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ABSTRACT 

The path of an earth satellite is smooth enough so that measure- 

ment of the altitude, the distance from the satellite to the earth's 

surface, can provide information about undulations in this surface. 

Since the mean surface of the ocean coincides approximately with the 

equipotential surface of gravity known as the geoid, satellite altimetry 

can provide information about the shape of the geoid. 

This thesis studies the deterministic problem of combining satel- 

lite altimetry observations over ocean areas with surface gravimetry 

over land to determine the geoid and the gravity potential. By exami- 

ning the existence and uniqueness of solutions to the equivalent math- 

ematical problem, a mixed boundary value problem in potential theory 

for which a general solution method is not yet available, conditions 

for the validity of a Neumann series method of successive approxima- 

tions are established using both analytical and numerical techniques. 

When altimetry data are weighted more heavily than gravimetry data, 

sufficient conditions are given for establishing, analytically, the 

validity of the method. When the altimetry and gravimetry data are 

weighted more evenly, a computer calculation demonstrates the validity 

of the method for a distribution of altimetry and gravimetry like that 
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of the earth's ocean-land distribution. Numerical studies then illus- 

trate the determination of spherical harmonic representations of the 

gravity field from altimetry and gravimetry data generated by standard 

sets of harmonic coefficients that agree closely with the standard sets. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Discussion - 
The path of a satellite in earth orbit is smooth enough so that 

measurement of the altitude, the distance from the satellite to the 

earth's surface, can provide information about undulations in this 

surface. Since the mean surface of the ocean coincides approximately 

with the equipotential surface of gravity known as the geoid, satellite 

altimetry can provide information about the shape of the geoid. This 

thesis is devoted to a technique for combining satellite altimetry 

observations over the oceans with surface gravimetry over the land to 

improve the knowledge of the geoid and the gravity potential. 

This introductory chapter provides some basic information on the 

two fields involved, which are satellite altimetry and geodesy, and 

the formulation of the problem which is solved here. In order to reach 

a mathematically tractable solution, only purely deterministic methods 

are employed. The statistical problems imposed by real, noisy, redun- 

dant data'that are avoided here can be handled by a statistical combi- 

nation of this solution with others. 

1.2 3 - 
Proposals (including, Frey, Lt g . ,  1966, Godbey, 1965, Greenwood, 

et al., 1967, and Raytheon Company, 1968) have been made to put an 

altimeter on board a satellite. The altimeter functions by measuring 

the time delay, interpretable as a distance measurement, between emis- 

sion of a radar or laser pulse and reception of its reflection from a 

portion of the earth's surface. 

and oceanographic uses, but only geodetic applications are considered 

in the sequel. 

This observation can have both geodetic 
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Measurements for conventional satellite geodesy (Kaula, L966a, 

Mueller, 1964) involve ground station tracking of the orbits of satel- 

lites. 

harmonic representations of the gravitational potential (Gaposchkin, 

1966) and employing statistical data fits to minimize the residuals, 

improved estimates of the harmonic coefficients are obtained (Gaposchkin, 

1969, Kozai, 1969). Because the effects of higher harmonic variations 

of the gravitational field fall off rapidly with distance from the 

earth, short period (small fractions of the orbital period) orbital 

perturbations have small amplitudes. Only a few resonant higher har- 

monics can be determined conveniently by satellite observation (Gedeon, 

1969, Greene, 1968, Wagner, 1968). 

By comparing these orbits with orbits predicted using spherical 

In gravimetric geodesy (Heiskanen and Moritz, 1967, Molodenskii, 

e_t al., 19621, measurements of the gravity magnitude are made: these 

provide data sensative to the higher harmonics. Conversion of the data 

to a harmonic representation entails a solution of a boundary value 

problem in potential theory of the third kind with a boundary condition 

containing constant coefficients (Heiskanen and Moritz, 1967, p. 361, 

yielding the gravitational potential as a linear integral transform of 

gravity anomalies on the whole surface of the earth. There are large 

gaps in data coverage, especially over southern hemisphere oceans 

(Uotila, 1962). Current practice is to extrapolate to fill the gaps 

(Kaula, 1959, 1966b, KGhnlein, 1967, Potter and Frey, 1967, Rapp, 1968), 

obtain an approximate solution, and then combine this in a statistical 

data fit (Kaula, 1961, 1966c, Kzhnlein, 1967, Rapp, 1968) with satel- 

lite and other determinations, such as estimates of geoidal sections 

from geometrical geodesy (Bomford, 1962) (. 

Altimetry data can also provide higher harmonic detail if correc- 

tions for various effects are assumed made. These include the pulse 
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form (Price, 1968) atmospheric propagation effects (Frey, et al., 

19661, surface reflection characteristics (Greenwood, al., 1967), 

altimeter design (Frey, et &., 1966, Godbey, 1965, Raytheon Company, 
19681, and data processing technique (Price, 1968). If the satellite's 

orbit is assumed known and appropriately chosen, altimetry then defines 

the figure of the earthl in an initial implementation, to an accuracy 

of one meter (Kaula, 1969). According to the best judgments of ocean- 

ographers (Greenwood, e& &.* 1967), the ocean's surface, averaged for 

waves and sea state, coincides to within a few meters with the geoid, 

that equipotential surface of the gravity field that best coincides over 

oceans with mean sea level. Since the geoid is closer to masses causing 

anomalies in the gravity field than the satellite is, the geoid exhibits 

short wavelength undulations (see, for example, von Arx, 1966) with 

amplitudes large compared to short period perturbations of the altimetry 

satellite. Thus even if the satellite's orbit is not known, as previ- 

ously assumed, the estimate obtained from conventional satellite gkodesy 

can be used as a first approximation without seriously masking the short 

wavelength detail of the geoid. After the geoid information is used to 

improve the representation of the gravity field, higher approximations 

can proceed, if necessary. For consistency with satellite geodesy, the 

gravity field at the geoid is also represented here in terms of the 

spherical harmonics. Even if such a representation is not strictly 

valid for representing the geoid, the error, in practice, is small and 

can be taken into account (Madden, 1968). 

To improve the geodetic parameters, Lundquist (1967) proposes to 

include the difference of measured altitudes and those calculated from 

a model gravity potential in a massive statistical data fit computer 

program (Gaposchkin, 19661.h the same manner as with conventional sat- 

ellite observations. He points out that a naive approach requires an 

excessively large gravity field model in a determination that must 
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handle large amounts of nonuniformly distributed data. Lundquist, & 

&. (1969) propose a transformation of the harmonic representation into 
a sum of functions primarily sensitive to the shape of particular areas 

of the geoid. Difficulties in choosing a particular transformation and 

set of functions are unresolved at this time. 

The approach taken here attempts to avoid statistical assumptions 

as much as possible, and makes use of potential theory, as does that 

of gravimetric geodesy. If the geoid is specified over the whole sur- 

face of the earth, solution of a boundary value problem in potential 

theory of the first kind yields the gravitational potential as an inte- 

gral transform of the surface data. Because altimetry provides such 

data only on oceans, the direct approach fails, since with only partial 

data, the problem is not well-posed (Hadamard, 1923). A statistical 

extrapolation approach encounters problems similar to those in imple- 

menting current gravimetric determinations. A combination of the poten- 

tial theory approach to altimetry and that of gravimetry seems appro- 

priate, since their data bases complement each other. Altimetry will 

be applicable only on oceans, and gravimetry is available primarily on 

land (geoidal section data, physically similar to altimetry, is avail- 

able to a limited extent on land). This thesis assumes that exactly 

one of two types of data is available at each point of the earth's sur- 

face, idealized as, or reduced to, the geoid. At surface points of the 

first kind, designated oceans, the physical form of the geoid is spe- 

cified by altimetry (or geoidal section) data. At points of the second 

kind, designated land, the magnitude of gravity on the geoid is specif- 

ied by gravimetry. Because gravity is measured on the earth's physical 

surface rather than on the geoid, necessary reductions of gravity to 

the geoid (see, for example, Heiskanen and Moritz, 1967) are assumed 

made. The purpose of this thesis is to solve the physical and mathe- 

matical problem of combining the two types of boundary data to obtain 
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the gravitational potential of the earth. 

1.3 Synopsis - 
In chapter 2 the physical problem is translated into a precise 

mathematical problem with several equivalent formulations convenient 

for the later analysis. Chapter 3 discusses some of the conditions 

sufficient to render the problem uniquely solvable. In chapter 4 the 

problem formulated in chapter 2 is put into several alternative forms 

suitable for solution by a method of successive approximations. When 

altimetry data are weighted more heavily than gravimetry data, an 

approximation of the problem becomes simple enough that the validity 

of the method can be established analytically. When altimetry and 

gravimetry data are weighted more evenly, the validity of the method 

is established numerically, for a distribution of gravimetry and 

altimetry data resembling the earth's land-ocean distribution, Chapter 

5 discusses the actual determination of harmonic coefficients from 

altimetry and gravimetry data. Because actual altimetry data are 

unavailable, all data for the test examples were generated using stan- 

dard sets of harmonic coefficients, which could easily be compared with 

those obtained by the proposed method, Finally, chapter 6 discusses 

the contributions of this thesis to using satellite altimetry in 

geodetic determinations, 





CHAPTER 2 

PROBLEM FORMULATIOM 

2.1 General Discussion - 
The physical problem of combining altimetry data, which will be 

applicable only on oceans, and gravimetry data, which are assumed avail- 

able on land, to obtain the gravitational potential of the earth is, 

in this chapter, reduced to several mathematical formulations convenient 

for the later analysis. Altimetry data define, geometrically, the sur- 

face of the geoid, on which the gravity potential is constant. Alter- 

natively, gravimetry yields gravity, the gradient of the gravity poten- 

tial, on the geoid, whose position, at points where gravimetry is given, 

is not known: indeed its determination is a part of the problem. This 

free boundary problem is transformed into a more traditional boundary 

value problem by linearizing about a known reference surface, such as a 

standard ellipsoid of revolution. 

In section 2.2 the physical problem is reduced to a boundary value 

problem in potential theory, In section 2.3 integral representations 

are introduced, and the problem is written in terms of dual integral 

equations. The dual integral equations are combined formally into a 

single compact equation in section 2 . 4 ,  

- 2.2  Partial Differential Equation Formulation 

Let S denote a closed surface approximating that of the earth. It 

is initially taken to be the geoid, next an ellipsoid, and finally, a 

sphere. 

altimetry is available. 

land, on which gravimetry is available. 

mutually exclusive and collectively exhaustive. 

nite region external to S. 

Let S o  denote that subset, associated with oceans, on which 

Let S1 denote that subsetp associated with 

Assume that S o  and S1 are 

Let R denote the infi- 
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Mow consider S to be the geoid. The gravity potential, W(p), is 

composed of the gravitational potential, V(p), and the centrifugal po- 

tential, @ (p) p 

where 

+ ‘nm sin mA 

G = gravitational constant = 6.67 X m3/kg/sec 2 

M = mass of the earth 

GM = 3.98603 X 1014 m3/sec2 

r = radius of the point, p 

rM = a mean radius of the earth 

P 

P 

%(sin 4 1 = normalized associated Legendre function 

n = degree of spherical harmonic expansion 

m = order of spherical harmonic expansion 

4p = geocentric latitude of the point, p 

- - 
= normalized spherical harmonic coefficients of V ‘nm’ ‘nm 

Ap = geocentric longitude of the point, p 

( 2  04) 2 
P @(PI = + w 2  2 cos 4 P 

and w = angular velocity of the earth’s rotation 

= 0.729,211,51 x 10-4/sec 

The gravity potential at a general point satisfies Poisson’s equation 
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(Heiskanen and Moritz, 1 9 6 7 ,  lp. 47) 

2 V W(p) = 2 w 2  - 4aGp P E R  (2.05) 

where p = m a s s  dens i ty ,  

In  genera l ,  t h e r e  are masses i n  R,  s i nce  most land areas  a r e  above sea  

l eve l .  On S o p  t he  oceans a l t ime t ry  def ines  the  geoid,  

r = r ( $  P E so (2.06 
P G P' IP) 

where 

rG = rad ius  of t h e  geoid. 

The boundary value for the  g r a v i t y  p o t e n t i a l  i s  t h a t  constant  f o r  

which t h e  geoid i s  an equ ipo ten t i a l  of g rav i ty ,  

where 

WG = t h e  constant  value of t h e  g rav i ty  p o t e n t i a l  on t h e  

geoid. 

boundary, s ince  t h e  pos i t i on  of t h e  geoid remains an unknown t o  be 

determined. Gravimetry da ta  are ava i l ab le  on t h e  e a r t h ' s  phys ica l  sur- 

face.  For a mathematically t r a c t a b l e  problem, these  da t a  can be sub- 

j ec t ed  t o  one of  several g rav i ty  reduct ions (Beiskanen and Moritz,  1967)  

t o  ob ta in  t h e  equiva len t  values on t h e  geoid. I n  t h e  process a l l  masses 

can be removed from R i n  a manner t h a t  modifies t h e  obtained geoid and 

g rav i ty  po ten t i a l .  Since t h i s  i n d i r e c t  e f f e c t  can be taken i n t o  ac- 

count using higher  approximations ( f o r  example, Molodenskii, e t  a l . ,  

1 9 6 2 ) ,  it i s  assumed h e r e a f t e r  t h a t  t he re  are no masses ou t s ide  t h e  

boundary sur face  and t h a t  g rav i ty ,  g ( p ) ,  i s  known on the .geoid ,  

On S1, t h e  land,  equation (2 .07 )  a l s o  holds .  Thefe i s  a f r e e  

(2.08) 

where 

g ( p )  = grav i ty  a t  t he  po in t ,  p 
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n = normal to the geoid into R at the point, p. P 
The result is a free boundary value problem, 

(2.09) 2 2 v W(p) = 2w P E R  

with the mixed boundary conditions 

S1: free 

When the differential 

potential, a harmonic 

2 v V(p) = 0 

.L 

equation is written in terms of the gravitational 

function, 

the boundary conditions become 

2 
P V(p) = WG - --w r cos cp 2 P  1) 

so: r = r (I$ P G P' 

v(p) = wG - L2r2 cosaep 2 P  

"(P) = - g(p) - p i 2 a  5 ( r p  2 
=P 

(2.12) 

S1: free 

Free boundary problems are occasionally encountered in fluid dynamics 

(see, for example, Garabedian, 1964, p. 558). A free boundary problem 

is avoided here by linearizing about a known surface approximating the 

geoid, but nonuniqueness is not avoided; see chapter 3 .  

Without loss of generality the relatively simple, level rotational 

ellipsoid is adopted as the reference boundary surface. It is an 
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equipotential surface of a 'normal' gravity potential, ~ ( p ) ,  (Heiskanen 

and Moritz, 1967, p. 73) : 

(2.13) 

where 

a = semi-major axis of the etlipsoid = 6378160. m 

5nJ2 
( l - n + -  

e 
-(U) - (-1)"3e2" 
'2n,O - (2n+l) (2n+3) 2 )  

e = first eccentricity = (a2 - b2)1'2/a 
b = semi-minor axis of the ellipsoid = a(1 - f) 
f = flattening of the ellipsoid = 1/298.25 

J2 = earth's dynamical form constant = 0.001,0827 

Uy = the constant value of the normal gravity potential on 

the level rotational ellipsoid. 

The gradient of this potential is the normal gravity 

(2.14) 

where n' = normal to the ellipsoid into R at the point, pa 

ugal terms in W and U are identical, 

tential, 

The centrif- 
P' 

Next introduce the anomalous po- 

+ tisnm sin mh') 
P 

where 
- 

6Enm, 6Snm = harmonic coefficients of the anomalous potential. 

If rM a a the various harmonic coefficients are related by 

21 



- - -(VI 
‘nm = “nm + ‘nm (2.16) 

Since T does not contain any centrifugal term 

(2.17) 2 
V T(p) = 0 P E R  

To every point, p, on the geoid corresponds a point, q, located at the 

base of the ellipsoid normal that intersects p. The definitions of S o  

and S1 can now be transfered from the geoid to the ellipsoid. 

The boundary condition for W along So (geoid) is next converted to 

one for the anomalous potential along S (ellipsoid). By assumption, the 

radius of the oceanic geoid is known (see equation (2.06)). The radius, 

r of the level rotational ellipsoid may be obtained, using equation 

(2.131, in the form, 
Y’ 

r = r ( 9 )  q E S (ellipsoid) (2.18) 
Y 9  

The geoidal undulation, N($ , A  ) , is defined as the distance measured 
from the ellipsoid to the geoid along the ellipsoid normal. The maximum 

excursion of N is on the order of 100 meters, which is small compared 

to the dimensions of the ellipsoid. The generalized Brun’s formula 

(Heiskanen and Moritz, 1967, p. 100) defines the relation between the 

anomalous potential and the geoidal undulation, 

P P  

where 

6W = WG - ‘ U  Y =: W(p) - U(q) 
(2.20) 

= difference of equipotential constants 

This is the boundary condition on the anomalous potential, valid for 

P E SO’ 

The boundary condition on land is transformed, similarly. On S1 

(geoid), g(p) is known by assumption, and on Sl (ellipsoid), y(q) is 

known by definition, so that the gravity anomaly, Ag(q), is well defined 
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The generalized fundamental equation of physical geodesy (Heiskanen 

and Moritz, 1967, p . 101) holds, 

(2.22) 

Since, as a result of the linearization, the measured data, N(q) and 

Ag(q), are small quantities, we may identify p with q and n with n 

A boundary value problem for the anomalous potential may be formulated. 

For S the rotational ellipsoid and R its external volume, 

I 

q '  P 

(2.23) 2 
V T(p) = 0 P E R  

The boundary conditions on the two parts of S are 

P E s1 (2.25) 

This is called a mixed boundary value problem in potential theory, a 

problem of the third kind, or the Robin's problem, since a linear 

combination of the potential and its first derivative are specified on 

the boundary (Kellogg, 1953) . Equation (2.24), if specified on all of 

S, can be identified with the well known boundary value problem of 

potential theory of the first kind, the Dirichlet problem. If equation 

(2.25) holds over the whole surface, the Stokes (1849) problem, in 

which the coefficient of the derivative term is variable, but continu- 

ous, is obtained as a special Robin's problem. In the present case the 

coefficient of an aT is discontinuous on as, the boundary between So and 
P 

S1, since its value drops to zero on So. 

As in analysis of the Stokes problem, the ellipsoid is next approx- 

imated by the sphere of radius rM. 

linearization to small quantities as well as the entailing simplicity. 

This is justified by the previous 
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The normal derivative becomes a radial derivative, 

The ratio 

may be approximated by taking 

GM u = -  r 

Thus 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

Thus the spherical approximation of the equation of physical geodesy 

(equation (2.22) ) is 
r 

T(p) + aT(p) = - > Ag(p) + 6W 
P 

P E  SI (2.30) 

We may state our partial differential equation formulation as 

(2.31) 2 V T(p) = 0 P E R  

with the boundary conditions 

Introducing 

and the land function 

0 

1 
A(P)  = [  

(2.33) 

(2.34) 
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the boundary condition may be written compactly (in terms of discontin- 

uous functions) as 

P E S  (2.35) 

- 2.3 Dual Integral Equation Formulation 

To obtain the dual integral equation formulation we first state 

the integral representations of a potential function for two types of 

boundary conditions. For the Stokes problem similar techniques are 

employed by Moritz (1965). 

If any harmonic function, T(q), is prescribed, q E S, the solution 

of the Dirichlet problem for the sphere can be written 

(2.36) 

where 

CI = solid angle corresponding to the earth's surface 

Kp(pI q) = Poisson kernel (Kellogg, 1953, or appendix A) 

xi(p) = normalized spherical harmonic function 

i = (ni + j)ni + m + 1 

0 ,s m l  ni < for j = 0 

for j = 1 

(2.37) 

(2.38) 

If - aT(q )  is prescribed, q E S I  there results the boundary value problem 

in potential theory of the second kind, the Neumann problem. An integral 

representation of the solution of this problem is derived in appendix A. 

It is convenient here to introduce a harmonic function, <(PI, 

9 
ar 
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(2.39) 

If ~ ( q )  is prescribed, q E S 

where 

s(p, q) = modified Neumann kernel (appendix A )  

In addition 

(2.40) 

(2.41) 

We take 5 as the unknown independent variable. We allow p to lie on 

the boundary so that we may use equations (2.32) in the left hand sides 

of equations (2.40) and (2.42). In the limit as p is brought down to 

the surface, the Poisson kernel becomes a delta function, the kernel of 

the identity operator, 

(2.43) 

For the application of generalized functions, of which the delta func- 

tion is a special case, to partial differential equations, see Shilov 

(1968). 

to be represented in a spherical harmonic series (for convergence, see 

Hobson, 1955, p. 344). The equivalent form of the Neumann kernel is 

obtained from equation (2.41) with r 

With r = rM in equation (2.37) the transform causes a function P 

= rH P 
m 

2 
i=l 1 

%(P, 9) = - 1 fiTTTXi(P)Xi(S) (2.44) 
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We thus obtain the dual integral equations 

and 

(2.45) 

(2.46) 

The equation (2.45) is a Fredholm integral equation of the first kind. 

The equation (2.46) is a Fredholm integral equation of the second kind. 

Using the identity kernel it may alternatively be written as a singular 

integral equation of the first kind, 

Dual integral equations have not been actively studied until recently 

(see Sneddon, 1966, or Tranter, 1966), and much of the work principally 

involves one dimensional integrals. See also Mikhlin (1965) concerning 

multidimensional singular integral equations. 

- 2.4 Integral Operator Formulation 

For convenience and compactness we introduce the integral operator 

notation. For any integrable function, x(q), 

K,(p, q)x(q) = & lJ %(P, q)x(q)doq (2.48) 

x(p) = 7(p, q)x(q) = kg I(P, q)x(q)daq (2.49) 

These operators are infinite-dimensional, since the representations of 

their kernels in terms of the normalized spherical harmonics (see 

equations (2.43) and (2.44)) each consist of an infinite number of 

terms. For practical work the series must be truncated, so that finite- 

dimensional operators result. For simplicity we write %(Pr 9) and 

I(p,q) €or both the operator and the kernel. Write 

C(p) = BT(p) + C(p) - BT(p) (2.50) 
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where f3 is a scalar free parameter weighting the influence of altimetry 

data relative to gravimetry data. For p E  So, replace the right-hand T 

of equation (2.50) with equation (2.32), replace the left-hand T by 

equation (2.40) using the notation of equation (2.481, and represent 

5 using the notation of equation (2.49): 

For p E  S1, set 

as that given the left-hand T of equation (2.51). Noting equation 

(2.39), the remaining terms of equation (2.50) are just the left-hand- 

side of equation (2.32) part 21, so that 

= 1 and give the right-hand T the same representation 

(2.52) 

Equations (2.51) and (2.52) constitute a version of the dual integral 

equations in operator notation. They are next combined into the form 

of a single equation. We define the inhomogeneous term 

The effect of the parameter, f3, on the relative weighting of the two 

types of data is explicit in equation (2.53). We define the operator 

We have 

<(PI - K(P, q)C(q) = V(P) (2.55) 

This operator equation is of the form of an inhomogeneous Fredholm 

integral equation of the second kind. 

that the operator, K(p, q), has a kernel that is discontinuous as a 

function of the parameter point, p, along the irregular boundary, as, 

between oceans, S o p  and land, S1. 

It is unconventional in the sense 

The inhomogeneous term is similarly 
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discontinuous.  I n  addi t ion ,  t he  appearance of t h e  i d e n t i t y  opera tor  i n  

p a r t  of t he  kerne l  i s  d e f i n i t e l y  nonclass ica l .  The problem may a l s o  be 

c a s t  i n  t h e  form of an i n t e g r a l  equat ion of t h e  f i r s t  kind, 

This opera tor  i s  s i m i l a r l y  unconventional. I n t e g r a l  equations of t h e  

f i r s t  kind are genera l ly  more d i f f i c u l t  t o  solve;  equation (2.56) i s  

used pr imar i ly  as a s t a r t i n g  poin t  t o  manipulate t he  problem i n t o  a 

problem involving an i n t e g r a l  equat ion of the  second kind. Equation 

(2.55) is the  s imples t  form: o the r s  are developed i n  chapter  4 .  
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Chapter 3 

UNIQUENESS THEORY 

- 3.1 Physical Considerations 

Engineers usually do not concern themselves with mathematical 

questions such as uniqueness and existence; they prefer to rely on 

physical reasoning to guarantee these properties of the solution of 

their problems. However, these tools can be used as important checks 

on the validity of the analytical model of the physical problem, which 

arises because approximations must be made to physical reality in order 

to deal with the problem in a tractable manner and yet get useful re- 

sults. A proper mathematical model should have enough restrictions so 

that there are not multiple solutions, but not so many that none exist. 

We shall assume that the solution for the anomalous potential may 

be approximated by a function, T(p), defined outside of the earth's sur- 

face, appropriately approximated, which is: 

1) finite 

2 )  single-valued 

3)  regular at distances far from the earth (vanishes at least as 

fast as l/r) 

4 )  continuously differentiable 

For compatibility the boundary data must be suitably restricted. As an 

approximation, altimetry should yield continuous geoidal undulations on 

oceans, So. 

gravimetry as a continuous function on land, S1. 

between ocean and land there are no further restrictions relating the 

physical data across the boundary. Some conditions sufficient for the 

full problem, in which all of the spherical harmonic coefficients are 

retained, to be unique are presented in section 3.2. 

