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ELECTROCHEMICAL BEHAVIOR OF THE BORON ANODE 

I N  AQUEOUS SOLUTIONS 

by Betty S. Del Duca 

NASA-Lewis Research Center 
Cleveland, Ohio 

The electrochemical oxidation of p-type boron i n  0.2 N NaNO solutions 
3 

of pH 0.4-13.1 was studied by galvanostatic techniques. The capacitance cO 
C1) 
Lo 

of the electrode, Tafel slopes and a limited analysis of reaction mechanism 

i s  reported, The anodic dissolution i n  acid solution i s  a charge t ransfer  

limited one electron reaction t o  form a monovalent species i n  the over- 

potent ial  region of .25 t o  -70 vol t s ,  The dissolution i n  basic solution 

i s  most probably a one electron charge t ransfer  reaction from a mono- 

valent t o  divalent species involving three hydroxyl ions. 

Open c i r cu i t  potentials were mixed potent ials ,  probably due t o  

hydrogen format ion a t  open c i r cu i t  but not contribut ing t o  the electro- 

chemical reaction a t  the applied overpotential. 

The leve l  of illumination had no effect  on the electrochemical 

behavior of the electrode. 
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SUMMARY 

The electrochemical oxidat ion of p-type boron i n  0.2 N NaNO solutions 
3 

of pH 0.4-13.1 a t  room temperature was studied by galvanostatic techniques, 

2 The capacitance of t h e  electrodes was found t o  be normal, 10.5 pf/cm 

2 
i n  acid  solutions and 25.9 wf/cm i n  basic e lec t ro ly te .  

Tafel  p lo t s  were constructed and the  slopes used t o  determine t h e  

charge t r ans fe r  r a t e  determining reaction over t h e  whole pH range. The 

react  ion i n  acidic  solut ion was found t o  be a one e lectron t ransfe r  

+ 
B + B+ + e-. The react ion B + B++ + e' was found t o  be most probable 

i n  basic solut  ions. Analysis of t r ans  it ion time data  a t  low hydroxide 

concentrations suggest t h a t  th ree  hydroxyl ions are  involved i n  t h e  r a t e  

determining s tep  i n  basic  solutions.  

A value of 1.5 x cm2/sec was obtained f o r  t h e  dif fusion coeff ic ient  

of OH- ion i n  0.2 N NaNO 
3" 

Open c i r c u i t  po ten t ia l s  did  not agree with thermodynamically calculated 

values. The discrepancy was a t t r ibu ted  t o  iqixed po ten t ia l s  , probably due 

t o  hydrogen formation a t  the  open c i r cu i t  po ten t ia l ,  Hydrogen formation 

did not contribute appreciably t o  t h e  overa l l  react ion a t  the  applied 

overpot ent  i a l s  . 
The l e v e l  of i l lwninat  ion had no e f fec t  on the  electrochemical 

behavior of t h e  electrode,  



INTRODUCTION 

The high theore t ica l  half-cel l  po tent ia l  of boron makes it an 

interest ing cwdidate f o r ,  as  Fleischer ( r e f .  1) has pointed out,  an 

anode i n  p r i m r y  bat ter ies .  Boron i s  a lightweight, t r iva lent  material 

second only t o  beryllium i n  both gravimetric and volumetric energy 

density. 1% i s  unreact ive with most acids,  a lka l i s  and organic solvents 

( r e f .  2). Possible oxide fi lm formation, semiconductor behavior and 

high r e s i s t i v i t y  may be involved i n  i t s  electrochemical performance. 

The electrochemical properties of boron have reae ived very l i t t l e  

attention. Chen, and Salomen ( ref .  3) measured the  anodic efficiency 

of boron anodes i n  0.1 N LiOH solution a t  30" C. Individual measure- 

ments varied from 84.0 t o  I21  percent current efficiency with an average 

of about 98 percent efficiency. 

