x) be the corresponding norm.

3. Uniqueness and continuability. Let u(t) be a solution of
the boundary value problem (1) and (2). What conditions on f insure
that u(t) 4s the only solution of (1) and (2)? Many criteria on f
are given to insure uniqueness; for example, the Lipschitz condition (4]
and nondecreasing properties {2, p. 317] are standard sufficient
conditions. We shall develop a Liapunov theory for boundary value

problems which gives sufficient conditions for uniqueness.




Suppose v(t) 1is another solution of (1) and (2). 1If

x(t) = u(t) - v(t), then x mnust satisfy

(5) x" = f(t,x+v, x' +v') - f(c,v,v') = P(t,x,x')

(6) x(a) = 0, x(b) = 0

Mow F(t,0,0) = 0 and hence x(t) = 0 1s a solution satisfying (5) and
(6). We have proved the following:
Lemma 3.1. x(t) 2 0 1is the only solution of (5) and (6) 1if and

only if u(t) 1is the only solution of (1) and (2).

Theorem 3.1. For F defined in (5), if there exists a Liapunov
function V(t,x,X) defined on D such that
(1) v(t,x,x') =0 1f x=0
(11) V(t,x,x') >0 if x+¥ 0
(111) Vl',(t,x.x') 2 0 in the interior of D,

then there 1is at most one solution of (1) and (2).

Proof. By Lemma 3.1 it suffices to show x(t) = 0 1s the unique
solution of (5) and (6). Suppose there exists a solution ¢(t) of (5)
such that ¢(a) = 0, ¢(b) = 0 and Mtl) ¥ 0 for some tl e (a,b).
Then there exists (tZ’tal C {a,b] such that tl e (tz.ts),

#(ty) = ¢(t;) = 0, and ¢(t) # 0 on (t,,t5). Thus V(t,4(t),4'(1)) > 0
on (tz,t3). Since Vl',(t,x.x') > 0, V(t,4(t),¢'(t)) 1is nondecreasing
along the solution ¢(t) and thus V(t3,¢(c3),o'(c3)) >0, a

contradiction.




Corollary 3.1, If there exists a Liapunov function as in Theorem
3.1 except that (1i) holds when both x and x' are ¥ 0, then s

solution of (1) and (2) is unique.
Proof. Follows as in Theorem 3.1 by using Lenma 2.2.

Example. In Hartman, [1, p. 427], the condition (z,?) + ||x'|] >0
if x40, <x.x'> = 0 1is given to insure uniqueness of x = 0. By
choosing V(t,x,x') = <x.x) all conditions of Theorem 3.1 are
satisfied since Hartman's condition insures V does not have a
maximum, and hence Vl',(t.x,x') > 0.

Because it may be convenient to give continuability conditions,
such as are required by Jackson. [2] in the theory of sub and super-
functions, as Liapunov conditions, it will simply be mentioned that the
necessary and sufficient conditions for continuability are given by
Yoshizawa (5, pp. 11-17].

4, Existence. If f 1s bounded, then it is possible to give

local existence results such as the following: (see also [1, p. 424]).

Theorem 4.1. (Jackson, {2, p. 309]). Let M> 0 and N> 0 be
given real numbers and let q = max }|f(t,x,x')|| on

fa,b] x {x: ||x|| < 24} x {x': |{x"|| < 2N}, Let

§ = min [(GM/q)]',z.(ZN/q)]. Then for any [tl,tzl C [a,b] such that
t, -ty <6,
(7) x(tl) b xl’ x(tz) - xz’ tl < tz

vhere |lx 1] <t [lxyl] <, 1] (xy = x)/(ty = ¢,)]] <N, the

R P I



boundary value problem (1) and (7) has at least one solution.
Hartman [1, p. 435) has introduced the following concept, where
L= t, -t
A solution x(t) of (1) satisfying ||x(t)|] <M om (t;s8,]

has property Al if there exists a constant N(£) such that
1]
[1x'(t)]]| <N onm AR

Lemma 4.1. (Hartman [1, p. 435]). Let there exist an M such
that every solution of (1) satisfies ||x(t)]| <M and has property
Ay Then (1) and (7) has at least one solution.

