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FLIGHT INVESTIGATION OF AIRFRAME INSTALLATION EFFECTS ON A
VARIABLE FLAP EJECTOR NOZZLE OF AN UNDERWING ENGINE
NACELLE AT MACH NUMBERS FROM 0.5TO 1.3
by Daniel C. Mikkelson and Verlon L. Head

Lewis Research Center

SUMMARY

A flight test was conducted using a modified F-106B aircraft with underwing engine
nacelles to investigate airframe installation effects on a variable flap ejector nozzle.
Boattail drag coefficients, nacelle and wing pressures, and boundary-layer measure-
ments were obtained for three 15° conical boattails with projected area equal to 54.8
percent of the nacelle area. Three boattail juncture radii of curvature were tested at
nonreheat and at reheat power settings.

Airframe installation resulted in reduced boattail drag coefficients at subsonic
speeds when compared with isolated cold-flow results, and the boattail transonic drag
rise was delayed to Mach 0.97. Good agreement existed between flight and 1/20-scale
F-106 wind-tunnel model results at all speeds except near Mach 1.0. At subsonic
speeds installed boattail drag was less sensitive to boattail juncture radius of curvature
than isolated data. The nacelle installation resulied in significant changes in the wing
lower surface pressure distribution, and caused a maximum increase in elevon trim of
approximately 3. 0° at Mach 1. 02. Large circumferential variations in nacelle boundary-
layer characteristics occurred at all Mach numbers.

INTRODUCTION

As part of a current program in airbreathing propulsion, the Lewis Research Center
is investigating airframe installation effects on the performance of exhaust nozzle sys-
tems appropriate for use at supersonic speeds. In this program, airfirame installation
effects are being investigated both in wind tunnel and flight tests at off-design subsonic
and transonic speeds.

Recent experience has shown that performance of a nozzle system can be appreci-




ably affected by installation on an aircraft especially at off-design conditions (refs. 1

to 7). With an engine nacelle installation typical of a supersonic cruise aircraft, the
nacelle may be installed close to the lower surface of a large wing with the nozzle ex-
tending downstream of the wing-trailing edge. This aft location of the nacelle provides
shielding of the inlet by the forward wing surface to minimize angle-of-attack effects and
may also provide favorable interference between the nacelle and wing. To investigate
the effect of the airframe flow field on nozzle performance for a nacelle installation of
this type, the Lewis Research Center is conducting a flight test program using a modi-
fied F-106B aircraft with underwing engine nacelles. The nacelles house J85-GE-13
afterburning turbojet engines. The F-106B aircraft was selected for this program be-
cause it had a delta wing planform and good supersonic performance capability. In this
continuing flight program, complex nozzle systems are being investigated in the high
subsonic and transonic Mach number range where wind tunnel models are limited to very
small sizes to avoid wall interference effects.

The exhaust nozzles reported herein simulated the geometry of a variable flap ejec-
tor (VFE) nozzle operating at off-design subsonic and transonic speeds. With this type
of nozzle, the required expansion ratio for efficient operation over a wide range in noz-
zle pressure ratios and flight speeds is obtained by modulating the position of the vari-
able shroud flaps. At high subsonic speeds, for example, the required exit area will be
considerably smaller than that required at supersonic cruise. The boattail afterbody
that results from this exit-area reduction was simulated in this test by fixed geometry
nozzles.

Boattail drag coefficients, nacelle pressures, wing pressures (with and without na-
celles installed), and boundary-layer measurements were obtained for a series of VFE
nozzles with 15° conical boattail afterbodies. Three boattail juncture radii of curvature
were investigated over a Mach number range from 0.5 to 1.3 at nonreheat and at reheat
power settings. Results of this test are reported herein, and, in order to evaluate in-
stallation effects, comparisons are made with data from both isolated wind tunnel studies
(refs. 8 and 9) and results from wind-tunnel investigations of a 1/20-scale F-106 with
nacelles that were scaled versions of those flown on the aircraft (refs. 6 and 7).

SYMBOLS
A cross-sectional area of crylindrical nacelle section, 490.9 in. 2 (3166.9 sz)
AB projected area of boattail, 269.2 in. 2 (1736.8 sz)
b wing span, 457.60 in. (1162.4 cm)
CD axial boattail pressure drag coefficient in the direction of the nacelle axis,

B (Axial force)/ dpA
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pressure coefficient, (p - pO)/ )

diameter

nacelle cylindrical diameter, 25.00 in. (63.50 cm)
pressure altitude

coordinate defining top of nacelle strut fairing
Mach number

mass flow at free-stream conditions through an area equal to the nacelle inlet
capture area

mass flow captured by the nacelle inlet }

exponent in the boundary-layer velocity equation, V/ Vi1 = (z/ 6)1/ N
total pressure

static pressure

dynamic pressure, 0.7 pOM%

radius

boattail juncture radius of curvature

coordinate defining wing lower surface at the nacelle semispan location of 32. 05
percent

velocity

coordinate defining nacelle strut fairing width

nacelle axial or wing chordwise distance coordinate

spanwise distance from aircraft centerline

vertical distance from wing surface or radial distance from nacelle surface
aircraft angle-of-attack, deg

boundary-layer thickness

boundary-layer displacement thickness

boundary-layer momentum thickness

elevon deflection angle; + down, - up, deg

ratio of secondary total temperature to primary total temperature at station 8
nacelle angular coordinate, deg

ratio of secondary to primary weight flows at station 8




w‘\/'—r corrected secondary weight flow ratio
Subscripts:

bl boundary layer

e effective

ex external

i internal

n nacelle

W wing

0 free-stream or flight condition
1-9 nacelle stations (see fig. 8)

