General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Earth Models Consistent with Geophysical Data

Frank Press

Department of Earth and Planetary Sciences Massachusetts Inslitute of Technology

Cambridge, Mass. U.S.A.

ABSTRAC'T

A suite of the most recently available geophysical data are iriverted by an improved Monte Carlo procedure. The data are de-, rived from surface waves for oceanic paths, eigenvibrations of the earth, elastic wave travel time and $d t / \lambda \Delta$ data, mass and moment of inertia of the earth. A low velocity zone is required for the suboceanic mantle as is a high density lithosphere. The high density is related to eclogite fractionation from the underlying, partially molten asthenosphere in a process involving the creation and spreading of the lithosphere. If the asthenosphere is pyrolite or peridotite then an increase of mean atomic weight across the transition zone seems required. Fairborn's new $d t / d \Delta$ data for the lower mantle seem to show a higher shear velocity gradient than previously supposed. If correct, a compensatory lower density gradient is required. This may indicate a depletion of iron with depth in the lower mantle. The density at the top of the core is surprisingly well constrained to the range 9. $3-10.2 \mathrm{gm} / \mathrm{cc}$, a value appropriate for a mixture of iron and about 15 wt \% silicon.

I. Introduction

A major goal of geophysics is to uniquely specify the distribution of two elastic velocities and density with depth in the earth and to relate these distributions to variations in composition, phase, and temperature in the interior. Impediments which block these achievements are many. It has not been proved in the mathematical sense that a unique sollition can be obtained, although BACKUS and GILBERT (1968) have shown that under certain circumstances stable weighted averages (over depth) can be calculated. Furthermore, the data set available for recovering earth structure is incomplete and imprecise. Finally the equations of state available for interpreting elasticity and density distributions in terms of composition, state, etc.are tentative ones based on uncertain theories and assumptions and limited laboratory data.

Despite these difficulties it may be possible even with the presently available data to make some meaningful statements about the interior. In this paper we explore this possibility using the most recent and best available data in a Monte Carlo inversion procedure. Our results and conclusions supersede those presented in earlier papers (PRESS, 1968 a \& b) because we are able to fit models to new, more extensive and accurate data with greater speed and better precision.

II. Method

The Monte Carlo method uses random selection to generate large. numbers of models in a computer, subjecting each model to a test against geophysical data. Only those models are retained whose properties fit the data within a prescribed tolerance. The pro-. cedure offers the advantage that successful models are found wj.thout bias, preconceived ideas or uncertain assumptions of equations of state or composition. If the program is efficient so that a
very large number of models are examined, the retained models can be considered as representative of the family of successful models which fit the data. When the successiul models fall in a narrow band, geophysically meaningful conclusions can often be reached daspite our inability to specify a single unique model. Under certain conditions (BACKUS and GILBERT 1968) a single succ.essful model can provide unique, local averages of density or velocity.

We have modified the Monte Carlo procedure reported last year (PRESS, 1968 a) speeding up the process by 1-2 orders of magnitude. This improved efficiency enabled us to find a larger number of successful models fitting a more extensive suite of data with better precision. The flow diagram of the currently used system (fig. l) is printed with each run of the program and provides diagnostics so that controlling constants can be set for maximum efficiency. The figure shows the diagnostics following a run of 3347 seconds on an IBM 360-65 computer which yielded 11 successful models at a cost of about $\$ 10$ per successful model. SLMD is the random selection procedure for compressional velocity (alpha), shear velocity (beta) and density (rho). TTT is a test of the model against observed travel times using BULLEN'S (1961) method in which the earth is treated as a multilayered sphere, the velocity varying according to a power law within each layer. VKPR uses a table of variational parameters (WIGGINS 1968) stored permanently in a data cell of the computer to test the perturbation of the eigenperiods due to velocity, density or core radius perturbations. This test is made after the selection of density and velocity models, the latter in order to eliminate early in the process those models which cannot be brought into agreement with eigenperiod data by density perturbations. MASMOM tests each density model against mass and moment of inertia of the earth. The flow diagram shows branching
according as the several tests are passed or failed. Each box shows the number of times the corresponding step was repeated, the average time and total time for each step and the percentage of model passing. Thus the time distribution over the various components of the program is available for adjustment of input constants for maximum efficiency and insight is provided as to how the various geophysical constraints figure in the elimination of models. A key requirement of the Monte Carlo method is that the selection procedure produce an unbiased, representative suite of models for examination. Figures 2, 3, and 4 show a run in which 25 models were generated, bypassing tests against geophysical data. It is seen that the velocity and density space between the permissible bounds is nearly uniformly filled. Since millions of earth models were generated and examined in this study it would be surprising if continued operation of the program would produce a successful model significantly different from those presented later in this paper. Some additional features of the program and procedures used are as follows:

