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ABSTRACT

The path of an earth satellite is smooth enough so that measure-
ment of the altitude, the distance from the satellite to the earth's
surface, can provide information about undulations in this surface.
Since the mean surface of the ocean coincides approximately with the
equipotential surface of gravity known as the geéid, satellite altimetry

can provide information about the shape of the geoid.

This thesis studies the deterministic problem of combining satel-
lite altimetry observations over ocean areas with surface gravimetry
over land to determine the geoid aﬁd the gravity potential. By exami-~
ning the existence and uniqueness of solutions to the equivalent math-
ematical problem, a mixed boundary value problem in potential theory
for which a general solution method is not yet available, conditions
for the validity of a Neumann series method of successive approxima-
tions are established using both analytical and numerical techniques.
When altimetry data are weighted more heavily than gravimetry data,
sufficient conditions are given for establishing, analytically, the
validity of the method. When the altimetry and gravimetry data are
weighted more evenly, a computer calculation demonstrates the validity

of the method for a distribution of altimetry and gravimetry like that



of the earth's ocean-land distribution. Numerical studies then illus-
trate the determination of spherical harmonic representations of the
gravity field from altimetry and gravimetry data generated by standard

sets of harmonic coefficients that agree closely with the standard sets.
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CHAPTER 1
INTRODUCTION

1.1 General Discussion

The path of a satellite in earth orbit is smooth enough so that
measurement of the altitude, the distance from the satellite to the
earth's surface, can provide information about undulations in this
surface. Since the mean surface of the ocean coincides approximately
with the equipotential surface of gravity known as the geoid, satellite
altimetry can provide information about the shape of the geoid. This
thesis is devoted to a technique for combining satellite altimetry
observations over the oceans with surface gravimetry over the land to

improve the knowledge of the geoid and the gravity potential.

This introductory chapter provides some basic information on the
two fields involved, which ére satellite altimetry and geodesy, and
the formulation of the problem which is solved here. In order to reach
a mathematically tractable solution, only purely deterministic methods
are employed. The statistical problems imposed by real, noisy, redun-
dant data that are avoided here can be handled by a statistical combi-

nation of this solution with others.

1.2 sSatellite Altimetry and Geodesy

Proposals (including, Frey, et al., 1966, Godbey, 1965, Greenwood,
et al., 1967, and Raytheon Company, 1968) have been made to put an
altimeter on board a satellite. The altimeter functions by measuring
the time delay, interpretable as a distance measurement, between emis-
sion of a radar or laser pulse and reception of its reflection from a
portion of the earth's surface. This observatidn can have both geodetic

and oceanographic uses, but only geodetic applications are considered

in the sequel.
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Measurements for conventional satellite geodesy (Kaula, 1966a,
Mueller, 1964) involve ground station tracking of the orbits of satel-
lites. By comparing these orbits with orbits predicted using spherical
harmonic representations of the gravitational potential (Gaposchkin,
1966) and employing statistical data fits to minimize the residuals,
improved estimates of the harmonic coefficients are obtained (Gaposchkin,
1969, Kozai, 1969). Because the effects of higher harmonic variations
of the gravitational field fall off rapidly with distance from the
earth, short period (small fractions of the orbital period) orbital
perturbations have small amplitudes. Only a few resonant higher har-
monics can be determined conveniently by satellite observation (Gedeon,

1969, Greene, 1968, Wagner, 1968).

In gravimetric geodesy (Heiskanen and Moritz, 1967, Molodenskii,
et al., 1962), measurements of the gravity magnitude are made; these
provide data sensative to the higher harmonics. Conversion of the data
to a harmonic representation entails a solution of a boundary value
problem in potential theory of the third kind with a boundary condition
containing constant coefficients (Heiskanen and Moritz, 1967, p. 36),
yielding the gravitational potential as a linear integral transform of
gravity anomalies on the whole surface of the earth. There are large
gaps in data coverage, especially over southern hemisphere oceans
(Uotila, 1962). Current practice is to extrapolate to fill the gaps
(Kaula, 1959, 1966b, Kohnlein, 1967, Potter and Frey, 1967, Rapp, 1968),
obtain an approximate solution, and then combine this in a statistical
data fit (Kaula, 1961, 1966c, Kohnlein, 1967, Rapp, 1968) with satel-
lite and other determinations, such as estimates of geoidal sections

from geometrical geodesy (Bomford, 1962).

Altimetry data can also provide higher harmonic detail if correc-

tions for various effects are assumed made. These include the pulse

12



form (Price, 1968), atmospheric propagation effects (Frey, et al.,
1966), surface reflection characteristics (Greenwood, et al., 1967),
altimeter design (Frey, et al., 1966, Godbey, 1965, Raytheon Company,
1968), and data processing technique (Price, 1968). If the satellite's
orbit is assumed known and appropriately chosen, altimetry then defines
the figure of the earth, in an initial implementation, to an accuracy

of one meter (Kaula, 1969). According to the best judgments of ocean-
ographers (Greenwood, et al., 1967), the ocean's surface, averaged for
waves and sea state, coincides to within a few meters with the geoid,
that equipotential surface of the gravity field that best coincides over
oceans with mean sea level. Since the geoid is closer to masses causing
anomalies in the gravity field than the satellite is, the geoid exhibits
short wavelength undulations (see, for example, von Arx, 1966) with
amplitudes large compared to short period perturbations of the altimetry
satellite. Thus even if the sateilite's orbit is not known, as previ-
ously assumed, the estimate obtained from conventional satellite géodesy
can be used as a first approximation without seriously masking the short
wavelength detail of the geoid. After the geoid information is used to
improve the representation of the gravity field, higher approximations
can proceed, if necessary. For consistency with satellite geodesy, the
gravity field at the geoid is also represented here in terms of the
spherical harmonics. Even if such a representation is not strictly
valid for representing the geoid, the error, in practice, is small and

can be taken into account (Madden, 1968).

To improve the geodetic parameters, Lundgquist (1967) proposes to
include the difference of measured altitudes and those calculated from
a model gravity potential in a massive statistical data fit computer
program (Gaposchkin, 1966). in the same manner as with conventional sat-
ellite observations. He points out that a naive approach requires an

excessively large gravity field model in a determination that must
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handle large amounts of nonuniformly distributed data. Lundquist, et

al. (1969) propose a transformation of the harmonic representation into
a sum of functions primarily sensitive to the shape of particular areas
of the geoid. Difficulties in choosing a particular transformation and

set of functions are unresolved at this time.

The approach taken here attempts to avoid statistical assumptions
as much as possible, and makes use of potential theory, as does that
of gravimetric geodesy. If the geoid is specified over the whole sur-
face of the earth, solution of a boundary value problem in potential
theory of the first kind yields the gravitational potential as an inte-
gral transform of the surface data. Because altimetry provides such
data only on oceans, the direct approach fails, since with only partial
data, the problem is not well-posed (Hadamard, 1923). A statistical
extrapolation approach encounters problems similar to those in imple-
menting current gravimetric determinations. A combination of thg poten—
tial theory approach to altimetry and that of gravimetry seems appro-
priate, since their data bases complement each other. Altimetry will
be applicable only on oceans, and gravimetry is available primarily on
land (geoidal section data, physically similar to altimetry, is avail-
able to a limited extent on land). This thesis assumes that exactly
one of two types of data is available at each point of the earth's sur-
face, idealized as, or reduced to, the geoid. At surface points of the
first kind, designated oceans, the physical form of the geoid is spe-
cified by altimetry (or geoidal section) data. At points of the second
kind, designated land, the magnitude of gravity on the geoid is specif-
ied by gravimetry. Because gravity is measured on the earth's physical
surface rather than on the geoid, necessary reductions of gravity to
the geoid (see, for example, Heiskanen and Moritz, 1967) are assumed
made. The purpose of this thesis is to solve the physical and mathe-

matical problem of combining the two types of boundary data to obtain
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the gravitational potential of the earth.

1.3 Synopsis

In chapter 2 the physical problem is translated into a precise
mathematical problem with several equivalent formulations convenient
for the later analysis. Chapter 3 discusses some of the conditions
sufficient to render the problem uniquely solvable. In chapter 4 the
problem formulated in chapter 2 is put into several alternative forms
suitable for solution by a method of successive approximations. When
altimetry data are weighted more heavily than gravimetry data, an
approximation of the problem becomes simple enough that the validity
of the method can be established analytically. When altimetry and
gravimetry data are weighted more evenly, the validity of the method
is established numerically, for a distribution of gravimetry and
altimetry data resembling the earth's land-ocean distribution. Chapter
5 discusses the actual determination of harmonic coefficients from
altimetry and gravimetry data. Because actual altimetry data are
unavailable, all data for the test examples were generated using stan-
dard sets'of harmonic coefficients, which could easily be compared with
those obtained by the proposed method. Finally, chapter 6 discusses.
the contributions of this thesis to using satellite altimetry in

geodetic determinations.
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CHAPTER 2

PROBLEM FORMULATION

2.1 General Discussion

The physical problem of combining altimetry data, which will be
applicable only on oceans, and gravimetry data, which are assumed avail-
able on land, to obtain the gravitational potential of the earth is,
in this chapter, reduced to several mathematical formulations convenient
for the later analysis. Altimetry data define, geometrically, the sur-
face of the geoid, on which the gravity potential is constant. Alter-
natively, gravimetry yields gravity, the gradient of the gravity poten-
tial, on the geoid, whose position, at points where gravimetry is given,
is not known; indeed its determination is a part of the problem. This
free boundary problem is transformed into a more traditional boundary
value problem by linearizing about a known reference surface, such as a

standard ellipsoid of revolution.

In section 2.2 the physical problem is reduced to a boundary value
problem in potential theory. In section 2.3 integral representations
are introduced, and the problem is written in terms of dual integral
equationé. The dual integral equations are combined formally into a

single compact equation in section 2.4.

2.2 Partial Differential Equation Formulation

Let S denote a closed surface approximating that of the earth. It
is initially taken to be the geoid, next an ellipsoid, and finally, a
sphere. Let So denote that subset, associated with oceans, on which
altimetry is available. Let Sy denote that subset, associated with

land, on which gravimetry is available. Assume that S, and S1 are

0
mutually exclusive and collectively exhaustive. Let R denote the infi-

nite region external to S.

17



Now consider S to be the geoid.

The gravity potential, W(p), is

composed of the gravitational potential, V(p), and the centrifugal po-

tential, 9(p).,
W(p)
where

V{p)

nm’

o (p)

and

[}

Vip) + &(p) (2.01)

© fr.\n n

GM M —=m, . o

=ML+ J{=—) ] P (sin ¢ ){C _ cos mr_ +

rp n=l(rp> meo B p nm o)
(2.02)

+ Snm sin mkl;}

-1l 2

gravitational constant = 6.67 X 10 m3/kg/sec

mass of the earth

14 2

3.98603 x 10%% m3/sec
radius of the point, p
a mean radius of the earth

normalized associated Legendre function

(2.03)

(n+m) !

_ _ l/2  _ _m ntm,_. 2, _.n
[(2 Gmo)(n m)!(2n+11 cos ¢p d (51n.¢p 1)
n+m

2%n1 d(sin ¢)

degree of spherical harmonic expansion
order of spherical harmonic expansion
geocentric latitude of the point, p

1 i=3

0 1%

= normalized spherical harmonic coefficients of V

it

geocentric longitude of the point, p
1 2 2
—2-0.) Ip
angular velocity of the earth's rotation

2
cos ¢p (2.04)

0.729,211,51 x 10~ 4/sec

The gravity potential at a general point satisfies Poisson's equation

18



(Heiskanen and Moritz, 1967, p. 47)

V2W(p) 2w2 - 47Gp P ER (2.05)

Il

where p mass density.
In general, there are masses in R, since most land areas are above sea

level. On SO' the oceans, altimetry defines the geoid,

ry, = rgloy, AL P E S, (2.06)

where

r radius of the geoid.

G

The boundary value for the gravity potential is that constant for

which the geoid is an equipotential of gravity,

W(p) W pe S (2.07)

G
where

WG = the constant value of the gravity potential on the
geoid. On Sl’ the land, equation (2.07) also holds. Thete is a free
‘boundary, since the position of the geoid remains an unknown to be
determined. Gravimetry data are available on the earth's physical sur-
face. For a mathematically tractable problem, these data can be sub-
jected to one of several gravity reductions (Heiskanen and Moritz, 1967)
to obtain the equivalent values on the geoid. In the process all masses
can be removed from R in a manner that modifies the obtained geoid and
gravity potential. Since this indirect effect can be taken into ac-
count using higher approximations (for example, Molodenskii, et al.,
1962) , it is assumed hereafter that there are no masses outside the

boundary surface and that gravity, g(p), is known on the 'geoid,

g(p) = - 24P pES, (2.08)
p
where
g(p) = gravity at the point, p

i9



np = normal to the geoid into R at the point, p.
The result is a free boundary value problem,
2 2
VW (p) = 2w PER (2.09)

with the mixed boundary conditions

1) Wip) = W, P E S,
SO: rP rG(¢P, AP)
(2.10)
2) Wip) = W, pES,;
W(p) _ _
an = - g(p) PES
P
Slz free

When the differential equation is written in terms of the gravitational

potential, a harmonic function,
2
Vev(p) = 0 P E R (2.11)

the boundary conditions become

_ _ 122 2 ‘
1) v(ip) = WG 3w rp cos ¢p pE S0
So: rp = rG(¢p, AP)
(2.12)
12 2 2
2) V{p) = W, - 5w r, cos ¢p pPE 8
vip) _ _ _ 1203 2 2
sﬁb = - g(p) 0 53;(rp cos ¢p) P ES,
Sl: free

Free boundary problems are occasionally encountered in fluid dynamics
(see, for example, Garabedian, 1964, p. 558). A free boundary problem
is avoided here by linearizing about a known surface approximating the

geoid, but nonuniqueness is not avoided; see chapter 3.

Without loss of generality the relatively simple, level rotational

ellipsoid is adopted as the reference boundary surface. It is an

20



equipotential surface of a ‘normal' gravity potential, U(p), (Heiskanen

and Moritz, 1967, p. 73):

H'Q

- 2n
_ GM a ~{U) =50 , . _
ulp) = p{} + nZl<?;> Czn,onn(Sln ¢p{] + o(p) = UY (2.13)

where

a = semi-major axis of the ellipsoid = 6378160. m

2n 5nJ
=) _ (-1)"3e _ 2
an,0 = TemrDy(mrayt TR Y o)
e = first eccentricity = (a2 - bz)l/z/a

b = semi-minor axis of the ellipsoid = a(l - f)
f = flattening of the ellipsoid = 1/298.25
J2 = earth's dynamical form constant = 0.001,0827
U = the constant value of the normal gravity potential on
the level rotational ellipsoid.
The gradient of this potential is the normal gravity
y(p) = - 2UP) (2.14)
on

where n;,= normal to the ellipsoid into R at the point, p. The centrif-

ugal terms in W and U are identical. WNext introduce the anomalous p04

tential,
T(p) = W(p) - Ulp)
© /r . \n n .
_ GM Z M z =m, . =
= 2= — P_(sin ¢_) (SC cos mi_ +
rp n=0(rp> mep ™ P nm P
’ (2.15)
+ 88 - sin mAP)
where
Géhm, 6§hm = harmonic coefficients of the anomalous potential.

If r ~ a the various harmonic coefficients are related by

M
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S () s - %
Com = Cpp *+ Com Som = S8, (2.16)

Since T does not contain any centrifugal term
2
Vir(p) = 0 P ER (2.17)

To every point, p, on the geoid corresponds a point, q, located at the
base of the ellipsoid normal that intersects p. The definitions of Sp

and Sl can now be transfered from the geoid to the ellipsoid.

The boundary condition for W along S0 (geoid) is next converted to
one for the anomalous potential along S (ellipsoid). By assumption, the
radius of the oceanic geoid is known (see equation (2.06)). The radius,
rY, of the level rotational ellipsoid may be obtained, using equation

(2.13), in the form,

rq = rY(¢q) g € S (ellipsoid) (2.18)

The geoidal undulation, N(¢p,Ap); is defined as the distance measured
from the ellipsoid to the geoid along the ellipsoid normal. The maximum
excursion of N is on the order of 100 meters, which is small compared

to the dimensions of the ellipsoid. The generalized Brun's formﬁla
(Heiskanen and Moritz, 1967, p. 100) defines the relation between the

anomalous potential and the geoidal undulation,

T (p) Y(g)N{(g) + &W (2.19)

where

SW=W, - U_ = W(p) - Uq)
¢ v (2.20)

difference of equipotential constants

This is the boundary condition on the anomalous potential, valid for
P € S,-

The boundary condition on land is transformed, similarly, On Sl
(geoid), g(p) is known by assumption, and on Sl (ellipsoid), ylq) is

known by definition, so that the gravity anomaly, Ag(q), is well defined
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Ag(q) = g(p) = v{a) (2.21)

The generalized fundamental equation of physical geodesy (Heiskanen

and Moritz, 1967, p. 10l1) holds,

ay(q) T(p)-&W

aT(p)
on Y {qg

9
p nq

Ag(q) = - (2.22)
Since, as a result of the linearization, the measured data, N(g) and
Ag(g), are small quantities, we may identify p with g and np with né.

A boundary value problem for the anomalous potential may be formulated.

For S the rotational ellipsoid and R its external volume,
2
vVer(p) =0 PER (2.23)

The boundary conditions on the two parts of S are

1) T(p) = vy(p)N(p) + &W pE S, (2.24)
(p) p) (p)

2) T(p) e %_T_EEE Ag(p) + oW pES, (2.25)
anp anp

This is called a mixed boundary value problem in potential theory, a
problem of the third kind, or the Robin's problem, since a linear
combination of the potential and its first derivative are specified on
the boundary (Kellogg, 1953). Equation (2.24), if specified on all of
S, can be identified with the well known boundary value problem of
potential theory of the first kind, the Dirichlet problem. If equation
(2.25) holds over the whole surface, the Stokes (1849) problem, in
which the coefficient of the derivative term is variable, but continu-
ous, is obtained as a special Robin's problem. In the present case the
aT

coefficient of T is discontinuous on 3S, the boundary between S0 and

Sy since its value drops to zero on So-

As in analysis of the Stokes problem, the ellipsoid is next approx-

imated by the sphere of radius r This is justified by the previous

Me
linearization to small quantities as well as the entailing simplicity.
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The normal derivative becomes a radial derivative,

d 9
—— T —— (2.26)
) )

np rp

The ratio

Y<p>/g—}:°> = Y(p)/ %};P’ (2.27)

may be approximated by taking

oM

U = T

(2.28)

Thus
r
Y(p)/%%-(p) = - 52 (2.29)
p

Thus the spherical approximation of the equation of physical geodesy

(equation (2.22)) is

r BT( ) r -
T(p) + £ =P’ = - 5B Ag(p) + &w pE S (2.30)

We may state our partial differential eqﬁation formulation as
2
VeT(p) = 0 P € R (2.31)

with the boundary conditions

1) T(p) = Y(P)N(p) + 6W P E S,
r r (2.32)
2)  T(p) + 2 AP oL M agp) 4 oW pES
2 rp 2 1
Introducing
v {p)N (p) P E S,
£f(p) = r (2.33)
M
-5 Ag(p) pE S,
and the land function
0 p € S0
A(p) = (2.34)

1 pESl
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the boundary condition may be written compactly (in terms of discontin-
uous functions) as

r
T(p) + Alp) = TP = £(p) + 6w pES (2.35)
p

2.3 Dual Integral Equation Formulation

To obtain the dual integral equation formulation we first state
the integral representations of a potential function for two types of
boundary conditions. For the Stokes problem similar techniques are

employed by Moritz (1965).

If any harmonic function, T(g), is prescribed, g € S, the solution

of the Dirichlet problem for the sphere can be written

T(p) %; %J.Kp(p, q)T(q)doq p ER (2.36)

where

o = solid angle corresponding to the earth's surface

KP(p, q) = Poisson kernel (Kellogg, 1953, or appendix A)
® [Ty ni+l
= 1l= x; (P) %y (q) (2.37)
i=1\"p

xi(p) = normalized spherical harmonic function

_ -m i cos =0 .
=P, (sin ¢p) { (mxp) (2.38)

i sin o j=1

i= (ni + j)ni +m+ 1

Il
o

n, < for jA

o
in
=]
A

0 <m<n, <= for j 1
If %%jq) is prescribed, g € S, there results the boundary value problem
in potential theory of the second kind, the Neumann problem. An integral

representation of the solution of this problem is derived in appendix A.

It is convenient here to introduce a harmonic function, z(p),
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X
t(p) = 5 3T (2.39)
P

If r(g) is prescribed, g€ S

_ 1
T(p) = ﬁ‘[rf Ke(ps Q)C(q)doq (2.40)
where
KN(p, g) = modified Neumann kernel (appendix A)
© r. \n.+1
=- ) ~£——<—§ = x. (p)x, (q) (2.41)
YR ! r i i
In addition
) r
T(p) + z(p) = T(p) + 5B 2T(P)
P
_ 1
= IT -!f [KN(PI q) + KP(pr q)] C(q)dcq (2.42)

We take ¢ as the unknown. independent variable. We allow p to lie on
the boundary so that we may use equations (2.32) in the left hand sides
of equations (2.40) and (2.42). In the limit as p is brought down to
the surface, the Poisson kernel becomes a delta function, the kernel of
the identity operator,

1(p, @) = Ky(p, @) = iZ_lxi(p)xi(q) (2.43)

rp=rM

For the application of generalized functions, of which the delta func-
tion is a special case, to partial differential equations, see Shilov
(1968). With rp = Iy in equation (2.37) the transform causes a function
to be represented in a spherical harmonic series (for convergence, see
Hobson, 1955, p. 344). The equivalent form of the Neumann kernel is

obtained from equation (2.41) with rp = Iy

2
e AUEACY (2.44)

«©

Kelp, @) = -
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We thus obtain the dual integral equations

1) Y{(p)N(p) + &W = %J{;f Ko f(p, q);(q)dcq PE S, (2.45)
and

r
2) - —Z—M-Ag(p) + §W = z(p) + :ZLE? af Ky(p, q)el(a)do,  p € S (2.46)

The equation (2.45) is a Fredholm integral equation of the first kind.
The equation (2.46) is a Fredholm integral equation of the second kind.
Using the identity kernel it may alternatively be written as a singular

integral equation of the first kind,

r
- gyﬂg(P) + 8W = %F-ly.l}(p, q) + KN(p, q)]z;(q)doq PE S (2.47)

Dual integral equations have not been actively studied until recently
(see Sneddon, 1966, or Tranter, 1966), and much of the work principally
involves one dimensional integrals. See also Mikhlin (1965) concerning

multidimensional singular integral equations.

