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Generalized Rayleigh Methods

with Applications to Finding

Eigenvalues of Large Matrices

Section 1. Introduction

Since the development of the Sturm sequence method [10] and, later,
the OR algorithm (2], the computational problem of finding the eigen-
values and eigenvecfors of a symmetric matrix A 1is essentially solved
--provided A is not too large. In both of these methods, the matrix is
first reduced to tri-diagonal form. If A is extremely large, this
preliminary reduction may not be computationally feasible for several
reasons. First of all, it requires the use of the entire matrix in a
series of transforxrmations and no use can be made of sparseness or bandedness
--two characteristics of most large matrices which occur in applications.
Secondly, if only a few eigenvalues and eigenvectors are required (as is
usually the case), the reduction may take more time than is reasonable.
Finally, it often happens that physical considerations can provide rough
approximations to some of the eigenvalues or eigenvectors. The above-
mentioned methods cannot make much use of such information.

In [4], I. Erdelyi proposed a method for finding p eigenvalues and
eigenvectors of an n x n matrix A, where n 1is large and p << n. An
important feature of this method is that the only operation which involves
the matrix A itself is matrix-vector multiplication. Hence, A can be
stored on magnetic tape (or other auxilliary storage) and sparseness and
bandedness can be taken into account to reduce the amount of computation.
A major drawback, however, is the necessity of finding the roots of a poly-

nomial of degree p; a difficult problem for even moderate sizes of p.



In this paper, we present a theory of generalized Rayleigh quotients
which can be used to develop methods, such as Erdelyi's, for calculating
some of the eigenvalues and eigenvectors of large matrices. If X is an
approximation to an eigenvector of an n X n symmetric matrix A, then the

Rayleigh Quotient

(1.1) A =

is an approximation to an eigenvalue of A. Our generalization of this
concept involves the construction of a p ¥ p matrix B, where usually p << n.
The eigenvalues of B will be used to approximate the eigenvalues of A.
These eigenvalues are, in fact, Rayleigh quotients of A corresponding to
certain approximate eigenvectors which are determined by the eigenvectors
of B. The matrix B is obtained by restricting A to a p-dimensional
subspace H. If H is invariant under A, then the eigenvalues of B
are also eigenvalues of A. In general, of course, H will not be invariant,
and the accuracy of the approximations will depend on how "nearly" invariant
H is. This leads to the problem of constructing subspaces which are nearly
invariant, and the related problem of estimating how close a subspace is to
being invariant.

The problem of constructing invariant subspaces can be solved using
Bauer's Treppeniteration [l] or the method of Collar and Jahn [3]. (See
[8] for a description of these techniques.) Both of these methods, however,
employ a series of transformations which use the entire matrix A and hence

suffer from the same disadvantages, for large matrices, as does the reduction



to tri-diagonal form.

In Section 2, the eigenvalues and eigenvectors, which are determined
by a matrix A and a subspace H, are defined. We then consider a
gquantity VA(H) which provides a measure of how nearly invariant H is,
with respect to A. Using this measure, in Section 3, we derive error
bounds for the approximate eigenvalues and eigenvectors. Finally, in the
last section, two ﬁethods are discussed for finding subspaces which are
nearly invariant, and hence give good approximations. The first method is
a modification of Erdelyi's method while the second is an inverse iteration
method. Both can be used effectively on very large matrices.

Most of the discussion is restricted to symmetric matrices. Methods
for non-symmetric matrices, as well as numerical results, will be discussed

in later papers.



Section 2. Approximate Eigenvalues and Eigenvectors

Let Y ..,Yp be any set of p < n orthonormal vectors in En,

1"
Euclidean n-space. If H is the subspace spanned by these vectors,
and (Yl...YP) denotes the nxp matrix whose i-th column is Yi' then the

restriction of an nxn matrix A to H (which Householder, [8] calls the

section of A determined by H) is given by
(2.1) B = (Y ...Y ) A(Y....Y )
. 1Yy poee)

If A is Hermitian, with eigenvalues Xl > Az Zeerz Ay then B 1is also

Hermitian, with eigenvalues My Zeoeczomg which satisfy

2l .