1. The earth is assumed to be spherically symmetrical and isotropic, with an oceanic crust-upper mantle structure. The radius of the core is selected randomly for each model in the range 3473
2. Although α, β, ρ could be varied at 88 points in the earth, we chose the time saving device of rardomly varying 19 points, (see fig. 5, section D for their location) obtaining the remaining values by linear interpolations.
3. The fluid core was assumed to be adiabatic. The density selection procedure for the mantle below 1000 km eliminated models with extreme density gradients. The gradients in α, β, ρ were restricted to a maximum number of reversals in sign (typically 2 or 4) to restrict the complexity of models. 4. The rigidity for the inner core only affects the mode ${ }_{0} \dot{S}_{2}$. Although zero rigidity was assumed in this paper, the
systematic, negative residuals for ${ }_{0} S_{2}$ found in our models will be used to infer a rigidity for the inner core.
4. Several exact calculations of eigenperiods were made to chesk the accuracy of the variational parameter method. The differences were small and well within the uncertainty of the data.

III. The Data

Successful models were required to fit the following data: 1. Earth mass, $M=5.976 \times 10^{27}$ grams; dimensionless moment of inertia $\mathrm{I} / \mathrm{Ma}^{2}=.3308$
2. Compressional velocity distribution in the mantle fixed very close to the models determined by JOHNSON (1969) and FATRBORN (1969), based on $d t / d A$ analyses of array data. P and PcP travel times fit the latest data (HERRIN et al. 1968) to ± 1 sec. The compressional velocity distribution in the core was fixed to the recent model of HUSEBYE and TOKSOZ (1969).
3. Shear velocities below 800 km were restricted to lie with. in the narrow bounds reported by FAIRBORN (1969) who used Monte Carlo methods to interpret travel time and $d t / d \Delta$ data obtained from :he Large Aperture Seismic Array (LASA). Wider bounds were used above 800 km . Travel times of S and $S c S$ were required to fit FAIRBORN'S data to within $\pm 5 \mathrm{sec}$ at 10 distances between 25° and 100° and a single failure was sufficient to reject a model. These travel time data primarily constrain the mantle below 800

4 Eigenperiods tested were $0^{S_{0}} 0_{0} S_{2}$ through $0_{0} S_{22^{\prime}} 1_{1} S_{1} 1_{1} S_{3}$
 were $o^{T} 3^{-} o^{T} 1^{\prime} c^{T} 2_{2}$ not being used because of its uncertain value; models were also required to fit surface wave phase velocities for predominantly oceanic paths as follows: Rayleigh waves in the pericd range 125-325 seconds (BEN-MENAHEM, 1965); Love waves in the period range $80-340$ seconds (TOKSOZ and ANDERSON, 1966). We used the eigenperiod data as reviewed and summarized by DERR (1969)
texcept as follows: $\mathrm{o}_{2}-3229.0$ seconds, $\mathrm{o}_{11}-537.5$ seconds. The uncertainty in the eigenperiod and dispersion data was taken to be $\pm 0.4 \%$ due to asphericity, rotational splitting and experimental errors (DAHLEN 1968). An error analysis of the oceanic surface wave data indicates than an accuracy better than 1% was achieved. Comparison with phase velocities for other oceanic paths verified this for Love and'Rayleigh waves. The fit of $o_{0} S_{0}$ was required to be within $\pm 0.1 \%$. Actually the final models fit most of the data to about half these tolerances. Figure 5 shows the computed eigenperiods and the residuals for a typical model.

