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ABSTRACT

Mechanisms of solid/solid-phase transitions and available data
in the literature suggest that transitions in substances that exhibit a
plastic crystalline phase may have sufficiently large enthalpies for use
in passive thermal control. 1In a broad qualitative screening of readily
available candidate materials by differential thermal analysis, 33 sub-
stances with plastic crystalline phases that had not been previously
identified were found. Quantitative differential thermal calorimetry
showed that five of these substances had enthalpies of transition greater
than 45 cal/g: 2-Hydroxymethyl-2-methyl-1,3-propanediol (46 cal/g at
354°K), 2-amino-2-methyl=1,3-propanediol (83 cal/g at 349-354°K), 2-amino-
2-hydroxymethyl-1,3-propanediol (68 cal/g at 404-407°K), 2-methyl-2-nitro-
1,3-propanediol (48 cal/g at 353-356°K), and 2,2-bis(hydroxymethyl)propionic
acid (69 cal/g at 425-428°K). Correlations of the qualitative and quanti-
tative data suggest structural criteria which may provide additional sub-
stances within the target range of greater than 56 cal/g at 270°-370°K.
Crystallization studies indicate that the solid/solid—phase transition can
occur without excessive supercooling.




I. INTRODUCTION

In order to satisfy the requirements for potential applications
of phase change materials in spacecraft,l it is necessary that new mate-
rials exhibit equilibrium temperatures within the range that would afford
protection for spacecraft components; have high latent heats of transition;
show low coefficients of thermal expansion; undergo transitions with small
temperature ranges; not be prohibitive in cost; and be nonhazardous for
manned space flight. Specific limitations have been outlined by George C.
Marshall Space Flight Center. Transition equilibrium temperature should
occur between 270° and 370°K, and the latent heat of transition should be
greater than 56 cal/g. Ninety-Live percent of the heat effect should
occur within t 5°K of the equilibrium temperature, and a maximum of 3“K
supercooling below the equilibrium temperature should be required for
initiation of the new phase. Thermal expansion should not exceed 15%
between t 50°K of the equilibrium temperature. The material must be
stable within this range. The goal of this work is to find and charac-
terize four materials that meet these requirements. The equilibrium
temperatures of the four materials will preferably be nearly equally
spaced between 270°K and 370°K.

The specific approach that is being followed in this work is to
consider the potential usefulness of substances that exhibit mesocrystalline
phases, and to select and characterize materials that exhibit high latent
heats of transition between the crystalline and plastic crystalline states.
The initial effort included a search of the literature to find new potential
candidate materials or families of candidate materials in which changes in
the transition temperatures can be effected by minor chemical modification.
After the existence of a mesocrystalline phase in candidate materials was
verified by qualitative differential thermal analysis, latent heats of
transition of selected materials were determined by differential thermal
calorimetry. The first objective of the research was to identify four
candidate materials. Not only were pure substances considered, but also
the possibility of the existence of eutectic mixtures.

General discussions of the theoretical aspects of plastic crystals
and many examwples of these substances can be found in the general references
cited in this report. On the basis of the information summarized in these
reviews, a number of the general properties characteristic of plastic
crystals were used as criteria for the selection of new materials.




1. Plastic crystals are soft, waxy solids that can be extruded
under considerably less pressure than ordinary crystals.

2. The ASp of & plastic crystal is frequently small in compari-
son with the ASt. Plastic crystals are sometimes defined as those sub-
stances in which the upper limit of ASp is 5 e.u.

3. Plastic crystals have unusually high vapor pressures for
solids.

4, Plastic crystals are usually higher melting than their non-
plastic isomers. For example, neopentane becomes a plastic crystal at
-142°C and melts at -16°C, while the isomer n-pentane does not form a plastic
erystal, but melts at -141°C. Disorder may become so great in this solid
state thai substances may have very narrow liguid ranges. For example,
2,2,3,3-tetramethylbutane melts at 102°C and boils at 107°C.

5. Structurally, the molecules of a plastic crystal are charac-
terized as "globular" in shape. Examples of substances that form plastic
crystals include neopentane, adamantane, camphor and its derivatives, pen-
taerythritol, and cyclohexane and many of its derivatives. It should be
emphasized that molecules in plastic crystals are not completely spherical,
nor does free rotation occur in this phase. The diameter that will just
circumscribe the freely rotating molecules, as in the liquid state,
is always 15-20% greater than the distance between the centers of
neighboring molecules in plastic evrystals. For this reason, the volume
change during the transition may be small.

II. MECHANISMS OF SOLID-SOLID TRANSITIONS

The initial step in the research included a search of the litera-
ture on substances known to exhibit solid-solid transitions and a review
of the mechanisms and other phenomena related to these changes. Data were
accumulated on substances known to exhibit a solid mesophase, including
the transition temperatures and enthalpies, and summarized in Table A-l
to A-6 in Appendix I. The search was not limited to substances with
transitions in the target temperature range since it was the purpose to
use these data, together with the data to be accumulated on the experi-
mental program, to establish correlations that would be useful in selecting
target materials. Some generalizations based on the literature search that
are relevant to the use of substances with solid-solid transitions as phase
change materials can be made.

= R R i =y
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A. Solid-Solid Transitions as Order-Disorder Phenomens

Ubbelohdaﬁ/ considers ‘the disorder in the melting process te¢ be
a result of two principal mechanisms., Positional disorder involves mcve-
ment of the center of gravity of the particles; orientation disorder
probably involves randomization of the axes of the molecules. Melting of
crystals ordinarily includes both types of disorder, and the entropy of
fusion is frequently a sum of the entropies for each type of disorder

(8p = Spos * Sor) -

Inert gases have no barrier to orientational disorder since they
are perfectly spherical. Therefore, numerical values of the entropy incre-
ment for positional disordering can be given a norm from data for crystals
of rare gases. Where contributions from zero point energy can be neglected,
the entrgpy of positional disordering on fusion of these crystals is about
3.3 e.u.

Some nearly spherical plastic crystals also have fusion entropies
very close to three entropy units. At the fusion point they probably also
only gain positional freedom. However, they undergo a solid-solid transi-
tion below the melting point, with an increase in entropy. This increased
freedom can be attributed at least partly to orientational disorder.

The entropy of fusion for a structure that does not exhibit the
mesocrystalline phase may approximate the sum of entropy of transition
and the entropy of fusion for related materials with mesocrystalline phases.
For example, ASp for malonitrile, glutaronitrile, and acetonitrile are 7.9,
9.4, and 9.3 cal/mole-deg., respectively. Succinonitrile, which has a
plastic crystalline phase, has a ASy of 6.35 and a ASp of 2.68, the sum
being 9,03 cal/mole-deg.2/ Thus, in similarly structured molecules the
entropy of transition in the material that exhibits a plastic crystalline
phase may not be expected to be greater than the entropy of fusion of a
material that undergoes simple melting.

Not only are order-disorder effects in transitions attributable
to the onset of positional disorder and new orientations allowable by the
alignment of molecular and crystal symmetry elements, but also to confor-
mational disorder. Conformational disorder can lead to a very large number
of new states of disorder and consequently to very high entropy changes.




Since positional disorder is not achieved as a condition of
solid-solid transition, only a portion of the entropy change that would
have occurred had the compound melted will be observed in the transition.
However, the largest part of the entropy will occur in the transition
because there is a relatively small difference in the number of statis-
tically possible states in a liquid and a solid lacking only positional
disorder. Some positional disorder may be achieved as the substance is
heated through the plastic crystalline phase so that the entropy of melt-
ing may be exceedingly small,

The change of entropy in a phase transition is expressed by the
relationship AS = R 1n (Np/Np), where Np/Nj is the ratio of the number of
states of disorder statistically occupied in the two phases. Because some
observed entropies of transition from one solid state to another are small,
for example, of the order of 3 e.u., a large change in the ratio Ng/Nl is,
not inherent in the transition from a crystalline to a rotor solid. In
theoretical calculations of the energy contributlions of various changes
in compounds with large transitional heat effects, a large part of the
entropy chang¢ must be attributed to new possible orientations of groups
of atoms within the molecule. The change in the energy and geometry of
the system during the solid-solid transition allows these new states that
are not possible in the phase which is stable at lower temperatures. But
in order to obtain a transition with a large heat effect, molecular reorien-
tation must occur simultaneously with the freedom of groups to reorient
within the molecule. Although the two types of effects may occur discretely
so that several solid-solid transitions of relatively low heat effect may
occur, the changes more often occur simultaneously and create the possi-
bility for a large heat effect in the solid-solid transition.

Methods for deducing energy changes cannot usually be applied
in solid/solid-phase transitions having entropy increments greater than
10 cal/mole-deg. such as pentaerythritol because orientations of very low
or no symmetry occur as well as positional disorder and it becomes very
difficult to identify the allowed orientations in the crystal lattice.
Pentaerythritol with an entropy of transition of 22.8 e.u.2/ has approxi-
mately 6 x 104 times as many possible disordered states after it has gone
into its second solid phase than it had in the first phase. Neopentane on
the other hand with a transition entropy of 4.4 e.u.é/ has only approxi-
mately nine times as many states in its second solid phase as it does in
the first phase.

'Nittaé/ attributes 1,458 of those disordered states of penta-
erythritol or 14.47 e.u. to the two possible positions of the CHo tetra-
hedron, nine total orientations for the oxygen atom, and 81 positions of
the hydrogen atom. Pentaerythritol still has approximately eight posi-
tions which neopentane does not possess in addition to the 1,458 states
Nitta analyzed.




In another attempt to correlate oentropy increment of a more com-
plex molecule with distinguishable orientations, Guthrie and McCulloughg/
identified 120 pdésible orientations for 2-methyl-2-propanethiol and found
good agreement for the experimental and calculated entropy increments.

For the fusion process, entropy changes of 8-15 e.u. are most
frequently observed. Because of the molecular weight relationship, for
a compound with an entrowy change of 1l e.u., the molecular weight must
not exceed 54 for the ta.get heat of transition of 56 cal/g to be achieved
at 273°K.

AS
AH (callg) =

T x formula weight

The formula weight limitation makes it necessary that substances
with much higher entropy changes, and therefore compounds in which there
are a large number of new possible states, be selected to obtain a heat
of transition of 56 cal/g. In small molecules, the large number of new
states of conformational disorder can be best achieved through the presence
of functional groups such as CH,0H, NH,, NOp, and CN. ILarge increases in
heat effects are observed when these groups are substituted for CHz.

For compounds with similar symmetries (Table 1), a linear corre-
lation can be obtained between enthalpy of transition and transition
temperature.2 Stated differently, materials with the same symmetries
can be expected to exhibit similar numbers of random orientations in the
same state, and therefore have the similar entropies of transition between
the states. The analogy of this observation to Trouton's rule is apparent.

Tt is generally agreed that the principal factors that determine
the existence of a mesocrystalline phase and its transition temperature
are dipole-dipole and dispersion forces and molecular size and shape. The
effect of shape and size is evident in the example of pentaerythrityl
tetrafluoride which has a transition, while the tetrachloride, ~bromide,
and -iodide do not. On the other hand, groups with similar sizes and
shapes can be interchanged in a structure without disrupting the formation
of a mesophase. However, many of these groups have large differences
in their dipole effects as well as their polarizability, which can account
for the different temperature at which the transitions occur.
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B. Classeg of Substances With Solid-Solid Transitions

Structural classes of compounds that exhibit a mesocrystalline
phase include the following: Tetrahedral compounds, including neopentane
and its derivatives, and the tertiary-butyl halides; octahedral molecules
ineluding ethane and disilane derivatives; cyclic compounds, including
cyclohexane and its derivatives; and cage compounds, including adamantane,
triethylenediamine, and camphor and its derivatives. The ability of each
of these classes to form a rotor phase is associated with its near spherical
or globular shape. The high degree of symmetry allows molecular reorien-
tation to occur within the cubic face- or body-centered crystal structure.
In other words, stable crystal structures exist in which centers of gravity
of the molecules are spaced in such a way that reorientation can occur
provided the reorientational changes do not sweep out too large a volume.
The plastic crystalline state practically always occurs in substances with
face- or body-centered crystal habits.8

More compounds with high entropy changes are known in the tetra-
hedral class; for example, pentaerythritol has an entropy change of 22.8
e.u. The chief reason for this observation is the ease of preparation
and availability of functional derivatives of the tetrahedral nucleus with
many potential states of disorder. Cyclic derivatives are often limited by
having several solid-solid transitions with no single transition having a
large heat effect. Known cage compounds usually have low heat effects,
chiefly because very few multi-functional derivatives have been
examined.

Entropy changes for transition for the parent hydrocarbon
structures of tetrahedral, octahedral, cyclic, and cage structures rep-
resent minimum values for the series (Table 2). The transition entropy
change for the tetrahedral neopentane and the octahedral 2,2,3,3-tetra-
methylbutane are approximately equivalent,indicating little difference
in the ratio of the number of states of disorder in the two phases of
each series. Hence, a difference in the inherent value of these struc-
tures is not apparent in these data except insofar as the possibility of
a greaver multiplicity of substitution that is possible in the octahedral
structure.

A property of the octahedral structure not immediately evident
in these data can be observed by the comparison of the data in Table 3.
A rationalization of the marked difference in the entropy changes in the
series can be demonstrated with molecular models with the assumption that
the onset of rotation about the bond between the central carbon or silicon
atoms occurs concurrently with the initiation of the mesocrystalline phase.