In t h i s  study, constant current steps were applied anodically t o  

boron electrodes i n  a 0.2 WaNO solution varying in pH from 0.4-13.1. 
3 

Measurement of the  resul tant  potentials permitted the det erminat ion of 

the  Tafel slope, the capacitance of the  electrode and limited analysis 

of t h e  mechanism of the  reaction. The influence of the  level  of i l l u m i -  

nation on the  electrochemical behavior was a l so  investigated t o  determine 

i f  t he  boron electrode exhibits semiconductor properties . 

EXERIMENTAL 

A. EJXCTRODE 

Boron f ilarments 4 mils ( .01016 cm) i n  diameter deposited on a half  

m i l  (.00127 cm) core of tungsten were used as  the electrode material  in  

t h i s  study, Metallographs of a cross-sect ion of the  filament indicated 



a homogeneous outer layer ,  presumably boron, with a second phase as  a 

core. X-ray d i f f r ac t  ion patterns obtained with both copper and chromium 

radiat ion showed t h e  existence of WB4 and W B and no metall ic tungsten 
2 5 

i n  the  core, No other compounds were present. Similar r e su l t s  are  des- 

cribed by Warner and Sa t te r f ie ld  ( r e f .  4) who have published metallo- 

graphic cross-sect ions similar in appearance t o  those obtained i n  t h e  

present work. They a l so  found evidence f o r  a core composed so le ly  of 

WB4 and W B They note t h a t  t h i s  composition r e su l t s  from vapor deposi- 
2 5° 

t ion of boron from a halide system. 

Further evidence fo r  the  WB W B -core was obtained by measuring 4' 2 5 

the  res is tance of a given length of filament. The average r e s i s t i v i t y  

was much larger  than the  value given by Touloukian ( r e f .  5) for  tungsten 

(5.2 x ld6 0 cm) and corresponded almost exactly t o  that given fo r  a 

tungsten boride compound (not WBq or  W B however ) of 55 x Q cm. 
2 5' 

Lips itt ( re f .  6)  used electron d i f f r ac t  ion techniques t o  study the  

nature of t h e  filament surface and concluded t h e  boron i s  a heavily 

faul ted multi-layered c rys ta l l ine  s t ructure  which i s  s table  a t  tempera- 

tu res  up t o  1000' C over an extended period of time. 

The thermoelectric probe technique ( r e f ,  7) indicated t h a t  t h e  f i l a -  

ments used i n  t h i s  work were p-type. 

The filaments were mounted f o r  electrochemical study t o  a copper 

conductor by he l ia rc  techniques (tungsten iner t  gas welding i n  a nitrogen 

atmosphere). The bottom end was sealed with a transparent s i l i con  rubber 

adhesive/sealant t o  prevent exposure of the  core t o  t he  e lectrolyte .  

A l l  current densi t ies  a re  based upon the  measured geometrical area  

of the electrode,  
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Metallographic studies of the filaments following electrolysis  showed 

the removal of boron t o  be regular with no cracking or p i t t i ng  a t  magni- 

f icat ions of up t o  500 times, 

B. EUXTROCHEMICAL CELL 

The c e l l  used i s  s h m  i n  figure 1. It consists of a Pyrex vessel 

containing a platinum cup which serves as the counter electrode. A l l  

potentials were measured r e l a t  ive t o  a commercial saturated calomel 

reference electrode with an asbestos thread junction encased i n  a glass 

envelope with a Luggin capillary.  The working and reference electrodes 

were positioned i n  the  center of the platinum cup. A Teflon magnetic 

s t i r r e r  was placed i n  the ce l l .  

The electrolyte  was 0.2 NNaNO prepared from reagent grade NaNO 
3 3 

and d i s t i l l e d  water and the pH was adjusted over the range f'rom 0.5 t o  

13.1 as desired by t h e  addit ion of reagent grade HC1 or KOH. A l l  experi- 

ments were done a t  room temperature. 