T
(2.2) A, € u = min Z2Z ¢
P sem z'z P
and
2 AZ .
(2.3) Ay 2 My = max z A
1 L zem 2% n-pt+l

(See Householder [8], pages 75-76.) Furthermore, if the corresponding

elgenvectors of B are Zl' Zz,...,ZP, and we let

~
Xi = (Ylo..Yp)Zi

then
2T T T
XiAXi _ Zi(Yl...Yp) A(Yl'°°Yp)Zi
T T T
XiX Zi(Yl°°°Yp) (Yl"'Yp)Zi
27 B2,
iTi

=Uii 1= 1121--.P °



If we are given a p-dimensional subspace H, the above ideas suggest
the following definition.

Definition 2.1. ILet H be a p-dimensional subspace of En, p < n, and let

Yl,...,Yp be any set of linearly independent vectors in H. The pxp matrix

B which satisfies .
(2.4) 6 LY )T(Y Y )B = (Y Y )TA(Y Y )
. 1Y 1Yy 1Y 1Y

is called the restriction of A to H. The eigenvalues “1""'“p of B

are called H-approximate eigenvalues of A, and if Z is an eiéenvector of

~t
B, then X = (Yl...Yp)Z is an H-approximate eigenvector of A.

Note that (2.4) has a solution, since the Gram matrix [6]

(Yl...YP)T(Yl...Yp) is non~singular whenever Y ,...,Yp are linearly inde-

1
pendent. Clearly, the matrix B depends on the choice of the basis for H.

In fact, if this basis is orthonormal, then (2.4) becomes (2.1). Our first
result shows, however, that the H-approximate eigensystem depends only'upon

the subspace H.

Theorem 2.1. The H-approximate eigensystem does not depend upon the particular
vectors in H which are used to define the restricted matrix B.

Proof: Let'{Yl,...,Yp} and’{?l,..,,Qg} be two linearly independent sets of
vectors in H. Without loss of generality, we can assume that the first set

is orthonormal. Let T be the pxp non-singular matrix such that

(§l'°°§;) = (Yl°°"Yp)T° If B is the matrix defined by (2.4) using

'{§1f...,§g},'then



~ ~ T ~ Y ~ ~ ~ T ~ ~
e 9 @ ® 8 @ = ® ® A G.QY
(Yl YP) (Yl YP)B (Yl Yp) (Yl p)

hence
TITE = TT(Yl.s.Yp)TA(Yl...Yp)T
= TT(Yl...Yp)T(Yl...Yp)BT
=TT
sO

B = 7 ler

~Y
Thus B and B have the same eigenvalues, and their eigenvectors, Zi and

~ [d
Zi, are related by TZi = Zi' Hence,

g ~ ~ e
(Yl...Yp)Zi = (Yl...Yp)TZi = (Yl...YP)Zi

which implies that B and B produce the same H-approximate eigenvectors.
A consequence of this theorem is that any H-approximate eigensystem
can be obtained using an orthonormal basis for H. In particular, for A
Hermitian, formulas (2.2) and (2.3) must always hold, and furthermore, we
can assert that the H-approximate eigenvalues and eigenvectors satisfy
T

X.AX,
i 1

(2.5) U, =
1
XX,
1 1
In order to derive error estimates for these approximations, we introduce

the following notion.



Definition 2.2. Let A be an nxn matrix, H a p-dimensional subspace of

En, p < n, {Yl,,..,YP} an orthonormal basis for H, and P the projection

of E' onto H. The variation of H under A is the non-negative number

@ =3 el®y
v_(H) ={ }
A W &

where
(2.6) '% = (I-P)av,, k = 1,...,p .

(The norm we use here, and throughout this paper, is the Euclidean norm
1/2
T
Izl = &%) .)
We will occasionally omit the reference to A and write simply V{H).
In order for this to be a proper definition, VA(H) should not change
if we use another orthonormal basis for H.
Lemma 2.1. The value of VA(H) does not depend upon the choice of orthonormal
bases for H.
. Vo
Proof: Let {Yl"°°'Yp} and {§1'°°"Yp} be two orthonormal bases for H.