Similarly, gravity anomalies should be extracted from 

At the boundary, as, 
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- 3.2 Uniqueness Results 

To obtain conditions sufficient for the problem to be unique, we 

start with the partial differential equation formulation of section 2.2, 

(2.31) 2 
V T(p) = 0 P E R  

with the unified boundary condition, 
r 

T(p) + A(p)F = f(p) + 6W P E  s (2.35) 
P 

To examine uniquenesss suppose the contrary, that there exist at least 

two harmonic functions, T' (p) and T" (p) , each satisfying the boundary 
condition. The difference, 

satisfies 

2 v v(p) = 0 

with the boundary condition, 

P E R  (3.02) 

Since the boundary is a sphere, it is natural to expand v(p) in a se- 

ries of spherical harmonics. Conditions under which various coefficients 

vanish indicate conditions for the uniqueness of T(p). We expand v(p) 

in solid spherical harmonics 

(3.04) 

where 

and xi(p), i, ni, m, and j are defined in equation (2.38). According 

to Hobson (1955, p. 344) the assumptions imposed on T(p) (see section 

3.1) and therefore v(p) assure the validity of the series representa- 

tion. 
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W e  form t h e  i n t e g r a l  

Decomposing equat ion (3.03) ,  

v ( p )  = 0 

Since  

s o u  s1 = s 

t h e r e  r e s u l t s  

'In = 0 

W e  i n s e r t  t h e  harmonic series,  not ing  t h a t  

ni+l 
x .  (p) rM Vnimj 1 

= -  1 - 
i=l 

rP = 

(3.06) 

P E so (3.07) 

P E s1 (3.08) 

(3.09) 

(3.10) 

(3.11) 

There r e s u l t s  

Using t h e  orthonormality property 

1 Lj xk(P)x i (P)dop = 6 k i  

w e  ob ta in  

o r  

= o  

Both t h e  l e f t  hand s ide and t h e  r i g h t  hand 

2. 1 m l )  

(3.13) 

(3.14) 

(3.15) 

s i d e  of t h e  equat ion c o n s i s t  
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of nonnegative terms. If one side vanishes, then so must the other. 

If 

(3.16) vooo = O 

then 

'n.mj = o  
1 

for all ni, m, j such that 

2 < n i < ~  

O I m < n i  

j = O , l  

By definition (see equation (3.05)), 

(3.17) 

(3.18) 

(3.19) 

Thus if both solutions for the anomalous potential have the same aver- 

age value over the surface of the earth, 

(3.20) '000 = O 

This is equivalent to the requirement that the mass of the earth (in 

the constant, GM) and the difference of geoid and ellipsoid equipoten- 

tial constants, 6W, must be prescribed. Further, the constant, 6W, 

behaves as a zeroth harmonic of the inner potential in the boundary 

conditions (2.35), violating requirement 3 of section 3.1. Hence 

choose 

6W = 0 

We still have to examine the differences of first degree harmonic co- 

efficients, vlo0, vllOr vlllp which are not involved in equation (2.15). 

By assumption (see equation (3.1611, these are the only remaining 

(3.21) 
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But in view of the boundary condition (see equation (3.03)) 

v(p) = A(p)v(p) (3.22) 

The three first harmonic terms may be interpreted as the three orthogonal 

components of a translation of the center of the coordinate system 

(Heiskanen and Moritz, 1967, p. 62). Aside from a trivial translation, 

v(p) is zero only on the locus of points common to both the original 

reference sphere and its translation resulting from nonzero first har- 

monics - 
Thus the first harmonic coefficients must vanish if the oceans cover a 

finite area, since 

v(p) = 0 P € S o  (3.07) 

Thus we have proved that, when both altimetry and gravimetry data are 

specified in the boundary condition, if a solution is assumed to exist, 

any other solution with the same zeroth harmonic is identical. 

question of existence of solutions is handled in the next chapter: use- 

ful results are obtained only for solutions in which the potential is 

assumed to be the sum of a finite number of spherical harmonics. An 

analytical proof yields not only existence, but also uniqueness, for 

the finite approximation. An alternative numerical approach (which of 

course requixes a finite approximation) demonstrates that for an altim- 

etry-gravimetry distribution resembling the ocean-land distribution of 

the earth, a unique solution can be obtained. 

The 

Before turning to the finite-dimensional problem, a few more re- 

marks will be made concerning the infinite-dimensional case. As a 

result of the linearity of solutions of equations (3.02) and (3.031, if 

a nontrivial solution exists, it may be expressed in the form 

v(p) = vooo V*(P) 

where v*(p) is a unique function for a particular choice of A 

(3.23) 

P) 
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The uniqueness analysis just discussed makes no use of the detailed 

form of the boundary between land and ocean (other than to eliminate 

the trivial boundary). 

handle analytically, but J. E. Potter (personal communication) has 

extended the uniqueness proof by deriving criteria sufficient for the 

problem to be unique. 

notation- 

The detail of the discontinuity is difficult to 

These results are now obtained using the present 

Rewrite equation (3,141 in the form 

(3.24) 

In the previous analysis it was shown that if vooo = 0, equation (3.14) 

is positive definite, so that only a trivial choice of coefficients 

satisfies equation (3.10), To show that equation (3.24) is positive 

definite, it is sufficient to show that a less positive function is 

positive definite. 

summation, yielding 

Hence replace (ni - 1)/2 by 1/2 in the second 

It is easily seen that 

(3.25) 

(3.26) 

Substitute this into equation (3.25) and use also equations (3.05) and 

(3.22) : 
r 

where 

J =  

(3.27) 

(3.28) 

If 
(3.29) 
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then equat ion ( 3 . 2 4 )  i s  p o s i t i v e  d e f i n i t e .  A l l  t r i a l  funct ions i n  t h e  

maximization of equation ( 3 . 2 8 )  may be represented i n  t h e  form 

( 3 . 3 0 )  

where vL (p)  s a t i s f i e s  

v l ( p )  does n o t  cont r ibu te  t o  the  numerator of equation ( 3 . 2 8 1 ,  so t h a t  

it may be taken t o  be zero f o r  t he  maximization. I n s e r t  equat ion (3.30)  

i n t o  equat ion ( 3 . 2 8 )  and de f ine  

There r e s u l t s  

2-n f aiAij 4 A j k  ak 
i , j , k = l  

J =  
4 

j 
1 aiAij a 

i, j= l  

o r ,  i n  matr ix  no ta t ion ,  

T a A Z A a  
a ha 

J = -- 
T 

where 
2-n 

2 = [ Z . . ]  = [ 6 i j  4 1  
3-7 

Introducing t h e  square r o o t  matr ix ,  

equat ion ( 3 . 3 4 )  may be w r i t t e n  

a*TZ*a* 
a*Ta* 

5 =  

where 

( 3 . 3 2 )  

( 3 . 3 3 )  

( 3 . 3 4 )  

( 3 . 3 5 )  

( 3 . 3 6 )  

( 3  e 37)  
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An eigenvalue problem is obtained by applying<the calculus of variations 

to equation (3.371, 

z*a* = Aa" (3 e 38)  

so that 

max J = max 1x1 (3.39) 

To avoid the necessity of actually obtaining the square root matrix, 

apply a similarity transform, which leaves the eigenvalues invariant, 

A1/2z*A-1/2 = (3.40) 

If the magnitude of the largest eigenvalue of AZ is less than 1/2, so 

that relation (3.29) is satisfied, equation (3.24) is positive, and 

hence the problem is unique. The criterion thus developed depends on 

the zeroth and first harmonics of the land function, so that to verify 

uniqueness, a gravimetry-altimetry distribution mast be chosen. The 

uniqueness verification process is pessimistic, because of the crude- 

ness of approximation in the relation (3.25). 

Uniqueness can be verified for the infinite-dimensional problem 

for an altimetry-gravimetry distribution considered later in the thesis 

(figure 1). The land coefficients may be obtained from the ocean 

coefficients, Qij, obtained using the computer program given in appendix 

c.1, 

- (3.41) - 
Aij - 6ij 'ij 

Substituting the obtained values in equation (3.401, 

10:; 0.06 

0.05 0 - 0 1  
0.18 0.02 0.02 

0.11 0.02 0.12 0.00 
0.02 0.00 0.15 

A Z  = (3.42) 
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Since the maximum of the row sums bounds the eigenvalues (Todd, 1962, 

p. 284), the eigenvalues of this matrix are all less than 1/2, so that 

the problem of this thesis is unique for a gravimetry-altimetry distri- 

bution resembling the land-ocean distribution of the earth. 
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CHAPTER 4 

EXISTENCE THEORY 

4.1 General Discussion 

In this chapter we discuss a method for solving the problem for- 

mulated in chapter 2 and study the conditions under which it will 

yield a solution. The problem is formulated as a Neumann series, which 

is valid when the operator is suitably "small". Next a nonsymmetric 

matrix approximation to the kernel of the operator is obtained. The 

matrix is then transfor.med into a form in which the matrix becomes 

symmetric under certain conditions. When these are made to hold, ne- 

cessary and sufficient conditions for a solution to the finite prob- 

lem are given. These conditions on the symmetric case are not satis- 

fied when the full, infinite-dimensional operator is considered. A 

particularly Simgle version of the symmetric case is discussed in 

section 4.5. 

sults are lacking, but for a finite approximation, numerical studies 

show that the problem can be solved for an altimetry-gravimetry distri- 

bution like that of the earth's ocean-land distribution. 

For the nonsymmetric form of the operator, analytic re- 

- 4.2 Neumann Series Representation 

To obtain a solution, we put the problem (equation (2.56)) in the 

classical form of a Fredholm integral equation of the second kind 

(see eq~ation(2.55))~ 

(4.01) 

Unfortunately, the kernel and inhomogeneous terms contain discon- 

tinuities, and the kernel includes, in part, the identity operator. 

These considerations will be examined in later sections. Bitsadze 

(1968), Collatz (19601, and Courant and Hilbert (1953-1962) are re- 

presentative of the mathematical methods to be considered for a 
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solution. Here, an iterative solution and terminology used in in- 

vestigating its validity are described. Rewrite the equation in the 

form 

C(P) = K(P,q)S(q) + V(P) (4.02) 

If the operator, K(prq), is in some sense "small" compared to the iden- 

tity operator, we try an iterative procedure, 

A convenient initial choice is 

S(O) (p) = 0. (4.04) 

If the process converges it yields a solution to the equation. An al- 

ternative expression for the process is the Neumann series 

where the nth iterated kernel is given by 

Another version is 

(4.06) 

(4.07) 

( 4 . 0 8 )  

The quantity in brackets is also known as the Neumann series and is 

in some sense the inverse of the operator 
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Note the analogy with the well known series expansion 

co 

(1-xI-l = 1 xn 
n= 0 

(4.09) 

which is valid for 

We have a problem in functional analysis, since we are not considering 

a function, but a functional (or operator) on a class of functions. 

In order to establish the convergence of the Neumann series an analo- 

gous inequality must be established for the operator X. First, an 

operation analogous to taking the absolute value of a complex number 

must be defined. The admissible functions are functions defined on a 

sphere. Such functions constitute a linear vector space on which an 

inner product is defined: 

(4.11) 

Analogous to absolute value of a number or the length of a vector is 

the norm of a function, 

I lul I = [(u,u)l 1/2 (4.12) 

A complete set of basis vectors spanning this space is the set of 

normalized spherical harmonics, xi(p), defined in equation (2.38). 

Equation (3.13) can now be written 

and 

(4.13) 

(4.14) 
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The norm of an operator is defined in terms of the norm of a function 

by 

(4.15) 

It is the least upper bound on the norm of the function, K(p,q)x(q), 

when all possible x(q) of unit norm are considered. The norm of the 

operator corresponds to the absolute value operator of equation (4.10). 

Corresponding to the radius of convergence of equation (4.09) is 

the spectral radius of the operator, K, ro(K) 

(4.16) 

r (K) is the least upper bound of the absolute value of the spectrum, 

o ( K ) ,  of the operator, K, which for a finite-dimensional operator is a 

finite set of numbers, X ,  its eigenvalues, for which the operatox-, 

0 

[hI(P,q) - K(P,qI 

fails to have an inverse. For infinite-dimensional operators, matters 

are more complicated: not only can there be an infinite number of 

eigenvalues, but other types of points can lie in the spectrum. These 

are too difficult to describe here; see Taylor (1958). The Neumann 

series (equation (4.08)) is a formal expansion of the resolvent opera- 

tor, -1 RX = [XI-K] (4.17) 

with X = 1. The kernel of the resolvent operator differs from the re- 

solvent kernel used in classical integral equation terminology (Hilde- 

brand, ,1953, p. 430) in that the latter kernel does not contain the 

initial delta function corresponding to the identity operator. To estab- 

lish the validity of the convergence of equation (4.08) the applicable 

theory of functional analysis (Taylor, 1958, p. 262) is quoted. 
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If K is an operator on a complete complex linear vector space, the re- 

solvent is given by 

W 

= 1 X-nK(n-l) 
n=l RX 

This series also represents RX if the series converges and 

(4.18) 

(4.19) 

The series diverges if 

1 x 1  < ru(K) (4.21 

An alternative formulation in terms of norms of iterated kernels is 

(4.22 

For our problem with X = 1, we require 

ru(K) < 1 (4.23) 

This holds if some iterated kernel, Kn, is a contraction operator 

(Vulich, 19631, 

The resolvent operator then yields a unique solution (Chu and Diaz, 

(1965) ) . 
Koch (1967) considers a similar iterative approach for the case 

when only gravimetry is prescribed. 

- 4.3 Matrix Representation of the Operator 

For the subsequent work, a matrix representation is needed for the 

kernel of the operator, M(p,q), defined in equation (2.57), or 
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equivalently, K(p,q), defined in equation (2.54), which is the kernel 

of equation (2.551, whose solution, if it converges, is the Neumann 

series of equation (4.08). Because the kernel is needed to verify con- 

vergence, its representation is obtained in this section. Alternative 

Neumann series formulations are developed later in the chapter: their 

matrix representations can be obtained directly from that of M(p,q), 

which is related to K(p,q) by 

Hence we need only find a suitable representation for the kernel, 

Since the boundary surface, S,is a sphere, the normalized spherical 

harmonics (see equation (2.38)), xi(p), are a suitable set of basis 

vectors for representing the kernel. From section 2.3, the kernel of 

the identity operator is 

Similarly the kernel of the modified Neumann operator is 

m - 

(2.43) 

(2.44) 

where ni is defined in equatian (2.38). 

tion for the kernel valid both on So and S1, define, in conjunction with 

the land function of equation (2.34), the ocean €unction, 

To find a single representa- 

1 l o  Q(P) = 
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It is related to the land function by 

(4.27) 

(4.28) 

We may also write 

It is also desirable to 

appear only in the form 

have an expression in which the arguments 

of spherical harmonics. We thus expand the 

function, [Q(p)xj(p)], in terms of spherical harmonics. 

Parseval's identity, the representation 

With use of 

follows, where the coefficients Qji are given by 

(4.31) 

(4.32) 

and do is the solid angle corresponding to the area So. A listing of 

a computer program that calculates these coefficients may be found in 

appendix C . 1 .  
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Note that 

Q i j  - - Qji 

Since equation (4.13) holds, 

(4.33) 

l Q i j l  1. 1 (4.34) 

and 

0 5 Qii 5 1 (4.35) 

For the nontrivial mixed data problem the strict inequalities holds. 

Application of the Cauchy - Buniakovskii - Schwarz inequality (Hardy, 
et al., 1934) yields the further restriction, 

(4.36) 

Substituting into the representation for the kernel we obtain 

As a short hand notation we suppress writing the spherical harmonic 

basis vectors and express K(p,q) as an infinite matrix (Cooke, 1950) of 

spherical harmonic coefficients, 

K(p,q) = [Kijl (4.38) 

where 

- 2 +aij (1-2p j )  (4.39) %j - &ij n.+l 
3 

Similarly, a vector is represented as a column of its spherical har- 

monic coefficients, and a product is the inner product of equation 

(4.11) e 
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Note that iterated kernels may be formed by successive pre- 

multiplications of the matrix, 

(4.40) 

Here, and in the remainder of the chapter, we employ the summation con- 

vention when matrix or vector products are indicated. Analysis of in- 

finite-dimensional matrices is difficult; for example, the associative 

law may riot necessarily be valid for products of inf inite-dimensional 

matrices, although it is true for diagonal matrices, such as the ma- 

trix representations of the identity and Neumann operators. The re- 

presentation of equation (4.38) contains off-diagonal terms, which are 

intimately associated with the discontinuity of the kernel and the 

fact that the spherical harmonics are not orthogonal over the oceans 

(see equation (4.32)). In addition, the discontinuity is with respect 

to only one of the two variables, so that the matrix is nonsymmetric. 

In the practical case, of course, the matrices must be truncated. The 

associative law is then strictly valid for a given approximation, but 

the kernel is smoothed, and the discontinuity is lost. Truncation has 

the effect of confining the spectrum of the solution, eliminating the 

complications mentioned in section 4,2. Determination of the spectrum 

is simple €or a diagonal matrix, since the eigenvalues are just the 

diagonal terms. For an arbitrary, nonsymmetric, finite matrix, it is 

difficult enough just to determine the largest modulus of these, the 

spectral radius. 

I 

4.4 Analytical Criteria €or Convergence - 
From the formulation of the problem of this thesis given in 

equation (2.551, an iterative solution (see equation (4.08)), has been 

developed. The iteration converges only when the spectral radius of 

the kernel satisfies inequality (4.23) e Unfortunately, the kernel is 
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nonsymmetric (see equation (4.39)), so that analytical conditions 

necessary or sufficient for the Neumann series solution to be valid 

are difficult to obtain. In section 4.6, numerical procedures establish 

that a truncated form of the kernel with special choices of the ocean 

function, 51, and weight parameter, 8 ,  has a spectral radius that 

satisfies inequality (4.23). To obtain insight into the problem, an 

analytical study is also desirable. 

To this end, we start with the problem in the form of equation 

(2.56). M(p, q) can also be written in matrix form, using equations 

(4.25) and (4.39); its elements are: 

Mi j - - .6ij(l - +)+ Ciij(2llj - 1) (4.41) 

where 

and n is defined in equation (2.38). Because symmetric matrices are 

more convenient to handle analytically, a symmetrizing transformation 

is sought. A similarity transformation, S = [S..], leaves the eigen- 

values, and hence, the spectral radius, invariant (see, for example, 

Hildebrand, 1952) , so that the spectra, a(M) and a(SMS-l), are identical 

(of course, S must be nonsingular). Hence an alternative formulation 

for equation (2.56) is 

j 

1 7  

(SMs-5 (SS) = sv (4 -42) 

The solution of equation (2.56) can then be reduced to the inversion of 

MS = SMS-’ (4.43) 

Using, for example, an appropriate Neumann series formulation. 

Require that 
n -1 

B + +  (4,441 

50 



so that 2p. + 1 
For all n o 5 n 5 nM 

where nM = maximum degree of harmonic approximation. 

violated, so that 

7 

j’ j 

When this is 

nk-1 
B = 7  

for some n k Y  0 2 nk 5 nM, the matrix is Pdecomposable’ 

285); the spherical harmonic basis vectors can be reordered so that the 

nk th harmonic terms come first, yielding 

(Todd, 1962, p. 

Except when f3 = 0 (the problem is then clearly improperly posed) the 

(2nk + 1) X (2nk + 1) diagonal matrix, M ( k ) ,  is clearly invertable. 

The standard partitioning technique for matrix inverses (see, for 

example, Todd, 1962, p. 238) thus yields 

1 ( k ) - l  I (k)-1 M(k-) -1 
I 
I I M(-IP1 

~ 

-1 M = . . . . . . . . . . . . . . . . . . . . . . . .  

so that to study the validity of the inverse, M-’, one need only consider 

the matrixl M(-) I in which the rows and columns corresponding to f3 = 

(nk - 1)/2 are removed. Define s so that 
n .-1 

2pj > 1 or B > -+ j l s  (4.45) 

and 
n .-1 

2Uj < 1 o r B < +  j > s  (4.46) 

The following similarity transform leaves diagonal terms invariant: 

sij = 6ij(12pj - 11) 1/2 ( 4 . 4 7 )  

Its inverse is 
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si; = 6ij(12pj - 11) -1/2 (4.48) 

Partition MS, 

(4.49) 

where 

A = [Aij] = [6ij(1 - n.+l 1/21 

3 (4.50) 
1 i i ,  j 5 s 

(4.51) 

- -) 2 - n i j ( l  - 2pi)1/2(1 - 2pj) n .+1 
3 

s < i, j < t  

E = [E .  . I  = [- Qij(l - 2pi)'l2(2uj - 1)ll2] 
17 

(4.52) 
l L j L s < i < t  

2 where t = (nM + 1) . Hence MS is the sum of a symmetric part, 

and a skew-symmetric part, 

It is always possible to obtain complete symmetry by a similarity trans- 

formation (Gantmacher, 1959, p. 131, but the symmetric matrix is com- 

plex in the case considered here. Let 

j l s  

j > s  

(4.53) 
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Then 

LiE i D 

This form will not be used here, 
1 If 8 < - 2  

Ms = D 

If nM- 1 
B ’ T -  

Ms = A 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

These cases, in which the operator is symmetrized, will be considered 

subsequently, 

In general, M is nonsymmetric. Even here there may be a solution 

involving only symmetric inverses (if the inverses exist). Using the 

standard partitioning technique for the inverse of a finite matrix (see, 

for example, Todd, 1962, p. 2381, 

where 

( 4 . 5 9 )  

(4 .60 )  

If A is singular, but D is not, the obvious modification may be made.. 

To obtain 

= S-l Mi1 S v (4.61) 

the existence of the inverses is not necessary, but only sufficient for 

equation (4,591 to be valid. A practical verification of the existence 
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of the inverses for matrices of useful size must rely on numerical 

procedures. The application of numerical techniques is considered 

later, but not using this form. The similarity transformation does 

not simplify the analysis when 
nM- 1 
2 

- 2 < $ < -  1 (4.62) 

so that in the numerical study, in which a typical value of $ = 1 was 

chosen, the original K matrix (equation (4.39)) was examined. In 

section 4.6 a numerical determination of the spectral radius shows 

that a Neumann series solution is valid for a particular land-ocean 

geometry resembling the earth. Sufficiency having been established 

for the particular combination of B ,  R ,  and nM, chapter 5 describes a 

numerical simulation illustrating the determination of the harmonic 

coeffiaients using this method. 

To explore possible solution methods for which additional analytic 

tools are available the cases in which $ satisfies the inequalities 

(4.55) and (4.57) are next examined in detail. MS is now symmetric 

(see equations (4.56) and (4.58)), and its eigenvalues are all real. 

The minimax and maximin theorems (Courant and Hilbert, 1953, or 

Householder, 1964) are applicable: 

max min 
Em 

X(MS) = Am(Ms) 

and 

mi n max 
Em XEE, h(MS) = A t-m+l ( M ~ )  

(4.63) 

(4.64) 

T where 
x MSx 

x x  
X(Ms) = Rayleigh quotient = 

(4.65) 
> A (M ) 3 ... 2 At(MS) - 2 s  

5 4  



and Em is a subspace of the entire space, Et, for which the set of 

spherical harmonics, xi(p), 1 5 i 2 t, is a basis. Considering 

m = t  

any Rayleigh quotient of a real symmetric matrix lies on the closed 

interval between the largest and smallest eigenvalues. For example, 

let x have only the ith component nonzero. Hence 

(4.66) 

for all i, 1 5 i 2 t. 
the eigenvalues (spectral radius) may be obtained. 

Hence lower bounds on the maximum magnitude of 

For conveniencep introduce a parameter, T ,  which can be chosen to 

facilitate convergence of the Neumann series. Let 

M s = B + C  2 

= C[I + C-lBC-l]C (4.67) 

= CII + BC]C 

where 

c = ICij] = [6. .(1 + T)1/2] T > - 1  (4.68) 
11 

When inequality (4 e 55) holds I 

B = [B. . ]  = D - (1 + T )  I = 
11 

when inequality ( 
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In both cases 

(4 e 71) 

And the diagonal terms are of the same form, 

(4.72) - 1 
n .+l BC - - 

jj 3 

To establish the validity of the Neumann series representation, 

It must be shown that 

(4.73) 

(4.74) 

(see section 4.2). 

We now develop inequalities that must necessarily hold in order to 

invert Ms using the Neumann series of equation (4.73) when B satisfies 

one of the inequalities (4.55) and (4.57) and 'I satisfies condition 

(4.68). Applying the inequality (4.661, it is necessary for the 

representation (4.73) to be valid that 

(4.75) 

Let inequality (4.55) hold, and set j = 1, so that n = 0 and = 1 + f3 j j 

(4.76) 

In view of the inequalities (4.35), (4.55) I and (4.68), 

< - 1  
BCll 

(4.77) 1 f 3 < - z  

Hence the Neumann series is not valid (a valid Neumann series may be 
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1 obtained for suitable values of T and $ for which = < - 1 and $ < - z. 
The derivation is not given here, since it is similar to the one given 

shortly, see also section 4.5). 

