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TYPE II1I SOLAR RADIO BURST STORMS OBSERVED AT LOW FREQUENCIES

PART 1: STORM MORPHOLOGY
by

Joseph Fainberg and R. G. Stone
Radio Astronomy Branch
Laboratory for Extraterrestrial Physics
Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

Storms of type 111 solar radio bursts observed from 5.4
to 0.2 MHz, indicate the quasi-continuous production of type
IIT events observable for a half solar rotation but persisting
in some cases for well over a complete rotation. The charac-
teristics of these storms, including the dependance of
occurrence and apparent drift rates on the disc position of
the associated active region are discussed. The drift rate
dependance is shown to be a consequence of the propagation
time of emission from the source to the observer. The
occurrence rate of a burst every 10 seconds observed near
CMP implies that if this level of activity persists, then
about a quarter of a million exciter packets are released
into the ihterplanetary plasma during a complete rotation.
Storm bursts are less intense than most isolated type 11I's
and occur over a more limited frequency range. There
appears to be a very close relation between these storms

and decametric continuum.
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I. INTRODUCTION

More than 12 months of solar radio data have now been
obtained in the frequerncy range from 0.2 to 5 MHz from ob-
servations by the first Radio Astronomy Explorer Satellite,
RAE-1. During this time, an extremely large number, tens of
thousands, of sporadic bursts have been observed, but in
general they may all be classified as type III or fast
drift emissions. Considering the typical heights in the
solar corona that one expects for the location of these bursts
i.e. between 10-100 solar radii for the RAE-1 frequency range,
it is perhaps not too surprising that the diversity of radio
emissions observed close to the sun is absent here. Yet even
within this classification as type III emission, one finds
a considerable variability of characteristics such as the
drift rate, drift bandwidth, intensity, profile shtape,
structure, and occurrence rate. Through the study of such
characteristics one can investigate the exciting mechanism as
well as the properties of the interplanetary plasma. Further-
more these observations provide a connection between phenomena
close to the sun and the energetic particles presumably of
solar origin which are measured by counters on space probes
beyond the magnetosphere.

We assume the validity of the plasma hypothesis (Wild, 1950)
for the generation of type III bursts. The frequency drift
is produced by the outward movement of a disturbance which
excites plasma waves of decreasing frequency as it moves through

regions of decreasing electron density. This disturbance, the
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"exciter", is believed to be a packet of superthermal electrons.
Comprehensive reviews of solar radio emission mechanisms have
been given by Wild et al (1963) and Takakura (1967). We

also assume that the emission is observed preferentially

when the exciters move along regions of enhanced density, i.e.
streamers from which the radiation can escape over a wide range
of angles. Newkirk (1967) has reviewed the structure of the
solar corona, including streamers.

Individual, compound, and groups of type III burst have
been observed at low frequencies by the RAE-I as well as other
space experiments. In all cases antennas of low resolving
power, such as the electrically short dipole, have been used,
so that the position of the radio emission and its motion must
be inferred by using a model with the analysis of observed
dynamic spectra (Alexander et al,, 1969; Hartz., 1969; Slysh.,
1967; Haddock and Graedel., 1970).

However, in the present series of papers, we direct attention
to the phenomenon which will be referred to as a "storm" of type
ITI bursts. These events are distinct from individual or groups
of type I1I bursts because of their long duration. Storms have
been observed over a half sclar rotation, from the time that tie
active region appears on the east limb to its disappearance at
the west limb. In several instances, the storm activity was
observed again a half solar rotation later suggesting that
the event can last a full rotation or more,.

The nature of the mechanism responsible for such continual

production of type III exciters is a problem which will be better




understood by investigating the storm characteristics and
their relation to other solar observations, Therefore in
this paper we present in some detail the morphology of a
typical storm.

In later papers we utilize these data to derive charac-
teristics of the exciter packet, the interplanetary plasma,
and the generating source itself. 1In part II of this series
we deduce, by a new method, the exciter speed as a function of
distance between 10 and 40 solar radii. Part III, again based
on the storm data, presents a differential plasma distance
scale for the streamer as well as a measure for the solar
wind velocity in the 10 to 40 solar radii range. $Still later
papers will deal with the correlation between these data
and the emissions close to the sun and with the en:<irgetic

electrons measured by spacecraft beyond the magnetosphere.