APPARATUS AND PROCEDURE
Aircraft and Nacelles

Figure 1 shows the modified F-106B aircraft in flight with aftmounted underwing
engine nacelles. This aircraft is a low, delta wing design with a takeoff gross weight of
41 070 pounds (18 626 kg).

A schematic drawing of the aircraft details and installation of the nacelles is shown
in figure 2. The aircraft is 790. 40 inches (20. 076 m) long and has a 60° sweptback delta
planform with a 228.80-inch (5.812-m) semispan. The wing has an approximately
4 percent thick NACA 0004-65 airfoil section with a cambered leading edge. The na-
celles were mounted to the wing aft lower surface by two attachment links (which were
enclosed by strut fairings) on each side of the fuselage at a spanwise distance (y) of
73.34 inches (1.863 m) or 32.05 percent semispan. Each nacelle houses a J85-GE-13
afterburning turbojet engine. Hereinafter, the nacelles are called left and right, as
viewed looking upstream. The VFE nozzles were flown on the left nacelle and a cylin-
drical reference nozzle was mounted on the right nacelle for all tests except the
boundary-layer tests. For these tests, a cylindrical reference nozzle was mounted on
both nacelles. The nacelles were installed at a -4.5° incidence angle with respect to
the wing chord (fig. 2(b)) in order that the nacelle would be approximately tangent to the
wing lower surface near its trailing edge. The nozzles extended aft of the wing trailing
edge. The nacelles also extended below the fuselage lower surface which is fairly flat in
the region of the nacelles. However, because of transonic area rule considerations, the




fuselage sidewalls on the bottom have a slight contour in the vicinity of the nacelles
fig. 2@)).

A schematic drawing of the nacelle strut fairings and elevon is shown in figure 3.
The narrow nacelle strut fairing (fig. 3(@)) had a maximum width equal to 28.6 percent
of the nacelle diameter and was tested with the three VFE nozzles that were investigated.
A limited amount of data were obtained with the wide nacelle strut fairing (fig. 3(b)) and
the nozzle that had a boattail juncture radius to nacelle cylindrical diameter ratio (ra-
dius ratio) of 0.5. This nacelle strut fairing tapered to a maximum width equal to 57.0
percent of the nacelle diameter near the elevon hinge line. Both of the nacelle strut
fairing configurations enclosed the two nacelle attachment links. A 24.50-inch
(62.23-cm) wide section of each elevon above the nacelles was cut out and fixed to the
wing to provide clearance between the movable elevon and nacelle.

A schematic drawing of the nacelle with a typical VFE nozzle is shown in figure 4.
The nacelle had a cylindrical diameter d of 25.00 inches (63.50 ¢m) and was 178,17
inches (452.55 cm) long. The trailing edge of the nozzle extended 0. 889 nacelle diam-
eters aft of the wing trailing edge. A normal shock (or pitot) inlet with a 6. 1° cowl
angle was used. The cowl angle on the lower half of the inlet was slightly higher and
faired into a bulged section on the bottom of the nacelle. This faired bulged section was
needed to accommodate the J-85 engine accessory package. The nacelle included an in-
terface at either end permitting the testing of various types of inlets and nozzles.

Figure § shows a VFE nozzle located under the trailing edge of the F-106 wing, and
figure 6 shows the nozzle installed below the fixed elevon cutout with the movable elevon
deflected down.

The three fixed-geometry VFE nozzle configurations that were tested are shown in
figure 7. All three configurations had boattail angles of 15° with the ratio of boattail
projected area to nacelle cross-sectional area (based on the cylindrical diameter) AB/A
of 0.548. Boattail juncture radius ratios of 0 (sharp edge), 0.5, and 2.5 were investi~
gated. Since the emphasis of the test was primarily on nozzle boattail pressure drag,
simple cylindrical ejectors were used for the nozzle internal geometry. The internal
diameter of 16.80 inches (42.67 cm) was sized to provide adequate secondary cooling air
during maximum reheat operation and was therefore slightly larger than would be re-
quired for subsonic cruise at part power. The J-85 engine had a variable area primary
nozzle (fig. 7 and 8) that modulated with changes in power setting. Airflow conditions
entering the VFE nozzles were determined from the engine and ejector calibrations of
references 10 and 11, respectively.

A schematic drawing of the engine installation in the nacelle is shown in figure 8
along with the nacelle station designation. Secondary cooling air to the nozzle was de-
termined from a calibrated flow valve located near the compressor (ref. 11).




