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ABSTRACT

Suppose a signal f drawn from a known class of signals is subject
to a finite set of linear functionals, or generalized "samples", This
paper studies the problem of estimation of the sampled signal through
linear reconstructions based on these measurements, The extent to which
a sampling scheme can determine members of a given signal class is mea-
sured by the worst-case £, error in reconstructing the signals from
their samples. This of course depends  on the reconstruction technique
used, Desire to make this error approach the minimum leads us to seek
efficient reconstruction algorithms,

This study makes use of the theory of n-widths and extremal sub-
spaces for function classes originated by A ,N,Kolmogoroff, The optimal
reconstruction need not, in general, lie in the sampling space, Of it-
self, projection onto a subspace 3, loses all information about the sig-
nal orthogonal to 2,; and a best estimate of the original signal is its
projection, which of course is restricted to the sampling subspace, A
knowledge of the signal-class of which f is a member supplies some in-
formation lost by the projection operation, Two reconstruction tech-
niques, based on extremal subspaces, are developed, Error bounds are
presented and compared with reconstruction in the sampling subspace,

Finally, to provide a concrete example of this general theory, the
results are applied to a much-studied class, the class of time-concen-
trated, bandlimited signals, The measurement process is here assumed to
be the "convenient" one of Nyquist rate time-sampling, For this prob-
lem, plots of the error bounds and of several test functions and their
reconstruction are presented, both for the proposed algorithms, and for
conventional "cardinal sampling theorem" reconstruction,

I. INTRODUCTION :

We consider the estimation of a signal of a known class through
linear reconstructions from a finite set of linear measurements, Al-
though Nyquist rate or faster time sampling of bandlimited functions is
by far the most common measurement process, we shall generalize our
model somewhat, including this as a special case. We will consider as a
measurement (or generalized "sample'") b: any bounded linear functional
on the signal, By the Reisz Representation theorem such a sample may be
considered an inner product of the signal with an appropriate function
of Pj of £9, which we will call a sampling function. Measurement is
thus projection onto a subspace, called the sampling subspace, which
specifies completely the measurement process, We may therefore consider
the samples to be the coordinates of the signal in the sampling subspace,
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.and may without loss of generality restrict the sampling “Zunctions to be
orthonormal,

Our objective is to use a given finite set of samples to form an
-estimate of the measured signal, with the greatest possidble accuracy,
We mean by "greatest possible accuracy" the minimization of the worst
possible error of the estimator, with the error measured by an £, norm,
However, if all that is known about the signal is the sample vector, the
estimation error is unbounded for any scheme, For such a problem to
make sense it is therefore necessary that the measured signal be known a
priori to be a member of a bounded subset of the whole space, some
nal class, C, If b is the data vector and f(b) the estimate of the iv-
en 31gna1 £ in C, ‘the estimator is evaluated by the error fgg“f f(b)ﬁ

We shall restrlct £ to be a linear reconstruction; that is £ lies
in a linear subspace, and the coordinates of t in this subspace depend
linearly on the data b, Note however that this reconstruction subspace
need not be the same as the sampling subspace. Knowledge of the class
of signals to be estimated allows the choice of a reconstruction sub-
space well suited for representation of the known class, This makes
possible a smaller error than the best representation confined to the
sampling subspace, This paper presents a study of two schemes for such
linear, suboptimal estimators,

II, EXTREMAL SUBSPACES AND n-WIDIHS OF CLASSES

Before persuing the estimation proglem further, we review some
ideas of approximation theory originated by A ,N,Kolmogoroff, A good
reference is Lorentz's book,* which also contains a good bibliography,

Consider the representatlon of a signal £ by a given orthonormal
system of m fUﬂCthﬂS{Vl}lm 1f the approximation f =,2.aj¥;, it is
well known that the error ||f-f 92 is minimized byal—(f,qlf Assuming
that all signals f in a bounded class C are represented in this fashion,
we define the deviation of the class C from the subspace Y spanned by
the m ¢;:

A inf -
8(C,¥n) = feg fey IE-El ¢h)

The values §(C,Y,) represents the degree of success with which the
class C may be represented in ¥,. If we consider finding the subspace
best suited to represent the class C, in the sense of minimizing
8(C,¥m), we have the idea of the extremal subspace for C, the resulting

minimal deviation is called the m-width of C,

A 1nf
d,(C) =

8(C,Y ) = 8(C,¥) ()

If C is compact, dnp~0, An important property of the class is the
manner in which d, decreases with increasing m. If most of the decrease
occurs around a certain value n, the class might be said to have an
essential dimension of n, even though it is technically infinite

