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ABSTRACT

Dynamic Properties of Modelling Clay

by Stephen H. Crandall

Leonard G. Kurzweil

Anant K. Nigam

Paul J. Remington

A number of dynamic characteristics of "Plasticine" have been

measured for small strain simple harmonic oscillations in the frequency
range 100 - 3000 Hz. In general the dynamic behavior of this material
can be described by a simple linear isotropic viscoelastic model with
complex moduli E and G where the values of E and G depend not only on
frequency and temperature but also (due to thixotropy) on the prior
history of large-strain deformation. Experimental limits on strain
amplitude for validity of the linear model are given. Propagation
velocities and loss factors for longitudinal waves in thin rods, plane
dilational waves and simple shear waves are displayed., Poisson's ratio
was determined by measuring both shear and dilational propagation
velocities in the same specimen in a special sandwich configuration
which permitted rapid changeover without introducing large strains.
The measured properties of small samples are also used to predict the
impedance of a rigid disk on the surface of a half-space of Plasticine
and the predictions are compared with disk impedances measured on top

of a large tub of Plasticine.
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Dynamic Properties of Modelling Clay

by Stephen H. Crandall
Leonard G. Kurzweil
Anant K. Nigam
Paul J. Remipgton

1. Introduction. As part of an experimental study of noise transmission

between soil and building structures a model "soil" facility is desired.
A possible candidate for the soil material is modelling clay which has
many of the properties of natural clays. In addition, modelling clay
appears to be homogeneous and relatively stable in its dynamic properties.
This report describes the results of a number of tests that have been
carried out on small samples of modelling clay in order to determine its
dynamic behavior. The clay employed was white Plasticine manufactured by
Harbutts, Bath, England. The precise composition is a trade secret but
the main ingredients are undoubtedly fine kaolin clay mixed with mineral
oil. Static strength properties of Plasticine have been reported by
Baker [1] and the results of a wave propagation test along a thin rod

of modelling clay have been reported by Calvit, Rader and Melville [2].
The dynamic tests described herein are chiefly resonance tests using

thin rods or flat slabs of Plasticine. The frequencies used cover a

range from 100 Hz to 3000 Iz,

2, Isotropic Viscoelastic Model., In order to interpret the results of

our tests we have assumed that the dynamic behavior of Plasticine during a
small strain oscillation at frequency w = 2nf can be represented by a

. . , , \ iw iwt
linear isotropic viscoelastic model. With Re {ce" Y} and Re {1e™*%)

. . : iwt
representing oscillating normal and shear stresses and Re {ce “t} and
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iw . ; . ] .
Re {ye t} representing oscillating extensional and shear strains the
constitutive relations for orthogonal axes x, y, and z are assumed to

have the form

E(1 + in)ex =0, - v(oy + oz)
E(1 + in)ey = cy - \)(0Z + ox)
EQ1 + in)Ez =0, - \)‘(oX + oy)
(1)
G(1 + in)yxy = Txy
G(1 + in)sz = Tyz
G+ in)y,, = T,

where E(Q) and G(w) are the real parts of complex tension and shear
moduli E and E; n(w) is a loss factor and v is a generalized Poisson's
ratio. Since the loss factor for shear has been assumed to be the same as
that for tension, V must be real and satisfy

E

‘tra v @

if the material is to be isotropic. Because of limitations and scatter

in our data we cannot claim to have completely verified the validity of

(1) and (2) as a model for Plasticine. We can only say that our results

do not contradict the possibility that for small dynamic strains Plasticine
can be represented by this model. The parameters in the model depend on
the temperature and the prior large strain history of the sample as well

as on the frequency of the oscillation.




A material satisfying (1) can support several types of attenuating
plane waves. For propagation in the x~direction all stresses and strains

in such waves would fluctuate in proportion to

—ax io(t - )
e c’}

Re {e (3)
where o is an attenuation factor and c¢ is a propagation velocity. The
values of ¢ and ¢ depend on the parameters in (1) and on the type of
plane wave. For example, in the case of longitudinal motion in a thin
uniform rod the relations are (see Appendix A)

E w
c = )~ (}L-_-g_...
r 7 o) r c ()

where p is the mass density of the material and where the parameters U

and B are functions of the loss factor n, given by

2 o 2
2 = 2G4+ 00 52 =]11+n -1 (5)
2 2
1+n"+1 l1+n +1

Alternatively if the loss factor is interpreted as a loss tangent so

that n = tan §, then
wz = sec § sec’ %- B = tan %- (6)

In the case of a plane dilational wave (the primary wave of seismologv)

the relations corresponding to (4) are




= 54/ 2L - V) o =p2 (7
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with ¢ and 8 given by (5) or (6). In the case of a simple transverse shear

wave the corresponding relations are

c, = v a, =82 ®)

where again  and B are given by (5) or (6).

Most of the dynamic tests described below lead to a simultaneous de-
termination of a propagation speed and a loss factor at a single frequency
for a single temperature and for a single state of previous large strain
history. By using the appropriate relation (4), (7) or (8) it is possible
to relate the measured propagation speed and loss factor to a value for
the modulus E, 2G(1 - v)/(1 -~ 2v) or G, respectively. A limited study
was made of the influence of frequency, temperature, pressure and large
strain history on the small strain dynamic moduli and loss factors. The
effect of previous strain history was sufficiently large that nominally
identical specimens could have a range of values for a small strain
propagatioh velocity in which the extreme deviations from the mean were
as much as 20% when tested under identical conditions. In most of the
tests each specimen was subjected to only a single type of small strain
motion: longitudinal motion in a rod, plane dilation or simple shear,
These tests provided propagation speeds and loss factors for individual
specimens with a particular type of motion but because of the differences
in previous histories a meaningful comparison between the results for

different types of motion could not be made. In order to accomplish

by




this last objective and thus to measure Poisson's ratio it was necessary
to design a special test configuration in which the same specimen could
alternately be excited in dilation and in shear with no intervening large

strain.

3. Description of Tests on Rods. Thin rods of Plasticine were suspended

from an impedance head driven by a shaker as shown in Fig. 1. The shaker
excitation was a sinusoidal oscillation generated by a variable frequency
oscillator and amplified by a power amplifier. The force and acceleration
signals from the impedance head were amplified and the effective inertia
force of the impedance head was subtracted from the force signal by a mass~
cancellation circuit. The net force signal and the acceleration signal
were observed on an oscilloscope and measured by a voltmeter, A block
diagram of the instrumentation is shown in Fig. 2.

With any one rod, measurements were made at a number of resonant and
antiresonant conditions. For a material satisfying (1) the resonances of
a rod of length L occur for those frequencies where the wavelength
Ar = Cr/f = 2ﬂcr/w of an attenuating wave of the form (3) is approximately
equal to 2L/1, 2L/2, 2L/3, .... The antiresonances occur for those
frequencies where kr is approximately equal to 4L/1, 4L/3, 4L/5, .... More
precisely the resonant and antiresonant conditions can be defined to occur
when the net force and the acceleration are 90° out of phase with each
other. Under these conditions (see Appendix B) the propagation velocity
c. and the decay factor B of Eqs. 4, 5, and 6 are related to the force

and acceleration amplitudes fo and a, by the pair of transcendental equations




na (1 +:Bd) sinh 28¢>r
co

fo - ¢r cosh 28¢r - COS 2¢r )
sin 2¢r = =f sinh 26¢r (10
where m, is the mass of éhe rod and
o, = %ﬁj (11)

The roots of (10) for ¢r near w/2, 3w/2, 5m/2 ... represent antiresonances
and the roots near m, 2w, 37 ... represent resonances. The number of real
roots for ¢r depends on the magnitude of the loss factor n (there are at
least three distinct resonances and three distinct antiresonances for

0 <n<0.3).

In the test procedure the oscillator frequency was varied while the
Lissajous pattern between the net force and acceleration signals was
observed on the oscilloscope. At the 90° phase condition (represented
by a circle when the signals were appropriately scaled) the force and
acceleration amplitudes were measured. From the measured values of w,

a, and fo Eqs. 9, 10, and 11 were used to calculate c. and B, Finally

the loss factor n was obtained from Eq. 5 or 6.

‘ The Plasticine rods were of square cross section, 1/2 in. by 1/2 in.,
and varied in length from 3 in. to 15 in. The rods were made by working
Plasticine into the collapsible mold shown in Fig. 3 using a screwdriver

to tamp the material firmly into the mold and then removing the excess

ﬁaterial by sliding a wooden block across the top of the mold. Sections

about two feet long were removed from the mold and permitted to "cure" for




about a week at room temperature on a flat surface before being cut into
smaller lengths for testing. The rods were attached to the impedance
head by means of a stud with a 10 - 24 thread screwed into a hole in the
Plasticine.

As an illustration of the type of results obtained from these tests,
Fig. 4 shows the rod propagation velocity and loss factor derived from three
anti-resonances and three resonances of a rod with L = 9 inches at
T = 75° F. Similar results were obtained for a total of 15 rods ranging
in length from L = 3 inches to L = 15 inches. These results are discussed
in Sec. 12. Similar tests were performed with the specimen hanging in a
temperature controlled box (see Sec., 8) and in a pressure chamber (see
Sec. 9) to investigate the effects of ambient temperature and pressure.
The same set-up was also used to investigate the effect of large strain

bending on the small strain dynamic parameters (see Sec. 11).

4, Description of the Dilational Tests. Flat slabs of Plasticine were

sandwiched between two aluminum disks which were vibrated axially. From
the dynanic response of the combination the dilational wave speed and loss
factor of the Plasticine were estimated. One disk, called the base mass,
was suspended by soft rubber bands and excited axially by an impedance
head driven by a& electromagnetic shaker. The other disk, called the
suspended mass, was designed so that additional aluminum disks could be
fastened to it as shown in Tig. 5. All disks were 5 inches in diameter.
The base mass was fixed at a valye close to 2 1lbm while, by using
different combinations of the additional disks, the suspended mass could
be set at values close to 2, 3, 4 or 5 1bm, The accelerations of both
masses were observed on an oscilloscope.and measured ag those frequencies

for which there was 90° phase difference between the motions of the




masses. A block diagram of the instrumentation is shown in Fig. 6.