TABLE 2

TRANSITION DATA FOR VARIOUS HYDROCARBONS

Tp (°K) AHp (cal/g) ASp (e.u.)
Tetrahedral
] CH4 2005 1017 0-91
C(CHz)a 140 8.54 4.4
Octahedral
(CHz)zCC(CHz) 3 152.49 4.18 3.14
Cyclic
C4Hg 145.7 24.31 9.36
CsHig 122.4 16.61 9.52
138.1 1.18 0.60
CgHyo 186.08 19.14 8.66
198.2 0.70 0.35
2l12.4 1.09 0.51
CaHig 166.5 13.43 9.05
183.8 1.02 0.62
Cage

131 10.26 7.53
3.0 0.19 0.06

@ | 164 9.91 6.66

208.6 5.92 3.87




TABLE 3

TRANSITION DATA FOR SOME OCTAHEDRAL COMPOUNDS

Tp (°K) AHp (cal/g) ASp (e.u.)
(CHz)5CC(CHz)z 152.49 4,18 3.14
(CHz)zCCH(CHz ), 121.4 5.85 4.83
(CHz ) oCHCH( CHz ) o 136.1 10.02 11.41
(CH3)3CCHo(CH3) 126.8 15.0 10.20
(CHz)oC=C(CHz)o 196.8 10.03 4.29
(CHg)35181(CHz)z 221.9 15.92 10.5

Rotation about the central bond will be sterically restricted in the
hexamethylethane and pentamethylethane derivatives; however, the restric-
tion will be much less in the two tetramethylethane derivatives. Steric
restrictions can be diminished not only by the removal of methyl groups,
but also by the increase of the atomic radii of the central atoms. Thus,
the entropy change for hexamethyldisilazane is similar to the entropy
change for the two tetramethylethanes. When the rotation of the central
bond is restricted by the multiple bonding, in tetramethylethylene, the
lower entropy change is again observed. It is apparent that higher entropy
changes are inherently possible in the octahedral structure through con-
formational disorder than in the tetrahedral structure.

The minimum entropy change for the cyclic hydrocarbons in Table 2
is about 9 e.u., a value that appears with remarkable consistency for
cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooctane.

It is usually assumed that the transition to the mesocrystalline state in
the cycloalkanes is associated with rotational reorientations. However,
it is not uncommon for the cycloalkanes and their derivatives to show a
series of transitions, each of which can be associated with a new type of
molecular freedom. Interconversion of the various isomers possible in
the cycloalkane series can be one of the ways in which new randomness can
be introduced into the molecule.




C. Volume Changes

Volume changes observed in the formation of a rotor phase are
usually of the order of 5-10%. For example, Nittal/ found that the volume
change of pentaerythritol at the transition point was 9.08% of the volume
at 20°C. |

A portion of the entropy effect is the contribution of the volume
change at the transition. Little data are available for estimating this
change. The entropy contribution of volume to the solid-solid transition
in suceinonitrile is reported as 0.15 cal/mole-degs Wulff and Westrumé/
calculated this entropy increment from a volume change of 7.8% on the
basis of the relationship AS = R 1n Vp/Vy.

D. TIMmetional Group Effects

From the survey of known plastic crystalline materials, it is
apparent that a parent structure can be subject to considerable chemical
modification without changing its ablility to form the mesocrystalline
phase. For example, not only does cyclohexane form plastic crystals,
but in addition, the following derivatives behave similarly: Cyclohexanol,
cyclohexanone, chlorocyclohexane, trifluoromethylcyclohexane, cyclohexene,
and cyclohexyl nitrile.

Although the effects of functional groups on heat changes are
likely to be of considerable importance in the selection of materials with
high enthalpy changes, the data and correlations ars meager. In Table 4,
the marked effect of functional group substitution can be observed for a
series of symmetrically substituted compounds. Compounds in which a seriles
is formed by substituting a single group are reported in Table 5. On the
basis of data available before this investigation, few meaningful corre-
lations could be drawn. :

E. Initiation and Propagation of the New Phase

Lack of specific knowledge concerning the process of phase changes
in the solid state is exemplified by the different opinions that can be
found in the literature relative to the mechanism. Some claim that the
process is a simple one of reorientation requiring just a single shift in
atomic centers to form a new lattice. An example that can be cited is the
martensitic transformation from a face-centered cubic to a body-centered
tetragonal structure during the hardening of steel. The atomic displace-
ments are very small (about a lattice distance) and essentially no diffu-
sion is required. Because of the rapidity of the change (about 104 sec.),

10




TABLE 4

TRANSITION AND FUSION DATA FOR SOME SYMMETRICALLY

SUBSTITUTED COMPOUNDS

T
°K)
C(CHz )4 140
C(CHoF), £49.7
C(CHp0H) 4 457

AHp ASm
(cal/g) {e.u.)
8,54 4,4
21.91 12.7
76.53 22.8

TABLE 5

TRANSITION AND FUSION DATA FOR SOME UNSYMMETRICALLY

SUBSTITUTED COMPOUNDS

Tp
Cx)
C(CHz ) 4 140

C(CHz)zC1 183
220

C(CHz)zOH 286.14
C(CHz)3SH 151.6

157.0
199.4

11

AHm ASp
gcalfgz (e.u.)
8.54 4.4
3.43 6.32
15.01 2.24
2.67 0.69
10.78 1.16
1.72 0.99
2.56 6.41
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it is usually not possible to suppress the transformation by very rapid
cooling to low temperstures where atomic diffusion is slow, a procedure
that is effective for the suppression of most processes that do depend

on diffusion.2/ The cleim has been made elsewhere that there is no pre-
dictable connection between the parent and the deughter phase and therefore
a solid-solid transition does not differ in nature from the transforme-
tion of a liquid to a solid,g/ If the first opinion is true, supercooling
should not be a problem between phases; if the second opinion is true,

the usual consideration of nucleation should be applicable.

ITI., QUALITATIVE STUDIES

It was the purpose of the qualitative studies to develop addi-
tional criteria for the existence of a solid mesocrystalline state in
substances and for predicting the temperature at which the transition
between the two solid states occurs. In the course of the screening work
at least 33 substances were found with previously unidentified solid-
solid transitions.

A large number of substances were examined in the screening
step by qualitative differential thermal analysis. Most of the sub-
stances were chosen for examination for one of the following reasons:
Narrow liquid range, ease of sublimation, low fusion entropy, or struc-
tural similarity to other substances with solid mesocrystalline phases.
The results of these screening experiments are recorded in appropriate
tables in the experimental section and classified on the basis of the
substances' correspondence to the varipus structural types of plastic
crystals: Tetrahedral, octahedral, cyclic, or cage. It should be pointed
out that only the specified temperature ranges were examined and that
some of the substances may exhibit solid-solid transitions outside those
temperature ranges.

A. Tetrahedral Substances

Although the existence of a mesocrystalline phase could be pre-
dicted with some degree of reliability, many substances that appeared to
meet the necessary criteria did not have transitions. Some of the results
are summarized in Figure 1. In the alcohol series transitions are ob-
served for compounds substituted with one, two, three, or four hydroxy
groups; however, substitution of an ethyl group for hydroxymethyl group,
both of which should occupy about the same space, inhibits the transi-
tion. Transitions are also observed in all the examples of hydroxy-
substituted nitro compounds. It is then surprising that the first two

12




A.E.Sﬂm axe ), UL ssanjersdwag UOTFTSURIY
IT9Y], °SUOTJTSURI] PTITOS-PITOS SABY BAJIR DPOSOTOUS UT Saoueysqng)
S9JuRlSqQNS TeIpdYRI}S], UT 9SeYJ SUTTTRISAIO0SO - T oandtd

OI3TN

OH
P o’
o 9 0 0 HO |
. | | _ [ 0—d—d
1%00—0—> H%D —0—20 H%0—0—0_ %00 —0 —0\ | 2
X _ | 0 | 0! 0
SN HO ) 2 HO
- 1o ;
P J8T O
O |
HO
0—9—2 No—0 —a_
2 | | OH
H%0 2
Ho”
.18 HO
U\
JoH oTEE e o8L _OH mo_ |
) ) ) 9—0—0
mo_ | mo | mo_ | - |
0—d—0_ 0—0—0_ 0—0—0 R
PO T [ oH | om nd”
2 N Son
HO JHO
o8FT _oH 8L _oH WLl o 88 D
9 D ) ) |
| w_ | Ho_ | w_ | 0—0—0
0—E—2 2—0—2 0—D—0D o_.,ln_vlo |
g @ | | _ A
© D 1% N 2oN HO”
.G JIe- D
2% 0 0 ) |
| o | mo_ | D—0—D>
2—N—3 9—0—0D 0—0—20 |
0 @ | _ o
< n_u un on Ho”
(.c51) n_y ol n_v % {oST-) n_v (.21) N_u
0—9—> 0—0—02 0—5—D oln_v|m o|n_T...o
| |
n__u 100 N o HO
SI3Y30 SpTay Sautwy wﬂsgou STOROOTY

13

e ——»




subctonces in the amine series do not exhibit transitions. The available
hydroxy-substituted acids seem to indicate that a mesocrystalline phase
cal be expected throughout the series, but other acid derivatives that
meet the structural criteria do not exhibit a phase change. These acids
iaclude dimethylmalonic acid, tris(chloromethyl)acetic acid, g-chloro-
pivalic acid, 2-methyllactic acid, and o -aminoisobutyric acid. Although
one substance with a heteroatom at the center of the tetrahedron had a
plastic crystalline phase, similar substances did not. The presence of a
mesophase in tetramethylammonium chloride and the absence of one in tetra-
methylammonium bromide is particularly surprising since the tetramethyl
ammonium cation should be the species that contributes new disorder at the
transition.

Large molecules often do not show transitions. It is known
that pentaerythrityl fluoride has a transition while pentaerythrityl
chloride and bromide do not. In this work the highly symmetrical pente-
erythrityl tetraacetate, and tetramethylsulfonate as well as tetra-t-
butyl thiopentaerythritol did not. All phenyl-substituted tetrahedral
substances that were examined did not have solid-solid transitions.
However, mesocrystallinity should not be ruled out on the basis of
size alone since tetrakistrimethylsilylsilene does exhibit a solid-
solid transition. It is probable that with large molecules, it is more
difficult to meet the symmetry requirements for a rotor solid.

Since the tetrahedral group contains series with progressive
substitution of functional groups, it is possible to make some correla-
tions that allow the prediction of fusion and transition temperatures.

In Figure 2, the regularity of the increments in the fusion temperatures

of pentaerythritol, 2-methyl-2-hydroxymethyl-l,3-propanediol, 2,2-dimethyl-
propanediol, neopentyl alcohol, and neopentane are evident, and a similar,
though not so regularn correlation can be made for the transition tempera-
tures. Similar correlations are also made for the amine, nitro, and acid
series., In all the series, good correlations are obtained between

results from this work end literature values. The point for 2-amino-2-
methyl-l-propanol was taken from the literature although the materials
were also studied in this work. The material that was examined exhibited

a broad fusion range even after two careful distillations on an efficient
distillation column; therefore, the existence of a solid-solid transition
cannot be entirely precluded, but if one does exist the mesocrystalline '
range must be so small that it cannot be determined by differential thermal
analysis. The failure of the reported melting point to fall on a straight
line with the melting points of the higher members of the series is reason-
able evidence that there is no mesocrystalline phase. '

14
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Values were obtained for the most highly substituted members
of the nitro and acid series that were lower than expected. A value is
reported in the literature for 2-hydroxymethyl-2-nitro-l,3-propanediol
that falls on a straight line with other substances in the series. How-
ever, the lower value, also reported in the literature and obtained in
this work, was also a decomposition temperature so may not accurately
represent the fusion of the pure compound. The transition temperature,
also lower than expected would not be affected by this consideration.

A similarly low value was found in the literature for the most
highly substituted compound in the acid series. A sample of this acid,
bis(hydroxymethyl)hydracrylic acid, will become available in the near
future, and it will be of considerable interest to determine the fusion
and transition temperatures of a pure sample.

All of the initial screenings were carried out on samples in
the purity they were received in order that a broad spectrum of structural
types could be examined. Subsequently, however, some of the tetrahedral
compounds were subjected to recrystallization or sublimation as a check
of their purity. The best values obtained for the fusion temperatures are
compared in Table 6 with melting points reported in the literature. The
literature values are probably mostly capillary values and therefore
interpreted as occurring in a narrower temperature range than would be
obtained by differential thermal analysis. The fusion temperature for
plastic crystals is a relatively good index of purity. Since molar
freezing point depression is inversely proportional to the heat of fusion,
the lower heats of fusion would cause the fusion temperatures to be more
depressed than the transition temperatures. The best comparison of values
is probably the upper temperature of the temperature range obtained by the
two methods.

During the recrystallizations, no attempt was made to protect
the substances from contact with atmospheric moisture. This failure prob-
ably led to the observation that the melting points of two of the tetra-
hedral substances, 2-amino-2-hydroxymethyl-1l,3-propanediol and 2-methyl-
2-nitro-l,3-propanediol, decreased on successive recrystallizations. The
2-amino-2-hydroxymethyl-1l,3-propanediol could be restored to its original
purity through two sublimations with adequate precautions against contact
with moisture. When the melting point of the compounds was taken five
months after it had been received and the container had been opened num-
erous times, the melting point had decreased about 10°. In any case, it
appears that the absorption of moisture can be a significant contaminant
in some of the materials.