2.4 Integral Operator Formulation

For convenience and compactness we introduce the integral operator

notation. PFor any integrable function, x(q),

Kylp, adx(q) = %‘E‘,’;f Ky(ps @)x(q)do, (2.48)
x(p) = 1o, Dx@ = =M 166, Dx(@ a0, (2.49)

These operators are infinite-dimensional, since the representations of
their kernels in terms of the normalized spherical harmonics (see
equations (2.43) and (2.44)) each consist of an infinite number of
terms. For practical work the series must be truncated, so that finite-
dimensional operators result. For simplicity we write K (p, q) and

I(p,q) for both the operator and the kernel. Write

z(p) = BT(p) + z(p) - BT(p) (2.50)
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where B is a scalar free parameter weighting the influence of altimetry
data relative to gravimetry data. For p € SO’ replace the right-hand T
of equation (2.50) with equation (2.32), replace the left-hand T by
equation (2.40) using the notation of equation (2.48), and represent

¢z using the notation of equation (2.49):

T(p) = [BKy(p, @) + I(p, @1z(q) - BY(P)N(P) - BSW p € Sy (2.51)

For p € §,, set B = 1 and give the right-hand T the same representation
as that given the left-hand T of equation (2.51). Noting equation
(2.39), the remaining terms of equation (2.50) are just the left-hand-

side of equation (2.32) part 2), so that

r
T(p) = - 5oAg(p) + &W - K (p, @)z(q) pES, (2.52)

Equations (2.51) and (2.52) constitute a version of the dual integral
equations in operator notation. They are next combined into the form

of a single equation. We define the inhomogeneous term

- By(p)N(p) - BSW P E S,
vip) = Ty ~ (2.53)
- 5-Ag(p) + &W P E S,y

The effect of the parameter, B, on the relative weighting of the two

types of data is explicit in equation (2.53). We define the operator

BKN(pI q) + I(p, 9) p E So
K(p, q) = (2.54)
-Ky(p, Q) pPES,
We have
t(p) - K(p, @)z(q) = v(p) (2.55)

This operator equation is of the form of an inhomogeneous Fredholm
integral equation of the second kind. It is unconventional in the sense
that the operator, K(p, q), has a kernel that is discontinuous as a

function of the parameter point, p, along the irregular boundary, 3S,

between oceans, SO' and land, Sl’ The inhomogeneous term is similarly
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discontinuous. 1In addition, the appearance of the identity operator in

part of the kernel is definitely nonclassical. The problem may also be

cast in the form of an integral equation of the first kind,

M(p, a)z{q) = v(p)

where

- BKy(p, Q) PE S,

I{p, @) + Kylp, Q) PES

M(p, q) =

(2.586)

(2.57)

This operator is similarly unconventional. Integral equations of the

first kind are generally more difficult to solve; equation (2.56) is

used primarily as a starting point to manipulate the problem into a

problem involving an integral equation of the second kind.

(2.55) is the simplest form; others are developed in chapter 4.

Eguation

29






Chapter 3

UNIQUENESS THEORY

3.1 Physical Considerations

Engineers usually do not concern themselves with mathematical
guestions such as uniqueness and existence; they prefer to rely on
physical reasoning to guarantee these properties of the solution of
their problems. However, these tools can be used as important checks
on the validity of the analytical model of the physical problem, which
arises because approximations must be made to physical reality in order
to deal with the problem in a tractable manner and yet get useful re-
sults. A proper mathematical model should have enough restrictions so

that there are not multiple solutions, but not so many that none exist.

We shall assume that the solution for the anomalous potential may
be approximated by a function, T(p), defined outside of the earth's sur-

face, appropriately approximated, which is:

1) finite
2) single-valued
3) regular at distances far from the earth (vanishes at least as

fast as 1/r)

4) continuously differentiable

For compatibility the boundary data must be suitably restricted. As an
approximation, altimetry should yield continuous geoidal undulations on
oceans, SO' Similarly, gravity anomalies should be extracted from
gravimetry as a continuous function on land, Sl' At the boundary, 35S,
between ocean and land there are no further restrictions relating the
physical data across the boundary. Some conditions sufficient for the
full problem, in which all of the spherical harmonic coefficients are

retained, to be unique are presented in section 3.2.
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3.2 Uniqueness Results

To obtain conditions sufficient for the problem to be unique, we

start with the partial differential equation formulation of section 2.2,
2
viT(p) = 0 P ER (2.31)

with the unified boundary condition,

M BT(p)

T(p) + A(p)5— = £(p) + W pE S (2.35)

To examine uniqueness, suppose the cbntrary, that there exist at least
two harmonic functions, T'(p) and T"(p), each satisfying the boundary

condition. The difference,
v(p) = T' (p) - T" (p) (3.01)
satisfies
2
Viv(p) = 0 P ER (3.02)
with the boundary condition,

v(p) + A(p) M ip) . g b ES (3.03)
p

Since the boundary is a sphere, it is natural to expand v(p) in a se-
ries of spherical harmonics. Conditions under which various coefficients

vanish indicate conditions for the uniqueness of T(p). We expand v(p)

in solid spherical harmonics

o fr \n.+1
_ M1
V(p) = i£l<r—p-> Vn mjxl(p) (3.04)
where
_ 1
vnimj = Ir df v(p)xi(p)dcp (3.05)

and xi(p), i, n,, m, and j are defined in equation (2.38). According
to Hobson (1955, p. 344) the assumptions imposed on T(p) (see section
3.1) and therefore v(p) assure the validity of the series representa-

tion.
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We form the integral

In = %% {yov(p)[v(p) + ;ﬂ %%ép)]dcp (3.06)
Decomposing equation (3.03),

vip) = 0 P E S, (3.07)

vip) + ;”4 %%ip) =0 pES, (3.08)
Since

SoU 8, =8 (3.09)
there results

In =0 (3.10)
We insert the harmonic series, noting that

© n.+1
%\];_I()p) o = - i£1 ;M vnimjxi(p) (3.11)

P M
There results

m=0=2f7v x(p)ofl—f—lijlv x, (p)do_(3.12)
4m T ki sktﬁ k is1 2 nimj i p

Using the orthonormality property

1 =

= {y.xk(p)xi(p)dop = 84 (3.13)
we obtain

o0 © n,-1
i

In= ] ) —5—v v .8 . (3.14)
k=1 i=1 2 sktl n;mj ki
= 0
or . n,
2 _ _ 2 2
Vooo = L (g = 1) ] [vygg ¥ Vn.ml) (3.15)
ni—2 m=0 i i

Both the left hand side and the right hand side of the equation consist
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of nonnegative terms. If one side vanishes, then so must the other.

If

Vooo = O (3.16)

then

Voomyg = 0 (3.17)

for all n;,, m, j such that

2%n, <=

i
0 2ms<n, (3.18)
j=20,1

By definition (see equation (3.05)),
—1ff "(0 - 1" (p)|a 3.19
Vooo = g4/ [T (@ - T (p)|doy (3.19)

Thus if both solutions for the anomalous potential have the same aver-

age value over the surface of the earth,
V000 = 0 - (3.20)

This is equivalent to the requirement that the mass of the earth (in
the constant, GM) and the difference of geocid and ellipsoid equipoten-
tial constants, 6W, must be prescribed. Further, the constant, §W,
behaves as a zeroth harmonic of the inner potential in the boundary
conditions (2.35), violating requirement 3 of section 3.1. Hence
choose

W = 0

We still have to examine the differences of first degree harmonic co-
efficients, Vi00’ vllO' Viq1* which are not involved in equation (2.15).
By assumption (see equation (3.16)), these are the only remaining

possible nonzero terms. Hence
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But in view of the boundary condition (see equation (3.03))
vip) = Ap)v(p) (3.22)

The three first harmonic terms may be interpreted as the three orthogonal
components of a translation of the center of the coordinate system
(Heiskanen and Moritz, 1967, p. 62). Aside from a trivial translation,
v(p) is zero only on the locus of points common to both the original
reference sphere and its translation resulting from nonzero first har-
monics.

Thus the first harmonic coefficients must vanish if the oceans cover a

finite area, since

vip) = 0 P €S, (3.07)

Thus we have proved that, when both altimetry and gravimetry data are
specified in the boundary condition, if a solution is assumed to exist,
any other solution with the same zeroth harmonic is identical. The
question of existence of solutions is handled in the next chapter; use-
ful results are obtained only for solutions in which the potential is
assumed to be the sum of a finite number of spherical harmonics. An
analytical proof yields not only existence, but also uniqueness, for
the finité approximation. An alternative numerical approach (which of:
course requires a finite approximation) demonstrates that for an altim-
etry-gravimetry distribution resembling the ocean-land distribution of

the earth, a unique solution can be obtained.

Before turning to the finite-dimensional problem, a few more re-
marks will be made concerning the infinite~dimensional case. As a
result of the linearity of solutions of equations (3.02) and (3.03), if

a nontrivial solution exists, it may be expressed in the form,
- *
vip) = Vooo V {p) (3.23)

where v*(p) is a unique function for a particular choice of A(p).
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The uniqueness analysis just discussed makes no use of the detailed
form of the boundary between land and ocean (other than to eliminate
the trivial boundary). The detail of the discontinuity is difficult to
handle analytically, but J. E. Potter (personal communication) has
extended the uniqueness proof by deriving criteria sufficient for the

problem to be unique. These results are now obtained using the present

notation.

Rewrite equation (3.14) in the form

©qn,=-1 2

4 4 .
1.2 i
In=1| 35 .+ 7§ ve - % vEoo. (3.24)
[i=12 n.mj ji5 2 nimé] iZ1 2 n,mj

In the previous analysis it was shown that if Vooo = 0, equation (3.14)
is positive definite, so that only a trivial choice of coefficients
satisfies equation (3.10). To show that equation (3.24) is positive
definite, it is sufficient to show that a less positive function is
positive definite. Hence replace (ni - 1)/2 by 1/2 in the second

summation, yielding

In 2 ? 1,2 - % 2—niv2 (3.25)
l=l2 n,mj i=1 2 n,mj
It is easily seen that
1 2 _ 2
'ﬁ-g [v(p)1do, = lzlvn s (3.26)

Substitute this into equation (3.25) and use also equations (3.05) and

(3.22):
.
> 1 2 1 _ 2
- Uf [v(p)] dcxp[7 J (3.27)
where
_nl 1
2_ [f v eras, = v@x @v@asg
7= (3.28)
1 2
I wen’tas,
If max 1
v(p) J <3 (3.29)
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then equation (3.24) is positive definite. All trial functions in the

maximization of equation (3.28) may be represented in the form

4
v(p) = izlo&iA(p)xi(p) + v, (p) (3.30)

where YL(P) satisfies

IA
=

A
19

%?-gf V_J_(p)A(p)xi(p)doP =0 1 (3.31)

v|(p) does not contribute to the numerator of equation (3.28), so that
it may be taken to be zero for the maximization. Insert equation (3.30)

into equation (3.28) and define
by = == ff AP x, (P)x (p)do_ = As, (3.32)
ij Ha_ P X; P jP p ji .

There results

% 2-n
o. A, . A., o
i,9,k=1 ¥13 2 Tk 7K
J = (3.33)
;
oA, . o
i, =11t 13 3
or, in matrix notation,
T
I = 2_%£&1 (3.34)
o Ao
where
2-n,
72 = [Zij] = [5ij "f_l] (3.35)
. . 1/2
Introducing the square root matrix, A P
A2 g172 oy (3.36)
equation (3.34) may be written
*T % %
g =0 270 (3.37)
*T *
o* o

where
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2% = p1/25,1/2

An eigenvalue problem is obtained by applying the calculus of variations
to equation (3.37),

z%a* = Aa* (3.38)

so that
max J = max |A| (3.39)

To avoid the necessity of actually obtaining the square root matrix,
apply a similarity transform, which leaves the eigenvalues invariant,

£/25*471/2 _ gy (3.40)

If the magnitude of the largest eigenvalue of AZ is less than 1/2, so
that relation (3.29) is satisfied, equation (3.24) is positive, and
hence the problem is unique. The criterion thus developed depends on
the zeroth and first harmonics of the land function, so that to verify
uniqueness, a gravimetry-altimetry distribution must be chosen. The
uniqueness verification process is pessimistic, because of the crude-

ness of approximation in the relation (3.25).

Uniqueness can be verified for the infinite-dimensional problem
for an altimetry-gravimetry distribution considered later in the thesis
(figure 1). The land coefficients may be obtained from the ocean
coefficients, Qij’ obtained using the computer program given in appendix
c.1,

Ase =82 = 0. (3.41)

Substituting the obtained values in equation (3.40),

0.30 0.06 0.05 0.03
Az = |0-12 o0.18 0.02 0.02 (3.42)
0.11  0.02 0.12 0.00

0.06 0.02 0.00 0.15
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Since the maximum of the row sums bounds the eigenvalues (Todd, 1962,
p. 284), the eigenvalues of this matrix are all less than 1/2, so that
the problem of this thesis is unique for a gravimetry-altimetry distri-

bution resembling the land-ocean distribution of the earth.
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CHAPTER 4

EXISTENCE THEORY

4.1 General Discussion

In this chapter we discuss a method for solving the problem for-
mulated in chapter 2 and study the conditions under which it will
yield a solution. The problem is formulated as a Neumann series, which
is valid when the operator is suitably "small". Next a nonsymmetric
matrix approximation to the kernel of the operator is obtained. The
matrix is then transformed into a form in which the matrix becomes
symmetric under certain conditions. When these are made to hold, ne-
cessary and sufficient conditions for a solution to the finite prob-
lem are given. These conditions on the symmetric case are not satis-
fied when the full, infinite-dimensional operator is considered. A
particularly simple version of the symmetric case is discussed in
section 4.5. For the nonsymmetric form of the operator, analytic re-
sults are lacking, but for a finite approximation, numerical studies
show that the problem can be solved for an altimetry-gravimetry distri-

bution like that of the earth's ocean-land distribution.

4.2 Neumann Series Representation

To obtain a solution, we put the problem (equation (2.56)) in the
classical form of a Fredholm integral equation of the second kind

(see equation(2.55)),

[I(p,g) - K(p,9)]z(g) = vi(p) (4.01)

Unfortunately, the kernel and inhomogeneous terms contain discon-

tinuities, and the kernel includes, in part, the identity operator.
These considerations will be examined in later sections. Bitsadze
(1968), Collatz (1960), and Courant and Hilbert (1953-1962) are re-

presentative of the mathematical methods to be considered for a
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solution. Here, an iterative solution and terminology used in in-
vestigating its validity are described. Rewrite the equation in the
form

z(p) = K(p,a)z(q) + v(p) (4.02)
If the operator, K(p,q), is in some sense "small" compared to the iden-
tity operator, we try an iterative procedure,

+
@) (5) = ke, ™ (@) + vip) (4.03)

A convenient initial choice is

C(O) (p) = 0. (4.04)

If the process converges it yields a solution to the equation. An al-

ternative expression for the process is the Neumann series

z(p) = v(p)+K(p,q)v(q)+K(2)(p,q)v(q)+K(3)(p,q)v(q)+--- (4.05)
where the nth iterated kernel is given by
k™ p,q) = ke, )k (¢,q) (4.06)
and
x (0 (p,q) = I(p,q) g (p,q) = K(p,q) (4.07)

Another version is

z(p) = [ y () (p,q)] v(q) (4.08)
n=0

The guantity in brackets is also known as the Neumann series and is

in some sense the inverse of the operator

M(p,q) = ['I(p,q) - R(p,q)]
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Note the analogy with the well known series expansion

(1-x) T = 7 % (4.09)

which is wvalid for

|x| <1 (4.10)

We have a problem in functional analysis, since we are not considering
a function, but a functional (or operator) on a class of functions.

In order to establish the convergence of the Neumann series an analo-
gous ineguality must be established for the operator XK. First, an
operation analogous to taking the absolute value of a complex number
must be defined. The admissible functions are functions defined on a
sphere. Such functions constitute a linear vector space on which an

inner product is defined:

@) = gz [fa@veas, = v, (4.11)
a

Analogous to absolute value of a number or the length of a vector is

the norm of a function,

al] = [(a,u)1t/? (4.12)

A complete set of basis vectors spanning this space is the set of
normalized spherical harmonics, xi(p), defined in equation (2.38).

Equation (3.13) can now be written

(xi(P),Xj(P)) = Gij (4.13)

and

[Hx; )| =1 lgic<e (4.14)
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The norm of an operator is defined in terms of the norm of a function
by

sup

@l = P {1xEax@]|

1xl]=1} (4.15)

It is the least upper bound on the norm of the function, X(p,q)x(qg),
when all possible x(g) of unit norm are considered. The norm of the

operator corresponds to the absolute value operator of equation (4.10).

Corresponding to the radius of convergence of equation (4.09) is

the spectral radius of the operator, K, rc(K)

= Sup
r (K) = MEO(K)‘At (4.16)
rG(K) is the least upper bound of the absolute value of the spectrum,

o (K), of the operator, K, which for a finite-dimensional operator is a

finite set of numbers, A, its eigenvalues, for which the operator,

B

[)\I (qu) - K(Pr‘l]

fails to have ‘an inverse. For infinite-dimensional operators, matters
are more complicated; not only can there be an infinite number of
eigenvalues, but other types of points can lie in the spectrum. These
are too difficﬁlt to describe here; see Taylor (1958). The Neumann
series (equation (4.08)) is a formal expansion of the resolvent opera-

tor, -1
Ry = [AI-K] (4.17)

with A = 1. The kernel of the resolvent operator differs from the re-
solvent kernel used in classical in£egral equation terminology (Hilde-
brand, ‘1953, p. 430) in that the latter kernel does not contain the
initial delta function corresponding to the identity operator. To estab-

lish the validity of the convergence of egquation (4.08) the applicable

theory of functional analysis (Taylor, 1958, p. 262) is quoted.
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If K is an operator on a complete complex linear vector space, the re-

solvent is given by

R, = ] 2Px™H (4.18)
n=1

if
Ix] > r (®) (4.19)

This series also represents RA if the series converges and

Al = r (x) (4.20)
The series diverges if

[A] < rc(K) (4.21)
An alternative formulation in terms of norms of iterated kernels is

: .1/n
el IESd

r (K) = T (4.22)
For our problem with A = 1, we require
rc(K) <1 (4.23)

This holds if some iterated kernel, Kn, is a contraction operator
(Vulich, 1963),
™) <1 (4.24)

The resolvent operator then yields a unique solution (Chu and Diaz,

(1965)) .

Kach (1967) considers a similar iterative approach for the case

when only gravimetry is prescribed.

4.3 Matrix Representation of the Operator

For the subsequent work, a matrix representation is needed for the

kernel of the operator, M(p,q), defined in eguation (2.57), or
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equivalently, K(p,q), defined in equation (2.54), which is the kernel
of equation (2.55), whose solution, if it converges, is the Neumann
series of equation (4.08). Because the kernel is needed to verify con-
vergence, its representation is obtained in this section. Alternative
Neumann series formulations are developed later in the chapter: their
matrix representations can be obtained directly from that of M(p,q),

which is related to K(p,qg) by

M(p,q) = I(p,q) - K(p,q) (4.25)

Hence we need only find a suitable representation for the kernel,

I(p,q) + BKy(p,q) P E S,
K(p,q) =

-KN(p.q) p €8, (2.54)

Since the boundary surface, S,is a sphere, the normalized spherical
harmonics (see equation (2.38)), xi(p), are a suitable set of basis
vectors for representing the kernel. From section 2.3, the kernel of

the identity operator is

I(p,a) = I x;(P)x;(q) (2.43)
i=1

Similarly the kernel of the modified Neumann operator is
.7 _=2
Ry (p,a) = 121 AT X3 (P)%; (@) (2.44)

where n; is defined in equation (2.38). To find a single representa-
tion for the kernel valid both on s0 and Sl’ define, in conjunction with

the land function of equation (2.34), the ocean function,

: 1 P € 8,
Q(p) = (4.26)
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It is related to the land function by
Q(p) = 1 - Ap) (4.27)

Then
K(p,q) = 9(p)[I(p,q)+6KN(p,q)]—A(p)KN(p,q) (4.28)

We may also write

K(p,q) = -Ky(p,q)+Q (p) [I(p,a)+ (1+B8) Ky (p,q)] (4.29)
or

K(p,q) = E [X-(p)~3—— x-(q)+9(p)x-(p)(l—2u.)x.(qﬂ

j=1 b3 TRyt TS j 3773
(4.30)
where
_ 1+8
My = nj+l

It is also desirable to have an expression in which the arguments
. appear only in the form of spherical harmonics. We thus expand the
function, [Q(p)xj(p)], in terms of spherical harmonics. With use of

Parseval's identity, the representation

[Q(p)xj(p)] = izl jSxi(p) (4.31)

follows, where the coefficients jS are given by

2
1]

1
o

1

ZFJi?;j(p)xi(p)dcp (4.32)
%

and 99 is the solid angle corresponding to the area Sp- A listing of

ji

a computer program that calculates these coefficients may be found in

appendix C.1.
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Note that

Qij = jS (4.33)

Since equation (4.13) holds,

log41 <1 (4.34)

and

0<0;; 21 (4.35)

For the nontrivial mixed data problem the strict inequalities holds.
Application of the Cauchy - Buniakovskii - Schwarz ineqguality (Hardy,

et al., 1934) yields the further restriction,

1/2

I (Q..0..1]

ij] < 1844045 (4.36)

Substituting into the representation for the kernel we obtain

«Q =<

= 2 -

ko) = 1 T [ 655 gy 405y -2uy) | % e)xg @ (4.37)
i=1 j=1 3 :

As a short hand notation we suppress writing the spherical harmonic

basis vectors and express K(p,q) as an infinite matrix (Cooke, 1950) of

spherical harmonic .coefficients,

K(p,q) = [K;g] (4.38)
where
- 2 _

Similarly, a vector is represented as a column of its spherical har-
monic coefficients, and a product is the inner product of equation

(4.11).
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Note that iterated kernels may be formed by successive pre-

multiplications of the matrix.

) (p,q) = Ik, K__K

1kKkl°”‘ nm mj] (4.40)

Here, and in the remainder of the chapter, we employ the summation con-
vention when matrix or vector products are indicated. Analysis of in-
finite-dimensional matrices is difficult; for example, the associative
law may not necessarily be valid for products of infinite~dimensional
ﬁatrices, although it is true for diagonal matrices, such as the ma-
trix rep;esentations of the identity and Neumann operators. The re-
presentation of equation (4.38) contains off-diagonal terms, which are
intimately associated with the discontinuity of the kernel and the
fact that the spherical harmonics are not orthogonal over the oceans
(see equation (4.32)). In addition, the discontinuity is with respect
to only one of the two variablés, so that the matrix is nonsymmetric.
In the practical case, of course, the matrices must be truncated. The
associative law is then strictly valid for a given approximation, but
the kernel is smoothed, and the discontinuity is lost. Truncation has
the effect of confining the spectrum of the solution, eliminating the
complications mentioned in section 4.2. Determination of the spectrum
is simple for a diagonal matrix, since the eigenvalues are juét the
diagonal terms. For an arbitrary, nonsymmetric, finite matrix, it is
difficult enough just to determine the largest modulus of these, the

spectral radius.

4.4 Analytical Criteria for Convergence

From the formulation of the problem of this thesis given in
equation (2.55), an iterative solution (see equation (4.08)), has been
developed. The iteration converges only when the spectral radius of

the kernel satisfies inequality (4.23). Unfortunately, the kernel is
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nonsymmetric (see equation (4.39)), so that analytical conditions
necessary or sufficient for the Neumann series solution to be valid

are difficult to obtain. In section 4.6, numerical procedures establish
that a truncated form of the kernel with special choices of the ocean
function, 2, and weight parameter, B, has a spectral radius that
satisfies inequality (4.23). To obtain insight into the problem, an

analytical study is also desirable.

To this end, we start with the problem in the form of equation
(2.56). M(p, q) can also be written in matrix form, using equations

(4.25) and (4.39); its elements are:

= -2 -
Mij —_Gij(l nj+l )+ nij(zuj 1) (4.41)
where
1+B
Hy T nj+l

and nj is defined in equation (2.38). Because symmetric matrices are
more convenient to handle analytically, a symmetrizing transformation

is sought. A similarity transformation, S = [Sij], leaves the eigen-
values, and hence, the spectral radius, invariant (see, for example,
Hildebrand, 1952), so that the spectra, o{(M) and o(SMS-l), are identical
(of course, S must be nonsingular). Hence an alternative formulation

for equation (2.56) is
(sus™1) (s7) = sv (4.42)

The solution of equation (2.56) can then be reduced fo the inversion of

M = sms™1 (4.43)

using, for example, an appropriate Neumann series formulation.
Require that

n.—-1
8 + .2;1___ (4.44)
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so that Zuj + 1

For all n., o £n, £n
3’ 3 M

where ny = maximum degree of harmonic approximation. When this is

violated, so that
i nk«l
B = -

for some Ny, 0 2 n, 2 n,, the matrix is ‘decomposable’ (Todd, 1962, p.

