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Direct Calculation of Second-Order Density Matrix

I. Theory of the Green's Function Technique
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ABSTRACT

We present a method for directly determining the second order

density matrix of a system of particles with pairwise additive inter-

actions. The result is obtained as a contour integral involving the

two-particle Green's function. The random phase approximation is

made and the evaluation of the Green's function is reduced to a simple

matrix problem. An outline of the computational method is presented,

and possible applications are discussed.

a

N70-29730
(ACCESSION NUMBER)

(PAGES)

ck
(NASA CR OR TMX OR AD NUMB )

(CODE)

(
/7 

T)

i

This research was supported by the National Aero, ►autics and Space

AdministraL'on Grant NGL 50-002-001.

NSF Graduate Fe-Llow.



I. Introduction

In this paper we show how to obtain directly the second - order

density matrix of a system of pairwise interacting Fermi particles.

We employ the Green ' s function method, which has recently l been used to
	 t

calculate the first -order density matrix of the helium atom. The im-

portant advantage of this technique is that it permits the direct cal-

culation of redticed quantities; it d,,^s not r^quire the calculation

of the N-particle wave function.

In Sec. II we demonstrate the connection between the two-particle

Green's function .sue and the second-order density matrix f. The usual

time-dependent perturbation treatment of the wave function and an intro-

duction to the use of diagrams is presented in Sec. III. In Sec. IV

we use Green ' s function diagrams to derive an exact integral equation

for,	 . Approximations to the so-called irreducible vertex potential

are also introduced. We obtain a matrix equation for the Green's

function in Sec. V using the random phase approximation to the ir-

reducible vertex potential. The second -order density matrix is then

obtained from A by performing a contour integral. One contribution

to this integral is evaluated analytically, but there remains a con-

tribution which must be done numerically. Finally we discuss the

application of these methods to problems of interest.

II. Second -Order Density Matrix and Two-Particle Green's Function

The two-particle propogator (Green's function) 14^ corresponding

•	 to the state vector 11> is written in the Heisenberg representation as

follows:
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-2, 3, y^_,^^^ _	 <TI T(^aJ 4^k Cz ^7	 13^% a'!yf%/`y^,^ j lI. 1)

where 
V 	

and ^ are Fermion 2 field creation and annihilation opera-

tors respectively, T is the time ordering operator, and the integers

1, 2, 3, 4, refer to space-spin coordinates. The fact that -^/ depends

only on the difference t-t' can be seen easi.ly , by recalling that we

are in the Heisenberg picture (thus the subscript H ). The denominatar

of Eq. (II.1) is included so that we can obtain a linked diagram ex-

pansion for '1E1 . This will become clear in Sec. IV.

The second-order density matrix r 
belonging to the state vector

9 > is given in second-quantization notation by

/! Z	 _ ^^' ^^(l	 ^ff	 t^ Tt1 ^zf)	 (1t)l1T N o (II.2)

Thus we find that we can express r in terms of"'Y

t'^tt
where the antisymmetry of F and .d 3 has been used, and the limit is

taken as t' approaches t from above (t' > t). The minus sign is

due to the presence of the time ordering operator T .

In the following sections, we will obtain an expression not for

but rather for its fourier transform_%6^ (E) defined in the

following equation:

r
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e3 f4 I - ^ = zrr

,	 With this, Eq. (II.3) becomes

00 E- V

r C I z, J Z'l 
_

27T'''	 L ^/ ^i 2^ 3,y' /^) p^' .	 (I I.5 )

Gr

This integral can be evaluated as a contour integral in the upper half

complex E plane (Fig. I). The upper half plane is chosen so that the

Figure 1. Contour 1

integral over the arc vanishes due to the factor e-T(ImE) .
 We will

see later that (E) has poles both above the real axis to the left of

the imaginary axis, and below the real axis to the right of the imaginary

axis, as is shown in Fig. (I). Because the integral about contour 1 is

difficult to do, we choose instead the contour shown in Fig. (II).

r
	

Both contour 1 and contour 2 enclose the same poles of,y(E) and so

they lead to the same result when substituted into Eq. (II.5). We

choose the Coulson contour because the integral over the arc

D9 ^r	 3^
(E = Re 

i 2 < 9 < 2 ) can be done analytically and the integral

^t



h'i e re_ll.	 l; ikon ( ontolit

along, the imaginary axis can be handled coiiveniently by standard

numerical techniques.