Instrumentation

The aircraft was equipped with a digital data system that multiplexed and recorded
quasi-static data on magnetic tape (ref. 12). The data system used Scanivalves to
measure pressures and had the capability of measuring 578 parameters. A flight-
calibrated test boom located on the aircraft nose was used to determine free-stream
static and total préssure along with aircraft angle-of-attack and sideslip angle.

The nacelle was externally instrumented with 22 pressure orifices located at three
nacelle angular coordinate stations as shown in figure 9. The nozzles had 12 pressure
orifices just ahead of the boattail juncture located at four angular coordinate stations as
shown in figure 10. The boattails were instrumented with a total of 90 pressure orifices
located at ten angular coordinate stations and at nine axial distance stations. The nine
orifices at an angular coordinate station were located such that an equal projected area
was assigned to each orifice. These orifices were then used to obtain the boattail axial
pressure drag coefficient defined as follows:

90
D Coihs
i=1

> =

Cn =-
Dg

where C i is the local boattail pressure coefficient and Ai is the projected area as-

th orifice. For the radius ratio 0 (sharp edge) nozzle, four extra orifices

signed to the i
were located at four angular coordinate stations just aft of the sharp boattail juncture.
These orifices were used to measure the low pressures that occur with the sharp flow
overexpansion at the boattail juncture of this nozzle, and they were not used in deter-
mining boattail drag coefficient. The nozzle local ambient pressure P9 ex Was assumed
to be equal to the average pressure measured by the 10 orifices on the boattail trailing
edge. The average pressure measured by the eight internal orifices located at the noz-
zle trailing edge was used as the internal exit static pressure Pgi'

Pressure instrumentation which was located on the left wing is-shown in figure 11.
The upper surface had 36 orifices located at eight axial distance stations and at seven
spanwise stations. The lower surface had 40 orifices located at 11 axial distance sta-
tions and at six spanwise stations.

Wing and nacelle boundary-layer rake instrumentation details are shown in figure 12.
One 10-tube total-pressure rake was located on the wing lower surface inboard of the
nacelle as shown in figure 11. Nacelle boundary-layer rake data were obtained at six
angular coordinate stations. These rakes were flown at angular coordinates of 450,

1050, and 165° on both nacelles. However, for convenience, the data are presented as
if it all had been obtained with the reference nozzle on the right nacelle. Therefore, an

angular coordinate station of 90° is on the outboard side and 270° on the inboard side.
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Procedure

Tests were conducted at flight Mach numbers from 0.5 fo 1.3 and at Reynolds num-
ber that varied from 2. 3><106 per foot (0. 8x10° per cm) at Mach 0.5 to 4. 4><1()6 per foot
(1. 4><105 per cm) at Mach 1.3. The aircraft was flown at the nominal altitude - Mach
number profile shown in figure 13. This altitude profile resulted in the angles-of-attack
and the trim elevon deflections shown in figure 14. Tests were conducted at the nozzle
pressure ratio schedule shown in figure 15. The nominal nozzle operating conditions and
primary diameter ratios for the three J-85 power settings that were investigated are tab-
ulated below. The nacelle inlets were operated at the nominal capture mass flow ratio
schedules shown in figure 16 for the corrected secondary to primary weight flow ratios
listed in the table.

J-85 power Ty wVr | Dg/Dyg | Dyg/d
setting o
R K
Military 1760 978 | 0.040 1.45 0.46
Minimum reheat | 2480 | 1378 . 040 1.30 .b2
Maximum reheat | 3550 | 1972 . 065 1.14 .59

RESULTS AND DISCUSSION
Boattail Pressure Drag

Prior to the test reported herein, investigations were conducted in the Lewis Re-
search Center 8- by 6-Foot Supersonic Wind Tunnel with a 1/20-scale model of the F-106
aircraft (refs. 6 and 7). The model had nacelles that were scaled versions of those flown
on the aircraft. In these investigations the effects of the nacelle bulged section, angles-
of-attack below 80, and elevon deflections between +5° and -5° on boattail pressure drag
coefficient were shown to be small for an installed nacelle with a VFE nozzle. Large
variations in inlet capture mass-flow ratio for the main aircraft inlets and the underwing
nacelle inlets also had little effect on boattail pressure drag.

All the data presented in this report were obtained with the narrow nacelle strut
fairing (fig. 3(a)) unless specifically called out as having been obtained with the wide na-
celle strut fairing (fig. 3(b)). Installation effect on boattail pressure drag for the zero
radius ratio VFE nozzle operating at a maximum reheat nozzle exit to primary throat
diameter ratio of 1.14 is shown in figure 17. To show the installation effect, isolated




