N 70 27068

NASA CR 86371

FINAL REPORT

PROJECT A-1167

RESEARCH IN PRECISION INTEGRATION METHODS

L. J. GALLAHER AND I. E. PERLIN

GRANT NUMBER NGR 11-002-101

1 APRIL 1969 to 31 MARCH 1970

Supported by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C.

Engineering Experiment Station GEORGIA INSTITUTE OF TECHNOLOGY Atlanta, Georgia GEORGIA INSTITUTE OF TECHNOLOGY Rich Electronic Computer Center Atlanta, Georgia

FINAL REPORT

PROJECT A-1167

RESEARCH IN PRECISION INTEGRATION METHODS

By

L. J. GALLAHER and I. E. PERLIN

GRANT NUMBER NGR 11-002-101

1 APRIL 1969 to 31 MARCH 1970

Supported by the

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D. C.

ABSTRACT

This report contains the results of comparisons and computer tests of several methods for numerically integrating systems of coupled non-linear differential equations (initial value problems). The methods tested are:

- 1) Shanks' formulas for the method of Runge and Kutta.
- 2) The Adams, Bashforth, and Moulton method.
- 3) Butcher's formulas for the method of Stetter and Gragg.
- 4) Cowell's method.

Each of these methods was programmed as a general purpose subroutine in double precision FORTRAN V for the UNIVAC 1108. The test problem on which results are given here is that of a particle in an inverse square attractive force field with an elliptic orbit of eccentricity 0.8. Single orbits were run for orders from 7 through 13 and accuracies in the range 10^{-7} to 10^{-12} . Plots are given of error versus time and versus number of function evaluations for the various methods and orders.

The results show that all of the methods perform well but the higher orders of each method are significantly faster at the higher accuracies. At corresponding orders the Butcher formulas appear to be superior.

ii

TABLE OF CONTENTS

			Page
I.	INTR	ODUCTION	1
II.	INTE	GRATION METHODS	3
	A.	Introduction	3
	B.	The Runge-Kutta-Shanks Method	5
		1. Introduction	5
		2. Description of the Method	5
		3. The Computer Program	6
	C.	The Method of Adams, Bashforth and Moulton	10
		1. Description of the Method	10
		2. The Computer Program	1 2
	D.	The Method of Stetter, Gragg, and Butcher	20
		1. Description of the Method	20
		2. The Computer Program	22
	Ε.	The Cowell Method	28
		1. Description of the Method	28
		2. The Computer Program	30
	F.	The General Multistep Method Starting Subroutine	43
		1. Introduction	43
		2. Description of the Program	43
	G.	The Derivative Subroutine FUNCTI	51
III.	RESU	LTS AND CONCLUSIONS	52
	A.	The Test Problem	52
	Β.	Results	53
	C.	Conclusions	63
	D.	Suggestions for Further Study	65

TABLE OF CONTENTS (Continued)

																												Page
IV.	BIBL	IOGRAPHY		a .	@ @	•	9	÷	¢	8	9	69	ø	9	ę	9	ø	0		9		8	۰	•		8	٠	66
V.	APPE	NDICES) g	a .	ə ə	٠	ø	ø		٠	e -		\$	8	æ	۲	•				¢	0	9		0	ø	9	69
	Α.	PROGRAM	LIS	STI	NGS	۰	•		•	•	•	•	٩	8	9		¢	e	9	9	8	÷	٠	9	ø	٠	ę	69
	B.	LISTING	OF	CO	EFF	IC	IEI	NT	S	ø		a						•				ø		0	3	ø	•	124

LIST OF FIGURES

1.	Flow Diagram for the Runge-Kutta-Shanks Procedure 9
2.	Flow Diagram for the Adams Method
3.	Flow Diagram for the Stetter-Gragg-Butcher Method
4.	Flow Diagram for the Cowell Method
5.	Flow Diagram for the General Multistep Method Starting Procedure
6.	Expected Error Behavior in Numerical Integration of Differential Equations
7.	Error Behavior for the Runge-Kutta Formulas of Shanks 55
8.	Error Behavior for Adams' Method
9.	Error Behavior for Cowell's Method
10.	Error Behavior for Butcher's Formulas
11.	Error Behavior for the 7th Order Formulas
12.	Error Behavior for the 13th Order Formulas 61
13.	Detail_Error Behavior for Butcher's Formulas

I. INTRODUCTION

This report gives the results of tests and comparisons for a collection of methods for numerically integrating systems of coupled non-linear differential equations.

The methods tested are:

- 1) Shanks' formulas for the method of Runge and Kutta.
- 2) The Adams, Bashforth and Moulton method.
- 3) Butcher's formulas for the method of Stetter and Gragg.
- 4) Cowell's method.

For each of these methods, general purpose subroutines were written that would handle up to 99 equations. Each method has automatic error and step size control. The multi-step methods use the Shanks subroutine for starting and for restarting to reduce step size.

Each of the methods is programmed in double precision FORTRAN V for the UNIVAC 1108.

Several test problems were used to exercise the methods. The results reported here are for an orbit of a particle in an inverse square attractive force field, with an elliptic orbit of eccentricity 0.8. Tests were run for various orders from 7 through 13 on the different methods, and plots are given of error versus the time and versus the number of function evaluations.

The results show that, while all of the methods perform well, the higher order methods are significantly faster at the higher accuracies. At corresponding orders and accuracies the Butcher formulas appear to be faster. There is as suggestion that if higher order Shanks formulas were available these would be effective at the higher accuracies.

Chapter II contains separate descriptions of each of the four integration methods together with details on the error and step size control, subroutine parameters and flow diagrams. The programs themselves are listed in Appendix A.

The coefficients for a wide range of orders for each method are listed in Appendix B.

II. INTEGRATION METHODS

A. Introduction

The four integration methods described in this chapter are as follows:

- 1) Shanks' formulas for the Runge-Kutta method.
- 2) The Adams, Bashforth and Moulton method.
- 3) Butcher's formulas for the Stetter-Gragg method.
- 4) Cowell's method.

Each of these methods is programmed in double precision (~18 decimal significant figures) in the FORTRAN V language for the UNIVAC 1108. They are written as general purpose subroutines that can handle up to 99 simultaneous ordinary differential equations. The methods are of variable order; that is, the order is specified by the user. The coefficients of the method and order to be used are supplied by the user and passed to each subroutine at the time called. Sets of these coefficients are listed in Appendix B. In practice these coefficients are read in from a machine language tape (in double precision) by the calling program.

Each of the subroutines references the external subroutine FUNCTI to obtain the derivatives for the equations being integrated. FUNCTI is of course written by the user to describe the particular problem.

A point to note is that the information about the dependent variable Y and its derivatives that is passed to and from FUNCTI, and to and from each of the subroutines, is contained in array positions 2 through N + 1 where N is the number of equations being integrated. The first positions in the Y vector and its derivative vector are not used by these programs.

The step size control in each method uses a parameter to indicate the expected manner that the errors accumulate and propagate. Set at 1.0 this parameter indicates that the errors are expected to be additive and all of the same sign. Setting this parameter to 0.5 indicates that the errors are expected to be random. With this parameter the subroutine tries at each step to project ahead and estimate the final error at the end of the integration and adjust the step size and error at each step accordingly.

In order to conserve storage, all the multi-step methods use some common storage allocated by the main program with the statement,

COMMON/COMMON/FA(35, NPI)

where NPI is a parameter. NPI is set to one more than the number of equations to be integrated but not greater than 100. The starting subroutine does not reference this common area.

The multistep methods all use a special Runge-Kutta-Shanks starting subroutine for getting started and for reducing step size. They also use the regular Runge-Kutta-Shanks subroutine for ending if the final step is smaller than the current step at ending. Thus, while the Runge-Kutta-Shanks subroutine could be used by itself, the others would need both the starting subroutine and the regular Runge-Kutta-Shanks in order to run.

The subroutines themselves are listed in Appendix A, together with a skeleton main program and FUNCTI subroutine.

B. The Runge-Kutta-Shanks Method

1. Introduction

The procedure described is a generalization of the Runge-Kutta method for solving a system of differential equations. It may be applied to an arbitrary system of first-order differential equations of the form

$$\vec{y}' = f(x, \vec{y})$$

with the initial conditions

$$\vec{y}$$
 (x_o) = \vec{y}_{o}

where
$$\vec{y}(x) = \begin{pmatrix} y_1(x) \\ \vdots \\ y_n(x) \end{pmatrix}$$
, $\vec{y}'(x) = \begin{pmatrix} y'_1(x) \\ \vdots \\ y'_n(x) \end{pmatrix}$,

$$\vec{f} (x, \vec{y}) = \begin{pmatrix} f_1 (x, y_1, \dots, y_n) \\ \vdots \\ f_n (x, y_1, \dots, y_n) \end{pmatrix}, \qquad \qquad \vec{y}_0 = \begin{pmatrix} y_{10} \\ \vdots \\ y_{n0} \end{pmatrix}$$

2. Description of the Method

The Shanks Method is a single-step procedure for finding a numerical solution of a first-order ordinary differential equation or system of differential equations in which the derivatives of the dependent variables may be expressed explicitly as functions of the independent and dependent variables.

Consider the system of differential equation

$$\vec{y}' = \vec{f}(x, \vec{y})$$
.

Suppose the value of \vec{y} (x) is known. The value \vec{y} (x + h) is approximated by

$$\vec{y}$$
 (x + h) = \vec{y} (x) + h $\sum_{i=1}^{m} \gamma_i \vec{f}_i$ (x,h, \vec{y}),

where

$$\vec{f}_{1}(x,h,\vec{y}) = \vec{f}(x,\vec{y}),$$

$$\vec{f}_{i}(x,h,\vec{y}) = \vec{f}(x + \alpha_{i}h, \vec{y} + h\sum_{j=1}^{i-1}\beta_{ij}\vec{f}_{j}), i = 2, ..., m.$$

The coefficients α_i (i = 2, . . . , m),

$$\beta_{ij}$$
 (i = 2, . . ., m; j = 1, . . ., i-1), and γ_i (i = 1, . . ., m)

are chosen so as to make the approximation correct to some order. A special case of the Shanks formula is the fourth-order Runge-Kutta formula:

$$\alpha_2 = 1/2, \ \alpha_3 = 1/2, \ \alpha_4 = 1,$$

 $\beta_{21} = 1/2, \ \beta_{31} = 0, \ \beta_{32} = 1/2, \ \beta_{41} = \beta_{42} = 0, \ \beta_{43} = 1,$
 $\gamma_1 = 1/6, \ \gamma_2 = 1/3, \ \gamma_3 = 1/3, \ \gamma_4 = 1/6$

For useful values of the various combinations of α , β , and γ , see Shanks [18].

3. The Computer Program

The subroutine was programmed for the UNIVAC 1108 computer in the FORTRAN V language. Double precision arithmetic (18 decimal digits) was used throughout except where integers are indicated.

3.1 Error Estimates and Step Size Control

In this subroutine a single set of Shanks formulas is used. Suppose

a vector $\vec{y}(x)$ is known. Then the Shanks method is applied to one step of size h (where $h = \frac{\Delta x}{c}$, Δx is the length of the interval, and c is a power of two), and to two steps of size $\frac{h}{2}$, as follows:

$$\vec{y}_{p} = \vec{y} (x) + h \sum_{i=1}^{m} \gamma_{i} \vec{f}_{i} (x,h,\vec{y}),$$
$$\vec{y}_{m} = \vec{y} (x) + \frac{h}{2} \sum_{i=1}^{m} \gamma_{i} \vec{f}_{i} (x,h,\vec{y}),$$
$$\vec{y}_{c} = \vec{y}_{m} + \frac{h}{2} \sum_{i=1}^{m} \gamma_{i} \vec{f}_{i} (x + \frac{h}{2},h,\vec{y}).$$

Both \vec{y}_p and \vec{y}_c are estimates of $\vec{y}(x + h)$. An error estimate $E_k = \left|\frac{y_{ck} - y_{pk}}{f}\right|$ (where f is an empirical factor) is calculated for each independent variable y_k . If both $E_k > \frac{E_{ak}}{c^p}$ and $E_k > \frac{E_{rk}|y_{ck}|}{c^p}$ for any dependent variable where E_{ak} is an absolute error estimate, E_{rk} is a relative error estimate, and p is an input parameter, usually 1 or 1/2, then the step is rejected

and the step size is halved; otherwise the step is accepted and y_c is taken as the vector $\vec{y}(x + h)$. If for every dependent variable, either $E_k > \frac{E_{ak}}{2^{(j+3)}c^p}$ or $E_k > \frac{E_{rk}|y_{ck}|}{2^{(j+3)}c^p}$, where j is the order, then the step size is doubled. If

the step size h is larger than the distance to the end of the interval, then that distance is taken as the step size.

3.2 Input and Output of the Subroutine

The subroutine is called as follows:

CALL SHANKS (N,XIV,XF,YV,IM,ORDER,CF,P,EA,ER,DXV)

where the parameters have the following meaning:

- N number of dependent variables (integer);
- XIV initial value of the independent variable;
- XF final value of the independent variable;
- YV array of initial values of the dependent variables;
- IM the number of function evaluations in each application of the Shanks method (integer);

ORDER - the order of the Shanks formulas used (integer);

- CF the array of Shanks coefficients, starting in the first element arranged as follows: for each i, the corresponding $\alpha_i \beta_{ij}$'s, followed by α_i , with the γ_i 's at the end;
- P an exponent (usually 1/2 or 1) used in step size control (1 assuming the errors are additive; 1/2 assuming that they are random);
- EA an array of absolute error asked;
- ER an array of relative error asked;
- DXV a recommended starting step size (the actual starting step size will

be <u>XF - XIV</u>, where c is the smallest power of 2 for which $\left|\frac{XF - XIV}{c}\right| \le \left|DX\right|$).

The final values of the dependent variable are stored in YV before exiting the procedure.

All variables and arrays not designated integer are double precision.

3.3 Flow Diagram and Program Listing.

Figure 1 is the flow diagram for the Runge-Kutta-Shanks procedure. A listing of the program is given in Appendix A.

C. The Methods of Adams, Bashforth and Moulton

1. Description of the Method

The method investigated consists of the combination of two different versions of the method of Adams into a predictor-corrector system [5]. The use of this system to obtain numerical solutions to a set of simultaneous differential equations with given initial conditions is independent both of the number of equations in the set to be solved and of the orders of the individual equations in the set; provided, however, that each equation of order m is expressed as a set of m coupled first order equations.

In general then, one deals with the system of equations

$$\vec{y}'(x) \equiv \frac{d}{dx} \vec{y}(x) = \vec{f}(x, \vec{y}(x)),$$
 (1-1)

where \vec{y}'_{i} , \vec{y}'_{i} , and \vec{f} are vectors, each having a number of components, N, equal to $\sum_{i=1}^{k} m_{i}$, where k is the number of equations in the set to be solved, and the m_{i} are their individual orders.

This vector differential equation is equivalent to the integral equation

$$\vec{y}(x+h) = \vec{y}(x) + \int_{x}^{x+h} \vec{f}(t, \vec{y}(t)) dt.$$
 (1-2)

At the point $x = x_q = x_{q-1} + h$, this integral is approximated first by

$$\vec{y}_{q}^{(0)} = \vec{y}_{q-1} + h \sum_{\mu=0}^{q-1} \beta_{q-1,q-1-\mu} \vec{f}_{\mu}$$
 (1-3a)

and then repeatedly by

$$\vec{y}_{q}^{(\nu+1)} = h\beta_{q,o}^{*}\vec{f}\left(x_{q},\vec{y}^{(\nu)}(x_{q})\right) + h\sum_{\mu=0}^{q-1} \beta_{q,q-\mu}^{*}\vec{f}_{\mu} + \vec{y}_{q-1}$$
$$\equiv h\beta_{q,o}^{*}\vec{f}^{(\nu)} + \vec{C}, \nu = 0,1,2, \dots (1-3b)$$

which converges toward $\vec{y}_q \equiv \vec{y}(x_q)$ as v increases. Formula (1-3a) is called the Adams-Bashforth predictor equation, and formula (1-3b) is the Adams-Moulton corrector.

The coefficients $\beta_{q\rho}$ and $\beta_{q\rho}^{*}$ are derived by the equivalent of integrating Lagrangian polynomials fitted to \vec{f} , but are independent of both \vec{f} and h. The polynomial for the predictor is of degree q-1 passing through the q points $\vec{f}_{0}, \vec{f}_{1}, \ldots, \vec{f}_{q-1}$, while that for the corrector is of degree q passing through the q + 1 points $\vec{f}_{0}, \vec{f}_{1}, \ldots, \vec{f}_{q}$.

An explicit formula for the $\beta_{q\rho}$ is

$$\beta_{q\rho} = (-1)^{\rho} \left\{ \begin{pmatrix} \rho \\ \rho \end{pmatrix} \gamma_{\rho} + \begin{pmatrix} \rho+1 \\ \rho \end{pmatrix} \gamma_{\rho+1} + \cdots + \begin{pmatrix} q \\ \rho \end{pmatrix} \gamma_{q} \right\}, \begin{array}{c} q = 0, 1, 2, \cdots \\ \rho = 0, 1, 2, \cdots , q \\ q = 0$$

where the $\binom{\rho+i}{\rho}$ represent binomial coefficients and the γ_{ρ} are found by the recursion relation

$$\gamma_{\rho} + \frac{1}{2}\gamma_{p-1} + \cdots + \frac{1}{\rho+1}\gamma_{o} = 1, \quad \rho = 0, 1, 2, \cdots,$$

and an explicit formula for the $\beta_{q\rho}^{\star}$ is

$$\beta_{q\rho}^{\star} = (-1)^{\rho} \left\{ \begin{pmatrix} \rho \\ \rho \end{pmatrix} \gamma_{\rho}^{\star} + \begin{pmatrix} \rho+1 \\ \rho \end{pmatrix} + \cdots + \begin{pmatrix} q \\ \rho \end{pmatrix} \gamma_{q}^{\star} \right\}, \begin{array}{c} q = 0, 1, 2, \cdots \\ \rho = 0, 1, \cdots, q \end{array}$$

where $\gamma_{o}^{*} = 1$ and $\nu_{\rho}^{*} = \gamma_{\rho} - \gamma_{\rho-1}^{*}$, $\rho = 1, 2, 3, \ldots$

Bounds on the errors for the two approximations are the maximums within the interval $\begin{bmatrix} x & x \\ 0 & q \end{bmatrix}$ of

$$\gamma_{q} h^{q+1} \frac{d^{q+1}}{q+1} \overrightarrow{y}$$
 (for Adams-Bashforth) (1-4a)
dx

and of

$$\begin{array}{c|c} \gamma_{q+1}^{*}h^{q+2} & \overrightarrow{d^{q+2}} & \overrightarrow{y} \\ & &$$

and M, the order of the predictor-corrector system, is assumed to approximate that of the corrector, which is q + 1.

1

2. The Computer Program

The subroutine ADAMS itself is written to be included in programs written in double precision for the UNIVAC 1108 computer. The language is FORTRAN V. There are no unusual hardware requirements, because all input and output to the procedure is under control of the including program through the formal parameter list.

2.1 Parameters

The following lists of formal parameters will be useful in describing the operation of procedure ADAMS. In the remainder of this discussion the interchange of upper and lower case letters, necessitated by approximating the notation [5] within the limited character set available to a computer, is straight-forward and will be done freely without further comment. Except for those variables designated integer, all variables are double precision. All arrays are double precision.

Formal Parameters

Identifier	Type	Usage or Meaning
N	Integer	The number of equations to be integrated.
XI	Double	Initial value of the independent variable.
XF	Double	Final value of the independent variable.
Y	Array	Current dependent variable vector. Contains initial values at entry and final values at exit.
Р	Double	Power of Cl used in error control.
Q	Integer	Number of back \vec{f} points used in the approximating polynomials. One less than M, the order of the method.
DXV	Double	Upper bound on the initial step size.
EA	Array	Absolute error bound vector.
ER	Array	Relative error bound vector.
ADMSCF	Array	Contains the $\beta_{q\rho}$, the $\beta_{q\rho}^{*}$, and 1 - $\gamma_{q+1}/\gamma_{q+1}^{*}$.
RKSFNS	Integer	Function evaluations per step for procedures START and SHANKS.
RXSRDR	Integer	Order of R.K.S. method to be used by START and SHANKS.
RKSCFF	Array	Coefficients for START and SHANKS. See the descip- tions of START and SHANKS elsewhere in this report for details.

2.2 The FUNCTI Subroutine

A subroutine for calculating the vector $\vec{y}' = \vec{f}(x, \vec{y}(x))$ must be an external subroutine characterizing the set of differential equations to be solved by a program using ADAMS. This subroutine is called by ADAMS as FUNCTI and must itself have the following formal parameter list:

Identifier	Type	Usage or Meaning
N	Integer	Number of equations.
Х	Double	Current value of the independent variable.
YV	Array	Current dependent variable vector (input).
FV	Array	f value vector (output).

2.3 Orders Available

The subroutine ADAMS is written to be completely general with regard to order, and any order may be used if the necessary coefficients are placed in the ADMSCF array. For a given order M = q + 1, there are 2q + 2 = 2Mcoefficients which should appear in the array beginning at position one in the following order:

$$\beta_{q-1,q-1}, \beta_{q-1,q-2}, \ldots, \beta_{q-1,o}, \beta_{q,q}, \beta_{q,q-1}, \ldots, \beta_{q,o}, |1-\gamma_{q+1}/\gamma_{q+1}|.$$

2.4 Starting, Error Estimates and Step Size Control

Since the Adams methods is a multistep method it cannot start itself but must rely on a starting procedure that will supply at least q-1 \vec{f} points which, together with a given initial \vec{f} point and a current \vec{y} point, comprise a history upon which it can build. The starting procedure used here is the Runge-Kutta-Shanks procedure START, described elsewhere in this report. The number of function evaluations per step and the order of Runge-Kutta-Shanks method used by START may be varied at will by the user through the formal parameters of ADAMS. This will achieve optimum compatibility with the order of Adams method being used for each given set of differential equations being solved.

Initial step size is determined by the formal parameter DX. The initial trial start will be made with a step H = INTERVAL / Cl, where Cl is set to the smallest integer power of two, such that $|H| \le |DX|$ and $|H| \le |INTERVAL|/Q$. This causes the procedure ADAMS to take at least one step after starting regardless of the magnitude of DX. If the procedure START cannot meet the error requirements at the initial H, it doubles Cl repeatedly until these requirements can be met.

To minimize running time without introducing errors intolerably large, the error in each component of the final \vec{Y} vector is controlled through the use of the formal parameters \vec{EA} and \vec{ER} . \vec{EA} specifies the maximum allowable absolute magnitude of the error in each component of \vec{Y} , and \vec{ER} specifies the maximum allowable relative magnitude. These two error control vectors are used in conjunction with the quantity $GR = |1-\gamma_q/\gamma_{q+1}^*|$, which is derived from the bounds (1-4), and a parameter P, chosen from the interval $[\frac{1}{2},1]$ by empirical determination of the randomness of the round-off error in a particular set of differential equations. (P = $\frac{1}{2}$ corresponds to totally random error and P = 1 corresponds to totally additive error.) In practice γ_{q+1} has been used in GR instead of γ_q to be conservative, because the quantity being controlled is only an estimate of the true error.

The extimated error vector $\overrightarrow{\text{ERROR}}$ is defined to be $|\vec{y}^{(c)} - \vec{y}^{(p)}|$, where $\vec{y}^{(p)}$ is the $\vec{y}_q(o)$ of (1-3a) and $\vec{y}^{(c)}$ is $\vec{y}_q^{(v}f^{+1)}$ in (1-3b), with v_f being the first v for which every component of

$$\overrightarrow{\text{CHANGE}} \equiv |\overrightarrow{f}_{q}^{(\nu+1)} - \overrightarrow{f}_{q}^{(\nu)}| = |\left(\overrightarrow{y}_{q}^{(\nu+1)} - \overrightarrow{y}_{q}^{(\nu)}\right) / h\beta_{q,o}^{*}|$$

is less than the corresponding component of either

$$\frac{\vec{EA} \cdot GR}{C1^{P} \cdot 2^{Q+5} \cdot h\beta_{q,0}} \quad \text{or} \quad \frac{\vec{ER} \cdot GR}{C1^{P} \cdot 2^{Q+5} \cdot h\beta_{q,0}^{\star}} \cdot \vec{f}_{q}^{(\nu+1)}$$

If any component of ERROR is larger than the corresponding components of both

$$\begin{array}{c|c} \overrightarrow{EA} & \overrightarrow{GR} \\ \hline & C1^P \end{array}$$

and

$$\frac{\overrightarrow{ER} \cdot \overrightarrow{GR}}{C1^{P}} \cdot \overrightarrow{y}^{(c)}$$

then \vec{y} is replaced by $\vec{y}^{(b)}$, the step size is halved, and q-1 new \vec{f} points and a new current \vec{y} are obtained from the procedure START. If it is not necessary to halve the step size, then $\vec{y}^{(c)}$ becomes the new \vec{y} . If every component of $\overrightarrow{\text{ERROR}}$ is smaller for three consecutive steps than the corresponding components of both

$$\begin{vmatrix} \vec{EA} \cdot GR \\ \vec{C1}^{P} \cdot 2^{Q+5} \end{vmatrix} \text{ and } \begin{vmatrix} \vec{ER} \cdot GR \\ \vec{C1}^{P} \cdot 2^{Q+5} \end{vmatrix} \cdot \vec{y}^{(c)}$$

then if there are at least 2q-1 back points in the FH array and there are at least two more steps of the current size necessary to reach XF, the step size is doubled before the next trial step. If it is not necessary either to halve or to double the step size, X is increased by H and a new trial step is made. The procedure ADAMS continues as described until XF is reached unless repeated halvings and doublings of the step size bring the independent variable to within a fraction of a single step of XF. When this occurs, the fractional step is completed by the Runge-Kutta-Shanks procedure SHANKS, described elsewhere in this report. The order of Runge-Kutta-Shanks method and the number of function evaluations per step used here will be the same for a given integration as those used by the procedure START.

2.5 Flow Diagram and Program Listing

Figure 2 is the flow diagram for the method of Adams, Bashforth and Moulton. The program listing is in Appendix A.

Figure 2. (Continued) Flow Diagram for the Adams Method.

D. The Method of Stetter, Gragg, and Butcher

1. Description of the Method

Following is a discussion of a method for the numerical integration of ordinary differential equations described by J. C. Butcher [13]. In his paper, Butcher presents a modification to the multistep process such that for $k \leq 7$ (where k = the number of steps) processes of order 2k + 1 are available.

- A large number of possible multistep methods exist for the numerical integration of the differential equation

$$\frac{dy}{dx} = f(x,y), y(x_0) = y_0$$
 (1-1)

Such methods are usually characterized by an integer k and a set of constants α_1 , α_2 ---, α_k , β_0 , β_1 , ---, β_k . A solution is first found for the variable y at a set of points x_1 , x_2 , ---, x_{k-1} , (where $x_i = x_0 + ih$) and thereafter by the formula:

$$y_{n} = \alpha_{1}y_{n-1} + \alpha_{2}y_{n-2} + \dots + \alpha_{k}y_{n-k}$$
$$+ h(\beta_{0}f_{n} + \beta_{1}f_{n-1} + \dots + \beta_{k}f_{n-k})$$
(1-2)

for n = k, k + 1, --- where $y_i = y(x_i)$ and $f_i = f(x_i, y_i)$. Dahlquist [3] has shown that if the parameters α and β are chosen under a condition of stability, the order of a method cannot exceed k + 1 (if k is odd) or k + 2 (if k is even).

A modification to this process is presented by Butcher which consists of the addition to the right-hand side of equation (1-2) of an extra term h β f_{n- θ} where β and θ are additional parameters to be chosen. The modified formula has the form:

$$y_{n} = \alpha_{1}y_{n-1} + \alpha_{2}y_{n-2} + \dots + \alpha_{k}y_{n-k}$$

+ h (\beta f_{n-\theta} + \beta_{0}f_{n} + \beta_{1}f_{n-1} + \dots + \beta_{k}f_{n-k}) (1-3)

A procedure for choosing the coefficients is presented by Butcher. The simplest stable processes are for k = 1,2,3 with $\theta = 1/2$ and for k = 4,5,6with $\theta = 1/3$. A stable process also exists for k = 7 with $\theta = 13/40$.

The method for implementing the formulas is to estimate $y_{n-\theta}$ and y_n using appropriate predictor formulas, then use these predicted values to evaluate the right-hand side of equation (1-3). The forms of the predictor formulas used are:

$$y_{n-\theta} = A_1 y_{n-1} + A_2 y_{n-2} + \dots + A_k y_{n-k} + h (B_1 f_{n-1} + B_2 f_{n-2} + \dots + B_k f_{n-k})$$
(1-4)

$$y_{n} = a_{1}y_{n-1} + a_{2}y_{n-2} + \dots + a_{k}y_{n-k}$$

+ h (b f_{n-0} + b_{1}f_{n-1} + b_{2}f_{n-2} + \dots + b_{k}f_{n-k}) (1-5)

To use this process, $y_{n-\theta}$ is first estimated using equation (1-4). The value of the function is then determined for $y_{n-\theta}$, and these two results are used in equation (1-5) to determine a value for y_n . The value of the function is then determined for y_n and a final value is then estimated using equation (1-3).

2. The Computer Program

A double precision FORTRAN subroutine was written to implement the integration procedure described above on the UNIVAC 1108 Computer. The procedure was written to integrate a system of differential equations which have the form:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \vec{f}(x, \vec{y}), \ \vec{y}(x_0) = \vec{y}_0.$$

Since the integration procedure described by Butcher is a multistep process, it must at all times have a history of back points. The process is, therefore, not self starting; it must rely on some other process to develop the first k steps. The starting procedure used in this implementation is a basic Runge-Kutta procedure as modified by E. B. Shanks and is discussed in paragraph F of this chapter. The starting procedure is called at the beginning of an integration and whenever it is necessary to reduce the step-size.