IV. Results

The results reported here supersede our earlier conclusions (PRESS 1968) because of the new and more extensive data set inverted in this paper. The effects of lateral variation were reduced by deriving higher mode data from oceanic surface wave phase velocities. Moreover the new procedure enabled us to find a much larger number of successful models and therefore a more representative selection from the set of successful models.

The shear velocity and density distribution are plotted in figs. 6,7, and 8 and are also tabulated (together with the fixed compressional velocity distribution) in figs. 9-13.

V. The Upper Mantle Under Oceans

Without exception every successful model cuntains a low velocity zone for shear waves which centers at depths between 150 and 250 km . If the lid of this zone is characterized by $\beta>4.5 \mathrm{~km} / \mathrm{sec}$, then its thickness is $50-100 \mathrm{~km}$. We failed to find a single model without a low velocity zone despite a special search in which 162,000 monotonic shear velocity models were examined. A low velocity zone seems required by our data since essentially every possible model. without it was examined and eliminated. Nevertheless, HADDON and BULLEN (1969) reported a successful monotonic model. probably because: (1) they only use modes through $n=44$, whereas our data go to $\mathrm{n}=105$; (2) our Love wave phase velocities trend towards lower values than the HB data (see fig. 14).
partial (grain boundary) melting for the following reasons: (1) shear velocity and Q are sensitive to the presence of small amounts of melt along grain boundaries; (2) data presented at this conference by several investigators show that the temperature at which melting begins in the wet state for candidate upper mantle mineral assemblages is sufficiently low to be reached by the geotherm for most thermal models of the earth; (3) the partial melting product of candidate mineral assemblages can account for basaltic vulcanism; (4) a partially molten, low strength zone would serve to mechanically decouple the lithosphere from the underlying mantle as is required by some proposed mechanisms for the spreading sea floor.

The density values shown in figs. 7 and 15 fill the entire permissible range at the M-discontinuity indicating a lack of constraint by the geophysical data. However, the initial density gradisnts are all positive and in the vicinity of 100 km all the values fall in the narrow band $3.5-3.6 \mathrm{gm} / \mathrm{cm}^{3}$ in the upper part of the permissible range. As a check on this result a special search was made without success to find models with densities below $3.4 \mathrm{gm} / \mathrm{cm}^{3}$ in this depth range. For additional confirmation of this result we applied the BACKUS and GILBERT (1968) δ-ness criterion using weighting functions computed for our data by WIGGINS (1969). According to Backus and Gil.bert, if the weighting functions are concentrated over narrow depth intervals, a stable local average can be obtained from a single model. Using this procedure every one of the models yielded an average density in the range $3.5-3.6 \mathrm{~g} / \mathrm{cm}^{3}$ for the depth interval $75-125 \mathrm{~km}$. Presumably the average density near 100 km is uniquely determined in the sonse that any model computed fron our data set should give the same value.

Unfortunately the density resolution deteriorates below 100 km as can be seen by the wider band of Monte Carlo snlutions. At

300 km the resolving length inferred from the $\mathcal{\delta}$-ness criterion is 200 km . One might argue on physical yrounds that the lower density solutions should be favored below 150 km because of the low shear velocities. This implies a density reversal from the lithosphere to the asthenosphere $\left(3.5-3.6 \mathrm{gm} / \mathrm{cm}^{3}\right.$ at 100 km to $3.3-3.5 \mathrm{gm} / \mathrm{cm}^{3}$ at 300 km).