wind tunnel data from an 8.5-inch (21.59 cm) diameter cold-flow model and from a 4. (-
inch (10. 16 em) diameter model are presented and compared to installed data from the
F-106 model and aircraft, and from the 4. 0-inch (10.16 c¢m) diameter model with a sim-
ulated wing. The three models had 159 boattails with a zero radius ratio and were tested
in the Lewis Research Center 8- by 6-Foot Supergonic Wind Tunnel at g model angle-of-
attack of 0°. The 8.5-inch (21.59-cm) diameter cold-flow model had a strut-mounted
cylindrical nacelle with a VFE nozzle that was a scaled version of the flight nozzle and
is described in reference 8. The data presented for this model were obtained at the noz-
zle pressure ratio schedule shown in figure 15 for the maximum reheat value of nozzle
exit to primary throat diameter ratio at a corrected secondary to primary weight flow
ratio of 0.03. This resulted in the nozzle operating with overexpanded flow up to approx-
imately Mach 0. 9 and with underexpanded flow above Mach 0.9. The 1/20-scale F-106
model had scaled flow-through nacelles that had eylindrical jet-boundary simulators
which were used fo approximate the local flow field of a nozzle operating fully expanded
over the entire speed range. The data presented for this model were obtained from ref-
erence 7. The F-106 flight data were obtained at a maximum reheat power setting where
the nozzle operated overexpanded below approximately Mach 1.0 and underexpanded
above Mach 1.0 as will be shown later in this report. The 4. 0-inch (10. 16-cm) diameter
model had a cylindrical nacelle with a 10° conical forebody and had a cylindrical jet-
boundary simulator. The distance from the cone/cylinder juncture to the boattail trail-
ing edge (in nacelle diameters) was nearly identical to the value for the flight nacelle.

In addition to being tested isolated, this model was investigated under a large flat plate
at an incidence angle of -4. 5° with the boattail irailing edge extending 0. 970 nacelle di-
ameter aft of the wing trailing edge as described in reference 8. The installed test with
this model was an atlempt to investigate installation effects on larger nacelles in the

8- by 6-Foot Supersonic Wind Tunnel with only portions of the wing present.

The boattail drag data presented in figure 17 indicate that an installation of this type
resulted in a significant decrease in drag when compared with isolated nacelle results at
all speeds except near approximately Mach 1.0. At this speed, flight boattail drag was
similar to isolated wind tunnel values indicating little installation effect. The F-106
flight data show that the installed boattail drag coefficients were low at the high subsonic
Mach numbers and that the transonic drag rise was delayed to Mach 0. 97. Similar re-
sults occurred for a number of different nacelle shapes at the same spanwise location
(under the F-106) and at a more outboard spanwise location (ref. 7). The flight and wind
tunnel installed data compare favorably at all speeds except near Mach 1.0 where the
model results underestimate the flight boattail drag. It is also apparent that some of the
boattail drag reduction at high subsonic speeds was obtained with just a flat-plate wing
simulation, which provided a reflection plate for the nacelle flow field. The further de-
crease in boattail drag at these speeds for the installed F-106 data was the additional



result of the pressure gradients inherently produced by the lower wing surface curva-
ture.

These installation effects were caused by the acceleration and recompression in the
combined flow fields of the wing and nacelle resulting in high pressures on the nozzle
afterbody, especially at the high subsonic speeds. These results are qualitatively shown
by the nacelle pressure distributions from reference 6 and the wing and nacelle pressure
distributions from reference 7. In addition, these results will be supported by the wing
and nacelle pressure distributions which will be presented later in this report. Termi-
nal shocks were present on all of the nacelles tested, and they traveled over the boat-
tails at the Mach numbers shown by the dips in the boattail drag coefficient curves of fig~
ure 17. However, since tunnel blockage causes a delay in terminal shock travel
(refs. 13 and 14), the effects on boattail drag were delayed to approximately Mach 1. 02
and 1.08 for the 4.0-inch (10.16-cm) diameter model and the 8.5-inch (21.59-cm) diam-
eter model, respectively. .

In addition to the favorable subsonic installation effects, the combined flow fields of
the wing and nacelle were shown to be of an oscillatory nature and caused the elevons to
vibrate as shown in references 12 and 15. This elevon vibration was obtained only during
the flight tests with nacelles installed, at Mach numbers from 0. 85 to 1.05, and had a
frequency between 45 and 50 hertz with a maximum amplitude at Mach 0.85. During sub-
sequent flight tests with a different nozzle configuration, nacelle strut fairing geometry
significantly affected the magnitude of the elevon vibration (ref. 12). The maximum am-
plitude was reduced to an acceptable level by changing from the narrow nacelle strut fair-
ing of figure 3(a) to the wide strut fairing of figure 3(b).

A comparison of boattail drag data obtained in flight with isolated wind tunnel data
for the three radius ratio boattails operating at a maximum reheat nozzle exit to primary
throat diameter ratio of 1.14 is shown in figure 18. The isolated cold-flow wind tunnel
data (ref. 8) were obtained with the 8.5-inch (21.59-cm) diameter model at a zero degree
angle-of-attack for the nozzle pressure ratio schedule of figure 15. Between approxi-
mately Mach 1.0 and 1.2 where the data from this model were affected by terminal shock
travel, isolated data from the 4.0-inch (10. 16-cm) diameter model with a jet-boundary
simulator (ref. 9) are also presented for the boattails with radius ratios of 0 and 0.5.
The data from this model were obtained at a zero degree angle-of-attack. The effect of
increasing the boattail radius ratio from zero (sharp edge) to 2.5 resulted in a large re-
duction in boattail drag for the isolated boattail at high subsonic speeds. The installation
effect, however, resulied in a large reduction in subsonic drag for the zero radius ratio
boattail, and increasing the boattail radius ratio to 0.5 and 2.5 had very little additional
effects. The drag reduction due to radius ratio was nearly unaffected by installation on
the aircraft at supersonic speeds; however, the general level for all three shapes was
somewhat less.