The step-size control is based on the difference between a predictor and a corrector; the control allows for halving and doubling of the stepsize only. Equation (1-5) is used as the predictor (y_{np}) and equation (1-3) is considered to be the corrector (y_{nc}) . An estimate of the magnitude of the error in a step is given by the absolute value of the difference in these two quantities. This is used in conjunction with a relative error term ER and an absolute error term EA in the following manner: if

$$\left| \vec{y}_{np} - \vec{y}_{nc} \right| > (\vec{EA}) \left(\frac{DX}{XF - XI} \right)^{EX}$$

$$\left| \vec{y}_{np} - \vec{y}_{nc} \right| > \left| (\vec{ER})(\vec{y}_{nc}) \right| \left(\frac{DX}{XF - XI} \right)^{EX}$$

then the step is rejected and the starting procedure is entered with the previous point and a step-size equal to half the old step-size. If

and

$$\left| \vec{y}_{np} - \vec{y}_{nc} \right| < (\vec{E}A) \left(\frac{DX}{XF - XI} \right)^{EX} \left(\frac{1}{2^{2k} + 4} \right)$$

or

$$\left| \vec{y}_{np} - \vec{y}_{nc} \right| < \left| (\vec{ER}) \left(\frac{DX}{XF - XI} \right)^{EX} (\vec{y}_{nc}) \right| \left(\frac{1}{2^{2k} + 4} \right)$$

for three steps (without an intervening halving of the step-size) and if there is sufficient history of back points, then the step is accepted and the step-size is doubled. If neither the conditions for halving nor the conditions for doubling are met, then the step is accepted and the stepsize remains constant. It is important to note that the above criteria must be satisfied for all corresponding components of the vector quantities before the conditions are considered to be met.

The method of ending the integration procedure is to run until the value of the independent variable plus the next step is either equal to or greater than the given final value i.e.

$$X + DX \ge XF$$
.

If it is exactly equal, then the procedure takes one more step and quits. If X + DX > XF, then a special ending procedure is called to take the final step. This ending procedure is also basic Runge-Kutta procedure as modified by E. B. Shanks. It is discussed in paragraph B of this chapter. The procedure call for the Butcher procedure must be as follows:

CALL BUTCHER (N, XI, XF, K, EA, ER, DXV, CON, EX, RKC, YIV, RKSNF, RKSODR)

- N the number of dependent variables (integer)
- XI the initial value of the independent variable
- XF the final value of the independent variable
- K the number of steps to be used in the Butcher method (integer)
- EA the acceptable absolute error vector contained in an array of dimension N
- ER the acceptable relative error vector contained in an array of dimension N
- DXV the suggested initial step-size
- CON the array row containing the Butcher constants required for the order of the method specified
- EX the error exponent
- RKC the array containing the Runge-Kutta constants
- YIV the initial values of the dependent variable; upon exiting the Butcher procedure, this array will contain the final values of the dependent variables
- RKSNF- the number of function evaluations in the Runge-Kutta-Shanks procedure (integer)

RKSODR-the order of the Runge-Kutta-Shanks procedure (integer)

All variables and arrays not designated integer are double precision.

2.1 Flow Diagram and Program Listing

Figure 3 is the flow diagram for the method of Stetter, Gragg, and Butcher. A listing of the program is given in Appendix A.

Figure 3. Flow Diagram for the Stetter-Gragg-Butcher Method.

E. The Cowell Method

1. Description of the Method

Cowell's method as described herein is a multistep predictorcorrector method for the numerical solution of the first-order vector differential equation

$$\vec{y}'(x) = \frac{d}{dx} \vec{y}(x) = \vec{f}(x, \vec{y}(x)), \vec{y}(x_0) = \vec{y}_0.$$
 (1-1)

A complete derivation and description of Cowell's method can be found in [9] and [11]; only the essential formulas are included here.

The following notation is adopted. Let q be an even positive integer, m = q/2, h be the step size (assumed to be constant over some set of calculations),

$$x_n = x_0 + nh, \vec{y}_n = \vec{y}(x_n), \text{ and } \vec{f}_n = \vec{f}(x_n, \vec{y}_n).$$

The predictor formula is

$$\vec{y}_{n} = h \left[\vec{\delta}^{-1} f_{n-\frac{1}{2}} + \sum_{j=0}^{q} P_{j} \vec{f}_{n-1-j} \right], \qquad (1-2)$$

The corrector formula is

$$\vec{y}_{n} = h \left[\delta^{-1} \vec{f}_{n-\frac{1}{2}} + \sum_{j=0}^{q} C_{j} \vec{f}_{n-j} \right], \qquad (1-3)$$

and the mid-range formula is

$$\vec{y}_{n} = h \begin{bmatrix} \delta^{-1} f_{n-\frac{1}{2}} + \sum_{j=0}^{q} M_{j} \vec{f}_{n+m-j} \end{bmatrix}.$$
(1-4)

The predictor formula gives \vec{y}_n in terms of $\delta^{-1}f_{n-\frac{1}{2}}$ and the function values at the previous q+1 points; the corrector formula gives a new value of \vec{y}_n in terms of $\delta^{-1}f_{n-\frac{1}{2}}$, the old value of \vec{y}_n , and the function values at the previous q points; the mid-range formula gives a value of \vec{y}_n in terms of $\delta^{-1}f_{n-\frac{1}{2}}$ and the function values at the q+1 consecutive points centered around x_n .

The equation

$$\vec{\delta}^{-1} f_{n-\frac{1}{2}} = \vec{\delta}^{-1} f_{n-1-\frac{1}{2}} + \vec{f}_{n-1}$$
(1-5)

completes the set of formulas necessary for the numerical solution of (1-1).

If it is assumed that

$$\begin{bmatrix} \vec{f}_i \\ \vec{l} \end{bmatrix} \stackrel{q}{\underset{i=0}{\overset{\text{and }}{\vec{y}_m}}} \quad \text{and } \vec{y}_m$$

have been obtained by some starting procedure, the mid-range formula (1-4) can be applied with n=m to obtain

$$\delta^{-1} f_{m-\frac{1}{2}}$$

Equation (1-5) can then be applied m times to obtain

$$\overline{\delta^{-1}_{f}}_{q-\frac{1}{2}}$$

For each positive integer i

$$\overline{\delta^{-1}_{f}}_{q+i-\frac{1}{2}}$$

can be computed from

$$\xrightarrow{\delta^{-1}f}_{q+i-1-\frac{1}{2}}$$

and \vec{f}_{q+i-1} using (1-5); \vec{y}_{q+i} can be computed using the predictor (1-2); \vec{f}_{q+i} can be computed from the predicted value; \vec{y}_{q+i} can be computed using the corrector (1-3); \vec{f}_{q+i} can be computed from the corrected value; if necessary, iteration can be resorted to, using (1-3), until the last two computed values of \vec{y}_{q+i} agree to sufficient accuracy. For any $j \ge m$ a value of \vec{y}_{q+j-m} can be obtained from the mid-range formula (1-4) and compared with the value obtained from the predictor-corrector step. If the two values of \vec{y}_{q+j-m} are in sufficient agreement, the values up through \vec{y}_{q+j} are considered acceptable; if not, \vec{y}_{q+j-m} is considered the last acceptable value and all values beyond are rejected.

Hence, the knowledge of (1-2), (1-3), (1-4), and (1-5) is sufficient to apply Cowell's method in the numerical solution of (1-1). The coefficients $\left\{ \begin{array}{c} P_{j} \\ j \\ j = 0 \end{array}, \left\{ \begin{array}{c} C_{j} \\ j = 0 \end{array}, \begin{array}{c} q \\ j = 0 \end{array}, \begin{array}{c} q \\ j = 0 \end{array}, \begin{array}{c} q \\ j = 0 \end{array} \right\} \stackrel{q}{=} q$ are given in [11] for q = 4, 6, 8, 10, 12, 14, and 16.

2. The Computer Program

The Cowell computer program is a UNIVAC 1108 FORTRAN V double precision subroutine called as follows:

The parameters of the procedure are defined as follows:

<u>n</u> - the number of dependent variables in the vectors \vec{y} and \vec{f} (integers); <u>xi</u> - x_o, the starting value of the independent variable x;

xf - the final value of the independent variable x;

<u>y</u> - the array in which $\vec{y}_0 = \vec{y}$ (xi) is located upon entry and in which \vec{y} (xf) is located upon exit;
ea - the array containing the absolute error vector;

er - the array containing the relative error vector;

p - the exponent used in step size control;

<u>rksfn</u> - the number of function evaluations used in the Runge-Kutta-Shanks starting and closing procedures (integer);

rksrdr - the order of the Runge-Kutta-Shanks closing procedure (integer);

<u>rkscff</u> - the array containing the Runge-Kutta-Shanks coefficients for the starting and closing procedures;

q - the even integer used in describing Cowell's method (integer);

cwllcf - the array containing the Cowell coefficients.

All variables not designated integer are double precision. All arrays are double precision.

The procedure performs the numerical integration of (1-1) from $x = \underline{xi}$ to $x = \underline{xf}$. The step size h used is always the length of the interval $\underline{xf} - \underline{xi}$ divided by a power of 2 in order to avoid error building in the independent variable, and two counters <u>cl</u> and <u>c2</u> are kept. <u>cl</u> is always a positive, integral power of 2, and $h = (\underline{xf} - \underline{xi})/\underline{cl}$. <u>c2</u> is the number of steps necessary to step from the present x to \underline{xf} using the current step size h. Initially <u>c2</u> = <u>c1</u>; as each step is taken <u>c2</u> is decremented by one and the present value of x is computed by $\underline{x} = \underline{xf} - h \underline{c2}$. If h is halved, <u>c1</u> and <u>c2</u> are doubled; if h is doubled, <u>c1</u> and <u>c2</u> are halved. Hence, <u>c2</u> need not be integral.

The error vectors \vec{ea} and \vec{er} , like \vec{y} , have n components. (Although the base of the arrays \underline{y} , \underline{ea} , and \underline{er} is one, the n components are placed in positions 2, 3,... n +1 of the arrays.) The procedure's error control attempts to guarantee that, in integrating from xi to xf, each component

of \vec{y} will not be in absolute error more than the corresponding component of \vec{ea} and will not be in relative error more than the corresponding component of \vec{er} . At each step, the procedure requires that for each i, $1 \le i \le n$, either the absolute error in y [i] does not exceed ea [i]/(c1^p) or the relative error in y [i] does not exceed ea [i]/(c1^p).

If p = 1 and $\vec{er} = 0$ then the accumulated error in any component of \vec{y} should not exceed the corresponding component of \vec{ea} . If the error is assumed to accumulate randomly as the square root of the number of steps, $p = \frac{1}{2}$ and $\vec{er} = 0$ will cause the accumulated error in any component of \vec{y} to be approximately the corresponding component of \vec{ea} .

If p = 1 and $\vec{ea} = 0$ then the accumulated error in any component of \vec{y} should not exceed the corresponding component of \vec{er} times the largest value assumed by that component of \vec{y} during the integration. If the error is assumed to accumulate randomly as the square root of the number of steps, $p = \frac{1}{2}$ and $\vec{ea} = 0$ will cause the accumulated error in any component of \vec{y} to be approximately the corresponding component of \vec{er} times some average value assumed by that component of \vec{y} during the integration.

The subroutine FUNCTI which computes $\vec{f} = \vec{f} (x,y)$ has the following call: call FUNCTI (n, x, yv, fv);

The parameters of the procedure FUNCTI are defined as follows:

<u>n</u> - the number of dependent variables in the vectors \vec{y} and \vec{f} (integer)

- x the value of the independent variable
- <u>yv</u> the array in which \vec{y} is stored

 \underline{fv} - the array in which \vec{f} is stored after computation

The procedure <u>start</u> is the general multistep method starting procedure described in paragraph F of this chapter. The procedure <u>shanks</u> is the Runge-Kutta-Shanks integration procedure described in paragraph B of this chapter. The coefficient array <u>rkscff</u> contains the Runge-Kutta-Shanks coefficients in the order required by the procedures <u>start</u> and <u>shanks</u>. The number of function evaluations <u>rksfn</u> is required by both <u>start</u> and <u>shanks</u>; the order <u>rksrdr</u> is required by shanks.

The array <u>cwllcf</u> contains the coefficients of (1-2), (1-3), and (1-4) in the order P_0 , P_1 , . . ., P_q , C_0 , C_i , . . ., C_q , M_0 , M_1 , . . ., M_q ; P_0 is in the first position of the array.

The suggested initial step size \underline{dxv} is optional. The procedure first sets $\underline{c1} = 2$ and doubles $\underline{c1}$ until $\underline{c1} \ge q$. If $\underline{dxv} = 0$ or $\underline{dxv} \ne 0$ and $h \le |\underline{dx}|$ then $\underline{c1}$ is left alone. Otherwise, $\underline{c1}$ is doubled until $h \le |\underline{dx}|$. The integration now begins.

$$\vec{f}_0 = \vec{f}(x_0, \vec{y}_0)$$

is computed. The start procedure is called to obtain

$$\begin{bmatrix} \vec{f} \\ i \end{bmatrix} \stackrel{q}{i=1}, \stackrel{\rightarrow}{y_m}, \stackrel{\rightarrow}{y_q} \stackrel{and}{x_q}.$$

cl and c2 are adjusted if h was changed by the start procedure. c2 is decremented by q since q steps took place in the start procedure. If c2 < m, closing takes place. Otherwise,

is calculated from

$$\begin{bmatrix} \vec{f} \\ i \end{bmatrix} \quad \begin{array}{c} q \\ i=0 \end{bmatrix}$$

and \vec{y}_m using the mid-range formula (1-4). m applications of (1-5) yield

$$\overrightarrow{\delta^{-1}_{f_{q-\frac{1}{2}}}}$$

and n is set equal to q.

For $1 \le i \le m$ the following set of steps takes place. c2 is decremented by 1, and x_{n+i} is calculated.

$$\xrightarrow{\delta^{-1} f}_{n+i-\frac{1}{2}}$$

is calculated from

$$\overline{f_{n+i-1-\frac{1}{2}}}$$

and \vec{f}_{n+i-1} using (1-5). \vec{y}_{n+i} is calculated using the predictor (1-2), and \vec{f}_{n+i} is calculated. \vec{y}_{n+i} is next calculated using the corrector (1-3), and \vec{f}_{n+i} is again calculated. Let \vec{v} be the vector which is the absolute value of the difference between the last two calculated values of \vec{y}_{n+i} . Each component of \vec{v} is compared with the corresponding component of $\vec{ea}/(10 \cdot c1^p)$ for absolute error and with the product of the corresponding components of $\vec{er}/(10 \cdot c1^p)$ and the last calculated value of \vec{y}_{n+i} for relative error. If any component of \vec{v} exceeds in both the absolute and the relative error tests, the steps which calculate \vec{y}_{n+i} using the corrector (1-3), calculate \vec{f}_{n+i} from the value of \vec{y}_{n+i} , and which test the last two calculated values of \vec{y}_{n+i} are repeated. When each component of \vec{v} does not exceed in either the absolute or the relative error test, the last values of \vec{y}_{n+i} and \vec{f}_{n+i} are retained. The mid-range formula (1-4) is now used to calculate a new value of \vec{y}_n from

 $\begin{bmatrix} \vec{J} & m \\ f & i = m \end{bmatrix}$

and

$$\rightarrow \\ \delta^{-1} f_{n-\frac{1}{2}}$$

Let \vec{v} be the vector which is the absolute value of the differences between the new value of \vec{y}_n and the previously calculated value of \vec{y}_n . If sufficient history is available for doubling the step size, i.e., n > q + m, each component of \vec{v} is compared with the corresponding component of $\vec{ea}/(10 \cdot c1^p \cdot 2^{q+3})$ for absolute error and with the product of the corresponding components of $\vec{er}/(10 \cdot c1^p \cdot 2^{q+3})$ and the new value of \vec{y}_n for relative error.

If each component of \vec{v} does not exceed in either the absolute or the relative error tests, the last m steps are accepted, cl and c2 are halved, and the step size is doubled. If c2 < m, closing takes place. Otherwise

$$\begin{bmatrix} \vec{f}_i \\ \vec{f}_i \end{bmatrix} \stackrel{q}{i=0}$$

becomes

$$\begin{bmatrix} \vec{f}_{n-m+2i} \end{bmatrix} \stackrel{q}{i=0}$$

 \vec{y}_{m} becomes \vec{y}_{n-m} , \vec{y}_{q} becomes \vec{y}_{n+m} , x_{q} becomes x_{n+m} , and, as if the starting procedure had calculated these values, control returns to the step where

is calculated using the mid-range formula (1-4).

If any component of \vec{v} exceeds in both the absolute and the relative error tests, this component and each untested component is compared with the corresponding component of $\vec{ea}/(10 \cdot c1^p)$ for absolute error and with the product of the corresponding components of $\vec{er}/(10 \cdot c1^p)$ and the new value of $\vec{y_n}$ for relative error. If each component of \vec{v} does not exceed in either the absolute or the relative error test, the last m steps are accepted and the step size remains unchanged. If c2 < m, closing takes place. Otherwise, n becomes n + m and control returns to the steps which calculate

$$\begin{bmatrix} \vec{y}_{n+i} \end{bmatrix}_{i=1}^{m} \cdot$$

If any component of \vec{v} exceeds in both the absolute and the relative error tests, the last m steps are rejected, c2 is incremented by m, c1 and c2 are doubled, and the step size is halved. \vec{f}_0 becomes \vec{f}_n , \vec{y}_0 becomes \vec{y}_n , x_0 becomes x_n , and control is returned to the step which calls the start procedure.

If sufficient history is not available for doubling, control transfers as if the first component of \vec{v} exceeded both the first component of $\vec{ea}/(10 \cdot c1^p \cdot 2^{q+3})$ and the product of the first components of $\vec{er}/(10 \cdot c1^p \cdot 2^{q+3})$ with the first component of the new value of \vec{y}_n .

Closing takes place whenever m steps at the present step size would carry the integration beyond xf, i.e., whenever $c_2 < m$. If $c_2 > 0$, the Runge-Kutta-Shanks procedure is used to integrate from the present value of x to xf; if $c_2 = 0$, the present value of x is xf. In either case, the integration is now complete. Several efficiency measures are employed in the program. First, the coefficients

$$\begin{bmatrix} P_{j} \\ j = 0 \end{bmatrix}, \begin{bmatrix} Q_{j} \\ j = 0 \end{bmatrix}, \begin{bmatrix} C_{j} \\ j = 0 \end{bmatrix}, \begin{bmatrix} Q_{j} \\ j$$

 $\begin{bmatrix} M \\ j \end{bmatrix} = 0$

and

are multiplied by the step size h and stored as multiplied until the step size changes. Second, the vectors $\vec{ea}/(10 \cdot cl^p)$, $\vec{er}/(10 \cdot cl^p)$, $\vec{ea}/(10 \cdot cl^p \cdot 2^{q+3})$, and $\vec{er}/(10 \cdot cl^p \cdot 2^{q+3})$ are calculated from \vec{ea} and \vec{er} and stored as calculated until the step size changes. Third, the corrector partial sum

$$\xrightarrow{h\delta^{-1}f_{n-\frac{1}{2}}} + h\sum_{j=1}^{q} C_{j}\vec{f}_{j}$$

is computed and stored at each step; successive applications of the corrector only require adding h C_0 f_n to obtain $\vec{y_n}$. Fourth, during applications of the corrector, two arrays are used to store the last two calculated values of $\vec{y_n}$; a flag is used to mark the last calculated value so that the next value is placed in the unflagged array and the flag is switched. This avoids transfer from array to array as successive corrector iterates are computed. Fifth, cyclic indexing is used to avoid moving the function value history after each step or set of steps unless doubling takes place.

One unusual condition can result. If, during any step taken in computing

$$\begin{bmatrix} \vec{y}_{n+i} \end{bmatrix} \begin{bmatrix} m \\ i=1 \end{bmatrix},$$

the number of times through the corrector exceeds eight, control transfers as if the set of m steps has been completed and rejected; i.e., a step size halving was called for with a restart beginning at \vec{y}_n .

2.1 Flow Diagram and Program Listing

Figure 4 is the flow diagram for the Cowell method. The program listing is in Appendix A.

Figure $h_{\,\circ}\,$ Flow Diagram for the Cowell Method.

Figure 4. (Continued) Flow Diagram for the Cowell Method.

Figure h. (Continued) Flow Diagram for the Cowell Method.

F. The General Multistep Method Starting Subroutine

1. Introduction

The general multistep method starting procedure is a UNIVAC 1108 FORTRAN V double-precision Runge-Kutta-Shanks subroutine used for obtaining starting values for the Adams, Butcher, and Cowell multistep methods.

Start is a real valued function called as follows:

start (n, xi, xf, icl, ea, er, m, x, yiv,

yh, fh, yfv, cyi, cym, pa, p,

fneval, rkscns)

2. Description of the Program

The parameters of the function are defined as follows:

<u>n</u> - the number of dependent variables (integer);

<u>xi</u> - the starting value of the independent variable x passed to the multistep method;

 \underline{xf} - the final value of the independent variable x passed to the multistep method;

icl - the integer counter (xf - xi)/h from the multistep method (integer); ea - the absolute error vector passed to the multistep method; er - the relative error vector passed to the multistep method; m - the number of history points to be calculated by <u>start</u> (integer);

 \underline{x} - the value of the independent variable at which <u>start</u> begins its integration;

<u>yiv</u> - the array which contains on entry for Adams and Cowell the values of the dependent variables at \underline{x} and which contains on exit for Cowell the values of the dependent variable at the mth point calculated by <u>start</u>;

 \underline{yh} - the array which contains on entry for Butcher in row \underline{cyi} the values of the dependent variables at \underline{x} and which contains on exit for Butcher the values of the dependent variables at each of the m points calculated by <u>start</u>;

<u>fh</u> - the array which contains on entry in row <u>cyi</u> the function values at <u>x</u> and which contains on exit the function values at each of the m points calculated by <u>start</u>;

yfv - the array which contains on exit the values of the dependent variables at the mth point calculated by <u>start</u> for Adams or the m/2th point calculated by start for Cowell;

<u>cyi</u> - the cyclic index identifying on entry the row of <u>yh</u> in which the values of the dependent variables at <u>x</u> are stored for Butcher and the row of <u>fh</u> in which the function values at <u>x</u> are stored for any method (integer);

cym - the number of rows in the arrays yh and fh (integer);

pa - the parameter which is zero for Adams, one for Cowell, two for Butcher (integer);

<u>p</u> - the exponent such that the absolute error at each step is not to exceed <u>ea/c1^p</u> and the relative error at each step is not to exceed <u>er/c1^p</u>;

<u>fneval</u> - the number of function evaluations required by the Runge-Kutta-Shanks procedure (integer);

<u>rkscns</u>,- the array which contains the Runge-Kutta-Shanks coefficients in the same order as required by the procedure shanks described in section B.

The value of <u>start</u> on exit is two to the power of the number of halvings which took place within <u>start</u> (a real).

All variables and arrays not designated otherwise are double precision.

Although the base of the arrays <u>ea</u>, <u>er</u>, <u>yiv</u>, and <u>yfv</u> and of the rows of <u>yh</u> and <u>fh</u> is one, the n components are placed in position 2, . . ., n+1and the first position is unused.

The procedure attempts to calculate m (if m is even and positive) or m + 1 (if m is odd) Runge-Kutta-Shanks steps of size h = (xf - xi)/cl. After each even step of size h is taken, one step of size 2h is taken over the interval spanned by the two steps of size h. The absolute value of the differences in each dependent variable between the 2h-step and the second h-step is compared with the corresponding component of $\vec{ea}/(cl/2)^p$ for absolute error and with the product of the corresponding component of $\vec{er}/(cl/2)^p$ and the corresponding dependent variable value from the second h-step for relative error. If each component of the difference does not exceed in either the absolute or the relative error test and m steps have not yet been taken, the process of two h-steps, one 2h-step, and test is continued. If any component of the difference exceeds in both the absolute and the relative error tests, cl is doubled, h is halved, and integration begins again at x. The first step of previous size h was saved and becomes the first step of present size 2h.

The m calculated function values from h-steps are placed in rows (cyl + 2) mod cym+1, (cyi + 3) mod cym+1, ..., (cyi+m+1) mod cym+1 of the array fh. For Butcher, the corresponding dependent variable values from h-steps are placed in the corresponding rows of the array yh; if m is odd, the values of the dependent variable after h-step m + 1 are placed in row (cyi + m + 2) mod cym+1 of yh. For Adams, the dependent variable values from h-step m are placed in the array yfv. For Cowell, the dependent variable values from h-step m are placed in the array yiv and from h-step m/2 (m is always even for Cowell) are placed in yfv. If m is zero, no calculation takes place.

Start calls an external subroutine runkut.

2.1 Flow Diagram and Program Listing

Figure 5 is the flow diagram for the starting procedure. The program listing is in Appendix A.

Flow Diagram for the General Multistep Method Starting Procedure. Figure 5.

(Continued) Flow Diagram for the General Multistep Method Starting Procedure. Figure 5.

G. The Derivative Subroutine FUNCTI

A procedure for calculating the vector $\vec{y}' = \vec{f}(x, \vec{y}(x))$ must be an external subroutine characterizing the set of differential equations to be solved. This subroutine is called by each of the integration subroutines and must itself have the following formal parameter list:

<u>Identifier</u>	Type	Usage or Meaning
N	Integer	Number of equations being integrated.
Х	Doub1e	Current value of the independent variable.
YV	Double Array	Current dependent variable vector (input).
FV	Double Array	\vec{f} value vector (output).

The components of the \vec{y} vector are contained in positions 2 through N + 1 of YV, and the components of \vec{f} are returned in corresponding positions 2 through N + 1 of FV. The call on FUNCTI is as follows:

CALL FUNCTI (N,X,YV,FV).

A skeleton FUNCTI subroutine is given in the listings in Appendix A.

A. The Test Problem

The results presented here are for the test problem of 2-dimensional motion in an inverse square attractive force field using x-y coordinates. The equations are

$$\frac{dv_{x}}{dt} = -\frac{\partial}{\partial x} V(x,y)$$
$$\frac{dv_{y}}{dt} = -\frac{\partial}{\partial y} V(x,y)$$
$$\frac{dx}{dt} = v_{x}$$
$$\frac{dy}{dt} = v_{y}$$

where $V(x,y) = -(x^2 + y^2)^{-\frac{1}{2}}$

The initial conditions were chosen to give an elliptical orbit of eccentricity 0.8. In this orbit the error and step size controls will produce several step size changes as the orbit is traversed. The initial conditions are:

at
$$t = 0$$
,
 $x = 0.2$,
 $y = 0$,
 $v_x = 0$,
 $v_y = 3.0$.

One complete orbit was run (t final = 2π) and the error taken as the square root of the sum of the squares of the differences between initial and final conditions.

The accuracy range investigated was $\sim 10^{-7}$ to $\sim 10^{-12}$. The UNIVAC 1108 maintains ~ 18 significant figures (decimal) in double precision.

B. Results

Results are presented here for test runs made with the following methods and orders:

Shanks formulas 7-7, 7-9, 8-10 and 8-12 (here the first number gives the order, the second gives the number of function elevations per step); Adams method orders 7, 9, 11, 13;

Cowell's method orders 7, 9, 11, 13;

Butcher's formulas orders 5, 7, 9, 11, 13.

All of the multistep methods used Shanks 8-10 for start and restart for all orders. These orders were chosen to give as close as comparison as possible across methods at corresponding orders.

Figure 6 shows what might be expected of the error behavior as a function of number of steps taken to perform a given integration. In the large stepsize region (small number of steps), the truncation error dominates and decreases as N⁻ⁿ, where N is the number of steps, and n is the order of the error. In the small step-size (large number of steps), the rounding error should dominate. If rounding errors behave like randon variables, one would expect the rounding error to increase as N^{1/2}.

Figure 7 shows results of runs made with Shanks' formulas. Plotted here is error vs. number of function evaluations and error vs. computer time to complete the integration. The labelings indicate the order and number of function evaluations per step, respectively. These points lie on the truncation error part of the curve and show the advantage of the higher order methods at high accuracy requirements.

Figure 8 shows results of runs made with Adams' method. Again the plots are of error vs. number of function evaluations and vs. time. Labels indicate order. Again this is the truncation error part of the curve, and one sees that the slopes are steeper for the higher orders.

Figure 9 shows results of runs made with Cowell's method. Both time and number of function evaluations are plotted vs. error, and the labels indicate orders. Here one sees that the region of rounding error domination is being approached or entered by the 13 order formula below errors of 10^{-12} .

Figure 10 shows runs made with Butcher's formulas. Only number of function evaluations (not time) vs. error is plotted; the labels indicate order. Here again we see that the region of rounding error is being approached at errors in the vicinity 10^{-12} .

Figure 11 is a composite plot of the four methods each of order 7. The slopes are seen to be all more or less the same. Butcher's method appears to be better than the others above 10^{-10} but enters the rounding region first.

Figure 12 is also a composite graph of different methods, all of order 13. Again Butcher's formula appears superior in the truncation region but enters the rounding region first.

Figure 13 gives a more detailed examination of Butcher's method (compare with Figure 10). Many more points were taken here, and we see considerable scatter when points are taken close together. This gives a better picture of how the rounding error region is entered by the 7th and 13th orders. The 9th and 11th orders do not exhibit rounding errors as large as those of the 7th and 13th orders.

Figure 11. Error Behavior for the 7th Order Formulas.

Figure 12. Error Behavior for the 13th Order Formulas.

C. Conclusions

From the above results one sees that all of the methods tested are fairly effective. At higher accuracies the higher order methods are more effective than the lower order methods, at least until the round off error region is reached. The region of round off error is determined primarily by the number of significant figures carried by the particular machine but is also somewhat dependent both on the method and order of the integration scheme.

For a fixed order (figure 11, 7th order; figure 12, 13th order) one sees that the Butcher formula is more effective than the others, at least until the rounding region is reached, but apparently Butcher enters the rounding error region sooner (produces larger rounding errors) than the others.

At 7th order the Shanks formula appears somewhat better than either the Cowell or Adams methods. No Shanks formulas of order higher than 8 were available at the time this work was being done, but the results here (figure 7) suggest that higher order Shanks formulas would be effective in reducing the number of function evaluations. Whether higher order Shanks formulas would take less time or not would depend on the application.