M
285); the spherical harmonic basis vectors can be reordered so that the

n, th harmonic terms come first, yielding

Except when B = 0 (the problem is then clearly improperly posed) the

(k)

(2nk + 1) X (2n, + 1) diagonal matrix, M , is clearly invertable.

k
The standard partitioning technique for matrix inverses (see, for

example, Todd, 1962, p. 238) thus yields

so that to study the validity of the inverse, M—l, one need only consider

the matrix, M(’), in which the rows and columns corresponding to B =

(nk - 1)/2 are removed. Define s so that

n.-1
2uy > 1 or 8 > —4— j<s (4.45)
and
n,~-1 ’
21y <1 or B < —%—— j > s (4.46)

The following similarity transform leaves diagonal terms invariant:

1/2

S.. = Gij(|2uj - 1)) (4.47)

1]

Its inverse is
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S = §,.(|2u. 1 .
13 = 8i5012uy 1 (4.48)
Partition MS’
A : -EY
My = —— == (4.49)
E I D
where
- = . 2 _ 1/2 _ 1/2
A [Aij] [6ij(l n.+1) + Qij(zui 1) (2uj 1) ]
J (4.50)
12i, 3 <&s
_ _ 2 _ 1/2,, 1/2
D [Dij] [Gij(l n————j+1) Qij(l 2ui) (1 2uj) ]
(4.51)
s <i, j ¢t
_ =[_ _ 1/2 _ 1/2
(4.52)
123 <s<ift
where t = (nM + 1)2. Hence Mg is the sum of a symmetric part,
A : 0
0 : pl,

It is always possible to obtain complete symmetry by a similarity trans-
formation (Gantmacher, 1959, p. 13), but the symmetrié matrix is com-

plex in the case considered here. Let

. (i)l/zajk
s - (4.53)
(i)—l/zdjk j > s
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Then

g(i)-1 g P ES T i Ml (4.54)

This form will not be used here.

If B < - % (4.55)
Mg =D (4.56)
;f n -1
B > —5— (4.57)
Mg = A (4.58)

These cases, in which the operator is symmetrized, will be considered

subsequently.

In general, M is nonsymmetric. Even here there may be a solution
involving only symmetric inverses (if the inverses exist). Using the
standard partitioning technigue for the inverse of a finite matrix (see,

for example, Todd, 1962, p. 238),

e (4.59)
s | .
r | a :
where
A=Ip+ e 1Tl
g=2a21-2a1gTrpal (4.60)
r=-4Bat

If A is singular, but D is not, the obvious modification may be made.
To obtain

r =gt M;l S v (4.61)

the existence of the inverses is not necessary, but only sufficient for

equation (4.59) to be valid. A practical verification of the existence
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of the inverses for matrices of useful size must rely on numerical
procedures. The application of numerical techniques is considered
later, but not using this form. The similarity transformation does
not simplify the analysis when

1 n -1

M
-— _2_ < B < 3 (4.62)

so that in the numerical study, in which a typical value of 8 = 1 was
chosen, the original K matrix (equation (4.39)) was examined. In
section 4.6 a numerical determination of the spectral radius shows
that a Neumann series solution is valid for a particular land-ocean
geometry resembling the earth. Sufficiency having been established
for the particular combination of B, f, and Dy chapter 5 describes a
numerical simulation illustrating the determination of the harmonic

coefficients using this method.

To explore possible solution methods for which additional analytic
tools are available the cases in which 6 satisfies the inequalities
(4.55) and (4.57) are next examined in detail. MS is now symmetric
(see equations (4.56) and (4.58)), and its eigenvalues are.all real.

The minimax and maximin theorems (Courant and Hilbert, 1953, or

Householder, 1964) are applicable:

max min ~
E xeg Mg) = A (Mg) (4.63)
m m
and
min max _
E xeg MMg) = Ay (Mg) (4.64)
m ™
where
xTMSx
A(MS) = Rayleigh quotient = —g
X'x

(4.65)
AL (g 2 A, (M) 2 ... 2 A (Mg)
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and Em is a subspace of the entire space, E for which the set of

tl

spherical harmonics, xi(p), 1 24iZft, is a basis. Considering
m=t

any Rayleigh quotient of a real symmetric matrix lies on the closed
interval between the largest and smallest eigenvalues. For example,

let x have only the ith component nonzero. Hence

> >

Al(MS) Z MS.. z Xt(MS) (4.66)
ii

for all i, 1 £ i £ t. Hence lower bounds on the maximum magnitude of

the eigenvalues (spectral radius) may be obtained.

For convenience, introduce a parameter, T, which can be chosen to

facilitate convergence of the Neumann series. Let

_ 2
MS =B + C
= C[I + c"ch'l]c (4.67)
= C[I + BC]C
where
- - 1/2 -
C = [cij] = [Gij(l + 1) ] T > 1 (4.68)

When inequality (4.55) holds,

B

[Bij] =D = (1L +1) I-=

2 1/2 172
=t + =168, . - Q..(1 - 2n,) (1 - 2y.)
[ ( nj+l> ij ij i i ] (4.69)

B<-32
When ineguality (4.57) holds,
B=[Bij]=A“(l+T)I
=\ 2 _ 1/2 _ 1/2
J -1 (4.70)
B> >

55



In both cases

BC = C "BC = [B

i3 (4.71)

_ 1
=T B
And the diagonal terms are of the same form,

= 1
LT

2

B - (T + nj+l) + ij(Zuj - 1) (4.72)

C..
33

To establish the wvalidity of the Neumann series representation,
. -]
gt = ‘1[ Y (- 1)nBC(n)] ¢t (4.73)
n=0

It must be shown that

ro(BC) <1 (4.74)

(see section 4.2).

We now develop inequalities that must necessarily hold in order to
invert MS using the Neumann series of equation (4.73) when B satisfies
one of the inequalities (4.55) and (4.57) and T satisfies condition
(4.68). Applying the inequality (4.66), it is necessary for the

representation (4.73) to be wvalid that

|B. | <1 for all j, 1

A
()
1A
o+

C.. (4.75)

33

Let inequality (4.55) hold, and set j

1, so that nj = 0 and uj =1 +

- 1 _ - _ _ _
By, T T [-v-2-0,0-1- 28]
(4.76)
N S -1-28 _ 1
R Qll(‘TT ) B<-3
In view of the inequalities (4.35), (4.55), and (4.68),
1
B, < -1 B<-3 (4.77)
11

Hence the Neumann series is not valid (a valid Neumann series may be
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obtained for suitable values of 1 and B for which 1 < - 1 and B < - 1

5
The derivation is not given here, since it is similar to the one given

shortly, see also section 4.5).

When inequality (4.57) holds, a necessary condition for the

validity of the Neumann series is

-1
1 _ 2 MM
177 ij(Zuj 1) T nj+1 <1 B > — (4.78)
132t
For example, let ny, = 2 B =1 T =20 (4.79)
For j = 1 inequality (4.78) becomes
- |3 @, - 2] <1 (4.80)
so that
g, <1 (4.81)
3 11 )

must hold for equation (4.73) to be valid. Similarly, for 2 X j = 4,

nj =1
Lnjj -1} <1 (4.82)
so that
ij >0 (4.83)
is required. For nj = 2, no useful result is obtained. When equations

(4,.79) hold, numerical studies, described in section 4.6, indicate
which of several choices of the ocean function allow the spectral
radius of the operator to be small enough so that equation (4.73) is
valid. The smallest satisfactory amount of ocean is greater than the
1/3 requirement of inequality (4.8l). (The original matrix was used,
but the eigenvalues, and hence the necessary conditions are the same).
It should be noted that even if convergence is not valid here for a
particular land-ocean geometry, this does not rule out a solution in

a different form.
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In general, inequality (4.78) becomes

2 2

nj+1 1 2T+l =y

jﬁg:I——” < ij <-§ﬁf:%”" 2Uj > 1 T> -1 (4.84)
J

The lower bound is independent of T,

1-n, nM—l

The only useful restrictions are

(4.86)

and

Q.. >0 2<49<4 (4.87)

If ocean areas are small, B can be chosen sufficiently large so that
inequality (4.86) is satisfied. The upper bound in condition (4.84) is
lowered by this action, but siﬁce T is still available as a free para-
meter, it is plausible to assert that a combination of B satisfying
inequality (4.57) and 7T satisfying condition (4.68) can be so chosen
that the necessary condition (4.75) for the representation (4.73) to

be valid is satisfied as long as oceans cover a finite area.

It turns out that not only is this so, but B and T can be chosen
to assure convergence of this formulation: J. E. Potter (personal
communication) has outlined a proof specifying values of B and 7 that
are sufficient for establishing equation (4.73). Potter's proof is now
only sketched, since a similar, but simpler, proof under the same
assumptions is provided for the formulation of the next section.
Rewrite equation (4.71) in the form

= - = 1 =<
Be = - G * Ty * T S (4.88)

A matrix, Ba/ is negative (positive) definite if the Rayleigh quotient,
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is less (greater) than zero for all nontrivial vectors, x. Its eigen-

values are hence all negative (positive). I is positive definite, and
Mz ll=1 (4.89)

KN is negative definite, and
[l &g I =2 (4.90)

The infinite dimensional matrix, ©, is only positive semidefinite,
with eigenvalues of magnitude 0 and 1. The eigenvalues of the finite

matrix are bounded by these, so that
Il alls1 (4.91)

An absolute inequality holds on the lower bound, since, as is now shown,
the finite approximation is positive definite. If Q is only positive
semidefinite, there is at least one nontrivial function, f, such that

£ToF = 0

Hence  depends at most on only (nM + l)2 - 1 independent basis vectors,
which can be formed by the Gram~-Schmidt orthogonalization process (see,
for example, Garabedian, 1964), using £ as the first component. Appli-

cation of equation (4.32) yields

1 2
9, =0 = H{;f 2(p) [£(p)]%do,

- Jg{ £ (p) 120,

Hence f(p) must be identically zero on oceans, but nontrivial on land.

Mln

(x, v, 2), and z may be eliminated, since f(p) is confined to the sur-

But f(p) is at most a polynomial (Hobson, 1955, p. 120) of degree n

face of a sphere. On any interval, a polynomial of degree n,, can have

M
at most ny roots (see, for example, Cheney, 1966, p. 74). Considering
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y as a parameter, the locus of roots of the polynomial in x may be

obtained; this is just a series of lines, of which at most n, intersect

M
any line,

y = constant.

The process may be repeated with the roles of x and y reversed. Only

on the union of root loci does
£f(p) = ©

but this does not constitute a finite area, so that Q is positive
definite. It is not difficult to extend this proof to show that the
strict inequality holds in equation (4.91), but such a result is not
needed in the seqguel.

The finite matrix, S, is positive definite, and for

n -1
B > g (4.57)

its norm is

1/2

[} s || = (L + 28) (4.92)

Hence T may be chosen sufficiently large so that B is negative definite.

Choose, for example,
T>1+282 [ s {1?all2]] sas | (4.93)
(for the operator manipulations, see for example, Halmos, 1951). Hence

B, < 0 (4.94)

Now take B8 so large that the operator
Kg + sSQs > 0 (4.95)

The positive definiteness of () insures the existence of the lower

norm,
1

11 ell, = TT5:ITI
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This is a lower bound on the magnitude of the eigenvalue closest to the

origin. For S,

l+26—nM 1/2
Is |y = [———nl—dw] (4.96)
and
I1s 121 ]y < |l sas ]y (4.97)

Bounds for the eigenvalues of the composite matrix may be formed by an
appropriate translation of bounds of the individual matrices (see, for
example, Householder, 1964, chapter 3). Since SQS is positive definite

and Ky is negative definite the inequality (4.95) holds if
[l sas |1 > || &y | (4.98)

Hence require
nM+l n,~1

Mall,

(4.99)

N =

so that the relation (4.93) becomes

nM+1
> 2 ——— +n (4.100)
lell, "
L
These values assure the unique solvability of the finite approximation
of equation (2.56). It should be cautioned that B must be increased

greatly as n,, is increased, so that it is an open guestion whether the

M
approximation to SIS is thereby improved; successive solutions may not

agree.

The requirements on B and T are pessimistic; for better convergence
smaller values might be tried. The conditions necessary for this form-
ulation to converge than serve as lower bounds on the permissible values

of B and T. The relation (4.85) becomes
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l-n.r,
B>Tl[§—‘1] 1<3 <4 (4.101)
33

The right-hand inequality in relation (4.84) may be written

n.-1 n,+1 n.+3
B< 43—+ 32— 1+ 54— 1£3 2t (4.102)
33 JJ
or
(1+28-n,)Q..-n,~3
> 2(n?+1§j J 1 <32t (4.103)
J

4.5 A Symmetric Reformulation

In this section the nonsymmetric matrix is factored into the pro-
duct of a symmetric and a diagonal matrix; the eigenvalues of the matrix

and its factors are not simply related. When

-1
1 iy
- 5 < B < 5 (4.62)

so that the similarity transformation of the last section does not
symmetrize the matrix, the two matrix factors are indefinite; no further
analysis is considered here. For the finite matrix approximation when

B < - % (4.55)

or

n -1
5— < 8 (4.57)

conditions sufficient for the unique solvability of equation (2.56) are
established. The results appear to be better than thoée obtained under
these conditions in section 4.4; in effect, C in equation (4.67) is
taken to be a diagonal matrix of variable elements rather than a scalar
times the identity matrix. For simplicity, the results are obtained

directly from equation (2.56), which may be written in the form,

Mz = v (4.104)
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where

- - -2 - < i 5 <

M = [Mij] [sij(l nj+l) + Qij(Zuj 1)} 1<2i, j 2t (4.41)
= 1+B

My = nj+l

and nj is defined in equation (2.38). v is derived from measured
altimetry and gravimetry data (see equation (2.53)), and ¢ is the un-
known function related to the gravitational potential (see equation

(2.39)) to be determined. Define the matrix

L= [Lij] = Gij(2uj - 1) (4.105)

It is required here that

n.-1
8 + _12___ (4.44)
so that 2uj + 1 for all nj, 0 =2 nj < ny, where ny = maximum degree of

harmonic approximation. As discussed in section 4.4, restriction (4.44)

can be relaxed. Comparing with equation (4.47)

L =g if s 2 ¢t (4.106)
write
v = M tne :
(4.107)
where
¥ = Lt (4.108)
and
m¥ =Mt = L
1] (4.109)

n.-1
- g
[6ij 38R, * Qij]

If the symmetric matrix, M*, can be inverted, equation (4.104) may be

solved,
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— - ®—
r =1 = It (4.110)

A sufficient condition for M'k—l to exist, and therefore for equation
(4.104) to be uniquely solvable, is that M* be positive definite, so
that all of its eigenvalues exceed zero. M* is composed of a diagonal
matrix, whose eigenvalues are just

n.-1

Aj = II%E:H; (4.111)

and the ocean function, @, whose finite-dimensional approximation is

positive definite (see section 4.4), so that

0< || & [|L = min (A,(Q)) %
3 J

(4.112)

Smax (A, () = || 2 || 21

3 J
The norm, || © ||, is defined as in equation (4.15). The lower norm is
1
e |l, = —=+— (4.113)
L -1 -
He 1|

In the infinite~dimensional case, the upper bound on the spectrum of Q

is unity and the lower bound is zero.

%
Bounds on the eigenvalues of M may be formed by taking the
algebraic sums (see, for example, Householder, 1964, chapter 3; actually

the strict inequalities hold, since the matrices are symmetric).

n.-1
m%n(kj(M*)) P4 m%n(xj(Q)) + m%n(fi%ﬁ:ﬁf) (4.114)
J J J J
% n.-1
m§x(kj(M )) £ m§x(xj(9)) + m?x<I¥%§:H;) (4.115)

*
Hence M 1is positive definite if

n.-1
ety + m%n(r;%§:57)> 0 (4.116)
J J

This can hold if
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> %(—-1—-— -1 (4.117)
all,

n, -1
-g> 2 (.___1 - 1) (4.118)
lally

For the remaining values of B positive definiteness cannot be guaranteed

or

*
(But note that L. and M could become indefinite in a manner in which M
remains definite). The problem, although possibly not in this form,

can still be solved, see the next section.

If they are compared to the sufficient condition requirement (4.99)
of section 4.4, the inequalities (4.117) and (4.118) can be seen to
require values of B of smaller magnitude; the inequality (4.117) is the
best in this respect. Applying also relation (4.115), bounds on the

*
spectrum of M are obtained. When inequality (4:117) holds,

1 < % < nM“l
0<||9HL— +23—}\j(M+)'-HQH+mI; (4.119)
When inequality (4.118) holds.-~
0l el - BT cah Sl w ] ¢k (4.120)
L~ n-1-28 - L) - 1738 .

M -

Since the eigenvalues are.real, bounded, and positive (as long as
] @ IIL > 0), a convergent Neumann series,

1

=l _ e - (EI-M*)]7C

n

1

Uy e - wh (D) (4.121)
n=1

can always be found by choosing £ (which corresponds to (1 + 1) of
section 4.4) sufficiently large. To minimize the spectral radius,

choose, when inequality (4.117) holds,

- = 1,1 I
€—E+-HQHL-m-B-+7||9H+7m (4.122)
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so that

rG(M:) = %[ll Q ||L - I%iﬁ + ] e |l + i;%%iﬁg] (4.123)
and when inequality (4.118) holds,

g=g_=||g||L-n:’-‘_4_;ﬁ+%||g||+§ﬁ (4.124)
so that

rG(M_’f)=.21_[||n|(L-H:_M;__fZE+|19||+.__1_}7.B.] (4.125)

Convergence can be improved if B is chosen consistent with the previous

%*
constraints so that rG(M )/E is minimized. Hence when

[T e[l >0 (4.126)

sufficient conditions are obtained for equation (4.104) to be uniquely
solvable (see the end of section 4.2). These results are consistent
with those of chapter 3; altimetry must cover a finite area, since
otherwise the ocean function vanishes. As the degree of harmonié
approximation is increased, || @ ]IL approaches zero, and B becomes
very large. In equation (4.110), the operator, L—l, is 'small', but
M*"l is 'large'. It is an open question whether successive solutions
will approach a limit as Ny is increased. Trouble could occur if the
configuration of the numerical approximation approaches conditions that
give rise to a nonunique solution in the infinite-dimensional case.
Development of solution methods to handle such occurences, possibly
requiring consistency conditions on the measured data, must be left for

the future (for a sufficient condition independent of the form of the

ocean function, see appendix D).

4.6 Numerical Criteria for Convergence

It is not practical to attempt to determine analytically the

spectral radius of the operator in its nonsymmetric formulation. A
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numerical study would determine most feasibly whether the Neumann series
then forms the basis for a solution. This has the drawback that a
determination can be made only for a particular choice of the land-ocean
configuration. The drawback is not as restrictive as it sounds, since
for finite matrix representations, the eigenvalues, and therefore the
spectral radius, are continuous functions of the land-ocean configura-
tion (Ostrowski, 1960). For the full operator we can show that the
norm varies continuously with perturbations of the boundary between

land and oceans; see appendix E. The norm is related to the spectral
radius (see equation (4.22)), but the continuity of the spectral radius

for the infinite-—dimensional operator is an open question.

The spectral radius was determined numerically for the land-ocean
configuration shown in figure 1. For simplicity, the land and ocean
were chosen to coincide with multiples of five degrees of latitude and
longitude. The kernel of equation (2.55) was approximated by truncating
the infinite matrix to include only terms up to a given degree, ranging

up to twelfth. To illustrate a typical situation when

-1
1 My
- 7 < 6 < 2 (4962)

B was set to unity. Since there are 2n + 1 harmonics of nth degree,
at a given degree of approximation there are

4 2
} (2m+ 1) = (n + 1) (4.127)
m=0

spherical harmonic terms. Conseqguently K is approximated by an (n + l)2
by (n + 1)2 nonsymmetric matrix. The eigenvalue of largest absolute
magnitude then yields the spectral radius. If the matrix has a complete
set of eigenvalues and eigenvectors and the eigenvalue of largest abso-
lute magnitude is real, then the most practical method for determining
the spectral radius is the well known iterative procedure, the power

method (Bodewig, 1959, Wilkinson, 1965, p. 570).
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The iteration is started by choosing an arbitrary real vector of

dimension, (n + 1)2, a(o). At the lth stage premultiply by the real,

truncated K matrix to obtain a new vector

b &) = ga (%) (4.128)

The components of a(2+l)

(2)

are taken as a scalar multiple, Cor of the

components of b

a(z+l) = clb(z) (4.129)
A convenient choice is
e, = 1/ max bgl) (4.130)

]

(2+1)

Hence the largest component of a is unity. An estimate of the

largest eigenvalue is given by

TR N IV A S (4.131)
If

Yy = 6ij (4.132)
where j corresponds to the largest component of a(l) and b(l),

A8 =16, (4.133)

This estimate convergeé linearly to the eigenvalue of maximum modulus
(The iteration must be modified if several large eigenvalues are close
or identical in magnitude and possibly complex). A listing of a com-
puter program that can be used to calculate the spectral radius of a
finite matrix may be found in appendix C.2. Results of this process
are shown in figqure 2. The estimaté of the eigenvalue plotted, the’

Rayleigh guotient, uses
y = b(l) (4.134)

This choice accelerates convergence of the eigenvalue when K is a

symmetric matrix (Ralston, 1965). In the present case the successive
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values in the iteration vary more smoothly than when eguation (4.133)
is used. The iteration for the 4th degree approximation does not
converge, indicating possibly complex eigenvalues. The analysis of
section 4.4 indicates that the interaction of a spherical harmonic of
degree greater than 1 + 28 with one less than this value could result
in complex eigenvélues, since the matrix cannot be transformed into a
real symmetric matrix, all of whose eigenvalues are real. The 4th
degree approximation is the first one exposed to a condition of this
‘type, since B = 1. The dominant eigenvalues are not complex for the
higher approximations. The value of the spectral radius varies smoothly,
as a fuﬁction of degree, and appears to approach an asymptote that need
not necessarily exceed unity. The iteration is slow, indicating close

eigenvalues.

An example, in which the amount of available altimetry data is
that obtainable by a single éltimetry satellite, with its orbit incli-
nation as a parameter, is next considered. Gravimetry is assumed
available over oceans at high latitudes inaccessible to the satellite.
Results are shown in figure 3 for the second degree approximation.
Since B =1 > 1/2 = (nM - 1)/2, the matrix is symmetrizable; this is
the example of equation (4.79). If the inclination does not exceed
about 35 degrees, this formulation of the Weumann series will not yield
a solution to the problem. There is an implied requirement that there
be over 43 percent coverage by altimetry. an increase from the one
third requirement of inequality (4.81) for B = 1. If the 2:eroth har-
monic is suppressed the spectral radius is less than unity even for
the low inclination satellites. This result is consistent with the

uniqueness analysis of chapter 3 and with the character of the indefi-

niteness of the matrix whose eigenvalues are given in equation (4.111).
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CHAPTER 5

CONSTRUCTIVE SOLUTION

5.1 General Discussion

As an illustration of the application of the method to the non-
symmetric kernel when B = 1, a computer simulation is described. A
description of the Neumann series algorithm solving equation (2.55) is
given in section 5.2. Section 5.3 describes the examples in which
simulated altimetry and gravimetry data derived from standard sets of
harmonic coefficients serve to define the "measurements" from which
the Neumann series algorithm described in section 5.2 extracts esti-
mates of the earth's gravitational field, as defined by the standard
sets. For a fourth degree harmonic approximation, three altimetry-
gravimetry distributions are considered: all altimetry, all gravimetry,
and a distribution based on the.actual ocean-land distribution. For

th na 1500

.the latter distribution, 14 degree harmonic approximations are
also considered. The problems arising because of the slow rate of
convergence and the large number of coefficients relative to cell size

are discussed.

