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ABSTRACT

This report represents an analytical study of several
processes relevant to the structure of moderate altitude
rocket exhaust plumes. The work covers am analytical framework
for a viscous and chemically reacting plume; the Mach disc,
the mixed flow problem,and condensation effects.

The contractors report number is GASL TR 737.
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NOMENCLATURE

area
speed of sound

- defined by Eq.  {12)

defined. by Eg. (14}
defined by Eqg.. (1l6)
defined by Eqg. (13)
total enthalpy

t
static enthalpy (sensible + chemical) of i &

0 for 2-diménsional flow

1 for axisymmetric flow

lLewis Number

length along c¢haracteristic

Mach number

Prandtl number

pressure

velocity modulus

y ordinate

entropy

static temperature

time

viscosity or streamline velocity componewnt
lateral velocity component th
chemical production term for i = specie
streamwise coordinate

lateral coordinate

mass fraction of ifh specie
specific heat ratio
characteristic direction
flow deflection angle
density

surface tension

tan @

stream function

Superscript

*

sonic condition or critical droplet state

Subscript

Z opun e g )

centerline

supersonic externzk flow

subsonic internal flow or initial state
jet or nozzle state

condensate

normal shock

ix

specie



s shock

T.p. triple point .

t,0 stagnation state

v vapor

Voo saturation state

(e o] undisturbed environmental state

Additional symbols defined locally within the text.



I. INTRODUCTION

The description of rocket engine .exhaust plumes has long
been of interest because of a variety of important problems
associated with the plume flow field structure. These problems
involve a number of mechanisms which in the most general case,
are coupled together within a framework of chemical and fluid
dynamical processes. Radiation and convective heating of the
vehicle and surrounding structure, communication and detection,
impingement and contamination constitute the bulk of these
problems™" "'~

The main characteristics of an axisymmetric moderate
altitude rocket exhaust flow field are shown ‘in’ Figure 1. The
vehicle velocity is supersonic and the exhaust is underexpanded
at the exit plane, leading to a *1lip" shock whitch starts at
the trailing edge of the nozzle. Often there are one or more
nozzle shocks (not shown) which are caused by compression from
the nozzle walls. The expansion waves at the trailing:edge
reflect as compression waves of the opposite family, often
coalescing to form the intercepting (barrel) shock. The strength
of the intercepting shock increases downstream due to further
reflected waves which may be further enhanced due to the axi-
symmetric focusing effect. Downstream, the triple point-Mach
disc configuration will introduce an imbedded region of sub-
sonic flow. At the triple point a slip line contact discontinuity
is formed and the intercepting shock is reflected as a shock of
the opposite family. '

Depending on flight and nozzle exit conditions, mixing
between the ambient and exhaust gases can significantly affect
the gross as well as the local properties of the flow. If the
fuel has not been completely burned by the time it reaches the
exit plane, it will then form a potentially combustible mixture
as it mixes with the high speed air.

Thus, the plume problem involves a complex coupling of
inviscid and viscous phenomena which in general includes the
-effects of combustion kinetics.

The purpose of this report is to describe some analysis
.and computational capability required for the prediction of
such moderate altitude plume .flow fields.



A. Status of Previous Plume Flow Programs

1. TInviscid Flow Field - The supersonic inviscid plume
flow field for perfect, frozen, or eguilibrium gas mixtures can.
be accurately and economically computed using the method of
characteristics, and there are many such computer programs in
existence, though few have the intercepting shock structure.

The inclusion of finite rate chemistry in the usual fashion
introduces economic limitations because the integration of the
species production terms along streamlines by standard techniques
such. as Runge-Kutta- lead~to-exceeding=y long computing times.

In 1965 a major advance on the problem was made by G.. Moretti4.
Subseqiént modifications and improvements 5,6 in Moretti's. solution
technique have extended even further the ability to solve complex
chemical kinetics problems accurately while maintaining feasible
running times. '

The problem of the interaction between the subsonic-super-
sonic regions downstream of the Mach disc is’itself complex but
in certain cases can be treated by invoking a quasi-one-
dimensional streamtube approximation for the subsonic flow,
once the triple point location has been determined. These
problems are discussed in later sections of this report.

. 2. Viscous Effects - The simplest and most common
means of including viscous effects is to first determine the
jinviscid flow field. and then to solve for a shear layer along
the streamline which separates (in the inviscid solution) the
exhaust gases from the external stream. This presupposes, of
course, that the mixing layer remains relatively thin and that
mixing effects do not significantly alter the inviscid field.-
However, when the mixing layer spreads significantly, it is not
reasonable to lay a mixing analysis over an inviscidly computed
flow fiéld. However, the work in References 7, 8 and 9 have
presented the basis for the treatment of such flows having
simultaneously, (i) appreciable lateral pressure gradients,
(ii)} viscous effects over appreciable lateral dimension, and
(iii) non—equilibripm chemistry.

3. The Viscid-Inviscid Analysis - The above analysis
has been under.development for a number of years and detailed
in Reference 9. Basically, the idea is to consider those flows
in which both inertia and viscous forces affect the pressure
field while transport effects are of the boundary Iayer type :
thus, an initial value formulatiomn is appropriate. The Navier
Stokes equations are approxXimated in a manner suck that the
complete Euler terms are retained, while the wviscous and heat

-



conduction terms are approximated in the same way as is usually
done in classical boundary layer analyses. The method of
characteristics - is used to obtain a pressure-streamline de-
flection relation which includes the transport and species pro-
duction terms in the inhomogeneous part of the compatibility
relations along characteristics. The energy, streamwise
momentum, and species production equations are integrated along
streamlines after the pressure .gradient has been determined from
the characteristic computation.

At GASL, Edelmansvand-weilerstein9 applied this technique
to- the solution of the supersonic plume’ of an underexpanded
exhaust nozzle, among other configurations. . That computer pro-
gram, which included finite rate chemical effects did not have
the capability of computing the internal shock structure and
was limited to the hydrogen-air system.

B. Specific Objectives of This Effort

The following sections describe the modificationz and
extensions of the above computer program to. include the internal
shock structure. Detailed treatments of the Mach disc and
transonic flow problems are alsoc presented.

—3-



I, DISCUSSION OF THE PROBLEM

A. Required Modifications of Existing Program

-This section will describe -tne amportant aspects of the
general problem and how these relate to- the work performed on
this effort. This involves the inclusion of the intercepting
shock, triple point-Mach disc; reflected shock, and transonic
flow region solutions in the GASL MOCV computer program*.

Because the MOCV program developed by Edelman and
.Weilerstein contained no internal shock structure it was
necessary to consider the following elements: (1} initial
detection of the intercepting shock; (2) inclusion of the
intercepting shock computation in the basic computer program;
(3) determination of the triple point location; (4) solution
of the triple point-Mach disc configuration; (5) inclusion
of the reflected shock computation; (6) solution of the tran-
sonic flow downstream of the Mach disc. There are no
fundamental difficdulties associated with 1, 2 or 5 and they
will receive.no further attention in this section. 3, 4 and
6 all have associated with them fundamental problems which need
additional discussion.

B. The Triple Poinfwmach bisc

At the inception of this work, no one had, as yet,
developed a completely satisfactory criterion for locating the
triple point, and our initial intention was to make the computer
program as flexible as possible by chluding as options each of
the three most well known theories 11, However, during
the course of this work, a self-contained theory was developed
which is firmly grounded on the basic interaction which
determines the triple point location. As this theory was being
developed, the usefulness of including the other three theories
as program options diminished, and currently the triple point
location is a datum.

Once the triple point has been located, it is necessary to
obtain its configuration and that of the Mach disc. For the flows

* Reference will be made to the method of solution as the
Method of Characteristics with Viscosity {(MOCV} &nd to the
associated computer code as the MOCV computer program.



we are considering, the triple point solution seems always to
correspond to that shown in Figure 2, at least so long as no

one does not consider scales on the order of the shock thickness
or less. . )

c. The Transonic-Fiow

The transonic flow downstream of the Mach disc also
needs to be given special attention. For small to derate-sized
plumes, the core region is grossly one-dimensional (see Section VI}
and a quasi-one-~dimensional streamtube approximation is remarkably
accuracte over a wide range of nozzle exhaust conditions for
supersonic plumes in a static ambient. The effect of the superscnic
flight velocity is to shrink the lateral dimension of the plune,
making the one-dimensional approxXimation for the core region
even better. Alsb, viscous effects are neglected in the subsonic
region and along the slip line vwhere pressure/streamline-deflection
effects predominate (the velocity difference across the slip line
will ordinarily be guite small). So, in this effort, the transonic
region is treated quasi-one-dimensionally, inviscidly, with an
inviscid matching along the slip line. '

The quasi-one-dimensional flow has associated with it, a
pressure-area relationship while the supersonic outer flow is
characterized by a pressure-streamline deflection law. ' In order
to match along the slip line we must tie these two relations
together, to match them. This is done by relating the slip line
ordinate with its slope as sketched in Figure 3.’

Consider everything known at some station X - Then to
march ashead, we have, along the slip line,

D= pe(G) from the supersonic side {la)
p = pi(y) from the subsonic side {1b)
¥y = v(8) from analytic geometry and ‘1c)

differential calculus
Putting {(lc) in (la) gives
p = pe(y) from the supersonic side (la')

The matching involves, at a specified x, finding y(x]} such that

Pe(Y(X)) =P, (y(=)).

—5-



So long as we are not near the place where the interior
flow becomes sonic, we. can expect to be able to march ahead,
determining the slip line shape and axial pressure distribution
from the indicated matching. Near the sonic point we can expect
nunerical difficulties because of the change in sign of the
derivative of the area relation for the inside. This difficulty
is best illustrated by differentiating (la) and (1b) to get,

along the slip line,

dp
e _9¢8p 48 dy from the outer flow (2a)
ax de dy dx

dp, dp.
i _ i gy -
ax = 3y ax from the inner flow {2b)

Now as we proceed through the sonic point of the inner flow,
dp /dy changes sign. If we had been able to solve the flow
upstream of this point exactly (including the triple point -
Mach disc solution), we would £ind that dp /dy changes sign
(actually d8/dy) at the same abscissa as does dp./dy. But we
cannot hope for such accuracy, and we must expeci in the
numerical solution, the changes in sign of dp /dy and dp, /4y
to coccur at different abscissae, say x* and x* , the dl%ference
depending on the accuracy of the solution. The result will be,
of course, difficulty in converging in the interaction for the
matching along the slip line.



III, ANALYSIS

In this secticn we will first write the equations which
comprise the MOCV analysis, Details can be found in the report
by BEdelman and Weilerstein®. Then, we will explain the splitting
of the equations into "hyperbolic" and "parabolic" groupings
indicating how each group is solved.

The Ecquations - We are considering axisymmetric flows and
denote the axial and radial coordinate directions by (x,y)
respectively. After non-dimensionalizing and dropping higher
order transport terms, in intrinsic coordinates the describing
equations are: )

Global Continuity

(o) + 1%2 sin @ + pge_ =0 (3)

S—-momentum

_ 13,30y
Pg q, +pg = 3 Cemp 20 1) (4)
n-momentum
29 + =0 5
pa e, + P = (5)
Species Continuity
y 1 3j Le
= — = (o
pala,) ﬁwi+rj be? p oo (@) 1) {(6)
Energy
et = L B FEP SR
paH = =Tr" o= Bl o+ L Pr)u(q /2) 1.+
r r )
(7}

1. e B
+ 3 z Lte-1)r” 5= h. () ]
i



where

2
H = ? aihi(T) +.9 /2 (8)
1

P

p = a (9)
RT % 'ﬁ'—

i i

hi =h, (ai,-r) (10)

These equations are combined to yield two compatibility equatibns,
relating changes in p and O,

dr dp
e = 11
artP g TEs , (1)
1+ 72 :
b = ——"2—1-— T+ = Tan 8 (12)
pg Tan €
(l+'r2 sin € 1) cos 8 i F
.—l—--—— —_— ——— - — 14 — +
= [pq (H_ =+ v H ) P { q2 ){qnn
(13)
g cos O D, .
+ n }—2h.D.+pRTF E ﬁL_FSLnG}
¥y o i 11 P i i y.
u cos & &'
p= g o+ B FEE g4 4+ % (14)
i ad inn fole} v in q

one along each of the two characteristics respectively inclined
at the angles + € to the streamline direction. The € are

given by

Tan ¢, , =t/ 55 T 7 (15)

where

(16)



. . - th .

W, represents the rate of production of the i specie as a
résult of.chemical reactions and is a known functlon of species
concentratlons,-temperature, and den51ty.

Equations (3) ~ (10) comprise eight equdtions* for the eight
dependent variables, P, p. T, H, 'h, Q, 9 al. 0f the five partial
differential equations, Equations (3) - (7), the two compatibility
equations (Equation(ll)), are used in place of the global
continuity and the normal momentum equations, and comprise the
"hyperbolic" part of the system. Then the streamwise momentum,
energy, and species continuity equatlons, {BEgs. {4), (6),(7) )
integrated along streamlines, comprise the “parabolic® part of
the -system. They are solved by an explicit finite difference
p:béedure, as are the characteristic compatibility equations.

Consider the solution to be known at some axial station x,
as sketched in Figure 4. Then a characteristic mesh can be
drawn, as indicated. Associated with this mésh is a minimum do-
main ,Aﬁﬁ,:of influence,

First the compatibility equations are solved on the
characteristic mesh (with uneven axial spacing). Then, by
interpolations on p and 8, the ordinate, inclination, and
pressure at x + Ax Of the streamlines originating at mesh
points at X are determined. With the now known pressure
gradient the parabolic part of the system is solved in order:
streamwise momentum, energy, species continuity.

* For convenience we will refer to all the species continuity
equations as one eguation.



IVv. DETAILS OF THE MODIFICATIONS OF THE MOCV PROGRAM

In this section we will present the details of the
analysis as well as of the required changes to the MOCV
computer program. As mentioned before, the computer program
used by Edelman and Weilerstein®, was a basic program which
established firmly the computational feasibility and usefulness
of the basic MOCV concept outlined in the introduction. Some
of the changes necessary to bring the MOCV computer program
beyond this state are included in the following discussion.

A. The Expansion at the Nozzle Exit Lip - Starting Line

When the underexpanded exhaust gases reach the nozzle
exit lip, they expand due to the lower external pressure (Figure l).
Locally, this expansion, which is inviscidly dominated, is a
prandtl-Meyer expansion. The exhaust gas streamlines turn into
the external air stream, which is directed in the axial direction
just upstream of the lip. An obligue shock is required to turn
the external stream, since it cannot continue on its way due
to the interaction with the exhaust gases. At the lip, the
shock and expansion strengths must match so that the pressure and
flow direction of the external and. exhaust streams are compatible.
In a purely inviscid flow, a slip line (contact discontinuity)
would separate the two flows downstream of the lip. In our case,
where we are including mixing of the two streams, we will refer
to the streamline corresponding to the inviscid slip line as the
separating streamline (SSL).

Edelman and Weilersteing, accounted for this expansion-
shock structure, and the pertinent equations are presented in
their report. ' However, in continuing downstream of the exit
plane, they did not include the local details of the Prandtl-
Meyer expansion in that computation. Consider the following
schematization in Figure 5, of their finite difference grid at
the exit plane and the immediately subsequent axial station.
point K at the initial station n = 1, has the pressure and
flow direction determined by matching the shock and expansion
strength (see above) and has the state associated with the
chemical properties of the ambient gas.

The next lower mesh point k = X1 is a2 regular exhaust
nozzle point. Although locally not very detailed this finite
difference is adequate for flow field computations not involving
the detection of an intercepting shock. However, to compute an
intercepting shock caused by the reflection, of the expansion
waves off, essentially, the separating streamline, requires a

-10-



considerably more detailed treatment in the local near region.
Such a procedure is illustrated in Figure 6. The expansion fan
is divided into a number of intervals in the usual fashion for
characteristic computations. In making the first axial step,
the points K-I through K-1 are treated as a simple wave with
frozen chemistry, All the other points are computed in the
unsual manner. The initial step is kept small enough so that,
for the purpose of these computations, the simple wave approxi-
mation is adequate.

B. Detection of the Intercepting (Bariél) Shock

The intercepting shock is formed by the coalescence
of compression waves resulting, basically, from the reflection
of the lip expansion waves from the dividing streamline*, In
a standard method of characteristics computation, it is easy
to detect an envelope shock by the crossing of characteristics
of the same family, in this case the right running(upper half
rlane) or first family characteristics. However, our
characteristic mesh is redefined at each axial station, and
a number of interpolations on the local characteristic grid are
performed during the normal course of the computation. By
the very nature of the computational procedure, it is impossible
to detect the shock by the crossing of two first family
characteristics originating from regular mesh points at a
given axial station.