16




TABLE 6

COMPARISON OF FUSION TEMPERATURES OBTAINED BY DIFFERENTIAL
THERMAL ANALYSTS WITH LITERATURE VALUES

Best Value Reported
(This Work) Value
Substance (°c) (°c) Reference
Pentaerythritol 258-260 263 a
265.8 b
2-Hydroxymethyl-2-methyl
1,3~propanediol 197-198 202-203 c
2,2-Dimethyl-1,3-propane-
diol 125-126 126-127 d
Neopentyl alcohol 51-55 54 .4-55, e
2-Amino-2-hydroxymethyl-
1,3-propanediol 166-169 169~170 f
2-Amino-2-methyl-1,3-prop-
anediol 107-109 108-110 g
2-Amino-2-methyl-l-propanol 12-20 23-25 g
2-Hydroxymethyl-2-nitro-1,3- '
propanediol dec. 184 168 dec. h
172 i
180 J
214 J
e-Methyl-2-nitro-1l,35-prop-
anediol 150-154 154-156 J
146-147 g
2-Methyl-2-nitro-l-propanol 88-89 87-88 k
2,2-Bis(hydroxymethyl )prop-
ionic acid 194-197 183 1
192-194 J
Pivalic acid 32-36 35.5 m

a/ Reference
E/ Reference
E/ Reference
d/ Reference
e/ Reference
f/ Reference
g/ Reference

10
11
12
13
14
15
16

h/ Reference
i/ Reference
3/ Reference
k/ Reference
1/ Reference
m/ Reference

17
18
19
20
2l
ee
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B. Octahedral Substances

Relatively few octahedral substances were examined because few
were available. Several examples are shown in Figure 3. Tetramethyl-
succinic acid and tetramethylsuccinonitrile were of some interest because
of their functional group substitution. Some of the substances that did
not show a solid-solid transition may well have one below the temperature
range examined, which was frequently from about -60°C to the melting point.

C. Cyclic Substances

In spite of the many cyclic compounds that are known to have
solid state transition, relatively few new ones were found in the screen-
ing. Some of these are shown in Figure 4. A number of the functional
derivatives shown in Figure 4 did not have solid state transitions even
though substances with the same functional groups in the other series did
exhibit transitions. The frequently observed phenomenon of multiple transi-
tions often observed in cyclic compounds was also found in this work.

The very specific requirement for substitution of groups on a
cyclic nucleus can be illustrated by the report that methyl substitution
of cyclohexane in position 1,1 and cis-1,2 reduces the entropy of melting
while substitution in any other position seems to actually inhibit rota-
tion in the solid state, increasing the entropy fusion over that of the
parent cyclohexane, which also shows a transition.

Sugars were considered as possible candidates because of their
many hydroxy groups, high melting points, and sometimes-observed sub-
limation properties. However, none of the sugars proved to have a meso-
crystalline phase.

The cyclobutane derivatives, 2,2,4,4-tetramethyl-1,3-cyclo=~

butanediol and its dione, have narrow ligquid ranges; in fact, the range
of the dione is only 47°C, but neither showed a solid-solid transition.

D. Cage Substances

From examples of cage materials that were examined (Figure 5),
the variety of cage configurations that exhibit transitions is apparent.
The greater tendency for derivatives of the parent structures to exhibit
solid-solid transitions makes this series somewhat more flexible than the
cyclic series. Unfortunately, the availability of functional derivatives
of cage substances is very limited.

18




CN OH
¢ —C—o0 ¢—C—¢C
¢—C—C ¢—C—C
N 71° OH
COH c1
¢— Cc—C Fe— C—F
¢—C—C C1—C—Cl
COH  108° C1
c1 H
¢ — C—C1 '~ HO— C—OH
¢l—C—C1 ¢1— C—~C1
CL  46° c1
71°

Figure 3 - Mesocrystalline Phase in Octahedral Substances. ;
(Substances in enclosed area have solid-solid ‘
transitions. Their transition temperatures
in °C are shown.)
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HOEO@— COoH HO—@— OH (cis and trans)

-4°
50°
0
G-
H
(trans)
OH 67°

Cl Cl
Cl —C1l
Cl Cl
C
¢  (trans)

Figure 4 - Mesocrystalline Phase in Cyclic Substances
(Substances in enclosed area have solid-
solid transitions. Their transition
temperature in °C are shown.)
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IV, QUANTITATIVE STUDIES

The actual selection of candidate structures for thermal control
spplications must depend upon the quantity of heat absorbed or liberated
during transitions. A substantial portion of the effort has been concerned
with determination of heats of transition by differential thermal calori-
metry and the correlation of these values with chemical structure. Because
of the need to establish structural criteria and correlations, the deter-
minations were not limited to those substances with large enthalpies.

A. Procedures and Calibration

Two series of enthalpy data were obtained. Throughout the initial
work in obtaining the enthalpy data reported as Series I, a great deal of
difficulty was encountered in obtaining adequate repeatability with the
calorimeter cell. Subsequently, the cell was examined by the manufacturer's
representative and found to be defective in a manner that accounted for
the erratic results. A replacement cell was obtained and used in deter-
mining the Series II data. Although the Series II data are much more
reliable than the Series I data, differences in the results for many of
the substances were not extremely large.

Establishing a calibration for the calorimetor provided some
difficulty, particularly with respect to finding reliable standards within
the 0° to 100°C temperature range. Ultimately, the most satisfactory
calibration procedure was to plot a calibration curve based on the mercury,
acetamide, indium, and tin points. Average values for calibration runs
for the fusion of p-dichlorobenzene and for the transitions of ammonium
nitrate and pentaerythritol varied 6% or less from the calibration curve
in Series II. The variability of the values obtained in the individual
experiments used to calculate the averages was reasonably small: less
than * 1% for 53% of the data; less than t 2% for 84% of the data; and
‘less than t 3% for 92% of the data. Thus, the magnitude of the differences
in values for the calibration coefficients of p-dichlorobenzene, ammonium
nitrate, and pentaerythritol cannot be attributed to experimental varia-
tion in this work, but must be attributed to other factors such as sample
purity, procedural differences in obtaining data, or errors in the litera-
ture values. A possible source of difference between literature data based
on conventional calorimetry and differential scanning calorimetry is that
heats of solidification are usually obtained in the former while heats of
fusion are obtained in the latter. The two values may not be identical
because all the new degrees of freedom contributing to the heat fusion
process may not be frozen out in the solidification process and, con-
sequently, the heat of fusion may exceed the heat of solidification.
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A comparison of experimental heats of fusion and transition based on the
Series II calibration curve with literature values is provided in Table 7.

The difference in the reliability of Series I and Series II data
is reflected in the scatter of the values for individual determinations
of standerds. In Series I, the maximum scatter for 95% of the data was
14.3% while for Series II the maximum scatter for 95% of the data was 4.1%.

A summary of the data obtained in Series I and Series II experi-
ments is given in Tables 8 to 10. Since the scatter was so large in the
Series I data, no effort was made to sort out unacceptable data in estab-
lishing the averages reported in the tables. In computing averages for
Series II, all values that introducted a variation greater than ¥ 54 for
enthalpies greater than 10 cal/g and T 10% for enthalpies less than 10
cal/g,were not used. Enthalpy data for a number of substances fell within
these limits, and when the procedures in the determinations are considered,
such a variation is not unreasonable. Variability greater than that amount
in the experimental work can probably be attributed to procedural error or
lack of definition of the system.

Several other procedural variables were examined. ILess erratic
results were obtained with hermetically sealed calorimeter pans. Within
the limits examined, sample weight did not have a significant effect on
the results. A heating rate of lO°/min was used throughout the experi-
mental work. Changes in heating rates caused significant differences in
enthalpy values when calculations were based on the lO°/min calibration,
but error introduced by small variations in the heating rate was less at
10°/min than at slower rates.

B. Interpretation of Quantitative Experiments

It is readily apparent from Tables 8 to 10 that the only sub-
stances that have been identified with heats of transition above 56 cal/g
are in the tetrahedral series. Heat effects, in general, were greater in
the tetrahedral series than in the octahedral, cyclic, or cage series.

It is assumed that the reason for this observation is due at least in part
to the greater availability of multiply substituted derivatives of the
tetrahedral nucleus. Since highly substituted tetrahedral substances are
more readily prepared than the corresponding octahedral or cage structures,
it seems more probable that target materials will be found in the tetra-
hedral class.
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TABIE 7

COMPARISONS OF SELECTED EXPERIMENTALLY DETERMINED HEATS OF FUSION:
AND TRANSITION WITH LITERATURE VALUES

- AH {cal/g)

Literature Experimental
| Neopentyl alcohol

(fusion at 324°K) 12,028/ 11.02
Hexachloroethane

(trensition at 344°K) 8,290/ 6.57
Camphorguinone

(fusion at 472°K) 9,668/ 8.12
Acetamide

(fusion at 352°%K) &3 .54/ 63.57
Pivalic acid

(fusion at 305°K) 7.848/ 5,75
Pentaerythritol

(transition at 454°K) 76,558/ 72.48
Pentaerythritol

(fusion at 528°K) 12,678/ 8.80
Ammonium nitrate

(transition at 298°K) 12.62%/ 13.15
Ammonium nitrate

(transition at 357°K) 3., 99ad/ 4.21

g/ Reference 23 (The reference incorrectly states the fusion temperature
as 264°K)

b/ Reference 24

g/‘Reference e5

g/ Reference 26

g/‘Reference 3
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TABLE 8

SUMMARY OF ENTHALPY DATA FOR TRANSITIONS AND FUSTONS:
TETRAHEDRAL SUBSTANCES

Compound

Pentaerythritol

2-Hydroxymethyl-2-methyl-1,3~
propanediol

2,2-Dimethyl-1,3-propanediol
Neopentyl alcohol

2~Anino-2~hydroxymethyl-1,3~
propanediol

2-Amino~2~-methyl-1l,3-propanediol

2=-Hydroxymethyl=-2~-nitro-1,3=-
propanediol

~ 2-Methyl-2-nitro-1,3~propanediol
2~-Methyl-2-nitro~l-propanol

i 2,2-Bis(hydroxymethyl)propionic
acild

Pivalic acid
1 Trimethylacetonitrile
- Tetramethylammonium chloride
; Ammonium nitrate (1)
(II)
(III)

. Tetrakis(trimethylsilyl)silane

Heat of Transition (cal/g)

Series

48.31

335,58

10.30

55.47

32.95

46,55

69.48

18.07

28 .50
B.20
3.70

11.73

8.24

I

25

Series II

72,48

46,02
51.30

12.74

67.61

63.38

39,33
47,66

34,46

68.64

20,49
1.86

22.86
5.54
4,21

13.15

8.42

Heat of Fusion (cal/g)
Series II

8.80

10.67
10.82

11l.02

6.00

7.58

(decomposes)
7.65

7 .45

6.41

5.75

8.29




TABLE 9

SUMMARY OF ENTHALPY DATA FOR TRANSITIONS AND FUSIONS:
CAGE SUBSTANCES

Heat of Transition (cal/g)  Heat of Fusion (cal/g)

Compound Series I Series II Series IT
3=Quinueclidinol 34,41 28.49 14.26
Adamantane carbonitrile 2.08 2.41 -
1l-Adamantanol 19.11 19.44 --
Adamantane -— 4.80 --
dl~Camphorquinone 22.56 16,86 8.12
a-Camphor 15,17 18.36 9.35
Camphene 5,47 5.53 5.46
dl-Camphorsulfonic acid 20.40 - -
dl-TIsoborneol 3.69 3.05 --

S5-Norbornene-2,3~dicarboxylic

acid 23.27 - --
Norborneol 3.45 -- -
d-Camphor oxime 0.86 - -
Dicyclopentadiene dioxide 4,27 - --
Bornyl chloride | 0.86 - 5.56
Tris(propan-2-ol)amine borate 2.60 -- .-
| | 26




TABLE 10

SUMMARY OF ENTHALPY DATA FOR _TRANSITIONS AND FUSIONS:
CYCLIC, OCTAHEDRAL, AND MISCELLANEOUS SUBSTANCES

Heat of Transition (cal/g) Heat of Fusion (cal/e)

Compound Series T Series IT Series I Series II
Tris(trimethylsilyl)amine 7.80 | 8.53 -- 1.81
Tetramethylsuccinonitrile 28.96 31.77 -- 12,54
Tetramethylsuccinic acid 18,38 18.43 - 8.88
Hexachloroethane -- (1) 2.83 -- --

(II) 6.37
Dihydroxymaleic acid 28.51 -- -- -
2,3-Dimethylsuccinic acid 6.89 -- -- . --
Succinamide 11.24 -- -- --
1,4-Cyclohexanedione 12,28 13,15 22,88 =
2,2-Bis(hydroxymethyl)-1-butanol -- -- 38.86 33,95
2=-Amino-2-methyl-l-propanol -- -- 31.11 18.26

Pentaerythritol tetramethane-
sulfonate - -- 26,57 ’ -

Tetra=-t-butylthiopenta-

erythritol -- -- 14,05 --
Thioacetamide -- - 75.16 62,26
Acetamide -- -- 76.15 63,57
Chloral hydrate - -- 50.64 --
Hexadecane - -- 58.64 48.80

e7




Some relatively high heat values were observed in the cage
series for 3-quinuclidinol and l-adamantanol, considering that each of
these substances is substituted by only a single hydroxy group. The in-
crease in the entropy increment for the transition of adamantane from
3.1 e.u. to 8.1 e.u. for l-adamantanol reflects the substitution of this
hydroxy group. The low values of the entropy increment for the parent
structure indicate the rigidity of the cage and the few possible states
of disorder in the transition. ‘

In the octahedral series tetramethylsuccinonitrile gave a rela-
tively high entropy of transition (12.6 e.u.). The relatively low value
for tetramethylsuccinic acid (8.4 e.u.) in comparison with the entropy
change for the parent structure, tetramethylbutane (3.1 e.u.), suggests
that possible reorientations are inhibited by the crowding of groups.

The consequence of lowering heats effects through the crowding
of groups seems to be of particular importance in the octahedral series
and seems to inherently limit this series even though it would appear to
be capable of many more reorientational possibilities than the tetrahedral
series., However, this effect can also be observed in the heats of fusion
of two highly substituted pentaerythritol !'derivatives, pentaerythritol
tetramethanesulfonate and tetra-f-butylthiopentaerythritol. .