The effect of nozzle exit fo primary throat diameter ratio on boattail drag is shown
in figure 19 for the three radius ratio boattails. The J-85 engine was operated at power
settings of military, minimum reheat, and maximum reheat for the nozzle diameter
ratios of 1.45, 1.30, and 1. 14, respectively. As power setting was increased, the pri-
mary nozzle diameter was opened, and generally the size of the primary jet at the nozzle
exit increased if the nozzle was not flowing full or greatly overexpanded. The {ailed
symbols for the boattail with a radius ratio of 0.5 (fig. 19(b)) were obtained with the wide
nacelle strut fairing (fig. 3(b)). All other data were obtained with the narrow nacelle
strut fairing (fig. 3(@)). A comparison of the data obtained with the two strut fairings at
a nozzle diameter ratio of 1.45, showed that boattail drag was not appreciably affected by
strut fairing geometry. The effect of increasing power setting resulted in reduced boat-
tail drag for the three radius ratio boattails at all flight speeds. Boattail drag reduction
was less sensitive to power setting changes at speeds below Mach 0. 97 (where the pri-
mary jet was always overexpanded) than at supersonic speeds where the primary jet
ranged from overexpanded to underexpanded at nozzle diameter ratios from 1.45 to 1. 14,
respectively.

The effect of radius ratio on boattail drag is shown in figure 20 for the three nozzle
diameter ratios (power settings). At all power settings boattail drag was reduced with
increasing radius ratio at supersonic speeds. This reduction was the largest for a
radius ratio change from 0.5 to 2.5. However, at subsonic speeds boattail drag was less
sensitive to radius ratio.

" The effect of nozzle diameter ratio (power setting) on the internal nozzle exit static
pressure to free-stream static pressure ratio is shown in figure 21 for the three radius
ratio nozzles that were tested. With military and minimum reheat power settings the
nozzle pressure ratio schedules and diameter ratios were such that the primary jet was
separated at the nozzle exit plane providing approximately free-stream static pressure
up to Mach 0.97 and 0. 95, respectively. Above these speeds the primary jet overex-
pands at the nozzle exit to larger effective flow areas except for the radius ratio 0.5 noz-
zle at minimum reheat power setting above approximately Mach 1.15. Because of the
difficulty in repeating minimum reheat power setting, this nozzle was tested at a power
setting that was slightly higher than the nominal value for minimum reheat at Mach num-
bers between 1.05 and 1. 30 as shown by the tailed symbols in figure 21(b). Within this
speed range, the nozzle diameter ratio varied from 1.26 to 1.28. This was the main
factor that caused the nozzle to operate flowing full with an underexpanded primary jet
above Mach 1.15. At maximum reheat power setting the primary jet was overexpanded
below the speed range from Mach 0.9 to 1.0, and underexpanded above these speeds.

The same trends occurred for the nozzle exit static pressure to boattail trailing edge
static pressure ratio as shown in figure 22.
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Nacelle and Boattail Pressures

A comparison of the flight boattail pressure distributions with isolated nozzle re-
sults for the zero radius ratio nozzle operating at a maximum reheat diameter ratio of
1.14 is shown in figure 23. The isolated nozzle data were obtained with the 8. b-inch
(21.59-cm) diameter cold-flow model over the nozzle pressure ratio schedule of fig-
ure 15 at a 0° angle of attack. The flight data were obtained at aircraft angles of attack
that varied with Mach number as shown in figure 14. The electrical signals that were
recorded by the aircraft data system for the nacelle pressures obtained during the flight
tests of the radius ratio 0 and 2.5 nozzles were subject to a small amount of wide band
- aircraft electrical noise. This noise caused the measured boattail pressures to vary
randomly over the small amplitude range (approximately £1/4 1b/in. 2 (+0.17T N/ cmz))
shown in figures 23 and 25. Because of the random fluctuation in the boattail pressures,
it is difficult to evaluate circumferential variations in these pressures. However, the
axial pressure distribution trends and computed boattail drag coefficients are usable be-
cause of the small amplitude of the pressure fluctuations and their random variation with
time. These pressures fluctuated at relatively high frequencies compared to the data
acquisition cycle time of 11.6 seconds. All of the electrical signals for the wing, boat-
tail, and nacelle pressures obtained with the 0.5 radius ratio nozzle were electrically
filtered to eliminate this noise.

The installed boattail pressures were generally higher than the isolated nozzle data
at both Mach 0.90 and 1. 20 as shown in figure 23. These higher installed pressures re-
sulted in the boattail drag coefficient reductions shown in figure 18. At Mach 0. 90, the
flow on the upper half of the boattail overexpanded at the sharp boattail juncture to pres-
sures that were higher than the minimum obtained with the isolated nozzle. On the lower
half of the boattail the opposite trend in general occurred; however, the flow on both the
upper and lower halves recompressed to approximately the same pressure level.