Let € and % be the corresponding vectors defined by (2.6). Then there

k
is a pxp orthogonal matrix T = (tij) such that
p ~
v, = Zti.,y_,
521 11773

hence



p
T
kzlekek

b
3 ledl?
g

p
) Y:AT(I—P)AYk
k=1

P p
Yy () tk.Y?}AT(I—P)A{ § tk.§.}
k=1 j=1 *J J j=1 KL L
P p P

~ () tk.tki)§?AT(I—P)A§i
j=1 i=1 k=1 "7 J

p Por
y Y?AT(I—P)A§i
j=1 -

il

b 2
[

Thus, the two bases produce the same value for VA(H).

An alternative expression for €’ which uses the restriction of A

to H, is given by the following lemma.

Lemma 2.2. Let Yl'°°°’Yp be an orthonormal basis for H. Then equation

(2.6) can be replaced by

P
(2.7) g =AY - izﬁbik Y,

where {bik} are the elements of the matrix defined by (2.1). That is,

T
b, = YiAY

ik k °
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"

P § .
Proof: AY. - Zlb. Y, = Ay - i=l(YiAYk)Yi

I

T
Ay - Y. Y.A
k E ii ¥

k

|

T
(1 g Y Y)AY,

it

(I—P)AYk = ek .

Formula (2.7) can also be written in matrix form as

(2.8) A(Y...

1 .YP) = (Yl....YP)B + (el...ep) .
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Section 3. Error Estimates

The classical Ritz method for finding the eigenvalues of a self-
adjoint linear operator L, on a Hilbert space X, involves finding

a sequence of finite dimensional subspaces xl, X2,..., with
xlc.xzc: e & X

and X, > X. If the restriction of L to X, has eigenvalues

k
A () P Kék) 200032 Xﬁk), and 1 has eigenvalues Kl b Kz % ... then
1

it can be shown (see Gould [7], page 133) that
1m A% 2
k>e

For a fixed k, however, it is difficult to obtain bounds on the error

k .
|A§ )-Ail. Our next theorem gives a result of this type, for the simpler

case of X = En.
Throughout this section, let A be an nxn symmetric matrix, H a
p~dimensional subspace, and Yl""'Yp an orthonormal basis for H.

Theorem 3.1. Let “1"“’“9 be H-approximate eigenvalues. For each k,

1l ¢ k < p, there is an eigenvalue Ak of A with
(3.1) g = | s 7,8

Proof: Using (2.8) we have

]

AX = A(Yl...Yp)Zk

X (Yl...YP)BZ

X + (el...ep)zk

uk(Yl...Yp)Zk + (sl...sp)zk

ol

X o+ (el..,ep)zk '

kk
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hence
(3.2) (A—ukI)Xk = (€ ...sp)z

By a well-known estimation theorem ([9], page 141) there is an

eigenvalue Ak of A with

l|(e «..€ )2 H
1 p’ k
3.3 X < .
(3.3 R 4

Now, we may assume HZkH = 1, in which case, letting Zk = (El,...,EP)T,

we obtain

~ 2 2 _ % 2 % _
I8N = e vz —lli=l£iYiH =g I°=1.
Furthermore, if e; = (Eil""'ein)T' i=1,...,p, then
n
[Ceyeee gz l” = El(ggleJl 3
1323
< €. £.)
i=1 j=1 I* 3=1
L% 2 R 2 2
= 301 eji) ) EJ = ) |es” = vim? .
3=1 i=1 j=1 j=1

Combining this with (3.3) proves the theorem.

A corresponding result for H-approximate eigenvectors is not possible,
since it is known that error bounds for eigenvectors must depend upon the
separation of the eigenvalues. Using a standard theorem as given, for

example, in Isaacson and Keller [9], page 142, together with the inequality

| a-u, D% || < vam
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obtained in the previous proof, we can state the following result.
Theorem 3.2. Let A have eigenvalues xl,..,,xn and let
a = min{lxi-le : Ai # Aj}. Then for each H-approximate eigenvector %;

there is an eigenvector Xi of A with

vV (H)
3 .