When inequality (4.57) holds, a necessary condition for the 

validity of the Neumann series is 

1 n,+l 2 
1+2 

nM- 1 
2 B > -  (4 78) 

J l l j l t  

For example, let nM = 2 f3=1 . r = o  (4 a 79 

For j = 1 inequality (4.78) becomes 

r 13 Qll - 21 < 1 (4.80 

so that 

< 1  (4.81) .I. 
5 < %1 

must hold for equation (4.73) to be valid. Similarly, for 2 5 j I 4, 

n = 1  
j 

lajj - 11 < 1 (4.82) 

so that 

51 > o  (4.83) 
jj 

is required. For n = 2 ,  no useful result is obtained. When equations 

(4.79) hold, numerical studies, described in section 4 . 6 ,  indicate 

which of several choices of the ocean function allow the spectral 

radius of the operator to be small enough so that equation (4.73) is 

valid. The smallest satisfactory amount of ocean is greater than the 

1/3 requirement of inequality (4.81). (The original matrix was used, 

but the eigenvalues, and hence the necessary conditions are the same). 

It should be noted that even if convergence is not valid here for a 

particular land-ocean geometry, this does not rule out a solution in 

a different form. 

j 
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In general, inequality (4.78) becomes 
2 2 

n .+l 
2uj-1 jj 2uj-l 

1 2T+l+iix 
- -  
I < n  <- 2Uj > 1 

The lower bound is independent o f  T, 

nM- 1 
'jj >l-nj 1-n.+2~ $ > -  2 

3 

The only useful restrictions are 

I 
"1 > 1+28 

and 

T > - l  (4.84) 

(4.85) 

(4.86) 

2 i j 5 4  (4.87) 

If ocean areas are small, $ can be chosen sufficiently large so that 

inequality (4.86) is satisfied. The upper bound in condition (4.84) is 

lowered by this action, but since T is still available as a free para- 

meter, it is plausible to assert that a combination of f3 satisfying 

inequality (4.57) and T satisfying condition (4.68) can be so chosen 

that the necessary condition (4.75) for the representation (4.73) to 

be valid is satisfied as long as oceans cover a finite area. 

It turns out that not only is this so, but f3 and can be chosen 

to assure convergence of this formulation: J. E. Potter (personal 

communication) has outlined a proof specifying values of f3 and T that 

are sufficient for establishing equation (4.73). Potter's proof is now 

only sketched, since a similar, but simpler, proof under the same 

assumptions is provided for the formulation of the next section. 

Rewrite equation (4.71) in the form 

SQS T 1 
B C = - -  l+T1 + * + i G  (4.88) 

A matrix, BC, is negative (pQsitive) definite if the Rayleigh quotient, 
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T x BCX 

XTX 
is less (greater) than zero for all nontrivial vectors, x. Its eigen- 

values are hence all negative (positive). I is positive definite, and 

I I  1 I I  = 1 (4.89) 

is negative definite, and 

I I  KN I I  = 2  (4.90) 

The infinite dimensional matrix, R ,  is only positive semidefinite, 

, with eigenvalues of magnitude 0 and 1. The eigenvalues of the finite 

matrix are bounded by these, so that 

An absolute inequality holds on the lower bound, since, as is now shown, 

the finite approximation is positive definite. If R is only positive 

semidefinite, there is at least one nontrivial function, f, such that 

fTRf = 0 

Hence 51 depends at most on only (nM + 1)2 - 1 independent basis vectors, 
which can be formed by the Gram-Schmidt orthogonalization process (see, 

for example, Garabedian, 1964), using f as the first component. Appli- 

cation of equation (4.32) yields 

= 0 = (PI [f (p) 1 'dop 

Hence f(p) must be identically zero on oceans, but nontrivial on land. 

But f(p) is at most a polynomial (Hobson, 1955, p. 120) of degree nM in 

(x, y, z), and z may be eliminated, since f(p) is confined to the sur- 

face of a sphere, On any interval, a polynomial of degree nM can have 

at most 51 roots (see, for example, Cheney, 1966, p. 74). Considering 
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y as a parameter, t h e  locus of roo t s  of t h e  polynomial i n  x may be 

obtained;  t h i s  is j u s t  a series of l i n e s ,  of which a t  most nM i n t e r s e c t  

any l i n e ,  

y = constant .  

The process may be repeated with t h e  r o l e s  of x and y reversed. Only 

on t h e  union of r o o t  l o c i  does 

f ( p )  = 0 

but  t h i s  does no t  c o n s t i t u t e  a f i n i t e  area, so t h a t  Sl i s  p o s i t i v e  

d e f i n i t e .  I t  i s  n o t  d i f f i c u l t  t o  extend t h i s  proof t o  show t h a t  t h e  

s t r ic t  inequa l i ty  holds i n  equation ( 4 . 9 1 ) ,  bu t  such a r e s u l t  i s  no t  

needed i n  t h e  sequel .  

The f i n i t e  matr ix ,  S ,  i s  p o s i t i v e  d e f i n i t e ,  and f o r  
n -1 M B > -  2 

i t s  norm i s  

1 1  s I I = (1 + 28)1’2 

( 4  ., 57) 

(4.92)  

Hence T may be chosen s u f f i c i e n t l y  l a rge  s o  t h a t  BC i s  negat ive d e f i n i t e .  

Choose, f o r  example, 

T > 1 + 26 z 1 1  s 11211 n 1 1  F 1 1  sns 1 1  (4.93) 

(for t h e  opera tor  manipulations,  see f o r  example, Halmos, 1951).  Hence 

BC < 0 ( 4  e 94)  

Now t ake  6 so l a r g e  t h a t  t h e  opera tor  

% + ss2s > 0 (4  D 95) 

The p o s i t i v e  de f in i t eness  of Sl insures  t h e  ex is tence  of t h e  lower 

norm, 
1 

I IQ-7 I I I  Q I I ,  = 
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This is a lower bound on the magnitude of the eigenvalue closest to the 

origin. For S, 
1+2B-nM 1/2 

1 1  s 11, = [ nM+l] (4.96) 

and 

Bounds for the eigenvalues of the composite matrix may be formed by an 

appropriate translation of bounds of the individual matrices (see, for 

example, Householder, 1964, chapter 3 ) .  Since SQS is positive definite 

and % is negative definite the inequality (4.95) holds if 

I1 SQS ] I L >  I I  % I I  (4.98) 

Hence require 

nM+l n -1 M + -  2 B > -  
I I Q l  I, 

so that the relation (4.93) becomes 

nM+l 
4- nM T > 2 -  

I l Q l  I=  

(4.99) 

(4 . loo1 

These values assure the unique solvability of the finite approximation 

of equation (2.56). It should be cautioned that B must be increased 

greatly as nM is increased, so that it is an open question whether the 

approximation to SBS is thereby improved; successive solutions may not 

agree. 

The requirements on B and T are pessimistic; for better convergence 

smaller values might be tried. 

ulation to converge than serve as lower bounds on the permissible values 

of 8 and T . The relation (4.85) becomes 

The conditions necessary for this form- 
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1 5 j 5 4 (4.101) 

I 

The right-hand inequality in relation (4.84) may be written 

n.-1 n.+l n . + 3  
B < - + + 1 - -  R .+* 

j j  j j  

or 
(1+2@-n.)R. .-n.-3 

2 (n .+I) 
3 

. >  

4.5 A Symmetric Reformulation - 

1 5 j 5 t (4.102) 

1 5 j 5 t (4.103) 

In this section the nonsymmetric matrix is factored into the pro- 

duct of a symmetri.c and a diagonal matrix; the eigenvalues of the matrix 

and its factors are not. simply related. When 
nM- 1 
2 

- z < $ < -  1 (4.62) 

so that the similarity transformation of the last section does not 

symmetrize the matrix, the two matrix factors are indefinite; no further 

analysis is considered here. For the finite matrix approximation when 

(4.55) 1 8 - 2  

or 
n -1 
+ <  B (4.57) 

conditions sufficient for the unique solvability of equation (2.56) are 

established. The results appear to be better than those obtained under 

these conditions in section 4.4; in effect, C in equation (4.67) is 

taken to be a diagonal matrix of variable elements rather than a scalar 

times the identity matrix. For simplicity, the results are obtained 

directly from equation (2.56), which may be written in the form, 

MC = V (4.104) 
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where 

and n is defined in equation (2.38)- v is derived from measured 

altimetry and gravimetry data (see equation (2-53)) and 5 is the un- 

known function related to the gravitational potential (see equation 

(2.39)) to be determined. Define the matrix 

j 

L = [L. . I  = 6 .  .(2' - 1) 
1 3  1 3  j 

It is required here that 

n -1 
B C +  

(4.105) 

(4.44) 

so that 2' 

harmonic approximation. As discussed in section 4.4, restriction (4.44) 

can be relaxed, Comparing with equation (4.47) 

p 1 for all n 0 5 n I nM where nM = maximum degree of 
j j' j 

i f s l t  (4 106) 2 L = S  

write 

where 

<* = L5 

and 

(4.107) 

(4.108) 

(4 .log) 

If the symmetric matrix, M*, can be inverted, equation (4.104) may be 

solvedl 
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= L-15* = L-lM*-lv (4.110) 

A sufficient condition for M*-' to exist, and therefore for equation 

(4.104) to be uniquely solvable, is that M be positive definite, so 

that all of its eigenvalues exceed zero. M is composed of a diagonal 

matrix, whose eigenvalues are just 

* 
* 

n -1 
ij = 

j 
(4.111) 

and the ocean function, R, whose finite-dimensional approximation is 

positive definite (see section 4.4) , so that 

(4.112) 

The norms I I R I I ,  is defined as in equation (4.15). The lower norm is 

1 

I I Q - l l  I I I  Q I I L  = -14 113) 

In the infinite-dimensional case, the upper bound on the spectrum of R 

is unity and the lower bound is zero. 
* 

Bounds on the eigenvalues of M may be formed by taking the 

algebraic sums (see, for example, Householder, 1964, chapter 3 ;  actually 

the strict inequalities hold, since the matrices are symmetric). 

* 
Hence M is positive definite if 

(4.114) 

(4.115) 

(4 a 116) 

This can hold if 
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- 1  1 
8 ’ -  2 (4.117) 

or 

(4.118) 

For the remaining values of $ positive definiteness cannot be guaranteed 

(But note that L and K could become indefinite in a manner in which M 

remains definite), The problem, although possibly not in this form, 

can still be solved, see the next section. 

* 

I If they are compared to the sufficient condition requirement (4.99) 

of section 4.4, the inequalities (4.117) and (4.118) can be seen to 

require values of f3 of smaller magnitude; the inequality (4.117) is the 

best in this respect. Applying also relation (4.1151, bounds on the 

spectrum of M” are obtained. When inequality (4.117) holds , 

When inequality (4 e 118) holds - 

Since the eigenvalues are real, bounded, and positive (as long as 

I I i-2 I I L  > 01 , a convergent qeumann series, 

(4 e 121) 

can always be found by choosing 5 (which corresponds to (1 + T )  of 
section 4.4) sufficiently large. To minimize the spectral radius, 

choose, when inequality (4.117) holds, 

(4 122) 1 
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so that 

and when inequality (4.118) holds, 

so that 

Convergence 

constraints 

can be improved if f3 is chosen consistent with the 

so that rG(M ) / E  is minimized. 
* 

Hence when 

(4.123) 

(4.124) 

(4.125) 

previous 

(4.126) 

sufficient conditions are obtained for equation (4.104) to be uniquely 

solvable (see the end of section 4.2). These results are consistent 

with those of chapter 3; altimetry must cover a finite area, since 

otherwise the ocean function vanishes. As the degree of harmonic 

approximation is increased, I I 52 I I L  approaches zero, and f3 becomes 

very large. In equation (4.110), the operator, L , is ‘small’, but 
M*-l is ‘large’. 

will approach a limit as nM is increased. 

configuration of the numerical approximation approaches conditions that 

give rise to a nonunique solution in the infinite-dimensional case. 

Development of solution methods to handle such occurences, possibly 

requiring consistency conditions on the measured data, must be left for 

the future (for a sufficient condition independent of the form of the 

ocean function, see appendix D). 

-1 

It is an open question whether successive solutions 

Trouble could occur if the 

- 4.6 Numerical Criteria for convergence 

It is not practical to attempt to determine analytically the 

spectral radius of the operator in its nonsymmetric formulation. A 
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numerical study would determine most feasibly whether the Neumann series 

then forms the basis for  a solution. This has the drawback that a 

determination can be made only for a particular choice of the land-ocean 

configuration. The drawback is not as restrictive as it sounds, since 

for finite matrix representations, the eigenvalues, and therefore the 

spectral radius, are continuous functions of the land-ocean configura- 

tion (Ostrowski, 1960) For the full operator we can show that the 

norm varies continuously with perturbations of the boundary between 

land and oceans: see appendix E. The norm is related to the spectral 

radius (see equation (4.22)), but the continuity of the spectral radius 

for the infinite-dimensional operator is an open question. 

The spectral radius was determined numerically for the land-ocean 

configuration shown in figure 1. For simplicity, the land and ocean 

were chosen to coincide with multiples of five degrees of latitude and 

longitude. The kernel of equation (2.55) was approximated by truncating 

the infinite matrix to include only terms up to a given degree, ranging 

up to twelfth. To illustrate a typical situation when 

1 nM-l 
- - < @ < -  2 2 (4.62) 

@ was set to unity. 

at a given degree of approximation there are 

Since there are 2n + 1 harmonics of nth degreep 

(4,127) 

2 spherical harmonic terms. Consequently K is approximated by an (n + 1) 
2 by (n + 1) nonsymmetric matrix. The eigenvalue of largest absolute 

magnitude then yields the spectral radius. If the matrix has a complete 

set of eigenvalues and eigenvectors and the eigenvalue of largest abso- 

lute magnitude is real, then the most practical method for determining 

the spectral radius is the well known iterative procedure, the power 

method (Bodewig, 1959, Wilkinson, 1965, p. 570), 
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The iteration is started by choosing an arbitrary real vector of 

At the Rth stage premultiply by the real, dimension, (n + 1)2, a('). 
truncated K matrix to obtain a new vector 

(4.128) = Ka (E) 

The components of a (a+1) are taken as a scalar multiple, cR, of the 

components of b ( a )  

A convenient choice is 

c = 1/ max b(') 
j j R 

Hence the largest component of a (a+1) is unity. 

largest eigenvalue is given by 

If 
- Yi - "j 

(4.129) 

(4.130) 

An estimate of the 

(4.131) 

(4.132) 

(E) where j corresponds to the largest component of a(') and b , 

= l/CR (4.133) 

This estimate converges linearly to the eigenvalue of maximum modulus 

(The iteration must be modified if several large eigenvalues are close 

or identical in magnitude and possibly complex). A listing of a com- 

puter program that can be used to calculate the spectral radius of a 

finite matrix may be found in appendix C.2. Results of this process 

are shown in figure 2. 

Rayleigh quotient, uses 

The estimate of the eigenvalue plotted, the' 

y = b  ( a )  (4.134) 

This choice accelerates convergence of the eigenvalue when K is a 

symmetric matrix (Ralston, 1965). In the present case the successive 
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values in the iteration vary more smoothly than when equation (4.133) 

is used. 

converge, indicating possibly complex eigenvalues, The analysis of 

section 4,4 indicates that the interaction of a spherical harmonic of 

degree greater than 1 + 2$ with one less than this value could result 
in complex eigenvalues, since the matrix cannot be transformed into a 

real symmetric matrix, all of whose eigenvalues are real, 

degree approximation is the first one exposed to a condition of this 

type, since $ = 1. The dominant eigenvalues are not complex for the 

higher approximations, The value of the spectral radius varies smoothly, 

as a function of degree, and appears to approach an asymptote that need 

not necessarily exceed unity. The iteration is slow, indicating close 

eigenvalues e 

The iteration for the gth degree approximation does not 

The 4th 

I 

An example, in which the amount of available altimetry data is 

that obtainable by a single altimetry satellite, with its orbit incli- 

nation as a parameter, is next considered. Gravimetry is assumed 

available over oceans at high latitudes inaccessible to the satellite. 

Results are shown in figure 3 for the second degree approximation. 

Since $,= 1 > 1/2 = (nw - 1)/2f the matrix is synmetrizable; this is 
the example of equation (4.79). If the inclination does not exceed 

about 35 degreesp this formulation of the Neumann series wi11 not yield 

a sslution to the problem, There is an implied requirement that there 

be over 43 percent coverage by altimetryB an increase from the one 

third requirement of inequality (6.81) for $ = 1, 

monic is suppressed the spectral radius is less than unity even for 

the low inclination satellites. This result is consistent with the 

If the zeroth har- 

uniqueness analysis of chapter 3 and with the character of the indefi- 

niteness of the matrix whose eigenvalues are given in equation (4a111) 
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CHAPTER 5 

CONSTRTJCT I V E  SOLUTION 

5.1 General Discussion - 
As an illustration of the application of the method to the non- 

symmetric kernel when B = 1, a computer simulation is described. A 

description of the Neumann series algorithm solving equation (2.55) is 

given in section 5.2. Section 5.3 describes the examples in which 

simulated altimetry and gravimetry data derived from standard sets of 

harmonic coefficients serve to define the "measurements" from which 

' the Neumann series algorithm described in section 5.2 extracts esti- 

mates of the earth's gravitational field, as defined by the standard 

sets. For a fourth degree harmonic approximation, three altimetry- 

gravimetry distributions are considered: all altimetry, all gravimetry, 

and a distribution based on the actual ocean-land distribution. For 

.the latter distribution, 14th and lsth degree harmonic approximations are 

also considered. The problems arising because of the slow rate of 

convergence and the large number of coefficients relative to cell size 

are discussed. 

5.2 Description of the Algorithm - 
A reference level rotational ellipsoid is adopted and used as a 

basis for the reduction of altimetry to geoidal undulations on oceans 

and gravimetry to gravity anomalies on land. Its normal gravity po- 

tential, U(p), also forms the basis for representation of the actual 

gravity potential, W(p), in terms of the anomalous potential, T(p), 

(5.01) 
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where 

nM = Maximum degree of harmonic approximation 

The (nM+l) 

the potential function. 

coefficients, 6Cnm -(i) , 6Snm -(i) , define the ith approximation to 

The actual iteration is as follows, 

1) At each surface point, p, determine if it is land or ocean 

a) If p E So 

form . 

If p E s1 

form 

... 

P mX -(i)sin rnh I 'rim P 
(5.04) 

and 

(5.05) 

2) Since S(i)(p) is now defined for each point of S, obtain the 

spherical harmonic coefficients 
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( 5 . 0 6 )  

3 )  If the i + lSt and ith sets of harmonic coefficients are in 
close enough agreement, stop. Otherwise, continue the iteration at 

step 1). 

Simple initial coefficients are 

6s;;' = 0 ( 5 . 0 7 )  

The iterative process is then just the Neumann series of equation ( 4 . 0 8 ) .  

Section 4.6 shows that this algorithm converges. A better initial 

guess just decreases the number of iterations needed for convergence. 

To handle a practical problem, the use of a digital computer is es-  

sential. In particular, the surface integral is replaced by a finite 

sum of cells, here taken to be bounded by lines of latitude and Longi- 

tude, with land geometry so chosen that no cell contains both land and 

ocean. The division of ocean from land is taken, as shown previously 

in figure I., along multiples of five degrees of latitude and longitude. 

After setting <(i) (p) in a cell as constant at a central value of p, 

the surface integral over the cell separates. The X integral just 

involves a constant or a sinusoid. The 4 integral is 

I 

( 5 . 0 8 )  

Appendix B derives the appropriate recursion relations from which the 

integral may be evaluated for all required values of degree and order. 

For numerical accuracy, especially that of the higher harmonics, the 

cell dimensions should be kept small, but this increases the time 

I 
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required for each iteration, so that a judicious choice of cell size 

must be made. 

5 . 3  Numerical Examples - 
For numerical testing of the algorithm, a simulation is needed, 

because no actual altimetry data are available at this time; no al- 

timetry satellite is yet operational. In addition, since the formu- 

lation of this problem has avoided real, noisy data, so should the 

examples, to be consistent with the assumptions of the analysis. 

Therefore, the altimetry data on oceans and the gravimetry data on 

land were simulated using the spherical harmonic series representations 

in which the harmonic coefficients were obtained from outside sources 

(Kzhnlein, 1967, Rapp, 1968). To determine the accuracy of the har- 

monic coefficients obtained by the iteration from the altimetry and 

gravimetry data, a comparison need only be made with the standard 

coefficients used to define the data. 

the harmonic coefficients, written in Fortran IV for the IBM 36q' is 

given in appendix C.3.  

The computer program to estimate 

The Rapp (1968) coefficients, truncated at fourth degree, were 

used in the first example. The assgciated values of the mass of the 

earth and the reference radius of the earth were ignored in favor I 

ofthe values previously given in this thesis. 

coefficients as well as the results of the algorithm of this thesis for 

three different ocean-land configurations: 

Table 1 displays these 

1) 

2) A globe with all altimetry (oceans) 

3 )  A globe with all gravimetry (land) 

The globe of figure 1 

th Consistent with the existence and uniqueness analysis, the zero 

and first harmonics for the case with all gravimetry data diverge. 

All other coefficients for each of the cases differ from Rapp (1968) 

by less than one per cent (or about lo-' when the original coeffi- 

cient is zero). For these cases the cell size was 2 L/2 degrees of 
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latitude by 2 1/2 degrees of longitude. 

Cases with the spherical harmonics carried to 14th degree (Rapp, 

1968) and 15th degree (Kbhnlein, 1967) were also examined. In order 

to store the necessary number of coefficients to be estimated and 

keep computer time usage at reasonable levels it was necessary to in- 

crease the cell size to 5 degrees of latitude by 5 degrees of longi- 

tude. The results, which are shown in table 2, are not as impressive 

as the lower degree case, especially when the magnitudes of the co- 

efficients are small. The discrepancy arises from numerical limita- 

tions. In addition, since the Neumann series algorithm has linear 

convergence, convergence is slow. An improvement of the numerical 

technique including accelerating the convergence (Shanks, 1955) might 

economically allow continued calculation to obtain better agreement. 

The effect of varying the parameter, 8 ,  which was here chosen to 

be unity, in the range, 

( 4 . 6 2 )  

could also be explored. Numerical explorations could also determine 

whether.the symmetrical formulations($ is then outside of the range of 

inequality (4.6211, in which the parameters, T and 5, are introduced, 

provide a more suitable solution. 
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Chapter 6 

CONCLUSIONS AND SYNTHESIS 

6.1 Conclusions - 

This thesis has shown that a Neumann series solution of successive 

approximations can be used to combine satellite altimetry data given on 

oceans with surface gravimetry data given on land to determine the para- 

meters of the earth's gravitational field. The validity of truncated 

approximations to the infinite-dimensional problem is established by 

different methods, depending on how heavily altimetry data are weighted 

' relative to gravimetry data. The surface integration of a point func- 

tion on the globe is required at each iteration step in order to obtain 

its spherical harmonic representation. Convergence is linear and is 

slow for the small-magnitude higher harmonics. 

The important points in the formulation of the problem, establish- 

ment of uniqueness criteria, conditions for convergence of the proposed 

iterative method, and numerical application of the method to test exam- 

ples are tabulated below. 

- 6.2 Summary of Contributions 

The original contributions of this thesis to the field of geodesy, 

by which a method for combining satellite altimetry and surface gravim- 

etry data is developed, are: 

(1) Formulation of the problem of combining satellite. altimetry and 

surface gravimetry data as a mixed boundary value problem in po- 

tential theory for which a general solution method is not yet 

available. 

( 2 )  Analytic proof that it is sufficient for the problem to be unique 

if the zeroth harmonic is prescribed and if altimetry covers a 
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f i n i t e  area (This proof has  been extended, so  t h a t  i f  a l t ime t ry  

covers a s u f f i c i e n t l y  l a rge  a rea ,  such as t h a t  corresponding t o  

t h e  e a r t h ' s  oceans, t he  problem i s  unique).  

( 3 )  Formulation of t h e  problem as a formal i n t e g r a l  equation of t he  

f i r s t  kind, which combines, i n  a weighted sum, an i n t e g r a l  equa- 

t i o n  of t h e  f i r s t  kind with an i n t e g r a l  equat ion of t h e  second 

kind. 

( 4 )  Expression of t h e  nonsymmetric kerne l  of t he  formal i n t e g r a l  equa- 

t i o n  i n  t e r m s  of an appropr ia te  sphe r i ca l  harmonic expansion. 

(5) Transformation of the  kerne l  i n  s eve ra l  ways t o  obta in  a formal 

i n t e g r a l  equat ion of t he  second kind, f o r  which a Neumann series 

o f  successive approximations provides a so lu t ion  i f  t he  s p e c t r a l  

r ad ius  of t h e  ke rne l  i s  s u f f i c i e n t l y  s m a l l .  

(6) Determination of a t ransformation of t h e  kerne l  t h a t  symmetrizes 

it when a l t ime t ry  da t a  are weighted much more heavi ly  than gravim- 

e t r y  d a t a ,  and t h e  der iva t ion  of condi t ions s u f f i c i e n t  f o r  t h e  

problem t o  be uniquely determined by a Neumann series (Altimetry 

must cover f i n i t e  area, and a f i n i t e  approximation must be made). 