A comparison of boattail pressure distributions with isolated nozzle results for the
0.5 radius ratio nozzle operating at a maximum reheat diameter ratio of 1.14 is shown
in figure 24. The isolated data shown at Mach 1.05 and 1. 10 were obtained with the 4. 0-
inch (10.16-cm) diameter model with a jet-boundary simulator (ref. 9). At all subsonic
Mach numbers the flow overexpansion at the boattail juncture was generally less severe
on the upper half of the boattail. The boattail drag reductions due to installation effect
shown in figure 18 resulted from the higher average pressures on the boattail (compared
with isolated data, fig. 24) at all speeds except Mach 1.00. This trend isdparticularly
clear at Mach 0. 95 where the installed boattail pressures were considerably higher than
the isolated pressures, and yielded a force in the thrust direction on the boattail. The
sharp flow recompression that occurred at Mach 1. 20 on the isolated boattail was also
evident on the installed boattail, however at a slightly more forward location.
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A comparison of boattail pressure distributions with isolated nozzle results for the
2.5 radius ratio nozzle operating at a maximum reheat diameter ratio of 1.14 is shown
in figure 25. The scatier in boattail pressures for this nozzle were primarily due to the
electrical noise that was discussed earlier. The boattail drag reduction due to installa-
tion effect shown in figure 18 at Mach 0. 90 occurred primarily on the forward upper half
of the boattail as shown in figure 25(a-1). At Mach 1.20 the flow on both the isolated and
installed boattails went through a gradual overexpansion and a sharp recompression.

Installed nacelle pressure distributions with the 0.5 radius ratio nozzle operating at
a military power diameter ratio of 1. 45 are shown in figure 26 for four nacelle angular
coordinate stations at speeds from Mach 0.54 to 1.32. These data were obtained at
angles-of-attack that varied from 7.7° at Mach 0.54 to 0. 9° at Mach 1.32. The pres-
sures on the forward portion of the nacelle demonstrated a similarity to those obtained
with typical isolated cone-cylinder nacelle configurations. At subsonic speeds, a typical
flow overexpansion occurred when the flow was turned at the inlet-nacelle juncture and
the flow recompressed downstream of this location toward free-stream static pressure.
Also, the flow on the boattail showed an expansion region at the boattail juncture followed
by a recompression, with the aft boattail pressures being recompressed to levels greater
than free-stream static. At Mach 0.89 the low pressure levels at the inlet-nacelle junc-
ture, that result from the flow overexpansion, recompressed through a pressure discon-
tinuity region (or terminal shock) that existed between nacelle position coordinate sta-
tions of 3.43 and 5.08 (figs. 26 and 27). At Mach 0. 96 this pressure discontinuity region
moved aft on the nacelle to a position slightly ahead of the boattail. This low pressure
region at the inlet-nacelle juncture, that spread in the downstream direction as Mach
number was increased from 0.89 to 0.96, and was terminated by a pressure discontinuity
region (terminal shock) was possibly caused by a combination of the following two flow
phenomena: a reflection of the low pressure inlet-nacelle expansion field by the wing
lower surface, and the recompression field inherently produced by the wing lower sur-
face thickness distribution. The rapid rise in the nacelle pressures and associated
change in flow characteristics ahead of the boattail at these high subsonic speeds, re-
sulted in the increased boattail pressures (as compared with isolated nozzle data)
(figs. 24(b) and (c)), and the reduced boattail drag discussed earlier. Above these
speeds, the pressure discontinuity region moved aft of the boattail and the decreased
pressures on the boattail resulted in the drag rise observed at Mach 0. 97 (fig. 19(b)). At
supersonic speeds, the flow recompression on the boattail was not as strong as the re-
compression at subsonic speeds and the highest pressures on the boattail were always
less than free-stream static. Circumferential pressure variations existed over the en-
tire nacelle length. On the forward portion of the nacelle, higher pressures occurred on
the bottom of the nacelle, and on the aft portion ahead of the boattail, pressures were
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generally higher on the top. Similar results for the nacelle pressure distribution trends
were reported in references 6 and 7.

Installed nacelle pressure distributions for the 0.5 radius ratio nozzle operating at
a maximum reheat diameter ratio of 1.14 are shown in figure 27 for four nacelle angular
coordinate stations at Mach 0.91 and 1. 13. The pressure discontinuity region that oc-
curred at approximately Mach 0. 90 downstream of a position coordinate station of 3. 43
is more clearly seen on this figure than on figure 26. The nacelle pressure distributions
obtained with maximum reheat power setting were similar to the distributions obtained
with military power setting (fig. 26), except on the aft region of the boattail. With max-
imum reheat power setting, the flow on the boattail recompressed to higher pressure
levels in this region (compared with military power setting data) at both Mach 0. 91 and
1.13.

Wing Pressures

The changes in wing static pressures produced by the nacelle installation are shown
in figure 28 for the first row inboard of the nacelle at 2y/b = 0.2'71. With the nacelle
installed, the compression field from the flow turning at the inlet raised the pressures
on the wing above the forward half of the inlet at all Mach numbers presented. The flow
overexpansion at the inlet-nacelle juncture resulted in a significant low pressure region
on the wing at all speeds. This region had its maximum chordwise extent at Mach 1. 00
and above and corresponded to the generally low pressures observed at these speeds on
the nacelle aft of the inlet-nacelle juncture as shown in figure 26. These modifications
to the wing pressure distribution contributed to the transonic elevon trim changes shown
in figure 14. At Mach 1.02 a maximum of 3. 0° of additional (down) elevon deflection was
required to trim the aircraft longitudinally. The low pressure region recompressed to
near free-stream static pressure at the wing trailing edge except at Mach 1. 00 and above
where the recompression occurred downstream of the wing trailing edge.