”?(‘i—Xi” g

If d 1is of the same magnitude as V(H), then clearly this bound is not
of much use. 1In the next section, we will consider two methods for finding

sequences of p-dimensional subspaces Hl' H2,... for which V(H, ) - 0. The

k
above theorem can then be used to conclude that the Hk-approximate eigenvectors
converge to eigenvectors of A. In order to gain some insight into the
rates of convergence of the approximate eigenvectors and eigenvalues, we

next consider some asymptotic error estimates.

. . k . . .
We will say that a vector Y(c) is an O(e ) approximation to X if
k
[Y(e)-X| < ce

for all small € > 0, where c¢ 1is a constant.
A simple rephrasing of Theorem 3.2 results in:
Theorem 3.3. If VA(H) = O(e), then the H-approximate eigenvectors are 0({e)
approximations to eigenvectors of A.
The converse of this theorem is also true.
Theorem 3.4. If Y ,...,Yp are 0(e) approximations to p distinct eigenvec-

1

tors of A, and if H 1is the subspace spanned by Y ,...,Yp then VA(H) = 0{e).

1
Proof: Let Y, = X, + W, where AX, = A _X. and||W.|[ = O(). Then by formula
e 1 1 1 i - 11 1

(2.6),
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I

e, = (I-—P)AYi (I-P) (Aixi+AWi)

]

(I-P) (A, Y.=A.W, +AW,)
- i 1 1

]

(I~P) (A=A, )W, .
im

But then

1/2

R 2
{iZlH(I-P)(A-in)WiH }

1/2
-l € laon, ol 2hw 1123
i=1  * *

v, ()

A

1/2
|| z-2ll{ § HA—xixnz} Ole) = Ole) .
i=1

For the H-approximate eigenvalues, we can cobtain a better result. In
fact, it is known (see Fox [5], pp. 279-280) that if % is an 0{(e)-approxima-
tion to an eigenvector of A, then the corresponding Rayleigh gquotient is
an 0(52)—approximation to an eigenvalue. We have shown in Section 2 that
the H-approximate eigenvalues are Rayleigh quotients corresponding to the
H-approximate eigenvectors. Combining this with the previous theorem gives
our final estimate.

Theorem 3.5. If VA(H) = 0(e), then the H-approximate eigenvalues are 0(62)-

approximations to eigenvalues of A.
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Section 4. Methods for Finding Invariant Subspaces

In this section, we consider two methods for finding a sequence of

subspaces H., H. ,..., such that VA(Hk) + 0. The first is a modification

0" "1
of the following method, proposed by I. Erdelyi [4], for finding the
p eigenvalues of largest moduli and the corresponding eigenvectors.

et Y be an érbitrary vector, and let ¥, = AYk—l’ k=1,2,...,p.

0 k

If Y0 is contained in a p~dimensional invariant subspace H, then
Yo,...,Yp are in H, hence they will be linearly dependent and there will
exist constants ao,al,...,ap, not all zero, such that

. ‘ + ces = .
(4.1) aOYO alYl + + Yp 0
The polynomial
(4.2) P(x) = a. + a.X +...+ vt

(6] 1

is an annihilating polynomial for A, hence is a divisor of the character-
istic polynomial. The roots_xl,...,xp of (4.2) are eigenvalues of A, and

the corresponding eigenvectors are given by

A
(4.3) Xi = aOYO + ulyl S Qp—lyp—l

where Ayreeer0 are defined by

p-1

Px) _ 1
=y = oyt X+t qp_l .

If YO does not lie in an invariant subspace, we will not be able to
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satisfy (4.1). In this dase, determine ao,....,ap_l to minimize the
expression
(4.4) ”aoyo +ay, oot Yp“ .

This leads to the pxp linear system

(4.5) a Y?Y + a Y?Y
i i

0 0 1

T .
1 Fooot Yti =0, i=l,...,p .

The solution to this system is then used to form the polynomial (4.2).
The relation of this method to our previous discussion is given in the

following theorem.