Heats of fusion were also determined for several substances,
thioacetamide, acetamide, hexadecane, and chloral hydrate, which would be
expected to exhibit large enthalpies. Both acetamide and thioacetamide
had hroit of fusion of about 63 cal/g. In spite of its high molecular
weight, ¢.loral hydrate had a heat of transition of 50.6 cal/g (AS =
24,2 e.u.) making the consideration of the fluorine analogues attractive.

Another interesting observation concerning the tetrahedral com-
pounds is that the entropy increment for tetramethylammonium chloride, 4.7
e.u., is practically the same as the reported value for necopentane, 4.4 e.u.
Such a result should be expected since the cation of tetramethylammonium
chloride is isoelectronic and isosteric to neopentane. The contribution
of the anion of the salt to formula weight, however, will make such salts
have inherently lower heats of transition.

Entropy data for certain substances in the tetrahedral series are
summarized in Table 11. Although changes in the entropy increments with
regular changes in structure are not always additive, it is apparent that
a number of examples can be cited in which the substitution of a methylol
group for a methyl group increases the entropy increment by about 5 e.u.
Increasing the extent of functional substitution generally does increase
the entropy increment. Several anomelies, however, merit comment.
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TABLE 1l

SUMMARY OF ENTHALPY AND ENTROPY CHANGE
DATA TRANSITIONS IN VARIOUS SUBSTANCES

Compound T (°K) AH (cal/g) AS (e.u.)
Neopentyl alcohol 242 12,7 4.6
2,2=Dimethyl-1,35-propanediol 313-316 31.3 ‘ 10.3
2-Hydroxymethyl-2-methyl-1,3-propane- 354 46.0 15.6
diol
Pentaerythritol 454-456 72.5 e1.7
2,2-Bis(hydroxymethyl)-1-butanol 329-332 34.0 13.9
( fusion)
2-Amino-2-methyl-1-propanol (fusion) 285-293 18.3 5.7
2-Amino-2-methyl-1,3-propanediol 349-354 63.4 19.1
2-Amino-2-hydroxymethyl-1,3-pro- 404-407 67.6 20.3
panediol
2-Methyl-2-nitro~l-propanol 308-312 34.5 15.3
2-Methyl=-2-nitro-1,3-propanediol 353-356 47.7 18.2
2-Hydroxymethyl-2-nitro-1,3-pro- 351-354 39.3 16.9
panediol :
Pivalic Acid 280-282 20.5 7.5
2,2-Bis(hydroxymethyl)propionic 425-428 68.6 21.7
acid
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Although there is a regular increase of about 5 e.u. through
the series, neopentyl alcohol, 2,2-dimethyl-1l,3-propanediol, 2-hydroxy-
methyl-2-methyl-1,3-propanediol, pentaerythritol, the value for neopentyl
alcohol is nearly the same as the literature value for neopentane, 4.4 e.u.
The reason for the similar number of new states of disorder in the transi-
tions for these two substances is obscure.

The lower-than-expected fusion and transition temperatures for
2-hydroxymethyl-2-nitro-1,3-propanediol were observed earlier in this
report, and it is shown in Table 11 that the compound also has a smaller
entropy increment for transition than 2-methyl-2-nitro-1l,3-propanediol.
Most similar pairs of substances in which a methyl group is substituted
by a methylol group show an increase of about 5 e.u. One possible cause
for this anomaly could be that the large size of the nitro group sterically
inhibits certain modes of disorder in such a highly substituted substance.
However, a related pair of compounds, 2-amino-2-methyl-l,3-propanediol and
2-amino-2-hydroxymethyl-1,3-propanediol, in which the same kind of sub-
stitution occurs show an increase of only 0.8 e.u. This observation in
the amino derivative, which would not be subject to the steric restrictions
of the nitro group, suggests that the limitation is not steric.

Originally, it had been assumed that there was nothing peculiar
to the possibility of a mesocrystalline state in a given substance that
would allow a higher entropy of transition than would be observed in the
fusion of a similar structure, provided approximately the same number of
new degrees of orientational freedom were possible in the two substances.
If this reasoning is followed, the entropy of transition of 2-hydroxymethyl-
2-methyl-1,3-propanediol should be less than the entropy of fusion of
2,2-bis(hydroxymethyl)-l-butanol, but the entropy change actually increases
by 1.7 e.u. More striking is the comparison between the entropy change in
2-amino-2-methyl-l-propanol and 2-methyl-2-nitro-l-propanol. Both sub-
stances should have the same number of new orientational possibilities,
but the amino derivative, which does not have a plastic crystalline phase,
exhibits an entropy change of 5.7 e.u. while the aitro derivative, which
does have a mesocrystalline phase, exhibits an entropy change of 13.1 e.u.

Since the number of reorientational and translational degrees
of freedom for the two pairs of substances would be approximately the
same in the liquid state, it must be assumed that fewer degrees of freedom
may be possibly in the low temperature phase for the highly symmetrical
substances that can undergo mesocrystalline transformations. Under these
circumstances, a greater entropy change would be observed. Although this
observation has been made on relatively few substances, it opens the possi-
bility that large heat changes may be inherently associated with the meso-
crystalline transformation, particularly in the tetrahedral series.
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It is apparent that high heats of transition will be most readily
obtained in the tetrahedral series, which can be represented by the follow-
ing general formula, where Rl, Re, RS, and R* are functional groups that
are alike or different.

?l

RO

Owing to the different possibilities each group can contribute to new ori-
entational states, the magnitude of the contribution of specifiic groups

to the entropy change in the transition can be estimated on the basis of
the group identity. Largely from these data, but also on the basis of
some data from the literature, the various functional groups can be listed
in the following order with respect to their contribution to the entropy
change on transition.

COoH > NOp == NHp > CHpOH > CHpF > CHz == Cl= Br

Although such a series can be used to predict structures most
likely to have high heats of transition, unigue limitations in particular
structures may lead to anomalies similar to those that have been described.
Other groups that may also be effective, but which cannot be placed in the
series because of the lack of data, include the following.

OH, SH, CN, CHCN, CHoNHy, CH,SH, CHO

Some potentially effective candidate materials that have been
prepared and reported in the literature are listed in Table 12. Solid
state transitions have not been reported for any of these compounds. The
extent of functional substitution in these compounds indicates a high
probability for large heats of transition.
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TABIE 12

TYPICAL CANDIDATE MATERTIALS

Compound

No. Structure

1 C(CHpNHp ) 4 +HgO

2 C (CHQOH) (CHpNH, ) 5

3 C(CHpOH) 3 (CHoNH, )

4 C(CHQOH) 5 (CHoCL)

o C(CHLOH) 5 (CHLCL) 5

6 C(CHLOH) 5 (CHpCORH )
7 C(CH,SH)

8 C(CH,SH), (CH,0H),

9 C(CHoSHI) 4
10 C(CHR0H) 5C0H
11 ¢(COH) (CHZ0H) (CHZ ),
12 ¢(cHo) (CH0H) (CHZ ),
13 C(NOQ)Q(CHS)(CHQOH)
14 C¢(N0g ) o (CHROH)
15 C(NOQ)S(CHQOH)
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mp (°C)
41-42

121

207

141

79-80

121

15-74

97

215-216

206-207

123

89-90

95

145

72-73




V. OTHER EXPERIMENTAL WORK

A, Effect of Purity on Enthalpy Changes

The results of determining heats of transition before and after
various kinds of purification steps are summarized in Table 13. Both
Series I and Series II data are included in the tabulation because some of
the substances were used in the purity they were received for Series I,
but were recrystallized for the Series II determinations. Subsequent to
the Series II determinations, some of the substances were subjected to
additional purification procedures, and the values obtained in these ex-
periments are also reported. For most of the substances, changes in
enthalpies were not significant (less than 10% variation).

The tendency of 2-amino-2-methyl-l,3-propanediol to absorb mois-
ture was observed in the discussion of the qualitative work, and the
absorption of moisture did seem to significantly reduce the transition
enthalpy for this subsbances. No particular precaution was taken to
exclude moisture during the recrystallizations, and the enthalpies of
transition decreased with additional recrystallization. But when the
compound was sublimed in a dry atmosphere, transition enthalpies increased
with repeated sublimation. The other substance whose melting point de-
creased on exposure to moisture, 2-methyl-2-nitro-l,3-propanediol, did
not show a significant change in its transition enthalpy.

The only substance that contained a substantial portion of
impurity, 2-hydroxymethyl-2-nitro-l,3-propanediol, showed a considerable
variation in transition enthalpy in average values from three sets of
the data, but it is difficult to make any specific conclusion concern-
ing the effect of impurity on the basis of the data that is available.

B. Two-Component Systens

Some data were obtained on two-component systems. A phase dia-
gram was prepared for the 2-hydroxymethyl-2-methyl-1l,3-propanediol-2,2-
bis(hydroxymethyl)-l-butane system, a mixture of a mesocrystalline sub-
stance with a nonmesocrystalline material. The phase diagram is repro-
duced in Figure 6. The system has a congruent melting point at 66°C with
about 12% trimethylolethane and a eutectic at 58°C with about 8% tri-
methylolethane. No mesocrystalline phase is observed at either point and
the values are very close to the 59°C m.p. of trimethylolpropane. Since
the eutectic composition is largely trimethylolpropane, the enthalpy of
melting would not differ too greatly from the enthalpy of melting of tri=-
methylolpropane and would not benefit greatly from the higher value of
trimethylolethane.
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TABIE 13

COMPARTSON OF ENTHALPY CHANGES OF TRANSITION WITH CHANGES IN PURITY

Substanceﬁ/ AH (cal/g)
Pentaerythritol
Series II 72.48
g : Recrystallized once 70.47
Unpurified redetermined 68.25

2,2-Dimethyl-1,3-propanediol
Series T 33.58
Series II (recrystallized) 31.30

2-Ami 1=-2-Dyaroxymethvl-1,3-propanediol
Series 1 62.29
Series II (recrystallized) 67.61

2-Amino~-2-methyl-1l,3-propanediol

weries I 55.47
Series II 63 .38
Recrystallized once 53.22
Recrystallized five times 50.24
Sublimed ovnce 55.59
Sublimed twice 57.31
Unpurified redetermined 54.122/

2-Hydroxymethyl-2-nitro-1,3-propanediol

Series I 32.95
Series II 39.33
Recrystallized five times 35.50

2-Methyl-2-nitro-1,3-propanediol

Series I 46.55
Series II 47,66
Recrystallized flve times 45,50

2,2-Bis(hydroxymethyl)propionic acid
Series I 69.48
Series II (recrystallized) 68.64

Ey See the text for an explanation for the values listed as Series I,
Series II, Recrystallized, and sublimed.

_/ Total from overlapping transition and fusion endotherms-redetermlned
after 5 months.
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Percent 2,2-bis(hydroxymethyl)-l-butanol in
2-hydroxymethyl-2-methyl-1l,3-propanedicl

Figure 6 - Phase Diagram for the System 2,2-Bis(hydroxymethyl)-
l-butanol and 2-Hydroxymethyl-2-methyl-1l,3-propanediol
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A second two-component system of & mesocrystealline and & non-
mesocrystalline material, pentaerythritol and trimethylolpropane, was
examined but the phase diagram, which was somewhat similar to the first,
was less well defined. The mesocrystalline phase disappeared somewhat
more rapidly with increasing concentration of 2,2-bis(hydroxymethyl)-1-
butanol. A eutectic, if it were present, had a melting point that did
not differ from the melting point of 2,2-bis(hydroxymethyl)-l-butanol.

Three two-component systems of mesocrystalline substances were
also screened. The 2,2-dimethyl-l,3-propanediol-2-hydroxymethyl-2-methyl-
1,3-propanediol system and the 2-hydroxymethyl-2-methyl-1,3-propanediol-
pentaerythritol system appeared to form solid solutions at all concentra-
tions., In the pentaerythritol-2,2-dimethyl-l,3-propanediol system, the
transition temperatures were too far apart to give meaningful results.

Two other sets of mixtures were prepared, one from 2-amino-2-
methyl-1l,3~propanediol and trimethylolethane and the other from 2-amino-2-
methyl-1,3-propanediol and 2-amino-2-hydroxymethyl-l,3-propanediol. Both
of these systems formed glasses when the melts were cooled. These results
suggest that an effective nucleating agent will be necessary in these twn
particular mixtures.

C. Crystallization Studies

Initial crystallization studies were undertaken on the basis of
the originally proposed approach of using the differential thermal analyzer
to determine the extent of supercooling at various cooling rates. It was
felt that extrapolation of such data to a zero cooling rate would provide
a fair assessment of the extent of supercooling of candidate substances.

Of the four compounds examined, all exhibited excessive super-
cooling, except 2-hydroxymethyl-2-methyl-1l,3-propanediol. Also, there
was no evidence that there was any correlation between extent of super-
cooling and cooling rate.

When a number of potentially useful nucleating agents were exam-
ined under the conditions of these experiments, no response was obgerved
with any of the conventionally used materials. The only significant
change effected in the extent of supercooling was by the incorporation of
a small quantity of pentaerythritol in 2-hydroxymethyl-2-methyl-1,3-
propanediol. With this composition and a cooling rate of 5°C/min or less,
the extent of supercooling was reduced to 4-5°C, which approaches the tar-
get requirements for phase change materials. Presumably, this system was
effective because of the similar crystal habit of the two substances and
the high transition temperature of pentaerythritol.
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Although there were insvflicient experimental data to establish
the fact, the large extent of supercooling observed in the other substances
(up to 70°C) appeared to be characteristic of the functional groups pres-
ent. The fact that the greatest supercocling was observed in the two sub-
stances containing the amino group seemed to confirm this observation.

