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I.	 INTRODUCTION

In 1821, Thomas Johann Seebeck noted the deflection of a magnetic

needle in the vicinity of a circuit composed of two dissimilar materials in a

temperature gradient. Although he did not correctly interpret his observation,

Seebeck is thus generally credited with the discovery of the thermoelectric

effect, now bearing his name, in which a voltage is produced along a tempera-

ture gradient in a material. 	 Thirteen years later, Jean Charles Athanase Peltier

discovered that the passage of current across the iuntion of two dissimilar

materials resulted in heat generation or absorption at the juntion . 	 Like Seebeck

before him, Peltier failed to understand his discovery. 	 It was several decades

later that Lord Kelvin (William Thomson) established a relationship between the

Seebeck and Peltier effects on the basis of thermodynamic arguments and pre-

dicted the existence of a third thermoelectric effect (the Thomson effect) . The

Thomson effect is characterized by the generation or absorption of heat in a

homogeneous conductor with current flow in the direction of a temperature

gradient.	 Even though Lord Kelvin therefore laid a theoretical foundation to

thermoelectricity by relating the three thermoelectric effects in terms of thermo-

dynamic principles, it was Altenkirch in 1909 and 1911 who developed the basic

theory of thermoelectric power generation and cooling. Altenkirch determined

that materials with high values of Seebeck coefficient and electrical conductivity,

and low values of thermal conductivity were needed for the practical utilization

of thermoelectricity.	 Such materials, however, were not available in Altenkirch's

days. As a result, the practical utilization of thermoelectric power generation

and cooling remained essentially in the same state of dormancy in which they had

been since the inception of thermoelectricity in 1821. 	 It was only with the

advent and wide scale 	 use of semiconductors nearly fifty years later that suit-

able thermoelectric materials finally became available.	 It was in the 1950's

therefore that thermoelectricity essentially underwent a rebirth, as manifested

by the start of extensive theoretical, materials and device work in the United

States and elsewhere.

e
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Over the past fifteen or so years, along with the other mentioned work

in thermoelectrics, considerable effort has been expended on the development

of calculational techniques for the design and performance analysis of thermo-

electric power generators.	 Much of this effort has involved the determination

of generator configuration and load characteristics that optimize attainable

performance.	 Because of considerable resultant mathematical simplification,

the bulk of the optimization work has concentrated on thermoelectric power

generating devices that operate under conditions of fixed hot and cold side

operating temperatures. 	 Inasmuch as most thermoelectric generators in reality

fixed heat input	 fixed temperatures, theoperate under conditions of 	 rather than

usual optimization procedures result in generator designs that therefore yield only

Nevertheless, the	 fixedapproximately optimum performance. 	 approximate

operating temperature treatments of thermoelectric generator design and per-

in	 the	 thatformance analysis possess	 some respects	 simplicity and clarity

frequently is lost in the more rigorous handling of the problem. 	 Therefore,

inalthough detailed design and analytical work	 thermoelectrics should generally

be based on treatments that consider fixed heat input generator operation, the

approximate case of fixed temperature operations enables the key elements of

the theory of thermoelectric power generation to be expounded in a relatively

Unfortunately, however, it 	 that thesimple and straightforward manner. 	 appears

difference in the two modes of thermoelectric device operation is not universally

appreciated and therefore it happens that the approximate theory is frequentlyPP	 PP	 PP	 Y	 q	 Y
used even in serious engineering work in thermoelectrics.

Because of the confusion that still,, in some cases, exists on the

optimization of thermoelectric devices for fixed temperature or fixed heat input

operation, it is believed that an examination of certain areas of the problem

may assist in clarifying the situation.	 It is the intent of the present exposition, t

therefore, to study certain key aspects of the optimization of thermoelectric

devices for constant temperature as well as constant heat input operation and
tooint out hp	 t t e more important differences in the two cases .
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II.	 THERMOELECTRIC POWER GENERATION

Thermoelectric power generating devices generally consist of orie or

more electrically interconnected thermocouples arranged around. a suitable

heat source. A typical thermocouple configuration is schematically illustrated

in Figure 1. In addition to the active thermoelectric material, which normally

consists of one n-type and one p-type leg, each thermocouple is comprised

of extended area hot and cold side heat exchangers for the enhanced collection

and rejection of heat at the two sides respectively and of so-called hot and

cold stacks that connect the active material to the heat exchangers . The hot

and cold stacks may include a variety of components such as pressure loading

members, electrical insulators and stress alleviation disks. The void volume

between the heat exchanger plates is usually filled with thermal insulation

for the purpose of minimizing thermal shunt losses; it is obviously desirable

to force as much of the incident heat as possible to pass through the active

thermoelectric material.

A number of simplifying assumptions will now be made concerning the

thermocouples in a thermoelectric generator in order to facilitate subsequent

discussion. It will be assumed that all thermocouples in a device are

identical and )perate under identical conditions . This assumption amounts to

the neglect of normal manufacturing variations as well as the practicalities

of end and other effects that exists in an actual generator, and it enables the

present treatment to be based on the performance of a single thermocouple

rather than on the integrated total of more than one. Because the hot and cold

stacks are only incidental, although necessary, members of a thermocouple,

their effects on the performance of the thermocouple will be neglected.

Similarly, the contribution of contacts, electrical interconnects and lead

wires to the electrical resistance of the thermoelectric circuit which consists

of the thermocouple and the external load, will be ignored. It will further be

assumed that the temperature gradients associated with the thermocouple are

I	 3.
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wholly axial, that the thermal insulation is a perfect insulator and that the

heat exchanger members at the extremities of the thermocouple possess

infinite thermal conductivities. The last two simplifications enable the

assumption that all electrical resistance of the circuit resides wholly in the

thermoelectric material. and the external load, that no thermal shunt losses

exist and that there are no temperature gradients in the direction transverse

to that of primary heat flow.

_

	

	 Within the scope of the present discussion, none of these assumptions

and simplifications have an important bearing on the conclusions to be

formulated; they enable the attainment of considerable clarity and within

the present context are therefore warranted. Needless to say, however, these

assumptions are not necessary and should not be made in the design and per-

formance analysis of an actual thermoelectric generator.

Heat incident on one side of the thermocouple shown in Figure 1

t traverses the thermocouple and is rejected at the other side. As a consequence

of the heat flow, a temperature difference, AT, is established across the thermo-

couple, where AT = T  - T c , with T  and T  the resultant thermocouple hot and

cold junction temperatures, respectively. The equation that describes this

phenomenon may be written as

K
where Q K pertains to the conducted heat and K represents the total conductance

of the thermocouple.  The conductance of the thermocouple is given byg

K =	 A n k n + Apkp 	(2)

where A andl are the cross-sectional areas and length of the thermoelements and

k is the thermal conductivity of the thermoelectric material. Subscripts n and p

denote the n- and p-type thermoelectric materials used for the two legs of a

thermocouple. Although not necessary, it is noted that both thermoelements, in

view of common practice, have been assigned identical lengths.

5

t

1
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The temperature difference across the thermocouple, established as
a result of heat conduction, sets up voltages due to the Seebeck effect across

the thermoelements . The voltages are additive because of the different

polarities of the thermoelectric material in the two legs and the equilivant

electrical circuit of the thermocouple (see Figure 1) . The total voltage

developed at the terminals of the thermocouple, E A , may be written

E 	 SAT,	 (3)

where S is the combined Seebeck coefficient of the two thermoelements and

is given by

S -S -S	 (4)
p n

S,),bscripts n and p again denote the two types, of thermoelectric material in the
thermocouple. It should be noted that the so-called absolute Seebeck coef--

ficient* values of n-type thermoelectric materials are negative and theref.'r!

the minus sign in Eq . (4) actually results in the addition of the absolute 	 as

of the absolute Seebeck coefficients of the n - and p-type thermoelectric

materials of a thermocouple.