We are now in a position to give Liapunov sufficient conditions to

insure the hypothesis of Lemma &4.1.

Theorem 4.2. Let x(t) be a solution of the boundary value
problem (1) and (7), where ||x1|| <M, szll < M. Let there exist a
Lispunov function V(t,x,x') defined on D, = [a,b] x {x: xl| > M) x &
such that
(1) Vv(t,x,x') = 0 whenever ||x|| = M
(11) Vv(t,x,x') > 0 whenever ||x|| > M
(111) V%(t.x,x') > 0 1in the interior of D..

1
Then ||x(t)]] <M on (e)0t,1.

Proof. Follows as in Theorem 3.2.

Theorem 4.3. Let x(t) be a solution of (1) and (7) satisfying
Jlx(t)]] <M en (t;st,]. Let there exist a Liapunov function
V(t,x,x') defined on D, = {a,b] x {x: Pxl] <M x (x*': ||x'|] 2K},

where K 1s sufficiently large, satisfying




1
(1) v(t,x,x') > a(||x"'||) where a(r) 1s a positive continuous
function defined on [K,») such that a(r) + @ ag r + e,
(11) Vé(t,x,x‘).i 0 1in the interior of D,
Then x(t) has property AZ'

Proof. Let x(t) be such a solution, where x'(tl) > K. We can
then find a constant Kl guch that V(tl.x(tl),x'(tl)) 5_&1 and an
N > K such that a(|[x'|]) > K, when [[x'|] > N. We shall now show
Hx'(e)}] <N on {t;,t)). For if not, there exists a t, e (t;,t,)
where ||x'(t3)|| > N, But

Kl 2 v(tl’x(tl)’x'(tl)) 2 V(t3.x(t3).x' (t3)) 2 a(' ’x'(ta)l ') > Kl’
a contradiction. Hence x(t) has property At'

Theorem 4.4. Suppose there exist two Liipunov functions having
the properties given in Theorems 4.2 and 4.3 respectively., Then the

boundary value problem (1) and (7) has at least one rolution.

Proof. Since every solution initiating in
Dy = [t;,t,] x {x: Pxll <M} x {x': [|x'}] <N}

remains in D3 by Theorems 4.2 and 4.3, the function f can be
restricted to the set D3. Since f 1s bounded on this compact set, a

solution exists to the boundary value problem.

Example. Hartman {1, p. 433] gives the following condition tu

tnsure ||x(t)]]| <M.

(x£) +11x'112 >0 1f (x,x') =0 and ||x}] 2 1.




If v(t,x,x') = <x5x> - Mz. then Hartman's condition implies V
evaluated along a solution x(t) of (1) does not have a maximum at any
point t ¢ [t ,t,] where [Ix(t)]] > M. Also this V satisfies all

conditions of Theorem 4.2, thus insuring ||x(t)]| <M on (e)0t,1.

5. Obtaining existence from uniqueness. This interesting concept
was introduced by Lasota and Opial [6] and Jackson [2]. We shall
restrict our considerations in this section to second order differential
equations where £(t,x,y) 1is defined, continuous and real valued on

2

2
the strip Da = (a,b) x R, Let Ds - [tl.t2] % R® where a < tl <ty < b.

Theorem 5.1. (Lasota and Opial [6, p. 2]). Assume solutions to
initial value problems through any point of D5 are unique. If there
exists at most one solution of (1) and (7) for every pair
(tl,xl), (tz,xz) e (a,b) x R then there exists one and only one

solution of this problem.

Theorem 5.2. If solutions to initial value problems through any
point of D5 are unique and there exists a Liapunov function as in
Theorem 3.1, then there exists one and only one solution of (1) and (7)

as in Theorenm 5.1,
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