The results with 2-hydroxymethyl-2-methyl-l,3-propanediol sug-
gested that excessive supercooling was not an inherent characteristic of
solid/solid-phase transitions; however, closer examination of some of the
data indicated that the experimental procedure used to obtain these data
did not fully and accurately describe the nature of the solid-solid transi-
tion., At the same cooling rate, many of the results were not repeatable.
The failure of the substances to respond to commonly used nucleating agents
is also suspect, but in the experiments optimum particle sizes and concen-
trations may not have been used. It was observed that when some of the
samples were cooled considerably below the transition temperature with no
exotherm, then reheated, phase transition occurred during the heating
ecyele., Also, several substances exhibited substantially different extents
of supercooling, when they were used in quantitative determinations of
heats of transition and cooled.

Because of the questions about the validity of the crystalliza-
tion date obtained by differential thermal analysis, the cooling charac-
teristics of 3-g. samples of several of the substances were determined
by conventional procedures. Under these conditions, the maximum super-
cooling of all the substances examined wag 3°C. 2-Hydroxymethyl-2-methyl-
1,5-propanediol, 2-methyl-2-nitro-l,3-propanediol, and pentaerythritol
underwent crystalline *ransformation without the addition of nucleating
agents; 2-amino-2-hydroxymethyl-L,3-propanediol and 2-amino-2-methyl-
1,3-propanediol could be nucleating by scratching the glass container with
a metal spatula.

The data that have been obtained are only preliminary but
indicate that excessive supercooling is not a characteristinc of the trans-
formations and that the techniques that had employed the differential
thermal analyzer were not valid.

D. Compound Preparation

A small amount of effort was spent on compound preparation.
Method followed those described in the literature for the substances pre-
pared or for structurally related compounds. The following were prepared:
Tetrakis(trimethylsilyl)silane; tetramethylsuccinonitrile, tetramethyl-
succinic acid, tetra-t-butylthiopentaerythritol, pentaerythritol tetra-
methanesulfonate, and tetrakis(aminomethyl )methane monohydrate.

37




VI, EXPERIMENTAL PART

A. Qualitative Thermsl Data

All data were obtained with a DuPont Differential Thermal
Analyzer with a heating rate of 15°/min in an air atmosphere. Temperature
ranges in the qualitative experiments were taken as the temperature between
the extrapolated onset of the transition to the maximum height of the endo-
therm. These dava are presented in detail in Tables 14 to 23.

B. Quantitative Standardization

The DuPont Differential Scanning Calorimeter module was standard-
ized for the quantitative determinations through the determination of a
calitiration constant E for selected substances and plotting the E values
against peak temperatures.

E = Specific heat (cal/g) x heating rate (°C/min) x wt. (mg.)
plotted area (in?) x T scale (°C/in) x AT (°C/in,

For the Series I calibration data, which are reported in Table 24,
the average values were treated with a computer programmed to determine
the best curve to fit the data. The index of determination for the hyper-
bolic curve was 0.973055; the 95% confidence limits were calculated as
t 5,8%. For the Series II calibration data in Table 24, the best smooth
curve was drawn for the average values as shown in Figure 7. Both cali-
bration curves were based on the use of sealed sample pans. The calibra-
tion data for open sample pans in Table 26 were not used. Subsequent
checks and corrections of the calibration curves were necessary from time
to time during the experimental work. These corrections were based on E
values redetermined for acetamide, indium, and tin. Data for such a series
redetermined several months after the calibration data in Table 25 are
reported in Table 27.

C. Quantitative Thermal Data

Quantitative determinations were carried out with a suitably
standardized DuPont Differential Scanning Calorimeter with a heating rate
of 10°C/min in an atmosphere of air. Two series of determinations were
made. The scatter of the data in the first series of determinatiins
(Series I) was so large that a replacement cell was obtained and many of
the values were redetermined (Series II). Series I data are reported in
Tables 28 to 32 and Series II data in Tables 33 to 36.

(Text continued on p. 78.) 38
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Name

Pentaerythritol
Recrystallized once

2~Hydroxymethyl-2-methyl-
1,3-propanediol

2,2-Dimethyl-1,3-propanediol
Recrystallized once

Neopentyl alcoliol

2-Amino-2-hydroxymethyl-
1,3-propanediol
Recrystallized once

2-Amino-2-methyl-1, 3-propanediol
Recerystallized once
Recrystallized twice
Recrystallized four times
Recrystallized five times
Sublimed
Sublimed twice
Unpurified after five months

2-{ Hydroxymethyl)-2-nitro-1,3-
propanediol
Recrystallized once
Recrystallized twice
Recrystallized three times

2-Methyl-2-nitro-1,3-propanediol
Recrystallized twice
Recrystallized four times
Recrystallized five times

2-Methyl-2-nitro-1-propanol

2,2-Bis( hydroxymethyl) -propionic
acid
Recrystallized once

Pivalic acid

Tetramethylammonium chloride

di-2-Amino-2-methyl-butyric
acid

Trimethylacetonitrile

TABLE 14

QUALITATIVE EXPERIMENTAL DATA FOR TET!AHED;&L COMPOUNDS
WITH SOLID-SOLID TRANSITION

Structure

CHoOK

HOHpC-C~CHAOH

HnO0H

gHQOH
CHy ~C~CH,OH
bnégﬁ

CHs
CHg-0-CHOH
CHoCH

fHz
Cns-p-CHQOH
CHz

CHAO0H
HpN~{-CHpOH
CHoOH

cigon
CHz -9 -NHp
CH,O0H

CHZOH
HOCHp-C-NO2

(HROH
CHz-0-NO,
CHpOH

CHz
H3C-{-CHp0H
NO,

CHpOH
Chiz-(-COOH
CHL0H
CHs
CHg-C-COOH
Ol

CHy .
CHg-§-CHy

Cl

CH
c eﬂs-é-éoor{

3
bﬁ:,‘ “3-0=N
IHS

Transition

Range (°C)

181-183
184-185

81

38-41
40-43

=31

131~132
131-137

78-80
76-80
77-81
77-81
77-81
78-80
78-80
77-78

78-81
79-81
79-80
80-82
77-18
79-80
79-80
76-79

35-39

148-153
152-155

7-9

262-264

835-86
98-104
~100-108

-34

&/ Data collected in the laboratories of Midwest Research Institute.

b/ See text.
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Melting
Range {°C

255-259
256-260

197198

120-126
125-126

51-55

164-169
166-169

107-108
107-108
101-1042/
105-108
105-108
105-108
107-109
97-100

187177

159-1680/

Dec., 184
Dec, 184

151~154
149-153
149-155
136-1492/

88-89

188-192
194-197

32-36

Sublimed
above
320

Sublimed
above

310

15-20

L%




TABIE 15

QUALITATIVE EXPERIMENTAL DATA FOR TETRAHEDRAL COMPOUNDS

Name

Pentaerythrityl

tetrabromide

Pentaerythrityl
tetraacetate

Pentaerythritol
tetramethane-
sulfonate

Tetra-t-butyl
thiopentaery-
thritol

NOT SHOWING SOLID-SOLID TRANSITIONS®/

Structure

Br
BrCHy~G-CHpBr

CH, Br
CHéO-@-CHs
CHS-E-O-CH?-?-CHQ-@-C-CHS
CHQO-%-CHS
cné-o-g-cns
g > g
CHé-Eo-CHé-c-CHé-o;E-CHs
| CH, - 0-5~CH;
[
Clg~~Cts
]
g iﬂé (s
HoC- -S-CHé-l-CHéS-E-CHs
Cli (i CHg
S
&
|
C

41

Temperature Range
Examined (°C)

-180 and 160 (m.p.)

-60 to 79 (m.p.)

-50 to 202 (m.p.)

-60 to 116 (m.p.)




TABLE 15 (Continued)

Name Structure
Tetrakis(hydroxy- FHé-OH* c1-
methyl)phosphonium  HO-CH,-P-CH,0H
chloride &HE-OH
2,2-Bis( hydroxymethyl) - CHoOH
l-butanol CHS-CHé-t-CHéOH
’ HpOH
2-Amino-2-methyl- HyOH
l-propanol cné- -NHL,
Hz
3,3=Dimethylglu=~ CH%
taric acid CHS-l-CHQ-COOH
i
COCH
+
Tetrakis(amino- Hy-NH, 80T
methyl)methane fH NeCHA=(eC + P4
sulfate 30z CHéH§§?§
“HH3
Tetrakis(amino- EHéNHé
methyl )methane 1, 1-CHy =~ CH N +XE, 0
hydrate "
HpNH,
Dimethylmalonic HS
acid HO,C-C-COLH
Hz
Tris(chloromethyl)- fH.ecz.
acetic acid ClCHE-f-COOH
CHp
b1
-Chlorepivalic acid fHé
Cl-CHé-Z-COOH

42

Temperature Range
Examined (°C)

0 to 450

-50 to 56 (m.p.)

(Melting range 7-
17°)

-80 to 101 (m.p.)

25 to 320 (m.p.)
-70 to 43 (m.p.)

-50 to 198 (m.p.)

-60 and 108 (m.p.)

-30 and 38 (m.p.)




Name

2=Methyllactic
acid

Citric acid

Tetramethyl-
ammonium
bromide

Trimethylacetamide

Acetaldehyde
ammonia

Tartronic acid

2,2',2"-Nitrilo-
triethanol hy-
drochloride

Diphenylacetic
acid

TABLE 15 (Continued)

Structure
i
CHz ~C-O0H
OCH
?OQH
(H2
HOOC-E-OH
Hp
boou
7' .
CHB-N-CH@
te,
i
T
CH -G -C~H,
0
Hy
i
CHs-Z-NHé
H
i
HO-C=-COOH
&OOH
OH
B
HO-CH2-$-CHéOH Cl
H+
|
CGHS'i'COOH
6ils

43

Temperature Range
Examined (°C)

-80 to 80 (m.p.)

-60 to 153 (m.p.)

0 to 392 (sub.)

-40 to 152 (m.p.)

=30 to 93 (m.p.)

-140 to 154 (dec.)

-60 to 178 (m.p.)

-80 to 146 (m.p.)




Name

Chlorotriphenyl-
methane

a-Aminoisobutyric
acid

Trimethylsulfonium
iodide

N-(2,2~dimethyl-3-

hydroxypropyl) -
morpholine

TABIE 15 (Concluded)

Structure

i
o/\_:/N-CH2 —Z-CI{E-OH

Temperature Range
Examined (°C)

-140 to 109 (m.p.)

-140 to 300 (sublimed
above 300)

-40 to 207 (m.p.)

-80 to 247 (b.p.)

g/ Data collected in the laboratories of Midwest Research Institute.
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TABLE 16

QUALITATIVE EXPERIMENTAT, DATA FOR OCTAHEDRAL, COMPOUNDS

Name

Tetramethyl-
succino=-
nitrile

Tetramethyl-
sucecinic

acid

Hexachloroethane

Succinamide

2,3-Dimethyl-
succinic
acid

Dihydroxymaleic
acld

Oxamide

WITH SOLID-SOLID TRANSITIONSZ/

Structure

?HS (?H’Q
NC-g-—-g-CN

CH3 CHS

CHy CHs

HOOC-Q-—-Q-COOH

CHS CH3

¢l ¢1
Cl-?-—?—Cl
Cl Cl

g'CHE'CHQ'g-NHE

Transition

Range (°C)

7L to 73

108 to 111

46 to 48

71 to 72

203 to 204

119 to 123

115 to 121

325 to 335

Melting
Range (°C)

168 to 170

190 to 193

179 to 184

263 to 268

188 to 190

144 to 161

Not melted
at 375

g/ Data collected in the laboratories of Midwpst Research Institute.
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TABLE 17

QUALITATIVE EXPERTMENTAL DATA FOR OCTAHEDRAL COMPOUNDS

NOT SHOWING SOLID-SOLID TRANSITIONSE/

Nam

Pinacol

Chloral hydrate

Tartaric acid

Dihydroxytartaric

acid

Difluorotetrachloro-
ethane

Structure

Temperature Range
Examined (°C)

-80 and 38 (m.p.)

-40 to 52 (m.p.)

-60 and 170 (m.p.)

40 and 108 (dec.)

-25 to 37 (m.p.)

g/ Data collected in the laboratories of Midwest Research Institute.
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TABLE 18

QUALITATIVE EXPERIMENTAL DATA FOR CAGE COMPOUNDS
WITH SOLID-SOLID TRANSTITIONS/

Transition Range Melting Rangn

Neme Structure (°¢) (°Q)
| Adamantane 64,5 206 to 209
o
|
| 1-Ademantane - N 142 to 148 180 to 189
carbonitrile
l-Ademantanol 91 to 92 239 to 245

% S5=-Norbornene-2, -
o 3-dicarboxylic
| anhydride @ >

Norborneol (mix-
ture of ené-
and exo)

98 to 101 Indefiniteé/

=0

-6 to -2 128 to 131

-26 to -23 178 to 179
and 98 to
100

d~Camphor

dl-Camphorqulnone 55 to 61 199 to 20L

d-Camphor oxime @v-o 107 to 112 111 to 115

47




TABLE 18 (Concluded)

Transition Range

Melting Range

Name Structure (°c) (°c)
d1.-10-Camphor - ) 95 to 1&2 185 to &
sulfonic acid HO=5=0
dl-10-Camphor - 112 to 117 --
sulfonic acid
sodium salt
Camphene -97 to -99 42 to 49
dl-TIsoborneol 7 to 8 Sublimed above
210
Bornyl chloride =36 to =34 122 to 125
3-Quinuclidinol @OH 9% to 102 221 to 223
Dicyclopentadiene €0 to 67 202 to 211
dioxide (mixture
of endo and exo)
Tris(propan-2-0l)- 85 to 69 150 to 156

amine borate

g/ Date collected in the laboratories of Midwest Research Institute.
b/ Reported, 164 to 166°, Eastmen Organic Chemicals Catalogue, No. 44.
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TABLE 19

QUALTTATIVE EXPERIMFNTAL DATA FOR CAGE COMPOUNDS NOT
SHOWING SOLID-SOLID TRANSITIONSH

Name

l-Ademantanecarboxylic
acid

Adamantanone

S=Norbornen-2-01 (mix=
ture of endo and exo)

S-Norbornene-2,3-dicar=-
boxylic acid (mixture
of endo and exo)

S=Norbornes.2=2=methanol

2-Methyl-2-methylol-5=
norbornene

Norcamphor

Norcamphor oxime

exo=-2,3=Epoxynorbornane

Structure

COOH

Temperature Range
Examined (°C)

0 to 175 (m.p.)