I1. THE OBSERVING SYSTEM

The first Radio Astronomy Explorer, RAE-I. launched on
July 4, 1968, is in a 5860 km circular orbit inclined at 59°
to the equator. The satellite is equipped with two oppositely
directed Vee antennas, each 230 meters long, forming an "X"
configuration suitable for the gravity gradient stabilization.
Therefore one V and its associated radiometer system scans the
celestial sphere, while the down directed V and its radiometef
system scans the lower magnetosphere., However, observations
of the dynamic spectra of the solar events discussed in these

papers were obtained mostly with a 37 meter dipole, the third



spacecraft antenna system, The dipole radiometer system is
composed of a swept frequency receiver which covers the
frequency range from 0.2 to 5.4 MHz in eight seconds and a
group of six fixed frequency radiometers operating at 0.54,
0.70, 0.995, 1.31, 1.65 and 2.80 MHz. These channels are
each sampled twice per second to provide greater time
resolution. Al]l radiometers are calibrated periodically
against a standard noise source and; at the same time,
antenna impedances and ambient plasma parameters are also
measured, The radiometers have a useful dynamic range of
50 db and the pre and post detection bandwidths establish the
minimum detectabhle signal at 10% of the cosmic noise back-
ground level. A detailed discussion of the RAE-I expefiment
may be found eisewhere (weber et al., 1970;). Examples of
dynamic .pectra obtained with these systems are shown in
Figure 1 and will be discussed below.

The spacecraft orbit of 5860 km is within the ionosphere
for a considerable perjod of time. For data obtained near
the equator, where the ambient plasma density is greatest, ob-
servations below 700 kHz are not used because of the trans-

mission characteristics of the magnetoionic medium as well as

its influence on antenna impedance. However at higher latitudes,

observations down to 200 kHz are obtained. The plasma effects

as well as refracticn in the ionosphere need not concern us

here because, for the reasons discussed below, the greater

part of the analysis is confined to frequencies above 700 kHz.
The storm data analyzed in this paper were obtained

during the period of August 1968, The sun was in view of the
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satellite continuously during this period.
III. TYPE III BURSTS AT LOW FREQUENCIES

Intense individual as well as groups of type III events
have been observed quite frequently by the RAE-I and also in
other space experiments., In most, but by no means all cases,
these drifting bursts are the low frequency continuation of
type III's observed at higher frequencies, 1In general these.
bursts occur over a wide possible range of intensities from,
in the case of RAE-1I obéervations, just detectable tc CO db
above the cosmic noise continuum background. At a frequency
of 1 MHz, this corresponds approximately to an antenna

temperature range of 106 °k to 1012 °

K

In this paper, we are interested only in the reiative
intensity of storm events compared to isnlated type 1II bursts.
Intensities will be referénced to the average cosmic noise
background. Average antenna temperatures for this background
at the fixed radiometer frequencies are listed in Table I.
A more detailed discussion of the background and its interpreta-
tion may be found elsewhere. (Alexander et al., 1970;)
Examples of a simple as well as a comppund type III event are
shown in Figure 1. The outputs of the fixed frequency receivers
and the computer developed contour plot of the sweep receiver
output are shown. Horizontal lines drawn thfough the contour
plot (contours in these figures are 1 db apart) correspond
to the fixed frequency channels. The use of such dynamic spectra

to estimate streamer properties may be found elsewhere (e.g.

Kundu, 1965) and will not be discussed further here. However



in reference to the storm discussed below, it is important

to note not only the typical drift rate but also the dependance
of rise and decay time on frequency. Note from Figure 1, that

if several events occur over an interval that is short compared
to the time scale of the intensity profile, it may be difficult
or impossible to separate several bursts., This problem becomes
more serious at lower frequencies where the individual burst

duration increase.

TABIE I
BACKGROUND ANTENNA TEMPERATURES

f (MHz) Ty 'K

0.540 3.3 x 10°
0.700 2.8 x 107
0.995 2.0 x 107
1.31 1.4 x 107
1.65 1.0 x 107
2.80 0.47x 10°

IV. TYPE III STORMS

We have defined a type III storm as a quasi-continuous
production of fast drift bursts which persist over an observing
period of a half solar rotation. Storms in some cases last
for more than a full rotation as is evident from the storm
reoccurrence when the associated active region again crosses
the east 1limb. This long duration appears to be one charac-
teristic which makes the phenomenon distinct from groups of

type III's occurring over periods of hours or longer.