If a load of resistance R  is now connected across the terminals of the

thermocouple, the result will be the flow of current, I. By means of Ohm's law,	 _-

the current may be expressed by

T = =	 (5)R+ RL

where R Is the internal resistance of the thermocouple and is given by

	

P	
^PR=lZAn+^-

	

n	 p	 61.

with Pn and pp the electrical rest°ivities of the n - and p-type thermoelectric

materials respectively.,

t

* - The absolute Seebeck coefficient of a material refers to its Seebeck 	 r
coefficient as referenced to that of another material with zero Seebeck
coefficient, such as a superconductor.

6.
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Three different physical properties of the n- and p-type thermoelectric

materials have appeared in the above equations. These properties, are the

thermal conductivity, the Seebeck coefficient and the electrical resistivity. The

thermoelectric properties of most materials, as is the case with material

characteristics in general, are temperature dependent functions. Because a

thermocouple operates over a variety of temperatures, in the range T  to TC

the values assumed for the thermoelectric properties in Egs . (2), (4) and (6)

must therefore be suitably averaged over the operating temperatures. A general

equation for the averaging may be defined as follows

fT H

'C ^ (r) dT	 (7)
H

dT
C

where ^ represents the property of which the average is desired. Thus ^ applies

equally to kn , kp , S n and S p . It also applies to µ , the Thomson coefficient,

which will be introduced below. As pointed out by Heikes and Ure 2 , the average

electrical resistivity,Thowever, is more appropriately defined by

f
Tp (T) k (1) dT

 C	 (8)
HJTk (r) dT

because under open-circuit operating conditions it results in correct values of

internal resistance, thermal conductance and voltage.

Up to this point, therefore, it has been seen that the heat conducted

through the thermocouple establishes a temperature gradient across it which,

as a result of the Seebeck effect, sets up a voltage across the thermoelements .
Attachment of a load to the thermocouple terminals results in current flow through

the circuit. The current flow across the various interfaces between dissimilar

materials in the circuit, however, results in heat generation or absorption as a

result of the Peltier effect. The quantity of heat Q P , thus generated (absorbed)

is given by the product of current I and Peltier coefficient Tr

Q  = Ir
	

(9)

AN

1
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where the Peltier coefficient is defined in terms of the Seebeck coefficient

and temperature as
7-r= S (1')T .	 (10)

The Seebeck coefficient value in Eq. (10) pertains to that at the temperature T

of the junction to which Eq. (10) is applied.	 Thus, for example, the heat

absorbed at the hot junction of a thermocouple is given by (Q P) H = ISHTH , where

S 	 represents the combined Seebeck coefficient values of the n - and p-type

thermoelectric materials (see Eq. (4) ) at the hot junction temperature T 	 .	 The

corresponding relationship for heat liberated at the cold junction of the thermo-

couple	 - is T	 Whether heat is liberated or absorbed at a unctionle isP	 (Q P) C	 G G .	 j
between dissimilar materials depends on the thermoelement polarity and the

relative directions of current 	 low and temperature gradient. As indicated,re	 cure	 f	 Per	 g	 c'	 d,
heat is generally absorbed at the hot junction and liberated at the cold junction

in power generating thermocouples.

In addition to the generation (absorption) of heat at the thermocouple

junctions as a result of the Peltier effect, heat is also generated (absorbed) --

upon current flow in the thermoelements themselves because of the Thomson

effect.	 The Thomson effect may be considered a differential Peltier effect in

that it arises in materials which possess a temperature dependent Seebeck

coefficient.	 Such materials operating in a temperature gradient have different

values of Seebeck coefficient at each point in the material. 	 Adjacent differential

segments of such materials are therefore thermodynamically equivalent to dis-

similar materials joined together. 	 At each "interface", all along the length of

the material, heat is liberated (absorbed) as a result of the Peltier effect.

The total amount of heat liberated (absorbed) is obtained by integration along

the length of the material and is called the Thomson heat, Q T . The mathe-

matical relationship that describes this phenomenon is written as

QT = Iµ ,,T ,	 (11)

4

iM
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where 'A is the net Thomson coefficient and is given by µ = ,r p-,r n  in terms of

the Thomson coefficients of the individual n- and p-type thermoelements. The

definition of r for both type thermoelements is

dS
T ^dT	 A,

where the subscript i pertains either to the n or to the p -type thermoelement.

Current flow in conductors causes one additional heating effect, the

so-called Joule heating that results from the finite resistance that all normal

materials exhibit to current flow. The amount of Joule heat, QJ , generated in

the thermocouple may thus be written as

QJ I2 	 .	 (13)

In order to establish the precise operating characteristics of a thermo-

couple it is necessary to perform a detailed heat balance. In view of the four

separate heating effects just discussed, it is necessary to relate these heat

terms to the total heat incident on the thermocouple. The heat conducted

through the thermocouple and the heat absorbed at `the hot junction as a result

of the Peltier effect must be directly supplied by the incident heat. The heat

generated in the thermoelements by the Joule and Thomson effects undergoes

distribution by a conduction mechanism and therefore also must contribute to

the heat balances at the hot and/or cold junctions of the thermocouple.

In Appendix A it will be shown ghat to the first approximation one-half

of the Joule and one -half of the Thomson heat generated in the thermoelements

is transported to each of the Junctions, the hot and the cold Junction. The

proof of this for the Joule heat alone, with vanishing Thomson coefficient,is

well known and has been frequently derived in the past. Cohen and Abeles 3

have shown that thermocouple performance characteristics may be accurately

calculated, when compared to "exact" numerical analyses, when this assump-

tion is also applied ad hoc to the Thomson heat. As far as is known, however,

(12)

Y

^d
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the, stated distribution of joule and Thomson heats in a thermocouple has not

previously been mathematically demonstrated in the form given in Appendix A.

A detailed heat balance at the hot junction of the thermocouple may

therefore be formulated as

QH = Q K + (Q P) H - (1/2)QT - (1/2)Qj	(14)
_i,

where QH is the total heat incident on the thermocouple. The corresponding

relationship for the cold junction may be written

Q C = QK + (Q 
P) C + (1/2)QT + (1/2)Qj , (15)

where QC represents the total heat rejected at the cold junction. On the basis

of energy conservation considerations, it is obvious that Q  and Q C must differ

by the amount of electrical power P produced by the thermocouple in the external

load:

QH - QC = P = I R 	 (16)

The validity of Eq . (16) will be demonstrated in Appendix B.

It should be noted that the algebraic combination of the various heat terms

in Eqs . (14) and (15) neg lects higher order interaction terms and is strictly valid

only in the limit of vanishingly small joule and Thomson heats and when the

electrical resistivity, thermal conductivity and Thomson coefficient are indepen-

dent of temperature 4 . The former condition generally applies to thermocouples

of practical interest and the latter is approximately validated through the use

of averaged thermoelectric --operty, values . In general, conduction heat com-

prises some seventy percent of the total heat traversing a typical thermocouple

used in power conversion applications . Peltier heat makes up the bulk of the

remainder of the total heat, with joule and Thomson heats contributing only a

few percent each. The simplification inherent in Eqs. (14) and (15) enables at

a minimum sacrifice to accuracy the solution of the thermoelectric power con-

version problem; without this simplification, the problem would be quite intractable.