More complex models were found involving two low velocity or two low density zones in the upper mantle. However, these models yield the same indication of high density near 100 km .

The indicated density for the lithosphere near 100 km is so high as to narrow the range of its possible composition to an eclogitic facies. This follows if the selection is made from the current petrologic hypotheses for the constitution of the upper mantle. In fig. 15 densities computed by CLARK and RINGWOOD (1964) for a mantle composed of pyrolite (peridotite or dunite would give about the same values) and eclogite. Only the eclogite model is consistent with our results between 80 and 150 km . Either model is acceptable above this region and the pyrolite model is weakly favored near 300 km . A more extended discussion of these results can be found in another paper (PRESS 1969) where a hypothesis is proposed in which eclogite fractionation from the underlying, partially molten asthenosphere is involved in the creation and spreading of the sub-oceanic, rigid, lithospheric plate. BIRCH (1969) also interpreted these results to imply an eclogitic composition.

VI. The Transition Zone

Seismic array data have been used recently to establish rapid velocity changes near 400 and 700 km (see for example JOHNSON, 1967). These results have been incorporated in our models by fixing the compressional velocity and narrowing the range of peri:issible shear velocities at these depths to conform to the rapid increases, as seen in fig. 6. Although no such restrictions were placed on
the density values the rapid increase in density across the transition zone is evident on all models in fig. 7. This increase is due to compression, and to phase changes and possibly to composition changes. Phase transitions are/ $\frac{1}{1}$ 戳erred from the laboratory verification of the olivine-spinel phase change at pressures corresponding to depths near 400 km and by the theoretical and experimental indications for a post-spinel phase transformation. (See for example, D.L. ANDERSON (1967) or H. FUJISAWA (1968)).

The occurrence of composition changes in the transition zone are more difficult to establish. BIRCH (1961) used the velocity change $\Delta \alpha$, and the density change $\Delta \rho$ to separately estimate the effects of phase and composition change. Using $\Delta \alpha$ and $\Delta \rho$ values for each model between 333 and 871 km , allowing $.36 \mathrm{gm} / \mathrm{cc}$ for compression and using Birch's values for $(\partial \alpha / \partial \rho)_{m}$, $(\partial \rho / \partial m)_{T, p,}(d x / \partial m)_{\rho}$, the change in mean atomic weight Δm waz computed across the transition zone for each model. Those modals with reduced densities in the asthenosphere ($\rho<3.4 \mathrm{gm} / \mathrm{cc}$) showed an increase of 1-2 units in m. Thus for an asthenssphere with $m \sim 21$, and $\mathrm{Fe} / \mathrm{Fe}+\mathrm{Mg} \sim 0.1$, as would be the case for peridotite or pyrolote, the $\mathrm{Fe} / \mathrm{Fe}+\mathrm{Mg}$ ratio would increase to 0.2 or 0.3 across the transition zone. On the other hand, no increase in m was found for those models with a high density asthenosphere i $\beta>3.5 \mathrm{gm} / \mathrm{cc}$). If the entire upper mantle is closer to eclogite in its iron content no increase in the $\mathrm{Fe} / \mathrm{Fe}+\mathrm{Mg}$ ratio seems to be required across the transition zone. In a recent paper D.L. ANDERSON (1968) proposed that $\Delta m \sim 1.5$ and BIRCH (1961) gave $\Delta m \sim 1.0$ for one model.
VII. The Lower Mantle