Under the assumption that the aluminum masses remain rigid and that
there is plane wave dilation in the clay (edge effects at the perimeter are
neglected) the propagation velocity cp and the loss factor n of Egs.

7, 5 and 6 are related (see Appendix B) to the measured acceleration
amplitude of the base mass ay and the measured acceleration amplitude
of the suspended mass ag at the frequency w = 2mf for which there is a
90° phase difference between the accelerations by the following pair

of transcendental equations:

m
—_— = tan - B¢ _tanh 3¢.
m_ ¢p ¢p ¢p ) ¢p
(12)
a m /m
-2 | sinh pp = - c S -
a P ¢pcos wp + (mc/ms + b@pcoth b¢p) sin ¢p

where m, is the mass of the clay, m is the mass of the rigid suspended

mnass and

where h is the thickness of the clay slab. From the measured values
of azs ay and w Eq. 12 can be used to calculate ¢P and B from which
Cp and 1 follow from Eqs. 13, 5 and 6.

The test specimen was prepared by placing a large mass of clay
betwveen the aluminum disks and squeezing the assembly in a vice,
Excess clay forced out around the rim was trimmed off. The clay

sandwich was then instrumented as shown in Fig. 5 and measurements were
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made at the lowest frequency with 90° phase difference for each of the
four possible values of the suspended mass magnitude. The frequency
range available was limited to frequencies bhelow about 1200 iz by the
requirement of rigidity for the aluminum disks. (When the base mass
alone was excited by the impedance head the fundamental resonance
occured at 3150 Hz).

As an illustration of the type of results obtained for these
tests Yip. 7 shows the dilational propagation velocitv and the loss
factor obtained from a clay sandwich 0.7 inches thick at 75° ¥, The
results A were obtained immediately after forming the specimen in the
vice while the results B were obtained on the same specimen two

days later.

5, Description of the Shear Tests. A flat rectanpular slab of

Plasticine was sandwiched between the surface of a horizontal slip
table and a sheet glass cover which acted as a suspended mass. The
slip table was then excited horizontally which caused the clay slab
to vibrate with a predominately shearing deformation., From measure-
ments of the dynamic response of the system at resonance the shear
wave propagation velocity and loss factor of the Plasticine were
estimated.

The clay slab measured 9 x 16 inches and was 1/2 inch thick.‘Its
mass was 5.31 1bm. The clay was pounded into a collapsible frame placed
on the slip table and excess material was removed by sliding a straight
edge over the top. The suspended mass was initially a glass sheet 1/16
inch thick pressed onto the top of the clay. A uniformly distributed
dead load of 144 1lbs. was left on the glass for 24 hours to assure good

contact, The initial suspended mass weighed 0.501 1b. After testing




this combination, the suspended mass was increased by cementing a second
glass sheet to the first using Eastman 910 adhesive, This process was
repeated so as to obtain test results for five different values of
suspended mass: 0,901 1bm, 2.55 1bm, 4.16 1bm, 6.55 lbm and 9,94 1bm.

The tests were resonance tests in which the slip table was vibrated
horizontally and the horizontal accelerations of the slip table and the
suspended mass were observed, Two different excitation schemes were
employed. For small amplitude motions a small shaker (50 1b capacity)
was attached to the slip table and the exciting force was developed by
the inertial reaction from a 5-pound mass driven by the shaker., See
Fig. 8. For large amplitude motions the slip table was driven by a large
shaker (1500 1b, capacity) as shown in Fig. 9.

The frequency range for the shear tests was limited by resonances
in the nominally rigid slip table (the first bending resonance of the
slip table occured at 400 Hz, well below the test range of 600-1300 Iiz).
In an attempt to minimize the effect of nonuniform motion of the slip
table and the suspended cover plate a survey of their horizontal motions
was made at the locations indicated in Fig. 10. The magnitudes of the
suspended masses were selected so that at the test frequencies the |
horizontal motions of the slip table were substantially of the same
phase. In performing the tests the excitation frequency was adjusted
until the signals from acceleratometers at locations T-1 and B-2 in
Fig. 10 were 90° out of phase. The signals from these accelerometers
were also taken to represent the effective amplitudes of the horizontal
motions of the suspended mass and the slip-table base. A block diagram

of the instrumentation employed is shown in Fig. 11,

-10-




Under the assumption that the slip table and the suspended glass
cover plate remain rigid and that there is a plane shear wave in the
clay (end effects at the edges of the clay slab are neglected) the
shear wave propagation velocity cg and the loss factor n are related to
the measured acceleration amplitudes ay and a, of the slip table base
and suspended cover plate at the frequency w = 2wf for which there is
a 90° phase difference between accelerations by eduations of the same
form as Egs. 12 and 13 for the dilation tests. The only difference is
that the subscript p (for primary wave) must everyvhere be replaced by
the subscript s (for shear wave); compare Lq. 8 with Eq. 7. By using
five different values of the suspended mass for each sample of clay it
was possible to use this test to estimate Cs and n for five different
frequencies.

As an illustration of the type of results obtained from these
tests Fig. 12 shows the shear propagation velocity and the loss factor
obtained from a 1/2 inch thick clay slab at 75° F, These tests were
used to study the effects of temperature and amplitude on the dynamic

parameters, See Secs. 8, 10, and 11,

6. Description of Tests with Alternating Dilation and Shear. In

order to permit testing the same clay sample under fundamentally
different types of deformation, under the same conditions of previous
large strain history, a special test configuration was designed which
essentially joined together the dilation test of Sec. 4 and the shear
test of Sec, 5. A symmetrical sandwich consisting of two clay slabs
between three metal slabs was assembled as shown in Fig. 13. The
sandwich was then attached to a shaker-driven impedance head by a

threaded stud in one of the two positions shown in Fig. 1l4. 1In the
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configuration of Fig. l4(a) the oscillatory deformation of the clay is
primarily tensile and compressive. If the edge effects are neglected it
can be assumed that the clay undergoes plane-wave dilation. In the
configuration of Fig. 14(b) the oscillatory deformation of the clay is
primarily that of shear. If the end effects are neglected it can be
assumed that the clay undergoes plane-wave shear deformation.

The sandwich was tested by observing the first antiresonance and
first resonance in the position of Fig. l4(a). This provided data from
which the dilational propagation velocity and loss factor could be
estimated at two frequencies, The sandwich was then carefully disconnected
and reconnected in the position of Fig. 14(b). Again the first antiresonance
and the first resonance were observed and the data used to estimate the -
shear wave propagation velocity and loss féctor at two frequencies. The
entire process was then repeated. If the second set of estimated dynamic
parameters were the same as the first it could be assumed that no incre-
ment of large strain had occurred and that the dilation and shear para-
meters obtained applied to the same large strain history. The dilation
and shear parameters could then be inserted in Egs. 7, and 8 to obtain
an estimate for Poisson's ratio (see Sec. 12 and Eq. 20).

Each of the slabs in the sandwich was two inches square. The
aluminum end slabs were 3/4 inch thick and the central steel slab was
1/2 inch thick. The clay slabs were 0.395 inch thick. At the test
frequencies (under 3000 Hz for dilation and under 1300 Hz for shear)
the metal slabs were essentially rigid (the first resonance of an aluminum
end plate alene on the impedance head in the dilation configuration was
at 9,500 Hz, and the first resonance of the central steel plate alone

on the impedance head in the shear configuration was at 6,700 iiz),
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The test procedure and instrumentation were essentially similar
to those used in the tests on rods as described in Sec 3. The force
signal from the impedance head was corrected to account for the inertia
of the impedance head in front of the force gage by a mass cancellation
circuit. Resonances and antiresonances were located at frequencies for
which there was a 90° phase difference between the corrected force signal
and the acceleration signal. 1In addition to manually recording the
magnitudes of the signals under these conditions, we also extended the
instrumentation so as to obtain continuous records of the corrected
force and acceleration signal amplitudes, together with the phase éngle
between the signals, as functions of frequency. To simplify the
presentation the input level to the shaker amplifier was servocontrolled
so as to maintain a constant level of corrected force amplitude., A
block diagram of the instrumentation is shown in Fig. 15. Typical
x=-y plots obtained in a dilation test are shown in Figs. 16 and 17.
In Fig. 16 the corrected force and acceleration amplitudes are displayed
for the frequency range 100 to 4000 Hz. Note the acceleration minimum
at 1250 Hz and the acceleration maximum at 2650 Hz, Fig. 17 shows the
phase angle between the corrected force signal and the acceleration.
Note that the 90° phase condition occurs at 1320 Hz (antiresonmance) and
2460 lz (resonance), Corresponding x-v plots for a shear test are shown
in Figs. 18 and 19.

In order to interpret the test results the clay sandwich shown in
Fig. 13 was represented by the 1umge& parameter models of Fig, 20. The
metal slabs are represented by rigid masses and the clay slabs are repre-

sented by springs with complex spring constants. The effect of the

clay's distributed inertia was estimated by carrying out the data
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reduction for two extreme cases. In the first, the clay mass was
neglected altogether, and in the second, the mass of each clay slab
was apportioned equally to the two adjoining metal slabs. For the

dilational model of Fig. 20(a) the spring constant kd was taken as

- 2Q-v) GA

=T h

(14)

while for the shear model of Fig. 20 (b) the spring constant kS was
taken as
GA

ks =% (15)

where A is the area and h is the thickness of the clay slab. These
results assume uniform strain fields in the clay (bulging at the
edges is neglected). Improvements could be made at this point if three-

dimensional elasticity solutions for k, and kS were availabie, If

d
at a resonance or an antiresonance (defined by 90° phase angle between

the net force and the driving point acceleration) the force and acceleration
amplitudes and the frequency are recorded, it is possible (see Appendix

C) to estimate the loss factor and spring constant of the clay at that
Afrequency. Then using Eq. 1& or Eq. 15 together with Egs. 5 to 8 one

can estimate the dilatiomal or shear wave propagation speed in the clay.
Finally if both the dilational and shear speeds can be estimated at the

same frequency then Poisson's ratio for this frequency can be determined
from Eqs. 7 and 8.