Therefore we reduce the problem of calculating the second-order

density matrix r to that of finding an expression for,& (E) and Cien

evaluating the contour integral:

Co	 d
1 ,^1r^ _ _	 ,^,,,?	 S .^C^, ^^ ^^	 Re )fie L` ^

9-1 	 ?T
A

R

jj

-R

(II.6)

The evaluation of these two inte g rals will he treated In Sec. TV.

i
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ill. Time-dependent Perturbation Expansion of 	 > and Diagrams

We assume that the hamiltonian of our system is written as

... a( ) A
-4- 

(/
H 

o 
t	 . V	 (III.la)

where Ho is a sum of one-particle hamiltonians (perhaps Hartree-Fock

or hydr.ogenic), and V Is a two-particle time-independent perturbation:

N
NO=(^^

N
V(III.Ib)

_a

We also assume that we know the eigenfunctions of h , and thus of 11^.

The time-dependent Schrodinger equation is written as follows:

C))!P > —	 'V I T CA)
a^

However, the problem is not yet completely specified. We must also

stipulate the state vector IT >	 at some time. Therefore we decide that

at t	 IT > is given by some eigenfunction of Ho

R t	
(III.3)

where

H O I T> = L-, c I !ID> ,	 (711.4)

1
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The vector I t , will usually be some Sl.,ter determinant of spin-orbitals

which are eigen'functions of h

To write the Sclirodinger equation in a more useful form, we trans-

,	 form to the interaction representation. This.is done by defining new

state vectors and operators as follows:

(III.5a)ir

Vj^ () =	 v ca	 (III.5b)

A.

o 	 ^	
o sA H

N r c at; — ^	 ^I e	 = H	 (III.5c)

The Schrodinger equation and its boundary condition in this representa-

tion now become

	

Ad	 41>X

(ITI.`)

This is equivalent to the following integral equation

() r = ^^I yr .r ,	 (III.7)
oc

which can be iterated to yield the usual perturbation exnression for

l y (t) > I

I
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x	 -^
x

+ Ctk:- )	 is	

V-r) f^-.. (III.8)

The time ordering operator T arises by recognizing the identity

A	 41

i}'I S tS '1'+y" "
J
	n V. (Ad V:r ('42'J -.. Vr 0.1 =^`^ii...J 

d^r+T V2 (^^J ... Vr,{ql I I.9 )

bo _^	 _ 00	 -pO	 pO

For convenience we write Eq. (III.8) formally in the form

q 6411	 = U= (,^, — °O) I f>

Cr)	 C24e
Us- f UT 

f yr f. .^^	 (III.lo>l

where we have made the (obvious) identification of terms in Eq. (III.8)

involving m-V I 's with U IM) . Because we are interested in obtr-ining

an eigenfunction of Il o+ V, we integrate from - a to 0 and we take

the adiabatic (a -• 0) limit of the terms in Eq. (III. 8).

It may seem that the introduction of the time ordering operator T

accomplished nothing, but as can be seen by reading any book on many-

body theory, its presence is essential to the use of Wick's theorem

and the techniques of Feynman diagrams.4

To illustrate the use of diagrams in expressing the terms given in

Ea. (III.8) we consider the firzt order contribution 11,1)`0.- -)I¢ 
>.
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This can he written in second quantization ii( q tllln as

ILi S	 S did	 CZ it) q,,

00 IS
Each field operator is written in the particle-11,0 t - picture as

P

+ -

= y+ +

and each of the particle-hole operators is repr i •1 ,ented by a directed

line segment as in Fig. (III).