5.2 Description of the Algorithm

A reference level rotational ellipsoid is adopted and used as a
basis for the reduction of altimetry to geoidal undulations on oceans
and gravimetry to gravity anomalies on land. Its normal gravity po-
tential, U(p), also forms the basis for representation of the actual

gravity potential, W(p), in terms of the anomalous potential, T(p),

]

‘T(p) = W(p) - U(p)

n

M n . .
GM =m, . = (1) =(1i) .
— §C A_+ 688 ] mA
Ty nzo mZOPn(Sln ¢P)( am COS ™A am Sin W)

]

(5.01)
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where

ny = Maximum degree of harmonic approximation

2 s =(1 = (i . . . .
The (nM+1) coefflclepts, GCA;), Gsé;), define the 1th approximation to

the potential function.
The actual iteration is as follows,
1) At each surface point, p, determine if it is land or ocean

a) If p e S0

form .
(i) e M 28-1
BT+ 1t = & o
e P Iy n;O 2
e ¥ 5™sin ¢.) 166 cos m +65F)sin m_1 (5.02)
m=o D ' P nm m P nm n m~p e
and
B ) = ez + 21 - By (eINE) . (5.03)
b) If p € Sl
form
L) e Moy = (1) = (1),
[T(p)] = f; L mzopn(s1n ¢p)[6cnm cos m)\p+6snm sin mxp]
. (5.04)
and
(5.05)

. r, .
t ) (p) == Hage) - [T )

2) Since c(l%p) is now defined for each point of S, obtain the

spherical harmonic coefficients
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= (i+1)
GCnm

CcOSs
_;_ff_ 2 (i), =m,_.
= I g arl [ (P)Pn(Sln ¢p) (mkp) dcp

= (i+1) .
dsnm sin

(5.06)
3) If the i + ISt and ith sets of harmonic coefficients are in

close enough agreement, stop. Otherwise, continue the iteration at

step 1).

Simple initial coefficients are
=(0) _ s(0) _
6Coy = O Gsnm =0 (5.07)

The iterative process is then just the Neumann series of equation (4.08).
Section 4.6 shows that this algorithm converges. A better initial
guess jusf decreases the number of iterations needed for convergence.
To handle a practical problem, the use of a digital computer is es-
sential. 1In particular, the surface integral is replaced by a finite
sum of cells, here taken to be bounded by lines of latitude and longi~-
“tude, with land geometry so chosen that no cell contains both land and
ocean. The division of ocean from land is taken, as shown.previously
in figure 1, along multiples of five degrees of latitude and longitude.
After setting C(i)(p) in a cell as constant at a central value of p,
the surface integral over the-cell separates. The ) integral just

involves a constant or a sinusoid. The ¢ integral is

¢
=m, .
jc Pn(s1n ¢p) cos ¢p d¢p (5.08)
1

Appendix B derives the appropriate recursion relations from which the
t .

integral may be evaluated for all required values of degree and order.

For numerical accuracy, especially that of the higher harmonics, the

cell dimensions should be kept small, but this increases the time
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required for each iteration, so that a judicious choice of cell size

must be made.

5.3 Numerical Examples

For numerical testing of the algorithm, a simulation is needed,
because no actual altimetry data are available at this time; no al-
timetrybsatellite is yet operational. 1In addition, since the formu-
lation of this problem has avoided real, noisy data, so should the
examples, to be consistent with the assumptions of the analyéis.
Therefore, the altimetry data on oceans and the gravimetryv data on
land were simulated using the spherical harmonic series representations

in which the harmonic coefficients were obtained from outside sources

(KShnlein, 1967, Rapp, 1968). To determine the accuracy of the haf;

monic coefficients obtained by the iteration from the altimetry and
gravimetry data, a comparison need only be made with the standard
coefficients used to define the data. The computer program to estimate
the hérmonic coefficients, written in PFortran IV for the IBM 36@ is
given in éppendix C.3.

The Rapp (1968) coefficients, truncated at fourth degree, were
used in the first example. The associated values of the mass of the-
earth and the reference radius of the earth were ignored in favor
of the values previously given in this thesis. Table 1 displays these
coefficients as well as the results of the algorithm of this thesis for

three different ocean-land configurations:

1) The globe of figure 1
2) A globe with all altimetry (oceans)
3) A globe with all gravimetry (land)

. . th
Consistent with the existence and uniqueness analysis, the zero

and first harmonics for the case with all gravimetry data diverge.
All other coefficients for each of the cases differ from Rapp (1968)
by less than one per cent (or about 10”8 when the original coeffi-

cient is zero). For these cases the cell size was 2 1/2 degrees of
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latitude by 2 1/2 degrees of longitude.

Cases with the spherical harmonics carried to 14th degree (Rapp,
1968) and lSth degree (KS8hnlein, 1967) were also examined. In order
to store the necessary number of coefficients to be estimated and
keep computer time usage at reasonable levels it was necessary to in-
crease the cell size to 5 degrees of latitude by 5 degrees of longi-
tude. The results, which are shown in table 2, are not as impressive
as the lower degree case, especially when the magnitudes of the co-
efficients are small. The discrepancy arises from numerical limita-
tions. In addition, since the Neumann series algorithm has linear
convergence, convergence is slow. An improvement of the numerical
technique including accelerating the convergence (Shanks, 1955) might

economically allow continued calculation to obtain better agreement.

The effect of varying the. parameter, 8, which was here chosen to

be unity, in the range,

nM—l

2

1
_7< B < (4.62)

could also be explored. Numerical explorations could alsc determine
whether. the symmetrical formulations(B is then outside of the range of
inequality (4.62)), in which the parameters, 1T and §, are introduced,

provide a more suitable solution.
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Chapter 6

CONCLUSIONS AND SYNTHESIS

6.1 Conclusions

This thesis has shown that a Neumann series solution of successive
approximations can be used to combine satellite altimetry data given on
oceans with surface gravimetry data given on land to determine the para-
meters of the earth's gravitational field. The validity of truncated
approximations to the infinite-dimensional problem is established by
different methods, depending on how heavily altimetry data are weighted
relative to gravimetry data. The surface integration of a point func-
tion on the globe is required at each iteration step in order to obtain
its spherical harmonic representation. Convergence is linear and is

slow for the small-magnitude higher harmonics.

The important points in the formulation of the problem, establish-
ment of unigueness criteria, conditions for convergence of the proposed
iterative method, and numerical application of the method to test exam-

ples are tabulated below.

6.2 Summary of Contributions

The original contributions of this thesis to the field of geodesy,
by which a method for combining satellite altimetry and surface gravim-

etry data is developed, are:

(1) Formulation of the problem of combining satellite altimetry and
surface gravimetry data as a mixed boundary value problem in po-
tential theory for which a general solution method is not yet

available.

(2) Analytic proof that it is sufficient for the problem to be unigue

if the zero™ harmonic is prescribed and if altimetry covers a
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(3)

(4)

(5)

(6)

(7)

(8)

78

finite area (This proof has been extended, so that if altimetry
covers a sufficiently large area, such as that corresponding to

the earth's oceans, the problem is unique).

Formulation of the problem as a formal integral equation of the
first kind, which combines, in a weighted sum, an integral equa-
tion of the first kind with an integral equation of the second

kind.

Expression of the nonsymmetric kernel of the formal integral equa-

tion in terms of an appropriate spherical harmonic expansion.

Transformation of the kernel in several ways to obtain a formal
integral equation of the second kind, for which a Neumann series
of successive approximations provides a solution if the spectral

radius of the kernel is sufficiently small.

Determination of a transformation of the kernel that symmetrizes
it when altimetry data are weighted much more heavily than qravim-
etry data, and the derivation of conditions sufficient for the
problem to be uniguely determined by a Neumann series (Altimetry

must cover finite area, and a finite approximation must be made).

Computer calculations of the spectral radius of truncated approxi-
mations of the nonsymmetric kernel that results when altimetry and
gravimetry data are evenly weighted, demonstrating that the spec-
tral radius is less than one for these approximations and that the
trend of the spectral radius with increasing degreé of approxima-

tion indicates that higher approximations can be used.

Demonstration by computer simulation that, when altimetry and
gravimetry data are evenly weighted, the iterative method will
recover the values of geodetic parameters used to generate simu-
lated altimetry and gravimetry data (4th, l4th, and 15th degree

models) .



The following results were independently obtained, their appear-

ance in the literature is unknown:

a) Derivation of recursion relations for the indefinite integral

of an associated Legendre function.

b) Independent derivation of the Bergman kernel function and the
Neumann kernel function for a spherical boundary for the external

potential, in terms of spherical harmonics and in closed form,

The form of the Neumann kernel function is known, but its derivation is

not readily accessible.
This minor result was also obtained:

Proof that the norm varies continuously with changes in the

land~-ocean boundary, 38.

6.3 Synthesis

The proposed method permits altimetry and gravimetry data (in prin-
ciple, also geoidal section data) to be combined in a single determina-
tion of the geodetic parameters without requiring the statistical as-
sumptions that have been necessary previously when different types of

measured data were combined.

Methods for the determination of the higher harmonic detail of the
earth's gravitational field are well known (Stokes, 1849), but reguire,
in principle, a single type of data of uniform accuracy to be available
over the whole earth's surface. The lack of sufficient. amounts of such
data, even for practical applications, retarded progress for a long
time. Satellite geodesy, using new techniques and allowing new mea-
surements, has revitalized the field of geodesy. Conventional geodetic
satellite observations determine well the lower harmonics, but are less
effective, except for special cases of resonance, in determining the

higher harmonic¢s. The ability to combine data types, using the

79



techniques developed here permits added flexibility for obtaining wvalid
data of uniform accuracy over the whole globe. The addition of satelr
lite altimetry along with. compensating surface data then could serve to
improve the determination of the higher harmonic detail of the earth's
gravitatiopa}Afield. A

Practical implementation of the method developed here requires
further improvements, such as making the calculations, including the
surﬁ;ce integratiops, more accurate and efficient, to insure that the
higher harﬁohics can be determined to sufficient accurécy to obtain
information of interxest. There are many techniques (Shanks, 1955)Athét
can be employed to accelerate the linear convergence and thusg make the
algorithm more useful. A comparison could then be made to determine
the best weighting of altimetry relative to gravimetry. 1In practice,
the measured data are corrupted by noise in various amounts, so that
';Qg_method should bevmodifiea to take into account statisﬁical cqnsid—
é£§;;§ns, sugh‘as héndliﬁg‘redundént meésurements. Simultanebdé‘geoidal
uqdulation aﬁd gravity aﬁomaly estimates éresent in certain areas might
also bé used, even though in standard analyses gf potential theory.the
resulfihg problém is‘overconstrainéd (Lévrentiev, 1967). The techﬁi@ue
of constructing a kernel by summing separate integral‘representatibns
ﬁsiné weiéhfing factors énd characteristic functions might be extended
fé accomddate these'geﬁeralizations. In addition there will 'still be’
séﬁé reéibﬁs; although fewer than before;'without any genuine measure-
meﬁts. The statisticél extrapolétions into theseé regions could possibly

make use of both the available undulations and the available anomaligs.

Extending the results to the infinite-dimensional operator might
also prove to be an interesting mathematical problem. It should be
noted that uniqueness of the infinite-dimensional operator is not fully

established. It is conceivable that an attempt to apply the method to
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a problem with restricted altimetry (For example, only a low inclina-
tion altimetry satellite is available) might lead to numerical problems
if the finite-dimensional approximation resembles a situation giving
rise to nonuniqueness in the infinite-dimensional problem. The tech-
nique developed here might also be applicable to other problems that

can be formulated as mixed boundary value problems in potential theory.
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Appendix A

DERIVATION OF THE KERNEL FUNCTIONS

The Neumann kernel for the representation of the potential external
to a sphere is here obtained from the Bergman kernel function (Bergman
and Schiffer, 1953, p. 198), KB(p, q) , a harmonic function, in a manner
that also yields the solution of the Dirichlet problem, the Poisson

kernel.

Define an inner product space of functions harmonic in R. Introduce

the inner product (different from equation (4.11))

(U(p), V(p) = - %mfan(p)%‘p’dcp = (V(p), Ulp)) (8.01)
p

The Bergman kernel function satisfies a reproducing property (Bergman

and Schiffer, 1953, p. 201, see also Krarup, 1969),

Vp) = (KB(p, a), V(q)) (A.02)

From this may be obtained integral representations of the potential for
the Dirichlet and Neumann problems. In terms of a set of orthonormal

functions, Vm(p), spanning the space,

(V.C (P) ’ Vm(P)) = ‘S!m (A.03)

the Bergman kernel function has the representation (Bergman and Schiffer,

1953, p. 202)

Ke(pr Q) = mzivm(p)vm(q) (r.04)

The normalized spherical harmonics (see equation (2.38)), xi(p), are
orthogonal under this inner product as well as under equation (4.11),
but do not satisfy the normalization required in equation (A.03). To

determine the correct normalization set

r \n.+1
v, (p) = wi<§§) Y x (p) (2.05)
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where n, is defined in equation (2.38). The constant, Wir is determined
by substituting equation (A.05) into equation (A.03) and using equation

(A.01). Thus

Ty 1/2
Wl = [IF (A.06)

Consequently, equation (A.04) becomes

S e x (e)x (@
KB(p’ Q = .2 n.+1l n,+1 (A.07)
1=l(rprq) i i

The addition theorem for the spherical harmonics may be written in the

form, (n.+l)2
i

(2n,+1)P (W) = ] x; (p) x4 (@) (A.08)
1 i=ni+1

where U = cosine of the angle between the radii to the points, p and g.

Thus
_ S 2n+l n+l
KB(Pr q) = ranomu Pn(u) u <1 . (A.09)
r2
M
where u = I T
P q

This series may be summed to closed form using the identity,

-1/2 _

(1 - 2pu + u) I ue_(w) u<1 (A.10)

n=0

Integration of equation (A.10) with respect to u between the limits of

0 and u yields
i/2

u-u+(1—2uu+u2) © un+l
1n l—u = nzo-—mPn(u) (A.ll)

Noting that

2n+l _ _ 1
ntl - 2 T el (A.12)

equation (A.09) becomes

_ _ - 2,1/2
Ky (pr Q) = rM[?u(l I e P ] (A.13)
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:Comparing equations (2.36), (A.0l)., and (A.02),: it is apparent.

that
K.P(P: q) = - M a— (A.14)
. “q S =r

After substitution and simplification

2_ 2
xr (r Y )
Ko (pr Q) = = i (A.15)
:.[rl (P ’ q) ]
where
e, @) = 5 + Ty - 2rrn /2 (A.16)

The result is just the Poisson kernel, the well-known integral repre-

gsentation for the spherical Dirichlet problem. Using equations (A.07)

and (A.14), the well-known spherical harmonic series representation can -

be obtained in the form

i~ 8

'Kp(p, q) = \7;'

rA\n.+1 .
<—M) 1 x; (P)x; (q) (a.17)
i=1 -

AT
\ P

Comparing eguations (2.40), (A.01), and (A.02), it is apparent that

when %%}p) is prescribed, p € S, the integral representation for the
Neumanﬂ problem is
= 1 - | 3T (a)
T(p) = 77 ff[ K (P, q)‘ _ ]'a’f dog {A.18)
a rq—-rM q

The standard Neumann kernel is the ter¥m in brackets,

5.2
rM-rEP+l(p,q) 2rM

[_ “pPr @ qu"‘rm] T Fp7Fp! T T A

In the limit, when p also lies on S, we have

] L2
[ﬁKB(p, q)l ] = Iy In (1 + csc —%ﬂ) - ry csc —%ﬂ (A.20)
rp,rq=rM

where wpq = cos—lu
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This last result is given without proof by MacMillan (1958, p. 406,

prob., 15) and Prasad (1930, p. 45, prob. 9).

For our purposes it is desirable to define a modified Neumann

kernel
2
KN(PI q) = r ["’ KB.(Pr q)‘ :l (A,21)
M rq=rM
By defining
r
t(p) = 52 %'-ﬁ—(p) (A.22)
P
we obtain
l P
T(p) = 77 _([f Kylp, @lz(aldoy (a.23)

The spherical harmonic representation of the modified Neumann kernel-

may be obtained by substituting equation (A.07) into eqguation (A.21),

( )=-§—2———£’ini+lx()x() (A.24)
Ky(ps a 121 nyFl i '\PI¥;1d o

i=1 rp
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Appendix B

INDEFINITE INTEGRAL OF THE ASSOCIATED LEGENDRE FUNCTION

T

The associated Legendre function is

a"p_ (u)
PR = - pH™E 2o (B.01)
o N h [ N PE S N "du Lo .

where the Legendre polynomial-ds =

0 1 a°
P () =P (u) = ——
n- n 2Pn1 ap®

(u? - P (B.02)

LS

Differentiation of the associated Legendre function with respeét to u
4

and multiplication by (1 - uz)l/2 results in the well-known recursion
relation ~
1/2 m _ m m+1l
‘(Al P (u ) = WPH(H) + Pn (w) (B-03)
Integrate the left hand side by parts,
P2 2 1/2dP (W) i 1/2 n '
,f(l-u T du = (1 - ") 7P (W)
uy
e " - . (B.04)
u ; :
+ fzu(l— u?) T2l () ay
“1

This may be combined with a»fprmal integration of the :ighp,handlside

of the recursion (B.03)

fuz m+l(u)du = (1 - 2)1/2pm oW
H1
(B.05)

s

+ (m + 1)[ WL - w?)1/2pE (“7d

%

o - -

olutlon of the last 1ntegra1 requlres the well known recursion relatlon

F v fﬂ ’:; -~
for varying order

PRI CIEE & M A
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nt2 _ 2(m+l)yu m+l
P (w) (1 )1 5 Pn (u) +

(B.06)

+ (n-m)(n+m+ 1)P§(u) =0

This is obtained by differentiating Legendre's differential equation

2
(1 - u2)§_§p— 2ug%.+ nin + 1)y = 0 (B.07)
u

m times and noting tha y = Pn(u) is a solution. After redefining m,

equation (B.06) becomes

uE (1)
(l_zi)j77 = %ﬁ [Pﬂ+l(u) + (n+min-m+ l)Pﬁ_l(u{l m+ 0 (B.08)

After substituting equation (B,08) into equation (B.05) and solving for
the low order term, there results,.
1 “

Mo -
[Zrloa=m+Da+rme-n+ 17 -

3]
(B.09)
H H
-[(m - f 2 e - ma - W2 |u2]
1
]
" This recursion, relating, for constant degree, an associated Legendre

function and its integral at adjacent orders, is valid for
0<m<n (B.10)
There are two special cases, m =1, and m=n., Form=1

2.0 -1 2,1/72.1, . |M2

fu PR = gy - wh Ve | 2 (8.11)
1

It is not related by the recursion to integrals of higher order and

thus is isolated. The known alternate form depending only on Legendre

polynomials is-
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Hu u
juan(u)du = é—llﬁ—l[Pnﬂ(u) - Pn_l(u)]' 2 (B.12)
1

For m = n

Wy _ u
'qupg 1(u)du = H%T(l - uz)l/ng(“)\ui (B.13)
1

u
Using this as a starting valuejgzPi(u)du may be obtained for alternate
1

orders. To obtain the remainder a value is needed for

H u
j 22 (wyan = (in)‘jQ(l - w24, (B.14)
¥y 2'n! Hy

Using integral formula #146 in Burington (1957)
U H Y
2,n -1 n 2 _ _ 2,n-2
j Pn(u)du = HITW}Pn(u)\u + n(2n 1) (2n 32[ Pn_z(u)du] {B.15)
My 1 Hq
Thus knowledge of the Legendre functions and the initial conditions,

¥2 0
J Po(u) = Uy -y (B.16)
51

and
Y2
2)1/2

+ sin 1y] (B.17)

u
2.1
J Py(wau = %lu(l - My

¥y
suffice, in principle, to obtain integrals

u
S Zp™ () au (B.18)
L1

for all integer, n and m, 0<£mn«<ow

The recursion in equation (B.1l5) is, however, unstable near the
poles. A direct evaluation of equation (B.14) with u = sin ¢ using
#2.512, 2. and 3., of Gradshteyn and Ryzhik (1965) was actually used

in the computer program (see appendix C), where the algorithm is

written in terms of the normalized spherical harmonics.
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Appendix C

COMPUTER PROGRAMS

C.1 The Calculation of the Ocean Funééioné

¥

A listing of a computer program that calculates the ocean coeffi-

cients, Qik' is given below. Sample values (Qii’ Q

%1 9,850 9,160
are given in table 3 for the land-ocean configuration of figure 1,
along with previously published (Lee and Kaula, 1967, Munk and MacDonald,
1960) values, up to eighth degree, of‘ﬂil. For ease of comparison, the
linear subscripts were transformed to degree and order subscripts,

st

Q = Q. (C.01)
nmj ik '

where the subscripts are related as iﬁ equation (2.38). The comparison
with the published values is not. favorable, but Ehe choice of geometry
here is relatively crude and intended to be a distribution typical of
altimetry and gravimetry, rathér than of ocean and land. The'Qii's do
not deviate from Qll = Qggg by more than 20 percent. Actually, it can
be shown that, for all n,

nmj

Q (C.02)

0 nmj
1

000 m

2

J
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Il
=
It Ue~1is

The coefficients, Qik’ ik, generally are an order of magnitude

smaller.
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Appendix C.1

MATN PROGRAM CALCULATES THE NCEAN COFF

LAND-OCFAN GEOMFTRY,

CALLS OCLAUD, PCOS, DSIN,
IMPLICIT REAL % B8 { A~-H , =7 1}
‘REAL * 8 THFTA { 9 ) X (9 ) 4 CX {
REAL * 8 MEGA { 13
REAL * A COSMPL (25 4, 72 ) , SINMPL
REAL * 8 FMT ( 8 ) , DM [ 4 )
REAL*S FOURPT o/ 12.56637061435917 /
RF AL%*R PIHALF / 1
LOGICAL
INTEGER
INTEGER
INTEGER
NAMEL IST
{1
12 (1)
1 ¢ 3)
12 { 3 )
CALL ERRS
CONTINUE
READ ( 5 CNSTNT
WRITE ( 6 o OCNSTNT )
NSP NSIHMpP 4+ NS IMP
CELL PIHALF / NOCELL -

CELLH CELL / 2DO

CELLN CELLH/ NSIMP

CONST CELLN/(FQURPYT * 3DO )
LATMAX=NOCELL

LONGMX=4%NOCFLL

MXDEGP=MAXDEG+1

MDDP MAXDEG 4+ MXDEGP

CALL OCLAUD 4 MAP )

00 S0 MP2 MXDEGP

DO 50 NP2 MXDEGP

00 50 MP1
DO 50 NP1 ¢
OMEGA ( NP1 PL 4 NP2 , MP2 )
DO 200 LONGNN 1 » LONGMX

ALONG = ( LONGNO - .5D0 ) * CELL
COosSMPL 1 LONGNGD 9 100
SINMPL 1 » LONGNO ) 000

D3 100 = 2 4 MDDP

FACTOR ML - 1 ) % ALONG
COSMPL LONGNG ) DCNS { FACTOR
SINMPL LONGND ) ISIN { FACTOR
CONTINUE
CONTINUE
THETA {
1 1
CALL NLEGND ( MAXDEG ,
1H NSP + 1

L 1

NLEGND,

9
B

(2

4 MAP 4 T 7
4 OCLA

4 MAXDEG / 127
4 11U 4 )

NOCFLL o/
4 )

+ NOCELL

19

® R ox ¥

*
v 121
CNSTNT / MAXDEG

k4

OO

/
ET ( 217 , 1 -1 1

? *

* END 99999 )

wowodon

p

1
1
i
1
50 v = 0DO

'
’
’
’
M

L4

W u

14
14

{

(

M1
= {
{ Ml =
{ M =
100
200

1) 0Do

THETA { T 13

92

NPIMIN /7 1 7/

9 PML 1

FICIFNTS FIR SPECTFIED

QCL AL, FXIT, ERRSFTY,
Q),-D‘M(?_O,?r’).,q,)
13 k] 13 » 13 )

Sy 72 )

«870796326734897 -/

7 4 NSTMP 7 4 7
y NPIMAX 7 13 /
ND IMAX , MAP,VSIMP

’

NPIMIN

?