Our results for the lower mantle rest heavily on Fairborn's' independent determinations of a band of shear velocicy distributions consistent with dt/dS and travel time data obtained at LASA. The range of shear velocities permitted by Fairborn's results is quite
narrow, as can be seem in fig. 6. This enables us to use eigenperiod data to constrain the density in the lower mantle to a greater degree than was possible before. Fairborn's shear velocity envelope shows a higher gradient than has usually been assumed (e.g. when compared to the Gutenberg model) and this requires a compensatory reduction in the density gradient in order to fit the spheroidal eigenperiod data. The results are shown in figs. 6 and 7. The density is constrained surprisingly well, to within about $0.2 \mathrm{gm} / \mathrm{cc}$ for most of the lower mantle. The density gradient is less than the adiabatic gradient as can be seen by comparison with the lower bound which approximates an adiabatic gradient. Figure 16 shows our band of solutions plotted against D.L. ANDERSON'S (1968) theoretical calculations for density of the sulid solution series forsterite-fayalite and his summary of shock wave data. The band of density solutions is discordant with respect to profiles of constant composition, suggesting a change of mean atomic weight from 22-23 at the top of the lower mantle to 20-22 at the bottom of the mantle. This implies a depletion of iron with depth with the $\mathrm{Fe} / \mathrm{Fe}+\mathrm{Mg}$ ratio going from 0.2-0.3 to 0.1-0.2. Although superadiabatic temperature gradients might also account for the smaller density gradient, the augmented shear velocity gradient argues against this.

This can also be seen in figure 17 where the bulk sound velocity and density Whues for each model are plotted. The figure also shows the shock wave values for Twin Sisters dunite ($\mathrm{m}=20.9$) and hortonolite dunite ($\mathrm{m}=25.1$), as reduced by AHRENS, ANDERSON and RINGWOOD (1969). Although the data are scanty, a reduction in mean atomic weight from 22-23 at 871 km to 20-21 at 2898 km is indicated. The discordance with lines of constant composition seems too large to be accounted for by superadiabatic temperature gradients. WANG (1969) also suggested that these data might indicate decreasing m in the lower mantle. If subsequent studies do not establish Fairborn's shear velocity distribution as a world wide phenomenon, this conclusion will
have to be changed.
VIII. The Mantle

The c- ρ graph illustrates the main features of the mantle discussed earlier. The olivine-spinel phase transformation is evidenced between 371 km and 421 km by models with increasing c and ρ. Between 421 km and 621 km models with large increases in ρ and with little change in could be interpreted as the result of compression and increasing iron content, the two effects having the same sign for ρ and opposite signs for c. The increase in c and ρ between 621 km and 721 km implies a phase change as the major feature. Decomposition C_{i} the ferro-mag-nesium-alumininum silicate to close packed simple oxides, or transformations to structures such as ilmenite or perovskite have been suggested for this region(BIRCH 1952 , D.L. ANDERSON 1967 , RINGWOOD 1969).

The distributions for ϕ and k / μ in the mantle are given in figs. 18 and 19.
XI. The Core

Results for the core are shown in figs. 8 and 20. The assumption of adiabaticity in the fluid core and the constraints imposed by the data prescribe the densities to the surprisingly small range of .25 gri/cc. The δ-ness criterion also indicates high resolving power for density at the top of the core. Using the shock wave data of MCQUEEN and MARSH (1966) and BALCHAN and COWAN (1966) we see that iron alloyed with a miscible, abundant element such as silicon ($15 \mathrm{wt} \%$) would account for the core densities. There is no control on the density in the inner core with the data used here. Changes in the cora sadius ranged from -3 km to +10 km .

The requirement for finite rigidity of the inner core was cvidenced in an interasting way. Our procedure neglects core
rigidity and the only mode affected by this assumption, o_{2} showed negative residuais for every model. Using ALSOP'S (1963) correction for rigidity resulted in a reduction of the residuals. for ${ }_{0} S_{2}$, the largest discrepancy being . 15\%. This agrees with D.L. ANDERSON'S conclusions concerniny rigidity in the inner core (1969).