Figure III

^+(xt)	 X	 particle creation

	

+ (xt)	 X.A-	 hole annihilation

4+(xt)	 hole crestion

^-(xt)	
XA-	 particle ;nuiIhilation

In these diagrams, time increases in the posiU y r vertical direction.

Recalling that in the particle-hole picture the unperturbed vector

I T> becomes the vacuum state represented by 10	 we find by using

Wick's theorem that the contributions to (III.11) can be written dia-

gramatically as in Fig. (IV).



Fii ,,ure IV

JwI-A.t-lt

^Jf	 Lfi

9

•

E^^,

The wavy line represents V(1,2). The construction and use of such

diagrams is discussed in a number of texts, 2 and so we will pursue it

no more liere. In the next section we will use somewhat different

diagrams (Green's function diagrams) to derive an integral equation

for the exact two-particle Green's function.

IV. Evaluation of Two-Particle Green's Function

Tl ►e expression given in Eq. (II.1) for the exact two-particle

Green's function x can be rewritten in a form more amenable to cal-

culation by using the following relations between the Heisenberg and

interaction pictures:

I
 (T^ = I q	 >X = UX.	 00) 1 <I>



1.0

(IV. 111)

^^ (/ J = (^^- ^o. ' ĵ Ir C/,^`/ L12- if o/	 (IV. is )

These relations .lead to the following expression fer-,,^

- '(l, ), 3,^/l.^t --%;)	
< <^T I L) C ooJ - --0)	 (IV. 2)

where the subscript (1) has been dropped for convenience.

The denominator in Eq. (IV.2) can be ex p ressed as the sum of all

time integrated vacuum diagrams, some of which are shown in Fig. (V).

Figure V

^^ C^^l = ( - ^ f̂^/ î-^i t^ Ur C-tol

The numerator must be expressed in terms of the so called Green's

function diagrams. These diagrams are obtained by expanding as in

•	 Eq. (III.10) each of the three U's appearing in the numerator and

+	 then using techniques similar to those used in writing the diagrams in

Fig. (IV;. Some of the Green's function diagrams are shown in 	 =

Fig. (VI).

3

and
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Figure VI

/	 2	 /	 2

I^Al j	 ya-
6-6)

HA

-Y
	 h

In these diagrams all time orderings of t with respect to t and t'

are implied. Thus disconnected diagrams such as in c) and d) will factor

into their constituent Darts. Then, for example, diagrams a) and c)

can be combined to give
1	 2 ^,

y ^

If higher. - der diagrams were included in Fig. (VI), we • uld find that

much factorization of diagrams would occur and that the above result
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would generalize to

I

1 4

But this first factor is exactly what we wrote in Fig. (V) for the

denominator. This type of factorization occurs for all disconnected

diagrams, and thus we call omit such diagrams fA:om the list of Green's

function diagrams since they only serve to cancel the denominator.

Diagrams a) and b) represent the unperturbed two-particle Green's

function	 °. Each directed line segment represents and unperturbed

1

one-particle Green's function G °

y ^
and so diagrams a) and b) yield

G 31

Diagrams such as e) and f) convert the unperturbed 6 ° into the
exact one-particle Green's function CT . Therefore we can omit diagrams

.	 in which the section containing the Wavy line(s) is connected to only

one of the directed line segments if we now interpret directed litre

segments to represent not G ° but the exact Cyr.
With these considerations we can write the essential diagrams which

contribute to	 come of these are given in Fig. (VII). 	 4
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Figu re VII

I I	 X	 fq	 kill

To understand how these diagrams lead to an integral equation for.

we have written them in slightly different form in Fig. (VIII).