Whether number of function evaluations or computer time is more relevant in these tests depends on the application one has in mind. In the test problem used here the function evaluation time was relatively small compared to the rest of the arithmetic for any of the methods. In this case the time measurements show the additional time taken by the added complexity of the higher order methods. For example, Figure 7 shows that, while the number of function evaluations for the Shanks 8-12 formula is less than for the 7-9 or 8-10 formulas, the time taken for each is almost identical. Thus the 8-12 formula

is seen to be more advantageous only if the function evaluations are quite complex and time consuming.

One might also question whether the results for the test problem are representative of the overall behavior of these methods. The error at the end of one complete revolution might not be representative of maximum error over the orbit since error cancelling is known to take place when integrating a periodic system. The absolute error, however, is not the relevant measure here but rather the error of one method relative to another. If error cancelling takes place because of the geometric properties of the orbit, this cancelling should be the same for each method and not affect the validity of comparing the relative performance of the methods. However, one cannot rule out entirely the possibility that other type problems might show a different relative effectiveness of these methods. For example it is known that special highly stable methods out-perform those tested here when applied to very "stiff" equations [27].

D. Suggestions for Further Study

The most obvious need for further study is an examination of the performance of the subroutines for other types of problems, in particular non-orbit type problems.

Other integration formulas should be tested. In particular Shanks has now made available (private communication) a 9-16 formula and a 10-21 formula, (i.e. a 9th order formula with 16 function evaluations per step, and a 10th order with 21 function evaluations per step.) The results here suggest that at high enough accuracies these new high order Shanks formulas might be advantageous.

Gear [27] has published some highly stable methods that are reputed to be especially good when used with very "stiff" equations. Comparisons of the formulas tested here using the stiff equations and comparisons with Gear's methods should be made.

Applications of the methods studied here to the solution of other type problems (non-initial value problems) could be made. In particular these methods can be used to generate the Green's functions needed to solve differential equation problems with split boundary conditions, i.e. rendezvous type orbit problems.

IV. BIBLIOGRAPHY

References on the Adams Method

- 1. Krogh, Fred T., J. ACM, 13, (1966) 374-385.
- Bashforth, F., and Adams, J. C., <u>Theories of Capillary Action</u>, Cambridge University Press, 1883.
- 3. Dahlquist, Germund, Math. Scan., 4, (1956) 33.
- Dahlquist, Germund, <u>Stockholm Tekniska Hogskolan</u>, No. <u>130</u>, (1959), 1-87.
- 5. Henrici, Peter, <u>Discrete Variable Methods in Ordinary Differential</u> <u>Equations</u>, John Wiley and Sons, New York, 1962, 191-199, 200, 203-204, 224, 241, 258, 272-273, 274.
- 6. Newberry, A. C. R., <u>Math. Comp.</u> 17, 84, (1963) 452-455.

References on Cowell (Constant Nth Order Difference) Method

- Cowell, P. H., and Crommelin, A. C. D., "Investigation of the Motion of Halley's Comet from 1759 to 1910." Appendix to <u>Greenwich</u> <u>Observations for 1909</u>, Edinburgh, 1910, 84.
- 8. Herrick, S., "Step-by Step Integration of $\dot{x} = f(x, y, z, t)$ without a Corrector," <u>Mathematical Tables and Other Aids to Computation</u>, No. <u>34</u>, April 1951, 61-67.
- Durham, H. L., Jr., et al, "Study of Methods for Numerical Solution of Ordinary Differential Equations," Final Report, Contract NAS8-11129, Project A-740, Engineering Experiment Station, Georgia Institute of Technology, Atlanta, Georgia, 1964.
- Currie, J. C., et al, "Study of Satellite Orbit Computation Methods and An Error Analysis of the Mathematical Procedures," Technical Report No. 3, Prepared for Department of the Air Force Contract No. AF29(600)-1756, Project No. 1770, Headquarters Air Force Missile Development Center, Air Research and Development Command, Holloman Air Force Base, New Mexico, August 1959.
- Francis, O. B., Jr., et al, "Study of the Methods for the Numerical Solution of Ordinary Differential Equations," Final Report, Project A-831, Contract NAS8-20014, Engineering Experiment Station, Georgia Institute of Technology, Atlanta, Georgia, 1966.
References on the Stetter-Gragg-Butcher Method

- Gear, C. W., "Hybrid Methods for Initial Value Problems in Ordinary Differential Equations," J.SIAM (B) 2 (1965) 69.
- Butcher, J. C., "A Modified Multistep Method for the Numerical Integration of Ordinary Differential Equations," <u>J. ACM</u>, <u>12</u> (1965) 124-135.
- Gragg, W. B. and Stetter, H. J., "Generalized Multistep Predictor-Corrector Methods," <u>J. ACM</u>, <u>11</u> (1964) 188-209.

References on the Runge-Kutta-Shanks Method

- 15. Shanks, E. B., "Formulas for Obtaining Solutions of Differential Equations by Evaluations of Functions," Presented at the summer meeting of the American Mathematical Society in Boulder, Colorado, August 1963.
- 16. Shanks, E. B., "Performance Characteristics of Higher Order Approximations of Runge-Kutta Type," <u>Internal Note</u>, George C. Marshall Space Flight Center, Huntsville, Alabama, March 1963, (6 pages).
- 17. Shanks, E. B., "Formulas for Obtaining Solutions of Differential Equations by Evaluation of Functions," pp. 69-81, <u>Effective Use</u> of ADP in the NASA, National Aeronautics and Space Administration, Washington, D. C., August 1964.
- Shanks, E. B., "Higher Order Approximations of Runge-Kutta Type," <u>NASA Technical Note D-2920</u>, National Aeronautics and Space Administration, Washington, D. C., September 1965, (23 pages).
- Shanks, E. B., "Solutions of Differential Equations by Evaluations of Functions," <u>Mathematics of Computation</u> (published by the American Mathematical Society) Vol. 20, No. 93, 21-38. January 1966.

Other References

- 20. Ralston, A., "Runge-Kutta Methods with Minimum Error Bounds," <u>Math.</u> <u>Comput.</u>, <u>16</u>, (1962) 431-437.
- Brush, D. G., Kohfeld, J. J., and Thompson, G. T., "Solution of Ordinary Differential Equations Using Two 'Off-Step' Points," J. ACM, 14, (1967) 84-89.
- 22. Scraton, R. E., "Estimation of the Truncation Error in Runge-Kutta and Allied Processes," <u>The Computer Journal</u>, 7 (1964) 246-248.
- 23. Butcher, J. C., "A Multistep Generalization of Runge-Kutta Methods with Four or Five Stages," J. ACM, 14 (1967) 84-89.

Other References (Cont.)

- 24. Kohfeld, J. J. and Thompson, G. T., "Multistep Methods With Modified Predictors and Correctors," <u>J. ACM</u>, <u>14</u> (1967) 155-166.
- Gallaher, L. J., et al, "Study of the Methods for the Numerical Solution of Ordinary Differential Equations, "Final Report Project A-831, Contract NAS8-20014, Engineering Experiment Station, Georgia Institute of Technology, Atlanta, Georgia, 1967 and 1968.
- Gear, C. W., "The Numerical Integration of Ordinary Differential Equations, " <u>Math. Comp. 21</u>, (1967), 146-156.
- 27. Gear, C. W., "The Automatic Integration of Stiff Ordinary Differential Equations," Proceedings of 1968 IFIPS Congress.
- Nordsieck, A., "On Numerical Integration of Ordinary Differential Equations," <u>Math. Comp.</u> 16, (1962), 22-49.
- Ratliff, K., "A Comparison of Techniques for Numerical Integration of Ordinary Differential Equations," Report No. 274, Dept. of Computer Science, University of Illinois, Urbana, Illinois, 1968.
- Gear, C. W., "The Control of Parameters in Automatic Integration of Ordinary Differential Equations," Document COO-1469-0077, Dept. of Computer Science, University of Illinois, Urbana, Illinois, 1968.
- 31. Dill, C., Ellis, C. A., Gear, C. W., Ratliff, K., "The Automatic Integration Package for Ordinary Differential Equations," Document C00-1469-0103, Department of Computer Science, University of Illinois, Urbana, Illinois, 1968.

APPENDIX A

PROGRAM LISTINGS

In this appendix is listed each of the programs described in the body of the report. Also listed here are a skeleton main program and FUNCTI subroutine. The order of the listings is as follows:

- 1. A skeleton main program
- 2. The Runge-Kutta-Shanks subroutine SHANKS
- 3. The Adams subroutine ADAMS
- 4. The Stetter-Gragg-Butcher subroutine BUTCHR
- 5. The Cowell subroutine COWELL
- 6. The starting routine START
- 7. An auxiliary routine to START called RUNKUT
- 8. An auxiliary routine to START called COMP
- 9. A skeleton FUNCTI subroutine

0000 1 000 00002000	00003000		
C PROGRAM MAIN C DEFINE FOBLE(I) = DBLE(FLOAT(I)) C PARAMETER NP1 C PARAMETER NP1	COMMON/COMMON/FA(35,NP1) COMMON/COMMON/FA(35,NP1) DOUBLE PRECISION FA,X, Y1, Y2, XI1 DOUBLE PRECISION FA,X, Y1, Y2, XI1 DIMENSION P1(100), FA(100), FA(100), ADMSCF(91), RKSCFF(91), RKSCFF(91), RKSCFF(91), RKSCFF, BTCHCF, CWLLCF DOUBLE PRECISION EA, ER, Y, ADMSCF, RKSCFF, BTCHCF, CWLLCF INTEGER A, B, C, Q, O, F INTEGER A, B, C, Q, O, F END C BLOCK 2 C BLOCK 2 C BLOCK 2	SHANKS	
GALLAHER 1 2 3	1002000400 1111	DRT	

	DXD = DXT / FDBLE(COUNT)	01576000
63	D COUNT2 = COUNT + COUNT DOUT - DOT - EAR F (COUNTD)	01570000
	DCOINT = COUNT	01580000
	EFACT = 1	01581000
		01582000
	G0 T0 633	01583000
634		01584000
63	5 IF (I .LE. ORDER) GO TO 631	01585000
	GO TO 632	01586000
631	L EFACT = EFACT + EFACT	01587000
	60 T0 634	01588000
636	2 ERANGE = .125 / EFACT	01589000
	EFACT = 4.000 / EFACT	01590000
	EFACTR = (COUNT ** P) * EFACT	01591000
	DKTR = 0	01592000
	NCF1 = ((((M * M) + M) / 2) + M) + M	01593000
	NCF = NCF1 + 1	01594000
	CFSW = "FALSE.	01595000
		01596000
	G0 T0 637	01597000
636		01598000
63	7 IF (I .LE. NCF1) 60 TO 635	01599000
	GO TO 636	01600000
635	5 CFD(I + 1) = CF(I + 1) * DXD	01601000
	III2 = I + NCF	01602000
	CFD(III2 + 1) = CF(I + 1) * DXH	01603000
	GO TO 638	01604000
636		01605000
	XM = XI + DXH	01606000
62	DSW = TRUE.	01607000
	CALL FUNCTION, X, YV, GV)	01608000
	IF (NOT & CFSW) GO TO 640	01609000
	L = NCF1	01610000
	G0 T0 639	01611000
64(01612000
635		01613000
	GO TO 643	01614000
644	دستا چ ال	01615000

30	643 IF (I °LE, M) GO TO 641	01616000
S1	GO TO 642	01617000
20	641 III = I = I	01618000
33		01619000
34	BETA = CFD(L + 1)	0162000(
35		0162100(
36	G0 T0 647	01622000
37	648 K II K + 1	01623000
38	647 IF (K .LE. N) GO TO 645	0162400(
39	60 TO 646	01625000
00	$645 \text{ YP}(\text{K} + 1) = (6^{1}\text{K} + 1) + BETA) + Y^{1}\text{K} + 1)$	01626000
-	GO TO 648	01627000
32	646 J = 1	01628000
33	60 TO 651	01629000
34	652 J = J + 1	0163000(
95	651 IF (J •LE 111) 60 TO 649	01631000
96	GO TO 650	0163200(
16	649 L II L + 1	0163300(
98	BETA = CFD(L + 1)	01634000
66		01635000
00	GO TO 655	01636000
1	656 X II X + 7	01637000
12	655 IF (K .LE. N) GO TO 653	01638000
20	GO TO 654	01639000
14	653 YP(K + 1) = (FV(J + 1) K + 1) * BETA + YP(K + 1)	01640000
15	GO TO 656	01641000
16	654 GO TO 652	01642000
21	650 L = L + 1	01643000
98	CALL FUNCTION, CFD(L + 1) + X, YP, TEMP9)	01644000
6		01645000
0	GO TO 659	01646000
~	660 II1 = II1 + 1	01647000
2	659 IF (III °LE °N) 60 TO 657	01648000
2	60 TO 658	01649000
5	657 FV(I + 1) III + 1) = TEMP9(III + 1)	01650000
0	GO TO 660	01651000
16	658 GO TO 644	01652000
	642 L = L + 1	01653000
8	GAMMA = CFD(L + 1)	01654000
6		01655000

U1683000 * GAMMA) + YP(K + 1)Â # (GV(K + 1) * BETA) + YV(K + 1) GAMMA) + YV(K + ÷ ¥ × 1 * GO TO 669 60 TO 679 60 TO 661 CFSW) GO TO ÷ (GV(K T)/7) 0 ÷ ÷ Ê ŝ ŝ ŝ ŚW CFD (L CFDC е С С С С С С С j j ů Ľ ہ دلا IF (NOT, ů L 4 1) + 1) 60 TO 672 GO TO 668 ---+ 60 TO 664 (T + X)dXL = L L CONTINUE + + CONTINUE ÷ * 60 T 09 60 TO 60 TO R ئــ ۱۱ 60 T 0 R GAMMA \mathbf{X} |---| || 60 10 ¥ ¥ H X YP (K YM(K BETA t \$ **\$** LL. μ 9 u. Ľ Ľ., ___ × × ¥

0 1 1 4 2

680		01696000
λ.	GO TO 685	01697000
686		01698000
685	IF (J .LE. II]) GO TO 683	01699000
	G0 T0 684	0000410
683		01701000
	BETA = CFD(L + 1)	01702000
		01703000
	GO TO 689	01704000
690		0170500(
689	IF (K .LE. N) GO TO 687	01706000
	GO TO 688	01707000
687	YM(K + 1) (FV(J + 1, K + 1) * BETA) + YM(K + 1)	01708000
000		01711000
	CALL FUNCTION, CFD(L + 1) + X, YM, TEMP9)	01712000
		01713000
	GO TO 693	01714000
694		01715000
693	IF (III °LE °N) GO TO 691	01716000
	GQ TQ 692	00/1/100
169	FV(I + 1 + 1 + 1) = TEMP9(III + 1)	01718000
	GO TO 694	0061210
692	GO TO 678	01720000
676	۲۰۰ ج الــــ	0172100(
	GAMMA = CFD(L + 1)	01722000
		01723000
	GO TO 697	01724000
698		01725000
697	IF (K .LE. N) 60 TO 695	01726000
	G0 T0 696	01727000
695	YM(K + 1) II (GV(K + 1) * GAMMA) + YV(K + 1)	01728000
	GO TO 698	01729000
696	•	01750000
	GO TO 701	01731000
702		01732000
701	IF (I .LE. M) GO TO 699	01733000
	60 TO 700	004210
669		01735000

~	GAMMA = CFD(L + 1)	01736000
		01737000
аť	GO TO 705	01738000
<u>م</u>		01739000
-	705 IF (K .LE. N) GO TO 703	01740000
ا م:	60 TO 704	00014410
۰O	703 YM(K + 1) (FV(1 + 1, K + 1) * GAMMA) + YM(K + 1)	01742000
	GO TO 706	01743000
~	704 G0 T0 702	01744000
~ `	700 CALL FUNCTION, XM, YM, TEMP9)	01745000
_		01746000
	60 TO 709	01747000
~1	1 + 111 = 111 012	01748000
×.	709 IF (III °LE • N) 60 TO 707	01749000
-4-	GO TO 708	01750000
	707 FV(1, II1 + 1) = TEMP9(II1 + 1)	01751000
.0	60 TO 710	01752000
*	708 IF (,NOT, CFSW) GO TO 712	01753000
~		01754000
~	GO TO 711	01755000
~	712 L = NCF1	01756000
		01757000
A1	GO TO 715	01758000
***	716 I = I + 1	01759000
	715 IF (I °LE, M) GO TO 713	01760000
<u>م</u>	GO TO 714	01761000
.0		01762000
		01763000
~	GO TO 719	01764000
~	720 K II K + 1	01765000
	719 IF (K .LE. N) GO TO 717	01766000
	GO TO 718	01767000
~1	717 YC(K + 1) = YM(K + 1)	01768000
~ ~	GO TO 720	01769000
ndo		01770000
	GO TO 723	01771000
	724 1 1 4 1	01772000
	723 IF (J &LE & III) 60 TO 721	01773000
***	GO TO 722	01774000
~	721 L = L + 1	01775000

BETA = CFD(L + 1)	01776000
	nnn/v/tn
G0 T0 727	017/8000
728 K = K + 1	00062210
727 IF (K °LE, N) 60 TO 725	01780000
60 TO 726	01181000
725 YC(K + 1) = (FV(J + 1 + 1 + 1) * BETA) + YC(K + 1)	01782000
60 T0 728	01783000
726 GO TO 724	01784000
722 L = L + 1	01785000
CALL FUNCTION, CFDOL + 1) + XM, YC, TEMP9)	01786000
	01787000
G0 T0 731	01788000
732 II1 = II1 + 1	01789000
731 IF (II1 °LE °N) GO TO 729	00006210
GO TO 730	01791000
729 FV(I + 1, III + 1) = TEMP9(II1 + 1)	01792000
G0 T0 732	00026210
730 60 70 716	01794000
714 K H 1	01795000
G0 T0 735	01796000
736 X II X + 7	01797000
735 IF (K .LE. N) 60 TO 733	01798000
GO TO 734	00066210
733 $YC(K + 1) = YM(K + 1)$	01800000
G0 T0 736	01801000
734 I = 0	01802000
60 T0 739	01803000
	01804000
739 IF (I «LE« M) GO TO 737	01805000
60 TO 738	01806000
737 L = L + 1	01807000
GAMMA = CFD(L + 1)	01808000
	01809000
60 T0 743	01810000
	01811000
743 IF (K .LE. N) 60 T0 741	01812000
GO TO 742	01813000
741 YC(K + 1) = (FV(1 + 1 + 1 + X + 1) * GAMMA) + YC(K + 1)	01814000
60 TO 744	01815000

30	742 GO TO 740	01816000
16	738 K = 1	01817000
20	GO TO 747	01818000
9.0	748 K II K + T	01819000
94	747 IF (K .LE. N) 60 TO 745	01820000
35	GO TO 746	01821000
36	745 ES = ABS(YC(K + 1) - YP(K + 1)) * EFACTR	01822000
87	IF (ES .EQ. 0) 60 TO 750	01823000
38	IF (ES %LT, EA(K + 1)) GO TO 752	01824000
89	IF (ES %LT, ABS(YC(K + 1)) * ER(K + 1)) GO TO 753	01825000
90	DSW = "FALSE.	01826000
16	STEPR = STEPR + 1	01827000
32	COUNT = COUNT2	01828000
93	COUNT2 = COUNT + COUNT	01829000
94	DCOUNT = DCOUNT + DCOUNT	01830000
95	DXD = DXH	01831000
96	DXH = DXT / FDBLE(COUNT2)	01832000
76	EFACTR = (COUNT ** P) * EFACT	01833000
98	IF (NOT, CFSW) GO TO 755	01834000
99		01835000
00	G0 T0 758	01836000
10	759 I = I + 1	01837000
02	758 IF (I °LE NCF1) 60 TO 756	01838000
50	60 T0 757	01839000
94	756 III3 = I + NCF	01840000
05	CFD(III3 + 1) = CF(I + 1) * DXH	01841000
06	60 TO 759	01842000
20	757 CFSW = "FALSE"	01843000
38	GO TO 754	01844000
60	0 = 1 654	01845000
10	GO TO 762	01846000
***\$	763 1 = 1 + 1	01847000
2	762 IF (I ,LE, NCF1) GO TO 760	01848000
2	GO TO 761	01849000
14	760 CFD(I + 1) = CF(I + 1) * DXH	01850000
15	GO TO 763	01851000
16	761 CFSW = TRUE	01852000
11	754 XM = ((((FDBLE(COUNT2 + 1)) - DCOUNT) - DCOUNT) * UXH) + XI	01853000
0		01854000
6	GO TO 766	01855000

360	EFACTR = FFACT	01896000
361		01897000
362	DXT = XF = XI	01898000
363	DXD = DXT	00066810
364	DXH = DXD / 2,000	01000610
365	XM II XI + DXH	00010610
366	CFSW = FALSE.	0100000
367		01020610
368	GO TO 787	00000010
369	788 I II + 1	01050610
370	787 IF (I .LE. NCF1) 60 TO 785	01906000
175	GO TO 786	00040610
372	785 CFD(I + 1) = CF(I + 1) $*$ DXD	01908000
373	III2 II + NCF	01060610
374	CFD(III2 + 1) = CF(1 + 1) * DXH	0101610
375	G0 T0 788	01011610
376	786 G0 T0 623	01912000
377	782 CONTINUE	01913000
378	781 CONTINUE	01914000
379	778 CONTINUE	01012000
380	777 IF ("NOT" USW) 60 TO 790	0191610
381	DKTR II DKTR + 1	01017000
382	COUNT2 = COUNT	01918000
383	COUNT = COUNT / 2	01919000
384	DCOUNT = DCOUNT / 2.0D0	01920000
385	DXH = DXD	012610
386	DXD = DXT / FDBLE(COUNT)	01922000
387	EFACTR = (COUNT ** P) * EFACT	01923000
388	IF (NOT, CFSW) 60 TO 792	01924000
389		01925000
390	GO TO 795	01926000
100	796 1 1 1 1 200	01927000
392	795 IF (I "LE" NCF1) GO TO 793	01928000
393	60 TO 794	01929000
394	793 CFD(I + 1) = $CF(I + 1) * DXD$	00002610
395	60 T0 796	01631000
396	794 CFSW = FALSE	01932000
397	GO TO 791	01933000
398	792 I = 0	01934000
399	GO TO 799	01935000

401 401	800 I = I + 1 799 IF (I °LE° NCFI) GO TO 797	01936000
402	GO TO 798	01938000
403	797 III2 = I + NCF	00062610
404	CFD(III2 + 1) = CF(I + 1) * DXD	01940000
402	GO TO 800	01014610
406	798 CFSW = "TRUE"	01942000
407	791 CONTINUE	01943000
408	790 CONTINUE	000++610
409	789 XM = ((((FDBLE(COUNT2 + 1)) - DCOUNT) - DCOUNT) * UXH) + XI	01945000
410	60 TO 623	00095610
412	625 CONTINUE	01947000
412	RETURN	00087610
413	END	0006+610

BPRT . ADAMS

	of the state of the second
NDAMS	
J*TPF5.	
LLAHER-L-	
<⊄	

GALLAHER-L-J*1	[PF\$ aDAMS	
	SUBROUTINE ADAMS (NO XI & XF & YO PO WO DAVE EAD END ADMSCT & ANSTINSE	
N	IRXSRDR. RKSCFF)	
N	DOUBLE PRECISION DXV	
4	COMMON/COMMON/FH(35,1)	
	DOUBLE PRECISION XI, XF, P, DX	00488000
, c	INTEGER N. O'RKSFNS'RKSRDR	00489000
^ (DUIR F DRFCISTON Y FA FR	000490000
- 00	DIMENSION V(100) °EA(100) °ER(100)	00491000
0		00492000
	DIMENCION ADMCCE(29)	00493000
) t		00494000
4 0	DIMENCION DKATFF(D1)	00066700
א L - ₽		000496000
) : *	ANTEVEN **	000497000
t U 	DOUDTE TREVALOR F. B. D. A. D. D. D. A. D. D. D. D. D. A. D.	00066700
) \ 1 •		000000000000000000000000000000000000000
10	DIMENSION BUIGUES(16) PHBULO PHBULO)	00000000
~ ~	DOUBLE PRECISION TEMP9, C, YP,YC,YD,FP,FC,EAU,EAL,ERU,ERL,MAL,HKL	00201000
18	DIMENSION TEMP9(100),C(100),YP(100),YC(100),YD(100),FP(100),FC(10	000502000
19	1), EAU(100), EAL(100), ERU(100), ERL(100), MAL(100), MRL(100)	00203000
20	DOUBLE PRECISION H, X, CU, C2, GR, YCI, BSQ2, FHJI, FMUI, HBMU, MIUP, HBSMU,	00504000
21	1HBSQ2, ERROR, CHANGE, C2MQP5, INTRVL	00202000
22	INTEGER I, JOK, CLODC, PC, MURMULT, JZERO, QTZMI, QMINSI, QTIMS2	00506000
23	LOGICAL BGOOD,FLIPPD,TOSMLL	00202000
10 te	DEFINE FUBLE(I) = $DBLE(FLOAT(I))$	00508000
25	DX II XU	
V C	COMODE - 1 (Do / (Engle(o ** (0 + 5)))	00509000
V	T S I TSNIWD	
10	QTIMS2 = Q + Q	nnntrann
29	QT2M1 = QTIMS2 = 1	00512000
30	MU II 0	00513000
31	GO TO 204	00514000
32	205 MU = MU + 1	00212000
33	204 IF (MU "LE" QMINSI) GO TO 202	00516000
さつ	60 T0 203	00212000
30	202 B(MU + 1) = ADMSCF(MU + 1)	00518000
36	III2 II MU + Q	00219000
37	BS(MU + 1) = ADMSCF(III2 + 1)	00520000
38	GO TO 205	00521000
39	203 BSQZ = ADMSCF(QTIMS2 + 1)	00522000

GR = ADMSCF(QTIMS2 + 2)	00523000 00524000
INTRVL = XF = XI	00525000
H = INTRVL	00526000
DX = ABS(DX)	00527000
206 IF ((ABS(H) .LE. DX) .AND. C1 .GE. Q) GO TO 207	00528000
$c_1 = c_1 + c_1$	00529000
H = INTRVL / FUBLE(C1)	0023000
GO TO 206	00231000
$207 C_2 = FDBLE(C_1)$	
	00533000
JZERO # J	00234000
CALL FUNCTI(N, XI, Y, TEMP9)	00535000
	00536000
60 TO 210	00237000
211 II = II + 1	00538000
210 IF (II °LE, N) GO TO 208	00239000
GO TO 209	00240000
208 FH(1, II + 1) = TEMP9(II + 1)	00541000
60 TO 211	00242000
209 X = XI	00243000
	00244000
60 TO 214	00242000
	00546000
214 IF (I «LE。 N) GO TO 212	00242000
60 TO 213	00248000
(1 + 1) = 1(1 + 1)	0024300
GO TO 215	0022000
213 B600D = °TRUE,	00251000
194 IF (BG00D) 60 TO 217	00552000
	00253000
60 TO 220	00224000
221 I F I + 1	00555000
220 IF (I .LE. N) 60 TO 218	00226000
60 T0 219	00257000
218 Y(I + 1) = YD(I + 1)	00228000
60 TO 221	00229000
219 CONTINUE	0026000
217 CONTINUE	00202000
216 X = XF = (INTRVL * (C2 / FUBLE(C1)))	00562000

30	MULT = START(N° XI° XF° CI° EA° ER° QMINSIO X° Y° FH° FH° Y° U° 10tomia do do do ksens. Rkscff)	00563000
10		00565000
1.00	60 TO 224	00566000
34	225 I II + 1	00567000
35	224 IF (I °LE N) 60 TO 222	00568000
36	GO TO 223	00569000
37	222 YP(I + 1) = Y(I + 1)	00570000
38	C(I + 1) = YP(I + 1)	00571000
39	GO TO 225	00572000
90	223 BGOOD = "TRUE"	00573000
16	C1 II C1 * MULT	00574000
20	C2 = (C2 * FDBLE(MULT)) - FDBLE(Q)	00575000
100		00576000
* e	IF (J .GE. 0) 60 TO 227	00577000
95	U = U + QT2M1	00578000
96	227 CONTINUE	00279000
16	226 DC = 0	00580000
96	PC II Q	00581000
66	CU = (C1 ** (= P)) * GR	00582000
00	H = INTRVL / FDBLE(C1)	00583000
10	MU = 0	00584000
n N	GO TO 230	00585000
53	231 MU = MU + 1	00586000
94	230 IF (MU °LE, QMINS1) 60 TO 228	00587000
00	60 TO 229	00588000
)6	228 HB(MU + 1) = B(MU + 1) * H	00589000
10	HBS(MU + 1) = BS(MU + 1) * H	00590000
18	60 TO 231	00591000
60	229 HBSQZ = BSQZ * H	00592000
0		00593000
çanış Banış	60 TO 234	00594000
N	235 1 1 1 4 1	00595000
Ŋ	234 IF (I ,LE N) 60 TO 232	00596000
2	60 T0 233	00597000
5	232 EAU(I + 1) = EA(I + 1) * CU	00598000
6	EAL(I + 1) = EAU(I + 1) * C2MQP5	00599000
	ERU(I + 1) = ER(I + 1) * CU	000000000
6	ERL(I + 1) = ERU(I + 1) * C2MQP5	00601000
63	HAL(I + 1) = ABS(EAL(I + 1) / HBSQ2)	00602000