In contrast to isolated or groups of type III's the
storm bursts rarely exceed 10 db above the cosmic noise back-
ground. Generally there exists a preponderance of still
less intense bursts, many just at the level of detection.

In some respects, a single frequency record resembles the
behavior of a noise storm (Kundu, 1965; Malville, 1962)
although at this time we do not imply any connection. For
example, there is a hierarchy of burst sizes, a randomness of
occurrence in short term distribution, and at the lower
frequencies, an apparent ''continuum'" background with occasional
bursts above that level.

The occurrence rate of individual drifting bursts although
variable, shows a strong dependance on the heliographic longitude
of the associated active region. This occurrence rate for the
storm of August 1968, reached a peak valu of a bursti{ every
ten seconds on 20 August 1968. A section of data is shown in
Figure 2 to illustrate not only the high occurrence rate, but
also the problem concerning burst "pile up" which becomes more
evident at the lower frequencies where the occurrence interval
is small compared to the individual burst durations. The
lower frequencies appear as a slowly varying continuum, with
occasional burst peaks recognizeable as such. It is for this
reason that the main analysis of the storm data was restricted
to frequencies above 700 kHz. Had the sampling rate been too
slow, then even the higher frequency data might have been inter-
preted as continuum instead of as a sequence of individual bursts.

The analysis of the data would indeed be difficult if the



occurrence rate remained this large throughout the stornm.
However this rate shows a systematic decrease with time

from the period of peak activity. Figure 3 illustrates the
lower level of activity several days prior to tie storm

peak. The general behavior of occurrence rate is the same
after the storm peak. Consequently .he occurrence rate
distribution is apparently symmetrical about the period of
peak activity. Away from the storm peak, the cccurrence rate
is lower and the confusion problem resulting from burst "pile
up" is not as serious at the lower frequencies.

A systematic dependance of occurrence rate on the helio-
graphic longitude of an active region on the solar disc can
be found by plotting the number of bursts per unit time in-
terval over the period (approximately 14 days) that the storm
was observed. In fact this technique was utilized to locate
the approximate position of the associated active region. A
detailed count of the number of bursts as a function of time is
not as yet completed; since this involves counting well over
10,000 bursts. To illustrate this dependance, however, data
from a few selected dates is shown in Figure 4. The more
complete data will provide information about the 'directivity"

of the radio source, i.e. source directivity and/or escape

conditions of the radio emission (Kundu, 1965; Takakura, 1965 ).

However for the present, we note that figure 4 shows that
observed storm activity is maximum near CMP and minjmum at the

limb position of the antive region.

u‘l'l- o



e

Figures 2 and 3 also show a change in the observed
burst drift rate. Near CMP the apparent drift ratz is maximum
and as the active region approaches he limb, the average
drift rate decreases. This does nou imply that the a-tual
drift rate changes as a function of heliographic longitude
but that the observed rate is modified by the observing situa-
tion. An analysis of 2500 drift rates for this sto.m event
is shown for one pair of frequencies in Figure 5. where the
number of bursts per 2 second drift interval is plotted as
a function of drift time for each scorm day. The histograms
in the figure represent not the total anumber of bursts observed
but only the number analysed on the basis of a clear Arift rate
determination. Suffice it to say here, that the u nare~! drift
rate dependence is caused by the modification irti-:duccd by
the "light time™ correction which must be «pplied ior propagation
between source and observer.

The histograms in Figure 5 shown the distribution of the
drift rates over 24 hours. A spread of ‘irift rate is also
evident over much shorter time intervals of less than an hour.
Although such a spread could be caused by a2 variation of exciter
speed, the most probable cause is the inhomogeneous density
structure along the path traversed by the exciter. For
example, there is evidence that a streamer has a aon-uniiorm
lateral < nsity as well as inhomogeneities superimpo:ad on the

average density gradient along the streamer. Newkirk (i967)
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has presented a general review of streamer properties. If
the exciter cross section, for example, is small compared to
that of the streamer, then individual packets might pass
through regions of differing electron d:=nsity gradient.
Similarly an individual exciter in traveling along a streamer
would encounter inhomogencities. One of the values of establish-
ing the storm statistics is evident for this type of problem.
If we can assume that the average exciter properties remain

R reasonably constant, than the statistical distribution of

“ characteristics such as drift rate, may provide a method of
investigating the microstructure of the streamer.