Figure VIII

X 	 + I
y' 6

T 6	 S G	
^^

	

7	 S

The box represents a generalized potential which is non-local in space

and time. We recognize that the sum of the diagrams which are attacked

to the bottom of the box is identical to the sum of the Green's function

diagrams given in Fig. (VII). From this rather sketchy development we

now write the following integral equation for A :



V 67, , 7 ĝ  6-^'^.^^7, K,3, y/ fi t% 4/s^6^7^8d^d

0V. 4)

where V , which is represented by the box in Fig. (VIII), is commonly

referred to as the irreducible vertex: potential. We can think of V aF:

the potential describing the interaction between two particles moving in

the "sea" of the remaining particles.

The irreducible vertex potential. can be evaluated to any desired

order by simply writing all Green's function diagrams of that order and

then identifying the contributions to V as that which multiplies the

factor

To see this we expand I'd and V in a perturbation series and then write

Eq.	 (IV.4) in symbolic notation

N	 CO
4	

Z =	 -f ^& -^	
(IV. 5a)

V	
v ^^/^ V	

OV.5b)

14
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Co^

G G - G G	 clv. 50

J lJ ^? Y ^^G—^JG^ (IV. 5d)

'	 = J GG V 	 (IV.5e)

Sc
j U ^/	 =J	 (IV.Sf)

etc.

Thus we see that we can identify V 	 that factor which multiplies

GG[GG-GG] in the first order diagrams likewise V (Z) is the factor mul-

tiplying GG(GG-GG] in the second order diagrams. This result can

obviously be generalized to higher orders. As an example, let us con-

_
sider the first order contribution to V

JG (-1	
- - ) - 

0/	
" 'P -_ 7

^GCi, y, >` /'	 , 1 =t)-G('7"3, lt^ G<^^y^i](IV.6)

From the first order diagrams we obtain

2_	 L t

•	 ^	 Y t	 f 7	 8' t

r	 t r

y ^ t	 Y ^
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which equals

-- 6; (461 31 e. — t % C <,-,,v e ---t // 7 .
Therefore, we identify V (1) as

V (5-1	 f' ^'?^ J =	 C C.f- , r̂̂ .f= h'l ^ 	 (iV.7)

Higher order terms are calculated in a similar fashion.

In the next section we ijill develop Eq. (1V.4) in more detail by

using only the first order irreducible vertex potential given by

Eq. (IV.7). This approximation will be referred to as the random phase

appro ;imation (RPA) . 5

V. RPA in a Basis

Substituting the random phase approximation for the irreducible

vertex potential into the exact Eq. (IV.5), we arrive at the following

approximate equation

e/ cC ?, 3, e-t% - GC,-/,3,f-f;^

S

(V. 1)

We now assume that the fourier transform of the exact one-particle

Green's function is known and is given in the form:6
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R

01- 

1

where the g
t
., E+ , and E ' are c-numbers with

u	 S

(V. 3a)

S
(V. 3b)

The number P 1 and the Creek and Roman subscripts are used in the sum-

mations to distinguish between those poles which lie above the real axis,

(E
t
a) and those which lie below (E s ). The (not necessarily linearly

independent) functions ^i are assumed to be expanded in some chosen

basis set of spin-orbitals	 Xa 
S 

as

M
'T.i fir) -	 ^,tpt xa Cil •^	 (V.4)

CL

and 
Cia 

are assumed known.

•	 The time-dependent one-particle Green's function can be obtained

by fourier transform from Eq. (V.2). This gives the following result:

G(/,y,^-^'l = a (,!`-.% C 1^ ^^ -t'/ t F>IE =EJ ^(,Y^ try 
(V. s)
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where we have defined

f

hoc	 ^ka 	 (V.6a)

p	 - ^ESC^t - ^)f—	 V.

and O(t) is the unit step, tunction.