-	HRL(I + 1) = ABS(ERL(I + 1) / HBSQZ)	00603000
	60 T0 235	00604000
-	233 CONTINUE	00605000
	195 X II XF - (C2 * H)	00606000
	NW I	00607000
	60 70 238	00608000
	239 MU = MU + 1	00060900
~	238 IF (MU .LE. QMINS1) GO TO 236	0001900
	60 TO 237	00611000
	236 J H J + 1	00612000
~	IF (J .NE, GT2M1) 60 TO 241	00613000
		00041900
~	241 CONTINUE	00615000
20	240 HBMU = HB(MU + 1)	00616000
~	HBSMU = HBS(MU \div 1)	00617000
10	₹₹ 1 1 2 2	00618000
.0	GO TO 244	00619000
		00620000
m	244 IF (I °LE, N) GO TO 242	00621000
•	GO TO 243	00622000
•	242 FMUI # FH(J + 10 I + 1)	00623000
	YP(I + 1) = (FMUI * HBMU) + YP(I + 1)	00624000
~	C(I + 1) = (HBSMU * FMUI) + C(I + 1)	00625000
ŝ	GO TO 245	00626000
	243 GO TO 239	00627000
10	237 CALL FUNCTION, XP YP, FP)	00628000
.0	196 1 1	00629000
~	GO TO 248	00630000
		00631000
~	248 IF (I °LE° N) 60 TO 246	00632000
~	G0 T0 247	00633000
	246 YC(1 + 1) = (FP(1 + 1) * HBSQZ) + C(1 + 1)	00634000
~	60 TO 249	00635000
~	247 CALL FUNCTION, X, YC, FC)	00636000
		00637000
-	GO TO 252	00638000
		00639000
2	252 IF (I .LE. N) 60 TO 250	00640000
		0001+900
	250 CHANGE II ABS(FCVL + 11 = FFVL + 11)	000+V000

00682000	272 FHUI II FH(U + 10 I + 1)) Q
00681000	073 FL(1 & 1 & 1) II FP(I & 1)	- a
0068000	FEND F 4F 4 - 4/ E F1/4 F 4/ G 4/ G F1/6 - 4/ E F1/6 - 4/ G 7/ F2 0P0	
0067900		3 4
00678000	268 TE (NOT FLIPPU) GO TO 273	2
00677000	60 TO 269	5
00676000	270 IF (I °LE° N) 60 TO 268	2
00675000		N
00674000	60 TO 270	10
00673000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>)</u> 0
00672000	266 TOSMLL = TRUE	50
00671000	267 CONTINUE	8
00670000		2
00669000	IF (J ,NE, QT2M1) GO TO 267	36
00668000		20
00667000	261 FLIPPD = FALSE.	34
00666000	264 GO TO 263	2
00665000	265 CONTINUE	N
00664000	IF (CHANGE .GT. ABS(HRL(I + 1) * FP(I + 1)) 60 TO 196	
00663000	IF (CHANGE .LE. HAL(I + 1)) 60 TO 265	30
00662000	260 CHANGE = ABS(FP(I + 1) = FC(I + 1))	6
00661000	60 T0 261	8
00660000	262 IF (I "LE" N) GO TO 260	1
00659000		0
00658000	60 TO 262	ŝ
00657000		74
00656000	257 CALL FUNCTION, X, YC, FP)	10
00655000	G0 T0 259	22
00654000	$256 \ YC(I + 1) = (FC(I + 1) + HSQZ) + C(I + 1)$	
00653000	60 T0 257	70
00652000	258 IF (I .LE. N) 60 TO 256	5
00022000	259 I II I + 1	8
00650000	GO TO 258	10
006#3000	197 I = 1 197	9
00648000	60 T0 198	2
00647000	251 FLIPPD = °TRUE,	54
00046000	254 G0 T0 253	N
00645000	255 CONTINUE	N
00044000	IF (CHANGE .6T. ABS(HRL(I + 1) * FC(I + 1))) 60 TO 197	
00643000	IF (CHANGE % LE, HAL(I + 1)) 60 TO 255	00

000969000 00697000 00698000 000669000 000000200 00101000 00702000 00703000 00704000 00705000 00707000 00708000 00687000 00688000 00689000 0069000 00016900 00692000 00693000 00694000 00695000 00706000 00060200 00210000 00711000 00712000 00713000 00714000 00715000 00716000 000112000 00718000 00061200 00720000 00721000 00722000 200 280 60 T0 60 70 279 277 1)) GO TO * YCI) 60 TO * YCI) 292 286 289 275 QT2M1) 60 TO 60 TO 282 - YCI) C(1+I) 4 Â G0 T0 TOSMLL) GO TO 10 199 (C2 °LT °1) G0 T0 284 3) 60 TO 288 GO TO ÷ 4 ÷ 4 EAL(I ERLIT EAULI ERU(I YCI= FHUI * HBSQZ + ERROR = ABS(YP(I+1) QT2M1) .NOT. B600U) ° 86000 09 . FALSE. = C2 - 1.000 $+ 1) = \gamma CI$ " "FALSE. .61, ц Ц Ц Ц Ц Ц SR. (ERROR .LE. (ERROR .GT. BGOOD = TRUE + T) = χCI = ABS(YCI = YCI $\gamma P(I+1) = \gamma CI$ و ليا و ø н 4 РС 4 ПС 4 ø IF (ERROR IF (ERROR , NOT . , NOT. 0 JZERO = J 60 TO 281 0 283 J = JZERO F (JZERO 0 201 JZERO = 0 60 TO 195 60 TO 271 0 27 TOSMLL = CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE (T+T)) 202 00 C d BGOOD YD (I 60 1 L 7 TCT ž. 09 с d 00 u ١L ŝ Ĩ. 283 279 269 289 288 275 270 282 280 284 287 290 290

ANA 215 510 219 2 208209 210 214 221 2222 せいい 234 235 236 2387

286	CONTINUE DC = D	00724000
, v		00725000
		00726000
	IF (JZERO NE GT2M1) GO TO 293	00727000
		00728000
292	CONTINUE	00729000
292	5 60 T0 195	00730000
195	0 C1 = C1 / 2	00731000
	C2 = (C2 = 1.0D0) / 2.0D0	00732000
	DC 11 0	00733000
	PC II Q	00734000
	CU II (CI ++ (I P)) + GR	00735000
	H = INTRVL / FUBLE(C1)	00736000
	MU III	00737000
	60 T0 296	00738000
297	/ WU = WU + 1	00739000
296	• IF (MU .LE. GMINSI) 60 TO 294	00040000
	G0 T0 295	00741000
294	HB(MU + 1) = B(MU + 1) * H	00742000
	HBS(MU + 1) = BS(MU + 1) * H	00743000
	60 TO 297	00744000
295	0 HBSQZ = BSQZ * H	00745000
		00746000
	GO TO 300	00747000
301	8	00748000
300	DIF (I	00064200
	60 TO 299	000220000
296	<pre>EAU(I + 1) = EA(I + 1) * CU</pre>	00751000
	EAL(I + 1) = EAU(I + 1) * C2MQP5	00752000
	ERU(I + 1) = ER(I + 1) * CU	00753000
	ERL(I + 1) = ERU(I + 1) * C2MQP5	00754000
	HAL(I + 1) = ABS(EAL(I + 1) / HBSQ2)	00755000
	HRL(I + 1) = ABS(ERL(I + 1) / HBSQ2)	00756000
	60 TO 301	00757000
295		00758000
	MC II -	00759000
	60 TO 304	00760000
305	T + NN = NN +	00761000
304	: IF (MU °LE, QMINSI) 60 TO 302	00762000

	G0 T0 303	00763000
302		00764000
	IF (J ,GE, 0) GO TO 307	00765000
	U = U + QT2M1	00766000
307	CONTINUE	00767000
306		00768000
	IF (K .GE. 0) 60 TO 309	00769000
	KIIK + QT2M1	000770000
309	CONTINUE	00771000
308		00772000
	60 TO 312	00773000
313		00774000
312	IF (I °LE° N) 60 TO 310	00775000
	60 TO 311	00776000
310		0077700
	60 TO 313	00778000
311	60 TO 305	00067700
303		00780000
	J = JZERO = 1	00781000
	IF (J 6E 0) 60 TO 315	00782000
	U = U + 0T2M1	00783000
315	CONTINUE	00784000
314	60 TO 195	00785000
200		00786000
	IF (J 6E, 0) 60 TO 317	00787000
	J = J + QT2M1	00788000
217	CONTINUE	00068200
316	JZERO = J	0006200
	$C_1 + C_1$	0016200
	C2 = (C2 + C2) + 2°0D0	00792000
	IF (C2 %LT, Q) GO TO 201	0026200
	60 TO 194	00046200
201	IF (FLIPPD) 60 TO 320	0026200
		00096200
	GO TO 323	00026200
324		00798000
323	IF (I .LE. N) 60 TO 321	00066200
	GO TO 322	00800000
12M	E(1 + 1) = E(1 + 1)	00801000
	60 TO 324	00802000

00803000	00804000	00020800	00000000	00020800	000808000	00060800	0001000	00811000	00812000	00813000	00814000	00815000	JUB16000	00817000	00818000	00819000	00828000	00829000	00002000
<u> </u>	<u> </u>	<u> </u>			~	-	<u> </u>	~	~~~	- -	~	~	"taul"	×		~	~	ω.	~
														ž					
														ER°					
														EA °	4.				
														å					
														RKSCFF 0	-				
												<pre>>>></pre>	*.	RKSRDR .					
												:DBLE (C1	1. 1. 1.	XKSFNS [®]					
						24						2	332	8					
		326	L L			50	L	Â				Ü	10	ХF°	•				
		20				09	*	4- 				N N	09	×					
		09	۰.			ŝ		YOU				NTR	6	ŝ	•,				
tel	tut	(qo	-	50	Ganĝ	LU LU	8	11	30	1.1	<u>_</u> 111	۲ ب	ц В	ANKS		l s l	ŕ		ന
INNI.	NNI	BGO		0 0	 	-	0 0	****	0	NNI	N	۲. ۲	S S	J.	t t	INNI.	RN		×
CONT	CONT			000	-	Ľ	000	I)	00	LNOC	CONT	11 ×	_L_	CAL		CONT	2570	No.	300
222	202	5		-	30	53	-	527		28	20	52		-	æđ	32			34
1.1	6	r,	r		61	·		e.1		171		5	•			£.	,		U U
320	22	322	323	324	325	326	327	328	329	330	331	332	333	334	30	336	537	338	339

BUTCHR BUTCHR

<pre>DHEFFS.BUTCHR DAFFFS.BUTCHR SUBJOUTINE BUTCHKIN, XI, XF, K, EA, ER, DXV, CON, EX, RKL, YIV, SUSRAF RECUSTON DAV DOUBLE PRECISTON VIV.FA.FR DOUBLE PRECISTON VIV.FA.FR DOUBLE PRECISTON VIV.FA.FR INTEGER N.K DOUBLE PRECISTON RC DOUBLE PRECISTON VF DOUBLE PRECISTON VF DOUBLE PRECISTON VF DOUBLE PRECISTON VIAT, DI DOUBLE PRECISTON VIAT, DI DOUBLE PRECISTON NC DOUBLE PRECISTON VIAT, DI DOUBLE PRECISTON VIAT, DI DOUBLE PRECISTON SC1, DOUBLE PRECISTON PC, DA, COLASCOLASCOGA, COGA, TESTO FEMPT DOUBLE PRECISTON SC1, DOUBLE PRECISTON SC1, DOUBLE PRECISTON SC1, DOUBLE PRECISTON PC, DOUPLE PRECISTON DA INTEGER C1, DOUBLE PRECISTON PC, DOUPLE PRECISTON DA INTEGER C1, DOUBLE PRECISTON ND INTEGER C1, DOUBLE PRECISTON ND INTEGER C1, DOUBLE PRECISTON DA INTEGER C1, DOUBLE PRECISTON PC, DA INTEGER C1, DA INTEGER C1, DA INTEGE</pre>		00833000 00834000 00835000 00835000	00837000 00838000 00838000		00844000 00844000	00846000 00847000	00848000 00849000	00005800	00851000	00853000	00854000	00856000	00857000	00859000	00860000	00861000	00863000	00864000	00865000	00866000	00807000
<pre></pre>	6 N T X 6					Y . TENE															
<pre></pre>	R K K K K K					To TE W															
<pre>d*TFF5.eBUTCHR District Riscords DOUBLE PRECISTON DXV DOUBLE PRECISTON DXV DOUBLE PRECISTON TVV.EAFER DOUBLE PRECISTON TVV.EAFER DOUBLE PRECISTON TVV.EAFER DOUBLE PRECISTON TVVEAFER DOUBLE PRECISTON TVVEAFER DOUBLE PRECISTON TVVEAFER DOUBLE PRECISTON TVC. INTEGER N.K DOUBLE PRECISTON TVC. DOUBLE PRECISTON DX2 DOUBLE PRECISTON DX2 DX7 DOUBLE PRECISTON DX2 DX7 DX7 DX7 DX7 DX7 DX7 DX7 DX7 DX7 DX7</pre>	ON CON					60,755			(00T)T.												
J*TPF5.BUTCHR SUBROUTINE BUTCHR(N, XI, XF, K, EA, ER, DOUBLE PRECISION DXV COMMON/COMMON/F DOUBLE PRECISION XI, YF, K, EA, ER, DOUBLE PRECISION XI, YF, DX, F, F, DX, F, F, DX, F, F, DX, F, F, F, DX, F, F, DX, F, F, F, F, DX, F, F, F, DX, F,	uxv, c					064,00			.00) ° F V												
J*TPF5.8UBROUTINE BUTCHR(N, XI, XF, K, EP IRKSNF, RKSOUR SUBROUTINE BUTCHR(N, XI, XF, K, EP UOUBLE PRECISION YIV, EA, ER DOUBLE PRECISION XI, FA, DX, EA INTEGER N, K DOUBLE PRECISION XI, F, DX, EX INTEGER N, K DOUBLE PRECISION XI, F, DX, EX DOUBLE PRECISION RKC DOUBLE PRECISION RKC DOUBLE PRECISION RKC DOUBLE PRECISION CON DIMENSION Y(55,1), F(35, 1) DOUBLE PRECISION CON DOUBLE PRECISION CON DOUBLE PRECISION CON DOUBLE PRECISION DX DOUBLE PRECISION DX NTEGER CYL INTEGER COUNT, TOTCNT, CYL1, CYL2, MI DOUBLE PRECISION COO DIMENSION COO(19) ISUMYP(100), SUMYP(100), INTEGER KM3, V6, K61, K62 DOUBLE PRECISION OM DIMENSION COO(19) ISUMYP(100), SUMYP(100), DOUBLE PRECISION OM DOUBLE PRECISION COO DIMENSION COO(19) ISUMYP(100), SUMYP(100), DOUBLE PRECISION OM DOUBLE PRECISION COO DIMENSION COO(19) ISUMYP(100), SUMYP(100), DOUBLE PRECISION OM DOUBLE PRECISION OM DOUBLE PRECISION COO DIMENSION COO(19) ISUMYP(100), SUMYP(100), DOUBLE PRECISION OM DIMENSION COO(19) INTV DOUBLE PRECISION OM DIMENSION COO DIMENSION COO	L L L L L L L L L L L L L L L L L L L					COLBAC		COFVI	SUMYC (1												
J*TFF5.BUTCHR LIRKSNF, RKSODR) LIRKSNF, RKSODR) LIRKSNF, RKSODR) LIRKSNF, RKSODR) LIRKSNF, RKSODR) COMMON/COMMON/F DOUBLE PRECISION YIV, EA, ER INTEGER N, K DOUBLE PRECISION XI, YF, DX, E) INTEGER N, K DOUBLE PRECISION XI, YF, DX, E) DOUBLE PRECISION RKC (91) DOUBLE PRECISION CON DOUBLE PRECISION SCI, X DOUBLE PRECISION DX2 DOUBLE PRECISION DX2 DOUBLE PRECISION SCI, X DOUBLE PRECISION DX2 DOUBLE PRECISION SCI, X DOUBLE PRECISION SCI, Y INTEGER KM1, K6, K61, K62, K61, K62, K61, K62, K61, K61, K62, K61, K61, K62, K61, K61, K61, K62, K61, K61, K62, K61, K61, K62, K61, K61, K61, K61, K61, K61, K62, K61, K61, K62, K61, K61, K61, K61, K61, K01, K62, K61, K61, K61, K01, K62, K61, K61, K61, K61, K61, K61, K61, K61	× ×	ER (100)	<u>.</u>			S. COLA		(P , SUM)	5 (00T)	(L2 M1									~	L00)	
J*TPF5.BUTCHR LRKSNF, RKSOUTINE BUTCHR(N, LRKSNF, RKSOUR) LRKSNF, RKSOUR) DOUBLE PRECISION YIV, DOUBLE PRECISION XI, Y INTEGER RKSNF, RKSOUR INTEGER RKSNF, RKSOUR INTEGER RKSNF, RKSOUR DOUBLE PRECISION RKC DOUBLE PRECISION RKC DOUBLE PRECISION VFF DOUBLE PRECISION VFF INTEGER L, J.CYL, INDEX INTEGER L, J.CYL, INDEX INTEGER L, J.CYL, INDEX INTEGER COUNT, TOTCNT, DOUBLE PRECISION SCI, DOUBLE PRECISION SCI, INTEGER KM1*K6, MOI VFF INTEGER COUNT, TOTCNT, DOUBLE PRECISION SCI, DOUBLE PRECISION NC, INTEGER KM1*K6, MOI VFF INTEGER KM1*K6, MOI VFF DOUBLE PRECISION COO INTEGER KM1*K6, MOI VFF DOUBLE PRECISION RE, ADA INTEGER KM1*K6, MOI VFF INTEGER VFF INT		EA, ER (100) # E	DX E		Â	COA, COE	e C L e M	TP'SUM	SUMYP	C I I C			0	AI.			XOX	100)	7. TEMP	TEMP9(
J*TFF5.BUTCHR IRKSNF, RKSOUR) DOUBLE PRECISIO COMMON/COMMON/F DOUBLE PRECISIO DOUBLE PRECISIO DIMENSION Y1V(1) INTEGER RKSNF, R INTEGER RKSNF, R DOUBLE PRECISIO DIMENSION RKC(9 DOUBLE PRECISIO DIMENSION RKC(9 DOUBLE PRECISIO DIMENSION SUMYI DOUBLE PRECISIO DIMENSION SUMYI DOUBLE PRECISIO DOUBLE PRECISION INTEGER KM3/J2	HK (N.	N YIV.I 00) EA KSODR	X X X X X X X X X X X X X X X X X X X			N DX1	* INDEX	N SUMY		OTCNT .	000 R	• . k			N INTV	J3, J6	N X V X V X V X	O) AE C	N TEMP	(1001)	
J.* TPF % BUTCHR LINTEGER PRIVITION LINTEGER	E BUTCI SODR) ECISIO	KSNK KSNK KSNK				CISIO CS	Jecyt V Secyt	ECISIO	SUMYI		ECISIO	YO	OUNTR	IOISTOE	ECISIO	M30U2		Rr (10	ECISIO	TEMP 7	p-rd
* * * * * * * * * * * * * *	CHR NF. RK	MENER MENER		BLE PR	BLE PRION	BLE PR		BLE PR	ENSION	EGER C	BLE PR	EGER C	EGER C	BLE PR	BLE PR	EGER K	щ щ й й й й й	ENSION	BLE PR	ENSION	т Ш Ю Ш
	LRKS LRKS					DOU	L L		WI0	P Z Z		Z Z	INI		000	INT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000	DIM	jana Marti
	ст. С. С.																				
N H H H H H H H H H H H H H	L L L L L L L L L L	t 0 0 > 0	000-	- (V M) : 	1001	- 30 O	100	4 () V V	N a	ณ t เก V	4 Q N N	- 20 I N	ው ((ህ ኮ	0 H 0 M	N 10	33	3 V N K) (Q (M	2	300	6 M

DEFINE FDBLE(I) = DBLE(FLOAT(I)) EQUIVALENCE(F(1801), Y(10 1))	00868000
	00869000
60 TO 343	00870000
344 1 1 1 4 1	00871000
343 IF (I °LE, N) 60 TO 341	00872000
60 70 342	00873000
$341 \forall (1 \circ 1 + 1) = \forall I \land (1 \leftrightarrow 1)$	00874000
GO TO 344	00875000
342 IF (((K ONE 1) OAND, K ONE 2) OAND, K ONE 31 GO TO 346	00876000
ONT = 5	00877000
60 TO 345	00878000
346 ONT = 2,000 / 3,000	0006/800
342 X6 11 6 * K	00880000
X61 II (6 * X) + 3	00881000
X62 II (6 * X) + 3	00882000
	00883000
INTV = XF = XI	00884000
	00885000
	00886000
347 IF ((C1 "GE" K + 1) "AND" ABS(INTV) / FDBLE(C1) "LE" ABS(DX)) GO	00887000
110 348	00888000
	00889000
60 TO 347	000680000
348 C2 = C1	00016800
P2 II 1.000 / (FUBLE(2 ** ((2 * K) + 4)))	00892000
CYL II O	00893000
CYO = 0	000%68000
TOTCNT = 0	00895000
	00896000
60 TO 351	00897000
	000868000
351 IF (II LE N) 60 TO 349	000668000
60 TO 350	00000600
349 TEMP7(II + 1) = Y(1, II + 1)	00010600
60 TO 352	00902000
350 CALL FUNCTION, XI, TEMP7, TEMP9)	00020600
	0000000000
60 10 355	00020600

01	355 IF (II °LE, N) GO TO 353	00020600
01	GO TO 354	0080600
M	$353 F(1 \cdot 11 + 1) = TEMP9(11 + 1)$	00060600
	GO TO 356	0001600
	354 CONTINUE	0011600
.0	338 COUNTR = KM1	00912000
~	I = START(Ne XIP XFe Cle EAP ERP KMLP XF YLVP YP Fe YLVP CYOP 16P	00913000
~	12P EXP RKSNPP HKC)	
~	$C_1 + C_1 + I$	00GT600
~	$c_2 = (c_2 * FDBLE(I)) = FDBLE(KM1)$	nnot6nn
	CYL = CYO	00011600
~	340 DX = INTV / FDBLE(C1)	00918000
ŝ	XM3 11 0 * X83	0061600
-	0 II 7	002600
ŝ	60 TO 359	0012600
ŝ	360 J = J + 3	0092200
	359 IF (J °LE, KM3) GO TO 357	0092300
'n	60 TO 358	0092400
•	357 J2 1 2 * J	0092500
	COO(J + 1) = CON(J2 + 2) * DX	0092600
	COO(J + 2) 11 CON(J2 + 4) * DX	0062700
~	COO(J + 3) = CON(J2 + 6) * UX	0092800
~	GO TO 360	00929001
	358 SC1 H 3.0D*4*(C1**FX)	
10	IF(K.LE.3) SC1 = SC1*10	
<u></u>		0012600
	G0 T0 363	0093200
Ξ.	364 I II + 1	0063300
5	363 IF (I .LE. N) GO TO 361	0093400
0	GO TO 362	0093500
	361 AE(1 + 1) = EA(1 + 1) / SC1	0093600
	RE(I + 1) = ER(I + 1) / SCI	0093700
20	GO TO 364	0093800
	362 A1 # CON(K6 + 1) * DX	0062600
0	A2 == CON(K61 + 1) * DX	0004600
	A3 II CON(K62 + 1) * DX	0014600
-	337 XDXT = X + DX + OMT	0094200
്ന	XDX = X + DX	002#300
5		00944600

00	GO TO 367	00945000
)~ -	368 1 1 4 1	00094600
N	367 IF (I °LE° N) 60 TO 365	00044000
N N	GO TO 366	00948000
5	365 SUMYC(I + 1) = 0	0006+600
5	SUMYP(I + 1) = SUMYC(I + 1)	0002600
.9	SUMYIP(I + 1) = SUMYP(I + 1)	00015600
1	GO TO 368	00952000
8	366 J = 0	00953000
6	GO TO 371	00954000
50	372 J = J + 1	00955000
51	371 IF (J °LE° KM1) GO TO 369	00956000
20	60 TO 370	00957000
53	369 CYL3 = MOD((KM1 - J) + CYL,16)	00958000
54	U = 2 = 0	000626000
55		00960000
56	COA = CON(J6 + 1)	00961000
57	COB = COO(J3 + 1)	00962000
38	COLA = CON(J6 + 3)	00963000
59	COLB = COO(J3 + 2)	00964000
10	COGA = CON(J6 + 5)	00965000
eraliji veto	COGB = COO(J3 + 3)	00966000
Ą		00967000
5 S	G0 T0 375	00968000
<u>+</u>	376 I = I + 1	00069600
5 S	375 IF (I °LE° N) GO TO 373	0000/600
1 0	60 TO 374	0001/600
2	373 TEMPY = Y(CYL3 + 1 P I + 1)	00972000
48	TEMPF I F(CYL3 + 1 \cdot 1 + 1)	0002/600
64	SUMYIP(I + 1) = (SUMYIP(I + 1) + COA * TEMPY) + COB * TEMPF	0004/600
50	SUMYP(I + 1) = (SUMYP(I + 1) + COLA * TEMPY) + COLB * TEMPF	00975000
	SUMYC(I + 1) = (SUMYC(I + 1) + COGA * TEMPY) + COGB * TEMPP	00976000
52	GO TO 376	0001/600
53	374 GO TO 372	009/200
54	370 CALL FUNCTI(N, XDXT, SUMYIP, FVI)	0006/600
30		0008600
56	GO TO 379	000186000
10	380 I = I + 1	00982000
00	379 IF (I .LE. N) GO TO 377	0058500
56	GO TO 378	00200000

00	377 TEMPF = FV1(I + 1)	8600	15000
	SUMYP(I + 1) = SUMYP(I + 1) + A1 * TEMPF	8600	6000
2	SUMYC(I + 1) = SUMYC(I + 1) + A2 * TEMPF	8600	37000
	60 TO 380	8600	38000
54	378 CALL FUNCTI(N, XDX, SUMYP, FV1)	8600	00069
22	CYL = MOD(CYL + 1, 16)	6600	00006
20	CYO = MOD(CYL + KMI, 16)	6600	000Te
1	COUNT # 0	6600	2000
်ထွ		6600	3000
6	GO TO 383	6600	00046
0	384 1 1 + 1	6600	5000
-	383 IF (I °LE° N) 60 TO 381	6600	0009
2	60 TO 382	6600	7000
51	381 TEMPY = SUMYC(1 + 1) + A3 + FVI(1 + 1)	6600	8000
74	T1 H AF(1 + 1)	6600	0006
75	T2 = ABS(RE(I + 1) * TEMPY)	0100	0000
16	TEST = ABS(TEMPY = SUMYP(I + 1))	0100	0001
2.4	IF ((TEST &LE, T1) OR, TEST &LE, T2) GO TO 386	0100	2000
8	C2 11 C2 + C2	00100	3000
6/	CYL = MOD(CYL + 15/16)	0100	14000
30	CYO = MOD(CYL + KM1,16)	0100	15000
1	IF (C2 °GE & KM1) GO TO 388	0100	6000
N		0100	17000
33	60 TO 391	0100	8000
14	1 4 II = II 262	0100	00060
50	391 IF (II °LE° N) 60 TO 389	1010	0000
0	GO TO 390	0101	1000
37	369 TEMP7(II + 1) = $Y(CYO + 10 II + 1)$	1010	2000
0	60 T0 392	1010	3000
6	390 CALL SHANKS(N, X, XF, TEMP7, RKSNF, RKSODR, RKC, EX, EA,	• UX) 0101	4000
00		1010	5000
d d	60 T0 395	TOTO	6000
S.C.	396 II II II + 1	0101	7000
2	395 IF (II °LE° N) 60 TO 393	1010	8000
54	GO TO 394	1010	9006
35	393 Y(CYO + 1, 11 + 1) = TEMP7(II + 1)	0105	0000;
16	60 TO 396	0102	1000
2	394 GO TO 339	0105	2000
8	388 CONTINUE	0102	:3000
6	387 C1 II C1 + C1	0105	6000