10.



1

The algebraic signs exhibited for the various heat terms in Eqs . (14)

i

and (15) are consistent with the above discussion on heat distribution in a

thermocouple. According to the presently adopted convention, all positive

signs refer to heat flow down the temperature gradient from the hot to the

cold junction. Negative signs refer to heat flow in the opposite direction.

The absorption of Peltier heat at the hot junction and liberation at the cold

junction is equivalent to a flow down the temperature gradient.

To complete the general discussion on thermoelectric power generation,

it is also important to consider the conversion efficiency of a generator. The

conversion efficiency 77 is defined as the quotient of the electrical power out-

put and the total heat input:

_	 I2RL

_ Q + (Q) - (1/2) Q -(1/2)Q •K	 PH	 T	 J

It should be remembered that Eq. (17), in view of the assumptions made earlier,

represents an idealized efficiency, that due to the thermoelectric material

itself. In an actual thermoelectric generator there exist numerous electrical

and thermal losses, all of which detract from the ideal efficiency. Eq. (17)

therefore represents the upper limit on conversion efficiency obtainable from

a thermoelectric generator.

III.	 OPTIMUM THERMOELECTRIC PERFORMANCE

For direct or indirect economic reasons it is generally desirable to

design a thermoelectric generator for optimum performance operation. From

the equations exhibited in the preceding section it is apparent that the per-

formance of a thermoelectric generator depends on a number of factors, such

as generator operating temperatures, the thermoelectric properties of the

material used, thermocouple configuration and generator load characteristics.

(17)

1
11.
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Because many of these factors depend on considerations related to the total

power system design, such as the heat source and the heat rejection system,

it is normally not possible to perform a detailed optimization of thermoelectric

generator performance without treating the whole system. Th py a is one type

of optimization, however, and an important one, that may be performed nearly

independently of the total system.	 This optimization pertains to the conver-

sion efficiency and power output of the generator for any given values of the

thermoelectric materialro erties and hot and cold side operating temperatures .p	 P	 g
Conversion efficiency optimization assumes special importance because of the

high cost of fuels, such as nuclear fuels, that frequently are used in connec-,

tion with the thermoelectric power conversion devices . 	 For reasons of its

economic importance and of its relative independence of detailed system

design, considerable attention has therefore been devoted to thermoelectric

generator efficiency optimization with respect to thermocouple configuration

and generator load characteristics. As discussed in the Introduction, however,

most of this effort has assumed fixed hot and cold side generator operating

temperatures, rather than fixed heat input to the generator, and thus does not

really represent the method of operation of most actual thermoelectric generators .

It is the intent of the present section, therefore, to examine optimum generator
performance under fixed operating temperatures as well as fixed heat input and

to note the differences in the two cases .

It must be emphasized again, however, that the present treatment is

only approximate in view of the simplifying assumptions made at the beginning

of Section II.	 Moreover, the additional assumption that conversion efficiency

may be optimized independently of the total system, although reasonable, is

strictly not rigorous .	 Nevertheless, these same assumptions have formed the

basis of nearly all thermoelectric optimization studies performed in the past

and do enable the convenient discussion of the subject. 	 In an actual thermo-

electric generator design of course it is not necessary to make any of these

assumptions and for enhanced accuracy, they should not be made.

12.
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FIXED TEMPERATURE PERFORMANCE OPTIMIZATION

In order to optimize the performance of a thermoelectric generator

within the stated context of the present treatment, it will be necessary to

determine the external load and the configuration of the thermocouples that

optimize power output and conversion efficiency. As before, the analysis

will consider a single thermocouple.

Defining m °= R L/R, the ratio of load to internal electrical resistance,

and using Eqs . (1) # (9) , and (13) , Eq. (17) for conversion efficiency may be

written as

AT_	 m	 0	 (18)

TH S T (1 + m) +H (1 + m) - 2T - 2ST (1 + m)

	

H	 -r	 H H

where use has also been made of Eq. (5) for the current I. Inspection of Eq.

(18) shows that, in addition to operating temperatures and thermoelectric

properties, conversion efficiency depends on the ratio of thermocouple load

to internal electrical resistance m and, through the KR product, on thermo-

element dimensions. Maintaining fixed temperatures, consequently also fixed

average values of thermoelectric properties, it is possible to optimize Eq. (18)

with respect to m and KR. Performing the former optimization first, it is found

after differentiation of Eq. (18) with respect to m and letting the derivative

vanish that the optimum value of m, defined as m o , is given by

S T	 1^2
M = [1+ ^Z H :H 	 _	 (19)

o	 KR	 S AT	 2S	 .

The substitution of Eq. (19) in Eq. (18) and the simplification of the resultant

relationship yields

If0-1(20)
' `- THSHm

SAT — 2S o+ - 1
for the conversion efficiency of a thermocouple in terms of the optimum ratio

of load to internal electrical resistance. Because conversion efficiency depends

13.
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on the inverse of the KR term (Eq. (19) ), it is necessary to minimize the KR

in order that efficiency be maximized 5 . The product KR, by means of Eqs .

(2) and (6), is given by

KR k a + k- n - + k	 --^ + k p	 ('^ 1)n n	 npp A	 pin An	p p	 e.
p

After the differentiation of Eq. (21) with respect to (,A. n/Ap ) it is found that KR

attains a minimum when

Aon 	 k "1 2n 	 (22)

p	
[PP	 n.

Equation (22) thus indicates the necessary relative ratio of the cross-sectional

areas of the n- and p -type thermoelements of a thermocouple for maximizing

conversion efficiency in fixed temperature operation. Substitution of Eq. (22)

in Eq. (21) indicates that the minimum value of KR, defined as (KR) o , is given

by

(KR) =	 k 1/2 +	 k 1/2 2	
(23)o	 pn nI	 Pp p	

-^
The substitution of Eq. (23) in the expression for the optimum ratio of load to

internal electrical resistance, Eq. (19), yields
r

m = 1 + Zarr 1/2	 (24)
o L

=where Z is defined as	 2
^ =	 S

1/2 + p k 12
	 (2 5)

, pnkn	 p

and r is given by

ZT
HS H - (u +S1 W_	 (26)

2SOT

The term µQT in Eq. (26) may be written as (see Appendix B)'

{

i

14.
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µ,1T = T H S H - T C S C - SAT ,	 (27)

which upon substitution in Eq . (26) yields

r _

	

	 H +TCSC	 (28)2S^jT
After the substitution of Eq . (24) in Eq . (20), the expression for optimum ef-

ficiency finally becomes

	

m0 1	 (29)
770 = m	 + 1/2) _	 _ 2

a

The remaining performance parameters for the fixed temperature generator

operating at optimum conversion efficiency may be written immediately on the

basis of the above development and the pertinent equations of Section II. Thus,

the load voltage V  is given by

m SLIT	 (30)

The current I is

I -	 '4,T	 (31)
mo + 1 R

and the power output P may be written as

P = mOS2AT2(32)m0 1 Z R

It is interesting to note that Eq. (29) was first derived by Cohen and Abels 3 on

the basis of differential equations that describe heat flow in a thermocouple.