As an illustration of the results obtained from these tests Fig. 21

shows how the shear propagation velocity corresponding to the first
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antiresonance increased with time., Here the clay was molded into the
sandwich, the plates were squeezed slightly and the excess clay trimmed
off at t = U, After this no further large strains were applied to the
clay. The entire sandwich was gently alternated between the dilational
and shear configurations where it was subjected to controlled low-level
sinusoidal excitation. Fig. 21 shows that there is a systematic dif~
ference of about 7% between the results calculated by the two extreme
procedures for accounting for the inertia of the clay. The same per=~
centage discrepancy also appears in the dilational propagation speed
with the result that the estimate for Poisson's ratio is substantially
unaffected by the choice of procedure for accounting for the inertia

of the clay; For simplicity all further results from the séndwich tests
are reported only on the basis of the procedure B: the entire mass of

each clay slab is apportioned equally to the adjacent metal slabs.,

7. Test results., In most of the tests the data obtained for computing

propagation velocities and loss factors were consistent and repeatable
provided that the interval between tests was short and that the specimen
remained undisturbed between tests, The dynamic response was linear pro-
vided that the oscillatory strain amplitude was small enough. In general
propagation velocities were more precisely determined than loss factors,
Unaccounted scatter in loss—factor determinations was an order of magni-
tude greater than the corresponding scatter in propagation velocities.
It soon Lecame apparent however that there was considerable discrepancy

in the values of propagation velocity when nominally identical specimens
were tested or when the same specimen was tested on different days. Con-

siderable effort was expended in tracking down the causes of these

=15=




discrepancies. The effects of ambient temperature and pressure were
measured. It was found that fluctuations of a few degrees Fahrenheit
have a marked (but predictable) effect on propagation velocities.
Ambient pressure changes of a few psi have much smaller influence. It
was found that one of the primary reasons for variations in values of
propagation velocity was differences in the large-strain history of
specimens. Immediately after remolding a specimen its propagation
velocities are low., If no subsequent large strain occurs the propa-
gation velocities increase monotonically, rapidly at first and then more
and more slowly. If the specimen undergoes a large strain at any time
there usually is a simultaneous drop in its propagation velocities
followed by a gradual increase.

A detailed description of these results appears in Secs. 8-11

which follow.

3. Temperature Effects. The effects of ambient temperature on

propagation velocity and loss factor were observed for a rod specimen
and for a shear specimen. In the rod test a 3" rod was suspended as
shown in Fig. 1 in a temperature controlled chamber. The tests were
performed as described in Sec. 3 at temperatures ranging from 70° F,
to 120° F. At each temperature the dynamic properties were measured
at frequencies corresponding to the first antiresonance, the first
resonance, the second antiresonance and the second resonance. In the
shear test tﬁe clay slab with suspended mass of 9.94 1lbm was tested

as described in Sec. 5 at temperatures ranging from 66° F, to 82° F,
The temperatures were obtained by changing the room temperature in the
laboratory. The tests were performed after the internal temperature of

the clay reached equilibrium with the surrounding air temperature. At
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each temperature the dynamic properties were measured at the frequency
corresponding to 90° phase difference between the acceleration of the
base and the acceleration of the suspended mass. In both the rod and
the shear tests the excitation level was kept sufficiently low that the
dynamic response remained in the linear range.

The rod tests provided values of the rod propagation velocity c.
and the loss factor n for more than two dozen combinations of frequency
and temperature ranging from 300 to 3000 Hz and from 70° F, to 120° F.
In this range (and for this single specimen) the propagation velocity c.
was strongly dependent on temperature but only weakly dependent on fre-
quency. For example, at a constant temperature the extreme values of c.
over a two-octave range of frequency seldom differed by more than 107
while, at a constant frequency, a decrease of about 4° F (in the neighbor-
hood of 75° F) resulted in a 10% increase in c..e This is illustrated in
Fig. 22 which shows the approximate location of contour lines for con-
stant levels of the rod propagation velocity c. in the frequency-
temperature plane., The contour lines were interpolated from measurements
at 10° F intervals for the faur frequencies indicated. Note the rela~
tively systematic dependence of rod propagation speed on temperature and
frequency represented by Fig. 22,

The corresponding values of the loss factor n showed no such
systematic dependance. The approximate location of contour lines for
constant levels of n is sketched in Fig. 23. Because of uncertainties
in determining n it is not clear how much of the pattern in Fig. 23
represents experimental noise and how much represents a bona fide
constitutive relation. The evidence suggests that for this specimen
there is little (if any) correlation between loss factor and temnerature

but that there may be a correlation between loss factor and frequency,
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Returning to the rod propagation velocity contours displayed in
Fig. 22, we describe a simple condensation of the data, When, along each
of the four modes indicated the ratio of the propagation velocity at

m

temperature to the propagation velocity for that mode at the reference
temperature of 75° is plotted against the temperature T, the curves for
all four modes turn out to be nearly identical. The average of the four
curves is shown in Fig. 24. The individual deviations from the average
are hardly visible on the scale of Fig. 24, Tor most temperatures and
most modes the deviations are under one percent. Only five individual
deviations are greater than one percent. Three of these are under two
percent and the greatest individual deviation is less than four percent.
For operation in the neighborhood of 75° F, it is convenient to

approximate the average curve of Fig. 24 by its tangent at T = 75. This

tangent has the following analytical representation

c. (1)

E—Z-T_S)- = exp{-0.024(T - 75)} (16)
r

The divergence between the tangent (16) and the average curve of Fig., 24
is less than one percent within the temperature range from 68° F to 82° F.
where most of the room temperature testing of rods was performed.

The shear tests provided values of the shear wave propagation velocity
g and loss factor n for a single mode of vibration over a temperature
range from 66° F to 82° F. The temperature dependence of cg is displayed
in Fig. 25, At most tempefatures three independant determinations of cg
were made., The points plotted in Fig. 25 are the averages of the three
values obtained, The deviations of the individual values from the average

are hardly visible at the scale of Fig. 25. The straight line drawn through
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the plotted points in Fig. 25 has the analytical representation

c (1) ‘
2:(7'37 = exp{~-0.,020(T - 75)} (17)
The corresponding values of loss factor are displayed in Fig.
26, TFor most temperatures the plotted points again represent averages
of three independent determinations., lere, however, the individual
deviations are considerable. The standard deviation for all determinations
is 0.012 which is about 7 percent of the mean value of n. The averaged
points plotted in Fig. 26 exhibit a comparable residual scatter,

Based on these results we have reduced all room—-temperature measurements
of propagation velocity to equivalent velocities at 75° F, For rod
measurements Eq. 16 was used, and for shear measurements Eq. 17 was used.

No direct measurements were made of the effect of temperature on the
dilational wave propagation velocity cp. It was, however, assumed that

the temperature dependence of dilational wave propagation velocities was
similar to that for rod and shear waves. Furthermore since the dis-

crepancy between (16) and (17) is less than 27 in the temperature range

from 70° to 80° F. it was assumed that either formula could be used to

reduce the room—-temperature measurements of cp to equivalent velocities

at 75° F. No temperature corrections were applied to measurements of the

loss factor n. The observed correlations of n with temperature displayed

in Figs. 23 and 26 are too weak to materially affect the unaccountable scatter

in the loss factor measurements.
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g, Pressure effects., In the proposed soil model facility the clay at

the bottom of an 18" deep tub will be under a pressure of 1,24 psi above
atmospheric. To investigate the effects of ambient pressure on the
dynamic properties of clay a 3" rod of Plasticine was suspended as shown
in Fig. 1 in a pressure controlled chamber, Tests were performed as
described in Sec., 3 at pressures up to 30 psig., The tests were con-
ducted at 72° T. and the propagation velocities measured were reduced to
equivalent values at 75° F, by using Eq. 16. It was discovered that
pressure of these magnitudes caused little permanent change in the rod
propagation velocity Cpe An interesting transient effect due to abrupt
changes in pressure was however observed. A typical example is shown in
Fig. 27 where a pressure loading history with sudden jumps is shown below
and the resﬁlting time history of c, in the first anti-resonant mode is
shown above. Similar results were observed for other modes.

Note that in Fig. 27 a sudden change in pressure (either an increase
or a decrease) is generally accompanied by a sudden decrease in c. followed
by a gradual return toward the original value. If the small strain
dynamic properties of Plasticine are used to deduce the change in extensional
strain due to a 10 psi change in pressure the strain change obtained
is of the order of 2 x 10-4. As will be seen in Sec. 11 this much strain
is sufficient to initiate thixotropic behavior and must be considered to
be a large strain.

Note in Fig. 27 that the instantaneous decreases in c. due to the
step changes in pressure are as large as 10 percent for pressure jumps of
20 and 30 psi but that more than half of any such decrease is recovered in
10 minutes time if no additional large strain occurs. It may be concluded
that a steady static pressure loading of 1.24 psi will not materially alter

the small-strain dynamic properties of plasticine,




10, HNonlinear effects. In a linear viscoelastic material the wave

propagation velocities and loss factor are independent of the amplitude

of sinusoidal excitation. The linearity of a specimen under test can be
checked by observing the effect of a change in excitation level on the mea-
sured propagation velocity. A number of such observations were made

during the tests on rod specimens, as described in Sec. 3, and during

the shear tests, as described in Sec. 5. In all cases it was found that
beneath a certain threshold level of excitation the propagation velocities
were independent of the excitation level. For excitation levels above the
threshold the propagation velocities decreased with increasing amplitude

of excitation. Ho systematic change in loss factor was observed.