( 7 )  Computer ca l cu la t ions  of t h e  s p e c t r a l  rad ius  of t runca ted  approxi- 

mations of t h e  nonsymmetric kerne l  t h a t  r e s u l t s  when a l t ime t ry  and 

gravimetry da t a  are evenly weighted, demonstrating t h a t  t h e  spec- 

t r a l  rad ius  i s  less than one f o r  t hese  approximations and t h a t  t h e  

t r end  of t h e  speckra l  rad ius  with increas ing  degree of approxima- 

t i o n  ind ica t e s  t h a t  higher  approximations can be used. 

( 8 )  Demonstration by computer s imulat ion t h a t ,  when a l t ime t ry  and 

gravimetry d a t a  are evenly weighted, t h e  i t e r a t i v e  method w i l l  

recover  t h e  values  of geodet ic  parameters used t o  generate  simu- 

l a t e d  a l t ime t ry  and gravimetry d a t a  (gth , 14th , and 15th degree 

models) a 
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The following r e s u l t s  w e r e  independently obtained, t h e i r  appaar- 

ance i n  t h e  l i t e r a t u r e  i s  unknown: 

a) Derivation of recursion r e l a t i o n s  f o r  t h e  i n d e f i n i t e  i n t e g r a l  

of an a s soc ia t ed  Legendre funct ion.  

b)  Independent d e r i v a t i o n  of t h e  Bergman ke rne l  funct ion and t h e  

Neumann kernel  funct ion f o r  a s p h e r i c a l  boundary f o r  t h e  e x t e r n a l  

p o t e n t i a l ,  i n  terms of s p h e r i c a l  ha,rmonics and i n  closed form, 

The form of t h e  Neumann kernel  funct ion i s  known, bu t  i t s  de r iva t ion  is  

n o t  r e a d i l y  access ib l e .  

This minor r e s u l t  w a s  a l s o  obtained: 

Proof t h a t  the norm v a r i e s  continuously with changes i n  the! 

land-ocean boundary, as. 

- 6.3 Synthesis  

The proposed method permits a l t i m e t r y  and gravimetry d a t a  (in prln-  

c i p l e ,  a l s o  geoidal  s e c t i o n  da ta )  t o  be combined i n  a s i n g l e  determina- 

t i o n  of t h e  geodetic parameters without r equ i r ing  t h e  s t a t i s t i c a l  as- 

sumptions t h a t  have been necessary previously when d i f f e r e n t  types of 

measured d a t a  w e r e  combined. 

Methods f o r  t h e  determination o f  t h e  higher  harmonic d e t a i l  of t h e  

earth's g r a v i t a t i o n a l  f i e l d  are w e U .  knmn (Stokes,  1849),  b u t  requirei ,  

i n  p r i n c i p l e ,  a s i n g l e  type of data of uniform accuracy ko be a v a i l a b l e  

over t h e  whole e a r t h ' s  surface.  The l a c k  of s u f f i c i e n t  amounts of such 

da ta ,  even f o r  p r a c t i c a l  app l i ca t ions ,  r e t a rded  progress  f o r  a long 

t i m e .  Sa te l l i t e  geodesy, using new techniques and allowing new m e a -  

surements, has r e v i t a l i z e d  t h e  f i e l d  of geodesy. Conventional geodet ic  

sa te l l i te  observat ions determine w e l l  t h e  lower harmwics ,  b u t  are %ess 

e f f e c t i v e ,  except  f o r  s p e c i a l  cases of resonance, i n  determining t h e  

higher  harmonics. The a b i l i t y  t o  combine d a t a  types ,  using t h e  
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techniques developed here  permits added f l e x i b i l i t y  f o r  ob ta in ing  v a l i d  

d a t a  of uniform accuracy over t he  whole globe. The addi t ion  o f  satel-. 

l i t e  a l t ime t ry  along with compensating sur face  da t a  then could serve  t o  

improve the  determination of t h e  higher  harmonic de t a i l  of t h e  e a r t h ’ s  

g r a v i t a t i o n a l  f i e l d .  
1 .  

Practical  implementation of t h e  method developed here  r equ i r e s  

f u r t h e r  improvements, such a s  making t h e  ca l cu la t ions ,  including the  

su r face  i n t e g r a t i o n s ,  more accura te  and e f f i c i e n t ,  t o  i n su re  t h a t  t h e  

h igher  harmonics can be determined t o  s u f f i c i e n t  accuracy t o  obta in  

information of  i n t e r e s t .  There are many techniques (Shanks, 1955) t h a t  

can be employed t o  acce le ra t e  t h e  l i n e a r  convergence and thus make the  

algori thm more usefu l .  

t h e  b e s t  weighting of a l t ime t ry  r e l a t i v e  t o  gravimetry. I n  p r a c t i c e ,  

t h e  measured d a t a  are corrupted by noise  i n  var ious amounts, so  t h a t  

t h e  method should be modified t o  take  i n t o  account s t a t i s t i c a l  consid- 

’ e r a t i o n s ,  such as handling redundant measurements. Simultaneous *geoidal 

undulat ion and g rav i ty  anomaly estimates p resen t  i n  c e r t a i n  areas might 

a l s o  be used, even though i n  s tandard analyses of p o t e n t i a l  theory t h e  

r e s u l t i n g  problem is  overconstrained (Lavrent iev,  1 9 6 7 ) .  The technique 

A comparison could then be made t o  determine 

- I .  

of cons t ruc t ing  a kerne l  by summing sepa ra t e  i n t e g r a l  representa t ions  

using weighting f a c t o r s  and c h a r a c t e r i s t i c  func t ions  might be extended 

t o  accomodate these  genera l iza t ions .  

some reg ions ,  although fewer than before ,  without any genuine measure- 

ments. 

I n  addi t ion  the re  w i l l  s t i l l  be 

The s t a t i s t i c a l  ex t r apo la t ions  i n t o  these  regions could poss ib ly  

make use of both t h e  ava i l ab le  undulations and t h e  ava i l ab le  anomalie’s. 

Extending t h e  r e s u l t s  t o  t h e  inf ini te-dimensional  opera tor  might 

a l s o  prove t o  be an i n t e r e s t i n g  mathematical problem. It  should be 

noted t h a t  uniqueness of t h e  inf ini te-dimensional  opera tor  i s  n o t  f u l l y  

es tab l i shed .  I t  is  conceivable t h a t  an attempt t o  apply t h e  method t o  
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a problem with restricted altimetry (For example, only a low inclina- 

tion altimetry satellite is available) might lead to numerical problems 

if the finite-dimensional approximation resembles a situation giving 

rise to nonuniqueness in the infinite-dimensional problem, The tech- 

nique developed here might also be applicable to other problems that 

can be formulated as mixed boundary value problems in potential theory, 
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Appendix A 

DERIVATION OF THE KERNEL FUNCTIONS 

The Neumann kernel for the representation of the potential external 

to a sphere is here obtained from the Bergman kernel function (Bergman 

and Schiffer, 1953, p. 198), K B ( p ,  q), a harmonic function, in a manner 

that also yields the solution of the Dirichlet problem, the Poisson 

kernel. 

Define an inner product space of functions harmonic in R. Intwduce 

the inner product (different from equation (4.11)) 

The Bergman kernel function satisfies a reproducing property (Bergman 

and Schiffer, 1953, p. 201, see also Krarup, 1969), 

V(P) = (KB(p, q), V(q)) (A.  02) 

From this may be obtained integral representations of the potential SOP 

the Dirichlet and Neumann problems, In terms of a set of orthonormal 

functions, Vm(p), spanning the space, 

(VI (PI , Vm(P) 1 = &Im (A.03) 

the Bergman kernel function has the representation (Bergman and Schiffer, 

1953, p. 202) 

The normalized spherical harmonics (see equation (2.38)), xi(p), are 

orthogonal under this inner product as well as under equatjon (4.11), 

but do not satisfy the normalization required in equation (A.03). To 

determine the correct normalization set 

(A.05) 
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where ni i s  def ined i n  equation (2.38).  

by s u b s t i t u t i n g  equation (A.05) i n t o  equation (A.03) and using equation 

( A . 0 1 ) .  Thus 

The cons tan t ,  w i s  determined i‘ 

wi = [+I”’ 
Consequently, equat ion (A.04) becomes 

( A .  06) 

(A. 0 7 )  

The addi t ion  theorem f o r  t h e  sphe r i ca l  harmonics may be w r i t t e n  i n  t h e  

form, 2 
(ni+l)  

(A.08) 

where p = cosine of t h e  angle  between the  r a d i i  t o  t he  po in t s ,  p and q .  

Thus 

u < l  (A. 0 9 )  

I# where u. ,= - 
P q  

r r’ 

This  series may be summed t o  closed form using t h e  i d e n t i t y ,  

Q) 

(1 - 2pu + u 
n=O 

u < l  (A .10)  

I n t eg ra t ion  of equat ion ( A - 1 0 )  with r e spec t  t o  u between the  l i m i t s  of 

0 and u y i e l d s  

Noting t h a t  
2n+l  - 2 - - 1 - -  n+ 1 n+ 1 

equat ion (A.09)  becomes 

(A.11)  

(A. 1 2 )  
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:Comparing equat ions (2.36) I ( A . O 1 ) t  and ( A . 0 2 ) ,  it is  apparent 

t h a t  

A f t e r  s u b s t i t u t i o n  and s impl i f i ca t ion  - . - .  

( A .  14) 

(A. 15) 

(A. 1 6 )  

The r e s u l t  i s  j u s t  t h e  P.oisson kerne l ,  t h e  well-known i n t e g r a l  repre- 

on f o r  a e  s p h e r i c a l  D i r i c h l e t  problem. Using equations (A.07) 

and (A. 14) , t h e  well-known sphe r i ca l  harmonic series rep resen ta t i an  cap 

be obtained i n  t h e  form 

( A . 1 7 )  

Comparing equat ions ( 2 . 4 0 )  , (A . ,01 ) ,  and (4.021 I it is apparent t h a t  

when E aT(p) is prescr ibed ,  p E S I  t h e  i n t e g r a l  r ep resen ta t ion  f o r  t h e  

Neuinann problem i s  
P 

The s tandard  Neumann kerne l  i s  t h e  term i n  b racke t s ,  

I n  t h e  l i m i t ,  when p a l s o  lies on S I  w e  have * 
= rK I n  (1 + csc +I - rM csc $ (A.20)  
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This l a s t  r e s u l t  is  given without proof by MacMillan (1958, p.  4 0 6 ,  

prob. 15) and Prasad (1930, p. 45, prob. 9 ) .  

For our purposes it i s  des i r ab le  t o  de f ine  a modified Neumann 

kerne l  

By def in ing  

(A 21 )  

(A.23) 

The sphe r i ca l  harmonic representa t ion  of t h e  modified Neumann kerne l  

may be obtained by s u b s t i t q t i n g  equation ( A . 0 7 )  i n t o  equation (A.21)  , 
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Appendix B 

INDEFINITE INTEGRAL OF THE ASSOCIATED LE,GENDm FUNCTION 

The associated Legendre function is 

whkre the Legendre polynomial, 4s 

(1-12 - 1)" Pn(P) = Pn(P) = - - 0 1 dn 
2"n! dun 

C %  

Differentiation of the associated Legendre function with respect to 1-1 
I 

and multiplication by (1 - l ~ ~ ) ~ ' ~  results in the well-known recursion 
- %  re la t ion 

Integrate the left hand side by parts, 

. %  - .  I. (B.04) 

A t '  " ~ -. 
This may be combined with a formal integration of the right hand side 

of the recursion (B. 03) 

(B. 05) 

I C  

Solutio? of the last integral requires the well-known recursion relation 

for varying order 
i ' ( 1  . + c  I - r  r L  

i '  . . . * - a  L L  ' * 
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(B.06) 

+ (n - m) (n + m + I)P;(~) = o 

This is obtained by differentiating Legendre’s differential equation 
.. 

(B. 07) 

m times asld noting tha y = Pn(v) is a solution. After redefining m, 

equation (B.06) becomes 

After substituting equation (B.08) into equation (B.05) and solving for 

the low order term, there results, 

03.09) 

This recursion, relating, for constant degree, an associated Legendre 

function and its Lntegral at adjacent orders, is valid for 

O < m < n  (B.lO) 

There are two special cases, m = 1, and m = n. For m = 1 

(B. 11) 

It is not related by the recursion to integrals of higher order and 

thus is isolated. The known alternate form depending only on Legendre 

polynomials is 



For m = n 

( B . 1 2 )  

(B. 13) 

Using t h i s  as  a s t a r t i n g  value u2Pt (u)du  may be obtained f o r  a l t e r n a t e  

orders .  T o  ob ta in  t h e  remainder a value i s  needed f o r  
41 

(B.14) 

Using i n t e g r a l  formula #146 i n  Burington (1957) 

Thus knowledge of t h e  Legendre funct ions and the  i n i t i a l  condi t ions ,  

and 

s u f f i c e ,  i n  p r i n c i p l e ,  t o  ob ta in  i n t e g r a l s  

(B.16) 

(B.17) 

(B.18) 

f o r  a l l  i n t e g e r ,  n and m ,  O s m < n < m  

The recurs ion  i n  equation ( B . 1 5 )  i s ,  however, unstable  near  t he  

poles .  A d i r e c t  evaluat ion of equation (B.14) with p = s i n  $ using 

# 2 . 5 1 2 ,  2 .  and 3 . ,  of Gradshteyn and Ryzhik ( 1 9 6 5 )  was a c t u a l l y  used 

i n  t h e  computer program (see appendix C ) ,  where t h e  algorithm is 

w r i t t e n  i n  terms of t h e  normalized sphe r i ca l  harmonics. 
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Appendix C 

COMPUTER PROGRAMS 

The Calcula t ion  of t h e  Ocean Functions 

A l i s t i n g  of a computer program khat ca l cu la t e s  t he  ocean coe f f i -  

C.1 

I 

c i e n t s ,  Qik, is given below. Sample values (aii,  nil, ' i ,85' ' i , 1 6 9  1 

a r e  given i n  t a b l e  3 f o r  t h e  land-o'cean configurat ion of f igu re  1, 

along with previously published ( L e e  and Kaula, 1967, Munk and MacDonald, 

1 9 6 0 )  va lues ,  up t o  e igh th  degree,  of ail. 
l i n e a r  subsc r ip t s  w e r e  transformed t o  degree and order  subsc r ip t s ,  

For ease of comparison, t h e  

st4 

nm j 
sz = szik (C .  01 )  

where t h e  subsc r ip t s  a r e  r e l a t e d  a s  i n  equation (2.38) .  The comparison 

with t h e  published values  i s  no t  favorable ,  bu t  t h e  choice of geometry 

here  i s  r e l a t i v e l y  crude and intended t o  be a d i s t r i b u t i o n  t y p i c a l  of 

a l t ime t ry  and gravimetry,  r a t h e r  than of ocean and land. 
000 

no t  devia te  from Rll = f i O O O  by more than 20  percent .  

be shown t h a t ,  f o r  a l l  n ,  

The fiii's do 

Actual ly ,  it can 

000 n nmj 

000 2n+1 m=o nmj 
C Q  Q = -  

j = O , l  

(C.02) 

The c o e f f i c i e n t s ,  Qik, i $: k ,  genera i ly  are an order  of magnitude 

smaller. 
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Appendix C. 1 

C 
C ‘441N PROGPAM CALCIILATES THE OCEAW COFFFIC IFYTS FY?  F P F ~ l F v I E [ l  
C L AN D-nC AN GE 13Yc TRY. 
C ChLLS OCLAUDt O C O S t  OSINq  NlEGN’3, O C l b ( t  F X l T v  E R Y S P T ) .  

I Y P L I C l T  REAL * 9 f A-H 9 ‘3-Z 1 
REAL * 8 THFTA ( 9 1 9 X I 9 1 9 C X  9 1 t D Y  ( 20 t ’3 9 9 1 

RE4L * R COSMPL ( 2 5  t 72 ) 9 S T V Y P L  ( 2 5  9 7 2  1 
.REAL f 8 FYT ( 8 J .t l3Y L 4 1 

RE’W. * -8 r 3 ~ ~ 1 - 3  4 a3 13 It 1 3  t9 17 1 

RE4L*8 FPfJRP’I / 12 5“6697061435917  / 
4F AL* 9 PIY4I-F / 1.57D79h376774897 t 
LOGICIL * 4 Y4P ./ 7 I 
INTEGER * 4 OCLA 
INTEGER * 4 YAXDFG / 1 2 1  NOCFLC / I R  / t W I Y P  / 4 / 
INTEGER * 4 II ( 4 1 T I? ( 4 \ t NPLMIN / 1 / t hlP1‘44X 7 13 / 
NAMELIST / CNSTNT / M4XDEG 7 NOCELL t N P l M I N  t n131.Y4X 9 Y 4 ’ t Y S I Y P  
1 1 ( 1 ) = 0  
I 2 ( 1 ) = 0  
I 1 ( 3 ) = l  
1 2 ( 3 1 = 1  
CALL ERRSET I 217 T 1 t - I  7 1 )  

READ ( 5 9 CNSTNT q FnlD = 9999Q ) 
WRITE ( h t CNSTNT J 
NSP = NSIMP + WSIYP 
CELL = P I H A L F  / NOCELL 
CELLH = CELL / 2 0 0  
CELLN = CELLH/ N S I Y P  
CONST = tELLW/ (FOURPI  * 390 1 
LATYAX-NOCELC 
LONGMX=4* NOC FL 1 
MXDEGP=MAXDEG+l 
MDOP = Y4XDE6 + MXDEGP 
CALL OCLAUD .4 MAP ) 

1 CONTINPJE 

DO 50 YP2 = 1 t MXOEGP 
DO 50 NP2 = 1 t YXDEGP 
DO 50 Y P 1  1 T MXDEGP 
00 50 N P l  = 1 t MXDEGP 

DO 200 LONGNO = 1 T LCINGYX 
ALPNG = I LONGNO - .5DQ 1 * CELL 
COCsYPL ( 1 LONGNO 1 = I M  
SINYPL ( 1 9 LONGNO = O D 0  
DO 100 M 1  = 2 T Y n O ”  

50  OMEGA t N P l  q MPL t YP2 e MP2 7 000 

FACTOR = ( M I  - 1 1 * 4 ~ n m  
COSYPL ( M 1  9 LONGNO 1 = DCnS ( FACTDR 1 
SINvh4PL ( M 1  t LONGNO 1 = CrSIN ( F’ACTOR 1 

100 CONTlNUE 

THETA ( 1 1 = O D 0  
I = l  
CALI,. NLEGND ( MAXOEG 7 TFfETA 4 T 1 T PMd 1 t P I 1 J 1 XfI),CXII)) 
‘IH = NSP + 1 
L = l  
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00 1000 NTYETA = 1 t LtTMAX 
I = I H  
I H  = L 
L = I  
THETA ( L 1 = NTHETA * CFLL 
CALL NLEGND ( MAXDFG 9 THFTA ( I 1 T PY( 1 t 1 9 I 1 T X l I ) r C X ( I ) )  
THETA ( 2 J = THETA ( I H  1 + CFLLN 
DO ?05 I = 2 t NSP 
CALL NLEGND ( MAXOEG T TYFTA ( I 1 t PM( 1 T 1 9 I ) 7 X (  I I r C X ( 1 ) )  
I F  ( I .LT. NSP 1 THETA ( I + 1 1 = THETA ( I 1 + CELLlV 

205  CONTINUE 
ALAT = P I H A L F  - THETA ( NSIMP + 1 1 
DO 900 LONGNO = 1 t LOYGMX 
ALONG = ( LONGNO - .5DO 1 5 CFLL 
I O N  = OCLA ( ALAT T ALONG J 
10s = OCLA ( -ALAT ALONG 1 
I F  ( ION .EQ. 1 .4ND. I n s  .EQ. 1 1 GI1 TO 909 
I D 1  = -1 

I D 1  = - I D 1  
IO1 = - I D 1  
DO 700 MP1 = 1 9 NP1 
I 0 1  = -101 
Y 1  = MP1 - 1 
MMPl = M 1  + MP1 
I F  I M 1  .NE. 0 1 TOM1 = 2 0 0  / M 1  
I n 2  = -1 
DO 600 NP2 = 1 9 NP1 
I D 2  = - I D 2  
I02 = - I D 2  
MPZM = NP2 
I F  t NP2 ,EQ. NP1 1 MPZM = MP1 
DO 500 MP2 = 1 MP2M 
I 0 2  = -102 
M2 = MP2 - 1 

I F  ( NCOEF .EQ. 0 1 GCI TO 500 
F = OD0 
T = OD0 

DO ROO NP1 = N P l M I N  t NPlYAX 

NCOEF = 1 - ION + 1 - 10s ) * mi 102 

DO 208 I = 2 7 NSP T 2 
F = P M ( N P L ? M P l t  I ) * P M ( N P Z r M P 2 t S  ) * C X (  I ) + F  
I F  ( I .LTo NSP 1 T = T 

1 + PM ( N P l  t M P l  r I + l )  * PM ( NP2 T MP2 t I + l l  C X  ( 1 + 1 1  
208 CONTINUE 

FACTPC = 4D0 * F + 200 * T 
1 + PH I N P l  T Y P l  t L 1 * PM ( NP2 7 YP2 9 L 1 * C X  ( L 1 
2 + PM ( N P 1  t Y P 1  v I H t  * PM ( NP2 * YP2 T IH) * CX ( I H )  

COEF = NCOEF * FACTPC * CONST 
I F  ( M l  .GE. M2 GO T O  2 1 0  
I F  ( M 1  .GT. 0 GO T O  240 
FACTOR = ( 2D0 / M2 * SINMPL f YP2 7 1 1 
CC = FACTOR * COSMPL ( MP2 T LONGNO 1 
C S  = FACTOR * SINMPL ( MP2 9 LONGNO ) 
GO TO 2 5 0  
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2 1 0  IF ( M 1  *NE. 0 1 GQ TO 220 
CC = CELL 
GO TO 250 

220 I F  ( M2 .NE* 0 f GO TO 2 3 0  
FACTQR = TOM1 * SINMPL < MP1 9 1 1 
CC = FACTOR * COSMPL ( MP1 9 LONGNO 1 
SC = FACTOR * SINMPL f MP1 9 LONGNO ) 
GO TO 2 5 0  

230 I F  ( M l  *NE. M 2  1 GO T O  240 
FACTOR = SINMPL ( MMPl 9 1 ) * TOM1 / 4D0 
CS FACTOR * SINMPL ( MMPl 9 LONGND 1 
sc = cs 
CC = FACTOR *'COSMPL ( MMPl 9 LONGNO ) 
S S  = CELLH - CC 
CC = CC + CELLH 
GO TO 2 5 0  

240 MD M 1  - M2 
HS = M 1  + M 2  
MSP = MS .+ 1 
HDP = I A B S  I MD 1 + 1 
FACTP = SINMPL t MSP 9 1 ) / MS 
FACTM = SINMPL ( MDP 9 1 1 / IABS ( MD 1 
F A C T l  = FACTM * COSMPL ( MOP t LONGNO b 
FACT2 J FACTP * COSYPL I MSP 9 CONGND 1 
CC = FACT1 + FACT2 
S S  = F A C T l  - FACT2 
FACT2 = FACTP * SINMPL ( MSP T LONGNO 1 
F A C T l  = FACTM * SINMPL ( MDP T LDNGNCI 1 * I S I G N  t 1 T M i l  1 

CS = FACT2 - F A C T l  
S C  = FACT2 + F A C T l  

250 CONTINUE 
OMEGA ( N P l  9 M P l  9 NP2 9 MP2 1 = 

lOMEGA ( NP1 9 MP1 p NP2 9 MP2 )+COEF * CC 
I F  I M 1  .NE. 0 f GO TO 300 
IF ( M 2  .EQ. 0 GO TO 500 

300 ONEGA ( M 1  v N P l  v NP2 9 MP2 1 

IF ( M2 o E Q e  0 1 60 TO 500 
OMEGA ( M 1  9 NP1 7 M2 9 NP2 1 = 

I f  ( MP1 *EO. MP2 *BNDe N P l  *EO. NP2 ) GQ TO 500 

GO TO 400 

lOMEGA ( M 1  9 N P l  9 NP2 9 MP2 )+COEF * SC 

lOMEGA ( M 1  9 PIP1 9 M 2  9 NP2 )+COEF * SS 

400 OMEGA t N P l  9 MP1 9 M2 9 NPZ I = 
lOMEGA ( N P 1  q M P l  9 M 2  9 NP2 )+COEF * C S  

500 CONTINUE 
600 CONTINUE 
700 CONTINUE 
800 CONTINUE 
900 CONTINUE 

1000 CONTINUE 
1100 FORMAT( 1 2 X  9 8A8 1 

REA0 ( 5 9 1100 1 FMT 
WRlTE ( 6 9 1100 1 FMT 
WRITE 1: 7 q 1100 1 FMT 
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1 2 0 0  FORMAT i % 1  N 1  H1 I NZ W2 I OMEGrt Y l  M 1  I 1 2  Q 2  I 9 
LYEGA M 1  M l  1 N2 p12 Y OMEGA NZ M l  I Y2 M3 I l lWE 
1 GW 8 )  

M R I V E  ( 6 9 I 2 0 0  1 
DO 1800 NP% = NP lMIN 0 MPPYAX 
M 1  = NP1 - ]I 
DO 1700 M P l  = 1 v NP1 

Pd2 = NP2 - B 
HP2M = NP2 
I F  B NP2 s E Q e  NPP. B MP2W = MP1 
DO 1500 WP2 = P 9 VP21 

I = 1  
OM l 1 B = OWEGA t N P l  v HPE. 9 pdP2 9 YP2 
I F  B M i l  .NE, 0 B GO T O  1300 
I F  [ # 2  e E Q a  0 1 GO TCl 1450  
GO TO 1400 

1 1 t 2 ) = 1  
1 2  B 2 B = 0 
OM B 2 1 OMEGA f kp1 9 Y P l  9 WPZ 9 YPZ 1 
IF U #2  s E Q e  0 b 63 V f l  1 4 5 0  
1 = 3  
OM ( 3 1 = OMEGA q l  9 NP1 t Y 2  9 NP2 1 
I F  [ # P I  e E Q c  MP2 .AND* N P l  e E Q e  NP2 1 GO TO 1 4 5 0  

11 f 1 9 = 0  

1300  P = 2 

1400 I = 1 Q 1 

VEGA f NPP Y P l  9 N2 p YP2 1 
FMT 1 a P 9 All 9 M l  9 I1 ( I 1  9 Y Z  I M 2  v I 2  ( I 1  1 

14’95 B f M 1  I M l  9 I 1  ( I 1  1 P N 2  v Y 2  P I 2  ( I I  1 v 
I I  1 $ I H  = l o  I )  

Y I = l 9 1 )  
9 4 4 2H3 9 I 2  9 213  9 I2 9 F16.12 1 1 

1 5 0 0  CONTINUE 

1700 CONBlNUE 

I = -I  
WRITE d 3 9 FABT B a 
GO TO b 

w999 COPdBINUE 
CALL E X I T  
STOP 
END 
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C QCLAUD READS-IN THE LAND QCEAN MAQtCOLUMVS 1 - 7 2  7 f  35 C & R D S ) .  