C. INSTRUMENTATION 

Constant current steps adjusked t o  provide current densi t ies  in  the  

2 
range from 0.3 t o  10 ma/cm were supplied t o  the  electrode by means of 

a 1-3 p sec. r i s e  time potentiostat  and a conventional relay-pulse generator 

shown schematically i n  figure 2. The resultant potent ial  vs time curve 

was displayed on an oscilloscope with a d i f f e ren t i a l  amplifier having an 

input impedance of 1 megohm paralleled by 4,7 picofarads. Photographs 

were taken of the traces.  during the  f i r s t  350 IJ. sec, following in i t i a t ion  

of the pulse t o  permit calculation of the I R  drop i n  the electrode and in  
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the solution between the  electrode surface and t h e  t i p  of the  Luggin 

cap i l la ry  by observation of the  i n i t i a l  po ten t ia l  jump. In addit ion,  

the  d i f f e r e n t i a l  double layer capacitance was obtained from the slope 

of the  i n i t i a l  l inear  po ten t ia l  r i s e  (aqb-t), ( f igure  3 (a ) )  from the  

equat ion : 

where i = applied current density 

Photographs taken over the  time in te rva l  of 0-140 msec permitted 

observation of t h e  steady resul tant  potent ia l .  Figure 3(b) i s  t yp i ca l  

of these photographs. In  a l l  cases, a steady poten t ia l  was established 

within 80 msec. 

The influence of illuminat ion was investigated in the  0.5 NHCl 

e lec t ro ly te  using a 500 watt incandescent photoflood 1 foot from t h e  

electrode room l igh t  and darkness. No differences in the  electrochemical 

behavior were noted. Normal Tafel behavior and the  absence of a photo- 

e f fec t  i s  expected for  anodic dissolut ion reactions of p-type semiconductors 

by anology with germanium ( r e f ,  8 ) .  6. 

Open c i r cu i t  potent ia ls  were measured r e l a t i v e  t o  t h e  saturated 

calomel reference with a high input impedance (> 5000 megohm) d i g i t a l  

voltmeter. About a hour was required t o  reach a steady-state potent ia l .  

Potent ia ls  were measured i n  t h e  presence and absence of oxygen by bubbling 

e i the r  a i r  or pure argon through the  solution, 

D. ANALYSIS OF DATA 

Potentials , assumed t o  be act ivat ion overpotent i a l s  , read from the 

phoi;ographs a t  120 msec. fo r  various current density pulses were corrected 



for  the  I R  drop and plot ted vs the  log of the  current density t o  give a 

Tafel  plot .  A s t ra igh t  l i ne  i s  indicative of a charge t r ans fe r  r a t e  determining 

s tep and t h e  extrapolation of the  s t r a igh t  l i n e  port  ion t o  the  t r u e  7 = 0 

axis  ( equi l ibr  im potent ia l )  gives t he  exchange current ( io)  for  the  react  ion. 

The slope of t he  l i ne  ( a  log i/a7) may be used t o  calculate an apparent 

anodic charge t r ans fe r  coefficient ( a ) ,  providing the charge-transfer valence, 

Z ,  i s  known: ( r e f .  9 )  

a = (2e303)(a log i'arl)R~ where i = applied current density,  
ZF ma/cm2, + anodic, - cathodic 

q = observed overpotential  mV, 
+ anodic, - cathodic 

Z = charge t ransfer  valence 

F = Faraday 

R = gas constant 8.314 vcoul/mole degree 

T = temp. OK 

RESULTS AND DISCUSSION 

A. ELECTRODE POTENTIALS 

Table I l i s t s  open c i r cu i t  potent ia ls  f o r  0.05, 0.25 and 0.40 M H BO 
3 3 

solutions with 0.20 N NaNO and e i the r  0.05 N HC1 or 0.02 N KOH, A l l  potent ia ls  
3 

a re  reported r e l a t i ve  t o  the  standard hydrogen electrode. Ident ical  potent ia ls  

were obtained i n  an A r  atmosphere and i n  a i r .  The calculated values given i n  

Table I a re  obtained from the  Nernst r e l a t i on  and L a t h e r ' s  ( r e f ,  10) standard 

equilibrium potent ia ls  and ionizat ion constants f o r  (1 )  boron i n  acid solution: 