Several representative results are displayed in Figs. 28 and 29. The
excitation level is characterized by the level of strain in the specimen.
For the rod tests the strain level adopted is the rms longitudinal strain
€ at the driven end of the rod. This strain is related to the stress by

the constitutive relation (l). Inserting Eqs. 4 and 5 we eventually obtain

£

(¢} e e

€= 2 ) (18)
pAc_ 'F“-*- 1

where fo is the rms amplitude of the net exciting force driving the
specimen, p is the mass density of the clay, A is the specimen cross-
section and . and N are the measured rod propagation velocity and loss
factor. In Tig. 28 the rod propagation velocity measured at strain
level € is normalized by dividing it by the value of c. corresponding
to the smallest strain level € in® The normalized rod propagation
velocity is plotted against the strain level €. The data shown in Fig.

28 are for the first antiresonant modes of four Plasticine rods.
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One specimen had a length of Y" (circled points) while the other three
each had a length of 3", TFigure 20 indicates a threshold strain level for
nonlinearity in the neighborhood of € = 10—5.

For the shear tests the strain 1e§el adopted is the rms average
shear strain y in the clay slab obtained by dividing the rms displacement
ds of the suspended mass by the thickness h of the clay slab. The dis-

placement ds is inferred from the measured acceleration a_ of the

suspended mass so that

d

In Fig. 29 the shear wave propagation velocity measured at strain level

Y is normalized by dividing it by the value of Cq corresponding to the
smallest strain level Ymin® The normalized shear wave propagation

velocity is plotted against the strain level y. The data shown in

Fig. 29 apply to the five different values of suspended mass described

in Sec. 5 (in order of increasing mass the results are indicated by diamonds,
squares, circles, triangles pointing down and triangles pointing up.)

Fig. 29 indicates a threshold strain level for nonlinearity in the

neighborhood of vy = 3 x 10—5.

Thixotropic Effects, Thixotropy describes a complex rheological

11.

property of materials which involves changes in microscopic structure
with time and stress. The word was first applied [3] to describe the
isothermal reversible gel-sol transforﬁation in colloidal suspensions.
It was later generalized to apply [4] to any isothermal decrease in

viscosity due to increasing rate of shear. More recently thixotropy
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has been defined [5] as a process of softening caused by remolding,
followed by a time-dependent return to the original harder strength.
In soil mechanics the word thixotropy is commonly used to describe
(6] the "age-hardening' or time-dependent strength gain of soils.

In our tests on Plasticine specimens we find that the small-strain
dynamic properties depend on the large-strain history of the specimens.
At the risk of further confusing an overworked word we have used the
term thixotropy to describe this phenomenon. The general pattern of
behavior is parallel to that usually associated with thixotropy although
the strain levels involved are an order of magnitude smaller than
those customarily encountered. In the previous section it was indicated
that the strain threshold for nonlinearity was in the vicinity of
10-5. Here we shall see that the strain threshold for observable
thixotropic effects is in the neighborhood of 10—4.

For soils the usual aspect of thixotropy is the time-dependent

"strength'" is measured

gain of strength of undisturbed soil where
quantitatively by the yield stress in a standardized comﬁression test,
Our tests have shown that after remolding, the propagation velocities
of a specimen of Plasticine increase with time providing the strain
levels remain below 10-4. See Fig. 21 for a typical example., Here
the"strength" of the clay is represented by its propagation velocity or
by its small-strain dynamic modulus. Our tests indicate that as long
as the strain levels in the small-strain dynamic tests are less than
10'_6 there is no interference with the thixotropic process; i.e., tte
time~dependent increase in propagation speed is neither accelerated

nor retarded by the presence of the small-strain oscillations. The
small-strain oscillations thus provide a non-destructive probe for

thixotropic phenomena.
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The increase in propagation velocity with time after remolding is also
indicated in Fig. 7 where the dilational wave propagation velocity
Cp has increased about 177% during a two-day curing neriod. TFig, 7 also
indicates that there is no significant effect of thixotropv on the
loss factor n.

To illustrate the effect of subsequent large strains a 6" rod
specimen was tested as described in Sec. 3. The specimen was then manually
bent back and forth and re-straightened at A in Fig. 30, The rod
propagation velocity c. immediately dropped nearly 30% and then gradually
increased until after 18 hours it had almost regained its initial value.

At this time the specimen underwent a calibrated bending T in which the

6" rod was bent into the arc of a circle of 16" diameter and then
restraightened. The maximum bending strain in the extreme fipyers was about
0.033. There was a sudden drop of about 15% in c. due to the initial
application of B followed by a time-~dependent increase. The calibrated
bending B was repeated three more times after intervening periods of

100 minutes duration with results as shown in Fig., 30, Twenty one

hours after the final large-strain application the pronagation velocityv

had returned to within 3% of its initial value.

A similar time history of c_ for a 3" Plasticine rod is shown in
Fig. 27 where the large-strains are due to changes in ambient pressure,.
Here the time intervals are shorter and the magnitudes of the large-
strains are smaller. The largest drop in c. (about 10%) is due to a pressure
increase of 30 psi which involves an extensional strain somewhat
less than 0.0006.

In Fig. 31 the frequency dependence of c  for a 3" Plasticine rod
which had not been exposed to large strain for a two-week period is shown

at B (before bending). The rod was then bent in the arc of a circle until
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the bending strain was 0.07. The rod was straightened, bent the same
amount in the opposite direction and finally straightened and left for

a three hour period. The frequency dependence of c. at that time is

shown in Fig. 31 at A (after bending). Note that there has been about 327
decrease in c. throughout the frequency range examined.

Another aspect of thixotropy can be demonstrated by measuring the
propagation velocity as the strain level of steady state oscillation is
increased up to some maximum level and then is subsequently decreased.
If the maximum level is under the thixotropic threshold then the pro-
pagation velocity measured at any strain level is independent of the
strain history. If however the maximum level exceeds the thixotropic
threshold, then the propagation velocity at a lower strain level
measured when the oscillation-amplitude is decreased to the lower

level is less than the propagation velocity measured at this same

level prior to the excursion over the thixotropic threshold. This test
was carried out with the Plasticine slab excited in shear as described in

Sec., 5. The results are displayed in Fie, 32, The dashed-line curve in Fig.

32 is the same as that in Fig., 29 showing the nonlinear effect of strain
level ¥y on the shear wave propagation velocity cge The data for the
dashed curve were obtained under conditions of monotonically increasing
strain amplitude (the frequencies involved for the different suspended
masses are indicatec in rig. 12), In Fig. 32 the solid lines are drawn
through measurements made as the strain level was decreased from various
maximum levels, The curve beginning at A was generated by decreasing the
strain level from a maximum level of 2 x 10-4. In this case the solid
curve (decreasing amplitude) coincided with the dashed curve (increasing
amplitude). The curve beginning at B is drawn through the results of

two tests (the coding of the points in Fig. 32 is the same as that in
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Fig. 29) in wiich the strain level was decreased from a maximum level in
the neighborhood of 4 x 10_4. Here there is measurable "hysteresis"
between the solid and dashed curves. Similarly the curve beginning at

C was generated by decreasing the strain level from a maximum level

of 5.8 x 107°.

In performing these tests the system was oscillated continuously
as shown in Fig. 9 for about half an hour at the maximum levels B and
C. The energy dissipated in the clay at these large amplitudes caused
the clay temperature to rise about 5 or 6° F., All values of Cq in
Fig. 32 have however been reduced to an equivalent propagation velocity
at 75° F., by use of Eq. 17, In decreasing the amplitude of oscillation
below a strain level of 2 x 10—4 it was necessary to change the excitation
configuration from that of Fig. 9 to that of Fig., 8. A time delav of
about 10 minutes was required for the changeover. The "hysteresis"
indicated in Fig. 32 thus represents the residual thixotropic decrease
in ey after 10 minutes "healing" time.

These results do not provide an exhaustive study of the thixotropic
properties of Plasticine. Thev do however indicate the usefulness of
small-strain dynamic measurements as a tool to study the phenomenon of
thixotropy. Earlier studies [7, 8] of thixotrony in clay have utilized
cyclic loading. The strain levels employed were of the order 0.01 or
larger and the frequencies employed ranged from 0.01 to 0.33 Hz., There
still remains a large gap between such large-strain, low-frequency

studies and our small-strain, hiph-frequency investigations.
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12, Dynamic Properties of Plasticine. A large number of resonance tests

have been performed on rods and slabs of Plasticine. Using simple dynamic
nodels (e.,g. uniform thin rods with ideal fixed and free ends) and assuming

that the clay could be represented as a linear viscoelastic material as described
in Sec. 2, we have converted direct measurements of frequencies and amplitudes
into "measured" values of propagatibn speeds and loss factors. Combining

these with the measured density (119 lbs/cu. ft.) we obtain "measured' values

of the moduli G, E and 2G(1 - v)/(1 - 2v).

Although individual measurements can usually be repeated within a
percent or two, there is considerable variation in the results of tests on
different samples. One source of variation is the ambient temperature. The
effect of temperature on propagation velocity was sufficiently consistent
that we have converted all values to a standard temperature of 75° F, as
described in Sec. 8. The results described in this section were all obtained
at atmospheric pressure for ambient temperatures within *10° F, of the
standard temperature. In our opinion the major source of variation is the
effect of prior large strain history as described in Sec. 1l. Because of
thixotropy two nominally identical specimens can have quite different
small-strain dynamic properties and a nominally homogeneous member can
have quite different local properties at different points within the member.

In general there was small scatter in the measured values of propa-
gation velocities and these values usually exhibited definite trends under
variation of temperature, pressure or frequency. There was greater scatter
in the measured values of loss factor and the values obtained did not usually
appear to be correlated with any other variable.