As has just been demonstrated, the description of the heat balance in a thermo--

couple by means of algebraic equations (Eqs . (14) and (15) ) yields the identical

result in a vastly simplified manner.

15.
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The above treatment included the Thomson heat in the net heat

balance of the thermocouple. 	 In view of the definition of the Thomson

coefficient (Eq. (12) ) , this implies that the treatment has accounted for

the temperature dependence of the thermoelectric properties . 	 It is more

common, however, for reasons of simplicity, to neglect this temperature

dependence of the thermoelectric properties and thereby eliminate the

Thomson heat term from the net heat balance. The error produced in this

way is oily of the order of a few percent at most and this particular

simplification is therefore ve.xy frequently made.	 Letting the Thomson

coefficient µ vanish implies that the Seebeck coefficient is a,ndep^.ndent

of temperature and S 	 and S C	in Eq. (28) are tl^e same as S. 	 Making this

simplification, it is possible to rewrite Eq. (29) as

,^ - AT . mo	 1
o	 T	 mo ' T C TH	

(33)

H

where m  is now given by

M  = 1 + ZT 1/2	 (34)

with T, the average temperature, defined as T = (TH + T CW2 .	 Equation (33) is
5the equation that is commonly associated 	 with the optimum efficiency of a

fixed operating temperature thermoelectric device.	 Inasmuch as Eq. (33) is

not much simpler than the more complete Eq. (29), it is felt that the simplifica-

tion obtained by neglecting Thomson heat generation (absorption) in the legs of

a thermocouple is not really justified.

The optimum power output of a thermocouple under conditions of fixed Ap

operating temperatures is obtained by differentiating the equation for power

output with respect to m, the ratio of load to internal thermocouple resistance. x,

This operation. is straightforward and simply indicates that maximum power

:i r

OF
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output P O occurs for the case in which load and internal electrical resistances

are equal (matched load) . Thus, the maximum power output of a thermocouple

under fixed temperature operating conditions is given by

P	 S- 2&T2	 (3 )
0 4R

Inspection of Eq. (24) for the ratio of load to thermocouple internal resistance

at maximum conversion efficiency, however, indicates that for maximum ef-

ficiency the ratio is always greater than unity. In fact, for typical thermo-

couples and operating temperatures, it is usually found that efficiency

maximizes for m values of the order of 1.2 to 1.3. Under fixed operating

temperatures, therefore, the conversion efficiency and power output of a

thermocouple maximize for different values of the ratio of load to internal

resistance. Whereas this is true for thermoelectric devices operating at fixed

temperatures, it is not true for devices that operate at fixed heat input. A

little reflection will show that in the latter case, by definition, the power out-

put and efficiency optimize for the same value of the ratio of load to internal

resistance, a value that will be seen to differ from both of those derived for

the case of thermoelectric device operation at fixed operating temperatures .

On this very point, however, there appears to be considerable confusion and

misunderstanding. Frequently  it is erroneously assumed that even in case of

fixed heat input, a thermoelectric device produces maximum power when load

and internal resistances are equal (m = 1) . As trivial as the point may seem,

and actually is, it must nevertheless be emphasized in view of the existing

confusion that a thermocouple intended for operation with fixed heat input (such

as obtained with radioisotope, fossil fuel, and solar heating) does not produce

maximum power at matched load. Of course, in case of fixed operating tempera-

ture applications, power output and conversion efficiency do indeed optimize

for different ratios of load to internal thermocouple resistance, as has been

17.
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given by the above equations. Unfortunately applications for which this is

true are relatively few. Operation with a nuclear reactor heat source, however,

may be an application of this type.

For fixed temperature operation, thermocouple output power does not

possess an optimum with respect to relative thermoelement dimensions.

This is most conveniently seen from Eqs . (5) and (16) . In general, however,

for fixed operating temperatures, power output increases with decreasing

thermoelement length and increasing cross-sectional area, i.e.  power output

increases with decreasing internal thermocouple resistance. This is intuitively

obvious when considered in terms of heat transmitted through the thermocouple

and conversion efficiency. The shorter and stubbier are the thermoelements,

the more heat obviously passes through them. Conversion efficiency, h,-. ,never,

is approximately proportional to the temperature difference across the thermo-

couple and nearly independent of thermocouple dimensions. For fixed operating

temperatures, therefore, conversion efficiency is practically a constant and

power output is directly proportional to the heat passing through the thermo-

couple; power output consequently increases with decreasing thermoelement

length and increasing cross-sectional area.

Before concluding the discussion of thermocouple performance optimiza-

tion in fixed temperature operation, attention is directed to Eq . (25) which

defines the parameter -3 . Because it is defined in terms of only the thermo-

electric properties of the n- and p-type thermoelements and because it is ap-

proximately directly proportional to the maximum conversion efficiency of a

thermocouple, -9 serves as a convenient parameter for indicating the worth of

combinations of n- and p-type materials in thermoelectric energy conversion

applications. For this reason, a, as defined by Eq. (25), is known as the

"figure-of-merit s" of a thermocouple. Inasmuch as the figure-of-merit defined

18.	 V,
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(36)

by Eq. (25) pertains to the combination of two materials, an n-type and a

p-type, it is sometimes convenient to consider the corresponding situation

for a single material. The figure-of-merit of a single material, in analogy

to Eq. (2 5) , is therefore defined as

OF

where the individual thermoelectric properties S, p and k pertain to either an

n- or p-type material. The combination of the figures-of-merit of individual

n- and p-type, materials into the figure-of-merit of a thermocouple must make

use of the following relationship

Zl/2 +^Z 1/2 2n 

l+

in order that consistency be obtained with Eq. (2 5) .

as
^rp k 11/2

Lp^

(37)

The parameter * is defined

(3n)

FIXED HEAT INPUT PERFORMANCE OPERATION
SL

As in the case of fixed temperature operation, the performance of a

thermoelectric generator in operation under conditions of fixed heat input will

be considered from the standpoints of optimum load characteristics and thermo-

couple configuration. Not surprisingly, the results for the two cases will be

found to considerably differ.

The conversion efficiency of a thermoelectric generator is defined as the

quotient of the electrical power output and the heat input (see Eq. 17) ) . For the

fixed heat input operation of a thermoelectric device, it is apparent from this

definition that efficiency and power output are directly proportional to each other

and that they both optimize for the same load characteristics and thermocouple

f
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configuration. For this reason, it therefore suffices for the case of fixed

heat input operation of a thermoelectric device to optimize either the power

output or the conversion efficiency in order to solve the whole problem.

Using Eqs . (5) and (16) and the definition m = R L/R, the ratio of load

to internal electrical resistance, the electrical power output P of a thermo-

electric generator may be ;written as

P = mS 2 d+2 (3 9)
R ^ m̂ y

Differentiating Eq . (39) with respect to m, without requiring 66T to be fixed as

in the case of fixed temperature operation, and letting the derivative vanish,

it is found that the optimum ratio of load to internal electrical resistance m0

is given by

m = 1-B	 3J- [I_ 4
,^ 

1/2^	 (40)
0	 2 ,8	 (J_P

where P is defined in terms of AT and°the derivative of 4T with respect to m as

	

2 
d.S^.(	 (41.)

It should be noted that the optimum ratio of load to internal resistance m 0 ap-

proaches unity in the limit of vanishing p. A vanishing value of P of course

implies the fixed temperature operation of a thermoelectric device and m 0 of

unity represents the optimum power output obtainable from a device operating

under such conditions (see page 15) .