Since this situation results from the fact that the
computational grid is established according to streamlines rather
than characteristics, one solution is to superimpose a
‘regular characteristic grid on the basic computational mesh,
Figure 7. The characteristic mesh is composed of all the first
family characteristics originating at either initial mesh points
at the exhaust plane or regular mesh points on the lip shock.
Thus, we can identify and follow downstream a number of distinct
first family characteristics. When two of these characteristics
cross we will have detected the "beginning" of the intercepting
shock.

* The shock can be formed by other means, also, as by non-
uniformities in nozzle exhaust properties, even when the exhaust
pressure is balanced with the external pressure.

-11-



An alternative technigue is to scan across the flow field
to determine the maximum positive lateral pressure gradient. The
intercepting shock is initiated at the point of maximum lateral
.pressure gradient when it exceeds a specified value. Aalthough
the details for both techniques have been worked out it is the
latter that has been implemented in the MOCV program. In particular,
the pressure profile is scanned and if the pressure shows a rise
such that AE)/pm. z .1 between two grid points, a shock is
initiated there.

c. Intercepting Shock Computations

. Once we have detected the existence of the intercepting
shock, it is necessary to include this shock in all subsegquent
computations downstream of its inception. Basically, this

leads to a fairly standard method of characteristics treatment
of a supersonic flow field with an embedded shock, except that
we are working with a modified characteristic mesh and are
including certain viscous and heat conduction effects. Now,

the modified characteristic mesh actually simplifies the
computational procedure considerably in the presence of imbedded
shocks. Viscous and heat conduction effects are a complication
since the integration of the "parabolic" equations along stream-
lines requires a knowledge of certain derivatives normal to the

streamlines (e.g., 99 Ipn’ th, ain). Near the imbedded shock

it becomes difficult to evaluate these terms since most of them
are not continuous at the shock. In such cases, when we must
evaluate these terms for a streamline whose mesh point is

just adjacent to the shock, we use their-values at the next
adjacent mesh point on the same side of the shock. This
approximation seems justified because, in the neighborhood of

the shock, the changes due to the shock should dominate those due
to viscous and heat conduction effects (excluding those within

- the shock), so any loss in accuracy from these extrapolations
should have "higher order" effects,

The calculation procedure is as follows, (refer to
Figures 8a and 8b):

Consider the flow, including the shock angle, to be completely
specified at some station x,. There are two mesh points (ks,n)
and (kgt+l,n) located on the shock; one on the upstream side, the
other on the downstream side. The unknowns are the ordinates
Y+l of the shock, the shock slope, and the conditions on its
upstream and downstream sides. To obtain this information, first
the.ordinate of the shock point (kg,47) at Xp431 is determined
by using, the shock slope at xp and the already determined step size

-12-



BX = Xp.1-%,. The conditions in front of the shock (kg,n+l)

are obtained by a regular characteristic streamline computation,
interpolating on the data at x = X, to get the required data at points
A,B, and C, Figure 8b.

Then the Rankine-Hugoniot jump conditions are simultaneously
solved with the compatibility equation along the- first family
characteristic, DF, yielding the shock angle and the conditions
behind the shock at point (kg+l, n+l1).

Letting subscripts 1 and 2 denote conditions on the
upstream and downstream sides of the shock respectively, g
denote the modulus of the velocity vector, 6gs the angle the
shock makes with the incident x (upstream) flow, and T the
streamline slope, the jump equations are (for species frozen
across the shock):

vtl = 9 cos es velocity components (17)
normal and parallel
. i t
v = q, sin s % to the shock (18)
oy s )
v = v (1%9)
t2 tl

(o), = (&) (20)

2
Py =Py +pyv, . (1-P/p,) (21)

1

1 2 2
h, =h, +3 vnl[l—(pl/pz) ] (22)
T2 = Tz(hz,(ai)2 ) (23)
/ 3
v, =/ 200, ~hy)+v (24)
2 1
6 =0_ - tan~t (v, /v ) , the turning angle (25)
2

-1

Ty, = tan (tan Tl - §) {26)
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The unknowns are : pP,, P,r Ty, By, Vnz, (@), Tor 8. 8, vtz
Equations (19)~-(25) are eight equations for ten unknowns. The

other two equations are the equation of state
Lol 2 gince (o), = (@.) (27)
B T i'z Vil

and the compatibility eguation along the first family
characteristic (Ref. 9 Eg. (38), with the minus sign)

2
dr Lt +T  4dp _
ai ~ pgZtan 8 di g (28)

Because of the non-linearity of these eguations, they are
solved by iterating on the shock angle 9 and, within that
iteration, on the density ratio pl/p2

D, Triple Point Location and Solution

Currently, the location of the triple point is a datum
to be supplied by the program user. Once the computation has
reached the triple point, the local triple point solution is
determined. The intercepting shock angle and .the flow conditions
at (1) and (2) Figure 9, will have already been cbtained from
the regular flow field - intercepting shock computation using
information only from upstream of the triple point. Then the
solution at (3) and (4), including the reflected and Mach disc
shock orientations, are obtained iteratively. A guess is made
ot the Mach disc angle, and the sclution at (4), including p4
and 9 is determined. Slnce Pa=P3 - the reflected shock 15
orlenﬁed by requlrlng p3 = pZ. There will then result a 93
corresgondlng to p . In general, we cannot expect_ to have
o = o4 , which 1t must since (3) and (4) are separated by
a contact dlscontlnulty. Hence, the shock angles are iterated
on until Qi = 9% and p4 p3 simultanecusly.

E. Reflected Shock Computation

The computation of the reflected shock is identical
to that outlined irn IV-C for the intercepting shock except
that the shock is of the cther family.
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F. The Subsonic Region

The  subsonic region downstream of the Mach disc
is treated guasi-one-dimensionally. This solution is coupled
internally to the MOCV computation so that the entire solution
is automatically 'generated.

Consider the quasi-one—-dimensional flow to be
completely known at some station xp, and denote the values
at this station by a subscript 1, Figure 10. * It is desired
to compute the flow at the next station, x = X, + Ax,
designated by a subscript 2. Letting A; and A; indicate the
cross sectional area at each station, th = p191 A1=p292Rh5 Dbe
the total mass flow, H, the stagnation enthalpy (no heat or
momentum transport across the slip stream), then the equations

for py. A2, po. 9y, hp, Ty, (ai)z, are

Continuity
o q A
Momentum

padq + dp = 0
Energy

gdg + dh = dH = 0

Caloric State
by = hy{pyepys@y,)

Rate
dai
a3z = fpro) 1=1,2,3,...n.

Thermal State

o,

bR
P, = R{ Eﬁ; ) pyT,

~-15-—

(29)

(30)

(31)

(32)

{33)

(34)



There are six equations for seven unknowns. Usually one
specifies, for a streamtube, the pressure or area as a function
of x, thus completing the system of eguations. In our problem,
the matching along the slip line between the inner and outer
regions provides the "missing equation."

Equations (30) and (31) can be put in finite difference
formand Equation (29) in integrated form:

p141R) = PR, = B
2
% pdq +.dp = 0

p-*Py 3 2
—7  (a, - q) + (py Py} =0

2
%dq +dh =0

1,2 2
3 (@, - q;) + (hy —hy) =0

G. The Sonic Point on the AxXis

Downstream of the Mach disc, there will be a region
where the quasi-one-dimensional core flow will accelerate
to supersonic velocities. As previously mentioned, one can
not expect to be able to smoothly continue the solution
through this region without special treatment. However,
the restart capability of the computer program enables the
user to circumvent this problem by intelligent extrapolation
throudgh the sonic region. This is preferred over an auto-
matic extrapolation within the program, for it enables the
user to maintain maximum control where the computation becomes
singular. Some approaches on the detailed treatment of
related transonic flows are discussed later in this report,
Sections VII and VIII.
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v. SAMPLE COMPUTATION

A sample computaltion to check the program logic has been
made with the intercepting shock-triple point-reflected shock
structure. This case is for a highly underexpanded (pressure
ratio of 50.1: 1) Mach 3.18 H,0 jet in a uniform Mach 3.25
air stream. In this first computation, viscosity was taken to

be zero and the species were frozen. The computed flow is shown
in Figure 11. ’

To perform this sample computation toock about 30 minutes
on the IBM 360-65-7094 emulator. The basic program logic and
coding has been completed, but there remains the task of
putting the computer program on a large enough computer so that
the finite rate option can be run while including the intercepting
shock-triple point structure.

The computed flow field is shown in. Figure 11. It would

be of interest to compare this result with a real gas inviscid
characteristics calculation.
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VI, THE MACH DISC

In the previous discussion the Mach disc was treated.
rather globally in the sense that its location and geometry is
determined semlemplrlcally. ‘This section attempts to place
the Mach dlSC problem on a more rational basis.

In the past decade, at least two hypotheses and two theories
have been proposed to locate the triple point-Mach disc, none
of which is entirely satlsfactory from the standpoint of being
completely nonempirical or of yleldlng consistently good results.
Here, a self-contained.theory is proposed and developed which '
accounts for the basic fluid mechanical interaction that
determines when and where a Mach disc forms in an underexpanded
exhaust plume. Quantitative results are presented to illustrate
the interaction and to verify the theory.

The flow field is first gualitatively divided into two
subregions; 1) a guasi-one-dimensional streamtube consisting
of the flow near the centerline, and 2) the rest of the flow.

A discussion of how the interaction between these two parts
of the flow field determines when and where the Mach disc forms
follows. 7

The expansion waves from the exhaust plane reflect as
compression waves which coalesce to form the intercepting shock.
The shock, immersed in the expansion, gathers strength from
additional compression waves and, if the flow is axisymmetric,
from the focu51ng effect, Downstream, .where the expansion loses
strength, the integrated effect of the compression waves can
result in the need for a very strong adverse axial pressure
gradient, The supersonic core flow, which is supercritical, is
unable to generate the.required adverse axial pressure gradient
by interacting with the supersonic outer flow. Instead, .the
supercrltlcal streamtube reacts to the required downstream
pressure increase by jumping to a subcritical (subsonic) state
via a strong shock, the Mach disc. )

Downstream of the Mach disc, the subsonic core flow acts
as the physical agent whereby information of the interaction
between the inner and outer flows is transmitted upstream to
the Mach disc and fixes its location. In the theoxy, the Mach
disc ldcation is quantitatively determined by the requirement
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that the subsonic core flow must pass smoothly through a throat-
like region, thereby becoming supersonic. Thus, the entire
plume flow field solution depends on one parameter, the triple-
point location, which is determined by this. throat-like condition.
This theory is compared with experimént and with other
theories for a Mach 1.5 exhaust plume in a stdtic ambient
(Pexhaust/P = 4), The eigenvalue character of the solution
(the triple point location being considered the eigenvalue) is
strikingly demonstrated by the numerical results when various
solutions, each for a specified triple point location, are
compared.

A brief discussion of the relationship between this and
other theories concludes the discussion. In particular, it is
noted when the basic interaction mechanism is implicitly (if
partially) reflected in other theories.

A. The Problem

The bagic features of the inviscid plume flow field
of an underexpanded nozzle are shown in Figures 12a and 12b for
static and supersonic ambient respectively. The expansion waves
from the nozzle lip reflect from the dividing constant 'pressure
{or separating) streamline as compression waves, subsequently
coalescing to form the intercepting (barrel) shock. Depending
on the flow conditions, the intercepting shock may reflect
regularly at the centerline or it may terminate in a tziple
point-Mach disc configuration, illustrated in Eigure 12, Behind
the Mach disc is a region of subsonic flow bounded above by a
slip stream emanating from the triple point.

A complete theory which can predict the existence
or non-existence of the Mach disc has not been available, nor
has there existed a satisfactory theory for determining the
triple point location when the Mach disc is present, though
four theories (most are empirical correlations) have been
proposed to this end.

1o .
Adamson and Nicholls ~(A&N), by correlations,

hypothesized that on the axis the statie pressure behind the
Mach disc equals the ambient static pressure. 1In one sense,
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this can be thought of as an asymptotic theory since RE =P as
-~ . However, it seems to be quite good a theory
for predicting, in many instances, the first of a sequence of
Mach discs. Eastman and Radtke 11 (EaR)proposed a completely
empirical method for locating- the triple point. They observed
that when they plotted the axial pressure distributicn behind
the intercepting shock, the point where the pressure has a
minimum correlates fairly well, in many cases, with.the triple
point abscissa. Aalthough their study was for a static ambient
they expected it to also apply to cases having uniform supersonic
free stream. Bowyer, D'Attore and Yoshihara lZ(BDY) hypothesized
that the Mach disc was locally normal to the incident flow at
the triple point. They. then located the triple point by looking
for a point on the intercepting shock where the flow is comnsistent
with this assumption. In a recent paper, Abdelhamid and Dosanij
(A&D) present a theory based on the global conservation considera-
tions for sections perpendicular to the jet centerline.  The
first three are all criteria for locating the Mach disc; they
are not theories for determining when,as well as where the Mach
disc forms. By implication, one would think that the non-
existence of a point at which any of these criteria is satisfied
could be interpreted as meaning that the Mach disc does not exist
in that case. UHowever, this view does carry some problems, the
most important being that in axisymmetric flow one never gets
regular reflection at the centerline.

Of these theories, that of Adamson and Nicholls has the
most surface appeal because it has a direct connection between
the triple point-Mach'disc and the downstream flow. We
certainly expect an interaction between the triple point
solution and the subsonic flow downstream of the Mach disc, and,
in fact, the solution of our problem should basically reflect
on a large rather than local scale, the dynamic equilibrium
of the flow in this region. However, the condition that
immediately behind the Mach disc the pressure should equal the
ambient is an asymptotic type of condition (in spite of the
fact that it is not proposed or used asymptotically) and does
not a priori seem to be characteristic of the more "regional"
sort of balance which one would have in a consistent theory. -
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This is a report of a theory which explains in detail
how and when a Mach disc is formed from the plume intercepting
shock and when the intercepting shock will reflect obliquely
from the centerline. A theory and procedure for determining the
location of the triple point when the Mach disc is present is
developed. Then, quantitative results obtained lend support to
the theory. 1In the final section, a few comments on the four
aforementioned theories add perspective.td the problem.

B. Qutline of the Theory

1. Why Does the Mach Disc Form - Probably the biggest
stumbling block in find the criterion for locating the triple
point has been the lack of understanding of why the triple point
Mach disc configuration forms. The answer does not appear to be
particularly complicated. In fact, the empirical correlation of
Eastman and Radtke reflects very strongly the physical mechanism
involved. 1In what follows we will be considering two-dimensional
symmetric or three-~dimensional axisymmetric flows.

Let us direct our attention to the fluid in the
exit plane of an underexpanded exhaust nozzle immersed in a
static ambient (Figure 12a).  The first thing felt by the exhaust
gas is the expansion emanating from the nozzle lip. These
expansion waves accelerate the fluid and turn it away from the
centerline. At any axial station, near the axis, the amount of
turning increases in the direction normal to the axis. The
expansion waves reflect off the constant pressure streamline as
compression waves which are propagated along right running
characteristics. The compression waves often are strong enough
to coalesce, forming the intercepting {(barrel) shock. Because
of the strong favorable pressure gradient in front of the shock,
the pressure behind the shock decreases axially, even though the
strength of the shock is probably increasing. The favorable axial
pressure gradient, resulting from the expansion at the nozzle lip,
gradually diminishes in strength downstream. The strength of the
barrel shock, in turn, increases axially due to additional compression
waves from the constant pressure surface and, when the flow is
axisymmetric, to the focusing effect. These two effects can cause
the axial pressure gradient behind the shock to change from
favorable tc adverse. When the compression waves are strong
enough (moderate to large underexpansion ratios) the strong
adverse pressure gradient can become concentrated over very short
distances. For low to moderate underexpansion, the flow is
grossly one-dimensicnal. One can even think of it as being,
near the centerline, grossly constant area flow. A grossly
inviscid, supersonic, constant area flow will realize such a strong
positive -pressure change by means of a strong shock,14 the Mach
disc, That is, the Mach disc forms when the essentially quasi-
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one-dimensional flow near the axis of the plume must realize
a strong adverse pressure increase over a very short distance.

To put it another way, split the flow into two parts, a
quasi-one-dimensional streamtubs along the -centerline and the
rest of the flow. In the favorable axial pressure gradient the
cross-sectional area of the centerline streamtube will increase,
the amount of increase being determined by the intetaction of the
streamtube with the outer flow. Since it is supersonic, the
streamtube is supercritical, and d6/dp < 0, where § corresponds
to the width (radius) of the streamtube; and there is no problem
associated with the interaction so long as dp/dx < 0. However,
as Crocco 1° points out, the supercritical centerline flow, inter-
acting with the supersonic outerflow is not able to generate an
adverse axial pressure gradient. Instead, the supercritical
streamtube will react to the required downstream pressure increase
by jumping to a subcritical (subsonic) state. This is accomplished,
in our problem, by means of a strong shock, the Mach disc.