X. Discussion

The question of uniqueness arises in all discussions of internal earth structure. The Backus-Gilbert δ-ness criterion demonstrates how stable local averages can be computed for α, β and ρ using eigenperiod data. However with currently available data the resolving power is adequate at too few places in the earth. Also the procedure does not yet allow for travel time or dif/ad data which under certain circumstances have high resolving power, nor does it consider errors in data. The band of solutions provided by the Monte Carlo method,if sufficiently narrow and if derived without bias from a large and representative selection of models, can under certain circumstances lead to meaningful conclusions. Unfortunately one is never quite sure that continued search would not reveal models significantly different from those already found, vitiating the conclusions. The use of physical arguments, lavuratory experiments, theoreticalempirical equations of state will eventually provide powerful constraints. However the poor state of knowledge of the behavior of materials at internal earth pressures and temperatures, Lhough improving rapidly, is a severe, current limitation.

With regard to the present paper and the other studies cited, we believe the following results are firm if the assumptions and data are correct:

1. The low velocity zone for shear waves in the sub-oceanic upper mantle. The parameterization included sufficiently few elements so that all possible modeis without a low velocity zone
'could be tested and eliminated.
2. The high density for the lithosphere near 100 km . The δ-ness criterion has high resolving power for density at this depth and the narrow spread of Monte Carlo solutions indicate that errors in surface wave data of about 10% do not weaken the constraint. As mentioned earlier, we believe this accuracy was achieved.
3. The rapid velocity increase near 400 km and its association with the olivine-spinel transformation: directly obtainable from $d t / d \Delta$ data (with minor depth uncertainty); the phase transformation was experimentally verified in the laboratory and olivine is almost certainly a major constituent of the upper mantle.
4. The rapid velocity increase near 700 km : directly obtainable from dt/d Δ data (with some depth uncertainty).
5. The density at the top of the core is between 9.9 and $10.2 \mathrm{gm} / \mathrm{cc}$. The δ-ness criterion shows high resolving power and the spread of Monte Carlo solutions is small.
XI. Acknowledgements

Joel Karnofsky was an invaluable research assistant in this project. R.A. Wiggins kindly made his δ-ness weighting functions available in advance of publication. D.L. Anderson, F. Birch, C. Wang, J. Fairborn, K.E. Bullen, J.Derr, M.N. Toksठzz , made manuscripts available in advance of publication. A grant from the Australian National University made it possible for me to participate in this Symposium. The technique was developed as part of an inversion procedure for lunar data with support from the National Aeronautics and Space Administration under grant NGR 22-009-123. The application to the earth was supported by the Advanced Projects Research Agency and monitored by the Air Force Office of Scient. fic Research under contract AF 49 (638) -1632.

Figures

Figure 1 - Flow diagram of Monte Carlo program during a run in which 531, 881 density models and 5025 shear velocity models were tested and yielded 11 successful models. Figure 2 - Twenty-five shear velocity models of the mantle not subjected to geophysical constraints to test distribution of randomly generated models.

Figure 3 - Unconstrained mantle densities (see Figure 2 caption). Figure 4 - Unconstrained core densities (see Figure 2 caption). Figure 5 - Results for a typical model. Section A line l: mass and moment of inertia; lines 2-4: p, Δ, theoretical times, model times and residuals for S and ScS. Section B : model eigenperiods and residuals against observed eigenperiods. Section C: model printout. Section D: depths at which parameters were varied and corresponding $\$$ values. Figure 6 - Twenty-seven successful shear velocity models for the mantle. Ticks on upper and lower bounds show where parameter was randomly varied. Figure 7 - Density in the mantle (see Figure 6 caption). Figure 8 - Density in the core (see Figure 6 caption). Figure 9 - Tabulated parameters of successful models. Change in core radius shown in lower right corner. Each model has fixed crustal layers for depth, alpha, beta and rho as follows: $0 ., 1.52,0.1 .03 ; 3 ., 6.55,3.73,2.84 ; 10,6.55,3.73,2.84$. F'ıgure 10 - See Figure y

Figure 11 - See Figure 9
Figure 12 - See Figure 9

Figure 13 - Sec Figure 9.
Figure 14 -. Differences in Love wave phase velocity data used by Hadden and Bullen and by Press which accounts for latter's requirement of low velocity zone. Points show how models fit the data.