=30 to 254 (sub.)

10 to 89 (m.p.)

0 o 184 (dec.)

=70 to =10 (m.p.)

=35 to 50

-40 and 88 (m.p.)

-8C to 180 (dec.)

=30 to 127 (m.p.)

I
izl
i

ek



TABLE 19 (Continued)

Temperature Range

Name Structur Examined (°C)

d-3-Bromocamphor ‘ @ -40 to 74 (m.p.)
r

Fenchyl alcohol @H | | .65 to 25 (m.p.)

S5-Hydroxy-4,7-methylene=-

-60 to =40 (m.p.)
4,7,8,9=tetrahydroindene -

S-Hydroxy=2-methylol=4,7 -

HO” z
‘ CHpOH  -30 4o 100
methylenehexahydroindene

H

S=Hydroxy~-S-methylbicyclo=- ' COOH =70 to 171 (m.p.)
[2.2.1] ~heptane-2-3-di-
s . OOH
cerboxylic acid
H | C

Hz
3=Hydroxytricyclo- » -80 to 95 (m.p.)
[2.2.1.02’§§-
heptane ‘
Q)
L

7-0Oxabicyclo [2 2 :I;] ~hept -
S-ene-2,3-dicarboxylic
anhydride

-70 to 117 (dec.)

7-Oxabicyclo[2.2.1] -heptane-
2,3-dicarboxylic enhydride

-40 to 87 (m.p.)
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TABLE 19 (Concluded)

Name Structure Examined (°C)

Teloidione HO 10 to 190 (m.p.)
"~ HO 0

Hexamethylenetetramine -65 to 285 (m.p.)

)

W

a/ Data collected in the laboratories of Midwest Research Institute.
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TABLE 20

QUALTTATIVE EXPERIMENTAL DATA TOR CYCLIC COMPOUNDS
WITH SOLID-SOLID TRANSITICNSE/

Transition Melting
Name Structure Range (°C) Range (°C)
¢is-4-Cyclohexene- 9 85 to 88 98 to 100
1,2=-dicarboxylic
anhydride | 0
4
1
0
Alloxan ? 186 to 196 Decomp.
N > 250
O::q/ \C=
5
trans-1,2-Cyclohexane= 67 to 779/ 104 to 106
ol QOH
)
1,4-Cyclohexane- 52 to 55 78 to 81
dione o@o and 68
Lo 702/
Primesic acid HOOC, COOH 340 to 3489/ 413 to 416
COOH
trans-l,4-Cyclohexane~- COOH «4& to 0 and 328 to 333
dicarboxylic acid i 150 to 1562/
: ‘ COOH

g/ Data collected in the laboratories of Midwest Research Institute.
p/ Very small heat effect.




TABLE 21

QUALITATIVE EXPFRIMENTAL DATA FOR CYCLIC COMPOUNDS NOT
SHOWING SOLID-SOLID TRANSITIONSZ

Temperature Range
Neme Structure Examined (°C)

1,4-Cyclohexanediol -10 to 95 (m.p.)

(cis-trans)

‘ HO @oﬂ
2 -Hydroxycyclohexanone 0 =120 to 100 (m.p.)
@H

4-Aminomethyleyclo- -140 to 368 (m.p.)
hexanemethanol HpNHoC @-CHQOH
Cyclohexanone oxime ,NOH - -70 to 89 (m.p.)
1,4-Cyclohexane 60 to 197 (m.p.)
dioxime HON@NOH
1,4-Cyclohexanedi~ -50 to 145 (m.p.)
carbonitrile NC @CN
o-Hexachlorocyclohexane cl ' 25 to 160 (m.p.)
8- oL cL 40 to 304 (m.p.)
Y- =50 to 113 (m.p.)
5= -20 to 144 (m.p.)
Cl 1
Cl

B-Glucose pentaacetate -140 to 140 (m.p.)




Inositol

D-Quinic Acid

Arabinose

2,2,4,4-Tetramethyl-1,
3-cyclobutanediol

2,2,4,4-Tetramethyl-1,
3=cyclobutanedione

Cyclopentanone

Succinic anhydride

TABLE 21 - (Continued)

structure

) s og
Hy
CHz
HO / CHS
CHe
HzC—
CHz

o4

Temperature Range
Examined (°C)

30 to 218 (m.p.)

=140 to 144 (m.p.)

-80 to 163 (m.p.)

-40 to 125 (m.p.)

-80 to 116 (m.p.)

-80 to =56 (m.p.)

=70 to 119 (m.p.)




Name

1,2,3%,4-Cyclepentane~
tetracarboxylic=-
1,2,3,4~dlanhydride

d-Camphoric acid

s=-Trithiane

Q-Dithiane

Hydantoin

‘Ascorbic acid

Parabanic acid

TABLE 21 (Continued)

Structure

55

i

Temperature Range
Examined (°C)

~80 to 215 (m.p.)

=70 to 182 (dec.)

-40 to 218 (m.p.)

0 to 111 (m.p.)

-20 to 221 (m.p.)

-140 to 168 (m.p.).

0 to 233 (dec.)




TABLE 21 (Concluded)

Temperature Range

Name Structure Examined (°C)
1,2,3-Benzotriazol . -140 to 98 (m.p.)
QG
p-Xylene 3 -80 to 14 (m.p.)
CHz
Benzenehexol

~60 to 200 (dec.)

4,4'-Isopropylidene
diphenol

10 to 160 (m.p.)

a/ Data collected in the laboratories of Midwest Research Institute.
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TABLE 22

QUALITATIVE EXPERIMENTAL DATA FOR ORGANOSILICON COMPOUNDS
WITH SOLID-SOLID TRANSITIONS®/

Transition Melting
Name Structure Range (°C)  Range (°C)
Tetrakis(trimethyl- i-(CHé)s -32 to =29 282 to 285
silyl) silane (C}%)SSi-Si-Si(CI‘%)S
51(CHz) 5
Tris(trimethyl- Ti(CHS)S -28 63 to 64
ilyl)amin
silyl)amine N-Si(CH3)3
Si(CH:a)5

a/ Data collected in the laboratories of Midwest Research Institute.
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TABLE 23

MISCELILANEOUS COMPQUNDS HAVING NO SOLID-SOLID TRANSITIONSQ/

Name

Mesaconic acid

2,2=Dimethyl=5~-
hydroxy=l=-
butanol

d-Ieucine

2-Butyne=-1,4=-diol

Nitrilotriaceto=-
nitrile

N,N=-Bis(2=-hydroxy-
ethyl) glycine

2 ,2 ) 4"Trimethyl"l;3"
pentanediol

Diacetyl monoxime

Dimethylglyoxime

Temperature Range

Structure Exemined (°0Q)

iﬁs -40 to 203 (m.p.)
HOOC~HC=C~CO0H

i f -40 to =7 (m.p.)
CHg-C-— ~CH,0H
OH }‘Hs
gﬂg 1'\&%00}{ -80 to 202 (m.p.)
C -C-
5" | 2 l
H H
HOH,C~(=C~CH,0H -60 to 50 (m.p.)
1;1-01{201\1
CH,CN
H,OH -60 to 194 (dec.)
N=-CH,COOH
= CHa
CHoOH
o=
OH CHy OH CHz
s -140 to 74 (m.p.)
=0
%=NOH
CHz
CH3-ﬁ-lc-cr% -160 to 239 (dec.)
NOH I&OH |
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Neame

Tetracyanoethylene

Hexadecane

dl-Alanine

Glycolic acid

l, 1,5 ,3 ) Te‘brame‘bhyl'?.-
thioures

Mannitol

Acetamide

Thiocacetamitle

Ureas

Thiouresa

TABLE 23 (Continved)

Structure

s
HéO-?COéH
H

Hﬁ-COOH
0

HsC\ //CHé

e -I\T

d/ I

%I

QH
e E%@H

O—C)".'L"

H OH

CHz =0 -,
0
UHS'@'NHé
HoN-G-NH,
0

Hgl=-1

o9

Temperature Range
Examined (°C)

=30 to 200 (m.p.)

"’8 tO 20 (mapo)

25 to 281 (m.p.)

-50 to + 80 (m.p.)

=70 to 71 (m.p.)

-50 to 168 (m.p.)

10 to &2 (m.p.)

-95 to 114 (m.p.)

-80 to 132 (m.p.)

0 to 181 (m.p.)




TABLE 23 (Concluded)

Temperature Range

Name Structure Examined (°C)
Ferrocene | 20 to 173 (m.p.)
Fe

3/ Data collected in the laboratories of Midwest Research Institute.




TABLE 24

QUANTITATIVE THERMAL DATA ON STANDARD SUBSTANCES
DETERMINED IN SEALED CUPS: Series I

Specific Heat DPesk Temperature Number of
(cal/g) (°¢) Substance Determinations E Value Aversge

2,745/ -31 Hg 1 111,7
126.9 1217
134.6
95.9
1394

i_'

20,38/ 55 CaHECO0GHS 122.6
13,1  129.2

131.8

N

50,42/ 63 CeHaClo 1 15,3
146.5  137.1
159.3

40,38/ 132 MgCl, * 6Hp0
146.6

[CL NNV o
’_l
B
o
(@]

6.792/ 165 In

147.0

=
HOODNOU &GN
H
)
a
(<o)

()
[

164,
149,
160.

b |

76.53% 201 C( CHoOH )4 158.2

no

(6}
»

171.2
156.7
180.5
228.7 169.1
147.6
152.1
144.9
160.4

14.22/ 244 Sn

@x 30 UL 0T

Data collected in the laboratories of Midwest Research Institute.
Reference 27.
Reference 28.
Reference 26.
Reference 3.

Rlele g
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Enthalpy
{cal/p)

TABLE 25

QUANTTTATIVE THERMAL DATA ON STANDARD SUBSTANCES

DETERMINED IN SEALED CUPS: Series IIE/

Pegk Temperature

Y]

Substance

Number Of

Determinations

Calibration

Coefficient Average

2,742/

12,624/

6;739/

76.53¢/

14,20/

-3%

94

95

128

159

162

201

244

lelelele,

Heg

06H4.-012

NH, NO

CHz ONHp

MgCly ' 6Hp0

NHy NOz

In

C( CH,0H),

Sn

62

D= o000

p |

=Y
S

[ I\ B o

}_l

N

OO 1oOoUudNPDEHE WO

146.5
144.2
147,1
148.8
147.9
145.5
138.3

136.3
136.2

137.1
141.8

144.9
149.9
146.0

156.5
144.7
151.1
146.3

146.7
143.2

152,5
149.6
156.5
155.4
150.2
153.9

162.6
168.2
166.6

160.9
165.3
160.9
164.5
157.9
159.2
160.4
153.9
161.7

Data collected in the laboratories of Midwest Research Institute.
Reference 27.
Reference 28,
Reference 26,
Reference 3.

145.5

136,2

139.5

146.9

149.6

145.0

153.0

165.8

160.5

Y |
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TABLE &7

QUANTITATIVE THERMATL, DATA ON STANDARD SUBSTANCES
REDETERMINED IN SEALED CUPS:
Sorieg I1: oo ond Caiibrations )/

Enthalpy Peak Temperature Number of Calibration
(eal/g) (°c) Substunces Determination Coefficient Averup

.52/ 9l CHZCNH, 148.6 1565
145.1
149.3
(159.1)
154.4
154.1
(141.3)

-~ Oy Oy o

8. ':99.-/ 167 In 161.0 158.0:
157.1
157.4

156.5

> WD

16558/ 201 C(CHyOH) 4 182.4 180.7
176.0

(173.7)

181.6

177.1
(190.0)

183.3

181.3

181.3

182.8

W W ~2oue YO

=
(@]

14.22/ 240 Sn 170.1 170.0
170,7
17L.1
168.2
171.2

168.4

o uld 30

g/ Data collected in the laboratories of Midwest Research Institute.
c/ Reference 27,:

¢/ Reference 28.

b/ Reference 26.

g_/ Reference 3.
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TABLE €8

TRANSITION ENTHALPY AND ENTROFY DATA FOR VARIOUS SUBSTANCES

Compeund

2-Hydroxymethyl-2-methyl-
1,3=propanediol

Z,2-Dimathyl~1,5~
propanediol.