. 2. When Does the Mach Disc Form -~ Now it is clear
why we sometimes do not get a Mach disc structure. If (in
two-dimensional flow) the intercepting shock is formed by a
relatively concentrated compression so that it approaches the
centerline while still in the strong part of the expansion,
there may be no change in the sign of dp/dx behind the shock and
no need for the centerline flow to change from supercritical to
subcritical, hence, no Mach disc. In particular, the predominance
of Mach disc structures (on a significant scale) in axisymmetric
flow is due to the axisymmetric focusing effect which tends to
inerease the compression so much that, even though the shock may be
in a strong part of the expansion fan, the compression locally
dominates and leads to a change in the sign of the pressure
sgradienf.

THus, cguantitatively, the "when" is put by the
theory as follows. If the flow without the Mach disc requires
a very large adverse axial pressure gradient, then the Mach
disc will form. How can one -determine what "large™ means here?
If a solution is possible without a Mach disc, it will not form.
That is, if regular reflection with completely supersonic flow
is possible at the point where the intercepting shock intersects
the axis, there will ke no Mach disc. If regular reflection is
not possible, we understand that such a large pressure increase
is required that it must be achieved with a stronger (than weak-
oblique) shock, the Mach disc. 1In éxisymmetric flow, focusing
has the effect of concentrating the compressions so that a very



large adverse pressure gradient is always induced prior tc
the point where the intercepting shock intersects.the axis¥.

3. Where Does the Mach Disc Form - The last
part of the theory is an explanation of the mechanism by which
the triple point-Mach disc location is set. This condition
reflects gquantitatively the interaction between the subsonic
core and supersonic outer flow downstream of the Mach disc. The
condition is that the triple point location is determined by
the requirement that the centerline flow, which is subsonic just
downstream "throat-like" region where the flow becomes supersonic.
That is, singularities are not accepted in this region. In the
quasi-one-dimensional approximation, which is the only case
considered here, the streamtube cross-sectional area will have a
minimum there.

In order to clearly see this interaction and how
it determines the triple point location, it is helpful to strip
the flow to its very barest skeleton. The heart of the resulting
model, as of the actual phenomenon, is the quasi-one-dimensionality
of the flow near the axis. This means that, even though the flow
just behind the Mach disc is subsonic, the steady problem is still
properly formulated as an initial value problem**with the triple
point location as a parameter. So, starting at the exhaust plane
if the triple point were given, the entire flow field can be
determined, at least conceptually. The scolution procedure can be
outlined by referring to Figure 12. The entire flow up to the
triple point is obviously determined once the exhaust and ambient
conditions have been specified. With the triple point location
specified, the solution of the shock configuration there can be
determined by a straight forward computation. The initial slope
of the contact discontinuity would be one result of the triple
point computation. The flow downstream of the triple point can
then be determined by

1) computing the supersonic region {by the method of
characteristics, say);

2) computing the subsonic flow using a steady quasi-one-
dimensional model;

3) matching 1) and 2) along the contzct discontinuity,
thus locally determining the axial pressure gradient,

*However, this phenomenon may be localized enough so that on a
micro scale regular reflection is (apparently) acceptable.

**This is not to say that there are not regions of severe
numerical difficulties of boundary value type, as we shall see,
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As one proceeds downstream with this calculation,
the core flow streamtube Wwill tend to become subsonic.*

By assuming a triple point location, the triple point-Mach
disc solution can be cobtained and used as initial conditions for
a solution of the interaction problem downstream. In general,
the resulting initial value problem will not possess a consistent
smooth solution. The pressure gradient generated will tend to
either + oo, with ME l' simultaneously with (dy/dx)edge - + oF¥,

Only for one value of the triple point location will (dp/dx)@
remain finite while Mi - 1 as dy/dx — 0 in a throat-like region,

That is, the throat-like region is a saddle point type singularity
depending on the triple point location as a parameter.

Now suppose that the location of the triple point is not
specified and one wants to determine it. How can we settle on
the correct solution?

* TFf remains subsonic as X - o, we must conclude that a com-—
pletemg inviscid theory is inadequate. In addition, there is no
doubt that when the centerline streamtube flow goes sonic at
some station, Xg, it will be numerically difficult,if not
impossible, to match along the slip line in the immediate
vicinity of Xg. But this is a numerical problem and does not
mean that the model (i.e., quasi-one-dimensional core streamtube,
inviscid flow) is inadequate. TFor instance, & similar problem
arises when one attempts to determine the streamtube pressure
distribution by integrating the quasi-one-dimensional equation
throucgh a sonic throat with the area specified.

**x Actually, one will probably not see in a numerical solution of
the. first case, dp/dx - @ since the admissable solutions have

a very small increase in pressure (streamtube is subsonic).
However, the behavior of (dy/dx)slip 1ine confirms the tendency

for dp/dx to become unbounded.
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The triple point location can be considered to be a
parameter of the inviscid solution for the plume flow field.
The value of the parameter is then determined by the regquirement
that the subsonic centerline flow downstream of the Mach disc
pass smoothly through the throat-like region. -

4. Synopsis of the Theory - At this point a
synopsis of the theory is helpful to identify the essential
ingredients and clarify their respective roles. .

Why Does the Mach Disc Form?

1) Expansion of the central region of the
exhaust plume.
2) Compression waves form intercepting shock.
3) Splitting of plume into core and outer regions.
4) Compression overcomes expansion leading to

large adverse pressure gradient which causes
supersonic core to go subcritical via Mach
disc.

When Does the Mach Disc Form?

5) When solution with regular reflection does
not exist; that is, when the compression is
strong enough to create very large adverse
axial pressure gradient.

Where Doeg the Mach Disc Fofm?

&) Triple point location determined by requirement
that the flow is the subsonic core just
downstream of Mach disc pass smoothly through
a singular throat-like region, thereby becoming
supersonic.

C. Verification of the Theory and Comparison With
Qther Theories

In this section the third part of the theory (how the
triple point is located when there is a Mach disc) is verified
by a computational example which illustrates guite well the
singular behavior of the solution in the throat region and the
eigenvalue character of the theory. A series of computations have
been made, each having a different value for x the triple
point abscissa. An analysis of the behavior of the streamtube
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solution downstream of xT as a function of X P comprises

the quantitative support of the theory. The example chosen has
been determined primarily by the requirements of available
computer programs and the desire to compare with experiment.
The conditions for this example are:

. perfect gas, inviscid, constant specific heat
ratio, v = l.4;

. static ambient;

. parallel flow at jet exhaust plane, Mach = 1.5;
. underexpansion ratio pj/pCD = 4.0;

. axisymmetric.

This case, one of those reported by Love, et al.,l6 has a Mach
disc diameter comparable to the nozzle exit diameter, so the
interaction should be strong encugh and on a large enough scale
so that we can feel confident that numerics will not cloud the
issue, though they can moderately effect the quantitative results.
in the following computation, it appears that numerics has
affected the results quantitatively to no more than a few percent
and gualitatively not at all.

One note of caution is in order here. The guantitative
results of these computations depend on things like mesh size,
interpolation schemes, computer program organization, etc.

For orientation purposes only, the computatlonal procedure 1is
outlined here. Additional details are given in Appendikx A.
A given computation requires the specification of

. initial data (i.e., conditions at exhaust plane:
pressure, flow direction, etec.),

. 7j' the exhaust specific heat ratio,

. P’ the ambient pressure,

. XT.P./rj’ the triple point abscissa dividend

by the-gxhaqst radius,

- . computer program controls (e.g., mesh size).
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The supersonic portions of the flow field are computed by the
method of characteristics., The intercepting shock is detected
when two right running characteristics: coalesce, the determina-
tion of its shape and strength being subsequently part of the
flow field computation. When the abscissa of the intercepting
shock reaches the value specified for the triple point, a triple
point solution is generated. Then the computation continues,
including the solution of the subsonic gquasi-one-dimensional
flow downstream of the Mach disc. The centerline pressure
gradient and the sghape of the slip line downstream of the

triple point are determined by the interaction between the
subsonic inner flow and the supersonic outer flow (see Appendix A).

If the specified triple point abscissa is appreciably less
than the solution, the pressiire behind the Mach disc there
will be too high and the contact discontinuity will make too
great an angle with the axis to be consistent with the down-
stream throat condition. With a relatively large (@) g g,
we will have (for 2 smooth solution) the area of the streamtube
increasing apprecgiably. The result is that the downstream
pressure will increase, tending to stagnate the flow inthe
streamtube, in this case an unacceptable solution. .Similarly,
the pressure will be too low and 6 too small (algebraicably)
if the specified triple point abscissae is too large. Then, with

QS s significantly negative, a strong favorable downstream

pressure gradient will be generated, accelerating the streamtube
to sonic velocities as 8g g — - . Actually, the situation

is not so simple since near the correct triple point abscissae
neither case will quickly prevail, and the "branch" we are on
will not become evident until the pressure gradient actually
begins to increase or decrease catastrophically (in the first case
this is evident by the catastrophic increase in 85 g ). Consider
the results,

The axial variation in core streamtube Mach number (Figure 13)
clearly shows the two branches depending on whether the assumed
value for Xp p. is greater than or less than the solution. In
particular, notice the "peaking" of the stagnation branch as the
parameter Xq p_ approaches the solution.

One of the most revealing figures is a plot of (dy/dx)s ‘
vs (Figure 14). The saddle point behavior "is quite evideﬁﬁ:
particularly in the tendency of 46 (M)/dM to become discontinuous
at 8=0 as M=1 is approached on the stagnating branch. Notice
the convergent-divergent character of that branch when the figure
is rotated 90° clockwise. It is clear from these two figures
that, within the accuracy of these computations, this theory
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brackets xg /r. between 4.79788 and 4.8%. This is good
agreement wi@ﬁ tﬁe experimental result of Love, et al which placed
the Mach disc on the axis of x/ry = 4.9.

A wealth of information is contained in Figure 15, which
conveys the important pressure histories, namely ’

a) the ambient pressure,
b) the centerline pressure in the absence of a Mach disc,
c) the pressure immediately behind a normal shock on the

axis (important in the theory of Adamson and Nicholls),

da) the pressure behind the intercepting shock in the
absence of-a triple point Mach dise (important in the
theory of Eastman and Radtke),

e) the pressure immediately behind the downstream of
the triple point for each of the values of XT.P./Ij
actually computed,

£) the predictions of A & N, E & R, BDY and the present
theory.

Again, the two branches can be seen, though less clearly since
the behavior of p(x) on the "stagnating branch” 1ig not at all
spectacular, as in the "accelerating branch'.

One of the most striking cbservations to be made is the
fact that the pressure immediately behind the strong shock
at the triple point is, within quite a good tolerance, equal
to the pressure behind the normal shock on the axis. This
correspondence is even closer, in this case, if one considers
the Mach disc to be slightly curved toward the exhaust plane
as one proceeds away from the axis. This points to the possi-
bility that the pressure behind the Mach disc is essentially
constant, and this matter should be investigated further
(see also Ref. 12).

The predictions of the theories of Adamson and Nicholls
and of Eastman and Radtke can .be easily extracted from Figure 15.
A plot of the angle between the incident flow and the strong
shock branch of the triple point solution vs. the assumed value
of XT.P./Fj (Figure 16) yields the predictions for xT.P./rj

* One could, of course, continue indefinitely to narrow down
this range, being only limited by storage and accuracy of
the computer, financial resources, and patience.



according to Bowyer, D'Attorre and Yoshihara. Note the
appearance of the curve in Figure 16, the well defined slope
of (8 Mach disc-8 flow) vs XT.P./rj'

In this theory, the solution can be pinpointed by
considering how close we came to passing through the "throat"
for each assumed value of the triple point location. On the
stagnating branch, the quantity (1-( )mai measures closeness
well, while on the accelerating branch, the value of the slip-
stream slope, (dy/dx) where M = 1, is appropriate. These
two curves strikingly point to the value of Xq p (Figure 17).

The predictions of four of the theories are compared with
each other and with experiment in Figure 18. Because of
uncertainties in reading data and estimated inaccuracies in the
computations, a band is included on each side of the predicted
values in order to try and compensate for quantitative uncertainties
which the theories should not be required to.suffer. Neglecting
possible inaccuracies in the computation, the maximum difference
between two theories is about 20%,which is not so terrible
considering that three of the theories are essentially
semiempirical. The theory for %p p, of this report agrees, in
this case, to within almost 1% of the experimental value of

(xMaCh disc)g.

Finally, the computed flow field structure for x /.
4,79788 and 4.7 again show the two branches of the eigénﬁal%e
problem (Figure 19) with XT.P_/rj = 4,79788 being almost ricght
on the solution.

b. Discussion of Other Theories

Since this is the fifth in a series of theories* for
solving the triple point-Mach disc problem, a discussion and
comparison between some of these theories is certainly in order.

The rule of Fastman and Radtke ties. in the triple point
location with what would be the adverse downstream axial pressure
gradient if there were no triple poeint. In this respect it
reflects the physical interaction actually occurring and which is
qualitatively and quantitatively included in the present theory.

*Though I consider the theories of Eastman and Radtke and of

Bowyer, D'Attoree, and Yoshihara to be empirical "rules of thumb"
(or hypotheses) (which could be elevated to the theory status)

since they were proposed without reasons or explanations of why they
work or why they should be expected to work.
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Eastman and Radtke do not have the possibility of saying when

the triple point does or does not exist, except that one must
assume that the absence of a pressure minimum prior to the inter-
section of the intercepting shock with the centerline would

imply regular reflection there. However, one must expect to
encounter the situation in which the centerline flow and inter-
cepting shock do not then admit to regular reflection, in which case
the rule of E & R would fail completely. A & D state that in two
dimensional flow E & R will always fail because there is no
pressure minimum. This statement seems to depend on the exhaust
flow being uniform and parallel, and it appears that it is not
generally true. For example, non-uniform exhaust flow could
easily lead to an adverse axdial pressure gradient downstream.

With the help of Figure 15 we can understand why the
apparently asymptotic conditions (P ~ P @S - ) cfA &N
works on a non-asymptotic interactidn, Note that, for the case
computed, the curve showing the pressure behind a normal shock
on the centerline has a significant negative slope and that,
near the triple point-Mach disc abscissa, the pressures behind
the normal shock are near - p_. In Figure 19, note that for
Xo p /r. = 4.8 the leadingﬁiight characteristic from the expansion
whéré +Pe reflected shock intersects the constant pressure
boundary intersects the slip stream (from the triple point) at
about %/r:=7.2. Since the flow is subsonic behind the Mach
disc (M ~ 0.35), there is no possibility of having a significant
increase in p without having reversed flow there(we rule this
out from experimental results). So, with the large negative
gradient of (Hg) L+ it is easy to get a dowmstream limit of
Xp p_r Since w ekpéct to have - p__ within reasonably short
distances. In the same way, for XT_P?Dtoo short, ( )N.S.

is appreciably higher than p,. in a region where there is a continual
feeding of compression waves from the reflected expansion waves.
This would result in centerline presswures appreciably greater
than p . something which is unreasonable in the current
configuration since the compressions result from reflected
expansions from a boundary with p = pg,- Thus, A & N's semi-
empirical theory gives relatively good results because,

locally, behind the Mach disc the pressure cannot differ by
large amounts with its asymptotic value and the large negative
slope of (pgly.g, delimits a small interval within which the
Mach disc mist be found.

The motivation for A & D's theory seems to be the maximum
mass~flow-rate criterion of quasi-one-dimensional stream-tube
theory, that for a fixed stagnation condition there is a minimum

* N_.S. means normal shock

-30-



cross—-sectional area where the mass flow rate is a maximum

and the velocity-is sonic. This fact seems to have been

carried over to the plume problem. In oxder to fit it into

the present discussion, it is necessary to outline the theory.
Consider a uniform underexpanded sonic jet exhausting into

a quiescent environment. Since the flow is sonic and uniform

there, the exhaust mass-flow rate is the maximum allowable for the

implied stagnation conditions. The free boundary streamline has a

barrel shape, Figure 20, which, if there were no shocks, one

might.at first sight extend as in Figure 21. Treating the flow

as quasi-one-dimensional, the minimum allowable area with

supersonic flow could occur at x3j, where A1=Agp=A*, since the

flow is sonic at the exhaust plane. They then theorized that an

intercepting-shock-Mach disc was necessary earlier than X3

in order to allow the reflected shock to strikethe free

boundary, turning it away from its disastrous Jjourney toward

the centerline.