C LONGITUDEe 
C O C L A ( I 0 C L A )  SPECIFIES L A N D  OR OCEAN FOR A GIVEN L A T I T U D E  A N D  

LOGICAL FUNCTION OCLAUW+ t MAP ) 
LOGICAL "1 LOUT[ 7 2  1 q QLAND / ' T q  / p QOCEAN f ' 9 f 

INTEGER *4 OCLA t THENO 
REAL*8 L A T  9 LONG 9 THFTA 9 P I H 4 L F  / 1m57079632679 '+897 / 9 A ( 3 6 )  

L O G I C A L * l  LOCLA 36 9 7 2  1 MAP*4 

100 FORMAT t 72L1 w A 8  B 
2 0 0  FORMAT( '1 'o  'LAND = T OCEAN = -' o T 6 6 r  '0 DEG LONG'9T93r  ' 9 0 ' 9  

250 FORMAT ( T 2 9  v ' I s  p 72A1 9 ' I '  9 T 1 2 0  0 A R  1 
1 T 2 8 ~ ' 1 8 0 a p f 4 6 w  ' 2 7 0 ' ~ T 1 0 0 ~ ' 1 8 0 '  ~ T ~ ~ O I ' L A R E L '  1 

IF t MAP 1 
l R E A D ( 5 r  100 1 ( ( LOCLA ( I 7 J ) 9 J = 1 9 7 2 ) r A ( I ) r I = 1  t 36 1 

W R I T E ( 6 e 2 0 0  1 
DO 400 I = P 9 36 
DO 350 J = 1 9 72 
I F  ( LOCLA ( I 9 J 1 1 GO TO 300 
LOUT ( J 1 = QOCEAN 
GO TO 350 

300 LOlJT I J 1 = QLAND 
3 5 0  CONTINUE 

400 CONTINUF 
WRITE ( 6 9 250 ) ( 1.OlJT ( J 1 9 J = 1 9 72 1 7 A ( I ) 

OCLAUD = .FALSE. 
RETURN 
ENTRY I O C L A t  L A T  7 LONG b 
ENTRY O C L A  L A T  9 LONG 1 

C - P 1 / 2  < L A T  <= P I / 2  
C 0. =< LONG < 2*PI : 0. =< THETA < P I  i 

THETA = P I H A L F  - LAT 
ENTRY IOCLAT f THETA t LONG 1 
THENO X I D I N T (  18.DO+THETA / P I H A L F  1 + 1 
LONGNO = I D I N T I  18.DO*LONG / P i H A L F  1 - 3 5  

OCLA = 0 

RETURN 
END 

I F  t LONGNO .LE, 0 1 LONGNO = LONGNO + 72 

I f l L O C L A  i THENO 9 LONGNO 1)OCLA = 1 
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THE CALCULATION OF THE NORMS OF THE OPERATOR 

I: 
C M A I M  PROGR4M CALCULATES THE SPECTRAL R A O I U S  04 NOKV OF THF 
C K E R N E L  e 
C C A L L S  AKKYINo A K K Y I I  A K Z E R O p  AKKVr  DMbX1( 9 E X I T 9  E R Y S E T ) .  

f P i P L l C Z T  R E A L  * 8 t A-H p 0 - Z  I 
REAL * 8 A (169 1 / 9 * 1 D O i l h * L D - l o 5 6 f 1 0 - ~ ~ ~ R ~ l ~ - 3 /  
REAL * 8 B ( 1 6 9  1 q O C I M  / 50-4 1 
INTEGER * 4 IOWEGA 1 1 f 9 ?RMI lV  / 1 / p l R Y 4 X  / 5 / rn YXDFGP 1 1 3 1  
INTEGER * 4 I T E R M  1 0 / p YR / 11/ 9 T S A f l P  / 84 I 9 I K S Y  / 1 / 
INTEGER * 4 HTMAX /LO / 0 KNORM / 0 / 9 KZER.1  / 1 / 9 15 / 8 / 
NAYELIS'F / CNTRL I SRNtiQ 9 I4M4X 9 IONLEG4 p YXDEGP 9 IT'4hX 

i IKSK KNORW KzFRn r5  [ T E R M  I B  Y S A M P  n i - ~ q  A 

1 

4000 

7000 

7080  

9090 

7100 

705 0 

C A L L  ERRSET 2 1 9  7 1 p -1 9 1 1 
CONY I NU€ 
R E A 0  I 5 a CNTRL p E N D  = 99999 1 
M R I T E  6 9 C N T R L  1 
ALAY = 9999eDO 
IOFG = MXDEGFP - 's 
I H A X  = WXDEGP * MXDEGP 
C A L L  WUKYIH IMISX e i B € R #  9 I R  9 I K S K  1 
IF ( IOWEGW .NE, 1 t GO TI) 6000 
lOHEGA = 0 
CALL A K K Y I  # WXDEGP p 15 9 I S A M P  1 
I F  K Z E R O  o E Q e  0 1 CALL A Y Z F R O  
I F  I R W I N  a G T e  ? R M A X  B GO TO 1 
00 9000 PR I R H I M  9 I R M A X  
I R M  = I R  - P 
OALAM = ALAM 
ORF =: - 1000 
O L A H  = - P O D 0  
DO 8000 I T  = P 0 ? ? W A X  

OLAH = A L A M  
8F = DlBBS (i B f P 1 B 

M A X  e E Q e  B S GO TO 7090  
0 I = 2 9 I M & X  
H A X I  ! BA5S l B B I 1 3 RF 1 

DBF = DABS f 5 F  - OBF B 
OBF = BF 
C O M T I  NU€ 
DO 9100 I B 9  AX 

CONTINUE 
WRITE l 6 P -9050 l D E G  B ER 0 I T  9 A L A Y  9 DLAM 9 RF T DBF 

= B I T P / R F  

A T  B ' O O D € G = ' o I 3 s ' p  K IV='*I3rs, L I V = @ q 1 3 e s 9  L A M 8 D 4 = '  9 6 2 4 s  1 4 9  
1 ' 9  0 LBLHS'9 G16.8r'o R F = a p G 1 4 e + R o ' o  DBF='9G16.8 ) 
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WRITE ( 6 9 7 1 5 0  ) ( A ( II I T I[ = 1 9 I Y A X  I 

I F  ( DAHS ( 1DO - ALAM 1 .LE. N A Y  .C)R. PBF * ?r)nO ,GT. SF ) 
7 1 5 0  FORYAT ( ' O A ( I I = '  9 9 G13.5 9 e , '  1 1 

1 GO TO 8030 
I F  ( 100 .GEe A L A M  I GCl TO 7500 
I F  ( DLAM eGEe A L A M *  D L I M  I GO TO ROO0 
I F  ( OALAM eGE. AL4Y .OR, KNORY eGTe I R  I G3 TT) 7330 
WRTTE ( 6 9 7 2 0 0  1 

7 2 0 0  FORMAT ( sOTHE NORM r)l[VERGFS* 1 
7 2 5 0  FORMAT( 6 x 1  ~ M X D E G P ~ * ~ I l l i ~ ~ r I R ~ I N ~ ' ~ I l l ~ ' ~ '  1 

1 I A= '  9 3 l G24.16 T ' 9 '  I I 
WRITE ( 7 9 7 2 5 0  1 YXDEGP 9 I R  9 ( A ( I 1 9 1 = 1 9 l u 4 Y  
GO TO 10000 

7300 CONTINUE 

7400 FORMAT 'OTRY NEXT ITERATED KERNEL * I 
WRITE ( 6 9 7400 1 

WRITE ( 7 9 7 2 5 0  1 MXDEGP 9 1 R  9 ( A ( I 1 T I = 1 t I q 4 X  I 
GO TO 9000 

7500 I F  ( DLAM . G E .  A L A Y *  D L I M  ) G O  TO 8000 

7700 FORMAT I 'ONORM LESS THAN ONE' 1 
WRITE I 6 9 7700 

WRITE ( 7 9 T 2 5 0  ) YXOEGP 9 I R  9 I A I I 1 9 I = 1 t 1 '44Y  1 
IF ( KNORM .GT. I R  I GO TO 9000 
GO TO 10000 

8000 CONTINUE 

8500 FORYAT ( 'OITERATION FOR LAMBDA EXCEFDED' I 

9000 CONTINUE 

.9500 FORMAT ( 'OMAXINUM NUMBER OF ITERATIONS OF YCRNEL EXCEFDED'  I . 

h R I T E  ( 6 7 8500 1 

H R I T E  ( 7 t 7 2 5 0  1 MXDEGP 9 I R  9 ( A ( I I 9 I = 1 9 T Y A X  ) 

WRITE ( 6 0 9500 1 

10000 CONTINUE 
GO TO 1 

99999 CONTINUE 
CALL E X I T  
ST3P 
END 
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C AKKY TRANSFORMS A I N T O  B RY M C l L T I P L Y f N G  RY A V E R S I O N  D F  K t  
C I N C L U D I N G :  T H E  K E R N E L ( P 0 W F R  METHOD), A S P E C I F T E D  I T F R A T F D  
C K E R N E L 9  T H E  A O J D I N T  ONTO THE KERNEL, I T E R 4 T E O  A D J O I N T  OqTn 
C I TERATED KERNEL. 
C A K K Y I M  I N I T I A L I Z E S  T H E  DEGREE OF HARMONIC A P P R O X I M 4 T I O N  AND 
C OTHER CONTROL V 4 R l A B L E S .  
C A K K Y I  R E A D S - I N  T H E  OCEAN C O E F F I C I E N T 5 ( O M E G A )  ACCf IRDING T I  

C AKZERO CAUSES THE ZEROTH HARMONIC TO B E  SUPPRESSED. 
c R E A D - I N  FORMAT. 

S U R R O U T I N E  AKKY ( A 9 BR 9 I R M M )  
I M P L I C I T  R E A L  * 8 f A - t i  0 0 - Z  ) 
R E A L  * 8 A ( 1 6 9  p B f l h 9  P 2 I s R B  ( 1 6 9  1 v O F  (169 1 9 Df ( 1 6 9  ) 
R E A L  * R OMEG (169 e169 9 F M T  l R 1 + T F R Y  f 169 ) 
I R M  = I R M M  
IF ( I K S K  .NE*  1 1 I R M  = I R M Y  +- 1 
DO 100 I = 1 9 I 

1 0 0 8  ( I  ? 1 )  = A (  I ) 
IF I Z E R O  e E Q e  0 R ( 1 v 1 ) = OD0 
I O L D  = 1 
NEW = 2 
IF f IRM .Ego 0 GO T O  1000 
DO 900 I C M T  = 1 9 I R Y  
DO 800 I = 1 p I M B X  
8 ( I 9 NEW 1 = OD0 
DO 700 JC= 1 9 I M A X  
J = J C  
IF ( I A B S  ( I B l e G T e  1 J = I M X I  - JC 
I F  ( I .EQ. J 1 GO TO 700 
B ( I 9 NEW ) = B ( I 9 NEW 1 +- OF I J ) 6 'IYEG f I 9 J ) ,% 

1 R ( J t I O L D  ) 
IF ( I e E Q .  I T E R M  1 TERM ( J 1 = R .I I NFW 1 

7 G O  C O N T I N U E  
B ( I t N € W ) = R (  I 9  I O L D ) * ( O F (  I ) + I F f  1 ) : :  

l D Y E G { I v I ) ) + S (  I T N E W )  
I F  ( I .EQe ITERlY 1 T F R M  ( I = R ( 1 9 NFW 1 

800 C O N T I N U E  
850 FORMAT(  '01 '  t 1 3 t ' ) z '  t 5 ( G24.16  t 0'  1 

I F  ( I T E R W  eGTe 0 1 H R I T F  ( 6 p R 5 0 ) I T E R Y , ( T F R M  ( J 7 J = 1 9 I Y A X )  
6 5 0 0  FORMAT ( ' O B ( I ) = '  9 9 ( G 1 3 . 5  9 ' 9 '  I ) 

I F  ( I S  .GTe 0 1 
l W R I l E  ( 6 9 6500 I ( R I I 9 NFW 1 0 I = 1 9 I Y A X  1 

I = I O L D  
I O L D  = NEW 
NEW = I 

900 C O N T I N U E  
I F  ( IKSK .€Qe 2 f GO TO 1 9 5 0  
I F  ( IKSK .NE, 1 GO T n  1500 

1000 DO 1300 I = 1 T I M A X  
9 ( I 9 NEW 1 = OD0 
DO 1 2 0 0  JC= 1 I M A X  
J = J C  
IF I I A B S  I 1 B ) m G T e  1 1 J = I M X I  - J C  
I F  ( I e E Q e  J 1 GO T O  1200 
6 ( I 9 NEW 1 = R ( I 0 NEW +- f1DO- OF ( I ) - DF ( i C 
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1 OMEG ( I 9 J 1 * B ( J 9 I O L D  I 
I F  ( P eEQo ITERM ) TERM ( J I = R ( I o NFW I 

8 ( I 9  NEW 1 5 8  I I 9  I O L D  1 * f OF ( I 1 * O F  ( I I + ( 130- 

IF  ( I . E Q e  ITERNt 9 TERM ( I I = R ( I t NFW f 

1200 CONTINUE 

1 D F (  I ) - O F  I I 1  * O M E G  ( 1 7  1 I I + R  ( I t  N F W I  

1300 CONTINUE 
I F  I ITERM * G T e  0 I H R f T E  ( 6 r 8 5 0 I T T E R Y q ( T E R Y  ( J 1 t J = 1 , IYAXI 
IF ( IR eGTs 0 I 

I = !OLD 
I O L D  = MEW 
NEW = I 

l W R I T E  ( 6 P 6500 1 I R f I p NEW 1 P I = 1 v I M A X  1 

I F  I I R M  *E& 0 1 GO TO 2000 

DO 1900 I C N T  = 1 0 I R M  
DO 1800 I = 1 v I M A X  
B ( I 1 MEW I = O D 0  
DO 1700 JC= 1 p I M A X  

I F  I A B S  t P 5 ) e G T e  1 1 J = IMXI - JC 
I F  f I sEQs J ) GO Tfl 1700 
e I I 9 NEW 1 = R ( I p NEW 1 + O Y E G  ( 1 J 1 * 5 ( J 9 I ? L n  1 
I F  ( I eEQa I T F R M  TERM 9 1 = R t I 9 NEW 1 

1500 CONTINUE 

J = J C  

1700 CONTINUE 
8 I I NEW b = R ( I , I O L D  1 * ( DF ( I 1 + O F  ( I ) -* JYFG ( I 

1 9  I )  I + B (  1 9  N E W )  * O F  ( I  1 
IF ( I .EQ. ITERY I T E R M  t r I = B ( I NFW I 

1800 C D N T I  NUE 
I F  4 TTERM * G T .  0 1 W R I T E  ( h q 8 5 O I I T E R M ~ 1 T F R Y  ( ,I 1 9 J = 1 9 I U 4 X )  
I F  ( IR e G T e  0 1 

l W R I T E  ( 4 6500 1 i R f I p NEW 1 9 I 1 9 ? Y A Y  
I = I n L D  

NEW = I 
IoLn = NEW 

1900 CONTINUE 
1950 CONTINUE 

XF f It3 *LE. 0 1 

2000 00 2 2 0 0  I = 1 9 I M A X  
2200 BB t 1 1 B I I 9 I O L O  

l W R I T E  ( 6 9 6500 1 6 ( I B I O L D )  9 I = 1 v I Y P X  I 

RETURN 
ENTRY A K K Y I M  ( I Y A X  'P l T E R Y  9 18 9 I K S K  1 
I M X l  = I M A X  + 1 
R E  T U R N  
ENTRY PKKYK I MXDEGP 9 I5 9 I S P Y P  1 
IZERO = 1 
I 8  = 8 
I F  ( 15 e E Q e  5 1 I 8  = 5 
INC = -1 
I V  = 0 
DO 3000 N 1  = 1 9 MXDFGP 
I N C  = I N C  +- 7 
D F V  = ZOO / N1 
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OFV = 100 - D F V  - D F V  
00 2900 ICNT 1 9 INC 
I V  = I V  + 1 
O F  ( I V  J = D F V  
O F  t I V  1 = OFV 

2900 CONTINUE 
3000 CONTINUE 
4100 FORMAT ( I5 t 7 X  RAa 1 

R E A D  ( I 8  9 4 1 0 0  ) INPUT t FMT 
WRITE ( 6 4100 1 INPUT 9 FMT 

4200 READ ( 1 8  9 FMT ) I 9 N1 t M 1  9 11 NZ T Y 2  9 1 2  9 7 Y 1  
L r  101 N3  T M3 9 11 T N4 t '44 T I4 t 3q3 

1WRITEt  6 w FMT 1 I 9 N1 t M 1  9 11 t NZ t Y 2  9 I 7  T 1 M 1  
2 r  ID, N l  9 M 3  t 11 9 N 4  9 M 4  9 14 9 JM3 

I F  ( ISAHP .LE. 0 1 

4 3 5 0  I F  ( I *LE. 0 .OR. N1 .GE. MXOEGP J GO T O  4500  
I V l  = N1 + I 1  1 * N1 + M l  + 1 
I V 2  = ( N2 + I2 J * N2 + M 2  + 1 
OWEG t I V 1  9 I V 2  1 = O Y l  
OMEG ( I V 2  t I V 1  J = 0'41 
I F  t N3 OLE.  0 J GO T O  4209 
IVP = t N3 + I 3  1 * N3 + '43 + 1 
I V 2  = f N4 + 14 1 * N4 + M4 + 1 
OMEG 1 I V 1  t I V 2  J = OM3 
OMEG ( I V 2  9 I V 1  1 O M 3  
GO TO 4 2 0 0  

4 5 0 0  CONTINUE 
I F  ( I S A M P  OLE. 0 1 I S 4 M P  = 1 + I A R S  ( I F I Y P  J 
0 0  5000 I V  1 t I M A X  9 I S 4 M P  
WRITE I 6 t 4700 1 I V  9 f OMEG ( I 1  9 I V  9 11 = 1 t I M 4 X  J 

4700 FORMAT ' O r ) M E G ( I t '  t 13 t ' I = @  9 9 ( G12.4 9 ' 9 '  J / 
1 10 G12.4 9 ' 9 '  1 1 

5000 CONTINUE 
5 2 0 0  FORMAT ( ' 0  OF ( I I ' 9 ( G 1 2 . 4  9 ' 9 '  1 1 

WRITE ( 6 t 5200 J ( OF ( I 1  J t 1 1  = 1 9 I W X  t I S A W P  J 

WRITE t 6 9 5400  1 I O F  ( I 1  1 t I f  1 9 I M 4 X  t ISAHP J 
5400 FORMAT ( ' 0  OF I ) = ' 9 9 f G12.4 9 ' 9 '  1 b 

RETURN 
ENTRY AK 2 ERO 
IZERO = 0 
D O  6000 I = 1 9 I M A X  
OMEG t 1 9 I 1 ss 000 
OMEG ( I 9 1 1 s 000 

60 00 CONT I NUE 
RETURN 
€NO 
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A p p e n d i x  C . 3  

THE CUCULATICOIY O F  THE HARMONIC C O E F F I C I E N T S  

( L i s t i n g s  of subroutines NLEGMD.and  OCLAUD may be found i n  appendix C . 1 )  
C 
C Wr%IM PROGRAM E S T I Y A T E S  T H F  H A R Y O N I C  C O E F F I C I E Y T S  FRJUI 4 N 7 Y A L I E S  
C AM0 UNDUL&BlOWS GENERATED FROM A REFEREYCE 5 F T  OF YAR'4OYIC 
C COEFF 1 C I EHTS 
C C A L L S  DSPNp. DSQRTe MLEGMDv SNPXDXq CSPCHr  OCLAp CSQDR*OCLAUDe 
C CSTBiLo DC@So D 4 T 4 N (  p E X I T ,  E R K C F T ) .  

B H P E I t f - f  REbiL*8 (W-HBO-P b 
R E A L  * 8 SWCTE 1 5  1 1 S I N q L T  ( 15 928R 1 9 C O S Y L T (  1 5  9 288 1 
R E A L  * 8 P f 20 B 20 3 9 P T  C 136 g 7 2  1 p SPT ( 136 9 7 3  1 
RE ALeB DCS I209 20 1 9 C S N ( 1 0 1  p QPCD / *%"11[FF 6' / 
R E B L * 8  C S B  f 90 9 20 B 0 QRLANK / ' 6' / o Q D I F F / * Q I F F  6'/ 
R E 4 L  *8 D C R D T k 2 0 p P 0 4 2 1 e  QSV&RV / @ S T A R T  6 '  / 
WEAL*I) QDCRDT / 'DCRDT 4' 1 p QRDTCH / ' R D V C H  ' / 
R E B L  * 8 FMT t 8 S B Q D E L T A  / $ D E L T A  b 1  / 

REAL*$ P f H 4 L F  / 1 . 5 7 0 7 9 6 3 ? 6 7 9 4 8 9 7  / 

IMYEGER 4 4 QCLA 

R E 4 h s S  FOURPI P 1 2 a 5 6 6 3 9 0 6 1 4 3 5 9 L 1  / 

L O G I C A L  * 4 HAP B T / p OCLAUD 

ItMTEGER*4 MEAN 108 p L A Y P R T  / l R /  0 JMXDEG / 0 / 9 J N C E L L  /0 /  
I N Y E G E R * 4  W A X D E G / B 9 / r Y O C E L L / P 8 /  P I T E R S T  / 1 / P I C l C L A I  / -1 I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C A L L  E R R S E T  t 2112 9 - 1  9 -1 w 1 1 
C A L L  ERRSET I 217 g 1 9 -1 p 1 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A V ( ' l *  ~ 2 0 X ~ e C O W R I P 4 1 M G  S A T E L L I T E  A L T I Y E T R Y  4Nr) S I J R F I C E  G R 4 V I Y E T  

C 8 * * a g 8 + * * g * * * g m ~ S g g S * * * * * * ~ * * * ~ ~ ~ * * * ~ ~ g * ~ ~ * * ~ ~ * ~ * ~ * * * ~ ~ * ~ * * g ~ * g * ~ *  

Y /GNSTNT/ HbXDFG 9 NOCELL 9 YERN ~ A I F  

1 R Y  I N  G E O D E T I C  D E T E R Y P Y A T I O M S o  qY RONALD G I N G - d E I  ENG V O U N G * * )  

100 W R I T E  f 6 9 19 b 

SYDFBU ITERP'OX I o c L a I  L A T P R T ~  I T E R S T ~  Y a p  
XIPPUP! DEGREE OF T H E  S P H E R I C A L  H A R H O N I C  F l fYCTICINS 
NG THE EARTHUS GRAVTTV F I F L D .  