}
3}
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Appendix C.1

205

208

DO 1000 NTHETA = 1 , LATMAX

I = IH

IH = L

L =1

THETA ( L ) NTHETA * CFLL

CALL NLEGND MAXDEG 4 THETA (1 ) o PM{C 1 , 1 , I ) 4 X{I),CX{I))
THETA ( 2 ) THETA { IH ) + CFLLN

DO 205 1 = 2 4, NSP

CALL NLEGND ( MAXDEG , THETA ( T ) 5, PMC 1 , 1 o I )} 5 X{I),CXUI})
IF (T o«LTe NSP ) THEYA (I + 1 ) = THETA ( I ) + CELLN

CONTINUE

ALAT = PIHALF - THETA ( NSIMP + 1 )

DO 900 LONGND = 1 , LONGMX

ALONG = { LONGNO - .5D0 ) * CFLL

ION = QCLA (  ALAT , ALONG )

I10S = OCLA { —-ALAT , ALDNG )

IF ( TON .EQ. 1 .AND. I0S .EQ. 1 ) GO TO 900

H o~

i1 = -1

DO 800 NP1 = NPLMIN ,» NPIMAX
101 = -IDI

ol = -ID1

DO 700 MP1 = 1 , NP1

101 = -I01

M1 = MP1 - 1
MMPL = M1 + MP1
IF ( ML .NE., 0 ) TDML = 200 / M1

In2 = -1

DO 600 NP2 = 1 4 NP1
Ip2 = ~-1D2

102 = -1D2

MP2M = NP2

IF ( NP2 LEQ. NP1 ) MP2M = MP]

DO 500 MP2 = 1 , MP2M

102 = -102

M2 = MP2 - 1

NCOEF =1 -~ ION + { 1 - I0S ) * I0OL * 102
IF ( NCOEF .EQ. 0 ) GO TO 500

= PM { NP1 , MPL , T )} % PM ( NP2 , MP2 , T ) % CX § 1 ) ¢+ F

F { I LTe NSP ) T =7
1 + PM ( NPL , MPL ,I+1) * PM [ NP2 , MP2 ,I+1) » CX (1+1)})
CONTINUE

FACTPC = 4DO * F + 2ND0 * T
1+ PM { NPL 4, MP1 4 L } * PM ( NP2 4, MP2 , L ) * CX { L }
2 + PM ( NP1 4, MP1 , IH} = PM ( NP2 , MP2 , IH) % CX (I
COEF = NCOEF * FACTPC * CONST

IF { M1 .GE. M2 ) GO 7O 210

IF ( M1 .GT. O ) GO TO 240

FACTOR = ( 2D0 / M2 } * SINMPL { MP2 , 1 )

CC = FACTOR x COSMPL ( MP2 , LONGNO )

CS = FACTOR * SINMPL ( MP2 , LDONGNO )

GO TO 250

F
T
DO 208 I = 2 4 NSP , 2
[
1
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210 IF ( MI .NE. ) G0 TO 220
CC = CELL
. GO TO 250 .
220 IF { M2 ,NE. O )} GD TO 230
FACTOR = TOM1 * STINMPL ( MP1 , 1
CC = FACTOR * COSMPL { MP1 , LONGNO )
SC = FACTOR * SINMPL { MP1 , LONGNO )
GO TO 250
230 IF { M1 .NE., M2 ) GO TD 240
FACTOR = SINMPL ( MMP]1 , 1 ) * TDM1 / 4DO
CS = FACTOR * SINMPL { MMP1 , LONGNO )
SC = CS
CC = FACTOR * 'COSMPL { MMP1 , LONGNO )
SS = CELLH - CC
CC = CC + CELLH
GO 10O 250
240 MD = M1 - M2
MS = M1 + M2
MSP = M5 + 1
MDP = IABS ( MD ) + 1
FACTP = SINMPL ( MSP , 1 ) / MS
FACTM = SINMPL ( MDP , 1 ) / IABS ( MD )
FACTL = FACTM * COSMPL { MDP , LONGNO )
FACT2 = FACTP % COSMPL ( MSP , LONGND )}
CC = FACTL + FACT2
SS = FACT1 - FACT2
FACT2 = FACTP * SINMPL { MSP , LONGNO )}
FACT1I = FACTM * SINMPL { MDP , LONGNO )
SC = FACT2 + FACT1
CS = FACT2 - FACT1
250 CONTINUE
OMEGA { NP1 MPl » NP2 o MP2 ) =
10MEGA { NP1 MP1 , NP2 , MP2 )+COEF * CC
IF { M1 .NE. O } GO TO 300 .
IF ( M2 .EQ. O ) GO TQ 500
G0 TO 400
300 OMEGA ( M1 NP1 , NP2 , MP2 )} =
10MEGA ( M1 NP1 , NP2 , MP2 )+COEF * SC
IF { M2 .EQ. 0 ) GO TO 500
OMEGA ( M1 NPL 4, M2 4, NP2 ) =
10MEGA ( M1 MP1 4, M2 , NP2 )+COEF * SS
IF ( MP1 .EQ. MP2 ,AND. NP1l .EQ. NP2 ) GO
400 OMEGA { NP1 MP1 , M2 4 NP2 ) =
10MEGA [ NP1 MP1 , M2 5, NP2 )+COEF * CS
500 CONTINUE
600 CONTINUE
700 CONTINUE
800 CONTINUE
900 CONTINUE
1000 CONTINUE
1100 FORMAT(12X,8A8)
READ { 5 , 1100 ) FNT
WRITE { 6 , 1100 ) FHMT
WRITE ( 7 1100 ) FMT
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1200 FORMAT { 21 N1 M1 I N2 M2 1 OMEGA
IMEGA N1 M1 1 N2 M2 1 DOMEGA
1GA 0}

WRITE ( 6 , 1200 9

DO 1800 NP1 = NPIMIN , NPIMAX
N1 = NPT -~ 1

DO 1700 ¥P1 = 1 , NPl

Ml = WPl - 1

DO 1600 NP2 =1 , NP1

N2 = NP2 - 1

MP2¥ = NP2

iF { NP2 .EQe NP1 )} MP2M = MPL
DO 1500 MP2 = 1 o MP2M

M2 = MP2 -~ 1

I =1

N1 M1 T N2 M2 |
N1 M1 I N2 M2 1T

OM { 1 } = OMEGA { NP1 , MP1 , NP2 , MP2 )

IF § M1 .NE. O ) GO TO 1300
if ( M2 .EQ. 0 } GO TO 1450

GO 70 1400
1300 1 = 2
11 t213 =1
1221} =0
M { 2 } = OMEGA { M1 , NP1 , NP2 , MP2 )
IF { B2 «EQ. O ) GO TO 1450
1 3

oM { 3 )

OMEGA { ¥1 s NP1 4 M2 s NP2

IF { MPlL .EQ. MP2 .AND. NP1l ,EQ., NP2 ) GO TO 14590

1400 1T = 1 + 1

IL{1i=0
121 1%=1
OM { T )} = OMEGA { NP1 , MPl , M2 , NP2 )
1450 WRITE { 7 » FMT ) L 1 5 N1 , ML o 11 ( IT ) 4 N2 ,
1 ,0M ¢ I ) , i1 =1 4 1)
WRITE { 6 » 1475 J{Nl » M1 4 11 { 11 ) ¢ N2 4 M2
108 X1 ) » 011 =1, 1)

1475 FORMAT { 20° , 4 { 213 4 12 ¢ 213 4 I2
1500 CONTINUE
1600 CONTINUE
1700 CONTINUE
1800 CONTINUE
I=-1
WRITE { 7 o FMT § 1
GO 70 1
99999 CONTINUE
CALL EXIT
sTop
END

)

9 F16.12 )

)

A4
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Appendix C.1

c OCLAUD READS-IN THE LAND QCEAN MAP(COLUMNS 1-72 OF 356 CARDS)H.,
c OCLA{IOCLA) SPECIFIES LAND OR OCEAN FOR A GIVEN LATITUDE AND
c LONGITUDE.

LOGICAL FUNCTION OCLAUD*4 ( MAP )
LOGICAL *1 LOUT( 72 ) QULAND / 7% / , QOCEAN /7 * ¢ /
LOGICAL*1 LOCLA { 36 s 72 ) s MAP(4
INTEGER *4 OCLA , THENO
REAL*8 LAT 5 LONG , THETA , PIHALF / 1.570796326794897 / 5, A (36)
100 FORMAT ( 72L1 . A8 )
200 FORMAT{’1%, SLAND =T OCEAN = _';T669%0 DEG LONG',T83,%20¢,
1 T28,%180°,7464°270%,T7100,°1807,T120,%LABEL? )
250 FORMAT { 729 , *|* , 72A1 , *'}* , T120 , A8 )
IF { MAP )
1READ(S, 100 ) ( { LOCLA (1T 4 J ) 5 J =1 4y T2),A01),1I=1 4 36 )
WRITE(6,200 )

DO 400 I =1 ; 36
DO 350 J =1 4 72
IF { LOCLA ( I » J ) ) GO TD 300
LOUT ( 4 ) = QOCEAN
GO TQO 350
300 LOUT { J ) = QLAND

350 CONTINUE
WRITE ( 6 5 250 ) ( tOUT ( J ) , 3 =1, 72) , A1 1)
400 CONTINUE
RETURN
ENTRY IOCLA( LAT , LONG }
ENTRY OCLA { LAT , LONG }
c - P1/2 K LAT <= PI/2
G 0, =< LONG <« 2%PL 3 0. =< THETA < PI 3 -
THETA = PIHALF - LAT ‘
ENTRY IQCLAT ( THETA o LONG )
THEND =IDINT( 18,.DO*THETA / PIHALF ) + 1
LONGNO =IDINT{ 18.DO%LONG / PTHALF ) - 35
IF { LONGNO .LE, O ) LONGND = LDNGNO + 72
OCLA = 0
IF(LOCLA { THEND , LONGNO })OCLA =1
RETURN
END
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NLEGND CALCULATES THE NORMALIZED ASSOCIATED LEGENDRE FUNCTIONS.
CALLS DSIN, DCOS, DSORT.

SUBROUTINE NLEGND{ M, THETAsP , X , RT }

a5 3 238 Ao 3 sfe e e o e el vz ok g e vk ofe e e s ofe ok e e e s e e s ale e e ok ofe dfe dfe o ok e ke e e ik v v e o e e e sk At e e e ok e R Rl sk ok

CALCULATE ASSOCIATED LEGEMDRE FUNCTIONS

e sje sk e ik e el e e sl vie devk vk vl ol oo vl sle sl o sie ol sk e e o e ol afe o sde ade ol o ole ok e sk se ki o e e v e dle ok e e i ol o ook A e e e sk e sk
—— M = MAXIMUM DEGREE OF THE LEGENDRE FUNCTIONS ( <= 19 ) ,
THETA = COLATITUDE { RADIANS ) .
_____ P = THE NORMALIZED LEGENDRE FUNCTIONS ( OUTPUT ) .
_____ THE MATRICES IN THE CALLING PROGRAM ARE ASSUMED TO BE DIMENSIONED

120,20,

A0 n OO0

IMPLICIT RE&L%8 {A-H,0-1 )
REAL % 8 DNE /7 ,99999999999 /
REAL * 8 R3 /7 1.732050807568877 /
DIMENSION P{20,20}
N=ie]
X=DCOS{THETA}
RT = DSIN { THETA )
P{ls1)=1.00
IF{N,LE-1) GO 7O 114
IF { DABS & X )} -GV, 1D-11 .AND, DABS { RT } LV, ONE ) GO 7O 20
X = 0DO
RT = DSIGN { 1D0 , RT )
GO 70 40 ’
20 IF { DARS { RT ! .GT. iD-11 -ANMD., DABS { X } .LT. ONE ) GO 71O 40
RYT = 0DO
X = DSIGN { 100 , X
40 CONTINMUE
Pi2,1}=X #* R3
P{24,23=RT * R3
IFIN.EQ.2) GO TO 1i¢
IF { N «GTo 20 ) N = 20
D0 112 I=34WN
C I AND J ARE OME HIGHER THAN ACTUAL DEGREE AND ORDERcccoesces
P{is113 = RT * P {1 ~-~1,1-11}
1 % DSQRYT { 1.D0 + 1.DO /7 { 2 * 1 - 2 V% }
P {1 pi~1}) = )4 2P {1 -1, 1-11
i % DSORY { DFLOAT { 2 1 - 1 3 %
IHAN = [ - 2
DO 1i2 4 = 1 » 1MaX
112 01 4 J b= X *xpP L I~1, J } *
1 DSQRT{{{2#I-1) % {2#1-3}} /7 DFLOATV{{I+J-23%{1-4}3)} } -
2 DSQRY {{{ 2%Y-13%{[+3=3)*%{I~-Jd=-1))/ DFLOAT{{I+J=-2)={I-dix{2%=5))}
3 % PAUT =2 o J
114 CONTINUE
102 RETURN
END

a7
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Appendix C.2

THE CALCULATION OF THE NORMS OF THE OPERATOR

MATN PROGRAM CALCULATES THE SPECTRAL RADIUS OR NORM OF THF
KERNEL »
CALLS AKKYIM, AKKYI; AKZERD; AKKY, DMAX1(, EXITy ERRSET),
IMPLICIT REAL * 8 { A-H , 0-7 )
REAL * 8 A (169 ) /9%1D0,16%1D-1,56%10D-2,88*1D~-3/
REAL # 8 B {169 ) sy DLIM / 5D-4 /
INTEGER %= 4 IOMEGA /7 1 /7 , IRMIN / 1 /7 o, IRMAX / S5 / 5 MXDEGP /13/
INTEGER * 4 ITYERM /7 O /7 5 1B / 11/ o 1SAMP / 84 / , IKSK / 1 /
TINTEGER * & [TMAX 710 / 5 KNORM / O / o KZERD /7 1 / 5 15 / 8 /
NAMEL IST /7 CNTRL / IRMIN , IRMAX , IOMEGA , MXADERP , TITMAY
¢ IKSK , KNORM , KZFRD , 15 ¢ ITERM , IB . ISAMP , NLIM , A
CALL ERRSET ( 217 1 4+ -1 5 1 )
CONT i MUE
REAND { 5 o CNTRL , END = 99999 )
WRITE { 6 - CNTRL }

ALAM = 9999,B0
IDEG = MXDEGP - 1
IMAX = MXDEGP * MXDEGP

CALL AKKYIM { IMAX , ITFRM , IB , IKSK )
IF { IOMEGA .ME. 1 } GO TO 6000
IOMEGA = O

CALL AKKYYI { MXDEGP , 15 5 ISAMP )
iF { KZERD .£FQ. 0 ) CALL AKZFRO

IF { IRMIN .GT. IRMAX } GO TO 1

DO 9000 IR = IRMIN » IRMAX

iRM = IR - 1

OALAM = ALAM

OBF = -~ 10DO

OLAM = -10D0

DO 8000 17T = 1 5 TTHMAX

CALL AKKY { A 5 B 5 IRWM }

ALAMN = 0DO

ALAMD = 0DO

DO 7000 I = 1 , IMAX
ALAMN = ALAMN + 8 (I §j *8 { 1)
ALAMD = aALAMD + A (1 3 * B (1)

CONTINUE

ALAM = ALAMN / ALAMOD

DLAM = DABS { ALAM - OLAM )

OLAM = ALAM

BF =DaBS ¢ B { 1 3 §

iF { IMAX .EQ. & } GO YO 7090

DO 7080 1 = 2 o IMAX

8F = DMAX1 { D&BS { B8 ¢ I ) 1} , RF )

DBF = DABS { BF -~ 08F )

0BF = BF

CONTINUE

DO 7100 1 =

A{(I =28

CONTINUE

WRITE { 6 ¢« 7050 % IDEG s iR s 17T o ALAM , DLAM , BF , DBF

FORMAT { °0ODEG=F,03+%5 K IT=%,13,%y L IT=%,103,%, LAMBDA=",G24.16,
'y D LAM=?; Gl6.,85%y BF=%,G16.B5%y DBF=7,G16.8 )

1 ¢ IMAX
{ T 1 7 BF
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7150

1

7200

7250
1

7300

1400

7500

7700

8000
8500
9000

8500
1co00

99999

100

WRITE ( 6 4 TISO } { A { T ) o 1 =1 , IMAX )

FORMAT ( '0A(I)=' 5 9 ( G13.5 5 *5* ) )

IF ( DABS ( 1D0 - ALAM ) L,LE. DLAM ,0R, DBF % 2000

GN TD 80920

IF { 100 .GE. ALAM ) GO 7O 7500

IF ( DLAM .GE. ALAMX DLIM ) GO TN 8000

IF ( OALAM .GE. ALAM OR., KNORM ,GT. IR ) GJ TO 7390

WRITE ( 6 5 7200 )

FORMAT ( °*OTHE NORM DIVERGFS® )

FORMAT( 6%, *MXDEGP=%,T11,7%,IRMIN=
¢ A=' 9 3 ( 624016 ¥ 'y‘ ,

WRITE ( 7 4 7250 ) MXDEGP , IR ,

GO TO 10000

CONTINUE

WRITE ( 6 ¢ 7400 )

FORMAT ( *OTRY NEXT ITERATED KERNEL * )

WRITE (7 5 7250 ) MXDEGP 5, IR , { A ( 1T )} , I

GO TO 9000

IF { DLAM .GE. ALAM* DLIM ) GO TO 8000

WRITE ( 6 5 7700 )

FORMAT { 'ONORM LESS THAN ONE' )

WRITE ( 7 o 7250 ) MXDEGP , IR , C A { I )} , I

IF { KNORM .GT. IR )} GO TO 9000

GO TO 10000

CONTINUE

WRITE ( 6 , 8500 )

FORMAT ( 'OITERATION FOR LAMBDA EXCEEDED® )

WRITE ( 7 , 7250 )} MXDEGP , IR 4 ( A U T ) , I

CONTINUE

WRITE ( 6 , 9500 )

Tellle®y /

v
)
A(T) oI =1,

[}
p—
-

]
-
-

]
[

’

FORMAT ( *OMAXIMUM NUMBER OF ITERATIONS OF KERNEL EXC

CONTINUE
GO 10 1
CONTINUE
CALL EXIT
STOP

END

«GT. BF

TMAX )

IMAX )

IMAX )

TMAX )

EFDED?

)

)
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AKKY TRANSFORMS A INTO B RBY MULTIPLYING BY A VERSION OF K,
INCLUDINGs THE KERNEL (POWFR METHOD), A SPECIFIED ITFRATED
KERNELs THE ADJOINT ONTO THE KERNEL, ITERATED ADJOINT ONTN
T TERATED KERNEL.
AKKYIM INITIALIZES THE DEGREE OF HARMONIC APPROXIMATION AND
OTHER CONTROL VARTABLES.
AKKYI READS~IN THE OCEAN COEFFICIENTS(OMEGA) ACCORDING T
READ-IN FORMAT.
AKZERO CAUSES THE ZERQOTH HARMONIC TO BE SUPPRESSED.
SUBROQUTINE AKKY ( A , BB ; IRMM)
IMPLICIT REAL * 8 { A-H 5 0-7 )
REAL * B A (169 ) , B {169 , 2 }yBB (169 ) , OF (169 ) , DF {169 )
REAL * B OMEG {169 ;169 ) , FMT ( 8 ) s TERM ( 169 )
IRM = [RMM
IF ( IKSK o NE., 1 ) IRM = IRMM + 1
DO 100 1 =1 , IMAX
1008 (I » 1) =4A1L1T1)
IF { IZERO ,€Q. 0 ) 8 { 1 5 1 )} = 0ODO
101D = 1
NEW = 2
IF { IRM EQ., 0 ) GO TO 1000
DO 900 ICNT = 1 5 IRM
DO 800 I = 1 , IMAX
B { I 4 NEW } = 0ODO
DO 700 JC= 1 , IMAX
J = JC
IF ( IABS ( IB}.GT. 1 )} J = IMXT - JC
IF (1 .EQ. J ) GO TQO 700
B (I o NEW ) =8 (T o NEW ) + OF [ 4 ) % OMEG (I , J ) =
184, I0LD )
IF (1 EQ. ITERM )} TERM ( J } = B { 1 4 NFW )
7C0 CONTINUE
B (I, NEW)=8B1T1, I0LD)*(DF (11} +2OF (1)
1 OMEG { T , T )} ) +# 8 (I 5, NEW)
IF (I EQes ITERM ) TERM { I } =8 (I , NFW )
800 CONTINUE
850 FORMAT( *O(* vI3,%)=% , 5 ( G24.16 4, *s' ) )
IF { ITERM .GT. O } WRITE (6,BS50)ITERM,(TERM ( J ) » J = 1 , IMAX)
6500 FORMAT { f0B(I)=% 5 9 ( Gl3.5 5 '»' ) )
IF { I8 .GT. O )
IWRITE ( 6 5 6500 ) ( B (1 ¢ NEW ) o, T =1 , TMAX )

OO OOOON0

I = I0LD
IOLD = NEW
NEW = I

900 CONTINUE
IF { IKSK .EQ. 2 ) GO YO 1950
IF { IKSK «NE, 1 ) GO TO 1500
10600 DO 1300 I =1 , IMAX
B (1 5, NEW ) = 0DO
DO 1200 JC= 1 , IMAX
J = JC
IF { IABS ( IB}.GT, 1 ) J = IMXI - JC
IF { 1 EQs J ) GO TO 1200
B (I o NEW ) =B { I o NEW ) + (1DO- DF ( T } - DF ( ) ) x
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1 OMEG { 1
IF { I .EQ.
1200 CONTINUE
B {1 5, NEW )
1 DF (1) OF
IF { 1T .EQ. ITER
1300 CONTINUE
IF {
IF { I8
1WRITE (
I = I0LD
I0LD = NEW
NEW = I
IF { IRM
CONTINUE
DO 1900 ICNT =1
DO 1800 I = 1
B {1 , NEW )
DO 1700 JC= 1
4 = JC
IF §{ 1ABS {
IF { T .EQ.
8 (1 , NEW
IF { I .EQ.
1700 CONTINUE
B { I 5 NEW } =
1, 1))+ 8B8 (1
IF { I .EQ. ITER
1800 CONTINUE
IF { ITERM
IF { IB «GT. O )
1WRITE (
I = I0LD
10LD = NEW
NEW = 1
1900 CONTINUE
1950 CONTINUE
IF { IB LE. O )
1WARITE ( 6 5, 6500
2000 DO 2200 1 =1 o
2200 88 { 1 ) B (1
RETURN
ENTRY AKKYIM ( I
IMXI = IMAX + 1
RETURN
ENTRY AKKYI {
TZERO = 1
I8 = 8
IF { I5
INC = -1
iv 0
DO 3000 N1
INC = INC + 2
DFY 200 / N1

J
ITER

’GT.
6

0)

+EQ. O

1500

iB),
J )
Y} =
ITER

+EQ. 5 )

[}

1.

#

102

6500 )

6 ¢ 6500 ) { B (1

* B8 (3, I0LD )
M) TERM ( J )} = B (1

B {1, IOLD ) * {
T} ) *#0OMEG (T,
M ) TERM ( 1 ) =

(8 {1 5, NEW ) 5 I

} GO Y0 2000

s IRM
IMAX
oDO
I MAX

67 1 ) J =
G0 TN 1700
B { I s NEW ) + OMEG
M) TERM ( 4 ) =8 (1

IMX1T - Jc

B (T,
s NEW } *x OF {( I )
M P TERM {1 ) =8B (1

» NEW ) o 1

y {8 (1

IMAX
s INLD )

InLny , 1

MAX o ITERM ; 18

MXDEGP , 15 ,

18 =5

MXDEGP

s NFW )

1
)

1

v
N

?

DF
{1

I MAX

(1

?

ITERM ,GT. 0 ) WRITE (6,850)ITERM(TERM { J )

)

J ) =8
EW )

+ NEW )

TKSK )

TSamMp )

1

1

k]

v

«GTa O } WRITE {6,850V ITERM,{TERM {

1MAX

IMAX

101LD ) * ( DF ( T ) + DOF (

)

)

)

v

{

I

?

y o+

NEW )

J

J

)

J

#

1

nwn

OMES

1

190 -

?