The Mach disc location is then supposedly determined from
global conservation considerations. One assumes an abscissa for
the Mach disc and computes the flow upstream of the Mach- disc—
reflected shock {area to the left of ABC, Figure 22). At this
point there is a merging of theory and computational procedure.
Apparently, the axial mass flow component across BC is
assigned to the cross-—sectional area CD and the axial component
across AB to the area DE; then the sum of the two is the mass
flow across CB. A sequence of such computations is made for
different Mach disc locations, and not surprisingly, different
sums are obtained for the mass-flow across the various sections.

~Call these sums Wi, where i corresponds to the ith assumed
value, %3, of the Mach disc¢ abscissa. Finally, a point of
W(xi)/w* is made, where W¥ is the mass-flow for the sonic
exhaust, which appears as in Figure 23, and the Mach disc
location corresponds to W(x;)/W& = 1.0.

The important point here is that there is a mixing of theory
and computational procedure to arrive at the condition in Figure
23. Actually, if the above approximations were not made in
obtaining the mass~flow across CE, (i.e., if the solution procedure
had no approximations), a different curve for W(xj)/W* would
have been obtained, and it would have looked like Figure 24. In
fact, such a curve could easily be constructed from the present
results. In this figure, there would be a maximum xX; =
such that for xi.> Ximax the "accelerating branch" will
lead to seonic core flow (without the throat condition being
satisfied) prior to reaching the abscissa where the ‘reflected

s
lmax.

~31-



shock intersects the free boundary. This will correspond

to a Mach disc location considerably downstream of the actual
solution. Tt should be emphasized that in the present
computations, for Xp p,6 as large as 6.4, there were no problems
associated with the free boundary coming too close to the .axis.

So, why does the theory of A & D work? It is evidently
attributable to the 'fact that; 1) approximations are made in
estimating the mass-flow across the area CE, and, 2) the
manner in which these approximations are made can be correlated
with the Mach disc location.

Of the other four theories,only that of E & R reflects
directly, though crudely, the physical interaction which actually
determines the triple point configuration. However, this
statement must be slightly qualified with the note that although
the BDY seems to work reasonably well, it embodies more
empiricism and minimurn of mechanism.

E. Concluding Remarks

The triple point location is determined by an up-
stream-downstream interaction, transmitted through the subsonic
core downstream of the Mach disc. The present theory incorporates
this interaction with an dpproximation which leads to an
eigenvalue problem (Xq p, is +the eigenvalue}.



VII. EVALUATION OF METHODS TQ COMPUTE THE TRANSONIC INVISCID
FLOW TN AN UNDEREXPANDED PLUME

The analytical and numerical solution of steady, inviscid,.
mixed (i.e., subsonic-transonic-supersonic) flows has been one
of the most difficult problem areas in theoretical fluid
mechanics. The Euler equations for steady flow change from
elliptic to hyperbolic when the Mach number increases from less
than to greater than the sonic velocity. Thus, the subsonic
region is characterized by boundary-value problem formulations
(cf. Laplace's equation) while initial~value problem formula-
tions (cf. wave equation) typify supersonic flows. The type of
data to be specified for a well set problem differs in the two
cases (cf. Dirichlet or Newmann conditions for Laplace's equation,
Cauchy conditions for the wave equation). Prior to obtaining the
solution to mixed flow problems, the boundary separating the
boundary-value and initial-value regions is not known so that
there is a fundamental problem, which has not yet been solved,
in setting up the proper initial value-boundary value
formulation to solve a well set mixed flow problem.

Fortunately, these difficulties have not deterred
scientists and engineers from gathering their courage and
plunging into this theoretical (and experimental) morass.
Basic studies of approximate mathematical models of the complete
equations have increased our understanding while sometimes
providing analytical tools for the solution of model problems.
Numerical teéhniques for solving the complete equations have
been developed, though they usually are characterized by
significant analytical and/or numerical difficulties.

The purpose of this study is to select a numerical method
for the solution of the two-dimensional mixed flow downstream
of the Mach disc in an underexpanded exhaust plume.,_ Three
approaches will be considered: integral relations, 7'18'19'20,
relaxation 17,20, and time dependentl7:23. The selection will
be made on the basis of a weighted gualitative evaluation of
the relative merits of each approach with respect to certain
important critiera.

A. Considerations
The considerations on which the selection is to be

made fall into four groupings: convenlence, accuracy, analytical
and numerical difficulties, and adaptability to the basic prcoblem,
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the solution of the mixed flow downstream of the Mach disc in

an underexpanded plume. In this section, the meaning and impor-
tance of this grouping and the basis for the evaluation are
given, ’

1. Convenience — A numerical technique is
convenient if: (1) the analysis is not too complex, (2) it is
easily translated into a computer program, when necessary, and
(3). the computer program: a) is reliable and easy to use,

b) does not require unacceptable computing times, and c¢) does
not have unacceptably large high speed access storage require-
ments.

A few remarks about each of these points are in order.
Ttems 1) and 2) are important because, though the resulting
computer prégram may be acceptable with respect to item 3),
too complex an analysis of excessive difficulty translating it
into a computer code may mean that the initial analysis and
computer code development cost is too great to justify their
pursuit. oOne part of this consideration is well known to any-
one familiar with computer programs; the errorless translation
of complex analysis into a computer program can require
considerable effort and expense.

A computer code is easy to use if a user (other than the
developer) can use it to obtain information he thinks it should
supply without becoming frustrated before receiving the answers.
Of course, a good user's manual, consistent input, ete., all
contribute to this guality, but these aspects are not part of
our considerations. Rather, sometimes analyses lead to
computer codes which are basically difficult to use. For
instance, if the numerical soluticon is sensitive to small changes
or inconsistencies in the input data, the tool can soon become
a source of frustration rather than answers. Another item
in this vein is that the computer code must be reliable.

The acceptability of computational times is difficult
to concretize, for it depends on the problem, the computer,
and the user. But, for our purposes it is easy to establish
one measure of acceptability, because our problem is part of a
larger one. Therefore, any solution is certainly acceptable
if its computing time requirements are about the same as,or
less than those of the solution for the rest of the plume.
That is not to say, of course, that it cannot be more,
for sometimes it is acceptable to have the solution of one part

-34.



of a problem contributing substantially more than its
"fair share" to computing costs.

Finally, the computer code must not require unacceptably
large high speed access storage program.. This requirement is’
rapidly diminishing in importance as larger, faster computers
are beina introduced. )

2. Accuracy - Each of the approaches is potentially
exact in the sense that sufficient monetary and computer re-
sources will permit one to obtain a solution within any given
tolerance. But our machines and, pocket bocks are limited, and
the important question here is, "can I get the required accuracy
within current computer capabilities and, if so, at what
expense?"”. )

3. Analytical and Numerical Difficulties - As
pointed out in the first section, there are fundamental formu-
lation and solution problems associated with transonic flows.
The question is, how do they affect and how are they reflected
in the three approaches? For example, numerical and analytical
problems along a singular line are characteristic of the
solution of transonic flows by the method of integral relations.
Their effect, if any, on computer code development, accuracy,
reliability, flexibility, ete., is an important factor in this
evaluation.

4, Adaptability to the Problem is the most
important consideration. We are looking for an accurate
numerical solution of the transonic region in an underexpanded
plume, and this solution must f£fit in as a part, a sub-program,
of a solution for the entire plume flow field. Considerations
which may restrict or prevent an approach from taking its
position as one part of the whole are cof highest importance.
Flexibility is also very important; if one approach is
considerably more flexible in this respect, it must be
considered to have a distinct advantage over the others.

These, then, are the most important
considerations in this evaluation. They are not of egual weight,
but complete failure with respect to any of them would eliminate
a contending approach from the competition.

B. Discussion of the Qualities of the Three Approaches
with Respect to the Four Criteria and the Evaluation

Rather than order this discussion with respect to the
four criteria, it is preferable to discuss, in turn, the
important merits and demerits of each approach. While making
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somewhat more difficult the comparison with respect to any one
of the criteria, this will provide a much better overall view
of the fitness of each of the approaches. Also, it permits the
elimination somewhat quickly of those considerations which are
not as important as others.

For instance, computing time is not a particularly important
item in the comparison because, grossly, each of the approaches
results in typical computing times on the order of a few minutes
or less on an IBM 360/75 or a UNIVAC 1108 computer (inviscid,
perfect gas). These times are not as short as one could like,
but they also are not unacceptably long, particularly when we
consider increased speed of computers like the CDC-6600 and
machines we may expect in the next few years. These times can
vary appreciably depending on the accuracy desired. The
important point is that none of the approaches appears to have
a significant advantage in computing speed.

As far as storage reguirements, the method of integral
relations should have a distinct advantage, for one usually can
retain good accuracy with very few strips (at least when the
flow is in chemical egquilibriwm, this is not true for the non-
equilibrium case, and there the method of integral relations
has a distinct shortcoming). However, as previously mentioned,
this is not one of the more important considerations since we
seem to have reached the point where several machines (systems,
if vyou prefer) having almost unlimited (for practical purposes)
storage are now or soon.will be available.

Accuracy is ‘also not a consideration which can quickly
eliminate any of the three approaches, for they all can provide
sufficiently accurate results. However, two important con-
siderations do arise here. It seems that it is a fairly com~-
plicated process (algebraically) to set up a-relaxation scheme
which is second order accurate in the mesh size, so that re-
laxation procedures will probably usually involve first order
schemes. This is not true for unsteady methods, which can
be thought of as relaxation procedures, where a number of
relatively simple second order accurate differencing schemes
are available. Experience has shown that usually the in-
creased number of operations per step in a second order
scheme is. more than offset by the greater accuracy, so that for
a given required accuracy the second order scheme is more
economical than a first order scheme with a finer mesh(requires
less computing time and computer storage). Thus, we can expect
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a second order accurate unsteady method to -usually be more
economical than a first order accurate relaxation schene. Also,
both the relaxation and unsteady methods provide a very
convenient mechanism for increasing accuracy, just decrease

the mesh size. Though it may be possible. to set up a generalized
method of integral relations for an arbitrary number of strips,
it is probably a fairly complicated process, certainly in
comparison with the easy mesh size control for the other two
approaches. So we can expect more inconvenience varying

accuracy with the method of integral relations.

In order to facilitate the discussion of the rest of the
considerations for the three approaches, a slight modeling of
the problem is helpful. 1In Figure 25, the solution up to and
including the triple point - Mach disc is assumed known, and the
solution of the flow downstream thereof is sought. There must
be a matching along the slip stream between the subsonic-tran=
sonic inner flow and the supersonic outer flow. In order to
discuss the relative merits of the three approaches, first
consider the matching to be done sequentially, so that the solution
will be cobtained by iterating between the inner and outer regions.
At any step in the iteration, the boundary; including the
slip stream shape, of the transonic region is fixed and known.
Then we must solve for the flow in the shaded region of
Figure 25, .

Referring to Figure 26, initial data along the line AB would be
supplied from the solution of the flow upstream of and up to the
triple point-Mach disc. Of course, some assumptions about the Mach
disc shape would be required (once the triple point location has
been specified) in order to obtain the state of the flow on AB. As
already noted, the slip stream shape, BC, is specified. As
modeled, the solution of the region ABCD is just the same as
that for a finite length convergent-divergent axisymmetric
delLaval nozzle and eXperience gained on the nozzle problem can
be used in the current evaluation. So, temporarily the
discussion is directed toward the solution of the flow in a
two-dimensional or axisymmetrical convergent-divergent nozzle.

A discussion of the merits and shortcomings of the three
approaches with respect to this problem will help to place some
later comments in perspective.

Relaxation techniques have been around a long time and used

to be one of the most commonly used tools of the -analyst needing
numerical results for complicated physical problems. Depending
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on the relaxation procedure, the analyses and their translation
to computer programs usually can be accomplished without
insurmountable trouble, but sometimes at the expense of very
inefficient relaxation procedures. The basic difficulty is that
efficient relaxation procedures require judgement during the
relaxation process, and simple algorithms are usually not
efficient. For this problem one can expect to be able to

make decent computer programs without particularly trying
analytical or numerical difficulties. The boundary conditions
on the walls and exit plane can, however, be a source of
trouble, or at least of inaccuracies, since they basically
involve the specification of combinations of derivatives

or a derivative and the value of the function, the parts of
which must be determined during the course of the computation
(the flow need not be irrotational).

The main shortcomings of relaxation techniques are:

. second order accurate relaxation schemes can
be quite complicated and impractical on a
digital computer,

. first order accurate schemes will probably
require quite small mesh sizes leading to
long computing times for acceptable accuracy,

. the boundary conditions on the nozzle wall
(slip stream) can be a source of numerical
trouble and inaccuracies.

In the past fifteen years the Method of Integral relations
has been one of the most actively developed techniques for the
numerical solution of complicated fluid mechanical problems. It
has been established as a very powerful tool in a wide variety
of problems (e.qg., boundary layer, blunt body, subsonic and
transonic nozzle flows, pointed cone at angle of attack, ete.)}.

Depending on the problem and the accuracy desired, the
resulting analysis can be simple or complicated (algebraically,
that is). Though it may be possible to construct a general
computational algorithm for an arbitrary number of strxips it
appears that existing analyses and computer programs are invariably
restricted to one approximation (i.e., the number of strips is
fixed). When such a procedure is followed, one does not have
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much flexibility in improving the accuracy if the available
computer code is.not accurate enough. Hdwe%er;_this is not in
itself- &n overpowering shortcoming, for the method of integral
relation hds been shéwn to yield gquite accurate results with
very few strips at least for inviscid chemically inert Flows,
(Ref. 18).

A more serious shortcoming of the method has to do with the
singular behavior of the resulting ordinary differential edquations
(Ref. 17, 19, 21, 22} in the transonic region, This behavior,
vhich- oftén does not receive the attention it-deserves, reflects
the fact the method of integral relations essentially replaces
an elliptic partial differential equations with a two point
boundary value problem for a system of ordinary differential
equations, the latter, to be solved iteratively as an irnitial
value problem by the "shooting” method. The result is that
procedural problems accompanying the solﬁtlon of mixed flow
problems by the Method -of Integral Relatlons are basic to the
formulation and, hence, are likely to remain as sources of
problems in- the development of a computer code.

In additiorn, lookirng ahead to the inclusion of finite rate
chemical effects, the method of integral relations would require
a very large number of strips in. order to provide needed accuracy
when- the mass fraction profiles are non-monotonic,

In_the past few years the use of the unsteady time
depéndent approach, for the solution of' steady mixed flow
problems has become quite popular. The basic motivation is
simple: and can be readlly schematlzed-

. the mixed flows considered have large subsonic
regions where the steady Fuler equations are
elliptie,

- - elliptic partial differential, equations are,
characteristic of boundary value problems,,

. boundary value  problems are difficult to solve,

- mixed (elliptic-hyperbolic) problems are even
more difficult to solve,

. initial value problems'are as a claSs; easier-
to solve,

. initial value formulations characterize
unsteady flows, whether the flow be subsonlc
transonic, or supersonic,

~39-



. if we consider the steady flow solution to be the
time-asymptotic limit of an unsteady flow, ‘the
steady mixed-flow problem can be obtained by
solving an initial value problem {and that is
comparatively easy),

. the time asymptotic solution is reached relatively
quickly in many cases.

There are two particularly appealing aspects of the
unsteady approach; 1) it always leads to initial value problems,
whether the steady problem is of boundary value or initial
value type, and 2) there is a connection between the steady
solution sought and an implied transient. Usually, it is
possible to identify the transient with an actual physical process,
the approach is even more appealing.

The eﬁperiehce with this _approach on the blunt body problem
has been gquite impressive 23,24 and would lead one to believe
that it would also be well suited to the nozzle problem.
However, it seems that some investigators working on this
problem have encountered unexpected and, at first sight anyway,
inexplicable numerical difficulties .2 These numerical
problems usually appeared in the latter stages of a computation
as the solution should have been tending toward a steady state.
Apparently the solution usually "blew up" with much the same
characteristics associated with numerical instability. This is
particularly-upsetting because the time dependent approach
should be well suited to this problem. In particular, the
technique for computing wall points as giwven by Moretti and
Abbett should yield guite accurate solutions at and near the
wall (i.e., at the slip stream).

This background discussion on the merits and demerits of the
three approaches does not point conclusively to any of them as
being markedly superior, at least with respect to the flow in a
two-dimensional delaval nozzle., However, we have not ag yet
given due attention to the adaptability of the methods to the
problem of the flow downstream of the Mach disc when the triple
point location has been specified. The solution of this problem
will involve an iteration between the inner subsonic~transonic
and the outer supersonic flows, and the shape of the slip stream
is one of "the unknowns. It is easy to see that if the iteration
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is performed as a secquence of steady problems, the solution
will be a formidable problem indeed. However, the unsteady
approach provides a very handy, natural mechanism with which
to achieve this solution, namely, iterating in time as
illustrated in the following figures and discussion.