Figure 15 - Successful density models for the upper mantle plotted together with Clark and Ringwood models for pyrolite and eclogite.

Figure 16 - D. L. Anderson's theoretical models and his summary of experimental data plotted with our density solutions shown by the shaded band.

Figure 17 - Bulk sound velocity-density plot for successful models of the mantle together with static and shock wave data for dunite and forsterite-fayalite.

Figure 18 - Seismic parameter ϕ for the mantle obtained from successful models.

Figure 19 - Ratio K / μ for the mantle obtained from successful models.

Figure 20 - Band of core densities from successful models together with shock wave density data for Fe, Ni and $\mathrm{Fe}+$ 19.8 wt.\% Si.

REFERENCES

AHRENS, T.J., D. L. ANDERSON and A. E. RINGWOOD (1969), in press. ALSOP, L. E. (1963), Bull. Seismol. Soc. Am., 53, 503.

ANDERSON, D. L. (1967), Science, 157, 1165.
ANDERSON, D. L. (1968), Earth and Planet. Sci. Let., 5, 89.
ANDERSON, D. L. (1969), this volume.
BACKUS, G., and F. GILBERT (1968), Geophys. J., 16, 169.
BALCHAN, A.S., and G.R. COWAN (1966), J. Geophys. Res., 71, 3577.
BEN-MENAHEM, A. (1965), J. Geophys. Res., 70, 4641.
BIRCH, F. (1952), J. Geophys. Res., 57, 227.
BIRCH, F. (1961), Geophys, J., 4, 295.
BIRCH, F. (1969), this volume.
BULLEN, K.E. (1961), Geophys. J., 4, 93.
CLARK, S. P., and A. E. RINGW OOD (1964), Rev. Geophys., 2, 35.
DAHLEN, F.A. (1968), Geophys. J., 16, 329.
DERR, J. (1969), in press, Bull. Seismol. Soc. Am.
FAIR BOR N, J.W. (1969), in press, Bull. Seismol. Soc. Am.
FUJISAWA, H. (1.968), J. Geophys. Res., 73, 3281.
HADDON, R.A.W. and K. E. BULLEN (1969), in press.
HERRIN, E., W. TUCKER, J. TAGGART, D.W. GORDON, and J. L. LOBDELL (1968), Bull. Scismol. Soc. Am., 58, 1273.

HUSEBYE, E.S. and M. N. TOK:OZ (1969), in press, J. Geophys. Res.
JOHNSSON, L. R. (1967), J. Geophys. Res., 72, 6309.
JOHNSON, L. R. (1969), in press.

McQUEEN, R. G. and S. P. MARSH (1966), J. Geophys. Res., 71, 1751. PRESS, F. (1968a), J. Geophys. Res., 73, 5223.

PRESS, F. (1968b), Science, 160, 1218.
PRESS, F. (1969), in press, Science.
RINGWOOD, A.E. (1969), this volume.
TOKSOZ, M. N. and D. L. ANDERSON (1966), J. Geophys. Res., 71, 1649.
WANG, C. (1969), in press, J. Geophys. Res.
WIGGINS, R.A. (1968), Phys. Earth Planetary Interiors, 1, 201.
WIGGINS, R.A. (1969), in preparation.