Y

IMAX)

)

(1

TMAX)
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OFV = 1D0 - DFV - DFV
D0 2900 ICNT =1 , INC
IV s IV ¢+ 1
OF { IV ) = DFV
OF ( IV ) = 0OFV
2900 CONTINUE
3000 CONTINUE
4100 FORMAT ( I5 , 7X o, 8AR )
READ (I8 , 4100 3 INPUT , FMT
WRITE ( 6 o 4100 ) INPUT , FMT

4200 READ (18 4 FMT ) I , Nl , Ml , 11 vy N2 4 M2 , 12, IM1
1. ID, N3 , M3 , I3 v N4 5 M4 4 T[4 4 M3
IF ( ISAMP .LE. O )
IWRITE( 6 5 FMT ) I ¢ N1 4, M1 4, Il s N2 o M2, 12, M
2, 1D, N3 , M3 , 13 e N& o MG , T4 , IM3
4350 IF ( I .LE. 0 .OR. N1 ,GE. MXDEGP ) GO TO 4500
Ivl = { N1 + I1 ) = N1 + M1 + 1
IV2 = ( N2 + 12 ) * N2 + M2 + 1
OMEG ( IV1 , IV2 ) = OM1
OMEG ( IV2 , IVl ) = 0OMl

IF { N3 ,LE. O ) GO TO 4200

Ivi = ( N3 + I3 ’ ) * N3 ¢ M3 ¢+ )

IVv2 = ( N& + 14 } % NG ¢+ M4 + 1

OMEG ( IV1 4 IV2 ) = OM3

OMEG ( IV2 4, IV]1 ) = OM3

GO TO 4200
4500 CONTINUE

IF ( ISAMP LLE. O ) ISAMP = 1 + [ABS ( ISAMP )

DO 5000 IV = 1 o IMAX 4 [SAMP

WRITE { 6 4 4700 ) IV 4, ( OMEG ( IT 4, IV ) , 1II =
4TO0 FORMAT (  'OOMEG(Is*" 4 I3 o *)=' 4, 9 { Gl2.4 4 %

1 . 10 { Gl2.4 , ',
5000 CONTINUE
5200 FORMAT ( 'O DF { 1 ) = 9

WRITE ¢ 6 4 5200 ) { DF ( I1
5400 FORMAT ( *0OOF ( I ) = ¢ , 9

WRITE ( 6 , 5400 ) ( O 1

RETURN

ENTRY AKZERO

IZERD = O

DO 6000 T = 1 , IMAX

OMEG (1 4 T ) = 0DO

OMEG (I , 1 ) = 00O
6000 CONTINUE

RETURN

END

)}

TMAX 4 TSAMP )
Y )

X

IMAX » ISAMP )

103






Appendix C.3

THE CALCULATION OF THE HARMONIC COEFFICIENTS

éListings of subroutines NLEGND.and OCLAUD may be found in appendix C.1)

C
c
C
c
c

MAIN PROGRAM ESTIMATES THF HARMONIC COEFFICIENTS FRIM ANJMALIES
AND UMDULATIONS CGEMERATED FROM A REFERENCE SET 0OF HARMONIC
COEFFICIENTS.

CALLS DSin, DSQRT,; NLEGND, SNPXDX, CSPCH, OCLA, CSRDR,QOCLAUD,
CSTBL, DCOS,; DATANl, EXIT, ERRSET).,

IMPLICEIT REAL®%8 (A-H,0-Z )

REAL #* B8 SMCT{ 15 ) » SINMLT ( 15 288 ) s COSMLT( 15 , 288 )

REa&L = 8 P { 20 ¢+ 20 } 4 PT { 136 4 72 ) 5 SPT { 136 , 72 )

REAL*8 DCS{20,20} » CAN{10) , QPCD / *%NIFF 6° /

REAL*8 CSB { 20 » 20 ¥ , QBLANK / ? 6% /¢QDIFF/®*DIFF 6%/

REAL %8 DCRDYV{20.20:2}, QSTART / *STARY 6°% /

REAL®8 QDCRDY / ®DCRDT &% /7 5 QRDVTCH / *RDTCH ¢/

REAL %= 8 FHYT { 8 1} 5 QDELYA / DELYA 6% /

REAL%8 FOURPYE 7 12.56637061435917 /

REAL*8 PIHALF / 1.570796326794897 7/

LOGICAL * & MAP 7 T /7 . 0OCLAUD

INTEGER * 4 NCLA

INTEGER®*4 MEAM /07 y LATPRY /18/ , JMXDEG 7 O / » JNCELL /0/

INTEGER®%4 MAXDEG/19/,NOCELL/18/ o ITERST / 1 / » IOCLATL / -1 /

c

CALL ERRSEYT { 212 4-1 , -1 5 1 1}
CALL ERRSET ( 217 » 1 4y -1 5 1 1}

i¢
i
c
100

1

P

o OO0 NO

265
1

FORMAT{?1?,20X,*COMBINING SATELLITE ALTIMETRY AND SURFACE GRAVIMET

RY IN GEQODETIC DETERMINATIONS. RY RONALD GING-#4EI ENG YOUNG.?)

ol e e o ez ot ok ot a2 el ok e dje e e e ol ode ale st e vt ok oot ok o o s o e sfe ok ol e ok o ol sl ok ke ksl ol e sk e e ke ko ek ke e ke ok

WRITE { 6 4 19 }

NAMEL IST /CNSTNT/ MANDEG , NOCELL , MEAN vy Ay F

» DMEGA , STDMU 5 ITERMX  IDCLAT » LATPRT,ITERST, MAP

MAXDEG = MAXIMUM DEGREE OF THE SPHERICAL HARMONIC FUNCTIONS
DEFIMING THE EARTH®S GRAVITY FIFLD.

MOCELL = NUMBER OF CELLS IN EACH 90 DEGREES JF LATITUDE AND
LONGITUDE.

MEAM = 1 REQUESTS MEAN VALUES RATHER THAN POINT VALUES OF GRAVITY
DATA,

A = EQUATORIAL RADIUS OF THE MEAN EARTH ELLIPSOID.

F=FLATTENING ={A-B}/A

OMEGA= ANGULAR YELOCITY OF REVOLUTION

STDMU = GAUSSIAM CONSTANT TIMES THE MASS OF THE STANJDARD EARTH,.

ITERMI = NUMBER OF ITERATIONS THAT THE SPHERICAL INTEGRATIONS ARE
DONE.

I0CLAT = 0 FORCES OCEANS, IOCLAYT .GT., O FORCES LAND. OTHERWISE
AS INPUT.

WHENEVER LATNO >= LATPRT DCRDY (S PRINTED. ___ —_—

ITERST = VALUE OF THE NEXT ITERATION IN A SERIES 0OF TTFRATIONS.

MAP = T REQUESTS A& READ-IN OF THE LAND-OCEAN CONFIGURATION.

= F SUPPRESSES A READ-IN.

READ { 5 , CNSTNY , END = 8500 }
WRITE { 6 , CMSTNT ?

FORMAT{®
Vel TTERATION MUMBER IS ®,13)
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c
READ ( 5 5 265 )}
c
MXDEGP=MAXDEG+1
AREA = FOURPI
B=A*{(1.D0 - F }
RT=DSQRT{{A-B)*{A2B))
RTA2 = { RT / A ) **x 2
EM { OMEGA * A ) %% 2 % 8 / STOMU
c_____E2 E?' = SECOND ECCENTRICITY.
E2 RY /7 B
ATANE2 = DATAN { E2 )}
QUZERD = { «5D0 + 1,500 /7 E2 *% 2 ) * ATANE2 - 1.5D0 / E2
STDJ2 = RTAZ * { .3333333333333333 - EM*E2/(QUZERD
1 % 22,5D0 ) )
ARTY = 5.D0 * STDJ2 / RTA2
CBN{1) ARE COEFFICIENTS FOR THE NORMAL ELLIPSOID ( I = (DEG#2)/2 )} eses
CBN {1 ) = 1.D0
Do 150 I =14 9
CBN (1 + 1) = LI
1 70 2%1 ¢ 1) %
150 CONTINUE
3000 FORMAT { i5 » 7X , 8A8 )

H

J - 1.00)% 1 +1,D0)% 3,D0%( -~ RTA 2 )**[

ART
{ 2% 1 4+ 3 ) % DSORT { OFLOAT [ 4 * I +1})))

c
READ { 5 4 3000 3 1T , { FMT & J )Y , U =1, 8
c
IF { I .67, 0 ) GO TN 3100
IF { I ,LT. 0 ) GO TO 151
C IF { I -.EQ. 0}
DO 44 J = 1 , MXDEGP
DO 44 1 =1 4 MXDEGP
44 CSB (I 5 J ) = 0DO
DO 550 1 = 1 s MXDEGP , 2
550 CSB8 { I » 1 I=CBN{ T /7 2+ 1)
C .
3100 CALL CSRDR { CSB , FMT }
C

CALL CSTBL { CSB MXDEGP,QSTART )
WRITE { 6 5 265 ) ITERSY -
C(N’M) = CSB (N+1QM+1’ k4 S(N'M) = CSB (M’N"l’ PP PP DE 0D LS DD OGS ISP

DO 1550 1 =1 5 MXDEGP o 2 -

1550 €SB ( I y 1 IJ==CBN { T /7 2+ 1) +CSB (I, 1)

151 CONTINUE
IF { JUNCELL .NE. NOCELL ) GO 7O 157
IF { MAXDEG .GVT. JMXDEG } GO 7O 193

GO TO 197
157 JNCELL = NOCELL
c IF SUCCESSIVE VALUES OF NOCELL ARE THE SAME, THE GEOID
c READ-IN IS SKIPPED.
GEOP = STDMU® ATANE2 4 RT +OMEGA®X2%A%%x2 / 3.D0
EARAD { A %%k 2 % B § *% { ,3333333333333333 )

GRAVHM STDMU /7 { EARAD #* EARAD )
CELL = PIHALF / NOCELL
CELLH = CELL /7 200
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ACELL = { CFELL + CELL } #= NSIN { CELLH } * FIURPI
LATMAX=NDOCELL
LONGMX=4%*NOCELL

c
MAP = NCLAUD { MaAP }.
c
MAMEL ST /PARAMS/ CBN ., CFLL , B , EARAD , GRAVM , RT , GEOP
WRITE { 6 » PARAMS }
c e s e e e o e o ot ot ok o ek o ot sk sk o g ke ok ok ok e e el dokok ko ok ok ok kb e kol Rk R R ok R
193 JMXDEG = MAXDEG
C CALCULATE SINES AND COSINES FOR THF LONGITUDE TERMS,

DO 3810 i0RD = 1 , MAXDEG

ORDH = [0ORD /7 200

SMCY { INRD ¥ = NSIN { CELL % OQRDH )} / ORDH
3810 CONTINUE :

LONGHMS = 2 # LONGMX

LONGNG = 0

DO 3830 LONGNH = 1 , LONGMS , 2
LONGNG = LONGNO + 1
=0
DO 3820 IORD = 1 , MAXDEG
J = J + LONGANH
I =J
101 IFf & 0 -LT. LONGMX } GO 7O 102
I = 1§ - LONGMS
GO 70 101

102 FACVOR = [ #* CELLH
STNMLT{1,LATNO)=STN{THETA)=COS{ALAT)
SINMLTE TORD o LONGNT § = DSIN { FACTOR }
COSMLT{ IORD , LANGNJ } = DCOS { FACTOR )
3820 CONTINUE

3830 CONTINUE

c

c IF NOCELL IS CHANGED OR MAXDEG IS INCREASED; THE LEGENDRE

c FUMCTIONS ARE RECOMPUTED,
THETAH = 0DO
CALL NLEGND { MAXDEG , THETAH , PT {1,511 » XH oCXH }
THIGH = 1 . -

C_____IF DIMENSIONS OF PT{I.J) ARE CHANGED CHECK THAT I*ItJIW >= 400.
LW = 10 .

DO 3900 [ = 1 » LATMAX
THETAL = CELL * |
c CALCULATE ASSGCIATED LEGENDRE FHNCTIONS S . .
CALL MLEGND { MAXDEG , THETAL , PV { 1,1L0W), XL,CXL)
CALL SMPXDX { MAXDEG , P T 1 5 1 ) 5 PT { 1 4 IHIGH ) , PT ( 1,
i ILOW } » THETAM,XH,CXH,THETAL, XL,CXL}
J = iHiGH
IHIGH = [L0OY
iLow = g
THETAH =
XH = XL
CXH = CXL
NN = 0
N0 3390 N1
DO 3890 M1

TYHETAL

1 . MXDESP
1 » N1
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3890
3900

c

205
210

157

(e [aNe] [}

3200
3250

121
3300

3350

173

179

3400
C

c

108

NN = NN ¢+ 1
SPT ( NN + T ) =P L N1L , ML}
CONTINUE
IF { MEAN .,GY. O } GO 70O 197
CALCULATE ASSOCIATED L EGENDRE FUNCTIONS
DO 210 I = 1 5 LATMAX
THETAL= { T - .500 3 * CELL
CALL NLEGND { MAXDEG y VTHETAL, P (1, 1) ¢+ XL SCXL 1}
NN = 0
DO 205 N1 = 1 , MXDEGP
DO 205 M1 = 1 s N 1
NN = NN + 1
PT { NN s I ) =P { NI o ML}
CONTINUE
3 sfe e sfe e s o st e sk ok e ok fe el s ol sfe el ok e ofe ae ik ofe o6 ofe e sfe e o ofe ok s e e ol ofe o sk ot sk ol o ofe afe ke oo ok she st e o afe ol ofe ke e e sl ale sje ok e
CONTINUE
INITTALTZE THE ARRAYS FOR THE SPHERICAL INTEGRATIONS cscesoess
READ {5 5 3000 )} I o { FMT { J ) s Jd =1, 8}

IF 1 I «GTs 0 ) GO TO 3300
IF { 1 .EQ. O % GO 7O 3250
IF { I .EQe -1 )} GO 7O 3400

DO 3200 4 = 1 » MXDEGP

DO 3200.1 = 1 o MXDEGP )
DCS { &I o 3 ) =CSB L 1 4 3}
GO YO 3350

DO 121 4 =1 » MXDEGP

DO 121 1T =1 , MXDEGP

0CS (1 » J ) = 0,00

CALL CSRDR { DCS , FMT }

CONTINUE

CALL CSTBL { DCS , MXDEGP , QDELTA ) -
WRIVE { 6 5, 265 } T1TERST : -
DO 179 IDEGP = 1 ; MXDEGP

FACTOR = - IDEGP /7 2DO )

DCRDT { TDEGP », 1 » 1 § ' = FACTYOR * DCS { IDEGP , 1 }
IF { IDEGP LEQ. 1 ¥} GO 7O 179

DD 173 IORDP = 2 , IDEGP
IORD = IGRDP - 1

DCRDT { IDEGP  IORDP , 1 1}
DCRDT { IORD o IDEGP » 1 }
CONTIMNUE

CONTINUE

NOLD = 1

NEW = 2

CONT INUE

ITERND = ITERST ¢ ITERMX ~ 1
afe o 2 s e o 2 ofe ofe ofe sfe sk o e sl s sl s e g sk ok e e e e e ol s ol s e ke ol e ool sk e ok e e e ot el e sfe ok o e 3k ofe e e ok o sk ke sk sl kR
DO 8300 LOOPVR = ITERST , I{TERND

ITERATION LOOP STARTS HERE.
DO 141 J = 1 » MXDEGP

FACTOR #* DCS { IDEGP , IORDP )
FACTOR *= DCS ( IORD , IDEGP }
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C
c

‘141

2030

2035

273

306

315

i91

313

316

200

DO 141 1 = 1 , MXDEGP
DCROT { I 5 4 5 NEW } = 0NO

g 3fe e ofe oie e 22 %2 s e ok ot sie ok sk sfe ok ol e v o ok e v ik ok it ofk ol ofe sl e it afe i e sie e ade ik ok e ok e e sl e sk ok ok o ok o ol o ok o ol ke okl SR ol ok
NO 1140 LATNO=1;LATMAX
_____ POLES TO EQUATOR
TF ( MEAN .NE, 0 ) AREA = ACELL * SINMLT ( 1 , LATNO )

ALAT = PIHALF - { LATND - .5D0 ) * CELL

DO 145 4 = 1 , MXDEGP

DO 145 I = 1 ; MXDEGP

P{I ,d1) =0DO

o s ol 2l ot e ok vl e sk e ole e sesde ale e o2 stk s sl i she ik ok ol sl sl oo sfe e ok ok sk ol ok o ok 3 sl s el ok o ok ok ok ol 3 ko e e e ofe e e o e ook e ke
DO 1120 LONGNO = 1 5 LONGMX

_____ 0 DEGREES 7O 360 DEGREES LONGITUDE EASTWARD .
ALONG = { LONGNO = 500 ) * CELL

IF ( IGCLAT ) 2035 , 2025 , 2030

IOCLAN = O
I0CLAS = O
GO 70 273
I0CLAN = 1
I0CLAS = 1}
GO 70 273
CONTINUE

TOCLAN = OCLA { ALAT , ALONG }

T0CLAS = OCLA (-ALAYT , ALONG )

CONTINUE

RDTN = 0,DO

RDTS = 0.DO

iMD = - 1

NN = O

s s ofe e sl ok sfe s e oo ek ol ek ek feode feogt ek e s ekl e ok et s ol Atk iRl e ko ok ok Rk ek

DO 780 IDEGP = 1 , MXDEGP

NN = NN ¢+ 1

{MD = -~ IMD

IDEG = IDEGP - 1

FACTOR = { 1 - IDEC ¥ /7 200

iIF { IOCLAN .EQ. 1 § GO TO 308

CN = BCS { IDEGP , 1 ) * FACTOR
CN=CN-CSB{IDEGP,1}

GO 70 315
CN = - DCS § IDEGP , 1 }

CN=CN+CSB{IDEGP,1} * FACTOR
IF { IOCLAS .NF, IOCLAN } GO TO 191 ’
CS = CN
GO TO 316

IF { I0OCLAS EQ., 1 § GO 7O 313

CS = DCS { IDEGP s 1 § * FACTOR
CS=CS~-CSB{IDEGP,1}

GO 7O 316

CS = ~ DCS { IDEGP » 1 1}
CS=CS+CSB{IDEGP, 1} * FACTOR

IF { MEAN .EQ. 0 ¥ GO VD 200

PNM = SPT { NN , LATNO 3 * CELL

GO 70 201

PNM = PT { NM o LATND )
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201 CONTINUE
RDTN = RDTN + CN * PNM
ComIMD = { -1 } *=IDEG
IF { IMD LT, 0 ) €S = -CS
RDTS = RDTS + CS * PNM

IF ( IDEG .EQ. O } GO TN 780

IMO = IMD
C e e e ek el e e e ok e sl s sfe st sl ek e e s ol e e e ofe ok o sk o sl e ke e e s sl sl ol o ok Ok kKo R R R ROk 3ok
DO 760 I0RD = 1 4 IDEG
NN = NN + 1
IMO = - MO

I0RDP = IORD + 1
IF ( MEAN .EQ. 0 ) GO TO 211
PNM = SPT { NN , LATNO ) % SMCY ( IORD )
GO 70 212
211 PNM = PT { NN , LATNO )
212 CONTINUE
COSINE = COSMLT{ I0ORD , LONGNO )
SINE = SINMLT{ IORD , LONGNO }

IF { TOCLAN .EQ. 1 )} GO 7O 307
CN = DCS { INEGP , IORDP )% FACTOR
CN = CN ~ CSB { IDEGP , [ORDP )
SN = DCS { IDRD , IDEGP ) * FACTOR
SN = SN - CSB { 1ORD , IDEGP )
GO 1D 401
307 CN = - DCS { IDEGP , IORDP }
CN = CN + CSB { IDEGP , IDRDP ) * FACTOR
SN = -~ DCS ( IORD , IDEGP }
SN = SN + CSB { IORD s IDEGP ) * FACTOR
401 1IF { TOCLAS .NE. IOCLAN ) GO YO 228
CS = CN
SS = SN
GO TO 402
228 IF { I0CLAS .EQ. 1 ) GO TO 314
CS = DCS { IDEGP , IORDP )% FACTOR "
CS = CS - CSB { IDEGP , IORDP ) .
§S§ = DCS { IORD s IDEGP )} * FACTOR
SS = 8§ - CsB ( IORD , IDEGP )
GO TO 402 .
314 CS = - DCS ( IDEGP , TORDP }
CS = CSs + €SB { IDEGP , IORDP ) * FACTOR
§§ = - DCS { 10RD , IDEGP )
SS = 8S + CSB { IORD , IDEGP } * FACTOR
402 RDTN = RDTN + PNM * { CN * COSINE+SN*SINE)
IF { IMO LT, O 3} PNM = —PNM
Co__.IMO = { - 1) %*x (IDEG —-IORD )
RDTS =RDTS + PNM © *{CS*COSINE+SS*SINE)
760 CONTINUE
C e e sje e e e e shesie e sk sk sfe oo ok e sk ok v v e ofe o e s e s ok s o ok e ok e ok e e sl e e afe o ek sk ok ek T ok e ok o ke sl ek ok ko ek ok
780 CONTINUE
c 3 e e e e e e ok 3k 6 e 3k she s o sfe s e ofe ek o o e e e ok afe s e e e o s s st ke e ok s e e e e sk o sk ok ik et e e s ol ok e o ok e ke ok ok

CN = { RDTN # RDTS ) / AREA
CS = ( RDTN - RDTS § / AREA
IMD = = 1
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c e o e ot o o ot s e s s ol ot sl gt o e sk e s s ok ook e sk e e ool etk ook ke ok s sk ok ook e
N0 1100 IDEGP = 1 , MXDEGP
iMnD = - IMD
IDEG = IDEGP - 1

c_ iMp = { -1 ) *xIDEG

{F { IMD L7 O ) GO 70O 254
FACTOR = CN
GO 70 255
254 FACTOR = CS
255 CONTINUE
P { IBEGP . 1 } = P { IDEGP , 1 } + FACTOR
ifF {1IDEG -EQ. O } GO TO 1100

IMO = [MD
C s e 2 sk ofk a2 ok e e ale sk e sk ade ol sl sle o s sk sk sieofe ke sl sk S sk ok vk sl ik ksl s ok e ol 3k e i ok 3 e o o sl o ok ok ok AR ok e i ok e e ak koK A ke
DO 1070 i0ORD= 1 -IDEG
iMO = - IMO
IORDP = IORD + 1
c iM0 = { - 1 ) %% (IDEG -I0RD )

IF { IMO .LT. 0 ) GO TN 262
FACTOR = CN
GO 7O 263

262 FACTOR = CS

263 CONTINUE

P {IDEGP, IORDP b= P (IDEGP, IORDP Y +COSMLT{IORD,LONGNO)
1 * FACTOR
4 {I0RD, IDEGP Y= P (IORD,[DEGP Y+SINMLTC(IORD,LONGNO}
1 ® FACTOR
1070 CONTINUE )
c ol e e e ofe e o el ol s o o ook s o o ke o ok ok o ook ek ek e ok ko sk o o O ok i ok ok e e e e ko ok ok ok koK
1100 CONTINUE
c s o oo e o o e s ke ofe s ol s o s s e s ofe o e ks e s ke s o kol o ok o ok o sk ok ol e ol ok e ke Nl e sk R ek
1120 CONTINUE
o s e sfesde e oo skl o oo ok oo ke s e ok oo ok ok sk o skl sl ksl ke kol ok ok ke ok ook ok ok ok o ok ok ok ok

iF { LATPRY .LE. LATNO }
1CALL CSTBL { P , MXDEGP , QDIFF )

NN = O
DO 326 IDEGP = 1 , MMDEGP
NN = NN + 1

OCRDT { IDEGP , 1 ¢ NEW } = DCRDT { IDEGP 5, 1 5 NEW ) + P { IDEGP
i o+ 1 3 % SPT { NN , LATNO }
if { IDEGP .EQ., 1 }J GO TO 326
DO 320 IORDP = 2 , IDEGP
IORD = IORDP - 1
NN = NN + 1
DCROTV{IDEGP, TORDP, NEW}=DCRDT { IDEGP, IORDP,NEA)} +
1 P {IDEGP,IORDP ) * SPT { NN , LATND }j
DCRDT {10RD; IDEGP,NEWI=DCRDT{I0ORD, INEGP ,NEW )} +
1 P {(I0RD,INEGP ) * SPT { NN , LATNQO }
320 CONTINUE
326 CONTINUE
IF { LATPRT .LE. LATND }
1CALL CSTBL { DCRDT{ls1,NEW) , MXDEGP , QDCRDY )
1131 FORMAT{* ITERATION=%,13,%, ZONE =%,13,%, DCRDT =',4{G23.165°:'})
WRITE ( 6 5 1131 } LOOPYR , LATNGQ o ( DCRDT{Js1sNEH},JI=1+4)
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1140
c