The effect of frequency on propagation speed was generally small,

The widest frequency ranges explored on single samples without introducing
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intervening large strains were those used in the rod tests. In these
tests the higher frequency data are obtained by exciting the higher modes.
In almost every case the rod propagation velocity increased by 5 to 10%
over a frequency range of one to three octaves. See Figs. 4 and 22 for
typical "examples. In the shear tests described in Sec. 5 the frequency
was lowered by increasing the suspended mass. Generally a day passed
between tests as each increment of mass was glued in place, It is there-
fore not clear whether the frequency effect shown in Fig. 12 is actually
due to frequency or due to thixotropic stiffening with time.

Poisson's ratio, If the small-strain dynamic properties of the

clay had remained fixed, independently of the large strain history, it
would have been possible to obtain Poisson's ratio v by measuring two
different propagation velocities (e.g., shear and dilation velocities or
shear and rod velocities). Furthermore the consistencv of the model
could have been checked by measuring all three propagation velocities,
In most of our results the fluctuations from sample to sample were
sufficiently great that a meaningful determination of Poisson's ratio
was impossible.

The one exception was in'the tests described in Sec. € where a
special triple decker sandwich was used which permitted alternating
from shear to dilation without introducing any intervening large strain.
In these tests resonances and anti~resonances for both shear and dilation
were measured at intervals during a period of 120 hours immediately
after forminé the specimen. The individual measurements were made
sufficiently quickly that all four determinations could be made and
repeated in a matter of minutes. From these determinations we derived
two values of shear velocity Cs (at two frequencies) and two values of

dilational velocity ¢ (at two other frequencies), By assuming that
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the propagation speeds varied linearly with frequency between the measured
frequencies we established equivalent shear and dilation velocities at
common frequencies and from these we calculated Poisson's ratio from the

relation

2 - (cp/cs)z

201 - (e /e )’)

v = (20)

which follows from Eqs. 7 and 8. Ve found that at any fixed time the
variation of v with frequency was under one percent. Lven more interesting
it was found that throughout the 120 hour period while the propagation
velocities themselves were increasing by more than 20%Z the individual

values of Vv never deviated by more than one percent from their average

value v = 0.434. This suggests that Poisson's ratio is unaffected by the
thixotropic stiffening and that it is frequency independent in the two-
octave range of frequencies (700 to 2800 Hz) included in these tests. The
numerical value of v obtained does depend on the dynamic model employed as
described in Sec. 6. One approximation involves the treatment of the clay
mass. As noted in Sec. 6 the choice of approximation here can affect the
values of the individual propagation velocities by as much as 7 percent

but the ratio of the two propagation velocities, and hence Poisson's ratio,
is substantially unaffected. Another approximation whose effects remain
unknown involves the neglect of edge effects in the slab models for relating
the slab stiffness to the material modulus. Exact solutions or good
numerical approximations from the theory of elasticity would be helpful here.

Rod velocity and loss factor. A wide range of conditions were explored

in the rod tests. The rod propagation velocity c. and the loss factor n

were measured on Plasticine rods from 3 to 15 inches long, in temperatures
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ranging from 70° F. to 120° T., at pressures ranging from atmospheric to
30 psig, and at frequencies ranging from 100 to 3000 Hz. The measured
values of c. (reduced to 75° F.) ranged from'340 ft/sec for a 6" rod
immediately after major bending to 750 ft/sec for a 3" rod which had not
been disturbed for several days. The measured values of n ranged from
0.14 to 0.34.

In a systematic test involving fifteen rods all fabricated and tested
in a nominally identical manner a total of 77 individual measurements were
made (see Fig. 4 where six of these measurements are displaved). At the
time these tests were run the importance of previous history was not
appreciated and the effects of small bending (as demonstrated in Fig. 30)
had not been discovered. The resulting scatter of the 77 measurements is
considerable. The average value of c, is 575 ft/sec with a standard
deviation of 63 ft/sec (11%). The average value of the loss factor n
is 0,222 with a standard deviation of 0.040 (18%).

Dilational velocity and loss factor. Dilational tests were run as

described in Sec. 4 and also in connection with the measurement of Poisson's
ratio as described in Sec. 6. The former tests were chiefly of value in
alerting us to problems of resonance limitations of the impedance head-
disk combination. This was helpful in the subsequent design of the
sandwich configuration described in Sec., 6. The former tests also pro-
vided evidence éf the time-dependent nature of the dynamic properties of
Plasticine: see Fig. 7. The dilational velocity cp increased from

about 650 ft/sec to about 750 ft/sec due only to the passage of time.

The first set of measurements was made shortly after molding the specimen.
The second was made two days later, The loss factor, ranging from 0.20

to 0,16 over the frequency range from 600 to 1000 Hz did not change

appreciably during this time. In these tests the high frequency points
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were measured first and the lower frequencies were obtained sequentially
by volting on increments of suspended mass. After the lowest frequency
measurements were complete the mass increments were removed and the

high frequency measurements repeated to verify that there had been no
appreciable drift in the small strain dynamic properties during the
test.

In the tests described in Sec. 6 dilational velocities and loss factors
at two frequencies (the first antiresonance and the first resonance) were
measured at intervals during a period of 120 hours immediately after the
formation of the specimen. The dilational velocities at the two frequencies
increased about 20 per cent during the period but they remained substantially
in a fixed proportion corresvonding to an increase in cp of 6.3 percent
per octave (at the antiresonance c, increased from 801 to 905 ft/sec as the
frequency increased from 1226 to 1468 Hz while at the resonance <, increased
from 850 to 1015 ft/sec as the frequency increased from 2280 to 2772 HKz),
The loss factor remained within 4 percent of the value n = 0.227 for all the
antiresonant measurements and within 6 percent of the value n = 0,251 for
all the resonant measurements.

Shear velocity and loss factor. Shear tests were run as described in

Sec. 5 and also in connection with the measurement of Poisson's ratio as
described in Sec. 6. Fig 12 shows typical results for the former tests,

In these tests the measurements began with the highest frequencv and pro-
ceeded to the lower frequencies as increments of suspended mass were glued

in place. The passage of time between measurements and the introduction

of strains large enough to cause thixotropic changes during the measure-

ments both act to complicate the interpretation of Fig. 12 as a representation
of the effect of frequency alone. From a total of 114 individual measurements

on three different specimens the average of the measured values of the
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shear velocity is e, = 286 ft/sec with a standard deviation of 23 ft/sec
(8%) while the average of the measured values of the loss factor is n = 0,225
with a standard deviation of 0.065 (29%).

In the tests described in Sec. 6 shear velocities and loss factors at
the first antiresonance and the first resonance were measured at intervals
during the 120 hour period following formation of the specimen. The shear
velocities of the two frequencies increased about 23 per cent during the
period but they remained in a fixed proportion corresponding to an increase
in cg of 6.5 percent per octave (at the antiresonance c increased from
258 to 319 ft/sec as the frequency increased from 728 to 89¢ Hz while at
the resonance cS increased from 266 to 327 ft/sec as the frequency increased
from 993 to 1220 hz). The loss factor remained within 3 percent of the4
value n = (,.220 for all the antiresonant measurements and within 2 percent

of the value n = 0.239 for all the resonant measurements,

Dynamic moduli. The measured values of propapation velocity and loss

factor can be converted to values of dynamic moduli by usine Bas., 4, 7, or

'8 along with Egs. 5 or 6. TFor examnle, putting the averase values c = 575
ft/sec and n = 0.222 obtained from the 77 measurements on 15 rods in Eqs.

4, and 5 we find E = 8,200 nsi, The accompanving standard deviation is 1,950
psi (24%). Similarly, putting ¢, = 286 ft/sec and n = 0.225 obtained from
the 114 measurements on 3 shear slabs in Iqs & and 5 we find G = 2,020 nsi,
The accompanying standard deviation is 344 nsi (177).

The average values of E and G just calculated are averapes over
frequency and states of previous large strain history for many different
samples. As such they do not necessarily represent values which could
simultaneously be observed on any one specimen. In fact, these values for
E and G do not satisfy Eq. 2 unless Poisson's ratio takes the impossible

value of v = 1,03 (in the linear viscoelastic model of Fas. 1 and 2 the
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value of Poisson's ratio cannot be greater than v = 0.5 for stabilitv).
In the one case where care was taken to measure shear and dilation
under the same state of large strain history FPoisson's ratio appeared to
be independent of frequency and thixotropic stiffening., To demonstrate
the potential consistency of our data with the assumed model we have used
the neasured value v = 0.434 to convert direct measurements of CD to
correspouding values of cg using Eg. 20, &imilarly we have converted
direct neasurenents of S te corresponding values of cq using Eaq. 2 in
conjunction with Fes. 4 and 8., The extreme ranges of resulting values

of equivalent shear propagation velocity in our tests on rods and slabs

are then as shown in Table 1.

Table 1. Equivalent shear velocity ranpges in the various tests

Type of Test Equivalent cy (ft/sec)
Rod tests (Sec. 3) 200 to 412
Shear tests (Sec., 5) 263 to 309
Sandwich tests (Sec. 6) 258 to 327

Hote that there is a central overlap range from 263 to 309 ft/sec common
to all three tests. Note also the wider range in the rod tests as compared
to the slab tests. This may be due simply to the fact that more different
rod specimens were tested or it may be due to the fact that the rods
vere more exposed to large strains. There is also some indication that the
time scale for thixotropic recovery is more rapid for rods than slabs.