Theorem 4.1. Let Y0 be an arbitrary vector, and let Yk = AYk-l’
k=1,...,p. If H 1is the subspace spanned by YO""'Yp-l' then the

H-approximate eigenvalues are identical with the approximations obtained
from Erdelyi'’s method. Moreover, aside from a scalar factor, the
corresponding approximate eigenvectors are also identical.

Proof: The restricted matrix B, defined by (2.4) can be shown to have

the form

0 0 0 b,

1 0 0 b
B = 0 1 0 b,

0 0 e 1 b

where (b, ,...,;b ) is the solution to
‘ 0 p-1
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T T T T
+ +tooat = =
Y Y by + Y, Ylbl ¥iY Py = LAY = YY)
i=0’l,ooop-l ®
Thus, bi = -ai, i=20,...,p-1 where ao,...,ap_l are defined by (4.5)

Moreover, the matrix B 1is in companion form and hence its characteris-

tic polynomial is

- - — - . p—l -
bO blx oo bp-lx + X 0

‘which is identical with the polynomial obtained by Erdelyi. To show that

~
the two methods produce the same eigenvectors, let Xi = (Yo,...,Y

p-1%3

where BZ, = u.2.. Then
i i7i

A~
(A—piI)xi = (A-uiI)(YO...Yp_l)Zi

= (Y1Y2...YP)Zi - ui(yo...yp_l)zi

= (Y1Y2...Yp)Zi - (Yo...YP?l)BZi
(Y.Y....Y )2 (Y.¥....Y ¥

= (Y¥,...¥ )2, 1Y e P_lyp)zi

here Y b b
where Yp = bOYO + lYl +.0ot P_lYP_l. Hence,
s
(A-p, D)X, = EiP[Yp—bOYO—...—bp_lYP_l]

E (aoY0+alYl+...+YP)
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where gip is the p-th coordinate of Zi' From the from of B, it is
easy to verify that Eip # 0 for all i. Moreover, the eigenvector

produced by Erdelyi's method satisfies

A
- = + +ouo ;
(a uiI)Xi aOY0 alYl + YP ;

thus, if ui is not an eigenvalue, then apart from the factor gip' the
vectors are identical.

This theorem, together with Theorem 2.1, shows that we can obtain
the same results as Erdelyi by orthogonalizing the vectors YO""' p-1
and then finding the eigenvalues and eigenvectors of the pxp matrix
B = (YIAYj). Notice that if A is symmetric, then so is B, and hence
the QR method can be applied to B. Thus, the problem of finding all
roots of a polynomial of degree p 1is replaced by the simpler problem of
finding the eigenvalues of a pxp symmetric matrix. The orthogonalization
also eliminates the need for solving the pxp system (4.5).

To obtain better approximations, Erdelyi recommends repeating the

process, starting with a new vector Y, which is a combination of the

0
approximate eigenvectors that have just been found. Our invariant subspace
approach, however, indicates that a better procedure is to use, as the new

~r ~r ~ ~
subspace H, the space spanned by the vectors Axl,...,AxP where Xl,...,Xp
are the H-approximate eigenvectors. This leads to the following method

for finding the p largest eigenvalues, and corresponding eigenvectors,

of an nxn symmetric matrix.
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Modified Exrdelyi Method:

. k
Let YO be an arbitrary vector, let Yk = A YO' k=1,2,...,p~1,

O,...,Yp_l

let Hk+l be the subspace spanned by the vectors A§

and let H_, be the space spanned by Y

0 . For k=1,2,...

1'°"’A§£ where

Lad

Xl,,..,§£ are the Hk—approximate eigenvectors.

Theoxem 4.2. If Yb is not orthogonal to the subspace spanned& by the

eigenvectors Xl,...,Xp, of the symmetric matrix A, which correspond to
eigenvalues Al,...,AP where Ikll 2 [Azl 2o IAPI > lxp+l| Zeae2 |An|,
then the subspaces H,_ produced by the Modified Erdelyi Method satisfy

k

e K
Vat) =of| Ay | .