286

288

1185

1175
1195

1500

C{N.M)

1590
1600

1200

112

CONTINUE

e 2 v 2fe sfe ok ade ofe e 33 S e o4 s i e e e e ik e ik s ke ok e s abe e e e e s afe sk o o e sl o ok ke e ol e e afe ok e e kol ke ik e ofe o ke ok ok o ok K ok ok
DO 286 IDEGP =1 , MXDEGP

DCRDY { IDEGP , 1 o NEW } = DCRDT { IDEGP , 1 , NEW ) % CELL
DO 288 I0RD =1 , MAXDEG

IORDP = IORD + 1

FACTOR = SMCT ( IDRD )

DO 288 [IDEGP = I0RND P , MXDEGP

DCRDT(IDEGP s IORDP 4 NEW)=DCROT{IDEGP, IORDP, NEW} * FACTOR
DCRDT(I0ORD, IDEGP,NEW)I=NCRDT{IORD, IDEGP,NEW) * FACTOR
CONTINUE

CALL CSTBL { DCRDT{l,1,NEW) , MXDEGP , QDCROT )

WRITE { 6 » 265 ) LOOPVR

DO 1195 IDEGP = 1 , MXDEGP

I = IDEGP

DO 1185 J = 1 , MXDEGP

OCRDT ( I 5 J o NOLD ) = DCRDT { I 4 4 ¢ NEW ) -~ DCRDT (1,J4,NOLD)
FACTOR = ~ 2DO0 / 1DEGP

DCS { IDEGP o, 1 ) = FACTOR * DCRDT ( IDEGP , 1 , NEW )

IF { IDEGP -EQ. 1 ) GO TOD 1195

DO 1175 IORDP = 2 , IDEGP

fORD = IDRDP - 1

NCS { IDEGP 5 TIORDP } = FACTOR * DCRDT ( IDEGP , YORDP , NEW )
OCS { IDRD , IDEGP } = FACTOR * DCRDT ( TORD , IDEGP 4 NEW )
CONTINUE

CALL CS¥BL € DCRDT ( 1 , 1 4 NOLD } » MXDEGP » QRDTCH )

WRITE { 6 , 265 § LOOPVR

CALL CSTBL { DCS , MXDEGP , QDELTA )

WRITE { 6 s 265 ) LOOPVR

1 = NOLD

NOLD = NEW

NEW = [

DD 1500 J = 1 , MXDEGP
DO 1500 I = 1 , MXDEGP

DCRDT{I4JyNEW)=DCS ( 1T » J ) = CSR (T , 4
= (SB (N*l’”"'l) ] S(N’M’ = (S8 (MQN+1, sacsesesssscsasscsoscnssan
CALL CSTBL {( DCRDT { 1 5 1 o NEW ) , MXDEGP , QODIFF }
WRITE ( 6 5 265 ) LOOPVR )
DIFF IS CALCULATED MINUS INPUT COEFFICIENT .cesesecescccscacs

DO 1600 I = 1 , MXDEGP
DO 1600 4 = 1 , MXDEGP
IF(CSB(T+J).EQ.0.D0) GO 70O 1590
OCROT{ 1,4, NEWI=DCROT{1+J;NEW)*100.D0 /DABS{CSB(1,J))
CONTINUE .
CONTINUE

CALL CSTBL { DCRDY ¢ 1 » 1 o NEW ) , MXDEGP , QPCD )

WRITE ( 6 5 265 )} LOOPVR

EDIFF IS CALCULATED MINUS INPUT COEFFICIENT AS PERCENTAGE OF
INPUT,

DO 1200 1 = 1 , MXDEGP , 2

DCS ¢ 1 s+ 1 } =CBN (I /7 24+ 1) +#0DCS {1, 1)
CALL CSTBL { DCS , MXDEGP , QBLANK )
WRITE ( 6 » 265 ) LOOPVR
DO 178 I =1 , MXDEGP , 2
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pcs 1 » 1 )=-CBN ( T /7 2+ 1} +#DCS (I , 1)
178 CONTINUE :
8300 CONTINUE
c ek e oo i e 3 e o ook ot ek sl ook o oot ok ol ol ket o skt sk st e o ol ot ook o ol sl e o ok ok ok Kok ol ok ok ok
ITERST = ITERND + 1

C

READ { 5 4y 3000 ) I 5 { FMT { J ) 4 J =1, 8
C

IF ( I .FQe. =9999 ) GO TO 197

IF { T .LE. O 160 7O 100

WRITE { 7 4 3000 3 I , ( FMT C J ) y, J =1, 8 )

CALL CSPCH ( DCS 5 MXDEGP , FMT )

iF { I EQ. 99999 } 60 TO 3400

IF { T +EQ. 9999 ) GO TO 197

GO vO 100 )
c e s s e e s sk e e s s el e sk s e o ke e o e sl o e ol o o e ok ool e ok o el o ek ok kKl o ok R K K
3500 CONTINUE

CALL EXIT

sTOP

END
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Appendix C.3

OO0 0

444

27

888

CSRDR READS-IN THE NORMALIZED SPHERICAL HARMINIC COEEFFICTENTS.
THE READ~IN FORMAT STATEMENT MUST SPECIFY VARTABLES IN THF

ORDER: DEGREE, DRDER, C, Sy ETC.y ENDING WITH DEG=-1,
FOLLOWED BY, DEGl, DEG2, C1,02y ETC.y, ENDING WITH DEGL=
-1. THE ZONALS MAY BE READ-IN IM EITHER THE FIRST OR
THE SECOND GROUP,

SUBROUTINE CSRDR ( CSB , F66 )

REAL * 8 CSB { 20 4 20 ) 4, F66 ( 8 )

READ{5,F66)1,J,C195S14K4L4C2,52

READ IN THE NORMALIZED C{I,J)

IF(I.LT.D0)GO TO 888

csB { I +1 4 4+ 1) =2¢Cl
IF ( J +LE. O ) GO 1O 27
csSB ( J s+ I +# 1) =81
CONTINUE

CsB { K +1 o L + 1) =C2

IF { L +LE. 0)GO TO 444

csSB ( L s K+ 1) =82

GO TO 444
READ(S5,F66)1+4J+,C014S14KyL,C2,S52
READ IN THE NORMALIZED ZONAL COEFFS
[F{I.LT.0)GO TO 10099

10099 CONTINUE

114 .

Csg (I +1 4,1 )y = C1
CSB ( J+ 1 , 1 )} = S1
IF(K.LT.0)G0 TO 10099

CSB ( K +1 41 Yy =C2
CsB (L +1 4,1 ) = S2
GO T0O 888

RETURN
END



Appendix C.3

C SNPXDX CALCULATES THE INTEGRAL OF THF NORMALTZED LEGENDRE
C FUNCTIONS.,
C CALLS DSQRT, SNP2L, FAC.

SUBROUTINE SNPXDX{ MAXNDEG , SP 5 PH o PL , THETAH , XH , CXH ,
1 THETAL , XL o CXL }

C__._MAXDEG = MAXTMUM DEGREE OF THE LEGENDRE FUNCTINNS ( <= 19 } .,
C...SP = INTEGRAL (OF THE NORMALIZEO LEGENDRE FUNCTIONS ( JUTPUT ) .,

C PH = NORMALIZED LEGENORE FUNCTIONS AT NORTHERN RIUNDARY OF

c INTEGRAT ION,

c PS = NORMALIZED LEGENDRE FUNCTIONS AT SOUTHERN BOUNDARY OF

v INTEGRATION,

Cooe_._THE MATRICES IN THE CALLING PROGRAM ARE ASSUMED TO RE NIMENSTUONED
c (20,201,

IMPLICIT REAL*8 (A-H,N-Z )

REAL * 8 R3 / 1.732050807568877 /

REAL * 8 SP { 20 , 20 ) 4, PH { 20 o 20 } 4, PL { 20 4 20 )
MXDEGP = MAXDEG + 1

SP{ 1 ¢ 1 ) =XH - XL

IF{MAXDEG <LE. O } RETURN

TASIN = (" THETAL - THETAH ) / 200

SP { 2, 2 ) =({ XH * CXH - XL = CXL ) /7 2DD + TASIN ) = R3
SP {2 5 1 ) =0 CXL *% 2 - CXH %% 2 ) / 2,D0 ) = R3

IF { MAXDEG .EQ. 1 ) RETURN

IF { MXDEGP .GT. 20 } MXDEGP = 20

LMAX = MAXDEG / 2

00 1000 L = 1 , LMAX

Ll =1 ¢« 1

J2r = g + Jl
SP2L1 = SP2L1 + ( XH * CXH %% J21 - XL * CXL *%x J21 ) = { 4 *=% )
1 % 31 ) *» FAC ( J } = 2 / FAC { 421 + 1)
900 CONTINUE
SP(LZI'LZI)=SNP2L(L'XHQCXH'XL9CXL)
SP2i1 = SP2L1 + TASIN
SP { L21 ¢« 1 o L2101 + 1 ) = SP2L1 * ( L21 + 1 ) * DSQRT {(2%x(L21 +
1 L21 # 1 % %= FAC { L21 # L21 ) ) /7 ( & *% 121 % FAC ( L1 ) *x 2 )
1000 CONTINUE
DO 5000 IDEGP = 3 , MXDEGP
IDEG = IDEGP - 1
IDEGM = IDEGP - 2
DEGP = IDEGP
DEG = IDEG
SP {IDEGP,1} = {CXL%PL(IDEGP,2) - CXH*PH(IDEGP,2))/
1 DOSQRT { 2.D0 * DEG * DEGP }
SP{IDEGP,IDEG ) ={{CXL*PL{IDEGP,;IDEGP}-CXH*PH{ IDEGP,IDEGP})/DEGP )
1 = DSQRT { 2.D0 *= DEG )}
iF { IDEGP .NE, 3 ) GO TO 3000
GO TO 5000
3000 CONTINUE
DO 4000 I = 2 , IDEGM
IORD = IDEGP - |
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' Appendix C.3

SP ( IDEGP o IORD )} = ( ( IORD - 1 ) * SP { IDEGP , [ORD + 2 ) =
1 DSQRT (DFLOAT ( ( IDEG - IORD ) * ( IDEGP + IORD ) ) ) -
2 (2% I0RD ) * { CXH * PH | IDEGP , IORD + 1 ) - CXL %= P |
3 IDEGP 5, IORD +«+ 1 ) } )} /7 ( ( TORD+11*0DSQRT({
4 DFLOAT(( IDEGP - IORD ) * ( IDEG + INRD ) } ) )
40C0 CONTINUE
5000 CONTINUE
RE TURN
END
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C FAC CALCULATES THE FACTORTAL FUNCTION,
C FACINC CALCULATES THFE RATIO OF FARTORIAL FUNCTIONS.
REAL FUNCTION FAC * 8 { NH )
IMPLICIT REAL = 8. ( A - H , O -7 )
NL = 2
INC = 1
ENTRY FACINC ( NH , NL , INC )

= INC

= NL - .5D0

ACINC = 100

F (S .GT. T } RETURN
A FAC * T

10
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c SNP2L CALCULATES THE INTEGRAL OF ALTERNATE SECTORAL- HARMANICS,
c CALLS FACINC, DSQRT, FAC.
REAL FUNCTION SNP2Lc: 8k £ 32 XHFo3  CXH™ XL "ys CXL
IMPLICIT REAL % 8 {.A~Hy O=Z Powé et o3 R
L2 =L +1L ¢ oy Lo T s w
L2M1 = L2 - 1 S T
SNP2L = 0DO
Ll =L +1
c DO 100 KL = 1 , L
DO 100 JK1 = 1 , L wl
KL = L1 - JKL e
L2K2 = L2 - K1 - K1 B
IF [ L2K2 .GT. 0 ) GO TO 50 e miisan
FACTOR = 1DO LI

T

GO TO 75 e NpEow aws
50 FACTOR = CXH %% L2K2 Gowot o
75 CONT INUE LRt
SNP2L = SNP2L + 2 ** K1 * FACINC ( L 5 L = KL + 1 , 160%% ( XH %
1 FACTOR ~ XL * CXL *% L2K2 ) / FACINC { L2M1 , L2K2+1,2)

100 CONTINUE .
SNP2L = XH * CXH %* L2 - XL * CXL *x L2 + SNP2L
SNP2L = SNP2L * DSQRT ( ( 8 * L + 2 ) % FAC ( &4 = L } ) / ( & =% L
1 * FAC (L2 +#1 ) )
RETURN
END
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CSPCH PUNCHES QUT THE HARMNNIC CNEFFICIFNTS ACCNRNING T A
REAND-IN FORMAT STATEMENT,
CSTRL PRINTS OUT THF HARMONIC CNFFFICIENTS ACCIRDING T A STANDARD
FORMAT,
SUBRNUTINE CSPCH {DCS , MXDEGP o, FMT )
INTEGER*4 DEG , DEGP » TRD 4, 0ORDP
INTEGER=4 [ ( 4 } 4, JJ U 4 )
REAL%B DCS ( 20 4 20 ) e FMT ( B8 ) , T

REAL®8 CC ( &4 ) , SS { 4 )
REAL * 8 TT
INTEGER = 2 (T , IR /7 ¢ ¢t/ o 11 /7 " 1Y 7
LOGICAL = 1 LL ( B ) , L
EQUIVALENCE ( TT , LLCY1Y ) o O IT 4 00 (7) ) o (1L 4 LLCR) )
oY = 7
GO TO 1000
ENTRY CSTRL {DCS , MXDEGP , T )
or = 6
1T =7
IF { IT L,EQ. IB ) IT = 11

1200 FORMAT (ALl ?, 4(® N M 1,A5,¢0¢C 8 AAR PoAS, 90859 13AR 1))
WRITE { 6 5 1200 ILeT o T » T o T o 7T o T 4 Ty T

1000 IF { MXDEGP .GT. 20 ) MXDEGP = 20

QOO0

I =20 :

DO 1400 DEGP = 1 , MXDEGP
DEG = DEGP - 1

DO 1400 ORDP = 1 o DEGP

ORD = ORDP - 1

fE=1+1

IT ¢ T ) = DEG

JJ ¢ 1 ) = ORD

CC ¢ 1) = DCS ( DEGP , NRNP }
IF { ORD .GT. O ) GO TN 1240
SS ( 1 ) = 0.D0

GO T3 1270

12640 CONTINUE

SS ( T ) = DCS { ORN , DEGP )
1270 CONTINUE

IF ( 10T .EQ. & ) GO TN 1285

IF (I LT, & ) GO TO 1400

WRITE ( 7 o FMT ) U IT (T ) o JJ T}, CC CT ),y SS UL} ,I1

1 =1, 4) :

GO TO 1350
1285 CONTINUE

IF { 1T .LT. 4.,AND, ORDP ,,LT. MXDFGP ) GO TOD 1400
1300 FORMAT ( * * , 4(213 , 2 G13.5 ) )

WRITE ( 6 5 1300 ) 0 IT { J ) » JJ U J ) o CC U J ) 5 SS O L)Y o J

1 =1, 1)
1350 CONTINUE

I =0
1400 CONTINUE

iF ( 10T LEQ. 6 ) RETURN

{IF {1 .EQ. 0 ) GO TO 9000

IF { T .EQ. 2 ) GO TO 7000

IF { T .EQ. 3 ) GO TO 8000
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11(2)=11(1)
JJ2)y=04(1)
cci{2)=Cc(l)
SS(2)=5S51{1)

7000 WRITE ( 7 »

1

91700

8000

1

120

=14 2)
I = -1
WRITE { 7 »
WRITE ( 7 ,
RETURN
[1{a)=11{3)
JJte)=4913)
CCl4}=CC{3)
§S{4)=55(3)
WRITE ( 7 »

=14 &)
GO T0O 8000
END

FMT ) (I € 1)

FMT ) 1
FMT ) 1

FMT 3 4 1T € 1)

v

?

JJ3

1

}

Lo |

1

¢



Appendix D

CONVERGENCE OF AN ALTERNATIVE SYMMETRIC FORMULATION

J. E. Potter and S. J. Madden (personal communication) suggest a

formulation for which a sufficient condition for existence and unique-

ness is obtained. Write equation (2.55) with

g =1 {D.01)
in the form

[T +Hlz = 2v (D.02)
where

H = sgn (Sl)(I + 2Ky) (D.03)
and sgn (Sl) = A(p) - Q(p) (D.04)

An upper bound for || H || may be obtained by applying the Cauchy-

Buniakovskii~Schwarz inequality and noting that

|| san (s || =1 (D.05)
Hence
[l 8 || ¢ max | A | (D.06)
AjEG(I+2KN)
where
4
)\j =1 - m (D.O?)
J
th

When the zero and first harmonics are suppressed and the series is

truncated the bound is less than one. Hence a Neumann series for this

problem converges.
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Appendix E

CONTINUITY OF THE NORM

In this appendix it is shown that the norm of the infinite~
dimensional operator, K(p, q), and hence, those of the equivalent
operators, such as M(p, g), varies continuously as the altimetry-

gravimetry boundary is deformed.

If A and B are operators on a normed linear space, the triangle

inequality holds (Halmos, 1951, p. 35)

Ila+s (] < |la]]l+]lB]l (E.01)

Similarly
[lafl =1 aa+B -8B || a+B]||+]]-8]l]E.02)
iliA+Bll-|.|Al| <) B 1 (E.03)

We identify A with the operator,

I(p,q)+BKN(p,q) pES
K(p, q) = (2.54)

We identify A + B with the same operator but applied to a sphere where

the boundary, 39S, between S, and Sl is perturbed slightly to obtain new

0

)
surfaces SO and Si. Let

(E.04)

§S consists of "positive" areas, 68+, that are in S, but not in S0 and

]
0
"negative" areas, 88~ , that are in SO' but not in Sé. We designate

this new operator,
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K'(p, @) = [K(p, @) + 6K(p, q)]
I(p, q) + BKN(p, q) P ES,+ 88 (E.O05)

- Ky(p, Q) PE S, - 85
We thus identify B with the perturbation operator, 6K(p, 4),
I(p, @) + (1 + B)Ky(p, @) P €65
SK(p, q) = (E.06)
0

p €S - §8

We may correct for the positive and negative areas by including a

signum function multiplying the operator, or alternatively,

I(p, @) + (1 + B)Kg(p, Q) p €8s’
§K =(- I(p, @) - (1 + B)Ky(p, Q@) p €8s (E.07)
° peEs - st - 887
We wish to show that || K || varies continuously with changes in 3S,
i.e., for small changes, &S, || K + 8K || is near || X ||. Since
[l K+ 6k || = || ®x ||} S| sx || (E.08)
We have to show that || 8K || is as small as desired when 83 is suffi-

ciently small.
As in equation (4.15), the norm is defined by

Il ok || =sup {|| 8x ||; || x || = 1} (E.09)
X

Let

x(p) = Zlcixi(p) (E.10)

The ci's are any set of coefficients satisfying

Jel=1 (E.11)
i1
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Define

1 p e sst
sgn (6sT) = {- 1 p €685 (E.12)
0 pes - sst - ss”
We have
SK(p, g)x(q) = sgn(68+)[1(p, q) + (1 + BIRy(p, q)lx(q) (E.13)

or, in the notation of equation (4.30),

$K(p, q)x(q) = sgn (85")%= {]'izl(l 2ui)xi(p)xi(q)jzlcjxj(q)dcq(E.l4)

Using the orthonormality of the spherical harmonics, Xi(p),

GK(p,.q)x(q) = gsgn (68+) Y1 - Zui)cixi(p) (E.15)
i=1

Since for any ci's such that equation (E.11l) holds,

_zlcixi(P) = x(p) (E.16)

is bounded and convergent, and (see equation (2.38))

>
n., 20
i

by the Weierstrass M test so is

@ c.xi(p)

L@ - 2wpexp) = x(@) - 20+ ) T -

G (E-17)
i=1 =1 i

We have

[l sx(p, @)x(q) ||

@ 2 1/2
_11 + _
= 32? {J.[Sgn (68 )izl(l Zui)cixi(p)] d0p$ (E.18)
ot 2 1/2
=11 _ \
T g[izl(l 2u;) e %y (p;] dcp$

Here we use the fact that
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1 p € 6s = sstuss”

[sgn (s5*) 1% = (£.19)

0 pPE S - 88
Thus if 88 is sufficiently small in area, || §K(p, g)x(q) || will be as
small as desired for any x(q), || x(q) || = 1. Thus || 6K || can be as

small as desired, and the continuity of the norm is established.
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Table 1

HARMONIC COEFFICIENTS-FOURTH DEGREE MODEL

Normalized
spherical
harmonic
coefficients
[ X 1000000}

NV OVBOVNOOLNOTNOTNODTVLOLVOOKLOOD
PRP PP LP P PLP PR WOWWUWWNNNNN S~ S
PLPUWWUNNMREHOWWNNR=ONNRRO~H~OOSB

-484,1778

The
Rapp (1968)
model

0.0
0.0
0.0

0.0
O.o
2.3509
~1.3251
0.8906
1.7134
0.2334
0.6717
-0.5572
0.7172
1.3390
0.5606
-0.5108
~0.4094
0.2528
0.4842
0. 8946
-0.2114
0.1467
0.3338

The A globe
globe with all
of altimetry
figure 1 (oceans)

1000000.0000 1000000.0005

0.0014
0.0010
0.0002

-484,1780

-0.0002
0.0001
203494

-1.3237
0.8892
1.7105
0.2331

" 0,6706

~0.5561
0.,7160
1.3367
0.5611

-0.5093

~044083
0.2520
0.4828
0.8921

-0.2106
0. 1464
0.3329

999999 ,9999
0.0006
0.0005
0.0001

-484,1779
-0.0004
-0.0003

243495
-1 .3240
0.8893
1.7107
0.2330
0.6707
-0.5564
0.7159
1.3366
0.5614
-0.5089
_0'4079
0.2522
0.4824
0.8915
-0.2107
0.,1461
0.3325

A globe

with all

gravimetry
(land)

999787,7328
0.0123
0.0096
0.0013

-484.,1782
-0,2007
-0.0006

2.3474
~1.3225
0.3893
1.7107
0.2330
0.6707
~D.5564
0.7159
1.3367
0.5611
~-0.5097
~-0.4085
0.2524
0.4831
0.R927
~0.2110
0.,1463
0.3330