For the central overlap range of Table 1 the corresponding ranges of
values for the rod propagation velocity s the dilational propagation
velocity Cp and the moduli £ and G all computed on the basis of v = 0,434

are given in Table 2.
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Table 2, Range of dynamic parameters of Plasticine common

to three types of tests

Parameter Range
Cg 263 to 309 ft/sec
c. 446 to 524 ft/sec
cp 771 to 908 ft/sec
E 4,910 to 6,770 psi
G 1,710 to 2,360 psi

The correspending values of loss factor n had an even wider range of
variation throughout the tests although the average values for each
type of test were quite close together. For the rod tests the average

value was n = 0.222. For the shear tests of Sec. 5 the average value

was 1 0.225 and for the sanduwich test of Sec. 6 the average value

0.234,

was T
Summary. For strain levels smaller than 10—.5 the linear
viscoelastic model of Egqs. 1 and 2 provides a useful representation for
Plasticine. The parameters depend (weakly) on frequency and (strongly)
on temperature and (intermediately) on the large strain history of the
specimen. We believe that the major effects of temperature have been
accounted for in our results., The primary source of uncertainty is due
to the effects of large strain history which we have ascribed to thixo-
tropy. These effects have not yvet been completely explored. A promising
start has been made by the tests described in Sec. 6 where the large

strain history was strictly controlled during the 5 day period of testing.
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Conparison with other results. The modulus E for modelling clay has

teen measured previously by other investigators. Under static compressive
loading of unconfined cylinders of Plasticine [1] the highest modulus ob-
tained was 925 psi. From wave motions excited by small explosive charges
at the ends of clay rods [2] the modulus was estimated to be 650,000 psi.
The values of E that we measured for small steady state oscillations cover
a range well between these two extremes. The range of equivalent modulus
common to three different tvpes of test (see Table 2) is 4,910 to 6,770
psi. If we consider the entire range of all our tests the equivalent
modulus L ranges from 2,840 to 13, 800 psi. Our smallest modulus is more
than three times larger than the static measurement [1] and our largest
modulus is smaller than the wave propagation measruement [2] by a factor of

forty-seven!

13. Predicted Admittance of a Disk on a Viscoelastic Half-Space. To illus-

trate the application of the results obtained on small samples of Plasticine
we predict the admittance of a rigid disk on a viscoelastic half space
liaving parameters equal to those previously measured and compare the results
with direct measurements on a large tub of Plasticine., We consider vertical
motion of a rigid disk of radius r and mass m excited by an oscillating
force whose amplitude is P and whose frequency is w, The disk remains in
contact with a viscoelastic half space governed by Eqs. 1 and 2 with the
parameters p, G, v and n. The system is sketched in Fig. 33(a). The
problem is to predict the acceleration admittance’az/T waere az.is the
complex amplitude of the steady state acceleration of the disk,

The solution is obtained in two steps. 1In fig. 33(b) the half space

alone is considered subject to a distributed vertical loading whose resultant

is the interaction force Pi. An approximate solution to this problem has
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been obtained by Lee [9] on the assumption that the distribution of Pi
is uniform. In this assumption the resulting acceleration of the half
apace is not strictly uniform under the disk; The acceleration at the
center of the disk is arbitrarily taken to represent the acceleration of
the entire interface. This approximation is a familiar one for elastic
half-space problems. See for example [10-13]. Tor the half-space alone

the solution [9] for the acceleration admittance is

a 1 {wr-\~
T3l e ) (Bt sy 21
i pr s

where the dimensionless viscoelastic half-space functions g

<

1 and N

depend on Poisson's ratio v, the loss factor n and the dimensionless
frequency parameter wr/cc. For v = 0,5 and n"= 0.2 (which are nearest

Lol

to the measured values for Plasticine) the functions £q and g, as given

2
by [9] are plotted in Fig. 34 as functions of the frequency parameter wr/cs.
In Fig. 33(c) the rigid disk is shown under the influence of the

external excitation P and the interaction force Pi' The equation of motion

for steady state vibration is

D - =
I3 Pi ma_ (22)

£limination of the interaction force Pi between (21) and (22) leads to the
desired admittance function

3 /e 2 -1

1+ 25
34}
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Tor fixed values of the half space parameters, the dimensionless admittance
maZ/P depends only on the frequency parameter mr/cs and tihe mass ratio
m/pr3. In general the admittance has real and imaginary parts which are

both frequency dependent.

14 Measured Admittance of a Disk on the Surface of a Large Tub of Plasticine.

The acceleration admittance of a small lucite disk resting on the surface
of a tub of clay was directly measured and the result compared with a pre-
diction based on the theory outlined in Sec. 13. The tub is square, 35"
on a side, and is filled to a depth of 15" with 1270 lbm of white Plasticine.
The disk is 0.84" in diameter and has a mass of 0.0145 1bm. (6.6 grams).
The disk is excited by a shaker driving through an impedance head as shown
in Fig. 35. The instrumentation chain employed (shown in Fig. 36) per-
mitted the direct recording of the real and imaginary parts of the acceleration
admittance as functions of frequency. The oscillator generates a sinusoidal
signal which is slowly swept from 200G to 2000 Hz, The level of the excitation
is servo-controlled so as to provide a constant level of oscillating force
(0.0015 1bf) through the impedance head. Under this condition the output
of the co-channel of the co-quad analyzer is proportional to the real part
of the acceleration admittance and the output of the quad-channel of the
co~quad analyzer is proportional to the imaginary part of the acceleration
admittance. These outputs are recorded directly on an x-y plotter as a
function of frequency ( the oscillator provides a signal proportional to the
logarithm of the sweeping frequency). The tracking filters with 50 Hz.
bandwidth are included to remove background noise effects,

The system was calibrated by first shaking the disk alone, away from
the clay. The acceleration admittance aZ/P under these conditions should

be 1/m; i.e., real, positive and independent of frequency. In actuality
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the result was substantially independent of frequency from 200 to 1400 Hz
but showed minor undulations (up to 15 percent) due to extraneous resonances
in the range from 1400 to 2000 Hz. The valué of m here is the mass of the
disk plus the mass of that part of the impedance head which is ahead of the
force gauge. The total mass is 0,063 1bm (28.6 grams).

After calibration the disk and shaker assembly was gently placed on the
clay surface in the middle of the tub and allowed to rest there under its
own weight., The oscillator was set to sweep from 200 to 2000 Hz and the
acceleration admittance curves indicated by the solid lines in Fig. 37 were
recorded. These results are to be compared with the dashed predictions
based on the theory of Sec. 13 in which the viscoelastic half-space para-

meters are taken as

v = 0,5
n=0.2
c .= 278 ft/sec

X 3, .
and the mass ratio m/pr~ is taken as 12.2 corresponding to

m = 0,063 1bm
r = 0.035 fe.
p = 119 lbm/ft3

The correspondence between the prediction based on the idealized half-

space model with parameters obtéined from tests on small specimens and

the direct measurements in the tub is quite good, in the frequency range

from 200 to 1400 Hz, Subsequent tests at other locations in the tub showed
that the apparent shear wave velocity of the clay was not uniform (variations
of 10 to 15 percent are common). Good agreement between measured and
predicted admittance curves could, however, be obtained by selecting the
half-space shear wave velocity used in the prediction so as to match the

admittances at resonance (90° phase). The predictions based on an infinite

=38




half space were in good agreement with the measurements as long as the

disk was located more than 8" from the nearest edge of the tub.
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Appendix A

Plane Waves in a Linear Viscoelastic Medium

We consider three types of plane harmonic waves in a medium satis-
fying Eqs. 1 and 2. In every case propagation takes place in the x~

direction and all variables are independent of y and z. For longitudinal

waves in a rod the only non-zero stress component is Ox and Eq. 1

reduces to

E(L + iT\,)Ex =0, (A-1)

with e =€ = -ve . If Re{vxeiwt} represents the oscillating component
of velocity parallel to x and p is the mass &ensity of the medium, the

momentum equation is
X .
— = iWpv (A-2)
X

and the geometric compatibility requirement is
dv
—X = jue (A-3)
dx X

Elimination of v, and Gx between Eqs. A~1, A-2 and A-3 leads to




X _ 2
= —wpE (A~4)

as the governing equation for the strain distribution in a harmonic
plane longitudinal wave.

For plane dilational waves the only non-zero strain component is

€, and Eq. 1 reduces to

" . 1l -V _ .
EQL + in) (1 +v(1 - 2v) Ex = Oy

(A-5)

with Oy =0, = vOX/(l -~ V). An alternative to (A-5) is obtained hy

eliminating & between (A-5) and Eq. 2 to get

2(1 - v)

T (1 + in)ex = OY (A-6)

¢4

Combining (A-0() with the momentum equation {(A-2) and the compatibility

equation (A-3) we find

2(1 - 3) (1 + in)

T oy X = —wgpﬁv (A=-7)

G

as the governing equation for strain distribution in a harmonic plane
dilational wave.

For plane shear waves with motion parallel to y the only non-zero

stress component is TXV {the only non-zero strain component is vi)

P

and Eq. 1 reduces to

A=-2




G(L + in)yYv = Ty (A-2)
o

iwt}

If Re{vye represents the oscillating component of velocity parallel

vy, the momentum equation is

7
——— = ] A=Q
iwpv (A=)
and the gceometric compatinility requirement is

N 10
= 1wa_v (A-10)

Y.
cl + in) —X = —wlpy (A-11)

as the governing equation for strain distribution in a harmonic plane

shear wave.