First, a solution for the supersonic flow is obtained
neglecting the triple point-Mach disc-reflected shock
structure (Figure 27a). (The purpose of continuing the
solution of the intercepting shock beyond the specified triple
point abscissa will be evident momentarily.) Then a.triple
point solution is generated at the specified Xp p.r l:e., the
shape of the Mach disc is-.assumed, the flow immégiately_béhind
the Mach dise is obtained, a first guess at the slip stream shape
is made, and the corresponding reflected shock is computed (Figure 27b) .
Also indicated in Figure 27b,is (by cross hatching) the region of
overlapping supersonic flow computed by continuing the intercepting
shock downstream of x . (In Figure '27b,CD is a right running
"limiting characteristic® of the subsonic region) Now, the
"iteration" via the unsteady approach can be' achieved by
computing the entire region ABCDEA as a time dependent flow, the
solution to the steady problem.being cbtained when ‘the unsteady
flow becomes steady. 1In the actual solution procedure, the slip
stream BD, would divide the flow into two separate computaticonal
regions, ABDEA and BCDB. Both the reflected shock, BC, and the
slip stream, BD, would move during the unsteady phase of the
computation; thus the iteration is really replaced by ‘a relaxation
in time of the entire region ABCDEA.

The power of this approach over the others is evident;
the time dependency provides a natural m&chanism for relaxing
to .the final, steady solution. WNeither of 'the other two
approaches provides such a conceptually convenient means of
obtaining the slip stream shape.

Thé above discussion is based upon & priori knowledge of
the triple point location. This could be specified using the
empirical criteria discussed in Section VI. However, as
described in Section VI, the Mach disc and downstream transonic
flow are coupled and a theory was presented which has the
potential of eliminating the empiricism. The unsteady, "relaxation"
technique discussed above could be employed in- this theory.
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Thus, the triple point location, ¥ _p. and the Mach disc shape could
be determined simultaneously by allowing the triple point~strong shock
also to move during the unsteady process. However, since the added
computational effort and problems can be expected to be significant,
we will concentrate on the original problem with xgp p and the Mach
disc shape specified and on the model problem, the two-dimensional
delaval nozzle. The theory of Section VI will be reserved for future
development steps.

There is an additional numerical problem area which did
not become evident until late .in this study. The expansion
emanating from the intersection of the reflected shock with
the constant pressure boundary (point € in Figure 27) "covers*®
part of the transonic region in at least-some cases and probably
in all (Section VI}, and thus must be included .in the computational
region no matter which approach is used. This is, of course,
only a source of numerical aggravation, but it must be considered
no matter how the solution procedure is set up.

Wow that the attributes of the three approaches have been
discussed, a summing up, an evaluation can be made. In fact,
the conclusions is. rather obvious. In most areas none of the.
three approaches has an overpowering advantage, except that the
time dependent approach is far ahead as far as flexibility and
adaptability to the problem so it appears to be the best choice.

As already mentioned, previous investigators have encountered
inexplicable numerical difficulties in attempting to compute the
flow in a two-dimensional delLaval nozzle by using the unsteady
approach with the Lax-Wendroff differencing procedure. Since
both the approach and that differencing procedure have been shown
to be admirably applicable to transonic-flows, .it is unlikely,
that these difficulties are insurmountable. Therefore, since
this approach appears to be the most promising in the long run, a
study of this problem is in order to determine whether or not
there are basic, insurmountable problems associated with time
dependent solutions of two-~dimensional transonic delaval nozzle
flows.
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VIIT. SOLUTION OF. THE STEADY FLOW IN A TWO-DIMENSIONAI, DELAVAL
NOZZLE AS THE ASYMPTOTIC LIMIT OF AN UNSTEADY FLOW

A. Introduction

The steady subsonic-supersonic inviscid flow in a two-
dimensional converging-diverging delLaval nozzle exhibits all the
basic idiosyncracies of mixed flows. The subsonic flow, where
the Euler equations are elliptic, is correctly set as a boundary
value problem, but without the solution one does not know the
shape of or boundary conditions on part of the boundary (the
sonic line, say). On the other hand, the hyperbolic nature
of the Euler equations in the supersonic region leads to
initial value formulations downstream of the limiting characteristic
line. (The data on any initial line in the supersonic region
depends, of course, on the solution of the upstream flow.) The
extreme mathematical difficulties connected with such mixed flow
problems have hinderxred their solution, particularly solutions
of direct problems when the entrance flow and the nozzle
geometry are specified. 1In this. report a numerical procedure
for obtaining the solution for the steady flow in a delaval
nozzle as the time limit of an unsteady flow is developed.

The typical steady problem is considered in which the
state of the entering flow (0A, Figure 28 and the wall geometry
(AB) Figure 28, are prescribed, and the solution is to obta%g%§7 28
in the interior (0ABC), Figure 28. At least three reports e
have appeared in which this problem has been attacked by time
dependent techniques. In each of these cases, the authors appear
to have encountered rather severe problems with the finite nozzle.
Migdal, Klein, and Moretti.zgj‘side tracked the problems of a
subsonic entrance plane boundary condition by considering the
problem with an infinite upstream reservoir. The technique
developed in this report permits the specification of the steady
entering £low boundary conditions at a subsonic boundary during
the unsteady process.

The procedure, which is developed in Sections B and C,
is 8lightly unorthodox and includes = discontinuity surface at
the nozzle entrance, suggested by G. DaForno at GASL. Since mass
crosses the entrance surface and since the flow on either side is
subsonic, the discontinuity is not an ordinary one. The analyses
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and a discussion of some preliminary results for a quasi-one-
dimensicnal and a two-dimensional nozzle are presented in
Section D. In this discussion the gas is considered to be
inviscid and thermally and calorically perfect with constant
specific heat ratio, y.

B. Formulation of the Initial Value Boundary Value
Problem

Before getting down to the specifics of the problem
formulation, some brief comments of a general nature aré in order.

The objective of this study is to obtain the solution
of a steady inviscid flow as the asymptotic (in time) limit of
an unsteady flow. Since the time dependent approach has been
shown to be a very powerful method for obtaining numerical
solutions to blunt body flows, it is an obvious candidate for
the two-dimensional nozzle problem. However, this problem
differs from that one in that an upstream boundary is given
in the subsonic regime where the entering flow is specified
as a boundary condition to the steady problem.*

In developing a procedure to obtain the solution to a
steady flow problem as the limit of an unsteady flow, it is
important that

1)~ there is a steady solution to the problem, and

2) the problem formulation includes a vehicle
through which the (correct) steady solution
can be reached.

This vehicle is usually, if not always, the boundary conditions
of the unsteady problem. Very roughly, steady boundary con-
ditions will bring the unsteady flow to a steady state. How
ever, the treatment in the unsteady problem of the “steady"
boundary conditions is often not straicdhtforward.

*Contrast this with the blunt body problem where the free
stream velocity is supersonic.
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The solution sought in this study is the steady flow
in a two-dimensional delaval nozzle (see Figure 28) hawving
subsonic entrance and supersonic exit velocities., The
boundary conditions for the steady problem* conditions are:

the nozzle geometry (i.&., y(x) for OA, AB and BC),

the state of the flow crossirg OA (say total’
pressure, total enthalpy, velocity, and flow
direction, (P, H, g, 8) as functions of y
along 0&)

velocity component normal to the wall vanishes
at the wall.

Since the flow is assumed supersonic at the exit, BC, no
additional condition can be prescribed there.

In obtaining the steady solution as the time limit
of’an unsteady one, the following initial value - boundary
value problem (Figure 29) is to be solved. At time.t = 0,
initial data is prescribed in the entire section OABC.

o Boundary conditions on the x = 0 plane,** the rectangle
OBADE (DE - o as t - ), will be prescribed as the boundary
conditions appropriate along OA for the steady problem. This
is part ‘of the vehicle insuring that the (correct) steady
solution will result from the time dependent computatlon. On
the exit plane BCFG the flow is assumed to always be supersonlc
encugh so that disturbances on that plane do not have an
appreciable numerical influence on the upStream flow in the
nozzle,

' The data. to be prescribed on the two planes, t = 0, x = 0,

are:
u,v the two velocity components,
Pt the total pressure, and
H - © the total enthalpy,

* For convenience, only nozzles symmetric about the X axis are
sketched and discussed.

** As a matter of convenience only, the entrance sur.face will
often be referred to and considered as a planar gurface
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or some other suitable combination of these quantities. Then
for a perfect polytropic gas,

h = hip.p) is the static enthalpy,
2 2
H=u"h + E——ng— is the total enthalpy
2 2 .
a = a (h) is the sound speed,
and
2 - f(az,qz) is the ratio of static to total
Pe pressure,
where 5 2 5
g =u + v is the square of. the velocity

modulus.

The initial plane, t = 0, is a space-like surface,
and we have prescribed the proper information for a well set
Cauchy problem with respect to time. On the other hand, the
X = 0 plane is a time-like surface along which we have pre-
scribed more data than is permitted as boundary data to
continue the Cauchy problem with a well set Goursat problem*.
This should not be a cause of worry, however, for there is no
reason to expect this problem to be well formulated as a
Cauchy initial value-boundary value problem. The specification
of Goursat data on x = 0 would guarantee that the solution is
continuous there, at least in the smwall. In particular, it
would gumarantee that the characteristic compatibility equations
wot1ld be satisfied consistent with the prescribed data on the
plane x = 0. However, it would not permit the imposition of all
the boundary conditions of the steady problem there, but they
are, necessary to insure that the unsteady sclution approach
the (correct) steady solution. This is accomplished by per-
mitting the unsteady solution to be discontinuous at the
entrance surface. This discontinuity is the second part of the
vehicle which will guarantee that unsteady flow approaches the
steady solution. When there is a continuous steady solution,
the strength of the entrancy discontinuity must become vanishingly
small as & -~ @ and the steady solution is approached.

* pctually a Cauchy problem followed by a seguence of
Goursat problems.
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C. The Nature of the Entrance Plane Discontinuity

In the preceding section the need for a discontinuity
surface at the entrance plane was indicated by -examining the
mathematical nature of the initial value-boundary value problem.
From physical arguments the essential attributes of this
surface can be induced. 1In order to strip.- away unnecessary com-
plications, consider a guasi-one-dimensional deLaval nozzle.

The pressure, density, and velocity (p, p: 1) are to be specified,
(constant) in time, at the entrance to the nozzle. Since the

flow just behind the entrance plane is subsonic, disturbances from
downstream are propagated upstream and eventuazlly reach the
entrance plane where they will interact with the incoming flow.
Because of this effect, some form of work/energy is required

to maintain the specified conditions at the entrance plane.
Although it is more natural to consider this to be mechanical work,
in fact it is perfectly legitimate to conceive of the required
energy to be in the form of heat and/or mechanical work.

This report concentrates on the mechanical problem.
Some device which is an artifice, must perform work in ordexr
to maintain the flow conditions prescribed at the entrance.
This device can be thought of as a black hox of negligible
thickness. Though it ewvidentally has a definite task, the
details of how it accomplishes this task can remain a mystery,
though some of those properties it must have in order that it
accomplish its task in a satisfactory manner can be deduced.

First, it must maintain a steady mass flow rate. This
is necessary to insure that a steady state will be reached.
Quantitatively this is pyus = piuy where subscripts 1 & 2 refer
to the flow immediately upstream and downstream of the discon-
tinuity, respectively, Figures 30 and 31. Thus, P1.p1rY], are
the specified steady state values . In doing this it will
operate in one of two modes, constant pressure or constant
velocity, depending on. the downstream flow. If at one instant
there is a high pressure just downstream of the entrance to
the nozzle, the box will have to compress the gas to pressures
consistent with the downstream ones.

On the other hand, if there is a low pressure down-—
stream, there would seem to be no problem in maintaining P2=P;
at the exit of the box. Second, it must do work on the gas, as
required, to maintain the specified mass flow rate against the
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resistance of the flow downstream of the entrance plane.
Conceptually, energy (in the form of work or heat) could be
extracted from the.gas. However, this possibility must be
ruled out on the ground that it admits unacceptable solutions.
In particular, one solution would be to extract all the
available energy from the gas, resulting in a steady but
unmedningful solution. The requirement that work must be

done .on the gas means that the entropy of the gas should
always be increased {or, at best, unaffected) by the box.

in the pressure mode, the constant mass flow rate
can be achieved by maintaining at the box's exit, the velocity
equal to the incoming values. In being forced through at this
velocity, the gas will be compressed to static pressures higher
than p;. With u, = vy, continuity of mass flow rate gives
po=P1. Then py > py - T2 > Ty and (for a.perfect gas, constant
specific heat ratio) s; > sj, i.e., the specific entropy of
the gas is increased, as required.

on the other hand, if the downstream flow offers no
resistance, the flow can be forced through at constant pressure.
Then, in maintaining py=pj, the box will accelerate the incoming
flow to a velocity us; = uy:; hence py; = py, Ty = Ty and s, ? Sqys
again.

The above argquments purposely do not delve into the
actual processes going on within this black box. Rather, the
exit conditions are fixed so that they are consistent with the
flow immediately downstream and with the principal that work
is only done on the gas. As stated, this latter condition results
in having S5 > Sq-

D. Sclution of the Problem

1. Quasi-One-Dimensional DeLaval Nozzle - In order
to verify the feasibility of the basic concept, it is not
necessary to obtain the solution to a two-dimensional deLaval
nozzle; the quasi-one-dimensional case will suffice,

In what follows, much of the computational technigue developed
for the solution cof the blunt body problem is employed, Ref's 23 & 24,
In determining the unsteady solution we will divide the nozzle into
three regions: the entrance plane, the interior, and the exit plane
{(Figure 32). At x = 0, the entrance plane, we have the discontinuity
surface which represents. the now familiar black box. The interior
region will be covered by a finite difference grid having equal
mesh spacing.
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The computational procedure in this interior is very
straightforward. Assuming the entire flow to be given at some
time t , we want to ecompute the entire flow at ty = £+ AtL.
The interior (in x) points at &t + At are cbtained by expanding
the dependent variables in a 2n8 order Taylor series about their
respective mesh points, at to- This is essentially the Lax-
Wendrof £ 30 scheme ~in non-conservation form*. TIn particular,

At

2

.u(x,to + At) = u(X,tO) + ut(x,to)At:+ utt(x,to) (35)
with similar expressions for the other dependent variables.

The first derivative terms, like ug, are obtained directly

from the differential equations for unsteady quasi-one-
dimensional flow. The second derivative terms are obtained

by differentiating the differential equations with respect

to time. The resulting mixed derivatives, like Uyt, are
evaluated by differentiating the original equations with

respect to x, the space variable, thus expressing the mixed
time-space derivatives in terms .of space derivatives cnly.

The convergence and stability characteristics of the
scheme’ 0 applied to gas dynamic problems are not investigated
in this study, for there is quite a large literature on this
subject. Suffice it to say that we can be confident that
the scheme is convergent and conditionally stable, the maxXimum
stable step size being given by

Ax
£ = i —_— 36

) a min (== ) (36)
where & is of the order 1 and the minimum is the minimum
over.all the mesh points at each time step.

To obtain the actual- expressions for Ugr Uppr Pgo etc.,

we have the basic differential equations for quasi-one-
dimensional unsteady flow (in standard notation).

* Any number of other finite difference schemes (e.g.,
Lax, Rusanov, etc.) could have been chosen.
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Py t pu, + U0, 7 x ax

Px

2 _09 37
u, +uw tg (37)
st + usx = 0

where p is the density, p the pressure, u the velocity, s

the entropy, A the cross sectional area (A = A{x) 1is specified),
and the subscripts x and t denote the partial derivative with
respect to that indépendent variable. Writing R = Iinp/pP_,

P = an/po, with e, and p_ some reference conditions, theén
5~5
C S = P—vR and the equations become
v
u da
R, =~ [qu +u 7 ax
B
u, =~ {uu_ + = P_ 1]
t
x p X (38)
?t - - qu
Pt = St +th
Then
"t da
Rtt = —[utRx + qut tu A ax ]
(39)
u 2
. _ xdA uda u  da . 2
Reyg "R = "[o Ry + R  + 0w ¥% ax T2 .2 20 ax’
ax A
ete.

Aﬁ'the entrance plane we have the discontinuity with

p2u2 = plu1 {steady mass flow rate)
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and either

u, = u; P, = pl
or (40)

i

where Py {(u,) {(and u, {(P,) ) quantitatively embodies the require-
ment that %he flow on %he downstream side of the entrance plane
must be consistent with the flow in the rest of the ndzzle. The
functional form of p,(u,) is obtained by writing the character—
istic compatability equation (corresponding to Eqg. (38))

du a dp _  au da
at y a A  ax (41)

along the characteristic direction defined by

Tr = u-a (42)

Here d/dt is the total derivative of the dependent variable and
a is the local sound speed, a = ,b/p/p.> Computationally, Eq. (41)
is written in finite difference form between the entrance plane
at €t =t) = t, + At and an interior point at t = ty, the
location of the interior point being the intersection with the
line t = t_ of the characteristic passing through the entrance
plane at t;, and having slope dx/dt = u-a (Figure 33). The
difference form of Bg. (41) is

au da

a
—_11% = —_— _-P% —_ —_—
u,-u + 5 (P2 BP*) A ax At

where the coefficients are averaged along the characteristic.