Neopentyl aleohol

2-Anino-2-hydroxymethyl=-
1,3-propanediol

2-Amino-2-methyl-1,3-
propanediol

Formila

Height

120.15

104.15

88.15

121.14

105,14

2-{Hydroxymethyl)-2-nitro-

1,3-propanediol

2-Methyl-2-nitro-1;3-
propanediol

151,12

135.12

(Series T: Tetrahedral Compounds)s/

Melting

Temperature

(°k)

356

312-314

240-241

411-419

352-357

351-355

354-357

65

M (~al/e)
Determination
Numbery Vaelue Average
‘1-open 43,20 46,25
2-0pen 45,48
3-open 43,37
4-pealed 50,41 48,31
5-gealud 51,40
6-nenled 46,80
7T-gealed 43,60
8-aapled 532,60
9-papled 45,64
10-sealed 48,885
1ll-sealsgd 46,15
l-open 29,57 29,18
2-open 28,28
3-open 29,68
l-sealed 34,04 33,58
Z-sealed 32,38
Z-sealed 31.04
4-gealed 35,56
S~gealed 31.46
6-sealed 37.0L
l-sealed 7.94 10,30
2-sealed 9,18
3-sealed 11.09
4-sealed 9,42
5-gealed 10.50
6-sealed 11.12
7-sealed 11,07
8-sealed 12,00
l=sealed 60,84 62,56
2-sealed 64,09
Z-gealed 82,75
l-open 76.05 62,29
2-open 59.88
3-npen 50.95
l-sealed 51.65 55.47
2-gealed 59,29
l-open 33.71 34,34
2-open 26,45
3-open 36,21
4-open 41,00
l-sealed 31.79 32,95
2-sealed 34,11
l-sealed 44,77 46,55
2-sealed 47.08
3-sealed 47.80

An
[

{Q/!g’i)“
Avnranﬁz

18,74

KAf)

[
D
X

7,74

il.zl

18,44

18.61

16,57

14,78

}.—)
[424
1
m

17.77




TABLE 28 (Concluded)

Melting A8 (-al/e) as
Formula Temperature Determination (eu,~
Compound Weight (°K) — Number Value Average Averagn)
yo-Bis(hydroxymethyl )=
propionie acid 134,13 425-426 l« l~genled 68.74 69.48 £1,9%
2-gsealed | 65,281
Z-sealed 74,48
Fivalio acid 102,13 £280-282 l-sealed 17,26 18,07 6.54
2-sealed 16,12
3wsealed 18,82
4-genled 17,07
e Sealed 17¢17
6-sealed 20,23
7-gealed 18,10
8-sealed 19,29
Sehpamao by lammoniun
Shloride 109.80 535-537 1-gealed 27.36 26,50 5,42
2-sealed 26,07
Z=gealed 27.54
4=-sealed 25,03
Armonium nitrate 80.05 326 l-sealed 3,21 3.21 0.79
285 1-sealed 3,70 3,70 0.81
407 ; l-sealed 11,73 11.73 2.3
Totrakis(trimethyl-
8ilyl)silane 200,59 241-244 l-sealed 9,18 8,24 6.86
2-sealed 7.75
3-gealed 8.3%4
4-gealed 7.68
Iris(trimethylsilyl)-
smine 143,36 242 l=sesled 7:30 7,80 4,681
2~sealed 7.94
3-sealed 7,71
4-gealed 7.64
S-sealed 8.43

5/ Data collected in the laboratories of Midwest Research Institute.
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TABLE R0
TICH X AXD ENTRCRY DA CR VA t
nda)d/
Melting A (ea3/g) »
Yormula Tezperature Determinaticn {a,u) »
Soppeye Haight {*x) Hogber Valye Aversge sverage
Rewnirupliidingl 12,19 295 1-pealed 25,03 24443 1.8
Senealed 34,48
Seaenlod 35.7%
Adarartare cartenitrile 161,55 415-42% lenealed 2.68 2,08 e ]2
2-808led 224
S=qaled 1.62
I-Alamartarncd 182,34 IER-384 1»soaled 23,57 18,11 8,04
2-sealed 18,84
Segealed 17,92
carphenct/ 136,25 1742175 1vsealed 5,80 5.74 4,49
2esealed 5,29
Sesealed 5,29
4-genled 4,83
Sescaled 5,81
B-aenled Rz
7-gealed 5,83
Begealed 7:10
di=Ischornecl 154,25 2680~-281 1-sealed .03 3.69 2,08
Resealed 3.E9
Z-genled 3,86
4-Camphey 182,24 247-250 l-gealed 13,80 15,17 9435
2<sealed 14,10
I-pealed 17,60
d-Camphor cxire 167,09 288 l1-sealed 0,79 0,86 0,37
2-sealed .04
Z-sealed 0,76
1,4~Cyclchexandicne 112,13 326-327 l-s0aled 13,66 1z.28 4442
2-gealed 13,33
S-gealed 12.959/
4~sealed 11,508/
S-sealed 11,%4
S~gealed 10.84
S-Norternene-2,3-di- 164,16 368-370 l-sealed 25.64 23,27 10,38
carboxylic acid 2-scaled 19,08
anhydride 3-sealed 29,65
4-sealed 21,35
S-gealed 20,93
6-gealed 22,97
di-Camphorsulfonic acid 232,30 375-379 l-sealed 18.63 20,40 1z.7¢
. 2-sealed 20,86
S~sealed 18.84
4-gealed 23,16
d1-Camphorquinone 166,22 320-334 l-gesled 20,31 22,56 11,40
2-sealed 22.88
3-sealed 24,48
Dicyclopentadifne dioxide 164.2 390-394 l-gsealed 3,95 4,27 1,80
2-sealed 4.24
I-sealed 4,22
4-gealed 3476
5-gealed 4,15
6-gealed 5.33
7-sealed 4,61
8-sealed 3.91
333-340 l-sealed 13,40 16,99 8.38
2-sealed 20,41
3-sealed 17,96
4-gealed 16.18
Norborneol (mixture of 132,17 267-271 1-sealed 3,32 3.45 1.45
endo and exo) 2-s2aled 2,99
3-gealed 4,05
Tris( propan-2-ol)amine 199.06 336-338 T 1-gealed 311 - 2,60 1.54
horate 2-gealed 1.76
3-sealied 2,56
4-gealed 2,96

a/ Data collected in the laboratories of Midwest Research Institute.
b/ Based only on MeCH standard; E = 171,8 # 7%,
¢/ At 5°/min,
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TAFLE 3.

FIoEn ENTHSLEY AND ENTRONY DATA FCR OOME
OCOCRYSTALLING CUBSTANCED) s
r

(ELerdes T)as -

Malting , aH {eal/) 45
Fermulo Tamparature Detarmingtion {200 -
eompennd Wedpht (*x) Humber Yridue Avarepc avarag
MRS 45 Teads (R B O
otk o~y erroranediel 120,18 470-473 I~scaled 12,78 16,78 [
UyeRimethyl-1,B-prepone~ 104.15 233-230 l-sesaled 10,15 16,33 .91
dici 2~saaled 11.8%
Ieepantyl alechol 88,18 384-320 l-scaled 8.83 £.58 1.78
2-sealed 5.68
Z-saaled 5,13
2is(bydroxymothyl Jomine- 121.14 441-443 l-sealad 5,73 6.84 1.88
mathan? 2~sealed 8,70
j 3~gealed 6,08
{ .
{
E‘-M&ﬂwl-'g‘-nitrc-l,s- 135-12 428"451 l'sealed 7 -23 7 023 8.25
propansdiol
2,2,-Bis(hydroxymethyl )- 134.13 461-465 1-sealen 6.87 6.87 2,00
propionic acid
‘ Tric(trimethylsilyl)amine 233,58 336-337 1-sealed 1.88 1.92 1,33
i 2-sealed 2,09
Lo Z-sealed 1.81
Tetramethylsuceinic acid 174,19 453~466 l-sealed 8,39 10,48 5.94
! 2-sealed 11.21
; 3-sealed 11.84
( 2,3-Dimethylsuceinic acid 146.14 461-463 l-sealed 36,82 34,70 11.00
! 2-sealed 29,16
‘ Z-sealed 38,12
!
Tris(propur: .. ol)amine 199,06 493-429 l-sealed 9.53 9.35 4,40
horate 2=gealed 7.198
Z-sealed 11.92
4-sealed 8.75
Norborneol (mixture of 112.17 401-404 1l-sealed 12.62 12,62 3,53
endo and exo)
Camphene 136.25 ‘ 115-322 l-sealed 4,33 4,33 1.87
Bornyl ehloride 172.69 . 395-398 l-sealed 6.82 6,39 2.79
2-sealed 6,13
3-sealed 6.23
4~sealed 6.38
Dieyclopentadiene dioxide 164.2 475-484 l-sealed 5.37 5.64 1.95
P-sealed 5.82
Z-gealed 5.72
4-sealed
d-Camphor oxime 187.09 394 l-sealed : 20.86 20,38 - 8.64
i 2~sealed 20.91
3-gealed 19,38
1,4-Cyclohexanedione 112.04 351 l-sealed 13.09 13.0¢ 4,18

a/ Data collected in the laboratories of Midwest Research Institute.

69

piesy




TABLE 32

FUSICH ENTHALPY AND BENTROPY DATA FOR OOME
NOIMECOCRYSTALLINE SUBSTANCES: s/

Sories 1)
Trangition AY (eal/g) AS
Formula Temperature Datermination {e,u, -
Compound Weight _(x) __Humber Value Average average)
@ye=Bic{ hydroxymothyl)-
tebutanol 134,19 300330 1-senled 39.16 38.86 15.85
2=-sealed 28,856
Z-Amine-2-mothyl-l-propanol 89,14 £83~-092 I-gesled 34,31 31,11 9,80
2=genled 27.00
S-gegled 22,97
4-sealed 30.65
b-poaled 34.87
6=-sealed 35.74
7-gsesled 32.21
Pentaerythritol tetramethene- 448,51 415-477 l~senled 26.94 26.57 25,09
sulfonate f2-sealed 26,20
Tetra-t-butyl-thiopenta- 424,82 389-~391 l-senled 13,82 14.08 15,34
erythritol 2-sealed 14,57
Thicacetamide 75.13 384 -485 l-sealed 76,59 15,16 14.68
2-gealed 13.74
Acetamide 59.07 362 l-sealed 66,75 76.15 12.78
2-sealed 78,92
o Z-senled 82.88
Chloral hydrate 165.40 346 l-sealed 49.76 50.64 24.21
2-zceled 51,51
Hexadecane 226,148 303 Ll-gealed 68,02 58,64 43,77
R-gealed 49,25

a2/ Data collected in the laboratories of Midwest Research Institute.
3/
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Series I determinations were made in open or sealed pans as indicated;
sealed pans were used in all Series II determinations. When possible
5-10 mg. of well-ground materials were used. Data illustrating the
effects of sample weight and heating rate are summarized in Table 37.

D. Effect of Compound Purity on Thermal Properties

A number of the compounds were purified by recrystallization
from the following solvents: Pentaerythritol from water; 2,2-dimethyl-l,3-
propanediol from benzene; 2-amino-2-hydroxymethyl-1l,3-propanediol from dry
ethanol; 2-amino-2-methyl-l,3-propanediol from dry ethanol; 2-hydroxymethyl-
2-nitro-1l,3-propanediol from an ethyl acetate-benzene mixture; 2-methyl-2-
nitro-1,3~-propanediol from dry ethanol; and 2,2-bis(hydroxymethyl)propionic
acid from water. 2-Amino-2-methyl-i,3-propanediol was also sublimed. It
is probable in the recrystallizations of ‘the amino derivatives that insuf-
ficient care was taken to exclude moisture. Qualitative experimental data
for the materials after various purifications are included in Table 14. The
quantitative results are reported in Table 38. The substance, 2-amino-2-
methyl-l-propanol, which was expected to have a mesocrystalline phase,
showed only a broad fusion endotherm. The data for this compound in
Table 38 were obtained after two distillations of the substance through

a 30-in. spinning band column.

E. Synthesis of Candidate Substances

1. Tetramethylsuccinonitrile: When 82 g. (0.50 mole) of azo-
bisisobutyronitrile was decomposed in toluene solution according to the
method of Bickel and Watersgg/, 43.2 g. (71%) of tetramethylsuccinonitrile,
m.p. 168-170°, was obtained (reported m.p., 167-167.5°).29/

2. Tetramethylsuccinimide: Treatment of 37.0 g. (0.33 mole) of
tetramethylsuccinonitrile with sodium hydroxide, water, and ethano 29
gave 26 g. (52%) of tetramethylsuccinimide, m.p. 190-191° (reported m.p.
187-188°) .29/

3. Tetramethylsuccinic acid: Hydrolysis of 16.0 g. (0.10 mole)
of tein7ethylsuccinimide in an acidic solution by Bickel and Waters's
method2?/ gave 5.0 g. (29%) of tetramethylsuccinic acid, m.p. 188-189
(reported m.p. 190-192°).28 '

(Text continued on p. 81.)
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TABLE 37

RELATION OF ENTHALPY DATA AND DIFFERENTIAL THERMAL ANALYSIS VARIABLESE/

Pentaerythritol (Transition)

Wt. Sample (mg.) AH(cal/g)
5.78 68.81
9.78 | 66.07
10.07 69.22
10.30 68.47
10.94 68.66

Tetrakis(trimethylsilyl)silane (Transition)

Wt. Sample (mg.) AH (cal/g)
5.85 9.86
8.16 8.60
8.16 » b/ 8.21
8.16 8.10
8.64 10.27
8.6 10.71
9.4 8.13
9.4 }-/ 9.14
10.13 8.36

2-Methyl-2-nitro-1,3-propanediol (Transition)

Wt. Sample (mg.) AH (cal/g)
5.83 48 .41
7.76 43.76
8.97 38.41
9.24 43.61
9.43 47 .86
12.83 49.95
15,21 | 48.30
15.11 47 .67
Heating Rate (°C/min) AH (cal/g)
2.5 38.41
5 ' 43.61
10 47 .86
1S 48 .41

g/ Data collected in the laboratories of Midwest Research Instltute
b/ Replicate determinations on the same sample.
79
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TARLE 38

ENTHALPIES OF TRANSITION AND FUSION FOR SUBSTANCES SUBJECT TO PURIFICATION SI‘EPS'a'/

Transition Fusion
Formula Temperature AH gculmz a5 (e.u.- Temperature & (cnl(g)_ as (em.-
Compound Weight (*x) Value Average _Average) (°K) Valut  Average _Avernge)
Pentaerythritol
Recrystallized once, 156,15 457-456 68.81 70.47 20.99 531-535 9,08 g.54 2.48
71.30 9,49
72.27 9.72
69,10 9.68
70.88 9.57
Unpurified 454-456 66,07 68.25 20.47 528-532 9,23 9,21 2,37
668,47 .38
69,22 9,46
68.8% 9.08
68.68 8.89
2-Hydroxymethyl-2-nitro-
1,3~-propanediol
Réaryctallized 3 times 151.12 355=-355 33,78 35.50 15,20 Compound Decomposes
(28.57)
33,90
(25.98)
35,71
36,46
36,68
2-Methyl-2-nitro-1,3-
propanediol
Recrystallized 4 times 135,12 352-35% 44,45 45,50 1747 422-426 6.91 6.84 2,19
45,11 6,94
46,95 6.67
2-Amino~-2-methyl-1,3-
propanediol
Recrystallized once 105,14 349353 53,87 53,22 16.03 380-381 5.89 5,87 1.62
52.57 5,85
Recrystallized 5 times 350-354 51.02 50.24 15,09 378=381 5.36 5.41 1.50
53,17 5,90
49.86 5,20
47,93 5.40
49,24 5.20
Sublimed 351-353 54.43 55.59 16.65 378-381 6.41 6.66 1.85
56.48 6.84
55.86 6.72
Sublimed twice 351-353 56,61 §7.31 17.17 383=385 6.73 6.80 1.87
564,51 6,63
58,80 7.05
Redetermination of unpurified
material 55,09 54,12
54,04
53.22

8/ Date collected in the lsborstories of Midwest Research Institute.
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4. Tetra-t-butylthiopentaerythritol: The sealed tube method
of Backer and Dykstra30/ gave 9.7 g. (46%) of tetra-t-butylthiopente-
erythritol, m.p. 115-116° (reported m.p., 123.6°)30/, from 39.3 g. (0.35
mole) of sodium t-butylmercaptote and 19.5 g. (0.05 mole) of penta-
erythrityl tetrabromide.