Proof: Any Hk+l—ap§roximate eigenvector lies in the space Hk+1’ hence

Lad ~ L
is a linear combination of Axl,...,A§£, where Xl,...,xP are Hk-approximate

eigenvectors. By induction, it follows that Hk+l is spanned by the vectors

k+1 . i . .
A Yi' i=20,1,...,p-1 where Yi = A"Y . That is, Hk+l is spanned by

0
k+1 k+2 k+
(4.6) A A N AR PYO.
n
Now, if Y. = ) n,X,6 then
0 [t}
2=1
k+i § k+1
Aty = Ynoaoox
o~ LM e
. P A k+i n A k+i
k+ 2 %
=) bt X ¥ n, b3 ) X,
P =1 P L=p+1 P
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Hence, Hk+1 is spanned by the vectors Zi' i=1l,...,p, where

(4.7) Z, = § o, X + W, ,
i 4=1 i 8 i

A k
- ol
gl = o |27y
P
We may assume the vectors Zi are linearly independent, (otherwise
V(Hk+1) = 0), in which case, for large k, the matrix (aiz) is non-singular,

and (4.7) can be inverted to obtain
X2 = .5 Bmizi + VQ
i=1

A k p
i = P+l
where again we haveIIVQH o¢ l Xp | ). The vectors izlslizi span Hk+1’
so by Theorem 3.4 we conclude

: A2+1 k
VH ) = ol | o 1

which proves the theorem.

This method can be considered to be a p-dimensional power method.
Closely related to the usual power method is Wielandt's inverse iteration
{8], and we now discuss a p-dimensional version of this.

Let A be an nxn symmetric matrix, with eigenvalues Al,xz,..,,xn,
eigenvectors Xl"”'xn' Suppose Yl""'Yp are O(¢) approximations to

Xl,...,XP; i.e.,

HYi - Xﬂl = 0(g) .
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Then Theorem 4.2 impiies V(H) = 0(eg), where H 1is the subspace

spanned by Yl,...,YP. Let ul,...,up be the H-approximate eigenvalues, and

~

Xl""'ip the H-approximate eigenvectors, and let
4 v a-p. 1) %

o d
where we assume here that ] is not an eigenvalue. The subspace H

spanned by Y ..,?;,will be called the subspace obtained from H by

1’

inverse iteration.

If p = 1, then we have here the inverse iteration~Rayleigh quotient
method ([11], pp. 635-636). Since each iteration requires solving an
nxn system, this method is not often used. On the other hand, the conver-
gence rate is cubic [11l], and hence it can be a useful method, provided
éood approximations are already known. In the more general case where p > 1,
each iteration requires the solution of p 1linear systems of orxder nxn.
Thus, we have here the same disadvantage as in the p = 1 case. The next
theorem shows however that the cubic convergence also holds for p > 1.
Theorem 4.3. If H is the subspace obtained from H by inverse iteration,

then V(H) = 0(g) implies
v = o(ed) .

Proof: The H-approximate eigenvectors xi are 0(e) approximations to

eigenvectors Xi’ i=1,...,p, and for small ¢,

n-w | = ote?), i =1,...,p



- 2] -

~
where ul""'“p are the H-approximate eigenvalues. But Xi =X, + Z,

i i
2 1/2 ~
where z, = z gikxk’ { z gik] = 0(g), and H is spanned by the
| k#1 k#1
vectors
A N ot A A -]
Yo = Q=Y. = O -u) (A-u, 1) "X,
_ _ _ -1 _ -1
= Qmu ) [OG-u) 778+ ) £ O muy) T K
k#di
=%, + T, Q)0 ) K .
i ,Cik i TiT Tk Ti k
k#1
A
If Ai # Aj' j#1, 1 < 3Jj < p, then we have Yi = Xi + Wi where
1/2
2 -2 2 3
Nwdl = €1 e O "0 =0 .
k#L
If Ai = Aj' for some j # i, then we write
To= %, +E L O O T, ¢ T e O, O X
i i ijvi vi 3 "i 3 ik L TiT Tk i k
k#1
k#j

= X! + W,
i i
where Xi is an eigenvector, and
3
Jl = 0(e .
Hw il = ote™)

Hence, by Theorem 4.2, V(H) = 0(83).
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