$ \begin{array}{c} \text{Fict} \text{Yict} \text{if} \text{i} \text{i} \text{i} \text{i} \text{i} \text{i} \text{i} i$	386	CONTINUE	0102010
F (TFEST "6E, P2 * T1) "ANU, TEST "6E, P2 * T2) GO TO 398 01028000 COUNT = COUNT + 1 "ANU, TEST "6E, P2 * T2) GO TO 398 01035000 C = 2F = $(103 + 100)$ F (C2 $(56, 1) 60 TO 339$ F (C2 $(56, 1) 60 TO 339$ F (C2 $(56, 1) 60 TO 339$ F (C2 $(56, 1) 60 TO 401$ T = 11 + 1 F (C2 $(11, 1.6.)$) GO TO 402 C TO 403 T = 11 + 1) = $\gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(C\gamma O + 1 r I1 + 1)$ C = $\gamma(11 + 1) = \gamma(11 + 1)$ C = $\gamma(11 + 1) = \gamma(1)$ C = $\gamma(11 + 1)$ C = $\gamma(11 + 1) = \gamma(1)$ C = $\gamma(11 + 1)$	<i>,</i>	$(CYO + 1 \cdot 1 + 1) = TEMPY$	01027000
$\begin{array}{llllllllllllllllllllllllllllllllllll$		F ((TEST 6E, P2 * T1) AND, TEST 6E, P2 * T2) 60 T0 398	01028000
$ \begin{array}{l} \text{ONTINUE} \\ \text{CNTINUE} \\ \text{CNTINUE} \\ \text{CNTINUE} \\ \text{CS = Cs - 1.0D1} \\ \text{CS = Cs - 0) 60 TO 339} \\ \text{CS = Cs - 0) 60 TO 339} \\ \text{CS = Cs - 0) 60 TO 339} \\ \text{CS = Cs - 0) 60 TO 339} \\ \text{CS = Cs - 0) 60 TO 401} \\ \text{CS = Cs - 0) 60 TO 401} \\ \text{CS = Cs - 0) 60 TO 401} \\ \text{CS = Cs - 0) 60 TO 401} \\ \text{CS = Cs - 0) 60 TO 401} \\ \text{CS = Cs - 0) 60 TO 401} \\ \text{CS = Cs - 0) 60 TO 401} \\ \text{CS = Cs - 0) 60 TO 401} \\ \text{CS = Cs - 0) 60 TO 401} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 402} \\ \text{CS = Cs - 0) 60 TO 400} \\ \text{CS = Cs - 1 + 1) 1 \\ \text{CS = Cs - 0) 60 TO 400} \\ \text{CS = Cs - 1 + 1) 1 \\ \text{CS = 0} \\ C$	O	OUNT = COUNT + 1	01029000
So TO 354 To To 354 The C2 = C2 + 1.000 The C2 = C2 + 1.0000 The C1 = 1.00000 The C1 = 1.00000 The C1 = 1.00000 The C1 = 1.000000 The C1 = 1.0000000000000000000000000000000000	Ξ.	CONTINUE	01030000
$ \begin{array}{l} \text{CZ} = \text{CZ} - 10.000 \\ \text{X} = \text{XF} - (\text{DX} \times \text{CZ}) \\ \text{IF} (\text{CZ} \ 66, 1) \ 60 \ TO \ 401 \\ \text{IF} (\text{CZ} \ 66, 1) \ 60 \ TO \ 401 \\ \text{IF} (\text{CZ} \ 66, 1) \ 60 \ TO \ 401 \\ \text{II} = 11 + 1 \\ \text{III} = 1 \\ \text{III} = 1 \\ \text{III} = 1 \\ \text{III} = 11 + 1 \\ \text{III} = 10 \\ \text{O} \ 10 \ 406 \\ \text{O} \ 10 \ 400 \\ 10 \$		G0 T0 384	01031000
X = XF - (DX * C2) $Y = YF - (DX * C2)$ $F (C2 * 6E, 1) 60 T0 401$ $F (C2 * 6E, 1) 60 T0 402$ $F (C2 * 6E, 1) 60 T0 402$ $F (C2 * 6E, 1) 60 T0 402$ $F (11 * LE * N) 60 T0 402$ $F (11 * LE * N) 60 T0 402$ $F (11 * LE * N) 60 T0 402$ $F (11 * LE * N) 60 T0 402$ $F (11 * LE * N) 60 T0 402$ $F (11 * LE * N) 60 T0 402$ $F (11 * LE * N) 60 T0 402$ $F (11 * LE * N) 60 T0 402$ $F (11 * LE * N) 60 T0 406$ $F (11 * L * N) 60 T0 406$ $F (11 * LE * N) 60 T0 406$ $F (11 * LE * N) 60 T0 406$ $F (11 * LE * N) 60 T0 410$ $F (11 * LE * N) 60 T0 410$ $F (11 * LE * N) 60 T0 410$ $F (11 * LE * N) 60 T0 410$ $F (11 * LE * N) 60 T0 410$ $F (11 * LE * N) 60 T0 410$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$ $F (11 * LE * N) 60 T0 414$		C2 # C2 = 1.0D0	01032000
IF (C2 ,66, 0) 60 T0 339 IF (C2 ,66, 1) 60 T0 401 II = 0 11 = 0 11 = 0 11 = 0 11 = 1 1 = 0 11 = 1 1 = 0 11 = 1 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 0 1 = 0 1 = 0 1 = 0 1 = 1 + 1 1 = 0 1 = 0 1 = 0 1 = 1 + 1 1 = 0 0 = 10 + 10 1 = 1 + 1 1 = 0 1 = 0 1 = 0 1 = 1 + 1 1 = 0 1 = 0 1 = 0 1 = 0 1 = 0 1 = 0 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 0 1 = 0 1 = 0 1 = 0 1 = 0 1 = 1 + 1 1 = 0 1 = 0 1 = 0 1 = 1 + 1 1 = 0 1 = 0 1 = 1 + 1 1 = 0 1 = 0 1 = 0 1 = 1 + 1 1 = 0 1 = 0 1 = 1 + 1 1 = 0 1		X II XF II (DX + C2)	01033000
IF (C2 , GE, 1) GO TO 401 II = 0 OT 0 404 IT = 11 + 1 OT 0 404 OT 0 404 IF (II , LE, N) GO TO 402 OT 0 405 OT 0 406 OT 0 407 II = 11 + 1 I = 11 + 1 I = 0 OT 0 406 OT 0 406 OT 0 407 II = 0 OT 0 407 OT 0 410 OT 0 410		IF (C2 °EQ. 0) GO TO 339	01034000
II = 0 II = 1 II = 1 II = 1 II = 1 + 1 II = 1 + 1 II = 1 + 1 E (II $ [L_{E} \ N)$ 60 T0 402 E 0 T0 405 T = 0 T = 0 CALL SHANKS(N, XF, TEMP7, RKSNF, RKSODR, RKC, EX, EA, EK, UX) 0104200 01042000 01042000 01042000 010445000 01045000 01052000 01055000 0105000 0105000 01055000 01055000 01055000 0100000 0105000 0100000 0105000 0100000 0105000 0100		IF (C2 6E6 1) 60 TO 401	01035000
G0 T0 404 II = II + 1 II = II + 1 II = II + 1 II = II + 1 FEMP7(II + 1) = $\gamma(C\gamma 0 + 1^{\circ} II + 1)$ G0 T0 405 G0 T0 405 G0 T0 405 G1 407 G1 1 = II + 1 II = II + 1 II = II + 1 II = II + 1) = TEMP7' RKSNF RKSODR RKC' EX EAP EK UX) 01044000 G1 407 G1 41 II + 1) = TEMP7(II + 1) G1 407 G1			01036000
II = II + 1 IF (II ${}_{0}$ LE, N) GO TO 402 IF (II ${}_{0}$ LE, N) GO TO 402 TEMP7(II + 1) = Y(CYO + 1' II + 1) GO TO 405 CALL SHANKS(N, X' X'F, TEMP7' RKSODR' RKC' EX, EA' EY, DX) 01042000 GO TO 407 IF (II ${}_{0}$ LE, N) GO TO 406 GO TO 407 IF (II ${}_{0}$ LE, N) GO TO 406 GO TO 407 IF (II ${}_{0}$ LE, N) GO TO 406 GO TO 407 F (II ${}_{0}$ LE, N) GO TO 410 GO TO 407 F (II ${}_{0}$ LE, N) GO TO 410 GO TO 407 F (II ${}_{0}$ LE, N) GO TO 410 GO TO 407 F (II ${}_{0}$ LE, N) GO TO 410 GO TO 412 IF (II ${}_{0}$ LE, N) GO TO 410 GO TO 412 IF (II ${}_{0}$ LE, N) GO TO 410 GO TO 413 CONTINUE II = 1 + 1) F (II ${}_{0}$ LE, N) GO TO 410 GO TO 413 F (II ${}_{0}$ LE, N) GO TO 410 GO TO 413 F (II ${}_{0}$ LE, N) GO TO 410 GO TO 413 F (II ${}_{0}$ LE, N) GO TO 410 GO TO 413 F (II ${}_{0}$ LE, N) GO TO 410 GO TO 413 F (II ${}_{0}$ LE, N) GO TO 410 CALL FUNCTI(N, X' TEMP7) II = 1 COLUENCENCION F (II ${}_{0}$ LE, N) GO TO 414 F (II ${}_{0}$ LE, N) GO TO 414 COLUENCENCION F (II ${}_{0}$ LE, N) GO TO 414 F (II ${}_{0}$ LE, N) GO TO 410 F (II ${}_{0}$ LE, N) CU		60 TO 404	01037000
IF (II «LE« N) G0 T0 402 G0 T0 403 TEMPT(II + 1) = $\gamma(\varsigma\gamma 0 + 1, II + 1)$ G0 T0 405 G0 T0 405 CALL SHANKS(N, X, XF, TEMP7, RKSNF, RKSODR, RKC, EX, EA, EN, DX) 01042000 II = 0 CALL SHANKS(N, X, XF, TEMP7, RKSNF, RKSODR, RKC, EX, EA, EN, DX) 01046000 II = 1 + 1 I = 0 T = 0 T = 0 T = 0 T = 0 T = 1 + 1 T = 1 + 1) T = 1 + 1 T = 1 + 1) T = 1 + 1 T = 1 + 1 T = 0 T = 1 + 1 T = 1 + 1 + 1 T = 1 + 1 + 1 + 1 T			01038000
GO TO 4.03 TEMPT(II + 1) = $\gamma(C\gammaO + 1 \cdot II + 1)$ TEMPT(II + 1) = $\gamma(C\gammaO + 1 \cdot II + 1)$ CALL SHANKS(N, X' XF, TEMP7' RKSNF' RKSODR' RKC' EX, EA' EN' UX) 01042000 II = 0 II = 0 II = 11 + 1 I = 11 + 1 O 104900 0 104900 0 104900 0 0 0 407 0 1 410 0 1 410 0 1 65000 0 1 6400 0 1 65000 0 1 64000 0 1 6 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	V	IF (II °LE N) GO TO 402	01039000
TEMP7(II + 1) = $\gamma(C\gamma 0 + 1, I + 1)$ 01041000 60 T0 405 CALL SHANKS(N, X; XF, TEMP7, RKSNF, RKSODR, RKC, EX, EA, EK, UX) 01044000 II = 0 60 T0 408 II = 1 + 1 F (II + 1, LE, N) 60 T0 406 60 T0 407 F (II + 1) = TEMP7(II + 1) 01049000 $\gamma(C\gamma 0 + 1, I I + 1) = TEMP7(II + 1)$ 01049000 $\gamma(C\gamma 0 + 1, I I + 1) = TEMP7(II + 1)$ 01050000 60 T0 409 60 T0 412 II + 1) = $\gamma(C\gamma 0 + 1, I I + 1)$ 01055000 11 = II + 1 60 T0 412 11 + 1) = $\gamma(C\gamma 0 + 1, I I + 1)$ 01055000 60 T0 413 F (II -LE, N) 60 T0 414 60 T0 413 F (II -LE, N) 60 T0 414 60 T0 414 F (II -LE, N) 60 T0 414 60 T0 413 F (II -LE, N) 60 T0 414 60 T0 414 F (II -LE, N) 60 T0 414 60 T0 414 F (II -LE, N) 60 T0 414 60 T0 415 F (II -LE, N) 60 T0 414 F (II -LE, N) 70 0000 F (II -LE, N) 70 00000 F (II -LE, N) 70 0000 F (II -LE,		G0 T0 403	01040000
G0 T0 405 CALL SHANKS(N, X, XF, TEMP7, RKSNF, RKSODR, RKC, EX, EA, EK, DX) 01042000 11 = 0 01046000 11 = 11 + 1 1 = 1 + 1 0 1047000 0 104800 0 104800 0 104800 0 104800 0 1004800 0 1005100 0 1005100 0 1055000 0 1005000 0 10050000 0 10050000 0 10050000 0 10050000000 0 10050000000000		$TEMP7(II + 1) = Y(CYO + 1 \circ II + 1)$	01041000
CALL SHANKS(N, X; XF, TEMP7; RKSNF, RKSOUR; RKC; EX, EA; EW, UX) 01045000 II = 0 OI 0 408 I = 1 + 1 I = 1 - 0 IF (II $_{1}$ LE $_{1}$ N) GO TO 406 OI 0 407 OI 0 407 OI 0 409 OI 0 52000 OI 0 412 II + 1) I = II + 1 I = II + 1 I = II + 1 OI 0 52000 OI 0 52000 OI 0 52000 OI 0 55000 OI 0 412 OI 0 52000 OI 0 412 OI 0 52000 OI 0 412 OI 0 52000 OI 0 412 OI 0 52000 OI 0 52000		G0 T0 405	01042000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CALL SHANKS (N, X, XF, TEMP7, RKSNF, RKSODR, RKC, EX, EA, EK, UX)	01043000
$ \begin{array}{c} \text{GO} \ \mbox{TO} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		0 11 11	01044000
II = II + 1 $IF (II * LE* N) GO TO 406$ $GO TO 407$ $Y(CYO + 1* II + 1) = TEMP7(II + 1)$ $QI046000$ $QI049000$ $QI0520000$ $QI0520000$ $QI0520000$ $QI0520000$ $QI0520000$ $QI0520000$ $QI0520000$ $QI0550000$ $QI0560000$ $QI0500000$ $QI0500000$ $QI0500000$ $QI0500000$ $QI0500000$ $QI0500000$ $QI0500000$ $QI0500000$ $QI0500000$ $QI05000000$ $QI050000000$ $QI00000000000000$ $QI0000000000000000000$ $QI00000000000$		GO TO 408	01042000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			01046000
$ \begin{array}{c} \text{GO TO 407} \\ \text{Y}(\text{CYO} + 1, \text{II} + 1) = \text{TEMP7}(\text{II} + 1) \\ \text{GO TO 409} \\ \text{GO TO 409} \\ \text{GO TO 409} \\ \text{GO TO 339} \\ \text{GO TO 412} \\ \text{II} = 1 \\ \text{II} + 1 \\ \text{II} = 0 \\ \text{GO TO 411} \\ \text{II} + 1) = \text{Y}(\text{CYO} + 1, \text{II} + 1) \\ \text{GO TO 412} \\ \text{GO TO 411} \\ \text{FMP7}(\text{II} + 1) = \text{Y}(\text{CYO} + 1, \text{II} + 1) \\ \text{GO TO 412} \\ \text{GO TO 411} \\ \text{FMP7}(\text{II} + 1) = \text{Y}(\text{CYO} + 1, \text{II} + 1) \\ \text{GO TO 413} \\ \text{GO 10 413} \\ \text{CALL FUNCTI(N, X, \text{TEMP7}, \text{TEMP9}) \\ \text{II} = 0 \\ \text{OID65000} \\ \text{OID65000} \\ \text{OID66000} \\ \text{OID66000} \\ \text{OID662000} \\ $		IF (II °LE。N) GO TO 406	01047000
$\begin{array}{c} \gamma(C \ \gamma(C \ + \ 1, \ 1 \ L \ + \ 1)) = TEMP7(II \ + \ 1) \\ \hline GO \ TO \ 409 \\ \hline GO \ TO \ 339 \\ \hline CONTINUE \\ II = 0 \\ \hline II = 0 \\ \hline II = 0 \\ \hline II = 1 \\ \hline II = 0 \\ \hline II = 1 \\ \hline II $		GO TO 407	01048000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	$\gamma(CYO + 1_P II + 1) = TEMP7(II + 1)$	01049000
$\begin{array}{c} \text{GO TO 339} \\ \text{CONTINUE} \\ \text{II = 0} \\ \text{GO TO 412} \\ \text{II = 1 + 1} \\ \text{II = 1 + 1} \\ \text{IF (II = L_{\text{E}} \text{ N}) \text{ GO TO 410} \\ \text{GO TO 411} \\ \text{FF (II = L_{\text{E}} \text{ N}) \text{ GO TO 410} \\ \text{GO TO 411} \\ \text{TEMP7(II + 1) = } \text{Y(CYO + 1, II + 1)} \\ \text{TEMP7(II + 1) = } \text{Y(CYO + 1, II + 1)} \\ \text{TEMP7(II + 1) = } \text{Y(CYO + 1, II + 1)} \\ \text{CALL FUNCTI(N, X, FEMP7, FEMP9)} \\ \text{CALL FUNCTI(N, X, FEMP7, FEMP9)} \\ \text{CALL FUNCTI(N, X, FEMP7, FEMP9)} \\ CALL FUNCTI(N, 0, 0.00000000000000000000000000000000$		G0 T0 409	01050000
CONTINUE II = 0 II = 0 60 T0 412 II = 1 + 1 IF (II $_{\text{LE}_{0}}$ N) G0 T0 410 60 T0 411 FF (II $_{\text{LE}_{0}}$ N) G0 T0 410 60 T0 413 7EMP7(II + 1) = $\gamma(C\gamma 0 + 1^{\circ} II + 1)$ 7EMP7(II + 1) = $\gamma(C\gamma 0 + 1^{\circ} II + 1)$ 60 T0 413 60 T0 413 60 T0 416 11 = 0 11 = 0 11 $_{\text{LE}_{0}}$ N) G0 T0 414 0105900 01056000 01062000 01059000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 01055000 000000 000000 0000000 00000000		G0 T0 339	00012010
II = 0 60 TO 412 II = II + 1 II = II + 1 F (II $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		CONTINUE	01052000
GO TO 412 II = II + 1 IF (II ${}^{\circ}$ LE N) GO TO 410 GO TO 411 GO TO 411 TEMP7(II + 1) = Y(CYO + 1, II + 1) GO TO 413 GO TO 413 GO TO 413 GO TO 413 GO TO 413 GO TO 413 II = 0 II = 0 II = 1 + 1 OI059000 OI0580000 OI058000 OI0580000 OI058000 OI058000 OI058000 OI0580000 OI05			01053000
II = II + 1 IF (II $\[\] LE \[\] N$) GO TO 410 GO TO 411 TEMP7(II + 1) = $\gamma(C\gamma O + 1 \[\] II + 1)$ GO TO 413 GO TO 413 CALL FUNCTI(N, X \[TEMP7 \[\] TEMP9) II = 0 GO TO 416 II = 1 + 1 II $\[\] LE \[\] N$) GO TO 414 01062000 01064000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 000000		60 TO 412	01054000
IF (II LE_{\circ} N) GO TO 410 GO TO 411 TEMP7(II + 1) = $\gamma(C\gamma O + 1^{\rho} II + 1)$ GO TO 413 GO TO 413 CALL FUNCTI(N _P X _P TEMP7) TEMP9) II = 0 II = 0 II = 1 + 1 II = 1 + 1 II = 1 + 1 OI062000 OI064000 OI064000			01055000
GO TO 411 TEMP7(II + 1) = $\gamma(C\gammaO + 1 \cdot II + 1)$ GO TO 413 GO TO 413 CALL FUNCTI(N, X - TEMP7 - TEMP9) II = 0 O105000 O106000 O1062000 O1062000 O1062000 O1062000 O1062000 O1062000 O1064000 O1064000		IF (II °LE °N) GO TO 410	01056000
TEMP7(II + 1) = $\gamma(C\gamma_0 + 1^{\rho} II + 1)$ GO TO 413 CALL FUNCTI(N, X _P TEMP7, TEMP9) II = 0 II = 0 O1060000 GO TO 416 II = 11 + 1 O1062000 O1064000 O1064000 O1064000		60 T0 411	01057000
GO TO 413 CALL FUNCTI(N, X, TEMP7, TEMP9) II = 0 GO TO 416 II = II + 1 II = L + 1 01062000 01062000 01062000 01062000 01062000 01062000 01062000		TEMP7(II + 1) = Y(CYO + 1 + 1)	01058000
CALL FUNCTI(N, X, TEMP7, TEMP9) II = 0 GO TO 416 II = II + 1 01062000 01062000 01063000 01063000 01063000 01064000		GO TO 413	01059000
II = 0 60 TO 416 II = II + 1 01052000 01052000 01063000 01063000 01064000		CALL FUNCTI (N, X, TEMP7, TEMP9)	01060000
GO TO 416 II = II + 1 DI062000 IF (II °LE °N) GO TO 414 D1064000			01061000
II = II + 1 IF (II °LE ° N) 60 TO 414 01064000		60 TO 416	01062000
IF (II °LE N) GO TO 414 01064000			01063000
		IF (II °LE °N) GO TO 414	01064000

		01065000
		01066000
	114 = (CYO + 1 + 1) = TEMP9(II + 1)	01067000
1.0 1 1	60 TO 417	01068000
1 × 1	ATS IF (COUNT .NE. N) GO TO 419	01069010
う:: すい(TOTENT = TOTENT + 1	01070000
1 1 1 1	IF (TOTCNT %LT, 3) 60 TO 421	01071000
	IF (COUNTR %LT% 2 * K) 60 TO 423	01072000
	COUNTR = 0	01073090
- 1 1 - 1 V ($c_{2} = c_{2} / 2 \cdot 000$	01074000
0.00	C1 = C1 / 2	01075000
1010	IF (C2 °GE 1) 60 TO 425	010/6000
251		0101/000
4 01 1 0 1 0	GO TO 428	01078000
100	429 11 - 11 - 1	01079000
) 1 1 1 1 1	428 IF (II &LE & N) 60 TO 426	01080000
10	60 TO 427	01081000
2 (2 (2 (426 TEMP7(II + 1) = 7(CYO + 10 + 1 + 1)	01082000
200	60 TO 429 EAP EAP EAP UX)	01083000
- 22	427 CALL SHANKSIN, X, XF, TEMP/, KKSNF, KASUP, ANJOUN	01084000
0 0 0 1 0 1 0 1		01085000
200	60 TO 432	01086000
200		01087000
	432 IF (II °LE °N) 60 TO 430	01088000
) () () (60 TO 431	01089010
5 (0 (430 Y(CYO + 10 II + 1) = TEMP/(LI + 1)	00006010
0.0	60 TO 433	01016010
2 (2 (0 (431 60 70 339	01092000
	425 CONTINUE	01026010
200	424 TOTCNT = 0	01094000
	2.006 B 2 	01036010
010	GO TO 436	01096000
		01001000
4 A 9 V 0 V	436 IF (I oLt. N) 60 TO 434	01098000
1 S 2	GO TO 435	00066010
		00000110
4 10 A 40	GO TO 440	OOTOTIO
2 - C - C		01102000
010	440 IF (J &LE, KMI) 60 TO 438	00020110
- 20	60 TO 439	01104000
610	438 CYLL # MOD(4CYU + 16) # J'40	
: . .		

CYL2 = MOD((CYO + 16) - (2 * J)/16) Y(CYL1 + 1, I + 1) = Y(CYL2 + 1, I + 1)	F(CYL1 + 1, 1 + 1) = F(CYL2 + 1, 1 + 1)	GO TO 441	439 60 T0 437	435 GO TO 340	423 CONTINUE	422 CONTINUE	421 CONTINUE	420 CONTINUE	419 CONTINUE	418 COUNTR = COUNTR + 1	GO TO 337	339 I II 1 236	60 TO 444	1 + 1 I I Sth	444 IF (I °LE N) 60 TO 442	GO TO 443	442 YIV(I + 1) = Y(CYO + 1 · I + 1)	60 TO 445	443 CONTINUE	RETURN	END	C 443 BLOCK 9	
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	201	302	303	

APRT COWELL

191	CONTINUE	01166000
460	C2 = C1	01167000
	M I Q / 2	01168000
	MM1 = M = 1	01169000
		00002110
	TQP1 = QP1 + Q	01111000
	DFACTR = 2 ** (0 + 3)	01172000
	INDX = 0	01173000
		01174000
	CALL FUNCTI (N, X, Y, TEMP9)	01175000
		01176000
	GO TO 466	01177000
467		01178000
466	IF (II °LE °N) GO TO 464	0006/110
	G0 T0 465	01180000
494	FH(1, II + 1) = TEMP9(II + 1)	01181000
	GO TO 467	01182000
465	CONTINUE	01183000
452	II = START(N. XI, XF, CL, EA, ER, Q. X, Y, FH, FH, YMID1, INDX,	01184000
	ITOP1, 1, P, RKSFN, RKSCFF)	01185000
	C1 II 1 + C1	01186000
	$C_2 = (C_2 * PDBLE(II)) = FDBLE(Q)$	01187000
	INDX = MOD(INDX + Q, TGP1)	01188000
	IF (C2 °LT M) GO TO 456	01189000
453	H = INT / FUBLE(C1)	01190000
		00016110
	60 TO 471	01192000
472	ス li 大 + 马	01193000
124	IF (K ,LE, Q) GO TO 469	01194000
	GO TO 470	01195000
469	PCOEFF(K + 1) CW1_CF(K + 1) * 1	01196000
	11 I X + QP1	01197000
	CCOEFF(K + 1) 11 CWLLCF(11 + 1) * H	01198000
	III2 = II + 0p1	00066110
	MCOEFF(K + 1) = CWLLCF(III2 + 1) * H	01200000
	G0 T0 472	01201000
470	T1 = (C1 ** P) * 10,000	01202000
•		01203000
	GO TO 475	01204000
476		01205000

80	475 IF (J .LE. N) 60 TO 473	1206000
81	60 TO 474	1207000
82	473 EAV(J + 1) = EA(J + 1) / T1	1208000
50	EAVD(J + 1) = EAV(J + 1) / DFACTR	1209000
94	ERV(J + 1) = ER(J + 1) / T1	1210000
85	ERVD(J + 1) = ERV(J + 1) / DFACTR	1211000
96	G0 T0 476	1212000
87	474 TI = MCOEFF(1)	1213000
88		1214000
89	60 T0 479	1215000
90		1216000
16	479 IF (J .LE, N) GO TO 477	1217000
92	GO TO 478	1218000
93	$477 H_{DMIF}(J + 1) = YMID_1(J + 1) = (FH(INDX + 1) J + 1) + 11$	1219000
54	GO TO 480	1220000
95	478 CYI = INDX + 70PI	1221000
96	I3 = CYI = QP1	12222000
76		1223000
98	GO TO 483	1224000
66	484 K II K + 1	1225000
00	483 IF (K ,LE, M) GO TO 481	1226000
10	60 TO 482	1227000
02	$481 II = MOD(CYI - K_{P}TQPI)$	1228000
50	$I2 = MOD(I3 + K, TQP_1)$	11229000
04	TI = MCOEFF(K + 1) + H	1230000
05	III2 = QPL = K	1231000
06	T2 = MCOEFF(III2 + 1)	1232000
07		1233000
08	G0 T0 487	1234000
60		1235000
10	487 IF (J .LE. N) 60 TO 485	1236000
****	GO TO 486	1237000
2	485 HDMIF(U + 1) = (HDM1F(U + 1) = (FH(II + 1, U + 1) * T1)) = (FH(I2	1238000
5		1239000
57	GO TO 488	1240000
ß	486 GO TO 484	1241000
0		1242000
17	60 TO 491	1243000
8		1244000
61	491 IF (J &LE N) GO TO 489	1245000

0	GO TO 490	01246000
	$489 HDMJFM(J + 1) = HDM_1F(J + 1)$	01247000
N	G0 T0 492	01248000
53	490 DFLAG = °FALSE.	01249000
54	454 I II 1	01250000
25	60 T0 495	01251000
50		01252000
27	495 IF (I .LE. M) 60 TO 493	01253000
0	60 TO 494	01254000
ŝ	493 INDX = MOD(INDX + 1, TQP1)	01255000
50	CYI = INDX + TQPI	01256000
12	X = XF = ((C2 = FDBLE(I)) * H)	01257000
22	II = MOD(CYI - I, TQPI)	01258000
53	$T_1 = PCOEFF(1)$	01259000
54	T2 = CCOEFF(2)	01260000
20	11	01261000
56	60 TO 499	01262000
22		U1263000
58	499 IF (J ,LE, N) 60 TO 497	01264000
5	60 T0 498	01265000
10	497 T3 = FH(11 + 10 J + 1)	01266000
	HDMIF($J + 1$) = HDM1F($J + 1$) + H * T3	01267000
đ	14 I HDM1F(2 + 1)	01268000
5	$\gamma P(J + 1) = 14 + 11 + 13$	01269000
1	CS(J + 1) 11 14 + 12 + 13	01270000
Ω.	60 TO 500	01271000
6	498 I3 = CYI = QP1	01272000
		01273000
ିନ୍ଦୁ	G0 T0 503	01274000
6	504 K II K + 1	01275000
50	503 IF (K ,LE, M) GO TO 501	01276000
	GO TO 502	01277000
22	501 II = MOD(CYL - $K_{\ell}TQPI$)	01278000
N	I2 = MOD(I3 + K, TQP1)	0006/210
54	TI II PCOFFF(K)	01280000
ŝ	T2 = CCOEFF(K + 1)	01281000
ŠG		01282000
	T3 = PCOEFF(III3 + 1)	01283000
ິສ	X = 100 H SII	01284000
6	T4 II CCOEFF(III3 + 1)	01285000
0		01286000
----------------	--	----------
1. 2 -1	60 TO 507	01287000
N		01288000
5	507 IF (J °LE N) 60 TO 505	01289000
4	60 TO 506	01290000
ິດ	505 T5 = FH(I1 + 1, J + 1)	01291000
90	T6 = FH(I2 + 1, J + 1)	01292000
2	$y_{P}(J + 1) = (y_{P}(J + 1) + 11 + 15) + 13 + 16$	01293000
ß	CS(J + 1) = (CS(J + 1) + T2 * T5) + T4 * T6	01294000
0	GO TO 508	01295000
70	506 60 TO 504	01296000
~	502 II = MOD(CYI - QrTQPI)	01297000
Ñ	$I2 = MOD(CYL - QPL_{P}TQPL)$	01298000
2	T1 = PCOEFF(Q)	01299000
44	T2 II CCOEFF(Q + 1)	01300000
2	13 = PCOEFF(0 + 1)	01301000
0		01302000
2	60 TO 511	01303000
8	512 J H J + 1	01304000
64	511 IF (J ,LE, N) GO TO 509	01305000
30	GO TO 510	01306000
1	509 T4 I FH(II + 10 J + 1)	01307000
<u>N</u>	γP(J + 1) I (γP(J + 1) + T1 + T4) + T3 + FH(I2 + 1, J + 1)	01308000
5	CS(C + 1) II CS(C + 1) + T2 + T4	01309000
54	60 TO 512	01310000
5	510 T2 = CCOEFF(1)	01311000
5	CRRCTC = 1	01312000
25	455 CALL FUNCTI(N, X, YP, FP)	01313000
38		01314000
6	60 T0 515	01315000
0		01316000
	515 IF (J °LE° N) 60 TO 513	01317000
No.	60 10 514	01318000
N	513 YC(J + 1) = CS(J + 1) + T2 + FP(J + 1)	00061210
74	T3 II YC(U + 1)	01320000
Ŭ.	T1 = ABS(T3 = YP(J + 1))	01321000
90	IF (T1 .LE. EAV(J + 1)) 60 TO 518	01322000
2. 8	IF (T1 °LE° ERV(U + 1) * ABS(T3)) 60 TO 520	01323000
8		01324000
5	GO TO 523	01325000