5. Pentaerythritol tetramethanesulfonate: When 9.5 g. (0.07
mole) of pentaerythritol was treated with 34.3 g. (0.30 mole) of methane-
sulfonyl chloride and pyridine by Buchmen's procedure,dY 17.6 g. (59%)
of pentaerythritol tetramethanesulfonate, m.p. 212-213° (reported m.p.
209-209.5°)31/ was obtained.

6. 2,2,3,3-Tetramethylbutane-1,4-diol (attempted):

a. By reduction of the acid: Lithium aluminum hydride
reductions§§/ of 2,2,3,3-tetremethylsuccinic acid were attempted in both
ether and tetrahydrofuran, but only the acid could be recovered.

b. Via the reduction of the ester or acid chloride: Con-
ventional procedures for the synthesis of the acid chloride or the ethyl
ester of 2,2,5,3-tetramethylsuccinic aeid, which would be more readily
reduced by 1lithium aluminum chloride than the free acid, gave only un-
changed acid.

7. [Detrakis(eminomethyl)methane monohydrate:

a. Tetrakis-ngtoluenesulfonamidomethyl)methane: When
50 g. (0.30 mole) of sodio-p-tolusnesulfonemide and 256 g. (0.07 mole) of
pentaerythrityl tetrabromide were heated according to the procedwres'of
Litherland and Mann,33/ 12.0 g. (85%) of impure tetrakis-(p-toluene-
sulfonamidomethyl)methane was obtained.

b. Tetrakis(aminomethyl)methane disulfate: Precipitatirn
of the hydrolysate of 12.0 g. (0.016 mole) tetrakis(p-toluenesulfonamido-
methyl)methane according to the procedure of Litherland and Mannéé/ with
sulfuric acid gave 2.7 g. (50%) of tetrakis(aminomethyl)methane disulfate.

c. Tetrakis(aminomethyl)methane monohydrate: Neutraliza-
tion of and recrystallization of 2.5 g. (0.0070 mole) of tetrakis(amino-
methyl)methane disulfate gave 0.5 g. (50%) of the monohydrate, m.p. 43-46°
(report 40-4l°).§é/ On exposure to air the crystals changed to a gum.

8l




8. Pentserythrityl tetranitrile and tetrathiocyanate (attempted):

a, Pentaerythrityl tetrabenzenesulfonate and tetra-p-
toluenesulfonate: When 65 g. (0.48 mole) of pentaerythritol was treated
with 375 g. (2.12 moles) of benzenesulfonyl chloride in the presence of
525 g. of pyridine and the product was recrystallized from dry ethanol,
50 g. of pentaerythrityl tetrabenzenesulfate, m.p. 102-103° (reported,
103°),§}/ was obtained. Pentaerythrityl tetra-p-toluenesulfonate was
similarly prepared.

b. When pentaerythrityl tetrabenzenesulfonate or tetra-p-
toluenesulfonate was heated with potassium cyanide or potassium thioceyanate
in diethylene glycol at 140° according to Buchman's procedure,51 only
ill-defined decomposition products could be isolated. At lower tempera-
ture, unchanged reactants were recovered.

F. Two-Component Systems

Samples for the qualitative determinations of two-component
mixtures were prepared by heating weighed materials in a sealed ampoule
at a temperature slightly above the melting point of the system. The
results for the system 2-hydroxymethyl-2-methyl-1l,3-propanediol and 2-
hydroxymethyl-2-ethyl-1,3-propanediol are summarized in Figure 6. A number
of two-component mixtures of two mesocrystalline substances selected from
Table 14 were also examined in a preliminary way, but no definitive results
were obtained. One of the substances, 2-hydroxymethyl-2-nitro-l,3-propane-
diol, which 1s known to decompose above its melting point, created suffi-
cient pressure in the sealed tube to rupture it.

G. Macro Studies of Crystallization

Into about 2.5 g. of each substance in a 150 x 15 mm. test tube
was inserted an uncalibrated 360° glass-mercury thermometer in such a way
that the substance covered the bulb of the thermometer. The test sample
was heated to 10-15°C asbove its fusion temperature in an oil bath equipped
with a magnetic stirrer, then allowed to cool at a rate determined by the
difference in room temperature and the bath temperature. For the substances
with transition temperatures of about 80°C, the difference between the bath
temperature and the sample temperature was about 4°C at the transition
For pentaerythritol it was about 12°C. Bath temperatures and sample tem-
peratures were recorded every 0.5 min. to determine the equilibrium tem-
perature for phase transition (plateau temperature) on cooling. The results
of experiments with various modes of nucleation are reported in Table 39.

(Text continued on p. 84.)
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TABLE 29

MACRC STUDIES OF CRYSTALLIZATIMS—f

Mirimum Temp., Plateau Qcoling Rate Tranglirie
Before Plateau  Temp. :f Path at RTAN
substance Mode of liucleation (°c) (°6) Plateau (°C/mir) [ &)
2-Hydroxymethyl-2-methyl- lione 78,5 81 1 £1
1,3-propanediol
2-¥ethyl~-2-nitro~1,3- None 72 75 1 g8
propanediol
Pentaerythritol lone 178 179 4 181-157
2-Amino-2-hydroxymethyl- lione 128,5 130.5 2.8
1.5~ propanedicl
Tuke Scratched et 129.5 130 2.5 131-1%2
2-Amino~-2-methyle-l,5= lone B8l - e TEHO
propatediol (recrystal- Lo Plateau
lized one)
1% Zinc Acetate 51 == -
No Plateau
1% Zinc Oxide 48,5 b/
No Plateau
Tube Scratched at 72 74 1
84 and 79
1% Zinc Oxide; tube 72 74 1

Scratched at 84
79 , and 74,5

a/ Data obtained in the laboratories of Midwest Research Institute.
E/ When the tube was scratched at 48,5°, the new phase formed immediately and the
temperature rose to 72°.

83




H. Micro Studies of Crystallization

Senples of 5-10 mg. of four substances were examined in a series
of supercoolling studies using the differential scanning calorimeter attach-
ment of the differential thermal analyzer. The samples, with and without
micleating agents, were heated at a specified rate to 20° above the transi-
tion tempereture, held at T 5° of that temperature for 10 min., then cooled
at a gpecified rate untlil an exotherm indicated that transition had occurred
to form the phase stable at the lower temperature. BExcept where otherwise
specified, sealed coated aluminum pans were used in the experiments. The
regults are summarized in Tables 40-43.

VII. GENERAL REFERENCES ON PLASTIC CRYSTALS

J. G. Aston, "Plastic Crystals," in Physics and Chemistry of the Organic
Solid State, D. Fox, M. M. Labes, and A. Weissberger, Eds., Inter-
science, New York, 1963.

E. F. Westrum, Jr., and J. P. McCullough, "Thermodynamics of Crystal,"
in Physics and Chemistry of the Organic Solid State, D. Fox, M. M. Labes,
and A. Weissberger, Eds., Interscience, New York, 1963,

A. R. Ubbelohde, "Melting and Crystal Structure,” Clarendon Press, Oxford,
19653 Chapter 43 Solid-solid transitions related to fusion.

J. Timmerman, "Plastic Crystals: A Historical Review," Phys. Chem. Solids,
18, 1 (1961). This review is the introductory lecture to a symposium
‘on "Plastic Crystals and Rotation in the Solid State," published on pages
1 to 92 of the same journal issue.

L. A. X. Staveley, "Phase Transitions in Plastic Crystals," Ann. Rev. Phys..
Chem., 13, 351 (1962).

A. R. Ubbelohde, "Melting and Crysfal Structure--Some Current Problems,"
Angew. Chem. Internat. Ed., 4, 587 (1965).

E. F. Westrum, Jr., "Calorimetric Contributions to the Study of Molecular
Freedom and Transformations in the Solid State," J. Chem. Phys, 63, 46
(19686). b

(Text continued on p. 89.)
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TABLE 43

MICRO STUDIES OF THE NUCLEATION OF THE SOLID/SOLIQ-PHASE CHANGE
OF 2-AMINO-2~METHYL-1,3-PROPANEDIOLY/

Heating Cooling Temperature Differcnce
Rate Rate Botwoen Onset of Trancition
conditions sampled/ (°¢/min)  (°¢/min) and Crystallization (°¢)
Unnueleated A 9.0 9.0 > 50
B 9.0 9.0 > 80
B 9.0 9.0 > 50b/
B 9.0 9.0 > 50b/
C 9.0 9.0 > 50
Nucleated with 2-amino-2-hydroxymethyl-
1,3-propanediol A 9.0 9.0 > &C
(trace, ground in mortar) B 9.0 9.0 > 50
Nucleated with ZnOp ¢ 9.0 9.0 > B0
(trace, pigment grade)
Nucleated with Lexan polycarbonate ¢ 9.0 9.0 > 50
(trace, ground in mortar)
In uncoated aluminum pan ¢ 9.0 9.0 > 50
Nuecleated with TiOe ¢ 9.0 9.0 > B0
(trace, pigment grade)
Nucleated with copper metal ¢ 9.0 9.0 > 50
(trace, very fine powder)
In an etched metal pan A g.0 9.0 > 50
Nucleated with pentaerythritol A 9.0 g.0 > 50
(trace, ground in mortar) ¢ 9.0 9.0 > 50
C 9.0 9.0 > 50
Nucleated with silica gel A 9.0 9.0 > 50
(~ 10%, ground in mortar) A 9.0 9.0 > 50
Nucleated with alumina c 14.4 13.2 > 50
(~ 10%, ground in mortar) c 14.4 13.2 > 502/
Nucleated with asbestine c 14.4 13.2 > 50
(~ 10%, pigment grade)
Nucleated with baryties C 9.0 9.0 > 50
(~ 10%, pigment grade)
Nucleated with titanium oxide chelate c 9.0 9.0 > 50

(~ 10%, ground in mortar)

e

five recrystallizations.

<
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Data collected in the laboratories of Midwest Research Institute.
Sample A - Unrecrystallized material; Sample B - After one recrystallization; Sample C - After

Upon recycling the sample, an exotherm was observed during the heating cycle.




A. R. Ubbelohde, "Thermodynemics and Structural Aspects of Phase Transi-
tions That Are Wholly or Partly Continuous," J. Chem. Phys., 63, 33 (1966).
This and the preceding reference are a part of a symposium on » Motions
and Phase Changes in Molecular Solids, which is printed in its entlrety
in the journal issue.

I. Darman and C. Brot, "The Orientational Freedom of Molecular Crystals,"
Molecular Crystals, 2, 301 (1967). C. P. Smith, "Dielectric Behavior
and Structure," McGraw-Hill, New York, 1355. Chapter V, The Dielectric
Constants and Losses in Solids,

VIITI, CONCLUSIONS

During the research period covered by this report, considerable
data have been accumulated that support the original proposal that the
target requirements for passive thermal control may be achieved through
the use of solid/solid-phase change materials. In the screening proce-
dure for commercially available materials, 33 substances were found that
had previously unreported solid/solid transitions, and five of these sub-
stances had transition enthalpies greater than 45 cal/g although not all
five of these substances exhibited transition within the target tempera-
ture range. Relevent data for these five substances is summarized in
Table 44.

Through a consideration of the mechanism of solid/solid phase
changes and a consideration of qualitative and gquantitative data for
substances with mesocrystalline phases, predictions can be made for
candidate structures that may meet the specified criteria. These com-
pounds, in particular, include various functional derivatives with the
tetrahedral structure.

None of the presently available theoretical or experimental
data precludes the achieving of target properties in SOlld/SOlld transi-
tions. A number of substances have transition enthalpies greater than
56 cal/g; a number of substances exhibit transitions in the 270-370°K
range. The problem remains to find substances that exhibit the required
combination of these two properties. Available data indicate that
density requirements and supercooling limitations should be readily met.
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