*G,G,Lorentz, Approximation of Functiouns, New York: Holt, Rinehart and
Winston, 1966, ch, 9, )



dimensional, . :

The above properties have been studied for numerous classes, how-
ever little application of these ideas has been made to practical signal
theory problems, One reason for this is the difficulty of implementa-
tion of the inner products (f,@;) with extremal basis fumnctions, We now
consider the possibility of using a given vector of samples b; = (f,0.)

j=1, ..., n to estimate the extremal basis coordinates aj = (f,%:).J
If this coordinate estimation error can be made sufficiently small, the
accuracy characteristic of extremal basis representation of the signal
can be achieved using only the given samples., We would thus have a
better estimate of the measured signal than a reconstruction in the
sampling subspace,

IXI, COORDINATE ESTIMATION
To facilitate discussion of the coordinate estimation schemes we
propose, wemintroduce tge following notation: C is a class of func-
tions, {¥;}i=1 and {o;}3-1 are orthonormal sets of functions which span
2

Yo = éw C. That is for all £€C, we may expand
< €
f= % (£,99)95 = £ (£,9)0¥ (3)
j=1 i=1
Denote M the matrix whose elements are (@;,¢j) i, j=1, ..., .
Partition M and M+ = ML as follows,
P iQ 1 PLiRT (4)
] - ]
M= ol S
R 1S Q1S (5)

where P is nxn, Q and R are semi-infinite and § is infinite, M trans-
forms the coordinates of a vector f in the ¢-basis into the coordinates
in the {-basis, The above partition of M induces a partition of the
coordinate vectors a and b, where aj = (£,};) and by = (f,qﬁ), Thus
a =Mb is partitioned

T T
81 P :Q .t.’.]_ ’b'l P :R E‘l (6)
b i el B Bt il it Bl
P RisS) By 2y is ] 3, )

That is a; and b; are n-vectors, by and ap are infinite., The following
interpretation will be given these vectors:

by is a given vector of samples, that is 3, is the sampling sub-
space

21 is a vector of coordinates in the reconstruction subspace @h.
(We shall also consider W% C ¥, for m < n as reconstruction subspaces,
by using only the first m components of ay, (aj ... ap)).

The problem with which we shall be concerned is to estimate aj giv-
en by, and to bound the error which results when the approximate coordi-
nates 3 are used to reconstruct f,

Perhaps the most obvious thing to do is use the truncated expansion



&; = P by, with an error Q b,. We shall refer to this as Method 1,

Wit reference to the matrix formulation, Method 1 amounted to
assuming the remaining samples b, were zero, produc1ng an error Qby, If
we assume instead that the original signal lay exactly in the recon-
struction subspace, that is that a2 1s zero solving the resultlng
equation gives the estimate 3d; = (PT ) and an error, (P ) RIQZ
(assuming P is nonsingular), Since the 32 coordinates are small for all
feC, and the same does not hold for b,, it would seem that this method,
Method 2, is always superior to Method 1. This is not true because of a
greater sensitivity of Method 2 to the relative alignment of the sam-
pling and reconstruction subspaces,

Considerable insight into the behavior of these two schemes and the
behavior of their error bounds may be gained by considering a simple ex-
ample in a two dimensional space, Figure 1 shows a two dimensional,
ellipsoidal class C, the one-dimensional sampling subspace %; and extre-
mal reconstruction subspace v The 1-width d;(C) = 6(0'7 ) and the de-
viation §(C,%;) of the class %rom the sampling subspace are also indi-
cated,

We assume that the only data regarding feC is the sample (f, )=by
given by the distance D(0,b). We wish to estlmate a; = (f W ) = D(0,¢c).
The matrix P is simply cos 6, Method 1 uses 8; = Pb; = cos 0; the
Method 1 approximation to point ¢ is point d, Methoé 2 uscs a= (P ) b1
or by/cos 6, which gives point e, That is, Method 1 merely projects
onto ?1 the projection of £ on ¥, Method 2 finds the member of Yl
whose projection on %; is the same as by = (f,¢q;), on the assumption
that the actual f is known to be close to Y¥,, by virtue of its class
membershlp If we call, the distance D(c,d) = €1, D(c,e) = €,

D(a, b) 2 h, and D(a,c) A s, we find by direct application of a little
trlgonomctry, the coordinate errors

€ = h sin 6 < 6(C,%) sin © (8)

€ = s tan 6 < d;(C) tan © (9

Noting that the coordinate and truncation errors are orthogonal we
have the overall estimation errors for both methods:

Method 1: 0 [l&- IR < @ (C) + 6(C,%) sin® 6 (10)
sup -~ .
Method 2: .o ll£-£,|| < @ (C) + & (C) tan® o (11)

We have found bounds of this type for_the geperal problem The general-
ization of the term sin®© is mln{l 21 [1 2 (qh,vl) 1}, and that of

tan®@ is A(m,n) min{l, [1 2 (qh,wl) ]}, where A(m,n) is the norm
of the coordlnate transfoﬂmatlon matrlx These terms reduce to sin®0
and tan®0 for our two dimensional case,

IV, APPLICATION
An example problem to which we have applied this theory is dia-
gramed in Fig. 2. Given, finite energy signals are bandlimited,



forming the class P, Members of P are then time-sampled at the Nyquist
rate for n samples, The interpolator is to perform an accurate linear
reconstruction of the sampled signal, .

Error bounds for Methods 1 and 2 were evaluated for,various numbers
n of time samples and m of coordinates estimated., The results are pre-
sented in Figures 3 and 4, which plot the value of the error bound ver-
sus m, with n as a parameter, Of course for both sets of curves, for a
given m, the bound is strictly decreasing with increasing n, This de-
cline 1is asymptotically limited by the m-width of the class, however,
since as the coordinate estimation becomes perfect, the only error is
due to the limited number of coordinates estimated, The curves indicate
that when such saturation occurs, estimation of a larger number of coor-
dinates is warranted by the number of time samples available,

Using the data of Figures 3 and 4, both methods were optimized with
respect to m for each n by picking the value yielding the minimum point
on the curves, With the understanding then that the methods estimate
the optimal number of coordinates for the number n of samples given,
error bounds were plotted versus n for both methods (see Fig, 5). It is
clear that for the problem being considered, the situation is as sug-
gested by the geometric interpretation shown in Fig, 1. That is, the
sampling and reconstruction subspaces are sufficiently close that Meth-
od 2 significantly outperforms Method 1, In fact the Method 2 bound
behaves much like the m-width of the class, while the Method 1 bound
looks like the deviation from the sampling subspace just shifted by a
scale factor less than 1,

The final phase of this application consisted of actually generat-
ing some typical members of P, and reconstructing them from their time
samples by 1) the cardinal sampling theorem, 2) Method 1, 3) Method 2,

Figures 6 and 7 show two such functions and their reconstructions
derived from five time samples, Reconstruction error was computed for
Methods 1 and 2 from a knowledge .of the PSWF coordinates, exact and
estimated. The error for the sampling theorem reconstruction could not
be calculated other than by numerical integration over (-«,®), and this
was not done, The errors for reconstructions from various numbers of
samples are summarized below, From inspection of the corresponding
plots, it was considered obvious that the sampling theorem reconstruc-
tion of these functions never performed any better than Method 1., (Just
as this is clearly the case in Figs, 6 and 7.)

# of Sampiés Method 1 Error Method 2 Error

Function A 3 0.191 x 10”2 0.127 x 107°
4 0.104 X 1071 0.457 x 1071

5 0.952 x 1072 0.150 X 10-2

6 0.575 X 102 0.175 x 10-3

7 0.460 X 1072 0.283 x 1074

Function B 5 0.453 x 1071 0.236 X 1073

These values are consistent with the error bounds of Figure 5, As
we expected, Method 2 seems distinctly superior to Method 1 in this
case, ’



Figure 1: Geometric interpretation of Methods 1 and 2, A signal f of
the class C is projected onto % by the sampling operation, The
Method 1 reconstruction is point d; Method 2 gives point e, The best
representation of f in ?i is point c,
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Figure 2: Block diagram for example problem, Given, finite-energy,
time-limited input signals are bandlimited, forming the class P, Mem-
bers of P are then sampled at the Nyquist rate, Using these n sam-
ples, the interpolator can be designed to do better than the cardinal
reconstruction using sinc functions,
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Figure 3: Error bounds for Method 1 for

the class P,

Figure 4: Error bounds for Method 2 for
the class P.

Figure 5: Error bounds for Methods 1 and
2 assuming the optimal number of coordi-
nates are estimated for the given number
of samples available, The deviation of
the class P from the sampling subspace,
and from the extremal (PSWF) subspaces is
also shown,
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Figure 6: A member of class P (function A) and its reconstruction by
Method 2 and by the cardinal sampling theorem, The Method 1 estimate
is not shown, for this case it is quite close to Method 2,
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Figure 7: Another member of class P (function B) and reconstructions,