+ - 0 
31~20'~ += H BO + 3H + 3e , E = -0.87 vol ts  and ( 2 )  boron i n  basic solution: 

3 3 - 0 
B + 40 H- + H BO- + H20 + 3e , E = l e 7 9  vol ts .  The experimental potent ia ls  

2 3 
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a re  much l e s s  anodic than the  calculated values, indicating the  poss ib i l i t y  

0 of reactions other than those assumed i n  the  calculation of E or a mixed 

po ten t i a l  due t o  addi t ional  react  ions such as hydrogen format ion, The second 

explanation appears most l i k e l y  and w i l l  be discussed i n  d e t a i l  below. 

B. CAPACITANCE 

The average d i f f e r en t i a l  capacitance of t he  electrode was 10.5 k 1 pfarads/cm 
2 

and 2Fa9 k 2 pfarads/cm2 i n  acid and basic solution respectively. Capacitance 

values of t h i s  magnitude would indicate l i t t l e  i f  any oxide f i lm formation i n  

e i ther  pH range. 

C . TAFEL BEHAVIOR 

Straight l ines  were obtained i n  Tafel p lo t s  of a l l  the  data-indicating 

the existence of a charge-transfer r a t e  determining process. Figure 4 fo r  

I N  HC1 e lec t ro ly te  i s  typ ica l ,  where t h e  l inear  region extends from 

about 0,25 vol t s  t o  about 0.70 vol t s .  No l imiting currents were observed. 

Tafel  slopes a re  swnmarized i n  Table I1 for  the  e lec t ro ly te  studies.  

D. MMEtD POTENTIALS 

A mixed poten t ia l  between B oxidat ion and % reduction reactions would 

explain the near zero open c i r cu i t  po ten t ia l  observed fo r  acidic  solutions; 

allow fo r  pure charge t ransfer  r a t e  l imited oxidation of boron i n  the  anodic 

overpotential  region of 0.25 - 0.70 vol ts ;  and explain the  observed evolu- 

t ion of hydrogen with the application of cathodic currents . 
I f  the  open c i rcu i t  po ten t ia l  i s  a mixed poten t ia l ,  d issolut ion of boron 

in to  t he  elec"eo1yte should occur with t h e .  ~ l e c t r o l y t e s  i n  which boron 

anodes were allowed t o  stand for  300 hours contained undetectable mounts of 
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boron. Calculation shows, however, t h a t  corrosion currents as high as  0.7 

ma/cm2 would produce boron concentrations of 0.07 ppm i n  the 200 m l  e lectro-  

l y t e  volume - a concentration below the l imi t  of detection of boron by 

chemical or atomic absorption techniques. 

Experimental evidence has recent ly  been acquired which indicates t h a t  

the electrochemical c e l l  i s  e f fec t ive ly  loaded when the  oscilloscope and 

galvanostate c i r cu i t s  a r e  connected. This r e su l t s  i n  an electrode which i s  

not a t  t r u e  open c i r c u i t  po ten t ia l  p r ior  t o  the  application of t he  current 

s tep ,  and hence the  po ten t ia l  a t  11 -+ 0 i s  not known a t  t h i s  time. This 

does not invalidate t he  Tafel slopes summarized i n  Table I1 but does prohibit  

the  use of the  open c i r c u i t  potent ia ls  i n  Table I1 t o  place t h e  polar izat ion 

data a t  d i f ferent  pH values on the  same poten t ia l  scale.  Thus, exchange 

currents and the  determination of reaction order with respect t o  pH cannot 

be calculated from t h e  data as presented. Further work i s  underway t o  

correct t h i s  s i tuat ion.  

In acidic  solutions,  the  Tafel slopes decrease with increasing pH, 

an e f fec t  which i s  not understood. 

E. REACTION MECHANISM 

The Fraser and Barradosr ( r e f .  11) met hod of quas i -equi l ibr  ium analysis  

of possible r a t e  determining reactions was used t o  calculate  Tafel slopes. 