	0132600
523 IF (J.LE. N) 60 TO 521	012210
60 T0 522 For voir - + v coir - + v + For + + + +	0132510
324 10/0 4 T/ 1 63/0 4 T/ 1 1 4 1/ 4 1/ 4 1/ 4 1/ 4 1/ 4 1/	0133000
522 CALL FUNCTI(N, X, YC, FP)	0133100
	0133200
G0 T0 527	0133300
528 J I J + 1	0133400
527 IF (J °LE N) GO TO 525	0133500
60 TO 526	0133600
525 $YP(J + 1) = CS(J + 1) + T2 + FP(J + 1)$	0133700
73 = YP(J + 1)	0133800
$T_1 = ABS(T_3 = YC(U + 1))$	0133900
IF (T1 °LE, EAV(U + 1)) GO TO 530	0134000
IF (T1 °LE, ERV(J + 1) * ABS(T3)) GO TO 532	0134100
	0134200
60 TO 535	0134300
536 J = J + 1	0134400
535 IF (J ,LE, N) 60 TO 533	0134500
60 TO 534	0134600
533 $YP(J + 1) = CS(J + 1) + T2 + FP(J + 1)$	0134700
60 TO 536	0134800
534 CRRCTC = CRRCTC + 2	0134900
IF (CRRCTC «LE» 8) 60 TO 538	0135000
INDX = MOD(CYI = $I \circ T \circ P I$)	0132100
60 T0 451	0135200
538 CONTINUE	0135300
537 GO TO 455	0135400
532 CONTINUE	0135500
531 CONTINUE	0135600
530 CONTINUE	0135700
529 GO TO 528	0135800
526 CALL FUNCTI(N, X, YP, TEMP9)	0135900
	0136000
60 TO 541	0136100
542 II = II + 1	0136200
541 IF (II °LE° N) 60 TO 539	0136300
GO TO 540	0136400
539 FH(INDX + 10 II + 1) = TEMP9(II + 1)	0136500

	GO TO 542	01366000
5		01368000
		01369000
520	CONTINUE	01370000
519	CONTINUE	01371000
518	CONTINUE	01372000
517	GO TO 516	01373000
514	CALL FUNCTION, X, YC, TEMP9)	01374000
		01375000
:	60 TO 545	01376000
546		01377000
545	IF (II .LE. N) 60 TO 543	01378000
Eng	GO O 344 Fu/TNDY 4 % TT 4 3/ 11 TEMPQ(TT 4 1)	00008210
		01381000
544	PFLAG = "FALSE"	01382000
448	GO TO 496	01383000
464	$II = MOD(CYI = M_{P}TQPI)$	01384000
	T1 = MCOEFF(M + 1)	01385000
		01386000
	GO TO 549	01387000
550		01388000
549	IF (J .LE. N) 60 TO 547	01389000
	GO TO 548	01390000
242	YM(J + 1) = HDW1FM(J + 1) + 11 * FH(I1 + 1° J + 1)	01391000
4	60 TO 550	01392000
548		01393000
	× 11 O	01394000
	60 TO 553	01395000
554		01396000
553	IF (K .LE. MMI) GO TO 551	01397000
in many sec.	60 TO 552	01398000
551	II = MOD(CYL = K,TGP1)	00066210
	$I2 = MOD(I3 + K_{\theta} T_{Q}P_{1})$	01400000
	T1 = MCOEFF(K + 1)	01401000
		01402000
	T2 = MCOEFF(III2 + 1)	01403000
		01404000
	GO TO 557	00050710

0		01406000
-1.0	557 IF (J + FF N) 60 [V 503	01408000
J . M	555 VM(1 + 1) = (VM(J + 1) + T1 * FH(I1 + 1° J + 1)) + T2 * FH(I2 + 1)	01409000
t (01410000
ري . ري .	60 TO 558	01411000
9	556 GO TO 554	01412000
	552 IF (.NOT. UFLAG) 60 TO 560	01413000
้อ		01414000
	60 TO 563	01415000
0		01416000
-	563 IF (J LE N) 60 TO 561	01417000
	GO TO 562	01418000
ŝ	561 T3 = Y(J + 1)	01419000
4	T2 = ABS(T3 - YM(J + 1))	01420000
ß	IF (T2 °LE, EAVD(J + 1)) GO TO 566	01421000
0	IF (T2 %LE% ERVD(J + 1) * ABS(T3)) GO TO 568	01422000
2	IF (T2 "LE" EAV(J + 1)) GO TO 570	01423000
00	IF (T2 °67° ERV(J + 1) * ABS(T3)) GO TO 450	01424000
0	570 CONTINUE	01425000
0	569 GO TO 449	01426000
. * -4	568 CONTINUE	01427000
N	567 CONTINUE	01428000
N	566 CONTINUE	01429000
4	565 GO TO 564	01430000
- in	562 C2 I C2 - FDBLE(M)	01431000
9	C2 = C2 / 2,0D0	01432000
1	IF (NOT, PFLAG) 60 TO 573	01433000
CO CO		01434000
6	60 TO 576	01435000
0	577 J = J + 1	01436000
	576 IF (J "LE" N) GO TO 574	01437000
	G0 T0 575	01438000
N	574 Y(J + 1) = YP(J + 1)	00062410
4	GO TO 577	01440000
ى د	575 G0 T0 572	01441000
Ó		01442000
1	60 TO 580	01443000
ŝ	581 J H J + 1	01444000
ማ	580 IF (J , LE, N) 60 TO 578	01445000

0006/ 1000 900 900 60 10 -GO TO 596 * ABS(T3)) 14 9 E FH(11 1,TOP1) يني محم وسط (ITQP1) K . TQP1) ~ **U)WX** ÷ EAVIN ERVIJ \$ Î O YC(J + XONI) DOM XON (INDX × ŝ MOD (CYI Ĩ Ĩ ÷ ଡି a INDX. , E E e ů, а 29 29 29 F FH(INDX + ~~4 ~ امبر چہ ~4 ~\$ GO TO 590 60 TO 453 0 452) Y (J CONTINUE CONTINUE CONTINUE บี S C S Ħ 60 10 +))))))))))) 60 TO つ 11 60 10 60 10 60 TO ື ~ \circ XONI INDX XONI n N 60 1(.... ļ ¥nn∳ Li. u N ð u R) N LL. LL. **っ** ō 451

â ~ 0 TO 602 + ÷ HOMIFIC 60 10 C) JIMOH GU TO 603 G0 T0 607 60 TO 613 400\$ ~ י) א (י n) X ÷ - FUBLE(M) M) 60 -pu ÷ PFLAG) PFLAG) YP(J DFLAG = "TRUE" ŝ $\langle z \rangle$ Ĉ å G U. -. ۲. • NOT • ы Ц С ہ 14 , NOT , ŧŧ 07 0 169 0. ÷ GO TO 606 60 TO 610 60 TO 454 Ľ 4-4-HDM1FM(J HDM1FM(J CONTINUE CONTINUE Â CONTINUE (T + 7)) CONTINUE сі С П (T + T)) \$ r) TOIWA V) TOIMY S 60 TO ື 60 TO • 60 TO ר וו 60 10 60 10 ¥ () ¥ 60 10 ° F 60 10 danij U U 60 1 A DEC つ u S LL. u LL. u -+ 0 0

TO 622 XF, Y, RKSFN, RKSRDR, RKSCFF, P, EA, ER, ABS(INT01534000 N) 60 TO 617 YC(J + 1) × IF (C2 & LE. 0) CALL SHANKS(N. 1) / FDBLE(C1)) 618° 60 TO 618 Υ(J + 1) = 7 GO TO 620 -t CONTINUE CONTINUE CONTINUE ÷ RETURN END BLOCK つ il H 619 611 611 O

UPRT START

GALLAHER-L-J*TI	PF5.START	
	FUNCTION START(N, XI, XF, ICI, EA, ER, M, X, YIV, YH, FH,	
N	1YFV, CYI, CYM, PA, P, FNEVAL, RKSCNS)	
×)	LOGICAL COMP	
**	INTEGER N. CLOMPCYLPCYMPPAPFNEVAL	00027000
ſ	DOUBLE PRECISION XI, XF, X, P	00028000
+ \	DOURT PRECISTON FA.FR. YIV FFV	00029000
10	5 TARENT (1 (1 (1 (1 (1 (1 (1 (1 (1 (00030000
~ *		
Ø	DOUBLE PRECISION RASCNS	nnntennn
9	DIMENSION RKSCNS(91)	00032000
10	DOUBLE PRECISION YH, FH	00033000
:	DIMENSION YH(35,100),FH(35,100)	00034000
10	TNTEGER T. LOK. L. CEFFUT. FNMAX. TNNX.NINDX.CNTR	00035000
1 %	DOIDIE FORFELSTON INT HATWOHAT	00036000
) :		00037000
		00038000
) (11111111111111111111111111111111111111	0002000
0		
11	DIMENSION EAV(100) (ERV(100) (Y1(100) (YZ(100) (Y3(100) (Y4(100))	000+000
100	DOUBLE PRECISION 6	00041000
0	DIMENSION 6(28,100)	00042000
00	DOUBLE PRECISTON TEMP7, TEMP8, TEMP9	000€+000
	DIMENSION TEMP7(100), TEMP8(100), TEMP9(100)	0004+000
10		00045000
10	DEFINE FORIE(T) = DRIE(FIOAT(T))	00046000
1 1		0000000000
C I	CNTR = 1	000/+000
00	IF (M °EQ, 0) GO TO 49	00048000
27	CFFCNT = (((FNEVAL + 3) * FNEVAL) / 2) = 2	0006+000
8	FNMAX II FNEVAL + 2	00020000
0		00022000
30	$T_{WOH} = (INT + INT) / FDBLE(C1)$	00052000
	H I INT / FDBIE(C1)	00053000
• 0 • 0		00054000
] M		00055000
) (1) (1		00026000
	52 TF (T .LE. CFFCNT) GO TO 50	00022000
		00058000
24	50 T1 = RKSCNS(I + 1)	00053000
36.		00000000
. 60	TWOHC(I + 1) = T1 * TWOH	00061000

* 1	GO TO 53	00062000
7. 0		
	T1 = (FOBLE(C1) / 2,000) ** P	0004000
	GO TO 56	00066000
57		00067000
56	IF (J , LE, N) 60 TO 54	00068000
	60 TO 55	00069000
54	EAV(J + 1) = EA(J + 1) / 11	0002000
	ERV(J + 1) ER(J + 1) / T1	00011000
U U	50 10 57 TE (DA NE 2) 60 TA 59	00022000
5	VINDX = MOD(INDX + 1, CYM)	00074000
		0002/000
	GO TO 3	00076000
56	CONTINUE	00077000
58	IF (PA °NE , 1) 60 TO 61	00078000
*		0006/000
61	CONTINUE	ດດດອດດາດ
60		00081000
	60 T0 64	00082000
65		00083000
64	IF (II °LE°N) GO TO 62	00084000
	GU 0 05 Truncitt : 1) = Cuitandy : 1° 11 ± 1)	0002000
N D	CONTRACT & A/ I FENINGS & A/ I + A/ GO HO AR	00087000
63	CALL RUNKUT(N. X. FNMAX, TWOHC, YIV, YI, TEMP9, G)	00088000
•	GO TO 4	00089000
~ †	TWOH II HOWT	00006000
	CNTR = CNTR + CNTR	00016000
	C1 II C1 + C1	00026000
	$H = INT / FUBLE(C_1)$	000662000
		00046000
	GO TO 68	00036000
69	ef 	00096000
68	IF (I .LE. CFFCNT) GO TO 66	00026000
	GO TO 67	00086000
60	TWOHC(I + 1) = HC(I + 1)	00066000
	HC(I + 1) RKSCNS(I + 1) * T	00000100
	GO TO 69	onoroino

67	INDX = CYI = (CYI/CYM) * CYM T* - (FRACE(C1) / 2 DDD) ** D	00102000
	IF (PA NE 2) GO TO 71	00104000
		00102000
	NINDX = MOD(INDX + 1, CYM)	00106000
		00020100
	GO TO 74	00108000
75		00060100
47	IF (J oLE. N) 60 TO 72	000110000
	60 TO 73	00111000
72	EAV(J + 1) = EA(J + 1) / T1	00112000
-	ERV(J + 1) = ER(J + 1) / T1	00113000
	$\lambda T(\mathcal{J} + 1) = \lambda H(NIN) + 1^{\rho} \mathcal{J} + 1)$	00114000
	G0 T0 75	00115000
73	CONTINUE	00116000
N		000/1100
	60 T0 78	00118000
62		00061100
78	IF (II °LE °N) 60 TO 76	00120000
	60 T0 77	00121000
76	$TEMP7(II + 1) = YH(INDX + 1 \circ II + 1)$	00122000
	TEMP9(II + 1) = FH(INDX + 1° II + 1)	00123000
	60 TO 79	00124000
2	CALL RUNKUT(N, (FDBLE(K) * H) + X, FNMAX, HC, TEMP7, TEMP8, TEMP9,	00125000
•		00126000
	0 = 11	nnnzinn
	60 TO 82	00128000
83		00129000
82	IF (II °LE °N) GO TO 80	00130000
	GO TO 81	00131000
90	YH(NINDX + 1, 11 + 1) = TEMP8(II + 1)	00132000
	60 TO 83	00133000
81	ス H 天 キ H	00134000
	INDX = NINDX	00135000
	NINDX = MOD(INDX + 1, CYM)	00136000
		00137000
	60 10 86	00138000
87		00139000
86	IF (II °LE °N) GO TO 84	000000000
~	60 10 85	00141000

120	8# TEMP7(II + 1) = YH(TNDX + 1, II + 1)	00142000
	60 TO 87	00143000
122	85 CALL FUNCTI(N, (FDBLE(K) * H) + X, TEMP7, TEMP9)	00144000
123		00145000
124	60 T0 90	00146000
25	1 + II = I 16	0002+100
126	90 IF (II °LE, N) 60 TO 88	00148000
127	60 TO 89	0006+100
128	88 FH(INDX + 1' II + 1) = TEMP9(II + 1)	00150000
129	60 T0 91	0015100
130	89 CALL RUNKUT(N, (FDBLE(K) * M) + X, FNMAX, HC, TEMP7, TEMP8, T	EMP9, U0152000
101		00153000
132		00045100
133	60 T0 94	00055100
134	T + TT H TT 96	00156000
135	94 IF (II °LE, N) 60 TO 92	00157000
136	GO TO 93	00085100
137	92 YH(NINDX + 1, II + 1) = TEMP8(II + 1)	00065100
138	60 T0 95	00160000
139	93 IF (NOT, COMP(N, EAV, ERV, YI, TEMP8)) 60 TO 97	00161000
140	× 11 × +	00162000
1 1 1	IF (K .6E. M) GO TO 99	00163000
25	INDX = NINDX	00164000
143	NINDX = MOD(INDX + 1)CYM	00165000
44		00166000
145	60 TO 102	00167000
146		00168000
147	102 IF (II °LE° N) GO TO 100	00169000
148	60 TO 101	0000/100
49	100 TEMP7(II + 1) = YH(INDX + 1° II + 1)	001/1000
150	60 TO 103	001/2000
191	101 CALL FUNCTION, (FUBLECK) * H) + X. TEMP7. TEMP9	001/3000
20		00174000
53	60 TO 106	0005/100
154		001/6000
155	100 IF (II °LE° N) GO TO 104	00077200
156	60 TO 105	001/8000
27	104 FH(INDX + 1 P II + 1) = TEMP9(II + 1)	0006/100
58	GO TO 107	0008100
159	105 CONTINUE	DODISION

160		00182000
101		0000000000
100		00186000
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00028100
COT	100 FERT/(+++++) FERTINA ++++++++++++++++++++++++++++++++++++	00188000
164	60 10 LLI 109 CALL DEMAKIT(N. (FORLE(K) * H) + X. FNMAX. TWOHC? TEMP7. Y10 1	EMP9,00190000
		0016100
170	60 TO 2	00192000
171	99 CONTINUE	00193000
172	98 IF (K °NE °M) GO TO 113	0016100
173	XUNI = XUNI	00195000
174		00196000
175	60 TO 116	00197000
176		00198000
111	116 IF (II °LE °N) GO TO 114	00066100
178	60 T0 115	00200000
179	114 TEMP7(II + 1) = YH(INDX + 1° II + 1)	00201000
180	GO TO 117	00202000
181	115 CALL FUNCTION, (FDBLE(K) * H) + X, TEMP7, TEMP9)	00203000
182		00204000
183	GO TO 120	00202000
184		00206000
185	120 IF (II °LE° N) GO TO 118	00207000
186	GO TO 119	00208000
187	118 FH(INDX + 10 II + 1) = TEMP9(II + 1)	00209000
168	60 T0 121	00210000
189	119 CONTINUE	00211000
190	113 CONTINUE	00212000
191	112 60 T0 96	00213000
192	97 60 10 1	00214000
193	96 GO TO 70	00215000
194 1		00216000
195	GO TO 124	00212000
196		00218000
197	124 IF (J ¢LE° N) 60 TO 122	00219000
198	60 TO 123	00220000
66T	122 EAV(J + 1) 1 EA(J + 1) / 11	00221000

00	ERV(J + 1) = ER(J + 1) / T1		00222000
10	$\gamma_1(J + 1) = \gamma_2(J + 1)$		00052200
02	60 T0 125		00224000
3	123 CONTINUE		00225000
04			00226000
05	G0 T0 128		00227000
06	129 II = II + 1		00228000
24	128 IF (II .LE. N) GO TO 126		00229000
08	60 TO 127		00230000
60	126 TEMP9(II + 1) = FH(INDX + 1) II + 1)		00231000
10	60 T0 129		00232000
	127 CALL RUNKUT(N, X, FNMAX, HC, YIV, Y2, TEMP9, G)		00233000
2	INDX = MOD(INDX + 1,CYM)		00234000
5	CALL FUNCTION, X + H, Y2, TEMP9)		00235000
5			00236000
15	60 TO 132		00237000
ľó.	133 I I I I E E		00238000
7	132 IF (II °LE° N) GO TO 130		00239000
01	GO TO 131		00240000
61	130 FH(INDX + 1 P II + 1) = TEMP9(II + 1)		00241000
20	60 TO 133		00242000
4	131 CALL RUNKUT(N, X + H, FNMAX, HC, Y2, Y4, TEMP9		00243000
20			00244000
53	IF (PA NE. 0) 60 TO 135		00245000
t.	5 IF (NOT, COMP(N, EAV, ERV, YI, Y4)) GO TO 137		00246000
50	IF (K "GE" M) GO TO 139		0024200
0	INDX = MOD(INDX + 1, CYM)		00248000
	CALL FUNCTION (FUBLECK) * H) + X. Y4. TEMP9)		00249000
28			00250000
64	60 T0 142		00251000
30	1 + 1 I I I E + 1		00252000
2	142 IF (II &LE & N) GO TO 140		00253000
25	60 T0 141		00254000
33	140 FH(INDX + 1, II + 1) = TEMP9(II + 1)		00255000
54	G0 T0 143		00256000
35	141 CALL RUNKUT(N, (FDBLE(K) * H) + X, FNMAX, TWOHC	Y40 Y10 TEMP90	6)00257000
36	CALL RUNKUT(N, (FDBLE(K) * H) + X, FNMAX, HC, Y4	Y3, TEMP9, G)	00258000
57	× II × +		00259000
38	INDX = MOD(INDX + 1,CYM)		00260000
62	CALL FUNCTION (FDBLECK) * H) + XO Y30 TEMP9)		00261000

LI = 0 50 T0 146 LI = II + 1	0262000 0263000 0264000
•LE. N) GO TO 144	0265000
+ 1, II + 1) = TEMP9(II + 1)	0267000
	0268000
NKUT(N, (FDBLE(K) * H) + X, FNMAX, HC, Y3, Y4, TEMP9, G) (1	10269000 10270000
	0271000
	10272000
NE W) 60 TO 149	10273000
MOD(INDX + 1,CYM) Incttin, (FDB(F(K) * H) + X, Y4, TEMPQ)	0274000
	0276000
152	0027200
	0278000
"LE" N) 60 TO 150	00279000
	0280000
)X + 1° I.4 + 1) EMF9(I.1 + 1) -553	0282000
	10283000
156	0284000
	0285000
•LE. N) 60 TO 154	0286000
155	0287000
	0288000
148	0290000
	0291000
160	0292000
+	0293000
•LE, N) GO TO 158	0294000
159	0295000
	10296000
161	00297000
UE	0298000
136	00299000
-3t	nnn Then

~	135	CONTINUE	00302000
• •••••	9	IF (NOT, COMP(N, EAV, ERV, Y1, Y4)) GO TO 163	00202000
		INDX = MOD(INDX + 1, CYM)	00304000
		CALL FUNCTI(N, (FDBLE(K) * H) + X, Y4, TEMP9)	00305000
,			00306000
		60 T0 166	0020200
•0	167		00308000
	166	IF (II ,LE, N) GO TO 164	00309000
Ĩm	f	60 TO 165	00310000
~	164	$FH(INDX + 1 \cdot II + 1) = TEMP9(II + 1)$	00311000
~	1	G0 T0 167	00312000
	165	IF (K ,GE, M) GO TO 169	00313000
-	l	IF (K .NE. L) 60 TO 171	00314000
			00315000
		60 TO 174	00316000
10	175		00317000
.0	174	IF (J %LE% N) GO TO 172	00318000
~	ł	G0 T0 173	00319000
~	172	$\gamma FV(J + 1) = \gamma F(J + 1)$	00320000
~	ŕ	60 T0 175	00321000
- -	173	CONTINUE	00322000
	171	CONTINUE	00323000
A !	170		00324000
ŝ		G0 T0 178	00325000
•	179		00326000
	178	IF (II °LE N) GO TO 176	00327000
[°] .n	r K	60 TO 177	00328000
~	700 T	TEMP9(II + 1) = FH(INDX + 1, II + 1)	00329000
~		60 T0 179	00330000
~	111	CALL RUNKUT(N, (FDBLE(K) * H) + X, FNMAX, TWOHC, Y4, Y1, TEMP9, G)	00331000
~		CALL RUNKUT(N, (FDBLE(K) * H) + X, FNMAX, HC, Y4, Y3, TEMP9, G)	00332000
			003333000
		INDX = MOD(INDX + 1, CYM)	00334000
		CALL FUNCTION, (FDBLECK) * H) + X, Y3, TEMP9)	00335000
-			00336000
10		60 TO 182	00337000
	183		00338000
	182	IF (II °LE° N) GO TO 180	00339000
·	l	60 T0 181	00340000
	180	FH(INDX + 1, II + 1) = TEMP9(II + 1)	00341000

XP FNMAXP HCP Y3P Y4P TEMP9P 6)
+ Î *
11 IF (K .NE. L) GO TO 185 12 IF (K .NE. L) GO TO 185 13 GO TO 188 14 I I I I I I I I I I I I I I I I I I I
〒0.68~0.642210~0.68~0.68~0.68~0.68~0.6 22210 2014444444442244000000000000000000

GPRT °RUNKUT

GALLAHER-L-U*TPF	5 °RUNKUT	
	SUBROUTINE RUNKUT(N, X, FNMAX, COEFF, YIV, YFV, FV, G)	00374000
CJ	INTEGER N.FNMAX	00375000
ŝ	DOUBLE PRECISION X	00376000
4	DOUBLE PRECISION COFF	00377000
- w	DIMENSION COEFF(91)	00378000
, Q	DOUBLE PRECISION YIV, YFV, FV	00379000
	DIMENSION YIV(100) / YFV(100) / FV(100)	00380000
້ຒ	DOUBLE PRECISION G	00381000
0	DIMENSION 6(28,100)	00382000
10	DOUBLE PRECISION TEMP9	00383000
	DIMENSION TEMP9(100)	00384000
2	INTEGER II	00385000
S.	INTEGER I, J,K, CCNT	00386000
5	DOUBLE PRECISION TEMP	00387000
ST	DEFINE FDBLE(I) = DBLE(FLOAT(I))	00388000
16		00389000
17		00390000
50	CCNT = 0	00391000
0	TEMP = COEFF(CCNT + 1)	00392000
20		00393000
1	60 T0 9	00394000
22		00395000
10	9 IF (I °LE° FNMAX) GO TO 7	00396000
1	60 TO 8	0026200
25		00398000
26	G0 T0 13	00399000
27		000000000
28	3 IF (J ,LE, N) GO TO 11	00401000
29	60 TO 12	00402000
30	1 YFV(J + 1) = (FV(J + 1) * TEMP) + YIV(J + 1)	00403000
U.L.	GO TO 14	00404000
32		00402000
33		00000000
30	60 T0 17	000401000
35		00080000
36	7 IF (K .LE. III3) GO TO 15	00060000
37	G0 T0 16	00010000
38	5 CCNT = CCNT + 1	00411000
33	TEMP = COEFF (CCNT + 1)	00412000

		00413000
		00415000
21 IF (J .LE. N) GO TO 19		00416000
GO TO 20		00417000
19 YFV(J + 1) = (G(K + 1, J + 1) * TEMP) + 1		00418000
60 TO 22		00419000
20 60 TO 18 16 CCNT - CCNT + 1		00420000
TEMP = $X + COEFF(CCNT + 1)$		00422000
CALL FUNCTI (N, TEMP, YFV, TEMP9)		00423000
		00424000
60 T0 25		00425000
		00426000
25 IF (II .LE. N) 60 TO 23		00427000
		00428000
7.3 G(1 + 10 11 + 1) LEWL9(11 + 1) C(+C C)		00062400
94 CCNT 11 CCNT + 1		00430000
TEMP = $COEFF(CCNT + 1)$		00432000
60 T0 10		00433000
		00434000
G0 T0 29		00435000
		00436000
29 IF (J .LE. N) GO TO 27		00437000
60 T0 28		00438000
27 YFV(J + 1) = (FV(J + 1) * TEMP) + YIV(J +	(T)	00439000
G0 T0 30		00440000
		00144100
		00443000
33 IF (K .LE. FNMAX) GO TO 31		00444000
60 TO 32		00445000
31 CCNT = CCNT + 1		00446000
TEMP = COEFF (CCNT + 1)		00447000
		00448000
G0 T0 37		000644000
38 C II C + 7		00450000
37 IF (J oLE, N) 60 TO 35		000124000
GO TO 36		00452000

32 CONTINUE RETURN END
32 BLOCK 6

OPRT

	00460000	00461000	00462000	00463000	00494000	00465000	00466000	00467000	00468000	00469400	0001 1000	00471000	00472000	00473000	00474000	00475000	00476000	004/7000	00478000	00062 000	00480000	00481000	00482000	00483000	00484000	00485000	
r T P F S & C O M P	LOGICAL FUNCTION COMP(N, EAV, ERV, Y, Z)	INTEGER N	DOUBLE PRECISION EAV, ERV, Y, Z	DIMENSION EAV(100) / ERV(100) / Y(100) / Z(100)	INTEGER J	DOUBLE PRECISION T1	DEFINE FDBLE(I) = $DBLE(FLOAT(I))$		GO TO 42		42 IF (J ,LE, N) GO TO 40	60 TO 41	40 T1 = ABS(Y(J + 1) = Z(J + 1))	IF (T1 °LE° EAV(J + 1)) GO TO 45	IF (T1 °LE ° ERV(J + 1) * ABS(Z(J + 1))) 60 T0 47	COMP = "FALSE"	60 T0 39	47 CONTINUE	46 CONTINUE	45 CONTINUE	44 60 T0 43	41 COMP = TRUE	39 CONTINUE	RETURN	END	39 BLOCK 7	
GALLAHER-L-J		Q	, M	tt	ŝ	.0	~	്യ	σ	10	11	12	13	14	10	16	17	18	19	20	2	22	23	24	25	50	

X.M.66,6,3.S.PLEASE PUT STANDARD PAPER IN PRI THANKS. W 90Hp

00005000	00080000	000000000000000000000000000000000000000		00011000	00024000	
SUBROUTINE FUNCTI (N. X. Y. FV)	DOUBLE PRECISION A INTEGER N	DOUBLE PRECISION YFY DIMENSION Y(100) FY(100)	DEFINE FUBLE(I) = UBLE(FLOOTAT) COMMON/NN/NN	NN=NN+1 RETURN	C BLOCK 4	
GALLAHER-L-J	ωø	3 N	9	α σ	10	E F

WDRT COMP

APPENDIX B

LISTING OF COEFFICIENTS

This appendix lists sets of coefficients for the four methods described in this report. Given here are:

first, the Adams coefficients, β and β *, for q = 3 through 18;

then come the Butcher coefficients, A, B, a, b, α and β , for k = 1 through 6;

then come the Cowell coefficients P, C, and M, for m = 2 through 8;

last are the Shanks coefficients, α , β and γ for the formulas 4-4, 5-5, 6-6, 7-7, 7-9, 8-10, and 8-12. (The γ s in each case are the last set of B's given).