Inspection of Eqs . (40) and (41) shows that in order to determine the

optimum ratio of load to internal resistance m 0 for a particular case, it will be

necessary to know the appropriate value of d (QT)/dm . The value of d (AT)/dm to

be used is obtained from the total heat absorbed at the hot junction or rejected

Pr-

C
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from the cold junction of the thermocouple, given by Eqs . (14) and (15) . Using

the former of these equations, after substitution of Eqs. (1), (5), (9) and (13),

and solving for AT, it is found

,6T = b 1- 1- ac 1/2a	 b,

where

a^	 S	 04 , S+µ(1+m)
2R Q+m

b-K+SSHT

R (I + -,n)

c - QH.

The differentiation of Eq . (42) with respect to m and the rearrangement of the

result to conform with the definition of P in Eq. (41) yields

1 AT _ ^4 _ 1 db _ lac	 1 da
AT dirt	 A-bZ-	 1 b dm Ab	 1 a dm	 (44)

where

4	 1/2	 4	 1/2].	 (45)A = 1`b^	 1- 1- -

and

1	 LWL =	 I_
a	 dm	 l+m

1+m +2S (46),µ l+m +

11 dTH
1 db _ m_ fiH am
b dm KR l+m + 1

SSHTH

(42)

(43)
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Equations (40) through (46) complete the problem of determining the

optimum ratio of load to internal resistance m  of a thermoelectric device

operating under conditions of fixed heat input. Inspection of these equations

rnay, at first glance, indicate a contradiction inasmuch as A, the parameter

that determines mo , depends, through Eqs . (43) to (46), itself on m. As may

be expected, there of course is no contradiction and this curious result arises

only because of a simplification that has implicitly been introduced into the

present treatment. As stated above, the power output and conversion efficiency

of a thermoelectric device operating under conditions of fixed heat input are

directly proportional to each other. In determining the optimum ratio of load to

internal resistance for a thermoelectric device operating in such a mode, it is

therefore immaterial whether the optimization is performed in terms of conversion

efficiency or in terms of power output - the final result in either case is the same.

For convenience, it was decided in the present case to perform the optimization

in terms of the power output, with the results as given above. Had the optimiza-

tion been performed in terms of conversion efficiency, it would not have been

possible to explicitly solve for the optimum ratio of load to internal resistance

mo , as given by Eq. (40), because the result would have been a fourth order

equation in m  . The solution of this equation for m  would have necessitated

numerical techniques. Although yielding the same results as the present treat-

ment, expositional clarity would have been lost. The analysis of the problem

in terms of power output optimization has enabled the display of the results in

the form of the closed form equations given above. This method of analysis,

however, has not really simplified the problem because of the apparently con-

tradictory dependence of the optimum ratio of load to internal resistance on

itself. Familiarity with the mathematics of simultaneous algebraic equations,

on the other hand, shows the above treatment to be a classical case for the

application of the method of successive approximations. It is this method

22.
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therefore that enables the convenient determination of the optimum ratio of

load to internal resistance in terms of the present treatment.

A fixed configuration and a fixed value of heat input Q  are assumed

for the thermocouple. The cold junction operating temperature of the thermo-

couple is either fixed at some desired value, the case of a heat sink of

effectively infinite capacity, or is calculated by means of its dependence on

the heat rejected at the cold side, the case, for example, of heat radiated

into space. In the latter case, the first approximation cold junction tempera-

ture is determined by assuming that all of the heat incident on the thermocouple

QH is rejected from the cold side; this assumption corresponds to that of as-

suming a vanishing conversion efficiency for the thermocouple. In higher

order approximations this assumption is no longer necessary because the
power output calculated for each approximation is used to determine the amount

of heat rejected, and thus the cold side operating temperature, in the subsequent

approximation. A value is also initially assumed for the hot junction tempera-

ture T  of the thermocouple, (any reasonable value will doh because this is one

of the variables that occurs in some of the equations that enter into the determina-

tion of mo . Values of hot and cold junction temperatures are also needed for

the establishment of appropriate thermoelectric properties needed in the calcu-

lation. As with the cold junction temperature, each approximation in the over-

all calculation yields a new hot junction temperature; this value of hot junction

temperature is subsequently used in the following approximation. New values

of thermoelectric properties, corresponding to the junction temperatures in

question, are determined for each approximation. From the second of Eqs . (46)

it is seen that for the calculation of m o a value is also needed for dT II/dm .

Any reasonable value, such as zero, will suffice for the first approximation.

Subsequent approximations may use QT['l/pT) df AT) /dm] as calculated in the

approximation immediately preceding the one in question. If this is done, it

I

r
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is assumed that d(AT)/dm is equal to dT H/dm . This assumption is more than

adequate because of the relative smallness of the term involving dT H/dm and

because the cold junction temperature in most thermoelectric applications is

a much more slowly varying function than the hot junction temperature.*

Finally, an initial value is also needed for m. A value of unity may be used,

although any other reasonable value is equally satisfactory.

The calculation of the optimum ratio of load to internal electrical

resistance m is started by substituting the fixed and the initially assumedo Al,

values of all pertinent parameters into Eqs . (43) and (46) . The resultant 	 1,

values of a, b, c, (1/a)da/dm and (1/b)db/dm applied to Eqs . (41) , (44) and

(45) enable the first approximation determination of m  by means of Eq . (40) . v
At the same time, Eq . (42) permits the calculation of AT, which, along with

q.S

the first approximation value of mo substituted in Eq. (39), yields a value for

the power output P. The total heat input to the thermocouple Q H' lessened by

this value of power output, enables the determination of the second approxima-

tion value of the cold junction temperature. The second approximation value

of hot junction temperature follows immediately from the calculated values of

cold junction temperature and the temperature differential LT. Substitution of

the values thus derived for all pertinent parameters, including new values of

thermoelectric properties and the first approximation value of m , into Eqs .
0

(43) and (46) permits the start of the calculation for the next approximation.

The process is repeated for as many approximations as is necessary to obtain

desired convergence in the calculated value of m o , i.e.   until the value of mo

differs between two successive approximations by less than any desired amoun °L .

Convergence within less than one percent usually results after about three 	 ti.

interations . As m converges to its optimum value, so do all of the other
0 , t

variables such as the junction temperatures, power output and consequently

also the conversion efficiency.
rq

24.
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From the foregoing discussion of thermocouple performance optimiza-

tion with respect to the ratio of lc,ad to internal electrical resistance it is

seen that thermocouple operating temperatures are variable in the case of

fixed heat input operation. This is analogous to the case of the fixed

temperature operation of a thermocouple in which the heat input is variable,

to be determined from the thermocouple configuration, thermoelectric properties

and load characteristics by means of Eq . (14) . Being variable, it may turn out

that for an assumed configuration the hot junction temperature of the thermo-

couple at the optimum ratio of load to internal electrical resistance exceeds

the limiting temperatures of the heat source or of the thermocouple itself. If

that happens, it will be necessary to assume new configurations and repeat

the optimization procedure until a configuration is found which enables per-

formance optimization at permissible, or for that matter, at any desired

operating temperature.