From Figure 2, 3, 4 it should also be evident that
individual storm bursts do not occur over the entire observing
band. This is in contrast to individual inteise drifting
events such as those shown in Figure 1 which most frequently
are observed across the entire band. For the storms, the
intensity versus frequency behavior appears to be at first
sight random in the sense that as many bursts are stronger at
the lower frequency end of the sweep as at the high end. This
limited "bandwidth" which is illustrated in Figure 6 may also
have its origin in the inhomogeneous structure of the plasma.
The escape of radiation depends to some extent on the density
enhancement above the mean density. Thus as exciters pass
through rcgions of density ennancement, for example within

a streamer, the radiation is observed for the time that the

exciter remains in the enhanced regiomn.
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The drift "bandwidth" does on occasion show a systematic
behavior in tlie sense that the frequency -ange over which the
bursts were most intense "drifted' with time from the high
to the low end of the observed spectrum. This slow drift
is illustrated in Figure 7 for selected time intervals. In
the context of the discussion above, this phenomenon can be
accounted for in terms of a cloud of enhanced (above the ambient
streamer) density traveling outward along the streamer with a

velocity of the order of 100's of km/sec.

V. RELATED OBSERVATIONS

Both the distribution of occurrence rate ~nd drift times
with heliographic lbngitude lead to the conclusion that the
related active region is associated with McMath Piage number
9597. Sakurai and Stone (1970) have presented the related
data on high frequency radio emission, flare activity, and
magnetic configuration which may be of particular significance
for the observed type III storm,

In this connection, the observations at dgcametric
frequencies seem particularly significant. Data from the Clark
Lake grating spectroheliograph is available in the 20 to
60 MHz frequency range. These observations show the presence
of continuum above the same active region that is presumably
responsible for the type III storms. There seems in general
to be a very clear relation between the type III storm and the

decametric continuum in each instance. Warwick (1965) distinguishes
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between decametric type IV emission and what he classifies

as decametric continuum, This is characterized by a
continuum background upon which are superimposed '"massive"
number of type III events. Since the present observations

are closely related to the occurrence of continuum in the
decametric range it seems reasonable that the two phenomena
are indeed closely related and that at still lower frequencies,
decametric continuum may degenerate into just the massive
numbers of type III events, i.e. our type III storm. However,
we have not ruled out the possibility of a continuum com-
ponent to our type III storm,.

Warwick (1965) has also suggested that the presence of
decametric continuum indicates the existence of conditions
suitable for the production and escape of superthermal electrons
into the outer corona. This indeed appears to be confirmed
from the present study which shows a connection between the
continuum and the storm of type III events occurring far out

in the interplanetary plasma.

VI. CONCLUSION
The major emphasis of this paper has heen on the morphology
of type III storms observed at low frequencies, This
paper has been more descriptive than analytic in nature and
therefore serves as a basis for the later papers of the series.
The storm phenomenom is of interest not only because it poses

basic problems about the quasi cont:inuous production of exciter
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particles but also because the large statistical sample

of type III bursts provides an opportunity to investigate

the properties of the exciting mechanism and the interplanetary
plasma. These investigations based upon the storm observa-
tions form the bhasis for the remainder of this series of papers.
The storm is not a rare phenomena at least during the current
pefiod of high solar activity. At least three major events

and a number of much less pronounced possible storms have been
observed over the period from July 1968 to July 1969.

In summary, the storms are characterised by a quasi
continuous production of type III bursts, obs:vvable over a
half solar rotation. If the rate of occurrence observed at
CMP exists for a full rotation, the order of a quarter of a
million exciters must be released into the interplanetary
plasma each rotation. Both the occurrence rate and apparent
drift rates show a dependance on the heliographic position of
the associated active region. These rates are maximum near
CMP and minimum near the 1limb positions. Individual bursts
mostly occur over a limited frequency range and are generally
less than 10 db above the cosmic noise background and show a
concentration towards smaller intensities.

A close correlation exists between the occurrence of
these storms and decametric continuum. Quite possibly the
hectometric storms are the lower frequency continuation of

decametric continuum.
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At the same time, Boischot et al (1970) have suggested
a connection between meter and decameter storms. It may not
be premature to suggest that meter, decameter, and hectometer
storms are all produced by the same outward streaming electrons,
and that under suitable conditions such energetic (40 Kev)
electron streams are measured by space probes beyond the magneto-
sphere., As noted in this paper there are many similarities
between the meter and hectometer burst characteristics. How-
ever the detection of a hectometric continuum component to
the storms would make the connection more definite. A search

for such a continuum is now underway.
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