Wing pressure distributions are shown in figure 29 for all spanwise rows of pressure
orifices on both upper and lower surfaces without the nacelle installed. The low pres-
sure regions on both the upper and lower surfaces inherently produced by the wing thick-
ness distribution recompressed toward free-stream static pressure near the wing-
trailing edge at Mach numbers below 0.99. An increase in Mach number resulted in
lower pressures in this region, and is followed by a stronger recompression further aft
on the wing. At Mach 0. 99 and above the recompression moves aft of the wing and the
pressures remain low to the wing trailing edge. Data are shown in figure 30 with the
nacelles installed. Installation of the nacelles had no effect on the wing upper surface
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pressures except for changes on the elevon caused by the different elevon position re-
quired to keep the airplane trimmed.

The same trends occurred for the lower surface of the wing as previously described
for the single row in figure 28. On the lower surface the influence of the nacelle on the
pressure distributions diminished with increasing distance outboard of the nacelle.

Boundary-Layer Characteristics

Figures 31 to 33 show the nacelle boundary-layer characteristics for six angular
coordinate stations measured at a nacelle station upstream of the nozzle boattail. These
data were obtained at angular coordinate stations of 450, 1050, and 165° on both nacelles
with wide strut fairings (fig. 3(b)). However, for convenience the data are presented as
if they had been obtained only on the right nacelle. Therefore, angular coordinate sta-
tions of 105° and 255° are on the outboard and inboard sides of the nacelle, respectively.

The rakes that were used to survey the nacelle boundary layer were sized to meas-
ure approximately twice the boundary-layer thickness predicted by flat-plate theory with
a 1/7 power velocity profile. Because of an unusually thick nacelle boundary layer, this
sizing actually resulted in rakes that were generally too short. In order to compute dis-
placement and momentum thicknesses, it is necessary to determine the local free-
stream velocity (outside of the boundary layer) at each rake location. This velocity
could not be generally determined because of the short rakes. However, a velocity based
on the local static pressure at each rake and the highest total pressure measured by any
tube in the corresponding rake was used as the local free-stream velocity.

Both displacement and momentum thicknesses were computed based on this velocity
and an integration out to the tube reading the highest total pressure. Results for the six
rakes are shown in figures 31(a) and (b). Also shown in the figure are the values that
would be obtained using flat-plate theory with a 1/7 power velocity profile. Results from
the boundary-layer calculations show both the displacement and momentum thicknesses
to be greater than would be calculated theoretically except for the rakes at nacelle angu-
lar coordinate stations of 45° and 315°. However, since the rakes at these two locations
extended into the wing boundary layer, the values computed for both the displacement and
momentum thicknesses were influenced by this second boundary layer. The values ob-
tained for the other angular coordinate stations showed a considerable amount of circum-
ferential distortion in both displacement and momentum thicknesses that varied with
Mach number. At Mach 0. 90 the highest values for both displacement and momentum
thicknesses occurred on the inboard (255°) and outboard (105°) sides of the nacelle. Fig-
ure 31(c) presents the ratio of displacement to momentum thickness. Lines are shown
for various boundary-layer form factors ranging from N =5 to 11. The data showed a

14




spread from a value of N<5 to N > 11 with the minimum values occurring at approx-
imately Mach 0. 96.

Figure 32 shows boundary-layer velocity profiles for the same six rakes. Veloci-
ties are calculated using the measured total pressure and the local static pressure at
each rake. Local velocity is then ratioed to the velocity calculated for the tube with the
highest total pressure. The profiles for the rakes at nacelle angular coordinate stations
of 45° and 315° showed that they are located in a region where the wing boundary layer
and the nacelle boundary layer meet. For Mach numbers from 0.6 to 1.2 all the rakes
except the one at 45° in general showed various amounts of distortion in their velocity
profiles. These velocity profile distortions indicate thatthere may be some localized flow
separation in some regions of the nacelle boundary layer. Figure 33 shows nacelle
boundary-layer velocity data at Mach 0.9. In this figure the ordinate is the radial dis-
tance from the surface divided by the boundary-layer thickness. Presenting the data in
this way showed that the greatest deviation from the 1/7 power profile occurred in the
midregion of the boundary layer where the profile was the most highly distorted.