Once the solntion has been determined at the entrance point
and at the interior points, at time t =t +At, the values at the exit
point are obtained by extrapolation from the interior points.
Though this is not formally correct, it has beeh shown to be an
acceptable numerical short cut so long as the flow there is
supersonic enough so that the upstream feeding is numerically
negligible, References 23 and 24.
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A good evaluation of the procedure canbe obtained by
comparing computed results with an exact steady solution (cf.,
NACA Report 11353 , 1953). To this end, consider a long quasi-
one-dimensional delLaval nozzle. The first test case considered*
‘corresponds to the steady flow of a y = 1.4 gas accelerating
continuously from Mach 0.5 %o Mach 1.8. The specified area
-variation with the exact steéady state values for Mach numwber and
pressure ratio are shown in Figures 34a through 34c. As
initial conditioms for the unsteady flow we put the steady
solution with the exception that at x//A* = 4 (A/A* = 1.88,
corresponding to M = 0.6 in the steady solution) we put a
pressure equal to twice the steady value. Thus, a compression
will propagate upstream and downstream due to this initial
pressure jump. When the compression wave traveling upstream
strikes'the entrance plane it will be reflected. If the entrance
were a solid boundary, the compression wave would reflect as a
compression. In the present case the entrance plane is somewhere
‘between a solid and free boundary. Because we can expect less
energy to be associated with free boundaries, the primary
component of the reflected wave will probably be an expansion.

One of the most interesting items to study is the pressure
distribution in the nozZzle at various times (Figure 35). P P,
are the isentropic stagnation pressure and density of the
exact steady sclution. The path and dispersion of the primary
compression wave down the nozzle are ‘easily followed. Less
distinct and more dispersed is the primary reflected wave,
which is an expansion, thoudh thére is really no difficulty
in following it. The pressure history on the downstream side
of the discontinuity is shown. in Figure 36, WNote that within
steps corresponding to-a non-dimensional time of 20, the
"solution is essentially stablized within less than 0.1% of the
steady state value. The historyof W/Heptrance = Hy-Hy/Hy ,
the instantaneous work level (Figure 37} exhibits the expected
behavior; that is, it is always positive. It is evident that
W can be determined, in this case, to an accuracy of not
quite 0.1%**%* The entropy jump history is shown in Figure 38.

% A test of the mesh size effect was made in another case,
the results being, as expected, that decreasing the number of
mesh points decreases the accuracy. For example, decreasing
the number of mesh points by a factor of two decreased the
accuracy of the computed "steady state" (at the same time)
by -a factor of three.

#% The area is specified to 0.01% and the derivatives of the
area are obtained by finite difference.
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One of the most interesting features of this procedure
is that. it admits steady solutions to entrance conditions for
which there is no continuocus steady solution. The discontinuous
behavior at the entrance plane permits this. For instance, if
the prescribed entrance Mach number is larger than that consistent
with sonic flow at the throat (in continuous steady flow), the
black box can reach a steady state in which the gas is continuously
being compressed (and decelerated)} at the entrance. Similarly,
the box can accelerate a "too slow" flow so that the sonic velocity
is reached at the throat. We refer to these two cases as
"over-choked" and "under-choked" respectively. An example of
each of these cases has been computed for the same nozzle area
distribution already discussed. The work and entropy jump
(Figure 39} histories show the expected rapid initial incréase
followed by a gradual leveling off to the steady value. As
expected, the final steady state has a Mach number behind the
discontinuity equal to the value.consistent with a steady, choked
flow for the specified contraction ratio (Figure 40), but the
steady state pressure level differs in each case (Figure 41).

2. Two-Dimensional Nozzle -~ There are seveﬁal
important differences between the flow in guasi~one~dimensional
and two-dimensional deLaval nozzles. Though conceptually
basjically the same, in detail the entrance plane discontinuity
is somewhat more complicated in two dimensions.

A general outline of the computational procedure
for obtaining the solution to the two-dimensional unsteady
flow is discussed prior to giving the details. Assuming the
entire flow to be known on some constant time plane t = t_,
‘we want to be able to step ahead to obtain the solution 0
another time plane tj = t;, + &t. In (x,y.t) space the nozzle
is covered by a finite difference mesh which, for a constant
value of €1 appears as shown in Figure 42, As in the cuasi-
one-dimensional case, the solution at interior mesh points at
ty = to + At can be obtained using a number of explicit or
implicit differencing procedures; we will again use the non-
conservation form of the Lax-Wendroff method. ~The upper wall
points can be computed by the method of characteristics as
developed by Moretti and abbett32, At the entrance surface the
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specified local steady mass flow rate is maintained which,

when coupled with a characteristic compatibility equation from
the interior flow, yields a solution for the flow on the
downstream side of the discontinuity. When all these points
have been computed at t,, data for the exit plane points again
can be obtained by extrapolation from the interior flow, so long
as the flow remains more than slightly supersonic at the

exit plane.

For flexibility, it is desirable to develop the computer
program which the capability of curved emtrance surface; that
is, the entrance surfaces could be somewhat curved in X,y space.
This, combined with the curvature of the upper wall, leads to
problems in constructing in the physical (x,y,t) space, a finite
difference grid for the numerical solution of the problem. A
well tried remedy is to map the nozzle onto a rectangle so that
one can set up a relatively convenient numerical procedure. Then
the three-dimensional computational domain is a rectangular
parallelepiped upon which it is easy to construct a computational
grid. Of course, the equations of motion differ in the transformed
space.

Let (%,y,t) denote a cartesian coordinate system in physical
space, with velocity components (u,v) and with the x axis positive
in the general flow direction (the nozzle need not be symmetric).
The wall geometry is denoted by y = s(X) on the upper wall and
by v = b(x) on the lower wall. The nozzle entrance and exit
surfaces are denoted by x = f£(y) and x = ¢g(y) respectively. The
computational space is denoted by (X,Y,T), and the transformation
is shown in Figure 43, Then the Euler equations become

v u

RT=—[BRY+EP3{+—6§'+"]§-;VX+§uy+S—I
U, = - [BuY + Eu, + ‘ﬁg {CPY +-%I PX)]

Vp = [BvY + va + EE (PY + %I DPX)]

s, = - [BSY-I-ESX]
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with

C = bX(Y;l) - YSX
D=Ff (X-1) - X
Y( ) 9,
B = (v+cu)
§
E = (ugvD)
1

Again, these equations are differentiated with respect to X,Y,
and T to get the second time derivatives of R, u, v and S, to be
used in Eguations like (35).

The wall boundary Boints-qre computed by the method given
in Moretti and Abbett % and outlined here. A local cartesian
coordinate system (£,7,t) in physical space with velocity
component§ (U,V) is set up normal to the wall at each mesh
point (see Figure 44).

In the (7,t) plane the Euler equations are written in a
characteristic form relating V and P. The equation is
— o - = 2 up, + av UV.]
L5 PP 3 3

where

a a 3 an

dt — at an dt

along the direction

an _
at - v - a.

Since V = 0 at the wall, -this can be written in difference form
to give P at t1 = t5 + At in terms of the flow at time t = to.
Thus

P(t +At) = P*(t0}+(§-)v*(to) - [UP€+'}/U€— % UV,] At

3
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where the asterisk denotes values at time t; on the characteristic
line of slope dl/dt = V - a (see Figure 44) and the bar denoctes
average values along- that line. The velocity component and the
entropy are determined by first order explicit finite difference
equations for the second momentum and the entropy equations. These
are, since V = 0 on the wall,

U, + UT"IE, = - pg/P - Uyt tat )'—'U(to)-—[UUg+pE/p] At

s,c + Usg Q- s(to+At) = S(to) + Usg At

It is true that this difference scheme is unconditionally unstable
at interior mesh points, bui experience has shown that it is
adequate at the boundary points, the stabilization probably being
due to a combination of the one-sided finite differences and the
use of the characteristic equation for the relation between the
pressure and the velocity component normal to the wall.

The entrance surface discontinuity requires specialized
treatment, somewhat more elaborate than in the quasi-one-
dimensional case. The two operational modes, having jumps
respectively in pressure and velocity, still characterize the box,
though it may operate in different modes simultanecusly at each
point of the entrance plane. For example, at a given time there
may be a pressure jump near the centerline and a velocity jump
near the nozzle wall. Again, this is necessary in order to
insure that, locally, work is being done on the gas, resulting
in entropy increases as the gas traverses the box. Thus, even
if the conditions prescribed on the upstream side are uniform,
two-dimensional effects propagating upstream will usually result
in lateral pressure gradients at the downstream side of the box,
Of course, nonuniform upstream conditions can have the same
effect. So, during the unsteady process, the lateral pressure
gradients will induce velocity ‘components which are locally normal
to the inflow velocity vector. Since éither the pressure or
normal velocity component are specified at the box's exit
{which one being determined by the requirement AS = 0}, it is
natural to seek two equations relating the pressure and.both
velocity components at time t5 + At to the nozzle flow at time
tg. The characteristic equations along two bi-characteristics
provide such a relation.
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‘Consider-a cartésian coordinate system (§,m,t) (Figure 45
whose origin is at a mesh point on the downstream side of the
discontinuity. -The £ axis is oriented locally normal to the
-discontinuity (Figure 45), and the velocity components in the
(€, M directions.are (U,V) respectively. = The bi-characteristics
through (0,0,0) are given bparawmetricaliv hy

_q'_g__.. Pruid SR 1
ar U+ acos o ar - V + a sin q

where a is the local sound - speed and @ is a parameter, For
given ¢, the compatibility equation along the corresponding
bi-characteristic is

Dp

+ pa cos o DU 4+ pa sin LA
pt T P P o =

bt Dt

2 ., 2 . 2
.- - (U V) sin @ + cos a + V s
pa [U£51n o ({ - g)_ in co L cos @l

where D/Dt means differentiation in the bi-characteristic
direction. . The bi-characteristic in the plane normal to

the discontinuity (on the downstream side) corresponds to

@ = T, so the bi-characteristics corresponding to & = 37/4
and 57/4 should provide a good combination.of. lateral and
streamwise momentum transport. This combination was used

in the computation-discussed below. The remaining equations
are the local continuity of mass flow rate across the
discontinuity, p,yUp = p1U1., the perfect gas eguation of state,
and one of the two conditions

b, = pl or o, =1
depending upon which results in AS = 0.

A side comment on numerics is in order at this point., The
use of the characteristic equations requires a number of inter—
polations on the basic computational mesh. This can be a cause
of numerical trouble when adjacent mesh points at the
discontinuity are operating in different modes, (p2=p3, or U,=U;)
Therefore, it is necessary to set up a procedure for switching
from one mode to the other between mesh points. One procedure,
which seems to have worked adequately in preliminary calculations,
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is to use the- bi-characteristic coérresponding to « = 7 in
place of the one above which would ordinarily be in the interval
where the operational mode changes.- If the operational mode
changes in both intervals immediately adjacent to a mesh point,
then only the @ = T bi-characteristic is taken and V = 0 is

set at that point.

As in the quasi-one-dimensional problem, values at the
exit plane are, at a given time, determined by extrapolation
from interior points. )

The results so far achieved in the two-dimensional case
are preliminary and incomplete., However, they are complete enough
¢o that the soundness of the procedure is verified. This is
not, to say, of course, that there is not a significant amount of
work left to be done in working.out the details of the computational
technique to arrive at a good computational tool for the entrance
digcontinuity surface.

The geometry of the nozzle considered, which is symmetric
abqut the x axis (Figure 46), consisted of

a straight segment of 'constant area followed
by (dy/dx = - .261)

a straight segment of constant slope, where
the area contracts, followed by

a ciréular are, and ending in

a straight segment making a 45° angle to
the centerline.

The constant area region has a cross-sectional area equal to
1.59 times the minimim area. The specified.- entrance flow-was
uniform with a Mach number of -0.4. Pressures-are all divided
by the stagnation pressure of the entrance flow. -Entropies
shqwn are the difference between the local entropy and the
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entrance flow entropy all divided by the specific heat at
constant velume. There were five mesh intervals between the
centeriine and the wall and fourteen mesh intervals betweaen
the entrance plane and the exit plane. ' )

The time variation of pressure and velocity exiting the
box- at the centerline and at the wall are shown in Figure 47, It
‘appears that the steady limit of the solution being computed
has a jump of about 5% and a wvelocity jump of about 10% at the
wall. These nunwbers are probably so high because of numerical
problems arising from one or more of the following:

. teo rough a.mesh, (barticularly important
with the sharp corner on the upper wall),

. the cémputational procedure at the dis-
continuity is not entirely satisfactory,

. special numerical problems at the wall-
discontinuity juncture.

It was not possible to carxy this study further under ‘current
funding, so these problems  must be left unresolved for the
moment,., However, it is probable that all three items con-
tributed to the steady state jumps.

The entropy jump histories at the wall and centerline
(Figure 48) also show that the strength of the discontinuity
does not tend to zero as a steady state is approached (since
the entropy jump is a difference in logs, numbers on the
order of 0.0l or less would numerically indicate zero strength
at the jump).

The steady state distribution of pressure (Figure 49) and
Mach number (Figure 50) along the wall and the- centerline,
indicate that probably toco rough a mesh was used. This. is not
unexpected, however, since the mesh used was only 10 x 5.
Considering the fact that the computational procedure at the
discontinuity is in an early stage of development and that no
effort was made to average coefficients, there or in the wall
characteristic computation, these results can be considered
quite good. However, additional studies should be made to improve
the computational technique and to resolve the above mentioned
problems.
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E. Conclusion

A unique procedure is presented for obtaining the
solution of a steady flow in a deLaval nozzle. Application of
the procedure to a guasi-one-dimensional cass has yielded
results which lend credence to the technigue. In two dimensions
these preliminawry results substantiate the basic procedure but
indicate that additional work is necessary to improve the
numerics, particularly at the discontinuity.

The previous discussions focused on the f£luid mechanical
structure of plume flow fields. These problems are further
complicated, however, by chemical and multiphase phenomenon
which must be considered if realistic predictions are to be
made of the thermal and electromagnetic effects relevant to the
problems of environmental heating, contamination and communication.

The purpose of the following discussion is to describe some

of chemical and phase transition processes which are characteristic
of present and future plume flow fields.

—-60-



IX. CHEMICAL KINETICS IN PLUME FL.OWS

A wide variety of propellent and propellent combinations
exist and are used according to the mission application. Of
particular interest here are engines burning hydrogen or RPL
(Kgrosene)/LOX. However, the chemical systems and kinetie
mechanisms associated with these propellents are relevant to
virtually all propellents whether they are solid, hybrid, slurry
or pure liquid since these generally contain substantial amounts
of hydrocarbons. Thus, in addition to the usefulness of providing
the details of specific hydrogen and RPl systems the results are

applicable to the formulation of general propellent combustion
behavior.

Previous studies of these systems and, in particular, of the
RPL/LOX system have led to a conputerized formulation of the
reaction mechanism with hydrogen as a subsystem, References 33.and
34. For the present purpose; which is the inclusion of the hydro-
carbon kinetics into the MOCV programsg, a summary of the results
of the work of References 23 and 34 will be sufficient,

The kinetic mechanism for the combustion of hydrocarbons is
very complex involving in general, over 30 active species
entering into over 200 elementary reversible reactions. A study
of a typical hydrocarbon system, Reference 35, has shown,  however,
that a much smaller reaction mechanism could be postulated while
retaining the necessary detail for an accurate description of
the combustion process. This mechanism involves 31 species
entering into 69 elementary reversible reactions. Using the
high speed solution technique developed at GASL, References 6 and
33, make it feasible to make pure kinetics calculations in time
periods measured in minutes. This represents up to two orders
of magnitude reduction in computational time compared with standard
integration technigques such as Runge-Kutta. However, even with
this improvement the inclusion of the "full" 69 reaction mechanism
into the MOCV flow field program would result in calculation times
measured in hours. Although in the analysis of certain problems
it is desirable to examine the detail offered by the "full"
system many applications of interest do not require such detailed
species fields.' To this end a study was made on the feasibility
of developing a "quasi-global” representation for the "full"
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sixty-nine reaction mechanism,’ Reference "33. The "quasi-global®
mechanism provides a bridge between the high molecular weight
fuel and the more stable equlllbrlum_products of combustion. Of
course,. many 1ntermedlate species are not’ included in this re-
“presentatlon but the macroscoplc propertles 1nclud1ng lgnltlon
delay, reaction,time, "equilibrium products of ‘combustion, density,
temperature, etc,, are given with a remarkable degree of accuracy.