C HBER O F  CELLS I N  EBCH 90 OEGRFES 3F L A T I T U D E  4N9 
C e ONGI T U D E  * 
C MEAH = 1 REQUESTS HE$M VALUES RATHER T H A N  P O I N T  V A L J E F  OF G R A V I T Y  
C ZPATB, 
C A = EQlBATORIAL R A D I U S  OF THE MEASI E A R T H  E L L I P S O I 3 ,  

B T E N I N G  = 1 A - B ) / A  
U L I R  V E L O C I T Y  OF R E V O L I 1 T I O N  
U S S P A N  CrBNS'8ANT T I M E S  TU€ M A S S  OF THE S T A N 3 4 2 0  EARTH. 
UMBER OF ZnTERATlONS THAT T H E  S P H E R I C A L  I N T E G R 4 T  I O N S  4 R E  

C DON E 0 

C l O C L A f  = 0 FORCES O C E 4 N S e  I O C L A I  e G T a  0 FORCES LAND, OTHERWISE 
AS INPUT, 

MENEVER LWYNO >= L 4 T P R T  DCRDT IS P R I N T E D ,  __________ - 
T E R S T  = VALUE O F  THE N E X T  I T E R A T I O N  I N  A S E R I E S  OF I T F R A T T O N S -  

C M A P  = T REQUESTS R E I D - I N  OF THE LAND-OCEAN C O N F I G l J 4 4 T I C I N e  
C = F SUPPRESSES Sa READ- IN,  
C 

C 
READ f 5 p CNSBMT P FN9 = 4500 ? 

I I T E R 4 T I O M  YUHSER IS ' 9 1 3 )  
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C 

C 
R E 4 0  ( 5 9 265  ) 

MXDEGP=MAXDEG+l 
AREA = FOURPI  
R=A*( l .DO - F t 
RT=DSQRT ( (  A-S) *( A48 1 1 
Q T 4 2  = ( R T  / A 1 ** 2 
EM = ( OMEGA * A 1 ** 2 * A / STDYU 

E 2  = RT / B 
ATANE2 = DATAN E2 ) 

C---,E2 = F a  = SECOND ECCE~TRrCITY.-,-,,,-_,,,,___,____,,,,,__--------- 

QUZERO = r[ e 5 0 0  + 1.500 / E 2  ** 2 * ATANEZ - 1.500 / E 2  
STDJZ = R f A 2  * ( e 3333333313333333 - EM*E2 / (  QUZERO 

1 f r  22.500 1 1 
A R T J  = 5.00 * STDJ? / R T A 2  

C B N ( I 1  ARE C O E F F I C I E N T S  FOR THE NORMAL E L L I P S O I D  I I = 1 D E G + 2 ) / 2  1 e... 

CRN { 1 1 = l o D O  
DO 150 I = 1 9 9 
CBN f I + 1 1 = ( ( ARTJ - l e O O ) *  I +l .DO)*  3 . 0 0 * (  - RTA 2 ) * * I  

1 f t f 2 * I + 1 b f f 2 * I + 3 1 * DSQRT ( DFLOAT ( 4 * I +1)11 
1 5 0  CONTINIJE 

3000 FORMAT ( 15 q 7 X  9 8A8 1 
C 

c 
R E A D (  5 9 3000 1 I 9  i FMT I J 1 9  J = l  9 8 1  

I F  ( I .GI,  0 1 GO TO 3100 
I F  I I .LT. 0 1 GO TO 1 5 1  

C IF t I .EQ* 0 J 
DO 44 J = 1 q MXDEGP 
00  44 I = 1 9 MXDEGP 

DO 550 I = 1 P MXDEGP 9 2 
44 C S R  I r J I = ODO 

5 5 0  C S B  ( r 9 1 )= CBN I I / 2 + 1 ) 
C 

C 
3 1 0 0  C A L L  CSROR f CSB v FMT i 

C A L L  CSTBL l CSA PMXDEGP~QSTART ) 
WRITE 6 p 265 1 I T E R S T  

DO 1550 I = 1 9 MXDEGP p 2 
C ( N 9 M )  = CSB ( N + l r M + l )  9 S(NvM3 = CSB ( M e N t l )  ..,....D.~...oo........... 

1550 CSB ( r 9 1 I=-CRN 4 1 / 2 + 1 1 + CSR ( 1 v 1 1 
1 5 1  CONTINUE 

I F  f JNCELL  eNEe NOCELL ) GO TO 1 5 7  
I F  MAXDEG *GTa  JMXDEG 1 GO TO 193 
GO TO 197 

157 J N C E L L  = NOCELL 
C I F  SUCCESSIVE VALUES OF NOCELL ARE THE SAME9 THE GEOID 
C READ-IN IS S K I P P E D *  

GEOP = STDMW ATANE2 I R T  +OMEG4**2*A**2 / 3.00 
EARAD = ( A ** 2 * B B ** e3333333333333333 
GRAVM = STDMU / $ EARAD * EARAD 1 
C E L L  = P I H A L F  / NOCELL 
C E L L H  = C E L L  / 200 
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t 

C 

C 

C 
197 

3 R l O  

PO 1 

LO2 ,. 

&CELL = f C F k L  + CFLL a OSYN B CELLY b * F J U R P I  
LA TR94x=NncE LC 
LONGMX=4*NOCELL 

M A P  = '?CL&lJD 4 MBP B 

?aA'$ELES$ / p A Q & W S /  CBN CFLL e R p EAQAD 9 G 3 A V V  v RT  9 GEOP 

* * a * s ~ * ~ s * ~ * e 8 * * * * 8 8 ~ ~ ~ ~ ~ ~ ~ ~ * * * a * * * * * * * * * * * * * * ~ ~ * ~ * ~ * ~ * ~ * * * * * ~ * ~ * *  
JalXr)€G = PBIXDEG 
CALCULATE S I Y E S  4rdD C O S I N E S  F O P  YHF LOWGITUDE TERMS. 

OROH = I O R D  1 390 
SWCT B I O R D  B = 9 S P Y  t CELL * ClRDY J / OQDH 
CONTSNd(BE 
LOYGL4S = 2 * L O W M X  
LONGR113 = 0 
DO 3830  L O M G W  = 1 v LONGHS 9 Z 
LONGYD = LtlNGRlO + 1 
J = O  

J = J + LONGNY 
Y = J  
IF a 1[ BLT,  LONGYX P GO v7 102 
P = 1 - LONG% 
GO TO 10% 

WQHTE I 6 8 P4R4MS B 

On i a i o  I O R D  = I W X D E G  

DO 3920 YORD = 1 9 '4LlXnEG 

FBCTOR = 1 * CELLH 
L , _ _ S I M Y L B ( ~ ~ ~ A V Q O ) = S ~ N ~ ~ H ~ ~ A ) = C ~ ~ S ( B L ~ ~ ~  -______________-__ 

SY N I O R D  v LONGNI  = O S P N  4 FACTnR 1 
cos IORD L C ~ N G N ~  = D C O ~  ( F a c u m  1 

3 3 2 0  CON 
3830 CON 

t I F  L 19 CHAYGED J R  MAXDEG IS YNCREASEDo THE LFGENDWE 
C FUNCTIONS ARE SECOWPUTEDe 

THEBTAH = OD8 
CBILL MLEGND 1 YAXDEG 9 THETAH p PT 0 1 9 1 )  1) XH r C X H  
IHYGH = L 

reoar, = I O  
DO 3900 P = P 9 B A T  
THET4L = C E L L  * H 

CALL M L E G N D  t M&XDECp w THETAL 9 D T  1 p I LOW 1 p XL rC XL 1 
CBLL SVPXDX B MAXDEG 9 P il 1 9 1 1 P PT ( 1 v [ H I G H  1 re PT ( 1 t 

C- I F  D I M E N S I O N S  OF PT4IvJI &RE C Y I N G E D  CHECK THAT I * I L 3 W  >= 400. 

C CALCUL4TE ASSOCIATE9 LEGENORE FllWCYHCINS 

1 ILOW B 9 T H E ~ B H , X Y ~ C X Y I T H E T A L . X L I C X L )  
9 = P-IGH 
I H I G H  = ILOW 
I L P W  = J 
THETAH = THETAL 
XH = KL 
C X H  = CXL 
YN = 0 
90 3890 'VI = 1 B WX9ESP 
D i l  3890 VI = 1 B N1 
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3890 
3 9 0 0  

C 

205 
210 

14 7 
C 

C 
C 

C 

3200 

3250 

121 

3300 

3350 

C 

C 

17 3 
179 

340 0 

C 

NN = NM 4 
SPT ( MN 
COWT I NUE 
I F  f MEAN 
CALCULATE 

1 
9 I 8  = P ri Nl p H l  

a G T e  0 ! GO TO 197 
ASSOCIATED LEGENDRE FUNCTIONS 

D O  210 I = 1 p LA'PYAX 
THETAL= I - e500 1 * CELL  
CALL  NLEGND 4 MAKOEG 9 THETALI P ( l r l )  0 X L  eCXL t 
NN = 0 
DO 205 N 1  = P 9 MXDEGP 
DO 205 M 1  = 1 9 N 1 
NN = NN + 1 
P T  f NM v I 1  = P f N 1  7 M I  1 
CONTINUE 
* * * * * * * * 4 * * 6 * $ * * * * * 8 ~ * * * ~ ~ ~ * * ~ * ~ ~  ~~*t8******9*****+************** 
CONTINUE 

I M I T I A L l P E  THE ARRAYS FOR THE SPHERICAL INTEGRATI f lNS  e.e*...e 

READ 5 9 3000 b I 9 f FMT t J 1 g J = 1 q 8 1 

I F  I I e G T e  0 3 GO TO 3300 
I F  f 1 eEQe 0 1 GO TO 3250 
I F  ( I e E Q e  -1 1 GO TO 3400 
DO 3200 J = 1 w MXDEGP 
DO 3200.1 = 1 9 HXDEGP 
DCS 4 1[ o J ! = CSR 4 I p J 3 

DO 121 J f 1 9 HXDEGP 
DO 12% I = 1 v MXOEGP 
CICS [ P 9 J = O o D O  

GO TO 3350 

C A L L  CSRDR f DCS B FNsT 3 

CONTINUE 
C A L L  CSTBL DCS 9 MXDEGP 9 Q O E L T I  3 
WRITE { 6 p 265 1 I T E R S T  
DO 179 IDEGP = I p MXDEGP 

DCRDT f TDEGP P 1 9 1 1 = FACTOR * DCS IDEGP 9 1 1 
I F  I IOEGP e E Q e  1 D 60 TO 179 
00 193 IORDP = 2 B HDEGP 

DCRDT ? IDEGP v IORDP P 1 B = FACTOR * DCS f IDEGP w I O R D P  1 
DCRDT I[ I O R D  0 IDEGP 9 1 9 = FACTOR * DCS ( P O R D  9 IDEGP 1 

FACTOR = - IDEGP 1 200 

I O R D  = IORDP - 1 

CONT I M \JE 
CONVINUE 
NOLD = 1 
NEW = 2 
CONT INUE 
ITERMD = PTERS? Q HVERYX - I 
******9**+**+**9gs*t8$+*****~~**~~*~~*~*~~~~**~***************~*~*** 
DO 8300 LOOPVR f I T E R S T  9 PTERND 
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DO 141 I = 1 9 MXDEGP 
1 4 1  DCRDT t I 9 J 9 NEW 1 = 000 

C * $ 8 $ ~ ~ $ 6 * $ $ 8 * * * * * * * * ~ ~ * * ~ * ~ ~ ~ * * * ~ * ~ ~ ~ ~ ~ * 4 * ~ * ~ * 4 * * * ~ * * * 4 * * * * * * * * * * *  

C,,,,,--- P D L E S  T O  EQUATnQ I______________I__________________ 

00 1140 L A m 3 = i p L a T m x  

IF f MEAN .NE, 0 1 AREA = P C E L L  * S I N M L T  ( 1 q L 4 T N O  1 
L A T  = P I H A t ?  -. f C4TNO - e 5 D O  1 * C E L L  
0 145 J I p MXDEGP 

DO 145 I = I 9 R"IXDEGP 
1 4 5  P E I 9 J = O D 0  

C ~ * ~ ~ * Q ~ $ * C * ~ ~ B * B * B ~ $ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ * ~ * * * ~ * ~ * * 4 ~ * * * * * * * * * * * 4 * * * * * * * * 4 *  

C,-----,,,, 0 DEGREES TO 360 DEGREES L O N G I T U D E  EASTWARD e - DO 1190 LONGNO = I P LnNGIulX 

ALONG = 8 LONGNO - e500 1 * C E L L  
I F  I B O C L A I  B 2035 9 2025  t 2030 

2025  IocLaN = o 
IBCLAS = 0 
GO TO 273 

2030 I O C L A N  = 1 
I O C L A S  = 1 
GO TO 273 

2035  c o N n w E  
I O C L A N  = O C L 4  f A L A T  9 ALOVG f 
IOCLAS = OCLA ( - A L a T  ALONG I 

277 C O N T I N U E  
RDTN = O e D O  

C * * ~ * * * ~ 8 & * 8 a * 8 * * ~ 8 8 ~ ~ * ~ ~ ~ $ ~ ~ * ~ * ~ ~ * ~ * * * * 4 * * * ~ ~ * * ~ 4 * * * * * * * * * * * * * * * * *  

EGP = I 9 PPYDEGP 

FACTOR = [ P - I D E G  B t@ 200 

CM DCS I D E G P  9 1 1 * FACTOR 
N o E Q *  1 I GO T O  306 

C N= CN -CS B I DE GP 9 1 I 
GO TO 315 

306 CN = DCS B I D E G P  9 1 1 

3 1 5  IF ( I O C L A S  e N F a  I O C L A N  1 GO TO 191 
C N = C N + C S B ( I D E G P , l )  * FACTOR 

cs = f N  
GO TO 316 

191 I F  f I O C L A S  aEQe I I GO TO 313 
C S  DCS [ I D E G P  9 1 1 4 FACTOR 

C S=C S-C SB B I DEGP 8 1 1 
GO TO 316 

313 CS = - DCS l I D E G P  9 1 B 
CS=CS+CSRt IOEGPe 1 1  * FACTOR 

B HEAN eEOa, 0 
= SPV g MN g 

GO TO 201 
2 0 0  PNW = PV t NN L a m 0  B 
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2 0 1  CONTINIJE 
RDTN = R D T N  4- CN * PNY 

c 

2 1  1 
212  

307 

40 1 

228 

314 

402 

RDTS = R D T S  + CS * PNY 

I Y O  = I M D  
*********t*Q**************t**%*****~******~************ 

IF ( IDEG .EQ. o I GO T O  7ao 

DO 760 I O R D  = 1 p I D E G  
NN = NN + 1 
It40 = - I M O  
I O R D P  = TORD 4- 1 
I F  I MEiiN *Ea,  0 9 GO TO 2 1 1  
PMY = SPT NN 9 L A T N O  1 * SYCT 

PNM = P T  P NN p CATNO B 

C O S I N E  = C O S M L T I  I O R D  v LONGNO ) 
S I N E  3 S I M M t T (  TORD 9 LONGNO 1 

I F  I O C L A N  eEQe 1 t GO TU 307 

GO TO 212 

C ONT I N UE 

( I O R D  1 

CN = OCS I I O E G P  9 I O R D P  ) *  FACTOR 
CN = CN - CSR t [DEGP 9 I O R D P  t 
SN = DCS I n R D  9 I D E G P  3 * FACTOR 
SN = SN - C S B  f I O R D  9 I D E G P  1 

CN = - DCS ( I D E G P  p fORDP 1 

SN = - DCS I I O R O  9 I D E G P  1 

I F  f I O C L A S  .NE* I O C L A N  1 GO TO 2 2 8  

GO T D  401 

CN = CN + CSrj  ( I D E G P  9 I O R D P  1 * FACTOR 

S N  = S N  + C S 5  f I O R D  9 I D E G P  1 * FACTOR 

C S  = CN 
SS = SN 
GO TO 402 
I F  ( I O C L A S  eEQe 1 1 GO TO 314 
CS DCS 1 I D E G P  0 I O R D P  ) *  FACTOR 
CS = C S  - C S 8  I D E G P  9 I O R D P  1 
SS = DCS t I O R D  9 IOEGP 1 * F A C T f l R  
SS = SS - C S B  ( I O R D  9 I D E G P  

C S  = - DCS I D E G P  v I O R D P  1 
GO TO 402 

C S  = C S  + C S B  t I D E G P  T I O R D P  1 * FACTOR 

SS = SS + C S 8  ( I O R D  9 I D E G P  1 * FACTOR 
R D T N  = ROTN 4 PNY * CN * C O S I N E + S N * S I N E 1  

SS = -.. DCS ? PORD 9 I O E G P  1 

I F  1 I190 o L T e  0 0 PNM = -PNH 

760 

780 
C 

C 

1_--1_----- 
C-,- I M O  = - 1 J ** l I D E G  -1ORD 1 

RDTS =RDTS * PNM * I C S * C O S I N E + S S * S I N E )  
C O N T I N U E  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C O N T f  NUE 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CN = ( RDTN 9 ROTS 0 I ARE4 
CS = ( R D T N  - RDTS S / AREA 
IMO = - 1 
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C 8 * ~ g * * * * ~ * * * ~ ~ B B * B s 8 * * ~ ~ * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * 4 * * * * * * * * * * *  

DO 1100 IDEGP = 1 g YXDEGP 
BMO = - BMD 
PDEG = IDEGP - I 

I_-------------------------- c I W  = ( - 1 ) **IDEG 
I F  f IWD e L T o  0 1 GO TO 254 
FtiCTOR = Chs 
GO TO 255 

2 5 4  FACTOR = C S  
255  CONTEYUE 

P IDEGP e 1 1 = P B IDEGP 9 1 b f FACTOR 
HF B IDEG sEQo 0 P GI] TO 1100 
1 M O  = IFID 

C 8****8*8*888*8*888f~bBB+*8f*********************************************** 

DO PO70 IORD= P r l D E G  
IMO - IHO 
OROP = HORD 4 1 

c IMr) = ( - 1 ) ** ( I D E G  -1ORD ) --------I--- 
I F  B IhfO e L T e  c) 1 GO TO 262 
FACTOR = CN 
GO T O  263 

262 FACTOR = C S  
2 6 3  CONTINUE 

P ( IDEGPVIORDP ) =  P ( IDEGP* I I ]RDP 1+C35YLT(  IORDILONGNO) 

P II I O R D t  IOEGP I =  P ( I O Q D r I D E G P  ) + S I h l Y L T (  IORDILONGNO~ 
1 FACTOR 

1 * FACT'JR 
1070 CONTINUE 

1100 CONTIWUE 

1120 CONTINUE 

C ********~6****8$8**+************+***8***~***************************** 

C * * + * * 8 * ~ 8 8 ~ * ~ 9 8 t * * * * * * * * * * ~ ~ * * ~ * ~ * * * ~ * * * * * * * 4 * * * * * * * * * * * * * * * * * * * * *  

C 8*******8*****+**8**0***********4t8*+*4*************************** 
I F  f L A I P W T  .LE, LATMO 1 

1CALL CSTRL B P v MXDEGP 9 Q D I F F  1 
NN 0- 0 

NN = NN 4 P 
DO 326 IOEGP = 1 e *SXDErJP 

DCWDT ( PDEGP 8 1 9 MEW 1 = DCRDT t lDEGP 9 1 9 NEW 1 + P t IDEGP 
P 9 1 1 * SPT B Ntd 9 LATNO 0 
If t PDEGP e E Q e  1 b GO TI] 3 2 6  
DO 320 I f l R D P  = 2 e IDEGP 
IORD = IORDP - 1 
NN = Ntd 4 P 
D C R O T ( P D E G P o P O R D P r N E W ) = D C R D T ( 1 D E G P ~ I O R D P ~ N E ~ ~ +  

IDEGPo lORDP 1 * SPT l NN 9 LATNI] S 
IORDp BDEGPeMEWI=DCRO?( IORDIPDEGP,NEW)+ 
IORDpIOEGP 1 * SPT t NN 9 LATNO 1 

3 2 0  CONTINUE 
326 CONTPQUE 

I F  f LATPRV .LE, LATM7 B 
1CALL CSTBL D C R D T ( l r l r N E W 9  9 YXDEGP 9 QDCRDT 1 

A T ( '  Y T E R A T I O N = e p 1 3 ~ 0 = p  ZONE = * 9 I 3 c 0 9  DCRDT = ' ~ 4 f G 2 3 r 1 6 r e o ' ~ ) 0  
R I T E  6 9 1131 B LOOPVW 9 LAYNO 9 I D C R D T ( J l l r N E W ) , J = l r 4 )  
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1140 CONTINUE 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

00 2 8 6  IDEGP = 1 9 MXOEGP 

DO 2 8 8  IORO = 1 T YAXDEG 
2 @ 6  DCRDT ( IDEGP T 1 T YEW b = DCRDT IDEGP 7 1 9 NEH 1 * CELL  

IORDP = I O R D  + 1 
FACTOR = SMCT ( IORD 1 
DO 2 8 8  IDEGP = IORO P T MXDEGP 
DCRDTI IDEGP IORDP9NEW)=DCRDT( IDFGPIIORDPTNEW 1 * FACTOR 
D C R D T I  IORD, IDEGPINEW )=DCRDTt I O R D ?  IDEGPTNEWI * FACTOR 

2 8 9  CONTINUE 
C A L L  CSTRL It D C R D T f l o l p N E W 1  9 MXDEGP t ODCROT 1 
WRITE I 6 9 2 6 5  I LOOPVR 
DO 1 1 9 5  IOEGP = 1 t MXDEGP 

DO 1185 J = 1 9 MXDEGP 

FACTOR - 200 / IDEGP 

I = IDEGP 

1 1 8 5  DCRDT I I T J 0 NOLD 1 = OCRDT ( I 9 J 9 NEW 1 - DCRDT I I r J * N O L D )  

DCS ( IDEGP 9 1 1 = FACTOR * DCRDT ( IDEGP 9 1 9 NEW 1 
I F  ?I IDEGP .EQe 1 1 GO TO 1 1 9 5  
DO 1 1 7 5  IORDP = 2 0 IDEGP 
IORD = IORDP - I 
D C S  i IDEGP 9 IORDP t = FACTOR * DCRDT IDEGP 9 IORDP 9 NEW 1 

1175 OCS f I O R D  i IDEGP = FACTOR * OCRDT ( IORD IDEGP 7 NEW 1 

CALL CS?BL f DCRDT ( 1 9 1 * NOLD 1 9 MXDEGP QRDTCH 1 
WRITE I 6 T 265 ! LOOPVR 
CALL  CSTRL I DCS T MXDEGP 9 QDELTA 1 
WRITE ( 6 T 2 6 5  LOOPVR 

1195 CONTINUE 

I = NOLD 
NOLD = NEW 
NEW = I 

DO 1 5 0 0  J = 1 9 MXDEGP 
DO 1590 I = 1 0 MXDEGP 

1500 D C R D T I I r J * N E W ) =  DCS ( I t J 1 - CSR ( I t J b 
C ( N e Y 1  = CSB (N*19M+1)  9 S(N1M) = CSR (M*N+11 ~ ~ ~ e ~ ~ . o ~ ~ ~ ~ . . . ~ . ~ o ~ o o ~ ~ ~ m  

C A L L  CSTBL { DCRDT I i 1 * NEW 1 * MXDEGP QDIFF - 
WRITE t 6 9 265  1 LOOPVR 

Dfl 1600 I = 1 0 MXDEGP 
DO 1600 J = 1 9 MXDEGP 

C D I F F  IS CALCULATED MINUS INPUT COEFFIC IENT . . m e . . . e . o . e . s . m . e  

I F I C S B ( I p J I + E Q e O e O O )  GO TO 1590 
OCR DT f I J NEW I =DCROV f o J T NEW 1 * 100. DO /DABS(CSB( I T J )  1 

1590 C O N T I  NU€ 
1600 CONTINUE 

C A L L  CSTRL ( DCRDT 1 9 1 e NEW 1 7 MXDEGP T QPCD 1 
WRITE ( 6 p 2 6 5  i LOOPVR 

C % D I f F  IS CALCUL4TED MINUS I N P U T  C O E F F I C I E N T  AS PERCENTAGE OF 
C INPUT. 

DO 1200 I = 1 9 MXDEGP 9 2 
1200 DCS 4 I 9 1 ) = C R N  ( I / 2 *  1 1  + DCS ( I 9  1 )  

C A L L  CSTBL DCS MXDEGP QBLANK 
WRITE ( 6 9 265 ! LOOPVR 
DO 1 7 8  I = 1 9 MXDEGP v 2 
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DCS ( I 9 1 ) = - C S F J (  I / Z + I ) + D C S ( I I ~ )  
178 CONTINUE 

9700 C O Y T I N U E  
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 

I T E R S T  = I T E R N I )  4 1 

READ f 5 9 3000 t I 9 I FMT ( J B T J = 1 9 S ) 

IF [ I e F Q e  -9999 b GO TO 197 
IF I .LE. 0 160 TO 100 
W R I T E  I 7  P '1000 I v ( F W T  ( J  1 T J =  1 9  8 1 
CALL CSPCH ( DCS 9 YXOEGP 9 FMT 1 
IF ( I .EO. 99999 1 GO TO 3 4 0 0  
I F  [ I e E Q *  9999 1 GO TO 197 
GO TO 100 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9500 CONTINIJE 

CALL E X I T  
STOP 
END 
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C CSRDR R E A D S - I N  T H E  N O R M A L I Z E D  S P H E R I C A L  H A R Y l N I C  COFEFCTCTENTS.  
C THE R E A D - I N  FORMAT STATEMENT MUST 5 P E C I F Y  V A R I A B L E S  I N  T Y F  
C ORDER: DEGREE, ORDER, C r  S ,  ETC.r F N r ) T N ! c  W I T H  r)EC,=-l, 
C FOLLOWED B Y 9  D E G L ,  DEG29 ClrC21 ETC.9 FN l I ING W I T H  ! ) E G l =  
C -1. T H E  Z O N A L S  Y A Y  RE R E A D - I N  I N  E I T H E R  THE G I Q S T  04 
C T H E  SECOND G R O U P .  