With this, we can rewrite Eq. (V.1) as

0
t`I = ^(.t-:t'>	 f ^:5,-^^ Gt Cz,3,d-t r

Gfi (/,1,,£ -f) ^ (7,S f-t^ f U ^.^^^/ (^— l^G,c` — tJ^ C 7.S,^-- j%

(V. 7)

We fourier transform this equation to yield a more useful result:

<i,2,5_16 /E,) V	 6,/ <^6,

	

l	 (V. 8)



L a 6^ CI,z) _	 (%C, (1//4(1) - I ^)/ n /f)) •	 (V.10)
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where we have defined G(1,2,3,41E) as thv fourier transform of

C(1,4 I t-t') G(2,3,t-t'). 	 Let us now examine the permutation sym-

metry of factors in Eq. (V.8), remembering that.,e(1,2,3,4IE) is anti-

'	 symmetrtc in variables (1,2) and (3,4).

First consider the integral term:

SC

^J

(V.9)

We have used the fact that G(1,2,3,41E) is the fourier transform Gf

the product G(1,4,t) G(2,3,t), and we recognized that the variables

(5,6) are dummy. Thus the integral term is antisymmetric in variables

(1,2) and (3,4). Therefore the first term in Eq. (V.8) must also be

antisymmetric in (1,2) and (3,4).

Hence we can expand Eq. (V.8) in the following basis of antisym-

metric functions:
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11iis results in the matrix e- e lation given below:

^^.//
	 M

^/ab, cc! Cr.=) = C,ab,c^ (^l —	 Gab^<S CFI l4^/V!^ kJ^fJc^^,c+^C^,1^(V. 11)

(141
=r

We have made the following identifications:

M,
lf-1 ,rub^C^, t ) Tc^Q^ C^,!^/	 (V. 12a)

a4b
C-e 4

5 (^- FS - ^) Hsu cab

d°^dIS (C- E.c^ Eft, Colo. Ĉ b CpC L_dd	 (V. 12b)

and

R

^E' ĵ^V^ ^ In^= J.xe(ii^Cs/\/(I -z)L/^^f^^xti Iii - ^^Cz1 XI,C^7^^id ?._ (V.72c)
rJ

Thus given any basis 
I 
Xa , a = 1 ••• M	 and the exact one-particle

Green's function as in Eq. (V.2), we can calculate the matrix elements

Gab,cd(E) (for any E ) and (eflvjgVh). Eq. (V.11) is then a simple

matrix equation which determines.- 
ab,cd(E). 

We write this equation in

matrix form as

U. 13)

from which it follows that

(V. 14)

+his is the final expression ford (E).
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Let us now return to the problem of evaluating the second-order

density matrix as discussed in section 11. 	 Being careful to notice the

1/i	 in Eq.	 (V.12a), we write the previous expression for r	 -in

matrix notation as follows:

^7

^1	
r--

,^--^ ^v	 r

1	
,2

(V.15) .

with	 I	 being defined by
ti

M

a

The evaluation of the arc integral can be done analytically by

noticing (see Eq.	 (V.12b))	 that for large	 K	 we have

r
` IA 1̂.^

Gab, «e CRe^ = (Ae 	
^sd'f C` CJc Csd

s,t P, ti

C*^CpC_
cep=/

_j

(Rems J Z34 4Cd, (V.11;

This defines the matrix B. Therefore the arc integral red,:^_es to^ 
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r-

1

•	 _	 L r^ d cs

z [3	 U _8)

This result is exact.