			0
	the second se		0. 080
	00 00	00 000400	4.0000044N
マシンタムム	4// 4// 0 0 0 / M	+ N + O N N O O N N +	1000000000000
	HONNNNMMNN	i n m m n n n n n	NOTENNENDE
211112	11212011111	///////////////////////////////////////	1111111111111
nam-nom	ONNONOMHMHO	J HNONHOM OH	NHOHOOHHNMM
	NIMMMMMMMM	UNODO NAM	NONDANTOTNOV
- 14 - E	N F F F M N L	NOMMON MON	VODOVOVO1010
		i entent i R	- 0 - 0 + 0 + I

Ħ	H	11	II	Ħ	Ħ		11	1	- 11	#	静		Ħ	Ħ	11	Ħ	#	Ħ	Ħ	Ħ	難	Ħ		ŧ	Ħ	Ħ	ø	II.	p	Ħ	-#	Ħ	Ņ	ni H	Ħ	n	Ħ
2	1	6	3)	2	-	6	4)	ŝ	Q	1	6	4)	ŝ	2	~	6	ີດ	4)	â	2	-	6	ŝ	4	3)	ŝ	;	6	6	3	4)	ŝ	8	9	6	6)	ຄິ
2	0	e N		ŝ	a M	ີ ຕິ	0	- M	3 P	ିକ୍ (ମ) ()	e C S	4	4 9	. 4 .	4 5	4 9		4 4 2	4 8	4 2	4 9	a 🕈 -	ŝ	ີ ເກີ	10 10	ື ທີ	្រុ	្លា ហ៊ា	С 0	ភ្លំ	ភ្លំ	្ពា	ŝ	ŝ	ខ្ម	ç,	90
TA	TA	TA	* 4	A * A	A # A	A # A	RATI	TA	TA	T A	TA	A *	× × V	A * A	A * (A # (RAT	TA	TA (TA	A	T A	A *	* 4	× ¥	× 7	**	A * C	RATI	TA	TA	TA	TA	TAC	TA	* 4	× × V
8	8	8	BET	8 1 1	BET	BET	N 1	8			ы 00	BET	8ET	BET	BET	BE	e Second Second	60	ليا 20	8	ш 00	8	BET	BE	BET	BET	BET	8	4	9 1 1	لبا 00	ш 80	ш Ю	Ш Ю	ш Ю	BET	BET
							ø										3												a								

<pre>= 6737/20160 586/945 586/945 586/945 2713/2520 19087/60480 38174/1375 19087/60480 19087/60480 135713/20160</pre>	=10754/945 235183/20160 =18637/2520 198721/60480 275/24192 =11351/120960 =88547/120960	1103970/33953 139849/17280 5257/17280 1103970/33953 13863/17280 115747/13440 2102243/120960 2102243/120960	<pre>1152169/120960 16083/4480 156437/1814400 156437/1814400 1573169/1814400 1573169/1814400 2797679/1814400 2233547/1814400 1070017/3628800 1070017/3628800</pre>
		an a	
20000000000000000000000000000000000000	20202020 m	000000000000000000000000000000000000000	10000000000000000000000000000000000000
ЕТА* (6» ЕТА* (6» ЕТА* (6» ЕТА* (6» ЕТА* (6» Вета* (6» Вета (6» Вета (6»	BETA BETA BETA BETA BETA Co BETA Co Co Co Co Co Co Co Co Co Co Co Co Co	НЕТАА ВЕТАА ВЕТАА ВЕТАА ВЕТАА ВЕТА С С С С С С С С С С С С С С С С С С С	0 0
ш ш ш ш ш Ш С		ය ස ාස ස ස	

-3250433/479001600 9071219/119750400 -296725183/159667200 164046413/119750400 -12318413/31933440 23643791/19958400 12051709/3991680 -21677723/8870400 -33765029/8870400 -4832053/1814400 -45586321/1814400 -69927631/1814400 47738393/1814400 -116687/1451520 6755041/3628800 -8641823/3628800 94497177257600 137461698/3250433 20884811/7257600 -222386081/3628800 -10499518977257600 1070017/3628800 19416743/1814400 -21562603/1814400 14097247/3628800 8183/1036800 269181919/3628800 4325321/1036800 -1408913/907200 335983/907200 -462127/453600 -2357683/181440 157886397453600 -28416361/453600 6648317/181440 2227571/623700 200029/90720 862303/22680 25713/89600 -25713/89600 8 3 ŝ 40 3 2 6 4 6 6 6 8 9 ົດ $\widehat{}$ 2 ŝ 4 6 8 RATIO (10) 6 6 ତି ~ 100100 00 ~ (P) 2 0 -° 0 6 9 0 6 6 å (100 ő Q. (10) (100 °01 å 6 å 6 100 100 8 8 8 ŝ å å ŝ 6 6 å å 6 6 a .a 6 -100 4 O J ô \$ 0 Ø, \$ 86578 86578 86578 86578 86578 86578 86578 BETA* 8ETA* 8ETA* 8ETA* 8ETA* BETA* BETA* BETA* BETA* BETA* BETA* BETA* BETA* BETA BETA BETA* BETA* BETA* BETA* BETA* BETA* BETA* BET 财

Ø

#1369577909372615348736000 717300033450/13695779093 2724891251/39626496000 2472634817/159667200 35183928883/159667200 -41290273229/159667200 12326645437/191600640 -6477936721/319334400 45277663997958003200 -2067948781/119750400 2132509567/479001600 -68928781/958003200 384709327/958003200 501289903/159667200 1007253581/159667200 1374799219/958003200 "17410248271/958003200 35689892561/159667200 ***15064372973/106444800** 2492064913/26611200 -1921376209/19958400 **B7064741/63866880** -91910491/17740800 4777223/17418240 -4777223/17418240 923636629/15206400 -52841941/17107200 3539798831/26611200 1572737587/31933440 -102212233/17740800 -99642413/45619200 26842253/95800320 26842253795800320 53684506/1135053 **•186080291/3991680** 36465037/9123840 30082309/9123840 -625551749/4561920 -82260679/623700 4671/788480 9 RATIO (11) (10010) 6 6 (11,10) 6 8 6 (12011) 4 ົດ $\widehat{\sigma}$ 6 (12) 4 2 6 n m 2 ******* 6 11,101 0 0 ő 8 0 N 0 9-1 9-1 100 100 100 4 O 1 100 (100 (10^b 100 0 97 1 1 1 1 1 1 0 54 54 54 54 C == 0 (**1** 2 0 0 *** ्यः ज्याः स्वी 0 94 94 4 4 4 4 رم احما احما ି ପ୍ କ୍ଲୋକ କ୍ଲୋକ ् दुन्द इन्द 0 70 10 10 BETA* (10) (100 (10» ्व, इल्ह कर्म 0) 977 977 977 =10 RATI BETA≉ BETA BETA* BETA* BETA* BETA BETA* BETA* BETA BETA* BETA BETA BETA BETA BETA BETA BETA BETA* BETA* BETA BETAW < «С 1 BETA* BETAN BETA* BETA BET BET BET H Ø Ø

-30336027563/72648576000	406332786317/261534873600	-229882484333/58118860800	529394045911/72648576000	*4874320027/486486000	84400835489/8072064000		1346577425651/261534873600	~551368413119/217945728000	659520406974402944000	703604254357/261534873600	1407208508714/24466579093	7036042543577261534873600	m169639834921/48432384000	4588414555201/217945728000	"20232291373837/261534873600	2253957198793/11623772160	-2826800577631/8072064000	228133014533/486486000	=34266367915049/72648576000	20730767690131/58118860800	=10498491598103/52306974720	5963794194517/72648576000	-931781102989/39626496000	13064406523627/261534873600(2224234463/475517952000	==69091417279/104613949440(1636420501/3773952000	<pre>-4590817802567/261534873600(</pre>	5124051955567/104613949440("5797545653629/581188608000	1335017017153/87178291200	-7866111554491/435891456000	95755809655077581188608000	#1748248003751/149448499200	16964495066809/261534873600	*168235945379/58118860800	741197087471/475517952000	1063647638177402361344000	8296451577726/132282284012
BETA* (12010) ==	BETA* (12, 9) #	BETA* (12° 8) #	BETA* (12) T) =	BETA* (1206)	BETA* (12, 5) =	BETA* (12, 4) =	BETA* (120-3) **	BETA* (120 2)	BETA* (120 1) *	BETA* (12, 0) #	Q =11 RATIO (13) =	BETA (12,12) =	BETA (12011) +	BETA (12,10) =	BETA (12, 9) #	BETA (12, 8)	BETA (12° 7) =	BETA (12» 6) =	BETA (120 5) =	BETA (12º 4) =	BETA (12, 3) =	BETA (12, 2) =	BETA (12, 1) =	BETA (12, 0) #	BETA* (13013) #	BETA* (13012) =	BETA* (13011) =	BETA* (13010) #	BETA* (13, 9) #	BETA* (130 8) #	BETA* (13) 7) #	BETA* (130 6) =	BETA* (130 5) =	BETA* (13, 4) **	BETA* (13, 3) #:	BETA* (130 2) #	BETA* (13, 1) =	BETA* (13, 0)	0 =12 RATIO (14) =

17823675553313503/10461394944000 -132282840127/31384184832000 -14110480969927/31384184832000 -187504936597931/31384184832000 -236770944732449/10461394944000 =321201800274911/10461394944000 -102685148956217/31384184832000 859236476684231/31384184832000 3760072112094753/10461394944000 6460951197929/1743565824000 124922452271/1961511552000 26159487787579/1961511552000 48869476129477/1961511552000 -71363886250691/4483454976000 3173185470929/1961511552000 570885914358161/1046139494400 140970750679621/5230697472000 1166309819657/4483454976000 1166309819657/4483454976000 160083567907359774483454976000 "1544031478475483/1961511552000 -261407937078173371961511552000 -21029162113651/871782912000 -34412222659093/124540416000 89541175419277/871782912000 3933201478249/490377888000 **696561442637/178319232000 58262613384023/490377888000 *106364763817/402361344000** 1340464256524577145297152000 18660957114512/274523709512 310429955875453/581188608000 -350379327127877/435891456000 137855863153/70053984000 7222659159949/74724249600 **#31457535950413/38745907200** -10320787460413/38745907200 38029005269/1277025750 ***2166615342637/1277025750** 905730205/172204032 [13.12] 6 [4 2 4 2 4 2 14p11) 6 8 ŝ ŝ ŝ 2 (*** 1 0 (61) 0 13011) 13,10) 6 2 2 (14,14) (EI a P I [14.11] [13013] ŝ 4 0 14.13 6 0 4 m 14012 14.10 14012 14010 0 0 ហ CI en 100 130 3 0 10 10 10 30 (§ 4 5 (14D (140 (14) 140 140 . 4 4 5 (140 44 (14 D (14) 4 140 (140 130 (130 3 a (*) ŝ 100 #13 RATI BETA BETA* BETA* BETA BETAN BETA* BETA* BETAN BETAS BETA* BETA BETA A 1 1 BETA BETA BETA BETA BETA* BETA¢ BETA BETA BETA BETA BETA BETA BETA BETA BETA BETAW BETA* BETA* BETA* BETA BETA BETA <E -BETZ BET ي. الله الله 851

130

ŝ

Ø

#111956703448001/32011868528640000 56906730268873/16005934264320000 8204945906981250/111956703448001 25298910337081429/31384184832000 3966421670215481/31384184832000 -137515713789319/62768369664000 679781959848881/20922789888000 1138313909617631/20922789888000 -3129453071993581/62768369664000 2285168598349733/62768369664000 612744541065337762768369664000 105145058757073/62768369664000 70006862970773983/20922769688000 62487713370967631/20922789888000 72558117072259733/62768369664000 2161567671248849/62768389664000 362555126427073/62768369664000 **=3867689367599/62768369664000** 29219384284087/62768369664000 1096355235402331/62768369664000 -988788576755233/20922789888000 **~1934443196892599/62768369664000** 9038571752734087/62768369664000 "129930094104237331/62768369664000 62029181421198881/20922789888000 I31963191940828581/62768369664000 ***60007679150257/1961511552000** 13325653738373/2414168064000 64486158419069/8966909952000 #18956838043686778966909952000 ***20999287611259/5706215424000** 36807182273689/8966909952000 -2674355537386529/5706215424000 10103478797549069/8966909952000 -4372481980074367/8966909952000 740161300731949/4828336128000 2639651053/689762304000 **=25990262345039/70053984000** 25221445/98402304 -25221445/98402304 5.00 â 5,13) 52113 ~ 0 5143 m 5,15) 5,123 5,10) 6 (16) (15,15) [5014) 5110 5.123 50103 \$ Ś ŝ 4 m 3 in (P) S Ø N ent. 00 1 Ó 4 Q 16,16 1601 ູຈິ (150 ຄ a n (15° (15, (15° 5 200 (12) (150 (15) ŝ ທີ (12) ŝ < 1 4 P (10) 140 ຄິ ຸດ ທີ່ຫຼັງ (14, (10) =14 RATIO 8E1A* 8E1A* BETA* BETA* BETA* 8574* 8574* 851A 851A BETAN BETA BETA BETA BETA BETA* BETA* BETA BETA BETA BETA BETA BETA* BETA* BETA* BETA* BETA* BETA* BETA* (BETA& BETI BET 20

-171192511013729/355687428096000	596904922428961/246245142528000	=27389421430791451/3201186852864000	5708273541404323/254062448640000	*727845225633390409/16005934264320000	232085108601391937/3201186852864000	#42733352080603/463134672000	302240496916010687/3201186852864000	-1246285173964159159/16005934264320000	91914603656624011/1778437140480000	"12578861691928243/457312407552000	37519546987420243/3201186852864000	#1458231199032479/355687428096000	27707643610637623/16005934264320000	8092989203533249/32011868528640000	16185978407066498/205804074290625	8092989203533249/32011868528640000	-68846386581756617716005934264320000	942359269351333/27360571392000	"551863998439384493/3201186852864000	386778238886497951/640237370572800	=2797406189209536629/1778437140480000	7205576917796031023/2286562037760000	*324179886697104913/65330343936000	2879939505554213/463134672000	=3993885936674091251/640237370572800	80207429499737366711/16005934264320000	-5702855818380878219/1778437140480000	5173388005728297701/3201186852864000	~22133884200927593/35177877504000	2612634723678583/14227497123840	#55994879072429317/1455084933120000	14845854129333883/2462451425280000	50188465/15613165568	"3722582669836627/64023737057280000	1136320750878589/2286562037760000	₩72974966880383/27360571392000	8062612208040217/800296713216000	-45532601008155413/1600593426432000 	15815540301010573/254062448640000
99	Ħ	臀	n	Ħ	U	H	Ħ	N.		Ħ	靜	Ħ	Ø	Ħ	辭:	ŋ	Ħ	81	財	88	IJ	. F	餅	翱	n	黟	n	91	n	. 97	R.	81	M	驑	锊	靜	8	靜	99
4)	ŝ	ŝ	ent	6	6	8)	2	6)	3	4)	ŝ	ŝ		6	62	6)	ŝ	4)	ŝ	ŝ	~ **	6	6	6	¢ L	ŝ	ົທ	40	e	2	~ #	0	2	6)	ŝ	()	ନ	â	(1
- Q1 - Q1 	ф. Q	94. 91.	জন জন	iQ. €	9	đ	94	.0	Q,	q	9	G,	G,	q	eres.	2	- CA	-0	-9	- - 	q Q	9 9	à	q	a,	q	Q.	e ,	9	Q,	a	9	. CS (20)	್ರ ಕೆಲಕ	04 Graf	يني يون	G 214	्रम् इन्द	Q.
9 7 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 ***	9 7 2	9 10 10	9 73	5	5	9	9 **	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9 4 2	9 #1	9 4 1	9 == ~	0	10 10 10 10	9 **	90 900 900	9	5	9	9 **	\$ •	9 **	9 7 7	0	90 4=4 1	0	99 477 10	8	9 	9 		in the second se	1				<u>}~</u>
-	42	-		*	42	् स्रोत	-	~		ž				-	þ	4	~	đ	<u>e</u>	æ		-	æ	æ	æ	đ			æ	-	~	-	2	چ ج	 37			<u>ي</u> چ	ىپ چ
Ţ,	Å,	Ś	Ś	¥.	~	Å.	N.	×	LA.	Ž	Ś	(Å	× 1	× L	æ	-		- 		1. s	1		2	-	Ē		-	8-1.	1- 1-	Ē	-	-	4	S.	×.	L A	Š.	<	<
ы Ю	Ē	<u>ليا</u> 80	ы Ф	ш Ф	ы Ю	ш Ю	يتا ص	ы Ю	B	ш Ю	ы В	8	ليا ص	ŝ	5	õ	8	60	ã	ð	ñ	õ	õ	ã	ã	õ	ã	ð	õ	ã	õ	B	ы В Ш	5	5	ы Ш	ш 00	ш Ш	ш Ф

ø

	"1728464634834409159/16005934264320000	964479921803293249/6402373705728000	#40409465324546861/237124952064000	502364378756214437/3201186852864000	=1883042979819352909/16005934264320000	63645018657622943/889218570240000	~4019382738717217/114328101888000	44516885513301493/3201186852864000	-146702510065339/32335220736000	114329243705491117/64023737057280000	85455477715379/342372925440000	12752179117555146654/151711881512390095	**85455477715379/342372925440000	2460247368070567/547211427840000	=612172313896136299/16005934264320000	653581961828485643/3201186852864000	-4543527303777247/5928123801600	17195392832483362153/8002967132160000	~74619315088494380723/16005934264320000	14237182892280945743/1778437140480000	T0617432699294428737/6402373705728000	3146403501110383511/256094948229120	"19726972891423175089/1778437140480000	129650088885345917773/16005934264320000	-38023516029116089751/8002967132160000	65509525475265061/29640619008000	~511501877919758129/640237370572800	497505713064683651/2286562037760000		57424625956493833/9146248151040000	=2334028946344463/786014494949376000	16083586213927447/283838567620608000	-8727512947308437627/1703031405723648000C	6216118590489229589/2128789257154560000	~256626484009824989/21833735970816000	2160219719237435461/60822550204416000	-23052478094030507/275839229952000	111229455689198952379/709596419051520000	~2025977937601766635423/8515157028618240000
	N	B	*	0	p P	群	- 1	Ħ	Ħ	8	Ħ	弊	赣	(†	8	1	ŧ.	1 1	*	Ħ	1	资	¥	n	8		n	R	ar		Ø	₽ •	驟	Ħ	財	88	n	ġ,	
	10	0	Ø	P	Q	សា	4	3	2	ging.	0	8	[*** 1974	9 T	n H	5	3	2	dana) dinah	0	0	0	A	ø	'n	4	m	Ń	4994) - 7	0	00	~	0	ŝ		3	(V) ert	,	0
	170	4 2 7	470	а А.Т.	170	4 7 B	27 D	а Д Р Т	4 4	4 7 a	a 7 1		170	0 2 3	179	۵ ۲	2	170	470	۹ ۲	470	170	42	170	170	170	0 ~ 1	4 7 5	170	10	0 00 10	ŝ	180	4 0 0	ŝ	9 9 9	4 8 8 9	0 0 7	e G
8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ų	S	<u> </u>	e i	V	<u>ب</u>	\$	~	U	~	V	gand gana	9	~	U	~	~	~	<u>v</u> .	~	*	4	6	V	9	4	<u> </u>	0	v	<u></u>	U	<u> </u>	J	U	ý	~	Ý	~	J
	TA#	T A M	* ¥ .	TAN	TAN	T A &	TAX	TAt	TAN	TAN	TΑ*	RA A	E T A	E T A	ET.A	E T A	A L L	ETA	ETA	E T A	ير لا لم	E T A	<u>لا</u> لا	A L L	E H N	ي ا	E T >	يني الم	ETA	212	t A &	TAN	T A th	TA÷	4 V 4	1 4 4	TAt	TAN	TAN
	8 10	8 1 1	ш 20	8	ш Ю	ш СО	<u></u>	<u>В</u>	ш СО	Ш Ю	ш Ю	. 1	8	8	00	Ø	80	8	00	ß	00	8	80	Ø	ß	ß	œ	60	00	8	ш 00	ഷ	ш Ю	ເມ ເມ	ы СО	لما 20	ш Ю	ш Ф	ы СО

=170502576778289249423/567677135241216000	21409690670332474663/85151570286182400	#105083959047373621537/608225562044160000	127722520943891521/1316505415680000	-37673668595097727061/851515702861824000	463492437836890081/28383856762060800	5666838930556309291/1135354270482432000	7830462528683744423/4257578514309120000	12600467236042756559/51090942171709440000	25200934472085513118/281550972898020815	2/2	1/2	2 / 2	5/4 s	2/2	1/6	2/1	4/6	216	0/1	9/8	28/5	■60/15	32/31	12/93	2 × 3	3/8	=23/5	*26/15	m 1 / 3 2	m 1 / 93	32/15	64/93	15/93	-225/128	225/128	540/31	-1395/155	783/617	-135/3085
財	8 8	at	Ħ	N	11	17	靜	韒	醇	Ħ	Ħ	17	IJ	韝		Ŋ	Ņ	飅		89	70	IJ	83	刘	9 F	95	雜	難	19	服	鏐	Ħ	W	鲤		n	Ħ	8 1	62
69	2	ŝ	ິດ	0	â	ŝ	^	6	6	6	() 194	^ ₩	6		-	œ	đ	0	(A	() 4		^	() 	ର	ŝ	2	ŝ	ŝ	20	ന	A T	0	() ()	~	~	(*	6	~
ą	G,	q	6	9	9	G,	Q	04	9 9	\sim	\checkmark	\smile	\smile	\sim	•	ల ఎ	ш С	V	\smile	S	\checkmark	\sim	~	~	\sim	$\mathbf{\mathbf{v}}$	\sim	~	\smile	V	2	ы С	\sim	\checkmark	\smile	\sim	\checkmark	V	\checkmark
00 ***	80 4	© ~1	∞ •••1	00 	00 	80 ***	60	ଙ୍କ	O	4	ന	<	60	A N	~			N P	~	8	<	00	N I		~	60	~	00	A N	~			1 1 1	~	60	« (60	A N	*
<u>ب</u>			~	~	ب م	~	چ بر		georg Josev Josev	A	< A	2	<u>ں</u>	2	0			ш С	4	A P	ں ا	_	1	0	4	A A	2	2	<u> </u>	മ			ŝ	d V V	а. «С	2	ں ا	1	ш 00
Å,	N'A	×.	TA	×	Š,	TA 4	Š.	Å.	R		0								~	~			~		0	~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					0	الريب			1000	
يتَ ص	1	ليا ص	ص	iu m	يما ص	ju m	6	ω	2	, 1	()	9	cont.	وسله	6m)	ক্ষনা	ç=‡	-	2	N	N	Ň	2	പ	N	N	N	2	N	N	N	2	2	ማ	m	ന	m	62	ന
	_								10		19	簈	静	睫	韃	50	8	9	科		89	89	80	}8	80	鋍	88	18	88	Ð	8	豑	19	8 9	鏄	錄	剱	髎	赫
									Ø	$\boldsymbol{\varkappa}$	×	×	¥	¥	\mathbf{x}	⊻	×	×	\ge	×	¥	×	×	\mathbf{X}	×	×	\mathbf{X}	¥	×	×	×	×	×	\mathbf{X}	⊻	¥	\leq	Ľ	\mathbf{X}

200/128	300/128	m297/31	-2130/155		-495/3085	153/128	45/128	-212/31	#309/155 ***	m31/617	= 39/3085	384/155	2304/3085	465/3085	<pre># 629200/59049</pre>	96800/19683	3796/61	-75240/3355	2248/3943	129360/216865	-418176/59049	348480/19683	2700/61	=327096/3355	1080/3943	64152/216865	898425/59049	217800/19683	-=5204/61·	-210705/3355	568/3943	14190/216865	208000/59049	17600/19683	-1231/61	"17220/3355 "	6773943	570/216865	6561/3355
鄸	Ħ	Ħ		0	1	Q1	Ħ	鐴	똵	錚	11		-	Ħ	Ħ	黢	Ħ	醇	8	₽.	酻	艀	够	Ø	ਗ਼	1	ŧ	W	ØŤ	卸	12	牌	Ŋ	ŋ	鍵	静	醇	讀	转
ŝ	â	â	2	ର	â	8	6	8	^	<u>_</u>	6	00	<u>الم</u>	3	~	~	^	#~\$ 1944	^ ***	~~ ***	â	â	â	â	2	2	6	6	en	6	ŝ	0	6	6	6	6	^	ŝ	œ
Ũ	Ċ	Û	Ű	Ű	~	J	Ú		Ċ	9	-	2	ين ص	1	~	•	\$	~	~	~	~	ف	v	5	Ċ	Ç,	-	U	-	~	<u> </u>	\$	õ	č		è	õ	J	0
≪.	ß	4	8	ĂH	× E	4	Ω	ح	മ	۲	4 1 2			~	≪	ß	4	œ	КH	V	<	ß	Ľ	00	AH	æ.	¢	00	S	æ	₹H	T A	æ	8	« [00	a I	¥ 1	
4	đ	2	2	۵ ا	لما 20	۵ ح	đ	ပ္	2	<u>a</u>	ы Ю			ш Ю	Å	Å	2	2	<u>0</u>	<u>с</u>	Å	đ	ပ 	2	0	ຍ ເຊິ	đ	d V	2	2	2	ы СО	4	4	2)	۵. 	لما 20	
O	S			4		C	C			Ø					ပ	0			≪		C	C			4		ပ	C			æ		O	C					
m	3	ന	ന	69	ጠ	m	(M)	(M)	ന	<i>6</i> 7	ന	ന	m	ന	8	4	-31	4	4	4	4	4	4	đ	ţ	4	4	4	4	đ	4	đ	4	ŧ	4	4	đ	4	\$
89	90	B	H	8	騝	竷	60	财	鍵	89	Ħ	19	Ħ	11	馡	84	雜	10	鍵	驖	19	8	餯	19	19	Ħ	静	鋒	19	Ņ	歸	19	時	静	騪	鏠		翻	99.
\mathbf{x}	¥	×	×	×	×	×	×	$\mathbf{\mathbf{x}}$	\mathbf{x}	×	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{X}	\mathbf{x}	×	×	\mathbf{X}	\mathbf{X}	\mathbf{x}	\mathbf{x}	×	×	\mathbf{X}	×	×	×	×	×	×	×	\mathbf{X}	\mathbf{x}	×	×	×	×	×	\simeq

32062800/73816358 49170/73816358 46719750/73816358 13369125/73816358 1879500/73816358 39858075773816358 6934620/73816358 -630561008/23914845 -1599082254/37433473 2657205/1386924 13707848/1594323 -472227525/1386924 -153728400/1386924 -7573830/1386924 1485084/3044563 ***328685280/1386924** 118098/216865 20130/216865 -44017050/138692 97000/479327 117500/479327 21459012/142985 230875/479327 10672200/177147 32375/479327 1577/479327 -9486400/531441 1185800/177147 -24285184/531441 7589120/177147 12006225/531441 20070400/531441 3449600/177147 2226400/531441 169400/177147 -558150/4503 #107672/4503 454750/4503 1181300/4503 *965725/4503 鞼 鐉 鸖 鯾 舞 홿 静. 静 群 御 鱍 LC B BETA E T > (0) (4) SS ŝ (0) (2) 2266 (4) 444 444 36 ŝ 3 ** 999) 820 ~* ~* m CAP A BETA CAP B ALCC ALCC ALCC ALCC ALCC ALCC ALCC BETA ALPHA BETA CAP A ALPHA CAP A CAP A ALPHA ALPHA ETA LPHA ß ¢ < 2 н Ш CAP CAP CAP CAP ပ ____ ပ ၂ Ó $\mathbf{\circ}$ ò 0 CAP CAP e õ 静静静静静 68 發發發發 雛 糖 验 馢

2514772260/3985332967 1660531950/3985332967 -18412020/3985332967 2152336050/3985332967 559924750/3985332967 ***9906750/3985332967** -675290/3985332967 374334730/3985332967 71744535/37433473 -3221344280/23914845 -46096009575/37433473 =33650498700/37433473 1748450000/23914845 -6618347010/37433473 114738008/23914845 -218118054/37433473 -18173488410/37433473 -1499295875/23914845 3511928000/23914845 137078480/1594323 -2459/3044563 69487573044563 342696200/1594323 774000/3044568 249233600/1594323 121875/3044563 48956600/1594323 -28812/3044563 1612688/1594323 110802000/142985 52489000/142985 **#120483375/142985** -60172140/142985 -3951512/142985 2837/1440 -2543/720 -1201/720 95/288 5/288 5121 Ō **** 斜 鮮 11 、龍倉 Ħ 頖 折 휊 錐 10 18 19 财 82 -**W** 雛 19 翳 83 日日 В ГС BETA (0) (0) 6 ~ ~ ~ 0 ert S -BETA BETA BETA AL PHA BETA ALPHA BETA CAPA ALPHA ALPHA BETA ALPHA ≪ 00 đ đ œ ≪ 00 $\boldsymbol{\omega}$ ≪ 00 < 00 ¢ Ø ≪ 00 ≪ 00 < 0 BET CAP CAP ပ CAP 0.0.0.0. Ω. СAР Ů ပ ၂ CAP ပူ Ó CAP CAP CAP ິ ں _____ CAP ్త ు Ĵ NNNNNN OO O O O O O O O O O O O O ð Ś 阳 间 112 112 静静 84 89 88 **88**-脉解 **H** A 龖 18 時 總 88 89 61 90 91 饠 48 <u>84</u> 3A 艞 翻 11 52 88 翻 ×

3288521/1036800 -40987771/3628800 -135352319/3628800 -9401029/3628800 =31523/120960 -191/120960 7843/120960 191/120960 10219841/403200 -9839609/403200 53932337518400 1344989/120960 **~66109/120960** -7843/120960 211/15120 -211/15120 5257/17280 6961/15120 1247/15120 =275/24192 25713/89600 -104861/15120 156551/24192 =32371/15120 5257/17280 25713789600 -2061771890 16728774536 #11/1440 11603/4480 11/1440 73/720 41/720 77/240 -3/160 41/720 1/2 212 將 IJ n 殷 艀 H. 89 辭 11 14 88 靜 嫛 叙 -8 腱 翰 11 8 8 離 88 靅 19 额 12 17 雅。俳 12 11 -讃 翸 111 額 83 Nm 0 00040 4 MFMVF00 đ 鎌 13 騒 静静 # # # 鲢 額 84 齇 **雄** 翻 群 睦 膧 馢 顡 18 -18 摊 雄 - 13 難 職 離 鎺
-337204019/159667200 m147977191600640 3569763199/958003200 -3966011741/239500800 -517263181/159667200 -107151937/319334400 15813379/239500800 41021471/39916800 1695154823/35481600 -1247363563/13305600 4144305961/31933440 -144794759/47900160 4777223/17418240 4777223/17418240 8089801/11404800 -67283209/45619200 2087883637/22809600 ***2497/7257600** -86656259/1900800 7679551975068800 14380247/5702400 2616161/3628800 263077/3628800 **#8183/1036800** 2497/7257600 68119/3628800 252769/3628800 3498217/3628800 -252769/3628800 =68119/3628800 -4671/788480 -1469/403200 14697403200 427487/725760 500327/403200 -24019/80640 76561/24948 -6467/5670 -495967/3850 1/2 藓 騨 财 . 辨 件 器 **段** 段 **31** Ħ Ħ ø 鲱 1 R 8 Ħ 爵 群 辨辨 n -- 88 麟 89 軉 羅 群 奲 難 群 藓 ~ m 6 2 ŝ 500 000 6 0 200 2 0 N ന 0 ~ 00 NAMAN Ś N 80 -4 3 5 Ó ŝ 0 0 -3 ŝ -~ المنبط ~ 80 2.1 00 2 -đ 33 84 98 88 18 Ĥ 斜 國 精 N 11 10 4 酿 馡 難 锥 斜 Į. 推 11 緜 11 11 辄 异非目 巍 器 歸 雜 鐟 鼬 鐡 韵