Thermocouple performance optimization in the case of fixed operating

temperatures involved the determination of the optimum ratio of load to

internal electrical resistance and of the relative cross-sectional areas of the

n- and p-type thermoelements . Having just developed the formalism for the

optimization of thermocouple performance with respect to load characteristics

for the fixed heat input operating mode, it now remains to also consider the

optimization with respect to the relative cross-sectional areas of the thermo-

elements . A theory nearly analogous to the one discussed above may also

be developed for this latter optimization. The primary difference is that

instead of m, the ratio of load to internal electrical resistance, the optimiza-

tion parameter now is y, the ratio of n- to p-type thermoelement cross-

sectional areas . As explained above, in the fixed heat input operating mode

the conversion efficiency and power output of a thermoelectric device are

directly proportional and device performance may therefore be optimized with
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respect to either parameter; the results in both cases are identical. As

before, for convenience it is power output that will be treated in the present

instance. The usual maximizing procedure with respect toy applied to Eq.

(39) for power output yields the optimum y, defined as y  , as follows

^pn ^1/2	 (47)
Yc p	 vyy+ yp

p	 p,

where v is defined by

It is noted in Eq. (47) that the dependent variable y also occurs as an in-

dependent variable. It is thus apparent that the solution of Eq. (47) once

again requires successive approximation techniques . Inspection of Eq. (47)

shows that the relationship is cubic in y. Although it is possible to solve

such an equation explicitly, it is just as convenient to execute the solution

iteratively, the method adopted here. In order to determine v in Eq. (48) ,

it is necessary to differentiate Eq. (42) with respect to y. Doing this and

rearranging the result to conform with the form of Eq. (48) : it is found

1 d LT)= 4ac _ 1 db	 2ac _ 1 1 da
4,T dY Ab2 1 b dy - A

Ab a cry ,

where all the terms have been previously defined. The derivatives of a and b

with respect to y may be written
^2

1 da 	 Y A pn
a dy _ 

y (1 +y) YAP+ pn	
(50)

1 d b_ KR (1 m) a y	 H Y	 Y

b dy	 SS T

KR l+m) + 1

26.
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where once again, all terms have been previously defined. For present

purposes, however, the electrical resistance R and thermal conductance K

have been rewritten in a form slightly different from that of Eqs . (2) and (6),

L 1+ Y
R = AT y An + 'YP p ,	 (51)

kK^^ ^._ Y k .^.	 y.
A 1 y	 n P,

with AT being the total thermoelement cross-sectional area (AT = An+Ap) .	 The

derivative of the thermal conductance K with respect to y in the form it occurs

In Eq . (50) , is given by

1 dK - 1 _n "k	 (52)K dy 1+y y n+ 
P

Equations (47) to (52) define the optimization of the relative cross-

sectional areas of the n- and p-type thermoelements of a thermocouple. In

the actual use of these equations, faxed values are assumed for 2, AT , m and

QH . The cold junction temperature of the thermocouple is either fixed, the

case of a heat sink of infinite capacity, or is calculated by means of its

dependence on the heat rejected at the cold side. In the latter case, a first

approximation cold junction temperature is calculated by assuming that all of

the heat absorbed by the thermocouple Q  is rejected at the cold side; this

corresponds to the assumption of a vanishing conversion efficiency. In each

higher order approximation the power output calculated for the preceding ap-

proximation is used to determine the amount of heat rejected, this enabling a

progressively more accurate determination of the cold side temperature as the

calculation proceeds . The hot junction temperature of the thermocouple is

initially set at some arbitrary albeit reasonable value. As with the cold junction

temperature, accurate hot junction temperatures are generated by the calcula-

tional sequence. Thermoelectric property values are adjusted after each

27.
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iteration to reflect the calculated hot and cold junction operating tempera-

tures of the thermocouple. The value of dTH „dv in the second of Eqs . (50)

is initialized at Taro. In subsequent approximations it suffices if AT 1v/2

is used for it, the inherent assumption being that the cold junction tempera-

ture is a much more slowly varying function of ythan the hot junction

temperature. If desired, a more accurate procedure, analogous to the one

developed in the reference given on the bottom of page 24, may be used.

The calculation for the optimum ratio of n- and p-type thermoelement

cross-sectional areas is started by assuming an initial value, such as unity,

for y . Substitution of this and all of the other fixed and initialized values

of pertinent parameters in Eqs . (43) , (45) , (51) and (52) enables the calcu-

lation of (1/a)da/dy and (1/b)db/dv by means of Eqs . (50) and the subsequent

determination of v by means of Eqs . (49) and (48) . The substitution of this

first approximation value of tr, along with the initialized value of y, in Eq .

(47) yields the first approximation value of yo . Equation (42) yields the

first approximation value of A T, which through the use of either a fixed or

calculated value of cold junction temperature, enables the determination of

the first approximation value of hot junction temperature. All first approxima-

tion values thus determined for key parameters are used in the next iteration

for the calculation of second approximation values. The procedure is repeated

until convergence within any desired degree is obtained between two successive

approximations .

At the conclusion of the calculation it may be found that for the values

Of AT and k used, the hot junction temperature will not be at a desired value.

If that is the case, the values of AT and I may be changed and the sequence

repeated until desired operating temperatures result. The value of m used in

the calculation is completely, arbitrary and may assume any numerical value.

In a complete optimization procedure, however, it may be desirable to use an

28.
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optimum value of m determined by the optimization procedure previously

discussed. In fact, in actual use the optimization procedures for m and y

should really be combined because the optima of the two quantities are

interdependent. The combination is simply effected by starting the calcula-

tional sequence with Eq. (40) and carrying it , through to Eq. (52) on each

iteration. Essentially the same goal could have been accomplished by starting

the overall optimization by the maximizing of power output as a2F/amay-0.

It is fairly apparent from the foregoing treatment that the optimum

values of m and y are different in the cases of fixed temperature and fixed

heat input operation. Interestingly enough, however, the same optimum

ratios of n- and p-type thermoelement cross-sectional areas result for the two

operating modes if the thermal conductivities of the two leg materials are

identical. In general, however, the optimum load and thermoelement con-

figurational characteristics are distinctly dependent on thermocouple operating

mode and the results for the two modes of operation should therefore not be

mixed.

ILLUSTRATIVE EXAMPLES

The results of the preceding discussion on thermocouple performance

optimization with respect to relative thermoelement configuration and load

characteristics are best illustrated by means of concrete numerical examples .

Considering first the optimization with respect to the ratio of load to internal

electrical resistance m, a thermocouple is assumed with dimensions and

hypothetical thermoelectric properties as follows„

	

Electrical resistivity, n-type 	 4.Omfl-cm

	

p-type	 2.0

	

Thermal conductivity, n-type 	 0.05 watt/° K-em

	

p-type	 0.05

Total Seebeck coefficient	 500 µv/° K

s
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Thermoelement length
	

2.0 cm

Thermoelement area, n-type
	

0.2 cm2
p-type
	

0.2

Total heat input
	

10 watts

Cold junction temperature
	

400° 1K

For ease of computation it has been assumed that the thermoelectric properties

are independent of temperature, the Thomson coefficient thus vanishes, and

that the cold junction temperature is fixed at 400 0 K. Although not necessary,

these assumptions enable the simplification of the calculation without affecting

the conclusions to be drawn from the results.

Using the equations and calculational sequence detailed for the deter-

mination of the optimum ratio of load to internal electrical resistance for the

fixed heat input operating mode of a thermocouple, it may be calculated in a

straightforward, albeit tedious manner that for the thermocouple in question

the optimum value of m  is 1.30. This value of mo , of course, corresponds

to the optima of both the power output and the conversion efficiency. The

corresponding hot junction temperature is calculated to be 1239° K. Using

this hot junction temperature, along with the other pertinent parameters given

in the above listing, it is calculated by means of Eq . (19) that for fixed

temperature operation the conversion efficiency optimizes for m  of 1 .16 .