$K M / S E C$

17.	8.0 万万	4.7 Tत	9． 363	35.7	1.59	त． 251
71.	9． 160	4．558	3.577	38.9	1.87	0.273
146.	7.760	4.479	3.559	34.1	1.74	n．${ }^{\text {aro }}$
2？1．	8.470	4.151	3.580	4R．8	2.83	n．34？
295．	－．न¢	4．704	3.373	45.5	7.15	กัว วกั
371.	8.687	4.779	3.392	45.0	1.78	0.794
431．	9．$\overline{67}$－	5．त亏万	3.767	59.5	5.33	ก．312
621.	10.000	5.740	3.849	56.1	1.70	n． 754
771.	10.970	5.930	4.471	73.5	2.00	0.704
871.	11.210	6.953	4.607	73.5	1．8R	0.774
1371.	13．${ }^{\text {a }}$	6．545	4.7 ¢ワ	\％7．4	5.04	त－う枵
2171.	13.030	7.025	5.097	104.0	2.11	0.205
2包行．	13.770	7． 317	5.738	177．1	5.15	ก．うดั
2R9R．	7.960	0.0	11.155			
3471.	9．00n	0.7	11.075			
3871.	9.600	0.9	11.501			
$51 \overline{1}$	10．150	0.7	$17.37 \overline{3}$			
5118.	11.150	n．r	17.483			
6371.	11．10̄	0.0	$17.47 \overline{1}$			
10.	8.000	4．55？	3.514	36.4	1.76	0.261
71.	$8.16 n$	4.536	3.659	39.2	1．9n	0． 276
14\％．	7． $7 \overline{6} \bar{C}$	4． 3 万 $\overline{7}$	3.598	35.2	1.89	の．ラ74
2？1．	8.470	4.377	3.572	46.2	？． 41	n． 318
「話．	－． 5 ¢ $\overline{0}$	4.413	$3.37 \overline{3}$	47.7	$\underline{2.45}$	त．37n
371.	8.690	4.840	3.477	44.1	1.98	0.774
421.	9.670	5.318	3.6814	55.9	1.97	n． 293
621.	10．00n	5.515	4.041	59.4	1.05	0.791
$7{ }^{\text {¢ }} 1$.	$10.97 \bar{\square}$	5.933	$4.30 \overline{8}$	73.4	2． $\bar{\square} \overline{9}$	
R71．	11．？10	6．？63	4.470	73.4	1.87	0.273
1371.	12.020	6.587	4.718	9 $\overline{5} .5$	う．ก̄？	0.285
7171.	13.030	7．n49	5.086	103.5	？．09	0.293
2898.	13.770	7.343	5.341	117.7	2.18	0.301
2898.	7.960	$n .9$	19．197			
3471.	$9.00 \overline{0}$	0.0	$11.77{ }^{-1}$			
3871.	9.600	ก． 9	11.476			
517 ．	10．150	0.0	12．251			
5118.	11.150	0.0	12.449			
6371.	11.190	0.0	12.300			
10.	8.000	4.607^{-}	3.589	35.9	1.60	0.75 \％
71.	8.160	4.557	3.542	39.9	1.87	－． 772
146	$7.76{ }^{-1}$	4.316	3.513	35.4	1．90	$\bigcirc .275$
2？1．	R．470	4.407	3.515	45.9	2.37	0.31 .5
296.	8.580	4.451	3.583	47.2	2.38	0.316
371.	8.680	4.572	3.274	49.1	7.35	n． 314
471．	9.57π	5.253	3.795	56.7	5.56	べうの1
671.	10．0n	5.660	3.769	57.3	1.70	$0 . ? 64$
721．	10.970	5.891	4.484	74.1	3.13	す．うず
871.	11.710	6.303	4.644	74.4	1.03	0.777
1371.	17．0？	6． 509	4．8त7	96.4	1.90	0.784
2171.	13.030	7.047	5． 051	103.6	2.00	0.293
2898.	13.779	\cdots ソ为	$5.71{ }^{-1}$	［8．9	2． 24	万。言可
2898.	7． 960	n．0	19.041			
3471 ．	9．0तत	0.7	10.996			
3071.	9.600	0.0	11.450	4.28		－－－
5118.	10.150	7．0	17.47 h			
5119.	11.150	0.1	12.578			
63710	71.190^{-}	5.0	［5．853			

C (KM/SEC)

1112
DENSITY G/CC