230371/239500800	-203257/35481600	29903113302600	~11639731/159667200	1/2	11639731/159667200	~ 299093/13305600	203257/35481600	-230371/239500800	14797/191600640	733526173/172204032	-59344946587373/2615348736000	104639289835229/1307674368000	<pre>=102675619234099/523069747200</pre>	121844891963321/348713164800	#40318232897599787178291200	31975145483/69498000	=149831214658501/435891456000	66393001798471/348713164800	13247042672623/174356582400	491703913717/23775897600	-900055832083/2615348736000	106364763817/402361344000	106364763817/402361344000	307515172843/373621248000	-2709005666077/1307674368000	2309296746931/523069747200		4007043002299/435891456000	-2215533/250250	2816016533573/435891456000	<pre>"175102023617/49816166400</pre>	144690945961/104613949440	=486772075771/1307674368000	160495253651/2615348736000	-2224234463/475517952000 	92427157/5230697472000	"132822967/523069747200	2274524387/1307674368000	-4013113421/523069747200
M (1) #	N (- 5) (1)	F (m) X	W (4) #		W (9) #	M (7) H	M (8)	M (6) M	M (10) #	р. (°О) =	P. (1) #	P (2) #	P (3) #	P. (4) III	P (5) #	P (6) 3	P (7) #	P (. 8.) #	н (6) d	P (10) #	P (11) #	P (12) #					C (7) #		C (0) #	C (7) #	C (8) #	R (6) 0	C (10) #	C (11) #	C (12) #	M (0) #	1 CT) W	M (2) #	W) W
N H X	n II	n N Z	N II X	N N N	ມ ສ	Σ Ν Ν	N N N	یں 11	ίΩ II Σ	9 11 2	M W	9 8 W	M 11 6	M	M # 6	9∵#∵ W	M # 6	M # 6	N an o	M n n	v ₩ ₩	W W	M # 6	M :# . 6	9	M III 6	X # Q	¥ ¥	₩ ₩	M	M # 6	N N	9 11 X	Ø II W	M M M M	Q H X	9 8 W	N N	M # 6

×	v 0 #	M (4) H	8855328071/348713164800
×	S B	M (5) #	-32793164357/435891456000
X	9	1 (0) W	1/2
X	0 #	M (2) #	327931643577435891456000
N.	۰ ۱	M (8) =	-8855328071/348713164800
X	ý H	W (6)	4013113421/523069747200
× Σ	ي ه	M (10) #	-2274524387/1307674368000
X	ю н	M (11) #	132822967/523069747200
X	\$ 0	M (12) W	-92427157/5230697472000
x	~		299786756763073/62768369664000
X	~	P C 10 H	<pre>"116361307155361/3923023104000</pre>
X	~	P. (2)	2586771998343187/20922789888000
X	~~	P (3) H	=356985279148297/980755776000
× W	~	P (4) #	1988442368270749/2510734786560
X	~		ST1195366208749/435891456000
×. N	P-	P (6) #	5010047970421097/2988969984000
X	р. Н	P (7) #	-2132356395131/1277025750
X	r 10	P (8) #	9030884747790859/6974263296000
X	~	P. C. 9. 1	<pre>"121630328435299/156920924160</pre>
W	-	P (10) #	2006565473520353/5706215424000
X	~	P (11) #	-3478073249303/29719872000
X	~	P (12) =	130221619246627/4828336128000
X	P	P (13) #	=2156804881129/560431872000
X	<u>م</u>	P. (14)	25221445/98402304
W			25221445/98402304
X	₽~ 85	C (1) #	3654051145153/3923023104000
X	A	C (2) #	"172527345401401/62768369664000
X	~	C (3) #	2292797894083/326918592000
X	~	C (4) #	=886761467394133/62768369664000
X	~		3496017827389/156920924160
γ Σ	~	C (0) =	=192338437893109/6974263296000
X	88	C (7) 4	349581097/13030875
Σ	₽~ ₩	C (8) #	<pre>=427489980816929/20922789888000</pre>
N	P-	C (6)	5256082896499/435891456000
X	N	C (10) =	-13579171932259/2510734786560
Z	N 88	C (11) 4.	1748809541047/980755776000
X	N	C (12) #	*8530634387437/2092278988000
X	M	C (13) #	226717570111/3923023104000
X	P~~	C (14) #	*2639651053/689762304000
X	~	M (O) W	=36740617/8966909952000

	87402869/1307674368000	-1306229471/2510734786560	2541742327/980755776000	-197301894457/20922789888000	108816780203/3923023104000	<pre>"1610849246753/20922789888000</pre>	1/2	1610849246753/20922789888000	=108816780203/3923023104000	197301894457/20922789888000	=2541742327/980755776000	1306229471/2510734786560	=87402869/1307674368000	36740617/8966909952000	48278377805453833/9146248151040000	-171249214157564497/4573124075520000	469380177761711/2605768704000	= 3961751682437057363/6402373705728000	10188305820220195813/6402373705728000	=3746390185754199257/1185624760320000	22592520393618350801/4573124075520000	=39387573858057739199/6402373705728000	11690920326343/1905904000	<pre>"31344919029592580161/6402373705728000</pre>	9049517901190374779/2910169866240000	"1840516046810912551/1185624760320000	293655970246750919/492490285056000		-1359343865740233/32011868528640000	85455477715379/342372925440000	85455477715379/342372925440000	736507566455411/711374856192000	-2490947654982047/711374856192000	66615242131764563/6402373705728000	<pre>#17607799026266621/711374856192000</pre>	166541079499158667/355687428096000	453443248829255563/6402373705728000	20417981803080493/237124952064000	
	n	n	Ħ	11	Ħ		D.	Ħ		键	N	It	ŧ	R	11	奲	۲.	誹	野	Ħ	Ħ	許	ħ	9	Ħ		H=	1 1	1: IQ	Ħ	n	ST	n	ţ,	87	Ņ	Ħ	Ħ	. 6
	~ ****	N.	â	4	ŝ	0	2	8	6	0	~	2	8	ŝ	6	~	a	6	4)	ត	9	2	6	6	0	9			າ ເທ	9	6	-	2	ŝ	4	6	ŝ	2	a a
I B B B B B B B B B B B B B B B B B B B	~		<u> </u>	Ĵ		J		Ū				-	پښي س		J	Ĵ	-	<u> </u>	5		Ĵ	~	J		er V	-			- 	÷	Ū	~	5		Ū.		Ĵ	0	
- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				-	-	-	Σ	X	Σ	Σ	X	Σ	Σ	×	۵.	0	۵.	0	۵.	٩	۵.	۵.	٩	۵.	۵.	٩	۔ م		LO	۵.	Ċ	0	G	ç	0	0	ں د	0	
	1. C 1) 1		章 (で)				M (7)	M (8) W	W (6) #	M (10) #	M (11) #	M (12) #	M (13) #	M (14) =	P (0) #	P (1) #	P. (.2).	14 (00) d	P (4)	P (S) 4	P (6) #	P (7) *	P (8) #	P. (9) #	P (10) #	P (11) #		P (12)	ь в в 133 133 133 133 1 8 1 8 1 8 1 8 1 8 1 8										
12 28 20 19 29 99 18 18 18 18 18 18 18 18 19 19 18 18 18 19 19 19 19 19 19 19 19 19 19	~	×	X	2.	2	din 1																																	
	7 N	×	X	N	2	~	2	~	2	-	~	~	~	~	0	80	ð	Ø	හ	æ	Ô	80	80	80	හ	ø	œ́ (0 0	o co	ø	Ø	ø	Ø	Ø	Q	හ	80	1	0

a N	80	C (6) #	424709866723701313/6402373705728000
n E	60	C (10) #	"148153326227812417/3556874280960000
X	80	C. (11)	1332077054297011/64670441472000
u X	80	c (12) =	~50254775657217563/6402373705728000
X	80	C (13) #	1582902445233797/711374856192000
X	0 0	C (14) #	
X	60	C. (15) .#	1758389297773001/32011868528640000
π Σ	80	C (16) =	-50188465/15613165568
n X	80	W (00)	61430943169/64023737057280000
₩ X	6 0	N (1) H	-80168657839/4573124075520000
T T	6 0	M (C) M	660473357/4311362764800
×	80	M (C) W	=1096193632393/1280474741145600
R X	80	M (4) M	4436541947807/1280474741145600
u X	00	M (5) =	"13043845962023/1185624760320000
R X	80	M (0) #	949437300568649/32011868528640000
¥ X	8	# (-14334414125131/182924963020800
υ Σ	60	M (8)	1/2
μ Σ	6 0	A C 9 A	14334414125131/182924963020800
×	8	M (10) #	=949437300568649/32011868528640000
ε Σ	80	M (11) W	13043845962023/1185624760320000
W	80	M (12) #	-4436541947807/128047474145600
Σ	80 11	N (13) =	1096193632393/1280474741145600
¥ X	80	M (14) H	**660473357/4311362764800
ы У	60	M (15) #	8016865783974573124075520000
n X	80	M (16) *	<pre>~61430943169/64023737057280000</pre>
S	(404)	B(1,0)	1/100
~	(4.4)	ACIJ	1/100
V	4 . 4)	B(2,0)	-4278/245
V	4 2 4 3	B(2>1)	44257245
V	4 0 4 3	A(2)	3/5
9	(404)	B(3,0)	524746/8791
Ų	4,04)	B(3,1)	**532125/8791
1	4 . 4 >	B(3,2)	16170/8791
~	404)	A(3)	1/1
~	(4 ° 4)	B(4,0)	179124/70092
<u> </u>	4,4)	B(4,2)	200000/70092
1	404)	B(4,2)	40425/70092
~	404)	8(4,3)	8791/70092
ŝ	20	B(1,0)	1/1000
ŝ	ŝ	ACID	1/1000

07/2770	450/10	3/10	2684721/9568	-2695500/9568	17955/9568	3/4	= 30872049/24219	31009500/24219	-146720/24219	33488/24219	1/1	105/1134	0/1134	500/1134	448/1134	81/1134	1/300	1/300	129/5	30/5	1/5	323/5	·=330/5·	10/5	3/0	510104/810	521640/810	-12705/810	1925/810	14/15	-417923/77	427.350/77	-10605/77	1309/77	-54/77	1/1	198/3696	0/3696	1225/3696
B(2,0)	B(2,1)	A(2)	B(3,0)	B(3,1)	B(322)	A (3)	B(4,0)	8(4,1)	8(4,2)	8(4,3)	A C 4 3	B(5)0)	B(5>1)	B(5%2)	B(5,3)	B(5,4)	B(1,0)	A(1)	B(2,0)	B(2,1)	A(2)	B(3,0)	8(3,1)	B(3,2)	ACBJ	B(4,0)	8(4,1)	B(4,2)	B(4,2)	AC4)	B(5)0)	B(5>1)	8(5,2)	B(5,3)	B(5,4)	ACSY	B(6+0)	B(6,1)	B(6,2)
(5°2)	(5,5)	(5°2)	(5,2)	C 0.0 0	(2,2)	(5,5)	(5,5)	(5,5)	(5,5)	(2,2)	(5,5)	(5,5)	(0.60)	(522)	(5%5)	(5,5)	(646)	(6,6)	(6,6)	(000)	(000)	(606)	(0,6)	(6,6)	(626)	(626)	(0 0 0)	(626)	(6,6)	(6,6)	(6,6)	(606)	(0°0)	(6,6)	(6,6)	(626)	(9*9)	(909)	(6,6)

1540/3696 810/3696 *77/3696	1/192	#15/6 16/6	1/6 4867/186	=5072/186	298/186	1/2	20896/31	-1025/31	155/31	0002/02/02/02/02/02/02/02/02/02/02/02/02	#22736/5022	5580/5022	186/5022	516	914314/2604	#955136/2604	47983/2604	=6510/2604	#558/2604	2511/2604		14/300	0/300	81/300	110/300	0/300	81/300	14/300	5/3	2/9	1/12
5,6) B(6,3) 5,6) B(6,4) 5,6) B(6,5)	(27) B(120) (27) A(1)	727) B(20) 777) B(201)	757) A(2) 757) B(3)0)	PT 8(3)1)	PT) B(3+2)	77) AC3) 77) BC440)	(27) B(4+1)	<pre>/ > 7) 8(4+2)</pre>	57) B(4,2)		(2) B(5)2)	(5×3) B(5×3)	27) B(5>4)	.27) A(5)	PT) B(6.0)	57) B(6.1)	7) B(62)	(PT) B(623)	727) B(624)	PT) B(6.5)	P7) A(6)	P(1	· 7) B(7+1)	1.77) B(7.2)	PT) B(7.3)	P(1) B(704)	27) B(7,5)	. 27) B(7.6)		29) A(1)	59) B(2>0)

3/12	1/3	1/8	0/8	3/8	1/2	23/216	0/216	21/216	-8/216	.1/6	-4136/729	0/729	-13584/729	5264/729	13104/729	8/9	105131/151632	0/151632	302016/151632	=107744/151632	"284256/151632	1701/151632	1/6	-775229/1375920	0/1375920	#2770950/1375920	1735136/1375920	2547216/1375920	81891/1375920	328536/1375920	5/6	23569/251888	0/251888	-122304/251888	~20384/251888	695520/251888	*99873/251888	#466560/251888	241920/251888
8(2,1)	A(2)	B(3,0)	B(3,1)	8(3,2)	A(3)	B(4,0)	B(4,1)	B(4,2)	8(4,3)	A (4)	B(5,0)	8(5»1)	B(5>2)	8(5×3)	8(5>4)	A(5)	B(6,0)	B(6,1)	B(6×2)	B(6,3)	B(6.4)	B(6,5)	A (6)	B(7,0)	8(7,1)	B(7,2)	B(7,3)	B(7,4)	8(7,5)	B(7,6)	A(7)	B(8,0)	B(8,1)	B(8,2)	8(8,3)	B(8,4)	B(8,5)	8(8,6)	B(8,7)
(2,47)	(6 4 2)	(209)	(642)	(6°2)	(6°2)	(642)	(642)	(602)	(602)	(602)	(6.7)	(7,0)	(6°2)	(200)	(7,9)	(642)	(6°2)	(6°1)	(6°2)	(209)	(709)	(6°2)	(602)	(602)	(2,0)	(642)	(602)	(6 " 2)	(602)	(6°2)	(6°2)	(602)	(6 % 2)	(7,9)	(602)	(602)	(6 4 2)	(209)	(642)

Ċ	\sim	0	Ö	0	0	0	Ô	0																														
0			04	N	CV.	CU1	CM.	N																														
		-	~	~	-	-	~	~																														
47	e . 97 i		- C. A		42.1	40. F		42.4																								-						
C	$\sim c$	$\circ \circ$	0	0	0	0	0	0																					0	0	o	0	0	0				
2	- 21	- 21	24	27	-	20	-	et																		-			6 4	CV.	OF	N	സ	64				
				-			-	-	1		-																				11	-	_			-	-	-
	* ***	t grid	and	्यूम्ब	- the second	-	-		~	-	æ	æ		2	\mathbf{N}	EV							-57	्य	ব	- ST	-		C C C	ሞን	en-	ന	ണ	æ,		\circ	0	0
$\rightarrow 0$	10	i Ni	- 64	N	0	£V)	N	£M.	0	A.	-	-	0	é-1	-	-	67	ð	Ð	ð	ð	N	ŝ	in	1A	Ľ۵	£۵	m	er	< S	et.	<t< td=""><td>đ</td><td>-</td><td>Š</td><td>NI.</td><td>S I</td><td>SU.</td></t<>	đ	-	Š	NI.	S I	SU.
	- 21			- 27		27	27	27		- 2.7			2.1			•			-			-	Ξ.		51	-	~ .			~		-					27	
N N	, `	·	~~~		×.	-		~	~		- C				-		-	- *	~			~				~	-	-		×.			. ** *					-
int in	4 C	\circ	÷ Ø	0	0	6	0	-	1	4	-	10	N	i genit	0	ŝ	-	and the	0	0	3		m	0	~	N	60	N	9	O	-	Ś	4	3	-	igen ‡	0	week.
-			-	-	-	-		-	-														فنسب		-	-			m	-	10		0.1	-		20		0
			- K. S	~	~		-	~																	e.v	-			~		U 1	~	1.38			6.4		00
0	1		\$	0	0	0	0	N																					e)			\$	Ø	2		CVI.		
~				10	\sim	$\hat{}$	10	-																												8 .		
· ·			E.sean	144 1	W 1	5	1	-																									5					
*	4		- 0	ന	ŝ	ŝ	m	- un t																									,					
				10			10	****																														
	Ŧ		-	- U			v	4-4																														

0	-	F	•	-	0		0	-	0	0	-	0	-	~	-	2	~	-	2	2	0	1	2	~	2	\sim	2	0	~	\bigcirc	1	~	~	-	~	~	~	~	~	0
8	0		4 (N	ŝ	-	n,	S	~	Ø	0	-	0	444	CV.	0	-	N	ന	0	direction of	N	(e4)	4	0	diel	CV.	67	đ	ហ	0		CV.	(T)	4	m	Ś	0	4	< <u>N</u>
-	Ċ,		a, 1	0	Å,			-			- Q	\smile	_ G ,	: 4 4	6	. 9	- A	9	Ś	- 04		9	9	\smile	9			9	9	4	Q.	•	-	Ø,	G.	Φ,	-	0	9	· 01
4	9	O	N 6		\$	9	0	0	0	0	-emit	4	- OV	N	4	673	60	67	4		4	4	4	•	S	ŝ	ហ	ŝ	5	۹	Ś	Ś	Ś	Ś	Ś	Ś	<	-		Par
	ų,	•			Ś	-	\mathbf{v}	4	ų,	\mathbf{v}	\smile		4	\checkmark		4	\mathbf{i}	4		-	\sim	\smile	\smile		~	5.	~	\smile			\smile	~		4	-	~		\smile	S	\smile
	$\mathbf{\omega}$	a	0 0	Ð	m	8	B	æ	00	Ð	œ		8	8		9	θ	3		ω	8	80	æ		$\boldsymbol{\omega}$	8	Ð	8	Ø		20	8	3	ω	œ	8		œ	8	8
~	~		~ ~	~	~	~	~	0	~	~																														
à	0	0	N E	х	0	0	ò.	•	0	0	5	0	0	5	0	0	0	~	1	m	\sim	5	n	0	0	5	0	0	5	~	1	~	0	~	0	0	0	~	0	5
9	୍ଦ	. 7		0	à		- a	à	4	<u>a</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0
-	~		F	-	~	~	~	-	-	-	-	und.	-	-	-	w.	ant	1574	-geog	w-+	द्रण्यं	4 74	-	quest	word .	en t	-	**	wei.	urt.	जन	-	west.	qet i	-	wint	-	-	-	-
Ú,	\sim				\smile	-	-	i u	6	6	. 0	4	Q.	9		A		9	- 64	R	-	· 9,	9	е,	а,	9	9	9	0	e,	Q,	9	4	9	9	-9,	Q,	-4	Q,	Q,
							-				00	30	00	00	00	00	00	80	00	Ø	8	8	8	60	Ø	00	00	Ø	œ	00	00	00	60	00	8	00	60	00	00	3
											ŵ	ف	Ű	ü	Ű	Ű,	Ū	Ū	Ű	-	Ū	<u></u>	~	Ū	ŵ	Ű	-	÷	ŵ	ú	-	ū	ũ	-	ū	ŵ	÷	ú	10	ŵ

		N 5	80					29m	45	(*)	54			148	-	8	710	=337	~	100	9	22		4		-	0	22	0	21			đ						
3)		2	6)	7.2	0)	1)	2)	3)	4)	50	6.) .	()	8)	()	1)	5	3)	4.)	5)	6)	7)	8)	6	(0)	12	2)	3)	4)	5.2	6)	7.5	8)	6.5	(0)	1)	0)	1)	2)	(0
8(7)	6 L) B	8(7)	8(7)	AC	B(8,	B(8,	8(8) 8	B(8,	B(8,	B(8)	B(8,	8(8,	JA C	B(9,	B(9,	B(9,	B(9,	B(9,	8(9°	B(9,	B (9)	B(9,	AC	B(10)	B(10.	B(10,	B(10,	B(10,	B(10,	8(10)	8(10,	B(10,	8(10)	B(1,	AC	BC 2°	B(2)	AC	B B G
(8,10)	(010)	(01*0)	(8,10)	(8,10)	(8+10).	(8,10)	(0100)	(8,10)	(8,10)	(8,10)	(8,10)	(8,10)	(8,10)	(010)	(0148)	(8,10)	(8,10)	(0148)	(01.6)	(8,10)	(8,10)	(01.6)	(8,10)	(8,10)	(01-6)	(8,10)	(01(0)	(8,10)	(8,10)	(0148)	(01-8)	(8,10)	(0148)	(8,12)	(8,12)	(8,12)	(8,12)	(8,12)	(8,12)

							1. Ar																																
			**		Ø	Ø	Ø	œ	80	0	80	Ø		0	0	0	0	0	0	Ó	0	0		0	0	0	0	0	ο	0	0	0	0						
0	0	0	0	1.1	80	80	Ø	8	80	8	Ø	8	$\{ x_{i}, z_{i}\}$	N	N	- N	ŝ	N	CV.	CU.	N	CV.	. • •	4	4	4	4	4	4	4	4	4	4			4	4		Ś
CV.	N	N	N	i nanĝ	- CVI	N	N	N	2	2	N	N	۰Ø	Ø	C	60	Ô	Ð	Ø	ð	Ð	Ð	- graf	Ø	80	ð	Ø	00	00	60	00	Ø	Ø	9	0	N	N)	S.	again F
*	~	-	~	~	~	>	~	~	~	1	~	~	1	~	~	~	~	-	~	~	~	-	~	~	>	~	~	8		~	>	-	~	~	-	-	~	~	-
4	9	· N	0	- unit	~	O	60	80	10	0	0	4	ŝ	-	0	eri	1	6	N	0	0	0	إسرت	ieret i	0	0	~	N.	~	Ŷ	0	Ś	and:	-	-	-	m	-	-
Ś	ŝ	N	0		N		- and	~	ŝ	1	1	1.00		Ø		ð	0	-	-	4	VO.	N		4			CNI	~	2	-		-	4						
-	Ó	-	80		-	-		9	4		ŝ			4			-	3		0		-		-				2		2		N							
-								2						-			-	0		iñ												- <u>-</u>							

0	2	2	-	0	0	0	-	2	0	$\hat{\}$	2	2	2	9	0	0	2	9	0	2	0	~	2	2	-	0	~	0	2	~	0	0	~	0	0	0	0	~	~
-	N	62	0		CVI	<u>ന</u>	4	0	्यूम्	N.	<u>с</u> тэ -	đ	เก	0	400g	Ç <u>u</u>	ന	4	101	W	0	-	N	en.	4	ന	Q	P	0	- 1994 - 1	CAL	(°).	2	ഗ	Ś	Pro-	80	0	-90-0\$
ŝ	ŝ	AC	4	4 0	4 9	4	AC	5	ທີ	ŝ	ខ	เกิ	AC	9	ç	¢.	ô	ŝ	ŝ	AC	A	4	70	а р-	¢.	10	A 	AC	8	8	ô	å	ŝ	8	ສື	8	A¢	6	ŝ
С В	ы В		Э С	8	B	8		С В С	8	ВС	8	B		BC	ĕ	BC	BC	С В	8		Š	с В	B	с Ю	90	80	B B		о В	ð	B	8	e e	B	B	8		С В	ě
2	6	2	0	~	0	2	0	2	0	2	2	2	<u>ም</u>	2	2	0	2	2	2	2	6	2	0	6	<u>~</u>	0	2	2	0	2	2	2	2	2	2	2	5	2	~
e-t	- CV - Grad		્ય	n Vê Heref	4-1	er.	te M. terref	i dende i dende	e cu tionet	- quet	s u sent	4	.v. ⊽=1	¢.⊎ ¢≂¢	ų.ų.	ent.	ूर्थ चेल्ली	.ve ,iji≡t	- vu	रूप देखे	-4	- sheed	e u geoj	4.4U	u U queț	vint.	€Q. ajunaj	ev.	U	u.V.	uv ≢≂t	and	e vi	wint	v.v. geot	4 4	4-4	ev.	•••
4	9	9	9	9	٩	9	9	9	-	-	-	୍ୟ	9,	4	4		4		9		9	9	9	Q,	4	-9,	-	9	9	9	9	e,	-	୍	•	Q.	4	۹	G,
80	9	6	3	9	ဗီ	3	8	ŝ	ŝ	8	000	3	6	S	ŝ	6	ŝ	3	ŝ	0	ŝ	60	8	ŝ	ŝ	8	e B	ŝ	ŝ	8	3	8	ŝ	ŝ	8	8	3	ŝ	ŝ

			0	0	0	0	1	N	N.	N	N	N									m	3	m	m	3	m	m		4	-	4	4	-	4	-	-		đ	4
Ś	Ś		0	0	0	O	0	*	~	-	-	-	5	9	Ś	Q	Ŷ	Ś	Ś		đ	4	4	4	-	4	-		N	N	N	N	N	ev.	N	N		N	N
-	unt	4	ŝ	ŝ	S	ŧŋ,	e rič	0	0	9	Q,	0	Ś	ŝ	ന	m,	ന	ന	ന	N	N	^N	N	N	²	N	N	m	3	ന	m	ന	m	ሮን	(M)	3	ണ	ŝ	ന
>	~	~	~	~	~	-	*	-	~	~	1	. 🔊	~	~	>	*		>	~	~	*	~	-	~	1	-	4	1	-	-	-	-	~		-	-	1	~	-
0	m.	See the second	O.	0	ന	N	-	m	0	0	4	5	-	-	0	0	S	5	en en	-	0	0	0	N	5	0	0	^N	ŝ	0	0	Ŷ	0	4	N	~	de cal	P?	0
			N		ന	***		m				N.		N			~	N	S		က			က္	N		Ô,		~			5	ŝ	2	4	N.		0	
												ا س ې						يعدي ا	्यन										dinet.			4	Ň	4	-CV	8		N	
																			8										dicoj.			ŝ	Š.	Ð					
																																8	ц,						

2)			~	55	50	~	3)	0	~	2	2	<u> </u>	Č 1	0	ŝ	2	~	~	~	<u> </u>	-	0	~	-	ŝ	5	<u>.</u>	2	~	~	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	ŝ	~		2
6	- 6	6	а 7	ð	6	å	å	۶. A C	õ	0 0	0	ð	- 0	å	°.	0	õ	6	AC10) 4	- Q	. Qj çeni	•	4 4 4	- 44 - 44 - 47 - 47	- 	4 4 1	ی ه	<u>.</u>	े जन्म जन्म	ACL	ñ	a N	.,4 ()	Ñ	2	~	Ň	N N	2.
С В	0	à	0	8	č	0	8		961	801	BC1	8(1	8(1	BC1	BC 1	8(1	80	BCI		BCI	801	B (1	B(1	BCI	861	8(1	801	BC1	8(1	B(1	v	961	BC	B(1	B(1	8(1	B(1	BCI	801	90
12)	12)		1 2 3	12)	12)	12)	12)	12)	12)	12)	12)	12)	12)	12)	12)	12)	12)	123	12)	12)	12)	12)	12)	12)	12)	123	12)	12)	12)	20	12)	12)	12)	12)	12)	12)	12)	12)	133	12)
9.9	8	a	ō	8	ô	8	8	8	8	8	8	00	8	8	8	å	8	8	80	8	00	8	â	ື້	8	8	8	ŝ	8	8	໖	8	ŝ	8	ŝ	ŝ	â	8	8	8

							0	0	0	0	0	0	0	0	0	0		ð	80	80	00	Ø	ð	Ø	8	60	0	œ										
44	4	4	4	4	4		N.	SU:	N	CV1	O.	Ň	Ω.	N.	N	N		N	N	CU.	CU.	C.	N	CU.	N	N	N	Ň		O	0	0	0	0	O	0	O	0
NO	N	N	N	Ň	N		VO.	5	VO.	0	0	VO.	VO.	VO.	VO.	VO.		- 23	-	đ	-21	-	-	-	-	-	-	-		đ	æ	ä	÷	÷.	đ		đ	đ
mm	m	m	3	m	m	vo.	-	-	-	-	-	-	-	-	-	-	5	ā	=	-	-	÷	ā	0	æ	er	-	æ	-	ŝ	m	n n	an.	m.	ñ	ñ	0	ന
~ ~	×.	~	~	~		$\overline{}$	~		~		~	~	~		~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	$\overline{}$	~	\sim	$\overline{\mathbf{x}}$	~	$\overline{\mathbf{x}}$	\sim	~	\sim
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-	-	_		-	~	~			-2		_	2		- 22			_	2	2		_	2	_		~			_	-	2	2		~		~
0.0	11	÷	ω,	CV.	a.	<b>U</b> 73	643	$\mathbf{O}$	0	0	L C L	0	0	0	0	CV.	<b>U</b> 1	មា	0	0	0	0	NO.	Ð	S.	ব	S	$\circ$	-	4-4	0	Q	$\circ$	0	×O	CV.	~	-
ហ	~	<b>m</b>	writ	v	<b>N</b>		0			NO:	-	\$	e co			Ś		0			-N	ណ	0	-	N	4	0	4		-	7				a de la compañía de l	~	2	ĈV.
Ø	3	ð	-	. and	3		m.			<b>N</b>	80	0	0			- and		ก			1	~	0	3	-	0	N	N							<ul><li>N</li></ul>	e v		
	ert.	-	8				-			-	Ö	Ô.	-					œ			0	60	Ö		8	-	and .	n										
	-8																				m	*	Š		-	8												
	7									-	-												8			-	7											

(8,12) B(12, 9) (8,12) B(12,10) (8,12) B(12,11)

36/840 180/840 41/840