The chemical system considered ‘inciudes the IOLLOWLNG -
‘species:

(1) Hy (7) co

(2) o, (8) C0y

(3) H,0 (9) cH (43)
(4) H [(10) ¢y

() 0 - (11) .. N,

(6) H

Where C H is the high molecular weight hydrocarbon fuel and C(s)
represents carbon present as a dispersion of solid particles.
Also, -N, is considered to be an ‘inert diluent. "The elementary
reactlons involving the first elght active spec1es are those
glven .in Table I and the species entering: 1nto these reactions
are the essential stable products of combustion. To brldge the
gap between these species and the high molecular weight reactant,
an intermediate global type oxidation equation is required.

- In the present *"gquasi=global" treatment the required
overall equation must represent an intermediate, or bridging
‘reaction. Several reactlons have been considered,Reference 33,
and thé results of a comparatlve study indicates that a good,
representatlon is prov1ded by the partial oxidation equatlon-

CH +-§ b2 L nCo + (n+l) H (44)

n2n+2 2

To complete the describing equations for the chemical
system a global rate equation for the consumptlon of fuel is
regquired. In Reference 37 it is shown that for- parafflnghydro—
carbons from ethane "(CpHg) - up to kerosene, the combustlon times
are of the same order of magnltude . . Thus, available data foxr
butane, propane and ethane were considered relevant for the
kerosene oxidation process.
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The rate expression is assumed to be of the following,Arrehnius
type, form: .

_ 13,740
. o " RT

F B
at =3 G c02 e (45)

where the effective activation energy was fixed at the value
appropriate to the propane oxidation process. The results of the
study_gave the following rate equation (Ref, 33): ’

13, 740
dac e M
F_ %51 RT
- gC =BG C, e
2
where
13 1 ..825 Ty
A=1.0x10" (3) [.9 555 — -5] (46)

The oXidation equation, Equation (44), and the associated
unidirectional rate equation, Equation (46) together with the
elementary reversible reactions given in Table T constitute the
"quasi-global" mechanism for the homogeneous gas phase combustion
process.

Because of a combination of non-uniform 0/F ratio and of film
cooling of the skirt wusing fuel rich auxilliary turbine exhaust
there will be regions of the plume flow containing soot particles.
The effect of these particles upon the plume flow field structure
and, in particular, thermal radiation heating motivate an
attempt to quantify the soot oxidation process.

The finite-rate oxidation process for soot particles
already present in hydrocarbon flames also is not well understood.
However, Lee, Thring, and Beer (Ref., 38} have performed a set
of experiments which make it possible to form a global reaction
for the combustion of the carbon particles. This global rate
equation should not be though of as a firmly established analysis,
but rather as a useful first estimate which will probably be
modified and -extended by future experimental and analytical work.

The basic experimental apparatus was a laminar diffusion
flame inside.a quartz tube. The fuel was predominantly propane,
with some propylene and ethylene, and was burned with oXygen-
enriched, preheated air. Solid and gas samples were taken starting
at the axial position at which soot particies were formed in
the flow field. The gas samples were analyzed by a chromotographic
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method, and by an Orsat apparatus. An electron microscope was
used in determining the size of the soot particles. A series
of runs was made for different overall stoichiometric ratios.
Temperatures of from 12009K to almost 1700°K occurred in the
sampling region. The authorxs were able to correlate the
experimental results for the soot combustion by the relation

39,300
dm. §(1.085) x lo” r.nl/3 o /3 PO, RT
at Pl jnitial & L F°
which is readily transformed to

o 39,300
e 12 “initial RT
EES = .8138 x 10 acao ( ”__Er_—__) ~E— e (47)

2 c N T ’

3
by assuming that the scot density Pc is 2 gm/em and that the mean
particle diameter, dc is 400°a.

Based on this work of Reference 38 the oxidation equation is
assumed to be:

c(s) + 02 - c02 (48)

This formulation has been incorporated into the "quasi-glebal"
chemistry package but it must be regarded as tentative.

Various versions of the MOCV program were extended to include
this "quasi-glcbal® package. 1In particular, all supersonic
versions of the program contain this chemistry capability. It
should be emphasized, however, that the extended version with
the internal shock structure has been set-up for entry and exit
from this kinetics package but only a "dummy" routine is currently
included. However, all the thermodynamic properties (enthalpy
and specific heat "fits*) have been integrated into the program.
it-should be noted that a mixed subsonic/supersonic ducted flow
version based upon the MOCV framework is undexr development on a
separate NASA Contract and is discussed in Reference 39. However,
this kihetics capability remains to be added to this version.
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In addition to the kinetics of combustion, the problem of
phase transition is also relevant in the underexpanded plume
flow. In plumes involving large exXpansion ratios many of
the species may become saturated and condense out of the vapor
phase. In hydrocarbon systems two potential condensibles are
Hy0 and C02 and because of the short residence times the process
will be a finite rate one. The next section will describe a
method of including classical nucleation and growth theory into
multi-dimensional flow field calculations.
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X. PHASE TRANSITION

The present analysis describes some of these coupled
processes as applied to specific flow configurations. 1In
particular, the equations describing turbulent flow character-
ized by parabolic eguations with equilibrium chemistry and’
finite rate phase change, are considered, This includes ducted
flows appropriate for the analysis of rocket combustion chambers,
thrust augmentation chambers, and ejectors. In addition, un-
bounded flows are analyzed including discrete jets, and
plume-free shear layers.

The analysis includes a description of the conservation
equations of mass, energy, and momentum, including a detailed
discussion of the constitutive relations describing inter-
phase mass transport. The important gas phase and particulate
phase parameters governing the behavior of the turbulent
transport of particles. are described. The solution of the
describing equations for all flows, bounded and unbounded, is
by an explicit finite difference scheme. Either an arbitrary
wall contour or streamwise pressure variation may be specified,
The unigque feature of fhis work is the coupling of a number
of two-phase processes in configurations including mixing
and combustion.

A, Analysis

A comprehensive description of the conservation
equations governing a (utilizing the boundary layeéer assumptions)
multi-dimensional, multi-phase system, is much more complex
than the familiar gas-phase conservation equations. In addition
to describing the conservation of mass, momentum and energy for
the condensed phase, it is necessary to also describe the
dynamic and thermodynamic interactions between the phases
(dynamic nonequilibrium), temperature differences (thermal
nonequilibrium), and mass transfer between the phases
(noneguilibrium phase change). This highly general system of
sguations was formulated in Reference 40.

In this' investigation we are concerned with phase
‘transition in configurations involving mixing and combustion.
The emphasis is on the finite rate interphase mass transfer
process under the following assumptions: dynamic and thermal
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equilibrium for the mean and turbulent components of velocity

and temperature, and quasi-complete combustion.

These

assumptions provide a reasonable estimate for flows involving

{(~1g).

Certain combustion chamber processes associated with

direct liquid fueled rockets and-air breathers are additional
examples of practical applications of this amnalysis.

For a plane two-dimensional, or axisymmetricé system,
the governing equations may be written as Reference 40 and 41

Mass:
3 N 3
e lPuy ) * g;(PVy )y =0
Momentum:
du Su __dp 1 3,  N3u
Pu 3x TPV dy ax + yN ay‘“y 3y
Energy:
.§_.+ __._.:.L._.._a_.[ N _];_.__.I-_I (1_l_.)
pPu 3 P"a‘ynay Y Bt Ypr 3 Pr
1 1 i BBi
+ Tl ( Sc pr ) h g;‘ 11
‘Diffusions:
i i N i
g 8- _ 1L 3 ry | BB
PU Fx +ev dy yN By : se “t ox b
L1 &i
Wchemistry phase change

where

0 - two-dimensional flow coordinates

L 1 - axisymmetric flow coordinates
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Initial and Boundary Conditions:

u =
up(y)
X=0?05Y5Yl:; T =T (y)
B; = Bip(y)
u = u_{(y)
ypq:y(Yw T=T(Y)
Bl = is(y)
38,
-é__l = 0 (impermeable wall)

:—g = 0 (adiabatic wall)

or

T=Tw(x) {cooled: or heated wall)

‘o e’ St
dy £ ‘m

This set of equations has been solved for hydrocarbon chemical -
systems and includes condensation for the species H,0 and CO
using the classical finite rate nucleation and droplet growtﬁ
law treatment described in Section B. Since in this work,
emphasis is placed on the kinetics of phase transition, it is
appropriate to employ a simple egquilibrium-like complete
combustion chemistry model (Section C) to describe the

burning process. Thus, we have the combination of a finite-rate
phase change process and an equilibrium type chemistry model,
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Tc properly use these models requires that the species parti-
cipating in the chemistry model be cast in the form of element
mass fractions, while the condensed specdies entering into the
phase kinetics process remain as-specie mass fractions which
act only as diluents in the local burning process.

Thus, the diffusion conservation equation must be written
in two. parts:

Diffusion: (element mass fractions)

2] - 3] 1 3 Y B o gyl F
PR 3~ PV 8y = N @8y L Se¢ By 1+ wj
Y : - (53)
j = C; 02' Hz; Nz

. N
B 3” _ L 3 T He 3t ¥
Pu ax~ TPV 8y N 3y t Sc oy I+ Wi
o (54)

It must be emphasized that the &. are not total mixture
element mass fractions, but involve oﬂly the species partici-
pating in the combustion proceéss. Thus
Comb .
Pg5igs

and

ﬁ?, the production rate of condensed species, is determined
i

by the condensation-evagoration models described in Section B,
and hence determines ﬁj :
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. F

- ]

N W

F - W,
X1

W

w, = X Y.
J i plj +

. The chemical species considered in the present application
are Hy0, Hy, 0y, CO, COp, N2, C(o) @ generalized hydrocarbon
fuel, C,Hp, whose thermodynamic properties must be specified,
and either H,0 o) °F Clp oy @8 & specie undergoing finite rate
phast transition. Because the phase transition kinetics is a
function of particle size it is necessary to track the

particles through the flow and account for the size distribution.
The droplet particle size array is discussed in Section X.B.

The solution of the above system of equations provides the
details of the flow field including the velocity, temperature, and

species fields.

The global continuity.equation can be eliminated from the
system of differential equations by introducing the von Mises
coordinates as the independent variables. The transformation
(x,y) to (x,¥) is defined according to the relations:

puyl = \er@Y (54a)

—pvyN = @NQX (54b)

Introduction of (54a) and (54b) into the differential eguations
resdlts in:

Element Conservation

d@., Le, u.p o
ol 23 _tlt_ 2N _ i, . 3=C,0,,H,,8
vl B Rt + W, /pu 2°72772

X e Y

(33)

a *

S U Y i e vy % +W_, L =CO H.0

= = S v ) = or
ax @N g Pr, @N oy L 2 2
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Momentuam

Bu_1 3 M awdwy 1 dp

dx @N SRy QF 3y pu dx (56)
Energy
pu 2
BH _ 1 ® 2§ 1 L, dut/2
3x © N 7 & Y { +(Prt D =3
{5%)

. aaf
-+§:hi(Le -1) 5g= 3]

The physical y coordinate is obtained by the inverse transforma-
tion:
¥
N+1
y = (N+1) [ -
o

awr (28)

. ?P%a

and the transverse component of velocity, v, is given by
N
¥
X

N
Py

(59}

Boundary Conditions:

The governing equations are parabolic and reguire initial
conditions at x = 0 and boundary conditions at ¥ = oo and
¥ = 0. The initial and boundary conditions are:

Ay,
_ Su i 8T _
at ¥=0: 3¢ =3¢ ov -0 60)
du
t =y ; 28 o (¥ L f
a w' Ay ( puy}w( " )
%g =0, oxr T = Tw
61
aai {61}
o = ©
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Initial Conditions:

{ =
‘ u upﬁ@)
T =T (I
x =0 0 <= \I:P < ~P
aj"—" ajp(‘I’)
= (x,¥
\ o qu(r )
. (62)
u = uS(W)
T = TS(@)
E% < ¥ < @h ﬁ
oej= ajs(\lf)
= o (r,¥)
\ 0= %t

The conditions expressed by (60), (61), and (62) with symmetry
at ¥ = 0 completes the specification of initial and boundary
conditions.

The solution of the aﬁove system has been carried out by
an explicit finite difference scheme and the details are given

in wvarious references including References 33, 41 and 42.

B, The Condensation Process

The condehsation process is initiated by the formulation
of critically sized clusters of droplets in the new phase. This
rhenomena, defined as nucleation, is generally divided into two
types: homogeneous, wherein the new phase deposits on nuclei
spontaneously formed when vapor molecules collide and stick;
and heterogeneous nucleation in which the condensate initially.
deposits on foreign particles serving as centers for con-
densation. For simplicity, the present analysis.is concerned
only with the first of these phenomena.

"

The Nucleation Rate Equation:
The model for homogeneous nucleation according to classical
theory consists of specifying expressions for the radius of a

critical drop x*, work required for cluster formation w¥,
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droplet surface tension ¢ and a growth law. The nucleation rate
J can be written in general form as
J—BB—PL-——'QX X

- C1t2 T 2 P

p.T

7

where J is defined as the nuwber of drbplets created per unit
time per unit volume., The pre-exponential factors are closely
related to the collision frequency of molecules in the gaseous
state and the exponential is an expression of the work of cluster
formation. Since a particular model may be best for only certain
flow. conditions or types of -condensate, six models are included
in this analysis. These expressions are summarized in Table II .
Once the dxoplet is formed its subsequent history is determined
by some growth law. A particularly simple and useful one is

given by kinetic theory:

a(pv_PVco) _ML L
F= pLu ( 2qkT

where

P = dr/dx the rate of change of droplet radius and
¢ is the accommodation coefficient. —

To apply these expressions to condensation of & supersaturated
vapor, the values of A*, n*, wx and , must be determined.
These variables depend upon the state and shape of the droplets
"of condensate, and involve the surface tension of the droplets.
The area of the droplet is given by

A¥ = S*r*2

where s* is a shape factor. For spherical droplets, s* = af.
The number of moalecules in a criticzl droplet is:

s*r*sp
n* = “
3m
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The work of formation is

wk = % Ur'kz

The particle Array:

The total amount of condensate present at every point
in the flow field is divided into categories (current computer
program has ten) hased on particle size. Within each size range
all the particles are combined to form an average with a
volume to surface area ratio equal to that of the summation
overall contributions. This eguivalent particle size is identical
to the Sauter mean diameter or radius and be expressed as

Erlir. )

a . M

r m —=—— vwhere n, particles have radius r,
2 i i

s
Zn .r,
iTi

This representation is exact for dynamic and thermal equilibrium
between phases assuming a mass transfer rate based on condensa-
tion from kinetic theory. The mass fraction of each category

is equal to the sum of the mass fraction of each contribution.
Witk the average size of category particles and the total
category mass fraction known, the appropriate number of equiva-
lent particles is established for every class.

The particle distribution array in terms of size, mass
fraction, and number in each category at every grid point can
only be altered by three phenomena: the creation of new
droplets by nucleation, the growth of old-droplets, and the’
diffusion of droplets from adjoining grid ﬁoints. Each of these
effects is treated separately in the following sections. wherein
expressions for the particle array variables resulting from
these prccesses are developed.

Nucleation:

Whenever new particles are created by the condensation
of droplets from the vapor phase, the resulting particle size
js defined in terms of the local pressure and temperature as r*

A



where .
partial pressure

) 2gm v ¢p=saturation ratio= 5 the vapor
= p Rineg ’ equilibrium partial
< pressure

pcﬁcondensate density

The number density of critical size particles created over a given
length is defined as NS where:

X

_ J(g)dg
Ng = i u

(=]
The mass fraction created is then

~

X n*M  n*Znumber of molecules in critical
T, .
g, = [ — J(E)ag droplet
b'4 p MLEmass of molecule
o

These particles are then categorized into the proper size group
and averaged with those already in the category using the
Sauter criteria to form a new class radius, mass fraction and
nuwber density, defined as R(J,I) , G(J,I)}, and N(J.I) where
the J indexes the categories and %V%he points in the grid.

Growths:

All droplets are formed with an initial radius r* that
changes in accordance with the growth law as the flow field
develops. Thus, after every step, the updated radius array
must be reclassified in order to account for the transition
of particles from one category to another. Since it is possible
for more than one contribution to be made to a particular
category, the total mass in each category must then be re-
averaged to establish the category radius using the Sauter
criteria. The resulting expressions for the particle array in
terms of radius., mass fraction and nunber density become:

—75—



.3
n.r,

i1
R(J,I) =
AVE Zn.r,
iTi

where r, represents the radius and n. the number density for
each coﬁtribution that has been sorted into the same category.
Since the total mass is equal to the sum of the mass contri-
butions, the number density of particles is given by

3

Zn.r,
ii

N)J,I) = 3
R(J,I)AVE

With the new size and number established the mass fraction can
be expressed as

R, Dpye 3

N(J,I)
} G(J,I)
R(J,I)Old old

N(J'I)olcﬂ

F(J,T) (

Where the subscript "old" denotes values of the variables
prior to the last integration step.