The following consecutive anodic reactions were considered: 

- 
I B ~ - + B + + ~ - - , B + + + ~ - - + B + + + + ~  

- 
11 BO -+ B+ + e -, B+++ + 2e- 

111 BO -+ B++ + 2e- -+ B+++ + e- 

IV BO -+ B+++ + 3e- 
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The calculated Tafel slopes i n  terms of the t rue  anodic t ransfer  coefficient,  

p s  appear in Table 111. Comparison of these values with the measured slopes 

of Table 11 indicates tha t  the  most probable r a t e  determining step for  acid 

+ + - 
solutions i s  B -+ B + e- with p 2 0.22. For basic solutions it i s  B -+ Bf+ + e 

with f3 0.56, Three other reactions i n  basic solution give reasonable 

values of p between 0.2-1.0, but a l l  involve two electrons and are  therefore 

l e s s  probable due t o  the  high activation energy required for  multielectron 

t ransfers  ( r e f ,  12).  They are: 

B =+ B++ + 2e- 

B -+ B+++ + 3e- 

B+ -+ B+++ + 2e- 

In addition t o  the Tafel resul ts  appearing i n  Table I1 data were a l so  

obtained using the s l igh t ly  basic sodium n i t r a t e  electrolytes containing 

0.001 N KOH and 0.002 N KOH. A t r a n s i t  ion t h e ,  a ,  was observed i n  the  

potent ia l  t races  obtained for  these two electrolytes  when current densi t ies  

2 
were l e s s  than 5 ma/cm . The inset of figure 5 is  typica l  of such t races ,  

The t rans i t ion  time is ,  of course, dependent upon the current density 

applied, This is  not due t o  electrolyt ic  removal of a surface layer since 

the  t o t a l  charge involved q = i ,a , i s  not constant. However, t he  product 

i ( T ) l I 2  summarized i n  Table V,  i s  independent of current density with an 

average value of 0.31 and 0.63 fo r  the 0.001 N and 0,002 N KOH solutions 

respectively. The constancy of the i(a)'12 product indicates a diffusion 

controlled electrode process ( re f ,  13), The observation of t h i s  effect  only 

a t  low KOH concentrat ions, the proport ional i ty  of i ( a )'I2 t o  the KOH con- 

centrat ion and t h e  consumption of OH- i n  the  overal l  reaction suggests that  
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OH- i s  the  diffusing species, Through the use of the Sand Equation ( r e f ,  13, 

-6 2 
p. 237) a reasonable value of 1.5 x 10 cm /see i s  obtained for the diffusion 

coefficient . 
Again referr ing t o  the inset  i n  f ig .  5 ,  the potent ial  plateau pr ior  t o  

the t rans i t ion  time, z, gives Tafel slopes similar t o  those obtained from 

the more basic 0.05 N KOH and 1 N KOH electrolytes.  Table IV summarizes data 

from t h i s  plateau (time period 1 )  and data from the constant potent ia l  

follawing a (time period 2) .  The data from time period 2 a l so  gives a l inear  

Tafel plot  ( f ig .  6) but must represent a mixed reaction including some d i f -  

fusion of OH- t o  the surface. The Tafel slopes here a re  intermediate between 

the slopes for  the  acid and the basic electrolytes.  

For the  d i lu t e  KOH solutions, t he  overpotent i a l - t  ime behavior i n  time 

period 1 i s  characterized by a charge t ransfer  limited reaction becoming 

p a r t i a l l y  diffusion controlled. Since the electrode i s  heavily polarized 

re la t ive  t o  the equilibrium potent ial ,  ( 3  >> R T / ~ F )  the equation derived 

and discussed by Vetter ( r e f ,  9 ,  p. 357) can be used t o  advantage. A plot  

of the  function log (1 - fl) vs 7 should be a s t raight  l i n e  fo r  the  case 

where a species l i ke  OH- i s  being depleted by electrochemical reaction. 