Also for fixed temperature operation, the optimum value of power output

corresponds to a value of 1.00 for m o . Because identical thermocouple

'	 dimensions, material properties and operating temperatures have been used

for the case of fixed temperature and fixed heat input operation in this

example, it should be realized that to each value of m  there corresponds a

slightly different value of total heat input QK . Wheriias the heat input for

the fixed heat input case was originally set at 10 watts (correspond'-ig to the

m  value of 1.30) , the value of Q  at mo of 1 .16 is 10.1 watts and at m o of

30.
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1.00 is 10.2 watt ,-). If the heat input is maintained at the :fixed value of

10 watts, the hot junction temperatures are slightl y dependent on m0:

TH^ 12 39° K at m  = 1, 30, TH = 12 34° K at m  = 1.16 and TH = 122 9° K at

m 
	 1.00. The variations in heat input and hot junction temperature,

however, are so slight in the two cases that the optimum values of m  to

the precision given are unaffected.

From this example it is seen that for a given thermocouple and its

operating conditions (heat input or temperatures) , it is the method of

optimization that determines the optimum value of the ratio of load to

internal electrical resistance m. It is erroneous therefore to use the fixed

operating temperature optimization procedure in the case of a device operating

under conditions of fixed heat input and vice versa. Because of the typically

broad maxima in the thermoelectric device performance curves, however,

fortunately the penalty for mixing the results of the two modes of operation

is usually not excessive. Generally, the lower the current, the more

closely the optima for the two types of operation agree. Conversely, in

very high current devices, those with high values of incident heat flux and

short and stubby thermoelements, the difference between the optima for fixed

temperature and fixed heat input operation may become appreciable.

Some of the parameters in the listing used for determining optimum

thermocouple load characteristics have been changed for the example of the

optimization of relative thermoelement cross-sectional areas. A thermocouple

has been assumed with dimensions and hypothetical thermoelectric properties

as folloN ► s:

	

Electrical resistivity, n-type	 4.Omn-cm

	

p-type
	 2.0 ,1

	Thermal conductivity, n-type
	 0.0375 watt/OK-cm

	

p-type
	 0.0750	 "

Total Seebeck coefficient
	 500  µv/° K

r+Sf
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Thermoelement length	 2.0 cm

Total therm.oelement area	 0.4 cm2

Total heat input	 10 watts

Cold junction temperature	 4'00° K

Ratio of load to internal resistance 	 1.00

As before, it is noted that for ease of computation the thermoelectric

properties are assumed to be independent of temperature and the cold

junction temperature is fixed at 4000K.

Using the formalism developed above for the determination of the

optimum ratio of n- and p-type thermoelement cross-sectional areas of a

thermocouple, it may be calculated that for the case defined by the gi,,en

parameters, the optimum value of y o is 2.85. Using the given values of

electrical resistivity and thermal conductivity in Eq . (22) , it is seen that

for the fixed temperature operating mode the optimum value of y o is 2 .00 .

The difference in the results for the two operating modes is appreciable.

As mentioned above, the bigger the difference in the thermal conductivities

of the n- and p-type thermoelements, the bigger is the difference in the

optimum ratios of thermoelement cross-sectional areas for the two operating

modes. The optimum area ratios become identical for the two cases in the

limit of identical thermal conductivities of the thermocouple leg materials.

Fortunately in most instances of practical interest, the thermal conductivities

of the n- and p-type thermoelements do not differ as much as in the present

illustration. Usually they are not identical however and for this reason care

should be taken to use the correct optimization: procedure in the design of an

actual thermoelectric device.

It should be noted that in the present example the hot junction tempera-

tures corresponding to the optimum thermocouple configurations for the fixed

temperature and fixed heat input operating modes are different. The hot

1
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f
junction temperature in the former case may be calculated to be 12200K.

In the latter case it is 1273°K.	 If desired, the hot., junction temperature

for the fixed heat input case may be dropped to that for the fixed tempera-

ture case by increasing the total (combined n- and p-type) thermoelement

cross-sectional area to a value greater than the assumed 0.4 cm 2 .	 The

effect of this on the optimum value of y 	 is minimal.	 Thus it will be found
0

that even for identical operating temperatures the optimum ratio of n- and

-type	 -is	 function of thermocouplepthermoelement crosssectional areas 	 a

operating mode.

SUMMARY

The present treatment of thermocouple performance optimization in

r terms of external load characteristics and relative n- and p-type thermo-

element configurations has considered optimization procedures for the cases

of fixed temperature and fixed heat input thermocouple operating modes.

Whereas most of the results derived for the case of fixed temperature opera-

tion are well known and have been previously available, the corresponding

for	 fixed heat	 As far	 is known,results	 the	 input case are essentially new.	 as

the only previous reported work on thermocouple performance optimization for

fixed heat input operation is that of Castro and Happ 7 .	 The overall approach

used by these investigators is, however, different from that of the present

incorrectlytreatment and, more importantly, Castro and Happ 	 conclude that

the optimum ratio of relative thermoelement cross-sectional areas is identical

for fixed temperature and fixed heat input operating modes . 	 The present study

shows that optimum thermocouple leg configuration and load characteristics

are different for the fixed temperature and fixed heat input operating modes .

Because of this, the impropriety of using, as is commonly done, the fixed

operating temperature optimization procedures in the design of thermoelectricp	g	 P	 P	 P	 g

devices intended for operation at fixed heat input and vice versa is emphasized.
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In addition to the detailed treatment of thermoelectric device

optimization procedures, the present treatment in some instances takes

a new and different look at the basic theory underlying thermoelectric

energy conversion. The results derived in the Appendices as well as the

method of derivation of Cohen and Abeles' 3 efficiency expression, Eq .

(29), are considered novel. 	 -
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APPENDIX A

In the heat balance equations of Section II, Eqs . (14) and (15), it

was assumed that of joule and Thomson heat generated in the leas of a

thermocouple, one-half is transported to each of the junctions. The proof

of this for the case of joule heat alone, with negligible Thomson heat, is

well documented. 
8

ocumented. 8 Cohen and Abeles 3 , on the basis of an ad hoc assump-

tion, showed that good agreement with "exact" numerical calculations of

thermocou ple performance results if this assumption is also applied to

Thomson heat. As far as is known, however, a proof that in the first ap-

proximation one-half of both joule and Thomson heats are transported to each

of the junctions of a thermocouple has not previously been mathematically

developed in the form to be given below. Burshtein4 has derived the same

results in a different manner. As mentioned in Section Il, it will be assumed

that the thermal conductivity, electrical resistivity and the Thomson coefficient

of the thermoelectric materials are independent of temperature. The use of

temperature averaged property values validates the assumption.