To evaluate the integral along the imaginary axis we must resort

to the use of numerical integration techniques. However we should at

least write the integral in•a form which is most amenable to computer

treatment. First we note thirs t each term in Gab,cd(iy) contains

factors of the form

^	 l

Cs+ EA)^ ^1-̀'s tE.f t^ y) - U. 19,

Therefore we can write G(iy) asN

^^^	 (2/
Gr,Za, = G 	 +^	 c^1

where

u1
P	 4

s, k : Fri

P•	 ^

•	 Csn, C4b C44 C^^ 	 C^^ f^ Cyr+ c Ed t^^^L^

C.[ a C o b C P cc

(V. 20a)
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and

r	 T

	

G^^ ^d (^1 ='	 d s^ ! (y)- r C Esf L=.tI ^SACAi, 
S, .f = P, 41

Pi

f ^'^^`(^ Y (Y ,-t (tE^^J+^^C/^b C^^ c:.:.(V.2ob)

00

We also decompose G-1(iv) and-
 into real and imagir_- components

as

(V.2la)

	

^,	 N

an r;

(V. 21b)

^^^ ) = /^J ^^^ t ^ Nom/ ^ ^ -

To determine T(y) and N(y) we write
IV

(V.22)

N	 N	 N

•	 in real and imaginary parts. This results in the following -.atrix

equations:

and

T,C^)	 (V.23b)
N
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Then knowing T(y) and %L(y) we can write Eq. (V.14) as
N

0/	
C 1 I

ET ^^> t N ( V) 4 Q
N	 ^J

which yields equations for,^j(1)(y) and 	 2)(y):
N	 N

U. 24a)

ti

z

(7-^	 (V. 24b/'

( ^) =  	 (V/4V) U(^ 1 -/,Y ^) -

Because G (1) (y) is an even function of y (see Eq. (V.20a)) anc
IV

G (2) (y) is an odd function of y , it can easily be seen that,^(1)(y)

is evcn in y and	 2) (y) is odd in y . Therefore A2) (y) win

not contribute to the integral along the imaginary axis because we

integrate from -R to R . As a result of the above analysis we can

now write the imaginary axis integral as follows:

R	 .
-r

r'	 - - 1	 [T(b^4  V +U( b ) (T^w ) i V)_uc^ ' J ^	 (V.25)_
,,,a 1(i 6	 7T R-^O oo	 .v

0
where we have used the fact that 	

1)
(y) is an even function of y .

This integral must be evaluated numerically.

To conclude our discussion of the calculation of density matrices

using Green's function techniques, let us outline the method for deter-

mining the second-order density matrix I .

1) We assume that we are given the one-particle Green's function as

in Eq. (V.2) as well as a set of basis functions I X
a
 a=l,2,...MI.
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2) Form the matrix B from Eq. (V.17). Tile contrib!:tion to

from the arc integral is immediately written:

_ _ 1r	 B.
Narc	 2—

3) Calculate the matrix e
V defined in Eq. (.V.12c).

4) Using Eqs. (V.20a) and (V.20b) evaluate G (1) (y) anu C(2)(y)

for any y . This would arise in the numerical eva.Luarion of

~axis'

•	 5) Use Eqs. (V.23) and (V.24) to obtain 	 3 1) (y). This too

arises in the evaluation of P
^axis'

6) Add ~ arc to 
t axis 

to obtain the resulting P

The results of such a calculation will be presented in a paper

which will appear in the near future. Hopefully this method will prove

useful in calculating second-order density matrices of reasonable ac-

curacy for atomic systems. Certainly it represents a new and interest-

ing method which should be investigated a great deal more in future

years.

V. Conclusions

In this paper we have described in considerable detail the appli-

cation of Green's function techniques to the calculation of the second-

order density matrix of an interacting N-particle system. We derived an

•	 integral equation for the two-particle Greens funcLion,b which was re-

duced, after making the random phase approximation, to a matrix equation.

We then obtained an expression for the density matrix r involving a

contour integral of k . Evaluation of this integral was discussed.
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to-2/
In a future Paper will present the results of applying this method

to atomic systems. Although such calculations have never before been

carried out, we believe that these techniques will prove to be very

useful in atomic and molecular problems. The most appealing aspect of

Green's functions is that t'iey provide a means of directly calculating

reduced quantities without ever having to obtain an N-particle wave

function. Certainly this reason alone is sufficient to justify further

research.
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