Figures 34 to 36 show wing lower surface boundary-layer characteristics deter-
mined from measurements taken by a rake located between the nacelle and aircraft fuse-
lage. The exact location of this rake is shown in figure 11 and the rake dimensions in
figure 12. Figures 34() and (b) show both the displacement and momentum thicknesses
to be lower than that calculated using flat-plate theory with a 1/7 power profile. Both
values are the closest to flat-plate theory at approximately Mach 0.85. Figure 34(c)
shows the ratio of displacement to momentum thickness to be less than that predicted for
a 1/7 power profile except from approximately Mach 0.85 to 1.00. Figure 35 shows
typical velocity profiles from Mach 0.6 to 1.2, and figure 36 shows a typical velocity
profile at Mach 0. 9 compared with a 1/7 power velocity profile. The wing boundary
layer exhibited no separation and generally agreed better with flat-plate theory than the
nacelle boundary-layer results.

SUMMARY OF RESULTS

To study airframe installation effects on a variable flap ejector nozzle at subsonic
and transonic speeds, a flight test investigation was conducted using a modified F-106B
aircraft with underwing engine nacelles. Boattail drag coefficients, nacelle pressures,
wing pressures, and boundary-layer measurements were obtained for a series of nozzles
with 15° conical boattail afterbodies. Three boattail juncture radii of curvature were
investigated over a Mach number range from 0.5 to 1.3 at nonreheat and at reheat power
settings. The following results were obtained:

1. Airframe installation effects resulted in reduced boattail drag at all Mach num-
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bers except near Mach 1.0. At this speed, flight boattail drag was similar to isolated
wind tunnel values indicating little installation effect.

2. Good agreement existed between the flight and ¥-106 model resulis at all speads
except near Mach 1.0 where the model results underestimated the flight boattail drag.

3. Installation effects were caused by changes in the nozzle flow field characteristics
that resulted from the acceleration and recompression of the combined wing/nacelle flow
field at high subsonic Mach numbers.

4. Installed boattail drag at subsonic Mach numbers was less sensitive to boattail
juncture radius ratio than isolated data.

5. Boattail drag was reduced with increasing primary nozzle area (increased after-
burning) above Mach 1.0. Below Mach 0. 97 the same trend occurred, however, the
boattail drag reduction was less sensitive to jet characteristics.

6. The nacelle installation resulted in significant changes in the wing lower surface
pressure distribution. These changes in the wing pressure distribution contributed {o a
maximum increase in required (down) elevon trim of approximately 3.0° at Mach 1. 02.

7. Large circumferential variations in nacelle boundary-layer characteristics oc~
curred at all Mach numbers.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, January 21, 1970,
720-03.
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Figure 1. - Modified F-106B aircraft in flight showing under-wing instaliation of nacelles.
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Figure 5. - Variable flap ejector nozzle location under the trailing edge of the wing.
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Figure 31. - Nacelle boundary-fayer characteristics.
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Ratio of radial distance from nacelle surface to nacelle diameter, z/d
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Figure 32. - Nacelle boundary-layer velocity profiles.
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Ratio of distance from nacelle surface o boundary layer thickness, z/6
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Figure 34. - Wing boundary-layer characteristics.




Ratio of distance from wing surface to nacelle diameter, z/d

.16

.08

.04

.16

0

.16

Y

.04

? )
e O
O O
O Q
[e D
O O
5 0] @]
O O ©
Flight Mach number, 0.62; ratio of momentum thick- Flight Mach number, 0,83; ratio of momentum thick-
ness to nacelle diameter, 0.010; boundary-fayer to ness to nacelle diameter, 0.009; boundary-layer to
free-stream velocity ratio, 1.05; boundary-fayer to free-stream velocity ratio, 1.075; boundary-layer to
free-stream fotal pressure ratio, 0.990, free-stream total pressure ratio, 0,992,
Q )
<
O g
O o]
O o]
O ¢
9} &)
@] D
Q 9] ©
Flight Mach number, 0.88; ratio of momentum thick- Flight Mach number, 0.96; ratio of momentum thick-
ness to nacelle diameter, 0.009; boundary-layer to ness to nacelle diameter, 0.007; boundary-layer to
free-stream velocity ratio, 1.080; boundary-layer to free-stream velocity ratio, 1.143; boundary-layer to
free-stream fotal pressure ratio, 0.990. free-stream total pressure ratio, 0.965.
® 2
[&
Q o]
O
O D
q e
O @]
D 2 Q
P 9
4 .5 6 7 .8 .9 10 .4 .5 .6 N .8 .9 1.0
Ratio of boundary layer to locat free-stream velocity, ViV
Flight Mach number, 1.00; ratio of momentum thick- Flight Mach number, 1.06; ratio of momentum thick-
ness to nacelle diameter, 0.007; boundary-layer to ness to nacelle diameter, 0.008; boundary-layer to
free-stream velocity ratio, 1.119; boundary-layer to free-stream velocity ratio, 1.064; boundary-fayer to
free-stream total pressure ratio, 0.963. free-stream total pressure, 0.952.
3 .16 9]
8
S
.2
£N 12
= o}
€5
EE 0
= .08
28 )
s ; .04
% (0]
o 0 o D
4 .5 6 7 8 .9 1.0

Ratio of boundary Iéyer to local free-stream velocity, VIVy,

Flight Mach number, 1.19; ratio of momentum thick-
ness to nacelle diameter, 0.008; boundary-layer to
free-stream velocity ratio, 1.036; boundary-layer to
free-stream total pressure, 0.957.

Figure 35. - Wing boundary-layer velocity profiles.
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