S U B R O U T I N E  CSROR ( C S R  , F66 I 
R E A L  * 8 CSR I 20 T 2 0  1 9 F 6 h  ( 8 
R E A D (  5 9  F 6 6  1 1 9  J ,C 1 T S  19 K 7 L r C  2 9 S 2 444 

C R E A D  I N  THE N O R M A L I Z E D  CI1,JI 
I F ( I . L T . O I G 0  TO 8 8 8  

CSB ( I + 1 ,  J + 1 I = t l  

C S B  ( J * I + 1 1 = S 1  

CSB ( K + 1 9  L + 1 I  = C2 

C S R  ( L r K + l I = S 2  

I F  ( J .LE. 0 1 GO TO 27  

2 7  C O N T I N U E  

I F  ( L .LE. 0 ) G O  TO 444 

GO TO 444 
888 R E A D ( ~ ~ F ~ ~ ) I ~ J I C ~ T S L ~ K I L , C ~ ~ S ~  
C R E A D  I N  THE N O R M A L I Z E D  ZONAL COEFFS 

C S B  ( 1 + 1 9  1 1 = c1  
C S R  ( J  + 1 9  1 I = S l  

CSB t K + 1 T 1 I = c 2  
CSB ( L  + 1 t 1 1 = 52 

I F (  1 o L T o O ) G O  TO 10099 

I F I K . L T . O ) G O  T n  10099 

GO TO 888 
10099 C O N T I N U E  

RETURN 
END 
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C SNPXDX CALCULATES THE INTEGRAL OF THC YORPALT ZED LEGFNIIRE 
C FUNCTIOYS. 
C CALLS DSQRTs SNP2Lv F4C. 

SUBROUYINF SNPXDXf MAXQEG 9 SP T PH v PL 9 TYETAY 9 XH 9 C X H  * 
1 THETAL 9 X L  p CXL ! 

C--,,YAXDEG = N A X I ~ ~ ~ H  DEGREE OF THE: LEGENDRE F U N C T I W S  ( <= 19 1 . 
C SP = INTEGRAL OF ?HE U7RMALIZEO LEGENDRE FUYCTI(1NS ( 311T”UT 1 . 
C PH = NORMALIZED LEGENORE FUNCTICIYS A T  Y39THFrZN R‘NIYOARV nF 
C INTEGRAT ION. 

C I WTEGR A ?  I ON. 
C THE MATRICES I N  THE C A L L I N G  PROGRAM ARE ASStMEr) T 7  PE OIY~NSTONED 

C PS = NORMALIZED LEGENDRE FUNCTIONS A T  SOUTHERN R~l!JNO4RY t3F 

C ( 2 0 . 2 0  1 . 
I M P L I C I T  REAL*8 B4-t -193-Z 
REAL * 8 R 3  / 1 , 7 3 2 0 5 0 8 0 7 5 6 8 8 7 7  / 
RE4L * 8 SP 20 P 20 1 T PH ( 2 0  I) 20 t 7 PL ( 2 0  9 2 0  1 
MXOEGP = HAXOEG + 1 
SP ( 1 v 1 b = XH - X L  

TASIN  = ( THETAL - THETAH ) / 200 
I F t Y A X D E G  .LE. 0 RETtJRW 

SP ( 2 p 2 1 = ( (  XH * CXH - XL * CXL ) / 203 + T A S I N  1 P R3 
SP f 2 9 1 1 CXL ** 2 - CXH * e  2 1 / 2eDO 1 * R3 
I F  t YAXDEG eEQe 1 1 RETURN 
IF I YXDEGP eGT, 20 b YXDFGP = 2 0  
LNAX = MAXDEG / 2 

L l = L + l  
L 2 1  = L + L l  
S P Z L l  = OD0 
DO 900 J l  = 1 9 L 1  
J = J l -  1 
5 2 1  = J + J1 
S P 2 C l  = S P Z L I  9 ( XH * CXH ** 5 2 1  - XL * C X L  ** 5 2 1  ) * t 4 ** J 

on 1000 L = 1 L w x  

l * J l ) * f A C t J  ) * * Z / F A C (  J 2 1 + 1 1  
900 CONTINUE 

SP ( L21 9 L 2 1  k =SNP2L ( L 9 XH t CXH 9 XL t CXL i 

SP ( L21 4 1 s L 2 L  + 1 1 = S P 2 L l  * ( L 2 1  + 1 1 * DSORT ( 2 * ( L 2 1  + 
S P P L l  = S P 2 L l  + T A S I N  

1 L Z 1  + 1 9 * F A C  B L 2 1  + L 2 1  1 1 / ( 4 ** L 2 1  * FAC ( L l  1 ** 2 ) 
1000 CONTINUE 

DO 5000 IDEGP = 3 9 MXOEGP 
I D E G  = IDEGP - 1 
IDEGM = IDEGP - 2 
DEGP = IDEGP 
DEG = IDEG 
SP (PDEGPo l  b tCXL*PL(  IDEGPp2)  - CXH*PH( IDEGP921 I /  

SP( IDEGP v PDEG B =( rlCXL*PL IDEGPt  IDEGP)-CXH*PH( IDEGPpI DEGPI 1 /DEGP 1 

IF 4 IDEGP .WE. 3 1 GO TO 3000 

I DSQRT B z.no * OEG * DEGP B 

P * DSQRT f 2000 * DEG 1 

GO TO 5000 
3000 CONTI NUE 

DO 4000 I = 2 9 IOEGM 
IORD IDEGP - I 
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SP ( I D E G P  9 IORD ) = ( ( I O R D  - 1 1 * SP ( IDFGP v I O R O  + 2 ) f 

1 OSQRT (DFLOAT ( ( I D E G  - IORD 1 * ( I D E G P  + I O R 9  1 ) 1 - 
2 ( 2 * I O R D  1 * t CXH * PH [ I D F G P  9 I O R D  + 1 1 - C X L  * DL ( 
3 IDEGP I IORD + 1 1 ) 1 / ( ( IORD+1)*OSQRT( 
4 DFLOATf I  IDEGP - IORD ) * ( I D F G  + IORD 1 1 1 ) 

4 0 C O  CONTINUE 
5 0 0 0  CONTINUE 

RE TURN 
END 
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C FAC CALCIJLATES THE FACTORIAL FUNCTI OY. 
C F A C I N C  CALCULATES THF R P T I O  OF F4CTORIAL FUNCTION\ .  

REAL FUNCTION FAC * R ( NH 1 
I P I P L I C I T  REAL * 8 ( A - H. 9 0 - Z I 
NL = 2 
INC = 1 
ENTRY F A C I N C  ( NH 9 YL 9 I Y C  1 
T = NH 
0 = I N €  

FACINC = 100 

FAC = FAC * T 

GQ TO 10 
EN 0 

S = NL - e 5 0 0  

19 I F  ( S .GT. T ) RFTURN 

T = T - 0  
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C SNPZL CALCULATES THE INTEGRAL OF ALTERNATE SECTOR4L A A R W W C  
C CALLS FACINC, DSQRTI FAC. 

REAL FUNCTION SN 
lHPLIC;JFT- REAL * 
L 2 = L + L  
L2H1 = L 2  - 1 
SNPZL = OD0 
L l = L + 1  

C 00 LOO K 1  = 1 t L 
DO LOO J K 1  = 1 t L 
K 1  = Ll - J K l  
L2KZ = L 2  - K 1  - K l  

I F  I L2K2 .GT. 0 1 GO TO 50 
FACTOR = LOO 
GO TO 75 

50 FACTOR = CXH ** L2K2 
75 CONTINUE 

SNP2L = SNPZL + 2 ** K 1  * FAC 
1 FACTOR - XL * C X L  ** L2K2 ) / FACiNC t L2M1 9 L2KZ+lp2) 

100 CONTINUE 
SNP2L = XH * CXH ** L 2  - XL * CXL ** L 2  + SNP2L 
SNP2L = SNPZL IC OSQRT ( ( 8 * L + 2 1 * FAC ( 4 * 1 1 1 / ( 4 ** L 
RE TURN 
END 

1 * F A C  ( L 2 + 1  1 )  
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C C S P C H  PUNCHES 3 U T  THE H A R M O N I C  C ' l E F F I C I F Y T q  4CCr)Yr ) lNG r l  A 
C R E A D - I N  F f l R H A T  S T A T E Y F Y T .  
C C S T R L  P R I N T S  OlJT T H F  H A R M O N I C  C f l F F F I C I E N T S  ACC3R?lCJG 1 7  I 5T4Vi)AWT) 
C FORMAT. 

S I I P R n U T I N E  C S P C H  ( D C S  q YXDEGP 9 F Y T  I 
I N T E G E R * 4  DEG 1) OEGP , ~ R D  , n s w  
I N T E G E R * 4  I 1  ( 4 t .JJ ( 4 I 

R E A L * 8  CC ( 4 I 9 SS ( 4 1 
P E A L * 8  D C S  ( 20 9 7 0  I 9 F ' 4 T ( R I * T  

R E A L  * 8 T T  
I N T E G E R  * 2 I T  9 19 I * / 9 I 1  / ' I' / 
L O G I C A L  * 1 L L  ( R I 9 L 
E Q U I V A L E N C E  I T T  9 L L ( 1 )  1 t ( I T  11.(71 I 9 ( I .  9 L L ( 3 I  I 
LOT = 7 
GO TO LOO0 
ENTRY C t T R L  ( D C F  9 YXDEGP 9 T I 
I O T  = 6 
7 1  = T 
I F  ( I T  .EQ. I B  ) I T  = I L  

I 2 0 0  F O R Y A T ( A l 9 '  ' 9  4 ( '  N M ' r A 5 ~ " ' C 0 ' 9 A R  ' 9 4 5 ~ ' ' ' F 1 ' 3 A R  * I )  
W R l T E  6 9 L200 1 L v T  9 T 9 T 9 T 9 T T 9 TI T 

I = o  
DO 1400 DEGP = L 9 YXDEGP 
DEG = DEGP - 1 
DO 1400 DRDP = 1 9 DEGP 
O R 0  = ORDP - 1 
1 = 1 + 1  
I 1  ( I ) = D E G  
JJ ( I I = ORD 

1000 I F  ( MXDEGP e G T e  20 b YXDFGP = 2 0  

CC ( 1 1 = DCS ( DEGP 9 (3RDP b 
I F  ( OR0 eGT. 0 1 GO T 7  1240 
ss ( I 1 = 0.00 
GO TO 1270 

1240 C O N T I N U E  

1270 C O N T I N U E  
S S  ( I I = DCS ORD 9 DEGP j 

I F  ( I l J T  .EQ. 6 1 GO Tr) 1285 
I F  ( I .LT. 4 I GO i n  1400 
WRITE ( 7 FMT I ( 1 1  ( T I JJ ( I 1 tt ( r I * s s  ( I I I 

1 = 1 * 4 l  
GO TO 1350 

I F  ( I .LT, 4.ANO. OPDP .LT.  YXOFGP I GO T O  1400 
1285 C O N Y I N U E  

1300 FORYAT ( ' ' 9 4 ( 2 1 3  e 2 G13.5 1 
W R I T E  f 6 0 1300 1 I I 1  t J 1 t J J  I J 1 9 CC I J I 9 t S  ( J 1 e J 

1 = l t I I  
135@ C O N T I N U E  

1400 C O N T I  MUE 
I = O  

I F  I 101 eEQ.  6 1 R E T t I R N  
IF I I .EQ.  c) 1 GO i n  9000 
I F  I I .EQ. 2 I GO TO 7 0 0 0  
I F  I I e E Q e  3 1 GO T O  S O 0 0  
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CONVERGENCE OF AN ALTERNATIVE SYMMETRIC FORMULATION 

J. E. P o t t e r  and S. J. Madden (personal  communication) suggest a 

formulation f o r  which a s u f f i c i e n t  condi t ion f o r  ex is tence  and unique- 

ness  i s  obtained. W r i t e  equat ion (2 .55)  with 

B = 1  

i n  t h e  form 

where 

H = sgn (S1) (I + 2%) 

(D.01) 

(D. 02) 

(D. 03 

and sgn (SI) = h ( p )  - Q ( p )  

An upper bound f o r  1 I H 1 1  may be obtained by applying the  Cauchy- 

Buniakovskii-Schwarz inequal i ty  and not ing t h a t  

(D. 04 

Hence 

where 

(D. 07)  

When t h e  zeroth and f i r s t  harmonics are suppressed and the  series i s  

t runca ted  t h e  bound is less than one. Hence a Neumann series f o r  t h i s  

problem converges a 
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CONTINUITY OF THE NORM 

I n  t h i s  appendix it i s  shown t h a t  t he  norm of the  i n f i n i t e -  

dimensional opera tor ,  K(p, q ) ,  and hence, those of t h e  equiva len t  

ope ra to r s ,  such as M(p, q ) ,  va r i e s  continuously as t h e  a l t imet ry-  

gravimetry boundary is  deformed. 

If A and B are operators  on a normed l i n e a r  space,  t he  t r i a n g l e  

inequa l i ty  holds (Halmos, 1 9 5 1 ,  p. 3 5 )  

o r  

i l l  A +  I I  - I I  A 1 1 1  2 I I  I I  
W e  i d e n t i f y  A with the  opera tor ,  

(E.03) 

P E. so 
(2.54) 

P E 

W e  i d e n t i f y  A + B with t h e  s a m e  opera tor  bu t  appl ied t o  a sphere where 

t h e  boundary, as, between S o  and S1 i s  per turbed s l i g h t l y  t o  obta in  new 

sur faces  So and Si. L e t  
I 

I s o  + 6s = so. 
(E.04) 

s1 - 6s = s '  1 

6s cons i s t s  of "pos i t ive11  areas, 6S+, t h a t  a r e  i n  Si bu t  no t  i n  So and 

"negat ive" a reas ,  6s-,  t h a t  a r e  i n  So, but  no t  i n  Si. 

t h i s  new ope ra to r ,  

W e  des igna te  
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W e  t h u s  i d e n t i f y  B w i t h  t h e  p e r t u r b a t i o n  o p e r a t o r ,  6K(p, q), 

I ( P ,  4) + (1 + B)$(Pl 9) P E 6.9 
(E .  06) r. p E S  - 6s 

6K(Pi  4) = 

W e  may c o r r e c t  f o r  t h e  p o s i t i v e  and negat ive  a r e a s  by i n c l u d i n g  a 

signum f u n c t i o n  mul t ip ly ing  t h e  o p e r a t o r ,  o r  a l t e r n a t i v e l y ,  

I ( p ,  q) + (1 + B ) K & ,  q) p E 6S+ 

- I ( p i  4) - (1 + B)KN(Pt 9) p E 6s- ( E .  07) 

W e  wish t o  show t h a t  I I 
i .e . ,  for small changes 

W e  have t o  show t h a t  I I 
c i e n t l y  s m a l l .  

L e t  

p E s - 6S+ - 6s- 

cont inuously wi th  changes i n  as, 

6~ 1 1  i s  near  I I K I I .  Since  

2 I I  6 K  I I  ( E .  0 8 )  

small as d e s i r e d  when 6s is  s u f f i -  

As i n  equat ion  (4.15), t h e  norm i s  def ined  by 

The ti's a r e  any set  of  c o e f f i c i e n t s  s a t i s f y i n g  

(E.09) 

(E. 10) 

m 

i=l 
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Define 

sgn (6s + = i p E 6S+ 

p E 6s- 

p E s - 6S+ - 6s- 

(E.12) 

W e  have 

o r ,  i n  t he  no ta t ion  of equation (4.301, 

Using t h e  orthonormality of t h e  sphe r i ca l  harmonics, x i ( p ) ,  
m 

~ K ( P ,  q ) x ( q )  = sgn (ss+) 1 (1 - 2ui)cixi(p) 
i=l 

Since f o r  any ti's such t h a t  equation ( E . 1 1 )  ho lds ,  
m c CiXi(P) = x ( p )  

i=l 

(E. 15) 

(E. 16) 

i s  bounded and convergent, and (see equation (2.38))  

by t h e  Weierstrass M t es t  so is  

m m CiXi(P)  
1 (1 - 2Ui)CiXi(P) = X(P) - 2 ( 1  + 8 )  1 (E. 1 7 )  ni+l i=l i=l 

H e r e  w e  use t h e  f a c t  t h a t  
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p E 6s = 6 s f U 6 s -  
(E. 1 9 )  

P E S  - 6s I: [sgn (ss+) I = 

Thus i f  6s is  s u f f i c i e n t l y  s m a l l  i n  a r ea ,  1 1  6 K ( p ,  q)x(q) I I w i l l  be as 

s m a l l  as des i r ed  for any x(q) , I 1 x(q) 1 I = 1. Thus I I 6K 1 1 can be as 

s m a l l  as desired,  and t h e  cont inui ty  of t h e  n o m  i s  es tab l i shed .  
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Table 1 

HARMONIC COEFFICIENTS-FOURTH DEGREE MODEL 

Normalized The A globe A globe 
spherical The globe with all with all 
harmonic Rapp (1968) of altimetry gravimetry 
coefficients model 
[ x 10000001 

figure 1 (oceans) (land) 

n m  
C 0 0 1000000~0000 1000000~0005 
c 1 0  0.0 0.0014 
c 1 1  0.0 0.0010 
s 1 1  0.0 0.0002 
c 2 0  -484.1778 -484.1750 
c 2 1  0.0 -0.0002 
5 2 1  0.0 0.0001 
6 2 2  2.3509 2 3494 
5 2 2  -1.3251 -1.3237 
c 3 0  0.8906 0.8892 
c 3 1  1.7134 1.7105 
5 3 1  0.2334 0.2331 
c 3 2  0.6717 0.6796 
5 3 2  -0.5572 -0.556 1 
c 3 3  0.7172 0.7160 
5 3 3  1 . 3390 1.3367 

C 4 L  -0 5 108 -0.5093 
c 4 0  0.5606 0.5611 

5 4 1  -0.4094 -0.4083 
c 4 2  0.2528 0.2520 

0.4828 5 4 2  0.4842 
c 4 3  0.8946 0.8921 
s 4 3  -0.21 14 -0.2 106 
c 4 4  0.1467 0,1464 
5 4 4  0.3338 0.3329 

999999.9999 
0.0306 
0.0005 
0.0001 

-484.1779 
-0 0004 
-0.0003 
2.3495 

-1 e3240 
0.8093 
1.7107 
0.2330 
0.6707 

-0 5564 
0.7159 
1 e 3366 
0.5614 

-0.5059 
-0.4079 

0.2522 
0.4824 
0.8915 

-0.2107 
0.1461 
0.3325 

999787.7328 

0.0096 

-494.1782 
-0.3007 
-0.0006 
7.3474 

-1.3225 
0.8893 
1.7107 
0.2330 
0.6707 

-0 .5  564 
0.71 59 

0.3123 

0 00 1 3 

1.3367 
0.5611 

-0.4085 
-0.5097 

0.2524 
0.4831 
0 8927 
-0.2110 
0.1463 
0.3330 

130 



Table 2 

HARMONIC COEFFICIENTS-14th AND 15* DEGFEE MODELS 

Normalized The The The 
spheric a1 Modified t globe KShnlein globe 
harmonic Rapp (1968) of (1967) of 
coefficients model figure 1 model figure 1 
[ x 10000001 ( Rapp 1 (Kshnlein) 

n m  
c o o 1  
c 1 0  
c 1 1  
5 1 1  
c 2 0  
c 2 1  
5 2 1  
c 2 2  
5 2 2  
c 3 0  
c 3 1  
s 3 1  
c 3 2  
5 7 2  
c 3 3  
s 3 3  
c 4 0  
c 4 1  
5 4 1  
c 4 2  
5 4 2  
c 4 3  
5 4 3  
c 4 4  
5 4 4  
c 5 0  
c 5 1  
5 5 1  
c 5 2  
5 5 2  
c 5 3  
5 5 3  
c 5 4  
5 5 4  
c 5 5  
5 5 5  
C 6 0  
C 6 l  
S 6 l  
C 6 2  
5 6 2  
C 6 3  
5 6 3  
C 6 4  
5 6 4  
C 6 5  
5 6 5  
C 6 6  

0 0 0 0 0 0 ~ 0 0 0 0  1 0 0 0 0 0 0 ~ 0 0 5 2  
0.0 0 .0086 

0.0 -0.0057 
-494 .1741t  -454.1808 

0.0 -0.0045 

2.3509 2.7454 

0.0 0.0125 

0.0 -0.006R 

-1.3251 -1.7258 
0.8906 0.8923 
1.7134 1 7072  
0.2334 0.2320 
0.6717 0.6694 

-0.5572 -0.5481 
0.7172 0.7065 
1.3190 1 34R8 
0.5606 0.561 1 

-0 5 1 08 -0.5202 
-0.4094 -0.4050 

0.2528 0.2544 
0.4842 0.4844 
0 9946 OoRA48 

-9.2 114 -0.2066 
0.1467 0 1450 
0.3335 0.3381 
0.02 86 0 ,0297 

-0 O R 4 7  -0 -0778 
-9.0202 -0.0229 

0.3703 0.7732 
-0.1759 -0.1819 
-0.1887 -0.1804 

0.0704 0.0230 
0 .1557t  0.1566 

0.0078 0 .O 144 
0.1024 0.0917 

-0.5450 -0.5312 
-0.0782 -0.0774 
-0 OR93 - 0.0952 
-0.019R -0.0208 
-0.0065 -0.0067 
-0.1998 -0 1903 
-0.0616 -0.0516 

0 . 0 8 1 ~  0.0754 
-0.0461 -0.0421 
-0.3647 -0.3588 
-0.2671 -0 e 7 5 7 9  
-0.4441 -0.435 7 

0.0215 0.0173 

1000000.0000 
0.0 
0.0 
0.0 

-494.1741 
0.0 
0 .o 
2.3500 

- 1  3500 
0.9695 
1.7100 
0.2300 
0,8400 

-0.5100 
0.6600 
1 e4300 
0.5360 

-0.4700 
-0.3900 

0.3500 
0.4800 
0.9200 

-0 2400 
0.0400 
0 3000 
0.0525 

-0.0600 
-0.0500 

0.5300 
-0.2 100 
-0.4000 

0 0700 
-0.2000 

0.0200 
0.1800 

-0.5600 
-0.1503 
-0.0800 

0.0100 
0.0100 

-0.2700 
-0 0400 

0.0300 
-0.0800 
-0 o4800 
-0.2600 
-0.4600 
-0.0200 

1000000 -0069  
0.0150 
9.0167 
0.0003 

-484 1784 
-0.001 1 
-0.0029 

2 3774 
-1.3474 

0.9732 
1 rn 7 0 3 9  
0.2330 
0.8438 

-0.5015 
0.6506 
1.4384 
0.5369 

-0.4738 
-0.3920 

0.3495 
0.4777 
0.9123 

-0.2343 
0.0379 
O m  3061 
0 -0535  

-0 0 5  15 
-0 0472 

0.5297 
-0 m2066 
-0.3893 

0.0735 
-0 1946 

0.0115 
0.1795 

-0 5483 
-0.1453 
-0.0786 

0 0030 
0.0108 

-0.2617 
-9.0351 

0.0281 
-0 0815  
-0 04723 
-0.2524 
-0 e4479 
-0 e 0 1  7 7  
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Table 2 

Normalized 
spherical 
harmonic 
coefficients 
[ x 10000001 

n m  
S 6 h  
c 7 0  
c 7 1  
5 7 1  
c 7 2  
5 7 2  
c 7 3  
5 7 7  
c 7 4  
5 7 4  
c 7 5  
$ 7 5  
C 7 6  
S 7 h  
c 7 7  
5 7 7  
C 8 0  
C 8 1  
S R 1  
C 8 2  
S R 2  
C R 3  
S R - 3  
C 8 4  
S 8 4  
C 8 5  
S 8 5  
C 8 h  
S 8 6  
C R 7  
5 8 7  
C 8 8  
S 8 R  
c 9 0  
c 9 1  
5 9 1  
c 9 2  
5 9 2  
c 9 3  
5 9 - 3  
t 9 4  
5 9 4  
c 9 5  
5 9 5  
C 9 6  
5 9 6  
c 9 7  
5 9 7  
C 9 8  
5 9 8  
C 9 Q  
S Q 9  