Typical examples of these plots  a re  shown i n  figure 5. The slope i s  equal 

to ( -l/baZr 9 0 ~  ) where ba i s  the  Tafel slope (see Table IV) and Zr,OH- 

i s  the react  ion order with respect t o  OH-. A value of Zr ,,,- = 3.1 i s  

obtained. This implies tha t  three OH- ions are  involved i n  the  r a t e  deter- 

mining charge t ransfer  step. That i s ,  fo r  the one electron t ransfer  

B+ + 30H B(OH)- + le-  
3 





2 The capacitance of t h e  electrode i s  normal. Values of 10.5 vf/cm 

and 25.9 iif/cmc were obtained fo r  ac id ic  and basic  solutions respectively.  

I n  t h e  anodic overpotent ia l  region of 0.25-0.75 v o l t s ,  t h e  reac t ion  

appears t o  be charge-transfer l imi ted i n  both ac id ic  and basic solut ions .  

The r a t e  determining s t ep  i n  ac id ic  solutions from consideration of Tafe l  

slopes appears t o  be t h e  one e lect ron t r a n s f e r  B -+ 13' + le- .  The r a t e  

determining s tep  i n  bas ic  so lu t ion  i s  somewhat ambiguous. Considerat ion  of 

Tafel slopes and t h e  react ion order with respect  t o  OH-, determined 

chronopot ent  iometr i c a l l y  , leads t o  four possible r a t e  determining reac t  ions : 

B+ + 3 0 ~ '  -+ B(OH)- + l e - ,  
3 

B + 3 0 ~ -  + B(OH); + 2em, 

B + 3 0 ~ -  -+ B(OH) + 3e-, and 
3 

B+ + 3 0 ~ -  - B(  OH)^ + 2e- 

The one e lect ron t r ans f e r  i s  most probable on energetic grounds. 

The di f fus ion coeff ic ient  f o r  OH- i n  0.2 N NaNO solut ion was estimated 
3 

-6 2 
t o  be 1.5 x 10 cm /sec from t r a n s i t  ion time determinations. 
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T a b l e  I 

OPEN C I R C U I T  POTENTIALS-BORON ( VS SKE ) 

IN 0.20 MNaNO 
3 



T a b l e  I1 

TAFEL SLOPES, OPEN CIRCUIT POTENTIALS - BORON 

ANODES I N  ACIDIC AND BASIC SOLUTIONS 



T a b l e  I11 

CALCUW-ITED TAI?EL SLOPES 



T a b l e  IV 

TAFEL SLOPES - BORON .!$NODES I N  

.001 N KOH AND .002 N KOH EUCTROLYTE 



T a b l e  V 

i fi AT VARIOUS CURIiENT DENSITIES 



BORON FIIAMENT, 
WORKING ELECTRODE- 

ELECTROCHEMICAL CELL 
2 

CALOMEL REF, WITHIN 
GLASS ENVELOPE 

COUNTER ELECTRODE, 
PT CUP WITH PT 
LEAD WIRE 

ELECTROLYTE LEVEL 

k- 8 CM ----L( C S - S ~ I ~ ~ I  

Figure 1 

BLOCK DIAGRAM OF CIRCUIT 
FOR GALVANOSTATIC MEASUREMENTS 

COUNTER ELECTRODE 
REFERENCE ELECTRODE 
WORKING ELECTRODE 

1 REFERENCE ELECTRODE 
2 CONTROL POTENTIAL 
3 COUNTER ELECTRODE 

( 3 - 5 4 1  5'1 Figure 2 



SHORT AND LONG TIME PHOTOGRAPHS 
OF POTENTIAL-TIME CURVES FOR BORON ANODE 

AT A CURRENT DENSITY 
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Figure 3 

TAFEL PLOT 

Figure 4 



RAW DATA FOR SAMPLE 
0.002 N KOH ELECTROLYTE: 

- - 
- 
- 

CORRESPONDENCE OF TAFEL SLOPES FOR .05 N KOH AND I NKOH 
ELECTROLYTE AND TlME REGION @OF .002 N KOH ELECTROLYTE 
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