The heat gain in a differential section dx of a thermoelement is

Q - Q	 :-- C Adx T if	 (Al)
in	 out	 v

where C and A are the specific heat and cross-sectional area of the thermo-v
element and T is the temperature. The heat input to the differential section dx

may be written
2

Qin = k.A Ir	 dx + Iµda..T_ dx ,	 (A2)

where k, p and µ are the thermal conductivity, electrical resistivity and Thomson

coefficient of the thermoelement and I is the current. The heat leaving the different
section dx is given by

Qout	 a^ + dx . (A3)

i
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The differential equation describing the equilibrum temperature distribution

in the thermoelement is obtained by taking the difference of Eqs . (A2) and

(,A3) and letting dx and 6TAt vanish:

kA

	

	 +IµdZ-,+^=0	 (AQ
dx

The solution of Eq. (AQ with boundary conditions T (;2) =TH and T (o) =T C Is

T (x) = h  exp *I	 x + h2	 (A5)

where A is the length of the thermoelements, and T  and T  refer to the hot and

cold junction temperatures respectively. The integration constants h  and h2

are given by

_ LT+IR	 (M)hI - exp µ } -I

t Tai2	 - TC exp-(Iµ/K) + IR
h = ^_ -- ex Iµ K - 1	 ^	 ^^

where the thermal conductance K, electrical resistance R and the temperature

difference LET are defined as 	 1

K-- kA ^

R -	 (A7)

AT = TH-TC	 --

The maximum temperature in the thermoelement occurs at xm and is found by

maximizing Eq. (A5) 1-Ny the usual method of differentiating with respect to x and

letting the result vanish. Doing this it is found

x = I ;,nk	

_

m	 µ	 "hI .	 (A8)
S

The fraction of the total heat transferred to the hot junction is that portion

generated in the thermoelement between the hot junction and the position xm

a,



of the maximum temperature. The fraction n of the total heat transferred to

the hot junction is therefore

n =	 m=1+I -kn ^ x /K-1
. 	̂ µ	 µ	 µ

Expansion of the exponential term in Eq. (A9) enables the equation to be written

as -
-,

n = 1 +. ,,n	 R 
	 -+^Z-^...^^	 (A10)

µ	 6K	 J d

Expressing the logarithm of the product of the bracketed terms in Eq. (A10) as

the sum of the logarithms of each term individually and expanding each, it is

found

^	 ^2K ^OT̂	 -1+1/3  'J'6' Tn = 1 + Iµ µOT + IR 1+1/2  µ T + IR	 µQT + IR^+.. .

With the retention of only the first order terms in each of the expansions in Eq.

F

(A 9)

(All), it is possible to write a first approximation for n as

,n = 1/2 - ---KL1T
IAAT + I R

(Al2)

The total heat Q  transferred to the hot junction is equal to the combination of

heat absorbed at the junction by the Peltier effect and the heat transferred by

the above process. Thus the heat balance at the hot junction may be written as
r

QH = IS HTH - nI2R _ IAA	 (Al 3)l
where S  refers to the Seebeck coefficient of the thermoelement at the hot junction

temperature T  . Substitution of Eq. (Al2) in Eq. (A 13) finally yields

QH = KQT + ISHTH -(1/2)I2 R -(1/2)Iµ&T
	

(A 14)



which is identical to Eq. (14) in section II if S, A , K and R in the present

development are redefined to include both legs of a thermocouple, as they

are in Section II. From Eq. (A14) it is seen that in the first approximation

one-half of the Joule and Thomson heat generated in the legs of a thermo-

couple is transported to the hot junction. It is therefore trivially true that

one-half of the Joule and Thomson heat generated is also transported to the

cold junction of the thermocouple. This has been assumed in Eq. (15) of

Section II. If desired, the proof for the fraction of heat delivered to the cold

junction may be executed in a manner analogous to the one above for the hot

junction.
It should be noted that the above derivation is based on the assumption

of only a small temperature difference pT between the hot and cold junctions of

a thermocouple because it has been assumed that the maximum temperature

occurs between and not at the junctions . This same assumption also underlies

the usual treatments of the problem in which only contributions due to Joule 	 _.

heating are taken into account. In thermoelectric power conversion applications

to thermocouples with relatively large values of temperature difference, Eq. (x,14) 	 _ r

therefore neglects all terms of interaction between Joule, Thomson and conduction

heat. The importance of such interaction terms cannot unfortunately be assessed

from the relative magnitudes of the corresponding terms in Eq. (All) because, as

stated, the above derivation only strictly applies to thermocouples with small

temperature differences. The use of the heat balance equations,Egs , (14) and (15)

in Section II, therefore implicitly assumes the independence of conduction heat

and Joule and Thomson heats.

Finally, within the scope of the above derivation, the neglect or retention

of higher order terms in the expansion of Eq. (Al I) of course depends on the relative

magnitude of the various arguments. Examination of a few higher order terms indicates -'

that the Thomson heat term in Eq. (A14) may in fact in some cases be comparable in

magnitude to the next terms in the expansion. In view of the comments about the 	 - °{

basis of the above derivation, in such instances it may be appropriate to neglect	 j

all Thomson heat contributions.

rill
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APPENDIX S

In Section II it was stated that the electrical power delivered to the

load of a thermoelectric generator may be assumed to be equal to the difference

in the heat absorbed at the hot side and the heat rejectedected at the cold side of

the generator. On the basis of energy conservation it is obvious thet this

less it is instructive to prove its validity

	

assumption must be true. Nevertheless, 	 pr	 y

by means of direct calculation. As before, the proof will be based on a single

thermocouple connected to a load. The generalization to any number of thermo-

couples is straightforward.

Section II at the hot

	

A detailed heat balance (see Sect	 )	 unction of the thermo-j

couple may be written as

QH = Q K + (Q P) H - 1/2 QT - 1/2 QJ ,	 (B1)

where QH is the total heat incident on the thermocouple. The corresponding

relationship for the cold junction may be written

QC; Q K + (Q P) C + 1/2 QT + 1/2 Q J ,	 (B2)

where QC represents the total heat rejected at the cold junction. All of the

terms in Eqs . (B1) and (B2) have been defined in Section II. The difference of

Eqs . (B1) and (B2) is

QH - QC = (Q P) H - (Q P) C - QT - QJ .	 (B3)

t
making use of Eqs . (9) , (11) and (13) , Eq . (B3) may be rewritten as

QH - QC = ISHT H - ISCT C - IgAT - I 2 R .	 (B4)

The use of Eq. (12) for the Thomson coefficients of the n- and p-type thermo-

elements enablesµ to be defined as

µ=T dT	 (B5)

I
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The average value of µ, to be used in Eq. (11) and therefore also in Eq. (B4),

is defined in terms of Eq. (7) as

fTH TdT

H dT

C
The denominator of Eq. (B6) is simply AT; Eq. (B6) thus becomes

AT =	 TdS	 (B7)	 -
T 

TH

C	 x.

Performing the indicated integration by parts, it is found

T 	 T H TH
TdS = ST -	 SdT .	 (B8)

C	 TC C

The use of Eq. (7) for the definition of the average Seebeck coefficient enables

Eq. (B8) to be rewritten as

T 
TdS = S T - S T - SLAT ,	 (B9)

,1r	 H H	 C C
C

where the integration limits indicated in Eq. (B8) have been applied to the

integrated term. Substitution of Eq. (B9) in Eq. (B7) and then in Eq. (B4) yields

QH _Q

	

C - ISAT - I
2 R	 (B10)

Substitution of Eq. (5) in Eq. (B10) finally gives

QH - QC = 
IZRL ,
	 (B11) Y{

which by definition is the power P o 
delivered to the load of the thermocouple.

An interesting by-product of this demonstration is the clear indication

of the close relationship between the three thermoelectric effects, viz. the

Seebeck, Peltier and Thomson effects, that Thomson discovered over a hundred

40.	
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years ago. This relationship is explicitly exhibited by differentiating Eq. (10)

with respect to temperature and making use of Eq. (B5):

9=seµ (Bx2)

e 4	 i
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