Table 2

HARMONIC COEFFICIENTS—l4th AND lSth DEGREE MODELS

Normalized The The The
spherical Modified + globe Kéhnlein globe
harmonic Rapp (1968) of (1967) of
coefficients model figure 1 model figure 1
[ X 1000000] (Rapp) (Kdhnlein)
n m
c 0 0 1000000,0000 1000000,0052 1000000.0000 1900000.0069
cC 1 0 0.0 0.0086 0.0 0.0150
c 1 1 0.0 0.0125 0.0 N.0167
S 1 1 0.0 -0.0057 0.0 0.0003
c 2 0 ~484,1741% -484,180R -484,1741 -484,1784
c 2 1 0.0 -0,0045 0.0 -0.0011
S 2 1 0.0 -0.0068 0.0 -0,0029
c 2 2 2.3509 23454 2.3800 263774
S 2 2 -1.3251 -1.3258 -1.3500 -1.3474
c 3 0 0.8906 0.8923 0.9695 0.9732
c 3 1 1.7134 1.7072 1.7100 1.7039
S 3 1 0.2334 02320 0.2300 0.2330
c 3 2 0.6717 0.6694 0.8400 0.8438
s 3 2 -0.5572 -0.5481 -0.5100 -0.5015
c 3 3 0.,7172 0.7065 0.6600 0. 6506
S 3 3 1.3390 1.3488 1.4300 1.4384
C &« o0 0.5606 0.5611 0.5360 05369
cC 4 1 -N.510R8 -0.5202 -0.4700 -D.4738
S 4 1 -0.4094 -0.4050 -0.3900 -0.3920
C 4 2 0.2528 0.2544 0.3500 Ne3495
S 4 2 0.4842 0.4844 0.4800 0.4777
C 4 3 08946 0.8848 0.9200 J.9123
S 4 13 ~-N.2114 -0.2066 -0.2400 -N0.2343
C & 4 0.1467 0.1450 0. 0400 0.0379
S 4 &4 0,3338 0.3381 0.3000 0.3061
c 5 0 0.0286 0.,0297 0.0525 D.0535
cC 5 1 -0.0847 ~-0,0778 -0.0600 -0.0515
s 5 1 -0.0202 ~-0.0229 -0.0500 -0.0472
c 5 2 0.3703 0.3732 0.5300 0.5297
s 5 2 -0.1789 -N.1819 -0,2100 -0,2066
c 5 3 -0.,1887 -0.,1804 -0.,4000 -0.3893
S 5 13 0.0204 0.0230 0.,0700 0.0735
C S5 4 0.1552¢ 0.1566 -0,2000 -0e1946
S 5 &4 0.1024 0.0917 0.0200 0.0115
cC 5 5 0.0078 0.0144 0.1800 0.1795
S 5 5 -0.5450 ~-0.5312 -0.5600 -0.5483
C &6 0 -0.0782 -0.0774 -0.1503 -0.1453
cC 6 1 -0.,0893 -0,0952 -0.0800 -0.0786
S 6 1 -D.,0198 -0.0208 0.0100 0.,0030
cC 6 2 -0,0065 -0.,0067 0.0100 0.0108
S 6 2 -0.1998 -0.,1903 -0.2700 -0.2617
C 6 3 ~0.0616 -0.0516 ~-0.0400 -0,0351
S & 3 0.,0815 0.0754 0.0300 0.,0281
C 6 4 -0.0461 -0.0421 -0.0800 -0.0815
S 6 4 -0.3647 -0.3588 -0.4800 -0.4723
C 6 5 -0.,2671 -0.2579 -0.,2600 -0,2524
S 6 § -0.4441 -0.4357 ~-0,4600 -0.4479
C 6 6 0.0215 0.0173 -0.0200 -0,0177
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Table 2

Normalized The The The
spherical Modified + Globe K8hnlein globe
harmonic Rapp of (1967) of
coefficients model figure 1 model figure 1
[ X 1000000] (Rapp) (K8hnlein)
nom
S 6 6 -0,1916 -0.,1879 -N,1600 -0.1582
c 7 0 0.0458 0. 0464 0.1082 0.1061
c 7 1 0.0927 0.0924 0.1700 0.1661
s 7 1 0. 0644 0.0631 0.1100 0.1116
c 7 2 0.2424 0.2406 0.3200 0.3177
S T 2 00,1026 0. N9T2 0.1600 0.155%6
c 7 3 0.1615 0.1472 0.1800 0.1697
S 7 13 D.0042 0.0048 0.0 -0,0009
cC 7 4 -0,2278 -0.2191 ~0.1600 -0.1559
S 7 4 -0,0911 -0.0848 -0.0400 -0,0357
c 7 5 0. 0618 0.0582 0.,0700 0.0679
S 7 5 0.,0535 0.0484 -0.0100 -0.,0113
c 7 b6 -0,1381 -C.1361 ~0.2300 ~-0.2236
S 7 &6 0.1187 0.,1133 0,1000 0.0990
c 17 7 0.N426 0.0348 0.0700 0.0614
s 7 7 -0.0737 -0.0787 0.0600 0.0486
cC 8 0 0.0243 0.0233 0.0310 0.0363
c 8 1 ~-0.,0372 ~-0.0395 -0.0100 ~0.0073
S 8 1 0.0070 ‘0.0065 -0.0100 -0.0121
c 8 2 0.0442 0.0415 0.0400 0.0357
s 8 2 0.1552 0.1472 0.0400 D.0364%
c 8 3 0.0357 0.0332 -0.0300 -0.0282
S 8 3 0.0R06 0.0754 0.0 0. 000%
C 8 4 -0.0386 -0.,0362 ~-0.,1700 ~0.1634
S 8 4 0.0625 0., 0590 -0.0200 -0.0243
c 8 5 -0,0497 -0.0527 =-0.0900 ~-0.,0871
S 8 5 0.0618 0.0550 0,0900 0.0802
cC 8 & -0.1373 -0.1297 -0.0100 -0.0121
S 8 6 0.2520 0.2298 0.3000 0.2812 °
c 8 7 0.0358 0.0327 0. 0200 0,0197
s 8 7 0.0286 0.0258 0.0400 0.0387
cC 8 18 ~-0.0764 -0.0732 -0.1800 -0.1648
S 8 8 -0.0605 -0.0591 0.0300 0.0239
c 9 0 0,0179 0.,0199 0.0050 2.0088
c 9 1 0.1367 0.1300 0.1100 0.1052
S 9 1 -0,0926 -0.,0857 0.0 0.0056
cC 9 2 0.0061 0. C105 0,0300 0.,0349
s 9 2 ~-0.0387 -0,0411 0.0500 0.0447
c 9 3 -0.0844 ~0.0776 -0.0300 -0,0302
s 9 3 -0.,0119 -0.,0088 -0.0100 -0.0104
C 9 4 0.0397 0,0332 0.0700 0.0591
S 9 4 -0.0139 -0.0136 0.0200 0,0183
cC 9 5 -0.0579 -0.0541 -0.,0400 -0,0370
S 9 5 0.0116 0.0072 0.0400 0.0387
C 9 s -0.0091 -0.,0106 0. 0400 00,0349
S 9 6 0.0511 0.0452 0.0100 0.0109
cC 9 7 0.0429 0.0388 0. 0400 0.0361
s 9 7 0.0238 0.0194 ~-0.,0200 -0,0203
¢ 9 8 0,2402 0.2240 0.1300 0.1248
S 9 8 0.0078 0. 0047 0.0 -0.0013
€ 9 9 0.0045 0,0072 0. 0800 0.0739
S 9 9 -0.0401 -0.0346 0.0400 0.0416
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Table 2

Normalized

spherical
harmonic

coefficients
1000000]

[ X

VN OOV LNV OVOLNOVOVEOVNOVLOLVLOOVO VL UVOVOVOLAOTVNTTAODTVNOVNOO

=S

ot
DO DI NNPOPVIAPPWINN=OOQ O ODDODNNDIEVALDW O N =~

Modified *

Rapp
model

-0.0339
0. 0553
-0.,0412
-0.,0352
-0.0760
-0.,0110
-Oo IZQS
-0.,0053
-0.0616
~0.0044
0.0087
-0.0536
-0.37607%
0.0857
~Ne«0040
0.0328
-0.1242
0.1027
0,0002
0.,0709
_000739
-0.1022
0.,0328
0.0147
0.0276
-0.0326
“000139
-N,0416
~0.0173
~0.0595
0.0196
-000744
-0,0454
-0.0004
0.0051
‘0.0922
0.0460
0,0142
0.0258
-0.0017
~0.,0220
-0.0171
0.0737
0.0172
-0.0589+
=0.0445
-0,0602
-0.0184
0,0742
0.,0740
-0.0052
-0,0205

The
globe

of
figure 1
(Rapp)

-0.0379
0.0531
‘000‘039
~0.0407
=-N,0640
-0,0105
-0.1234
-0.0091
-0,0559
-0.0023
-0.0004
-0.0507
~0.3427
00,0793
"0.0096
0,N295
-0.1071
0.09R0
0.0040
0.0719
~0.0592
-0.0905
0.0349
0. 0075
0.0274
~0.0283
"Oonlql
-0.0360
‘000101
-0.0674
0.0173
-0.NT708
~0.0431
0.0012
0.7099
-0.0907
0.0415
0.0142
0.0210
0.0041
~-0.0154
-0.0162
0.0659
0.0143
~0.0543
~0.0384
-0.0559
~-0,0187
0.0675
0.0683
~0.0134

The
K8hnlein
(1967)
model

0.,0738
0.1000
-0,0700
-0,0800
-0.0600
-0,04800
-0,0500
=0.0600
-0.0800
0.0200
-0.,0200
—000400
-0.0100
0.0400
-0.0500
0.,0400
-0.0500
0.0500
-0.0400
0.0300
-0,0200
~0.0367
~0.,0300
0.0200
7.0500
~0.,0500
0.0100
-0.0800
-0.0300
N.0
0.0300
0.0200
-0.0300
-0.0200
0.0300
-0.0300
0.0400
-0.,0200
0. 0300
0.0100
-0.0300
~-0.0100
0.1000
0.0600
-0.0106
-0.,0900
-0.0700
~0,0600
0,0200
0.0300
0.0200
-0.0500

The

globe

of

figure 1
(Kshnlein)

N.0633
7.0833
-0.0695
-0+ 0745
=2.0520
‘000734
-2.0534
=0.N56293
-0.0715
0.0181
-0.0148
~0,0349
-000046
0.0354
‘0.04°9
0.0293
~0.0464
0.0461
-N,.,0383
N.0339
-0.0338
~-0.0229
0.0133
0.0430
‘000387
0.0032
~-0.0699
-2.,0318
-0.0036
0.0291
0.0166
-N.0276
-0.0135
0.0316
-0.0311
N.0364
~-N.0185
0.0222
2.0125
-0.0254
~0.,0134
0.0874
0.0507
-0.0062
-0.0761
-0,0608
-0.0523
0.0108
0.0285
0.0160
-0.0459
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Table 2

134

Normalized

spherical
harmonic

coefficients
[ X 10000001

VOO LVNOLOVOVNOIVOVOVOVOVLOVNOLVLOVOHLOONLOVOAVLOVNTNDOVLOUVONOW®

VPN ~NITIVUMHHE

Modified t

Rapp
model

-0,0068
0.,0408
-0.0855
0.0070
0.0304
—000434
00,0392
0,0263
0.0499
-0.,0231
0.0582
~-0.,0061
0.0123
-0.,0253
0.0071
0.0295
-0.0375
0.0590
-0.0031
-Oo OZSQ
0.0001
0.0046
0,0164
0.0748
0.0081
-0.0439
0.,0650
-0.0570
-0.0417
0,0441
0.0055
0.0219
~-0,0587
0.0041
-0.0059
0.0604
0.0084
-0.0745
-0.,0595
~0.0026
0.0054
0,0653
-0.0105
0.0375
-0.0068
0.0162
0.0014
—0. OTZQ
-0,0023
0,0230
0.0132
0.0319

The
globe
of
figure 1
(Rapp)

-0.0103
" 0.0434
-0.0848
0.,0017
0.0217
~0.0349
0.0319
0.0197
0.0439
-0,0163
0., 0550
~-0.0083
0.0086
~0.0180
0.0073
0.0249
-0.0323
0.0484
-0.0038
-0.0217
~0,0005%
0.0034
0,0176
0.05670
0.0078

* "O. 0358

0.0617
-0.,0584
~0.0366

0.0386

0.0039

0.0201
-0.,0491

00,0058
-0.0006

0.0520

0.0067
-0.0656
~0.0488
-0.0039

0.0013

0.0545
-0.0102

0.0285%
~0.0064

0.0131

0,0001
-0,0663

0.0229

0.0109

0.0244

The

Kthnlein
(1967)

model

0.0100
0.0200
0.0100
~-0.,0100
0.0100
-0.0400
-0.0200
0.0
0.0100
-0.0100
0.0200
~0,0100
0.0
-0.0500
-0.0200
-0. 0100
-0.0100
0,0281
0.0
0.0400
-0.0300
0.0100
0.0
0.0300
-0.0100
~-0.0200
0.0300
-0.,0200
-0, 0300
0.0500
-0, 0200
0.0
-0.0200
0.,0200
0, 0500

0.0400

-0.0200
-0.0200
0.0100
-0. 0200
00,0600
-0, 0700
0.0
0.0323
-0.0100
00,0200
-0.0100
-0.0400
0.0500
-0.0300
0.0

The

globe

of

figure 1
(Kohnlein)

0.0066
7.0201
0.,0077
-0,0123
0,0152
~0.0314
-0.0215
0.,0013
0.0064
-0.0052
0.0251
-0.0083
2,0051
-0.0423
-0 00125
~-N.0122
-0.0081
02,0249
-0.0027
0.0354
~0.0247
0.0030
0.0027
0.0293
-0.0143
0.0297
-0.0195
“00 0229
0.0382
~0.0164
~0.0002
-0.0211
~0.0102
0.0215
0.0459
0.0350
~-0.0183
-0.0101
0.0071
-0.0204
0.0511
-0.0608
0.0268
-0.0107
0.,0132
~0.0143
~0.0336
0.,0521
-0.0225
~0.,0043



Table 2

Normalized
spherical
harmonic
coefficients
[ X 1000000]
n m
S 14 4
C 14 5
S 14 5
C 14 A
S 14 6
C 1l 7
S 14 7
C 14 8
S 14 8
Cl4 9
S 14 9
C 14 10
S 14 10
C 14 11
S 14 11
C 14 12
S 14 12
C 14 13
S 14 13
C 14 14
S 14 14
cC15 O
c 15 1
S 15 1
¢ 15 2
S 15 2
C 15 3
S 15 3
C 15 &4
S 15 4
C 15 5
S 15 5
C 15 6
S 15 6
c 15 7
S 15 7
C 15 8
S 15 8
C 15 9
S 15 9
C 15 10
S 15 10
cC 15 11
S 15 11
C 15 12
S 15 12
cC 15 13
S 15 13
C 15 14
S 15 14
C 15 15
S 15 15

Modified T

Rapp
model

~0.0044
0.0972
-0.0887
0.0263
-0.0552
0.0787
0.0343
-0.0154
=0.0252
0.0386
0.0885
0.0707
-0.0666
0.0303
-0.0071
-0.0128
~0.0013
0.0105
0.0233
-010392-
-0.0122

+ The four indicated (+)

The
globe

of
figure 1
(Rapp)

0,0897
~0,0800
0,0237
-0.0509
00,0650
0.0311
-0.0135
-0.0190
0.03156
0.0760
N0.0610
-0.0585
0.0250
'0.0063
-0.0071
-0.0004
0.0068
0,0211
-0.0306
~0.0048

coefficients deviate

from those of Rapp (1968).

The

K&hnlein
(1967)

model

0.0
0.0500
-0.0300
0.0100
~0.0300
0.0300
0.0200
-0,0300
-0.0300
0.0300
0.0700
0. 0400
0.0100
0. 0400
0.0100
0.0500
-0.0300
0.0100
0. 0400
-0.0400
0.0200
0.0117
0.0100
-0.0100
-0.0200
-0.0300
0.0200
0.0300
0.0
0.0100
0.0300
-0.0200
0.0300
~0.0500
0.0300
0.0400
~0.0600
0.0
0.0
0.0400
0.0200
0.0100

" 0.0100

0.0100
~-0.,0700
0.0500
-0.0300
0.0100
~0. 0300
-0.0100

The
globe
of

figure 1

(Kdhnlein)

-0,0005
0.0492
~-0.,0296
0.0097
‘000266
0.0227
00,0204
-0.0262
0.0273
0.0609
0,0360
0.0071
0.0336
0.0108
0.0365
-0.,0221
0.0052
0.0312
—000354
0.0171
0.0091
D.0124
-0.,0053
-0.0150
'000259
0.0193
0.0232
0.0006
0.0064
0.0291
-0.0177
N.0234
-0.0437
0.0259
0.0358
-0.0516
-0.0021
0.0008
0.0369
0.0195
0.0090
0.0074
0.0096
~0.0546
0.0414
-0, 0405
‘000244
0.0083
-0,0233

-0.0173 .

-0.0049
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Table 3

THE OCEAN COEFFICIENTS

st Lee and Munk and
ik = Q . Kaula (1967) MacDonald
nmj (1960)
oﬂii 81 i1 241
nm nml 000 000 000 000 000 000
m Qan Qnml Qan Qnml Qan Qnml Qan Qnml
0 0.702 0.702 0. 709 D.714
0 0.638 -0.124 -0.051 -N.123
1 0,762 0,706 -0,106 -0.,062 =0.144 -0,079 -0,108 ~-0,055
0 0,627 -0.071 -0.040 -0N.058
1 0.778 0.620 -0.045 -0.056 -0.053 ~-0.068 -0,039 -0,061
2 0.762 0.724 0,036 -0.004 0,051 0,002 0,077 -0.005
0 0.616 0.044 0.036 N,044
1 0.754 0.5618 0.043 ~0.038 0.035 -0.046 0,046 -0.,039
2 0,710 0.723 0.065 -0,095 0.074 -0.109 D,12% -0.179
3 0.74% 0,750 -0,010 -0.088 -0,011 -0,122 -N.017 -0.252
0 0.635 -0.034 -0.016 ~-D.N25
1 0.710 0,600 0,038 0.033 0,035 0.016 0,041 0.025
2 06716 0713 0.093 ~0.026 0,097 -0.040 0,175 -0.043
3 04711 0,734 =-0.047 0.006 ~0.060 -0.001 -0.144 0.007
4 0,758 0.743 0.022 ~0.096 0.033 -0.153 -0.069 ~0.406
0 0.648 0.102 0.056 0.101
1 0,717 0.%562 ~0.008 0.0l4 0.001 0,008 -0.008 0,018
2 0,705 0.684 0.050 0.024 0,060 0.020 0.097 0.052
3 0.711 0.738 -0.030 ~-0.012 -0.039 -0.012 -0.107 -0.036
4 0,726 0.726 -0.086 0.028 -0.118 0,027 -0.363 0.106
5 0733 0.772 -0,002 ~0.048 ~0.002 -0,074 0.000 -0.257
0 0.649 -0.030 -0.007 -0.033
1 0.709 0.571 0.009 0,029 0,007 0.017 0.209 0.020
2 00686 0.658 0,020 -0.003 0,027 0.001 0.033 -0.006
3 0,709 0.725 -0.001 -0.029 -0.003 -0,032 0.002 -0.075
4 Q06743 0.T712 -0,028 0.028 -0.050 -0.036 -0.110 0.091
5 0717 0.740 0,027 0.025 0.028 0.027 0.110 0,115
6 0.774 0.,73% -0,003 -0.013 -0.009 -0.024 -0,012 -0.078
0 0.5661 0,046 - 0.,025 0.051
1 0,706 0.557 =0.004 -0.029 0.002 -0.025 -0.006 -0.035
2 06675 0.658 -0.028 -0.,011 -0,017 -0.006 -0.049 -0,002
3 0.685 0.706 0.007 -0.018 0,010 -0,018 0.043 -0.032
4 0,730 0.725 0,028 -0,008 0,026 -0.003 0.109 -0.0286
6 0.736 0.726 0,002 0,034 0,007 0.039 0,031 0.163
T 0.759 0.754 0,000 0.037 0.013 0,049 0,043 0.224
0 0.648 0.007 0,012 0.010
1 0.716 0.578 0,004 0.033 0,001 0.009 -0,002 0.027
2 0.65%5 0.635 -0,006 -0.004 ~-0.,012 0.004 -0,020 0,024
3 0.687 0,699 -0.014 -0.,016 ~-0.011 -0.015 -0D.046 -0.027
4 0,723 0.69% 0,003 -0.017 0.002 ~-0.014 0.000 ~-0.052
5 0,718 0.749 0,016 0.003 0.024 0.006 0Q.116 -0.002
6 0,723 0.731 -0.014 -0.009 ~-0.014 ~-0.013 ~-0.,073 -0.115
7 0.731 0.736 ~0.0356 -0,015 -0,047 -0.023 -0,243 -0.122
8 0,759 0,757 0,008 0,015 -0,025 0.037 -0.136 0.175



Table

=]

DODLOLODOOOP

- =
= —
-
QO NIV HPUNFOMOOONOVRPAIUNFOO YOOI NHPWOUN=OOONPIVNPWN-O

i3 811 ;85 83,169
000 nml nmo nml 230 930 12,12,1 512,12,1

Qan Qnml nm0 Qnml Qan Qnml Qnmo Qnml
0.638 0.026 0.010 ~0.004

0.723 0.587 0.005 0.024 -0.036 0,023 -0.008 0.002
0.642 0.636 0.003 -0.,007 0.018 -0.019 0.003 -0,002
0,673 0,677 =0.016 -0.001 0,673 ~-0.010 -0.008 0.002
0.721 0.695 0.007 -0.019 -0.,001 -0.013 0.003 -0.003
0.707 0.726 -0.003 0.003 ~0.007 -0.015 0,006 0.007
0,740 0.733 -0,008 -0,027 0,033 -0.,006 -C.018 0,000
0,731 0.720 -0.017 0.012 0.024 ~-0.038 0.022 -0.007
0e736 0.736 -0.,020 -0.006 0.000 -0.002 0,011 -0.,062
0.756 0.762 0,016 0,013 0.003 -0.008 -0.076 0.009
04640 0.015% -0.006 0.001

0,713 0.591 0.004 0,017 -0.016 -0.041 0.003 -0.006
0647 0,645 0,040 0.021 0.039 0.013 -0.003 -0.013
0.654 0.658 0,019 0.028 -0.122 -0.006 0.004 0.006
0,711 0.689 0.014 -0.009 -0.040 -0.035 0.001 -0.016
0,700 0.729 -0.012 0,001 0,017 -0.007 -0.001 0.002
0,733 0,712 -0.010 0.010 -0.003 0.037 0.008 0.003
0071‘!2 0. 733 -00006 “'0.006 0-021 -00020 ‘0.004 0.005
0,724 0.726 -0.006 0,007 0.002 ~-0.,028 0.033 ~-0.019
D.741 0.736 -0,036 0,00} 0.014 0.022 0.006 -0.034
0.761 0.759 -0.020 0,008 -0.007 O0.010 0.01l1 -0.,007
Q. 645 0.002 -0.029 0.006

0.711 0.582 -0.034 0.017 -0.023 ~-0.034 0.008 -0.,005
0.653 0.650 0.001 0.009 0,029 -0.057 -0.001 0.004
0.647 0.651 0,009 0,006 -0.070 ~-0.002 0.008 -0,001
0.697 0.668 0.003 0.001 -0.018 -0.028 -0.005 -0.002
0.703 0.724 0,001 -0.009 0,052 -0.010 ~0.001 -03005
0.724 0.711 -0,010 -0.007 0.002 0.000 0.008 -0,004
0.728 0.728 0.011 0.004 0,008 0,035 -0.,009 0.007
0.735 0.740 -0,008 0,002 -0.016 ~-0.013 0,001 0.030
0,720 0.729 0,003 -0.000 0.014 ~-0.006 0.011 -0.019
0.747 0.734 -0.020 -0.,006 -0.008 ~-0.001 -D.057 -0.,015
0.757 0.765 0.003 -0.005 -0.,020 0.011 -0.021 -0.117
04650 0,007 -0.017 =0.001

0.706 0.577 -0.014 -0,000 -0.025 0,036 -0.002 0,003
0.658 0.649 0,005 0.003 -0.016 -0.019 0.002 0.008
0.648 0.648 0,004 0,009 0.026 -0.020 -0.004 -0.006
0.679 0.657 0,011 -0.002 0.032 -0.038 -0.000 0,015
00691 0.716 0.003 "0.021 » 01046 "0.056 0.001 "00007
0,727 0.711 0.003 -0,011 -0.003 -0.031 -0.007 -0.001
0.721 0.719 0.014 0,004 0.024 -0.006 0.004 -0.009
0.732 0,731 0,021 -0.018 -0.006 0,015 -0.013 0,009
0.734 0.739 -0.010 0.002 0.001 0.008 0.005 0.019
0c731 0'719 ’0-001 -00005 '00002 0.016 “0.011 0.004
0.737 0.750 -0,004 -0,.008 -0,009 ~-0.006 -0.026 -0.032
0.758 0.766 0,019 0.019 -0,002 -0.008 0.004 0,766
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