Modified 
RaPP 
mode 1 

-0.1916 
0.0459 
0.0977 
0.0644 
0.2424 
0.1036 
0.1615 
0.0042 

-0.2275 
-0 * 091 1 

0.061 8 
0.0535 

-0,1381 
O.llR7 
0.0426 

-0.0717 
0 0243 

-0.0372 
0.0070 
0.0442 
0.1552 
0.0357 
O . O R O 6  

-0.0386 
0.0625 

-0.0497 
0.0618 

-0.1373 
0.2520 
0.0358 
0.02R6 

-0.0764 
-0 e0605 

0.0179 
0.1367 

-0.0926 
0.0061 

-0.0387 
-0.0844 
-0.0119 

0.0397 
-0.0139 
-0.0579 

0.0116 
-0.0091 

0.0511 
0.0429 
0.0238 
0.2402 
0.0078 
0 e 0045 

-0,0401 

The 

of 
figure 1 
(Rapp) 

t Globe 

-0.lR79 
0,0464 
0.0924 
0.0631 
0.2406 
0.0972 
0.1472 
0.0048 

-0.2191 
-0 -0848 

0.0582 
0 e04R4 

-0.1361 
0.1133 
0.0348 

-0.0787 
0.0233 

-0.0395 
0.0065 
0.0415 
0.1472 
0.0332 
0.0754 

-0.0362 
0.0590 

-.O. 0 52 7 
0.0550 

-0.1297 
0.2298 
0.0327 
0.0258 

-0.0732 
-0 059 1 

0.0199 
0.1300 

-0.0857 
0- 0105 

-0.0411 
-0 e 0776 
-0.0088 

0.0332 
-0 e 0 136 
-0.0 54 1 

0.0072 
-0.0 106 

0.0452 
0.0388 
0.0194 
0.2240 
0.0047 
0,0072 

-0.0346 

The 
KGhnlein 
(1967) 
mode 1 

-0.1600 
0.10R2 
0.1700 
0.1100 
0.3200 
0.1 hOO 
0.1 ROO 
0.0 

-0.1600 
-0 e 0400 

0.0700 
-0.0100 
-0 2300 

0.1000 
0.0700 
0.0600 
0.0310 - 0.01 00 

-0.0100 
0.0400 
0 0400 

-0.0300 
0.0 

-0.1700 
-0.0200 
-0.0900 

Oe0900 
-0.0100 

0.3000 
0.0200 
0 m 0400 

-0.1800 
0.0300 
0 0050 
0.1100 
0.0 
0.0300 
0 0500 

-0.0700 
-0.0100 

0.0700 
0.0200 

-0.0400 
0.0400 
0.0400 
0,0100 
Oe0400 

-0.0200 
0.1300 
0.0 
0.0800 
0 e 0400 

The 
globe 
of 
figure 1 
(K6hnlein) 

-0.1582 
011061 
0.1661 
0.1116 
0.7177 
9.1556 
0,1697 

-0 e0009 
-0.1559 
-0.0357 

0.0679 
-0.0113 
-0.2236 

0.0990 
0.0614 
0 e0486 
0.0363 

-0.0073 
-0.012 1 

0.0357 
0.0364 

-0.0282 
0.0004 

-0.1634 
-0.0243 
-0 e 087 1 

-0.0121 
0.2812 
0.0197 
0.0387 

-0 1648 
0.0239 
9.0088 
0.1052 
0 a 0056 
0 e 0349 
0.0447 

-0 e0302 
-0e0104 

0.0591 
0.0183 

-0 a 0370 
0.0387 
0.0349 
Oe0109 
0.0361 

-9.0203 
0.1248 

-0 a 0013 
0.0739 
0 e0416 

0 . 0 ~ 0 2  
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Table 2 
Normalized 
spherical 
harmonic 
coefficients 
[ x 10000001 

n m  
c 10 9 
c 10 1 
s 10 1 
c 10 3 
5 10 7 
c 10 3 
5 10 3 
c LO 4 
s 10 4 
c 10 5 
s 10 5 
C 10 6 
S 10 6 
c 10 7 
s LO 7 
c 10 9 
S 10 R 
c 10 9 
5 10 9 
c 10 10 
s 10 10 
c 11 0 
c 11 1 
s 11 1 
c 11 2 
s 11 2 
c 1 1  3 
5 11 3 
c 1 1  4 
s 11 4 
c 1 1  5 
s 11 5 
C 11 6 
S 1 1  6 
c 11 7 
s 11 7 
c 11 9 
s 11 s 
c 1 1  9 
5 11 9 
c 11 10 
s 11 10 
c 11 1 1  
s 11 1 1  
c 12 0 
c 12 1 
s 12 1 
c 12 2 
s 12 2 
c 12 3 
s 12 3 
c 12 4 

Modified 
RaPP 
model 

-0.0339 
0 . 0 5 5 3  

-0.9412 
-0.0357 
-0.0760 
-0.0110 
-0 e 1295 
-0.0353 
-0.0616 
-0 e 0044 
0.0087 

-0.0536 
-0.3760t 
0.0357 

-0 0040 
0.032A 

-0.1242 

0.0002 
0,0709 

-0.0739 
-0.1022 

0.0329 
0.0147 
0 e 0276 

-0.0326 
-0.0139 
-0 e 041 6 
-0.017'3 

0.1027 

-0.0595 
0.0196 

-0 e0744 
-0.0454 
-9.0004 
0.0051 

-0.0922 
0.0469 
0.0142 
0.0258 

-0.0017 
- D e  0220 
-0.0171 
0.0737 
0.0172 

-0.0559t 
-0.0445 
-0.0602 
-3.01'34 
0.0747 
0.0740 

-0.0052 
-0.0205 

The 
t globe 

of 
figure 1 
( Rapp 1 

-0.0379 
Oe9531 

-0.0439 
-0.0407 
-0.0640 
-0.0105 
-0.1234 
-9.0391 
-30 0559 
-0 -00.23 
-0.9334 
-9.0507 
-0.3427 
0.0793 

-0  9095 
Oen295 

-0.1071 
0.09AO 
0.0040 
0.0719 

-0.0592 
- 0.0905 
0.0349 
0.0075 
0.0274 

-0 e 0 2 8  3 
-0.0191 
-0 -03 hO 
-0.OlQ1 
-0 e0674 
0.9173 

-0.0704 
-0.0431 
0.0012 
0.9099 

-0.0907 
0.0415 
0.0142 
0.0210 
0.9041 

-0.0154 
-0.0162 
0.0659 
0.9143 

-0.9543 
-0,0384 
-0.0559 
-0 e 0 187 
0.0675 
0e06R3 

-0.0027 
-0  e 0 134 

The 
Kahnlein 
(1967) 
model 

3,0738 
0.1000 

-0.0700 
-0.0800 
-0.0h00 
-0.0400 
- 0  e 9500 
-3.9600 
-0.0900 
0.0200 

-0.0700 
-0  9400 
- 9 e  0100 
0.0400 

-0.O500 
0 e 0400 

-0.0500 
0.0500 

-0.0400 
0.0300 

-0.0200 
-0.0367 
-0.0300 
0.0200 
3.0500 

-0.0500 
0.0100 

-0.0900 
-0.0300 
3 .O 
0.0300 
0.0200 

-0.0300 
- 0.0200 
0.0300 

-0.0300 
0.0400 

-0.0200 
0.0300 
0.0100 

-0.0300 
-0.0100 
0.1000 
0.0600 

-0.0106 
-0 e 0900 
-0.0700 
-0.0600 
0.0200 
0.0300 
0.0200 

-0*0500 

The 
globe 
of 
figure 1 
(KBhnlein) 

0.9633 
3.0833 
-9 e0695 
-0.0745 
-3 e 052 0 
-0.0734 
-0.9534 
-0 e9527 
-0.0715 
0.0181 

-3.0149 
-0.0349 
-0.0046 
0.0354 

-0.0409 

-0.0464 
0.0293 

0.0461 
-0 e0383 
3.0339 

-3 .o 1 1  1 
-0.0338 
-0.0229 
000133 
0.0430 

-3 00387 
0.0032 

-0.0699 
-7.0318 
-000036 
0.0291 
0.0166 

-0 00276 
-9.0135 
3.0316 

-0 e 031 1 
0.0364 

-9.0185 
0.0222 
3.0125 

-0.02 54 
-0.0134 
0 e O R 7 4  
0.0507 

-3.0062 
-0.0761 
-0.0608 
-0.0523 
9eOlOR 
0.0285 
0.0160 

-0.0459 
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Table 2 
Normalized 
spherical 
harmonic 
coefficients 
[ x 10000001 

n m  
s 12 4 
c 12 5 
s 12 5 
c 12 6 
s 12 6 
c 12 7 
s 12 7 
c 12 8 
F 12 8 
c 1 2  9 
s 12 q 
c 12 10 
s 12 10 
C 12 1 1  
s 12 11 
c 12 12 
s 12 l? 
C 13 0 
C 13 1 
S 13 1 
C 13 2 
S 13 2 
c 13 3 
S 13 3 
C 13 4 
S 13 4 
C 13 5 
S 13 5 
C 13 6 
S 13 6 
c 13 7 
S 13 7 
C 13 8 
S 13 R 
C 13 9 
S 13 
C 13 10 
S 1 3  10 
C 13 11 
S 13 11 
C 13 1 2  
S 13 12 
C 13 13 
S 13 13 
C 14 0 
C 14 1 
S 14 1 
C 14 7 
S 14 7 
C 14 3 
S 14 3 
C 14 4 

Modified 

model 
RaPP 

-0.0068 
0.0409 

-0  OR55 
0.0070 
0 0304 

-0.0484 

0.0263 
0 a0499 

-0.0231 
0.0582 

-0.0061 
0.0128 

-0.0253 
0.0071 
0.0295 

-0.0375 
0.0590 

-0.0031 
-0.0259 
0.0001 
0.0046 
0.0164 
0.0748 
0.0081 

-0.0439 
0 e0650 

0.0392 

-0.0570 
-0.0417 
0.0441 
0.0055 
0.0219 

-0.0587 
0.0041 

-0.0059 
0.0604 
0.0084 

-0.0745 
- 0  0595 
-0.0026 
0 0054 
0.0653 

-0.0105 
0.0375 

-0.0068 
0.0162 
0.0014 

-0.0729 
-0.0023 
0.0230 
0.0172 
0.0319 

The 
t globe 

of 
figure 1 
( Rapp 1 

-0.01 03 
0.0434 

-0.0848 
0.0017 
0.0217 

-0.0349 
0.0319 
0.0197 
0.0439 

-0 e 0 16 3 
0.0550 

-0.0083 
0.0086 

-0.0 180 
0.0073 
0.n2w 

-0.0323 
0.0484 

-0.003 8 
-0.0217 
-0.0005 
0 e0034 
0.0176 
0 0670 
0.0079 

-0.0358 
0.0617 

-0.05R4 
-0.0366 
0.03R6 
0.0039 
0.0201 

-0.0491 
0.0059 

0.0520 
-0.0006 

0.0067 
-0.0656 
-0.0485 
-0.0039 
0.0013 
0.0545 

-0.0102 
0.0285 

-0.0064 
0.0131 
0.0001 

-0,0663 
-0.00 19 
0.0229 
0.0109 
0,0244 

The 
Kijhnlein 
(1967) 
model 

0.0100 
0*0200 
0.0100 

-0.0100 
0.0100 

-0.0400 
-0.0200 
0.0 
0.0100 

-0.0100 
0.0700 

-0.0100 
0.0 

-0.0500 
-0.0700 
-0.0100 
-0.0100 
0.0281 
0.0 
0.0400 

-0.0300 
0.0100 
0.0 
0.0300 

-0.0 100 
-0.0200 
0.0300 

-0.0200 
-0.0300 
0.0500 

-0.0200 
0.0 

-0.0200 
-0.0100 
0.0200 
0.0500 
0.0400 

-0.0200 
-O.O?OO 
0.0100 

-0.0200 
0.0600 - 0.0700 
0.0 
0.0323 

-0.0100 
0.0200 

-0.0100 
-0e0400 
0.0600 

-0e0300 
0.0 

The 
globe 
of 
figure 1 
(KiShnlein) 

0 e 0066 
3.0201 
0.0077 

-0 0 1 2  3 
0.01 52 

-0.0314 
-0.0215 
0.0013 
0 0064 

-0.0052 
0.0251 

-0.0083 
'3.0051 

-0 042 3 
-9.0125 
-0.0122 
-0 .OOR 1 
0.0249 

-0.0027 
0.0354 

-0.0247 
0 0.030 
0.0027 
0.0'293 

-0.0109 
-0.0143 
0.0297 

-0.0195 
-0.0229 
0.0382 

-0.0144 
-0.0002 
-0.0211 
-0.0102 
Om0215 
0.0459 
0.0350 

-0.0183 
-0.0101 
0.0071 

-0.0204 
0.0511 

-0.0608 
-0.0022 
0.0268 

-0.0107 
0.0132 

-0.0143 
-0.0336 
0.0521 

-0 e 0225 
-0.0043 
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Table 2 

Normalized 
sphe r i ca l  
harmonic 
coe f f i c i en t s  
[ x 10000001 

n m  
S 14 4 
C 14 5 
S 14 5 
C 14 h 
S 14 6 
C 14 7 
S 14 7 
C 14 S 
S 14 8 
C 14 9 
S 14 9 
C 14 10 
S 14 10 
C 14 11  
S 14 11 
C 14 12 
S 14 12 
C 14 13 
S 14 13 
C 14 14 
S 14 14 
C 15 0 
C 15 1 
S 15 1 
C 15 2 
S 15 2 
C 15 3 
S 15 3 
C 15 4 
S 15 4 
C 15 5 
S 15 5 
C 15 6 
S 15 6 
C 15 7 
S 15 7 
C 15 B 
S 15 R 
C 15 9 
S 15 9 
C 15 10 
s 15 10 
C 15 1 1  
S 15 11 
C 15 12 
S 15 12 
C 15 13 
S 15 13 
C 15 14 
S 15 14 
C 15 15 
s 15 15 

The 
Modified i globe 
RaPP of 
model f igu re  1 

( Rapp 1 

-0.0044 
0.0972 

-0.0887 
0.0263 

-0.0552 
0.0787 
0.0343 

-0 01 54 
-0.0252 
0.0386 
0.0885 

-0.0666 
0.0707 

0.0303 
-0.0071 
-0.0128 
-0.001 3 
0.0105 
0.0233 
-0.0392 
-0.01 22 

-0.0 0-39 
0.0897 

-0.0500 
0.0237 

-0eQ509 
0.0650 
0.0311 

-0.0 135 
-0.01 90 
0.0316 
0.0760 
0.0610 

- 0 . 0 5 8 5  
0.0250 

-0 -0063 
-0.0071 
-8.0004 
0.0068 
0,0211 
-0.0306 
-0.0048 

t The four  ind ica ted  (1-1 

The 
K8hnle i n  
(1967)  
model 

0.0 
0.0500 

- 0.0700 
0.0100 

-0.0300 
0.0700 
0.0200 

-0.0300 
-0.0300 
0.0300 
0 0700 
0.0400 
0.0100 
0.0400 
0.0100 
0.0500 

-0.0300 
0.0100 
0.0400 

-0.0400 
0.0200 
0.0117 
0.0100 

-0.0100 
-0.0200 
-0.0300 
0.0200 
0.0300 
0.0 
0.0100 
0.0300 

-0.0200 
0.0300 

-0.0500 
0.0300 
0.0400 
-0.0600 
0 .o 
0.0 
0.0400 
0.0200 
0.0100 
0.0100 
0.0100 

-0.0700 
0.0500 

-0.0500 
-0.0300 

0.01 00 
-0,0300 

coe f f i c i en t s  deviate  -0.0200 
from those of Rapp (1968). -0.0100 

The 
globe 
of 
f igu re  1 
(Kijhnlein) 

-0.0005 
0.0492 
-0.0296 
0 e 0097 

-0 e 0266 
0.0227 
0.02O4 

-0 02 64 
-0.0262 
0.0273 
0 0609 
0.0360 
0.0071 
0.0336 
0.0108 
0 e0365 
-0.0221 
0.0052 
0.0312 

-0.0354 
0.0171 
0.0091 
0.0124 

-0.0053 
-0.0150 
-0.0259 
0.0193 
0.0232 
0 . O O O b  
0 -0064 
0.0291 
-0.0177 
0 00234 
-0 043 7 
0.0259 
0 -0358 
-0.0516 
-0 0021 
0.0008 
0.0369 
0.0195 
0 0090 
0.0074 
0.0096 

-0,0546 
0.0414 
-0.0405 
-0 e 0244 
0.0083 

-0.0233 
-0 e0173 
-0.0049 
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Table 3 

THE OCEAN COEFFICIENTS 

I stR1 k!L2 nmj 

L e e  and Munk and 
Kaula  (1967) MacDonald 

(1960) 

'ii 'iil 'iil 'iil 
p m l  000  000 000 000 000 000 

n m ~200 nml QnmO Qnml Qnmo 'nml QnmO Qnml 
0 0  
1 0  
1 1  
2 0  
2 1  
2 2  
3 0  
3 1  
3 2  
3 3  
4 0  
4 1  
4 2  
4 3  
4 4  
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
6 0  
6 1  
6 2  
6 3  
6 4  
6 5  
6 6  
7 0  
7 1  
7 2  
7 3  
7 4  
7 5  
7 6  
7 7  
8 0  
8 1  
8 2  
8 3  
8 4  
8 5  
8 6  
8 7  
8 8  

0.702 
0.638 
0.762 
0.627 
0.778 
0.762 
0. bl6 
0.754 
-0.710 
0 745 
0.635 
0.710 
0.716 
0.711 
0.759 
0.648 
0.71 7 
0.705 
0.711 
0.726 
0.733 
0.649 
0.709 
0 686 
0. 709 
0 743 
0.717 
0.774 
0. 661 
0.706 
0 675 
0.685 
0,730 
0. 704 
0.736 
0.759 
0.648 
0.716 
0,655 
0.687 
0.723 
0.718 
0.723 
0. 731 
0 e 759 

0.702 0.709 q. 714 
-0 124 -0.051 -0.123 

0.706 -0.206 -0,062 -0.144 -0.079 -0.109 -0.055 
-0.071 -0.040 -9.358 

0.620 -0.045 -0.056 -0.053 -0.068 -0.339 -0.061 
0.724 0.036 -0.004 0.051 0.002 0.977 -0.005 

0. 044 0.036 '3 * 044 
0.618 0.043 -0.038 0.035 -0.046 0.946 -0.039 
0.723 0.065 -0.095 0.074 -0.109 '1.125 -0.179 
0.750 -0.010 -0.059 -0.011 -0.122 -rlmOl7 -0.252 

-0.034 -0.016 -D.Q76 
0.600 0.038 0.033 0.035 0.016 0.041 0.025 
0.713 0.093 -0.026 0.097 -0.040 0.175 -0.043 
0.734 -0.047 0.006 -0.060 -0,001 -0.1+4 0.007 
0.743 0.022 -0.096 0.033 -0.153 -0.069 -0.406 

0.102 0.056 9.101 
0.562 -0.008 0.014 0.001 0.008 -0.008 0.018 
0.684 0.050 0.024 0.060 0.020 0.097 0.052 
0.739 -0.030 -0.012 -0.039 -0.012 -0.107 -0.036 
0.726 -0.086 0.028 -0.119 0.027 -0.363 0.106 
0.772 -0.002 -0.049 -0.002 -0.074 0.000 -0.257 

-0 0030 -0.007 -9.033 
0.571 0.009 0.079 0.007 0.017 0.309 0.020 
0.658 0.020 -0.003 0.027 0.001 0.033 -0.006 
0.725 -0.001 -0.029 -0.003 -0.072 0.002 -0.075 
0.712 -0.028 0.028 -0.050 -0.036 -0ell.0 0.0.Sl 
0.740 0.027 0.025 0.029 0.027 0.110 0.115 
0.735 -0.003 -0.013 -0.009 -0.024 -0.012 -0.078 

0.051 0.046 * 0.025 
0.557 -0.004 -0.029 0.002 -0.075 -0.006 -0.035 
0.658 -0.028 -0.011 -0.017 -0.006 -0.049 -0.002 
0.706 0-007 -0.018 0.010 -0.018 0.043 -0.032 
0.725 0.028 -0.008 0.026 -0.003 0.109 -0.026 
0.751 -0.006 0.024 -0.005 0.072 -0.021 0.119 
0.726 0,002 0.034 0.007 0.039 0.031 0.163 
0.754 0.000 0.037 0.013 0.049 0.043 0.224 

0.007 0.012 0.010 
0.578 0.004 0.033 0.001 0.009 -0.002 0.027 
0.635 -0.006 -0.004 -0.012 0.004 -0.020 0.024 
0.699 -0.014 -0.016 -0.011 -0.015 -0,046 -0.027 
0.694 0.003 -0.017 0.002 -0.014 0.000 -0,052 
0.749 0.016 0.003 0.024 0.006 0.116 -0.002 
0.731 -0.014 -0.009 -0.014 -0.013 -0.073 -0.115 
0.736 -0.036 -0.015 -0.047 -0.023 -0.243 -0.122 
0.757 0.008 0.015 -0.025 0.037 -0.136 0.175 
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T a b l e  3 

n m  
9 0  
9 1  
9 2  
9 3  
9 4  
9 5  
9 6  
9 7  
9 8  
9 9  
10 0 
10 1 
10 2 
10 3 
10 4 
10 5 
10 6 
10 7 
10 8 
10 9 
10 10 
11 0 
11 1 
11 2 
11 3 
11 4 
11 5 
11 6 
1 1  7 
11 8 
11 9 
11 10 
11 11 
12 0 
12 1 
12 2 
12 3 
12 4 
12 5 
12 4 
12 7 
12 8 
12 9 
12 10 
12 11 
12 12 

'ii "il "i, 85 'i, 1 6 9  

'nmo nml nmo nml " n m ~  'nml "nmo 'nml 
000 'nml 'nmO 'nml 930 930 12,12,1 12.12.1 

0.638 0 -026 O o O i O  -0.094 
0.723 0.587 0.005 0.074 -0.036 0.023 -0.008 0.002 
0.642 0.636 0.003 -0.007 0.018 -0.019 0.003 -0.002 
0.673 0.677 -0.016 -0.001 0.673 -0.010 - 0 . O O R  0.002 
0.721 0.695 Om007 -0.019 -0*001 -0.013 0.003 -0.003 
0.707 00726 -0.003 0.003 -0.007 -0.015 0.006 0.007 
0.740 0.733 -0.008 -0.077 0.033 -0,006 -0.018 0.000 
0.731 0.720 -0.017 0.012 0.024 -0.038 O e O ? ?  -0.007 
0,736 0.736 -0.020 -0e006 0.000 -0.002 0.011 -0.062 
0.756 0.762 0,016 0.013 0.003 -0.008 -0.076 0.009 
0 640 0.015 -0.006 0.f301 
0.713 0,591 0.004 0.017 -0.016 -0.041 0.003 -0.006 
00647 0.645 0.040 0.021 0.039 0.013 -0.003 -0,013 
0.654 00658 0,019 0.028 -0.122 -0.006 0,004 0.006 
0.711 0.689 0.014 -0.009 -0.040 -0.035 0.001 -0.016 
0.700 0.729 -0.012 0.001 0.017 -0.007 - 0 o O O 1  0.002 
0.733 0.712 -0.010 0.010 -0.003 0.0'37 0.008 0.003 
0,742 0.733 -0.006 -0.006 0.021 -0.020 -0.004 0.005 
0,724 0.726 -0.006 0.007 0.002 -0.028 0.033 -0.019 
0.741 0.736 -0,036 0.001 0.014 0.027 0.006 -0.034 
0.761 0.759 -0.020 0.008 -0.007 0.010 0.011 -0.007 
0. 645 0.002 -0.029 0. 006 
0.711 0 . 5 8 2  -0.034 0.017 -0.023 -0.034 0,008 -0.005 
0.653 0.650 0.001 0.009 0.029 -0.057 -0.001 0.004 
0,647 0.651 0.009 0.006 -0.070 -0.002 0.008 -0.001 
0.697 0.668 0.003 0.001 -0.018 -0.028 -0.005 -0.002 
0.703 0.724 0,001 -0.009 0.052 -0.010 -0.001 -0;005 
0.724 0.711 -0.010 -0.007 0.002 0.000 0.008 -6.004 
0.728 0.728 0.011 0.004 0.008 0.035 -0.009 0.007 
0.735 0.740 -0.008 0.002 -0.016 -0,013 0 ; O O l  0.030 
0.720 0.729 0.003'-0.000 0.014 -0.006 0.011 -0.019 
0.747 0.734 -0.020 -0.006 -0.008 -0.001 -0.057 -0.015 
0.757 0.765 0.003 -0.005 -0.020 0.011 -0.021 -0.117 
0.650 0.007 -0.017 -0.001 
0.706 0.577 -0.014 -0.000 -0,025 0.036 -0.002 0.003 
0.658 0.649 0.005 0.003 -0.016 -0.019 0.002 0.008 
0.648 0.648 0.004 0.009 0.026 -0.020 -0.904 -0.006 
0.679 0.657 0,011 -0.002 0.032 -0,038 -0.000 0.015 
0.691 0.716 O m 0 0 3  -0.021 0.046 -0.056 0.001 -0,007 
0,727 0.711 0,003 -0.011 -0.003 -0.031 -0.007 -0.001 
0.721 0.719 0.014 0.004 0.024 -0.006 0.004 -0.009 
0.732 0.731 0.021 -0,018 -0.006 Om015 -0.013 0.009 
0,734 0.739 -0,010 0.002 0.001 0.008 0.005 0.019 
0,731 0.719 -0.001 -0.005 ,0.002 0.016 -0.011 0.004 
0.737 0.750 -0.004 -0.008 -0.009 -0e006 -0.026 -0,032 
0,758 0.766 0.019 0,019 -0.002 -0.008 0.004 0.766 
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