The effects of the condensation process of creation and
growth on the particle array parameters are summarized
below. The particle array in terms of mass fractions, sizes
and number density is traced from an initial station to a
downstream position one step away.

The Condensation Process Summarized

For every grid point I the initial values of the
particle array are initially:

G(J,I)
R(J,T) where J indexes the categories
N{J,I)

Tre rate of growth of ©ld droplets is computed based on the

growth law.
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dr 0[(pv"pvcxa) M

e = ( Ly
dx pcu 27kT

-

Knowing the numerical step size based on the stability criteria
for the finite rate scheme, these two rate equations are in-—
tegrated numerically over this step Ax .

The number density of new droplets created is computed

JAx
5 u

The change in radius of old droplets is évaluated

" dR
AR-—dx Ax
The initial radius array R(J,I) is now updated
R(J, I} = R(J,I) + AR
The new particle sizes are sorted into the proper categories
and the number of contributions to each category is defined

as n(J).

The average particle size in each category is established
using the Saunter criteria :

R
1

N,
i

W

R(I,I)_ ., =

YN

R,N.

1

B | g
l-lm' IIM

i

The new number density of particles in each category having the
updated size is established

1.3 3
N(J,I) = Z R.N,/R(J,I)
new . _, i df new
The new mass fraction of each category is established
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N(J,I) R(J.I)3

new new
= m——— -_T . G(J,1
G(J'I)new wN(J,I) R(J,I) ( )

Now, knowing the size r* of the droplets créated over this
step, the mass fraction created is added toc the appropriate
category

G (T, 1) oy = G, I) + g

Then having established the number of droplets created N
with radius r*, the category radius is reaveraged to incIude
this last contribution

3 3
R(T,I) ., (I, T)_

+ N r*
W s

R'(J,T) =
new 3 2

*

R(J,I)new N(J,I)new+NSr

The category number density is adjusted by

3 , 3
N (J,I)neW = R(J,I)new N(J,I)new/R (J,1)

The particle array parameters thus established

¢ (J'I)new
k]

R (J,I)new

N (J'I)new
represent the condensate at the downstream station

X=X + Ax

o

as it has been altered by the kinetic process. For simplicity
it will be referred to using a subscript K. Thus, we have

established
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G (J;z)new = G(J,I)K
R (J.I)new = R(J,I)K
Wi (J,I)ne“v = R(J‘,I)K

Diffusion

Each category in the particle array is altered by the
diffusion of condensate of the mass categories from neighboring
upstream locations. Considering each particle category as a
quasi-element, the conservation equation for the "category
elements" can be written in finite difference form (forn non-
axis points) as: ’

. W’ . .
a =Ax{—1)+a:j+ ax ‘{(Leb) ol
n+1 u MNA¢?+R Pr 'n n
1] . Y om+1
e b e b J I1e b 3
E( Pr )n + Pr )n ] an + Pr )n n’n }
mi3s mt¥s  m m-% m-1

where n,m subscripts refer to the grid point locations

shown in the sketch below. K The first term in the equation above
represents the change in aJ due to the condensation process

as the flow moves downstream from n to n+l. The sum of the
first two terms is the total mass fraction of category j
condensate present downstream due to kinetic processes, and

the remaining term represents the contribution to the mass
fraction from diffusion.’ Based on sketch-below, this
diffusional term can be split into the contributions from

each of the three upstream points:
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m+l _<£\‘
\‘-‘
NAC
Ac, -
-0 [~ =0
’//
T ARGy
m-1 ===
n n+1
A («$
= 2 Le b 3
AGl MNA§‘2+N ( Pr )n an
LY m+l
- Ax Le b e b 3j
A, = - L¢ ) ( ) J o
2 2
MNA\If +N Pr n1 Pr 'n
m+is M- m
Ax IL.e b
AG, = { ) o
3 2
MNAva +N Pr 'n n__l

For each of the 10 categories present at a given grid point
we may express the category mass fraction as

. .

- _ w J
G(U'I)n-{-l = Eéx(—u )n + oo ]+ ASGl + A62 + AGS

m m

m

where the kinetics contribution is evaluated as outlined in the
previous two sections on growth and creation of condensate

and is represented by G(J,I) with its associated R(J,I)

and O(J,I)_. Knowing the category sizes associated with each
upstream contribution the Sauter criteria can be used to

define the new category radius:
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G(J,I)K + AGl + L\Gz + AG3

G\(J,i)K 'AGl A62 AG3

+ + +
R{J, J, y R(J,
(d,T), ~ R(T,I)_ (3,1)  R(7,I)

R(J'I)n+1 =

4l m m-1

Knowing the new mass fraction and size, the number density of
particles is determined from

‘on+1 c"'(J'I)n-l-l
N(J‘.I)n+l = zl m3
m 3 ﬁpc R(J,I)n+l

m

For points on the axis, the finite rate category element
conservation equation becomes

. 2] . . ,
| _ W 3 (1+)2Ax - (1-N) , Le s S
o g = Ax() +o 35— | pu ( or ”)ﬁ]{“n o ]
o AF
o S« o 1 o]

Here once again the first two terms represent the mass
fraction of category j due to the condensation process and the
last term, the effect of diffusion. 1In the sketch below the
diffusional contribution of each upstream point is defined.
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——l m=1
AT"\\ AGl'
\\\Q
n—c—————u4>>—~#ﬁL— m=0
AG2
n n+1
pe, = (1+N).2—A_% ou 17 ¢ %ﬁ) ) ol
r n n
113" o
1
- 2Ax (1-W) , Lep 3
AG2 B o (1+N) - (pu ( Pr )n o
AL o o

The total mass fraction of category j for grid point i at
(N+1) can then be written as

.J . .
- W 3
= —)_ + + AG
G(3,1) 4 = L8x (7 )8 - o 1+ AG | + AG,
o e}
where the first term is obtained from the kinetics condensations
outlined in the previous section and is defined as G(J,I)_ with
the associated R(J,I}_ and Q(J,I)K. Applying the Sauter

criteria to determine the average size of the resultant
collection of condensate we cobtain

G(J,I‘)K + AGl + AGZ

ROTVD ™ G(3, 1), Aa, sc,
© R(T,T) * R(J,I)n+ RTE,_I)n

1 o

Knowing the total mass fraction and size, the number density
of particles is then
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pn+l G(J’I)n+

N(J,I)n+l = 0 o)

4 3
o) 3 TI',Oc R(J,I)n+

-~

1

1
o)

C. Chemistry Model

In making preliminary design studies for a proposed pro-
pulsion system, it is alwasy desirable to investigate the
extremes of no burning ("£frozen chemistry") and maximum burning
("complete combustion chemistry"). The standard complete
combustion model for a hydrocarbon-oxygen system is

0, - fuel lean

CH 4+ p0, = nCo, + m/2 0+ q
T 2

n 2 H2 . anm = fuel rich

Obvicusly, this model ignores the effects of dissociation. For
fuel~lean mixtures with flame temperatures less than 25009K
this simple model is an acceptable approximation to the equili-
brium composition. For fuel-rich mixtures the above model is not
as satisfactory, since €0 and C are present in significant
armounts at equilibrium. A stud§s)of tabulated hydrocarbon-air
equilibrium compositions indicated that it would be possible to
formulate a simple, algebraic fuel-rich "quasi-complete
combustion™ model by using three distinct regions of fuel/air
ratios. The first attempt to formulate the model is shawn in
Figure 51.

This model yields flame temperatures that are only slightly
above that at true equilibrium. However, the representation of
the relative amounts of the major chemical species in zones
A and B was not very realistic for most combinations of pressure
and mitial mixture temperature. "This led to a revision of zones
A and B, resulting in the model shown in Figure 52. This medel,
as shown in Figures 53 and 54, yields a flame temperature very
near that of equilibrium except for mixtures very close to
stoichiometric, 1In this region, the flame temperatures are high
enough so that chemical dissociation is a significant phenomena,
and hence the flame temperature of the complete combustion model,
which ignores dissociation is, noticably higher. than the flame
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temperature of the equilibrium chemistry model which takes
dissociation into account with respect to the species -H, 0,and
oH.

Tt should be noted that methane (CHy) is a significant
equilibrium specie in very fuel rich regions (0/F < 1 or
¢ > 3) for fuels such as kerosene (C9H20), and that at low
temperatures in highly fuel rich regions the original fuel
specie is present at equilibrium in significant- amounts rather
than being completely broken down into C(s) and H,.

As an example of the application of this analysis, a nozzle
type expansion process was investigated. To demonstrate the
coupling between the mixing process and the finite rate
evaporation process a non-uniform entrance condition was imposed
consisting of the products of the complete combustion of a lean
hydrogen/0., mixture surrounded by cold air. As the flow field
develops, ghe gaseous Hy0 spreads into the secondary air stream
and cools. When saturation conditions are achieved, the finite
rate condensation of water vapor begins. Profiles of the
important flow variables are given in Figures 55 to 58.

Velocity and statlic temperature profiles for the system are
given in Figure 55. Figure 56 shows the gaseous specie mass
fraction distributions at a streamwise location where two phase
phenomena have coccurred. An indication of the spread of con-
densate in both the radial and streamwise direction is given by
the results of Figure 57. As the flow moves downstream both
the amount of condensate and its radial extent increases., The
radius distribution of a condensate in the first size
category (0 to 10-3 microns) is given in Figure 58. The
secondary peak in the vicinity of the wall is due to the creation
of "new” droplets as the gaseous H,0 diffuses.

The primary distribution (y/vyy = .77 to .95} represents
the size variation of "0ld" droplets created upstream as effected
by their growth history. .These droplets comprise the majority
of condensate present. WNear the wall (y/vy > .95) the satura-
tion ratio is relatively high and the small condensate mass
fraction (below_10‘13) in this region is essentially comprised
of critical sized droplets.
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XI. SUMMARY

The work presented in this report consists of both
analysis and numerical implementation 6f a number of processes
relevant to chemically reacting plume flows.

The basic GASL MOCV (Method of Characteristics with
Viscosity) program has been extended to include the intercepting
shock~Mach disc structure of an underexpanded exhaust plume.
Although various aspects of the computer program have been
dhecked the total capability has not been exercised as of this
time. Limited tests for inviscid flows with frozen chemistry
have been made demonstrating that the modifications are working.
Also, in the existing version the detection of the intercepting
(barrel) shock is done by noting a local pressure peak in the
vicinity of the nozzle lip. Furthermore, the Mach disc location
mast be specified. ’

The Mach disc problem was studied in some detail and its
location, or more specifically the location of the triple point,
in relationship to the subsequent downstream subsonic flow has
been analyzed. This investigation suggests a theoretical rather
than an empirical method for treating this problem.

The transonic flow problem was investigated and various
methods of analysis were reviewed. The result of this study
indicates that an unsteady approach should be used for the
transonic flow downstream of the Mach disc. Additional work
is, however, required to establish a feasible unsteady
computational technique which includes viscosity and kinetics
processes simultaneously.

In addition to studying the various fluid mechanical
‘problems, some relevant aspects of chemical and multiphase
procésses were investigated. A chemical kinetics mechanism
for the oxidation of hydrocarbens (hydrogen included) has been
introduced into the plume version of the MQCV program,,(ducted
flow versions are described in Reference 39). phase transition
kinetics has been analyzed and implemented for computations
within the parabolic mixing and combustion programs and currently
treate the finite rate phase transition of C0, and Hy0. Inclusion
of this capability into the MOCV programs will be made in the
near future.
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APPENDIX A

The computations reported herein were cbtained using a
wodification of a method of characteristics computer program
originally developed to compute internal flows with multiple
shock intersections -~ . Envelope shocks of either family are
detected by the crossing of characteristics of that family.

In outline, the plume computations proceed as follows (Figure 57).

The flow (p,T,M,8) across the exit plane (in this case
uniform and parallel) was specified along with the ambient
pressure. The computatipn procedes along right running
characteristics. A concentrated expansion is put at the nozzle
lip to match the exit and ambient pressures. After each
interior point is computed, a test is made to determine whether
or not two characteristics of the same family have crossed.

If not, the computation proceeds to the next regular interior
or boundary point. Tf two such characteristics cross, a shock
is initiated. Subsequently, the shock slope and the flow
immediately behind it are obtained by matching the Rankine-
Hugonoit jump conditions with the solution of the characteristic
compatability equations behind the shock. Since characteristic
computations are familiar to most fluid dynamicists, the details
of the . interior, boundary, and shock point computations which
can be found in Reference 44 are not given here. However,

two comments are in order. First, in all finite difference
equations the coefficients were averaged between initial and
final points except that, strictly as a matter of computational
convenience, the shock slope was not averaged in determining
shock point locations. Second, the entropy and total enthalpy
(in this computation the latter was constant) along a stream-
line are determined-from a mass flow entropy, total enthalpy
table which is constructed from initial data and modified when

a shock is traversed. This procedure is much more accurate

than the more usual one of directly interpolating on the
computational mesh.

In the present computations, the triple point abscissa was
specifiéd. So, after each internal mesh point was computed, a
test was made to determine whether its abscissa was greater
than or less than that specified for the triple point. If greater,
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the ordinate of, and flow before the shock at the triple point,
were obtained by linear interpolation. Then the intercepting
shock alope and-the flow behind it were cobtained from a regular
shock computation.

The triple point solution is cbtained by first assuming
a value for the strong shock slope and computing the corres-
ponding pressure and flow direction in region 4, Figure 58. Then
the reflected shock angle, 0, corresponding to the pressure
p3 = p4 is determined. A test is then made to determine if
83 = 64. If not, a new value of the strong shock slope is
guessed and the process is repeated. The strong shock slope
is iterated on until p3 = pg and 64 = 8, simultaneously.

The triple point solution includes the slope of the
separating slip-stream (SS), esé, which is necessary to continue
the flow field solution further downstream. Recall that this
streamline separates the flow into two regions, & quasi-one-
dimensional streamtube centered along the' axis and an outexr
region where the completé steady Euler equations are used.

The separating slip-stream shape (i.e., the streamtube cross-—
sectional arez distribution) and the axial pressure distribution
are obtained by matching the solutions of these two regions
along the slipstream.
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TABLE IT — NUCLEATION RATE MODELS

FORM . 1 B2 %, Used By
1 P 1 X6 - Wx Volmer
v Zeldovich
Frenkel
X 2/3 Hill
- - —
2 P, 1 X W -2 Yang
-4
+ ;i]
3

? Y
3 = B Znp. ) Ta X, - W Becker & Doring

3ML 1/3l 7 . 2/3

g = Wk F1-3 (— i
4 P, [}4ﬂpL) % X W [; 3(n*) gzgizid& Doring,

‘e
5 ap 1 X6 - W% Thomann
3] op,, i -X6 - W* Dufour & Defay
oc
2 ML
where Xg = %Ln{—ga—)—Z ink + InT

a = condensation coefficient; fraction of molecules
that stick on impingement

M_ = mass of one molecule of condensed phase

" n* = number of molecules in a droplet of critical size

P = equilibrium vapor pressure of the condensed specie
m e
I' = gasification factor (generally unity)
= surface tension
o u 20Mv L
- .t. N - - * —
the radius of a critical drop is given by r p.RT ne
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FIGURE 20 - SCHEMATIC .OF UNDEREXPANDED SONIC NOZZLE IN A
QUIESCENT ENVIRONMENT
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FIGURE 21 - SCHEMATIC OF UNDEREXPANDED SONIC NOZZLE IN THE
- ABSENCE OF INTERNAL SHOCKS
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FIGURE 22 ~ SCHEMATIC OF INTERNAL SHOCK STRUCTURE IN
THE VICINITY OF THE TRIPLE POINT
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FIGURE 25 - FLOW NEAR & DOWNSTREAM OF THE TRIPLE
POTNT MACH DISC
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FIGURE 26 - COMPU?ATIONAL REGION- FOR TRANSONIC FLOW
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FIGURE 28 — TWO-DIMENSIONAL deLAVAL NOZZLE
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FIGURE 29 - SCHEMATIC OF THE UNSTEADY INITIAL VALUE
BOUMDARY VALUE PROBLEM
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. FIGURE 30 - QUASI-ONE-DIMENSIONAI deLAVAL NOZZLE
UNSTEADY PLOW
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FIGURE 32 — QUASI-ONE-DIMENSIONAL deLAVAL NOZZLE
COMPUTATIONAL GRID
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FIGURE 37~ HISTORY OF WORK PERFORMED AT THE ENTRANCE PLANE=

QUAST~ONE~DIMENS TONAL deLaval NOZZLE
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