Equations A-4, A-7 and A~1l all have the form

I
a2(l + in) 9—% = —wzf (A-12)
dx”

. . ; 2
where f represents the appropriate strain amnlitude and the constant a

takes the value

B 2 G 2 ;
g Tee,a =— ZSo——>F" or a = — A-13
p P 32 ( )




respectively. In order for the strain waves to have the form of La. 3
the strain amplitude f must be nroportional to

e—axe—lum/c (A=14)

where o and ¢ are (real) decay and propagation velocity parameters. To
find the connection between o and c and the parameters n and a in Eq. A-12
we insert (A-14) for f in Eq. A-12 to get

2 . R 2 2
a“" (1 + in) (o + iw/e)” = -w (A-15)

Then by treating the real and imaginary parts of (A-15) separately it
is possible to obtain the desired relations. A convenient device for

accomplishing this is to set

Loy 2
1+ in = wz Sl_i;iﬁli (A-16)
a+ 6%
thereby defining the two new (real) parameters § and 3. Then the
square root of (A-15) is
ap 2128 (o + qw/e) = 1w (A-17)
1+ 8

Separating real and imaginary terms yields

Ty
A=t




a =8B wc

(A-18)

and it remains only to identify ¢ and B from Eq. A~16, Separating real

and imaginary parts in (A-16) leads to

9 2
2 1+ 6 25
Vo= j;—“i%fl— n=-—yx (A-19)
1 -8 1 -2
from which follows
2
g = __1_.”.11__:_1_ (A=20)

as well as the alternative forms given in Iqs. 5 and 6. Fquations 4,
7 and 8 in Section 2 are the particular forms assumed by (A-18) when
specialized to longitudinal waves in a rod, dilational waves and shear

waves respectively.,




A=0



Appendix B

lesonance=test relations for uniform rods

and slabs of linear viscoelastic material

The resonance relations derived herein apply to a uniform viscoelastic
rod or slab of length L in the x-direction which is excited at the end
x¥ = 0 and which carries a suspended rigid mass m at the end x = L. To
simplify the exposition the discussion is restricted to the case of a
thin rod with longitudinal motion. The results, however, can be immediately
extended to uniform dilation or uniform shear of a slab by making subétitgiiéns
corresponding to the parallel treatment of the three types of waves in
Appendix A (e.g., see Eq. A-13). In the first part, general expressions
are obtained for the complex amplitudes of the accelerations at the ends
of the rod and the amplitude of the driving force when the rod undergoes
steady harmonic oscillation at frequency w. In the second part these
general expressions are particularized to resonance (or antiresonance) con-
ditions where there is a 90° phase difference between two of these
expressions. The resulting relations provide means for converting
experimentally determined amplitudes and frequencies into "measured"
values of propagation velocity and loss factor.,

Consider a uniform viscoelastic rod of length L and cross-sectional
area A, At frequency w let the acceleration amplitude iwvx(x) be
denoted by a (or ab) at x = 0 and by a_ at x = L. In terms of the
stress amplitude cx(x) introduced in Appendix A the force amplitude

driving the rod at x = 0 is




= m () T
fo AUX ') (B=1)

and the terminal acceleration amplitudes are

‘e desired quantities thus follow as soon as OX(x) is known. In

Appendix A it was shown that the viscoelastic medium supports strain

waves which decay as they propagate. Because of the assumed linearity
stress waves will have the same form. 7The wave represented by Lag. A-14
propagates (and decays) to the right. In a finite rod the general solution
also includes a wave which propagates to the left. Thus, for arbitrary
values of Cl and C2 the medium will support a stress in the rod of the form

o =0t DR/ 06+ D/ )

where ¢ = wL/c, with ¢ and [ given by Eqs. A~18 and A-19. 7To evaluate the
constants Cl and C2, we introduce the boundary conditions. At x = 0 we
take a to be specified and at x = L the terminal force must be just large

enough to impart the acceleration a_ to the suspended mass . These

conditions, expressed in terms of O,.» are

dag n do
-n

{(5—-4)

o}

Insertion of (B-3) in (B-4) leads to a pair of simultaneous eguations

fron which we ohtain C1 and C?g Substituting these back into Ta., ¥»-3

B-2



and evaluatineg Eqs. B~1 and -2 leads, after considerable alzebra, to

F
o - 1 i (3=5)
T a o+ 1) D -
c o :
a
s 1 -
=% (5-6)
O

wiiere we liave set m, = pAL for the mass of the clay and N and D stand
for complex functions of ¢, £ and mS/mc. Their real and imaginary parts

are listed below,

m
i = cos ¢ cosh B¢ + —= ¢(f cos & sinh o - sin ¢ cosh 8d)
real m
c
(B-7)
M
. = sin ¢ sinh B¢ + — 5 sir sh B¢ + cos & sinh K¢
imag ‘ Bo + — ¢(B sin ¢ cosh EO ¢ 8¢)
c
Mg
Nreal = cos ¢ sinh B + = 6(B8 cos ¢ cosh B - sin ¢ sinh B¢)
c
(B-8)
m
. = sin ¢ cosh B¢ + — (B sin ¢ sinh B¢ + cos ¢ cosh RBd)
imag m
‘ c
Suppose that in a resonance test the suspended mass acceleration
a_ and the base acceleration ab = ao are monitored. The two accelerations
will have a 90° phase difference when D vanishes, Setting D equal
real real

to zero leads to the requirement

=3




m
s .. y .
1+ — ¢{3 tanh ¢ - tan ©) = ( (3=-9)
c

whiich is equivalent to the first of Igs. 12 in the text. VWhen (L-9) is
satisfied the magnitude of the acceleration ratio is simply the recip-

rocal of D,

inag
a
2| = 1 (5-10)
ab . . ms m
sinh B¢ [sin ¢(1 + — B¢ coth B¢) + £ cos ¢]
- ‘
¢ c

which is equivalent to the second of Lgs. 12 in the text. For a given
mode and a fixed value of ms/mc there is a unique set of values for 3
and ¢ which satisfy Loth (8-9) and (3~10) for each measurement of the
e

amplitude ratio phase condition. The loss factor

as/ab’ at the ©
n then follous from B (e.g., by use of Eq. A-20) and the propagation
velocity ¢ follows from ¢ = wL/c and the measured frequency at the 90°
phase condition.

When the suspended mass m vanishes, as in the tests cescribed in

Sec, 3, the reciprocal of the ratio (B~5) reduces to

m a | T . . : ”
c o cos ¢ cosit K¢ + 1 sin ¢ sinh [o

(B + 1 - — — ——
L ) cos ¢ sinh 3¢ + 1 sin ¢ cosh B¢

(B~11)

., B sinh 2g¢ + sin 2¢ + i(sinh 2Rd - £ sin 2¢)
¢ cosh 230 - cos 26

The driving point acceleration and force will be 90° out of phase whenever

B4




the real part of (5-11) vanishes; i.e., when
B sinh 2B¢ + sin 2¢ = 0 (=-12)

which is equivalent to Eq. 10 in the text, When Eq. B-12 is satisfied

tiie ratio (L-11) takes on the value

M8 (1 + £2)sinh 200

fo = 1o cosh 2B¢ - cos 2¢ (L-13)

which is equivalent to Eq. 9 in the text. Tor a given mode there is a
unique set of values for £ and ¢ which satisfy both (B-12) and (B-13)
for each measurement of the magnitude ’mcao/fo' at the 90° phase con-
dition. Trom the values of [ and ¢ together with the measured fre~
quency at the 50° phase condition, the loss factor n and the propagation

velocity ¢ follow from Eq. A-20 and the relation ¢ = wL/c.

T







Appendix C

lesonance test relationms for sandwich configuration of Sec, 6

The equations connecting the material modulus and loss factor with
the measured amplitudes and frequency at a resonance (or antiresonance)
for the lumped parameter models of Fig. 20 are derived herein. Ve con-
sider first the shear test configuration of Fig. 20(b) where the exciting
force is applied to the center mass. Under steady state vibration at

. ; . . iwt
frequency w with oscillating displacements represented by Re{xe } and

: . . iwt . . .
the oscillating force represented by Ple{fe } the equations of motion are

. 2 _

ks(l + 1n)(x2 - xl) + w mx, = 0

. : 2 _
—ks(l + 1n)(x2 - xl) + ks(l + 1n)(x3 - XZ) + w m X, = f (c-1)

-k (14 in) (xq - x,) + wPmx, =0

s 3 2 3
2

Denoting the driving point acceleration amplitude by a, = —w“xz we obtain

the driving point response ratio f/moa2 by eliminating Xy and Xq from (C-1).

Setting ¢ = wzm/ks and Y = m/mo we find, after some algebra,

2 2 .
f _e =200 4w+ 1 +n)A+ 2y - i2ndp
m a 2 2
(1-¢) +n

(C-2)

There will be a 90° phase difference between the driving point force and

acceleration wiien the real part of (C-2) vanishes; i.e., when

C-1




2 1/2}

¢ =1+l [1-n2@+ 20)/u%] (C-3)

If the loss factor is not too great, there are two real roots for ¢: the
plus sign corresponding to the resonance and the minus sign corresponding
to the antiresonance. In either case the response ratio reduces to

f _ -iZ2nou
ma

o 2 2
(L-¢) +n

(C-4)
2

Measured amplitudes and frequencies at the 90° phase conditions can be
related to the complex shear modulus G(1 + in) of the clay by using Eqs.
C-3 and C-4. For a»fixed value of u = m/m0 there is a unique pair of
values for n and ¢ which simultaneously satisfy both (C-3) and (C-4) for
each measurement of the magnitude If/moazl. The measured freguency to-
gether with the relation ¢ = wzm/kS yield the shear spring constant LS
which leads by way of Eq. 15 to the real modulus G,

For the dilation test configuration of Fig. 20(a) the equations of

motion are

]
1
+h

_ . 2
kd(l + 1n)(x2 - xl) + mw Xy

I

, , 2 .
—kd(l + 1n)(x2 - xl) + kd(l + 1n)(x3 - x2) + m WX 0 (G-5)

2

il
O

. : 2
- Ld(l + 1n)(x3 - “2) + mw X,

: , . . . - 2 .
Denoting the driving point acceleration amplitude by a. = ~w Xy we obtain

1

the driving point response ratio f/mal by eliminating X, and x3 from (C-5).

C=-2



2
Setting ¢ = w“m/kd and | = m/m0 we find

4 .3 2 . . 2 A
5 L+ i+ g - ing 5,6 + s
P G+ X 4 ¥4 r o + r ine(¢” -+ 1¢ + so) . o
ma -2 R 2, 2 2. 2 -
1 [¢8 =@+ 2w+ (1 - n)ul” +n7 6 + 2u) - 2u]
where the coefficients in the real part of the numerator are
r.. = =(3 + 4u)
]
r, = 34+ 5+ 4u2 + r)z(l + 3u + 4112)
(c=7)

. "

r, = -1+ 075 + 6p + 6p7)
o 2

r = (1 +n7) v(@+ 2w

and the coefficients in the imaginary part of the numerator are
g, = = +
51 2(1 1)
(C-8)

2 : 2

5, = (1 +n07)@Q + 2u + 247)

For this confipuration if the loss factor is not too large there are four

- 2 , ; .
real values of ¢ = w m/k( for which the real part of (C-6) vanishes: two

1

resonances and two antiresonances. At any one of these 90° phase condi-~

tions the magnitude of the response ratio reduces to

f

mna

2 2
Cnelet - 260+ 4+ (A 20+ 2]

; 5 5 5 5 (C=9)
(&7 = (1 + 21) + (1 - nDHul™ = n7 e - 21) - 2u]




Por fixed pu = m/mO there is a unique vair of values for n and ¢ vhich
simultaneously cause the real part of (C~f) to vanish and satisfv (C-9)
for a measured wvalue of the response ratio obtained when the phase

2
difference is 90°. As before, the value of ¢ = © m/kd together with

the measured frequency vyield the dilational spring constant kd which in

turn provides the dilational modulus by way of Eq. 1l4.
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Captions for Figures

Sugpension configuration for longitudinal vibration of

clay rods.

Instrumentation chain for longitudinal vibration of rods.

Frame for forming clay rods.

Propagation velocity and loss factor for clay rod with

L =9 in, at 75° F,

Suspension configuration for determining dilational wave
parameters of clay disk., Suspended mass can be increased

by bolting on additional disks.

Instrumentation chain for determining dilational wave

parameters of clay disk,

Propagation velocity and loss factor for dilational wave
in clay disk at 75° F.: A, immediately after remolding

specimen; B, two days later.

Small amplitude excitation of shearing oscillations in clay
slab; (1) Plasticine slab with glass cover sheet, (2) ARA-20
slip table, (3) Ling V-50 Mk 1 shaker, (4) inertial mass

driven by shaker, (5) strings to support weight of inertial mass.
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Fig.

Fig.

Fig.

Fig.

Q9

by

12

14

Large amplitude excitation of shearing oscillations in
clay slab; (1) Plasticine slab with glass cover sheet,
(2) Calidyne A-~174 shaker, (3) shaker armature (4) ARA-20

slip table, (5) connection points.
Plan view of clay slab and glass cover sheet placed on top
of slip table., Accelerometer locations B-1 to B-4 omn slip

table and T-1 to T-5 on glass cover sheet,

Instrumentation chain for determining shiear wave parameters

of clay slab.

Propagation velocity and loss factor for shear wave in clay

slab at 75° F.

Clay sandwich for alternating dilation and shear tests: A,
axis of excitation for dilational deformation; B, axis of
excitation for shear deformation.

Excitation of clay sandwich (a) for dilation, (b) for shear.

Instrumentation chain for recording corrected force amplitude,

acceleration amplitude and phase difference as functions of

frequency.

Force and acceleration signal amplitudes in dP re 1.0 volt
for dilational test: corrected force signal (A); acceleration

signal ().




Fig, 17

&

Fig, 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Phase angle by which acceleration signal leads corrected

force signal for dilational test,

Force and acceleration signal amplitudes in dB re 1.0 volt
for shear test: corrected force signal (A); acceleration

signal (B).

Phase angle by which acceleration signal leads corrected

force signal for shear test.

Lunped parameter models for clay sandwich (a) in dilation

test, and (b) in shear test,

Shear propagation velocity of Plasticine at 75° F. as a function
of time elapsed since remolding, calculated (A) by neglecting
clay mass and (B) bv apportioning all of clay mass to metal

slabs.

Contours for fixed levels of rod propagation velocity c.
in frequency-temperature plane for 3" Plasticine rod. Dotted
lines indicate loci of resonances and anti-resonances where

measurements were nmade,

Contours for fixed levels of loss factor n in frequency-

temperature plane for 3" Plasticine rod.

Rod propagation velocity of a Plasticine rod as a function

of temperature,
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26
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28

29

30

31

32

33

Shear wave propagation velocity of a Plasticine slab as

a function of temperature.
Loss factor n for shear of a Plasticine slab. Points
plotted are averages of measured values at the temperatures

indicated.

Rod propagation velocity of Plasticine rod at 75° F, due

to time history of ambient pressure shown below.

Rod propagation velocity of four specimens as a function

of longitudinal strain level,

Shear wave propagation velocity of clay slab with five

different suspended masses as a function of shear strain level.

Time history of rod propagation velocity in a 6" Plasticine

rod due to manual bending at A and calibrated bending at B.

Rod propagation velocity of a 3" Plasticine rod B, before,

and A, after large-strain bending.

Shear wave propagation velocity as a function of shear strain

level measured as strain level is decreased from three

different maximum strain levels A, B, and C.

Rigid disk on viscoelastic half space vibrating vertically
at frequency w: (a) complete system; (b) interaction force

on half space; (c¢) interaction force on disk.
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34

35

36

37

Viscoelastic half space functions for v = 0,5 and n = 0,2,

Excitation of disk on surface of clay by Wilcoxon F=-1

shaker driving through Wilcoxon Z-602 impedance head,

Instrumentation chain for measurement of admittance of

disk on the surface of a tub of clay.

Comparison of predicted admittance of disk on viscoelastic
half space (dashed curve) with measured admittance of disk

on tub of Plasticine (solid curve),
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Fig. 9 Large amplitude excitation of shearing oscillations in clay sléb;
(1) Plasticine slab with glass cover sheet
(2) Calidyne A-174 shaker

(3) Shaker armature
(4) ARA-20 slip table

(5) connection points




*399($ I9A0D SSBTH U0 C-3 03 1=,
pue a1(rl UITS U0 y=Q 03 [-g SUOTILO0T IA9IBWOISTSIOVY
*97qel JITS JO do3 uo paoeTd 305US 19A0D SSBTY PUR QETS ABTD JO MBTA aBT O °ST4

= G2 e
S3HONI NI 3TVvOS
—= [e—
< 8
w)_ II'# 2 —»l la—
) _ N{=— 6—*
NN
i )

17
glA 40741 I . B
> oz ¥ __..m el ] b-1]| -

I
\N.—@—

I
e (J) i




SUSPENDED - MASS ACCELERATION SIGNAL

B & K

4340
ACCELEROMETER

ITHACO

255
PRE -AMP

SLIP-TABLE ACCELERATION SIGNAL

WILCOXON
127 /129

ACCELEROMETER

—=

ITHACO
255

PRE - AMP

TEKTRONIX

@,

502A
SCOPE

|

Nl

B & K
2416
VOLTMETER

HICK OK
<@——=1 DMS 3200/DPI150
COUNTER

i .. s e {
Fig. 11 Instrumentation chain for determining shear wave parameters of clav slab,
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Tig. 12 Propagation velocitv and loss factor for shear wave in clav slab at 75° F,
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Pig, 13 Clay sandwich for alternating dilation and shear tests:
A, axis of excitation for dilational deformation

L, axis of excitation for shear deformation
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Fig. 14 lLxcitation of clav sandwich (a) for dilation (b) for shear
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19 TPhase angle by which acceleration signal leads corrected force sismal for

shear test
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Fig. 20 Lumped parameter models for clav sandwich

(a) in dilation test, and (b) in shear test.
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Fig. 21 Shear propagation velocity of Plasticine at 75° ¥, as a function of time eclapsed
since remolding, calculated (A) by neplecting clay mass and (1) by anpportionine

all of clay mass to metal slabs.
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Fig. 22 Contours for fixed levels of rod pronagation velocity c. in

frequency-temnerature plane for 3" Plasticine rod. Totted lines
indicate loci of resonances and antiresonances vhere measurements
were nade,
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Fig. 24 rod propagation velocity of a Plasticine rod as a function of temperature.
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Fig. 25 Shear wave propagation velocity of a Plasticine slab as a function of temperature
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Fig. 26 Loss factor n for shear of a Plasticine slab, Points plotted are averages of
measured values at the temperatures indicated.
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Fig. 27 Rod propagation velocity of a Plasticine rod at 75° ¥, due to time history
of ambient pressure shown below, ‘




C,(e)/C;(€min)

I I T 11 Il ! LI I Vi ll 1 LI l Pl ﬂ !

OO —\/—— —A— — = — 7—-[00— —~ — __ —

\
I S"é ]
N
; V\A = i
\
. \ -
\
0.95|- A —
_ °\ |
\
_ \ -
\
n O -

090 —

Ll L Ll Co o bl I

107 1073 . 10”4
€

Fig.

>

28 Rod propagation velocity of four snecimens as a function of longitudinal strain level.
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Fig. 29 Shear wave propagation velocity of clay slab with five different suspended masses

as a function of shear strain level.
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Fig. 30 Time history of rod propagation velocity in a 6" Plasticine rod due to manual bending
at A and calibrated bending at B, '
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Fig. 31 Rod propagation velocity of a 3" Plasticine rod B, before and A, after
large-strain bending.
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Fig. 32 Shear wave propagation velo¢ity as a function of shear strain level measured as

strain level is decreased from three different maximum strain levels A, B, and C.
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Fig. 33 Rigid disk on viscoelastic half space vibrating vertically at frequency w:

(a) complete system (b) interaction force on half spaée
(c) interaction force on disk
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Fig. 35 Excitation of disk on surface of clav bv Wilcoxon F-1 shaker
driving through Wilcoxin Z~602 impedance head
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36 Instrumentation chain for measurement of admittance of disk on the surface of a

tub of clav
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Fig., 37 Comparison of predicted admittance of disk on viscoelastic half
space (dashed curve) with measured admittance of disk on tub of
Plasticine (solid curve).






