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ABSTRACT

A survey has boon mode of radiation effects literature pertinent to effects of

low-level steady-state neutron, gamma, and proton environments on electronic

components. A bibliography of over 300 references was compiled.

The data were scanned and on analysis mode of the radiation effects state-

of-the-art for electronic components on a deep space mission mat might be exposed

ro planetary radiation belts and to on-board rodioisotope thermoelectric generator

environments.

Emphasis was placed on permanent parameter degradation, temporary para-

meter drifts, parameter degradation factors, hardening techniques, and screening

techniques.
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1.0 SUMMARY

i
1.10 The objective of this program was to perform a literature survey and to

analyze data pertinent to radiation damage to electronic parts typical of those

utilized in deep space missions. The radiation environments considered were: 1}

that produced by radioisotope thermoelectric generators (RTGs), i. e.: low-level

steady-state fission neutron and gamma spectra/ and 2) high energy protons, both

tnose generated during solar events and those trapped in planetary belts. Although

it was beyond the scope of this program to consider electron effects, where data was

readily available such effects were included.

During the course of, the program the following facilities were utilized:

a. REIC (Radiation'Effects Information Center, Battelle Memorial

Institute).

b. NASA (computerized search performed by the Boeing Aerospace

Technical Library).

c. DOC (Defense Documentation Center).

d. DASA (Defense Atomic Support Agency).

e. Boeing Aerospace Library containing the following tools:

1) KWIC File Index citing Boeing research
documentation. >

2) Engineering Index (Electronics Section)

3) Physics Abstracts

4) Electronics (an English Index)

5) IDEP Files

6) Pius the many personal reference books
x and documents of the Boeing Radiation Effects Group.

These searches resulted In hundreds of references of which about 260 were

retained after screening for pertinent radiation environment and port types.
t

Analysis of the literature revealed that, in general, for most part types there

are at least some neutron and gamma data but that for many types no proton data exist.i
The extent of the data coverage and its significance is discussed for each part type

1



02-126203-3

in the report. Primarily the analysis was directed toward the determination of per-

manent degradation of parameter*, temporary drifts of parameters, parameter degra-

dation factors and hardening and screening procedures. Where appropriate, additional

testing was recommended.

The relative sensitivities of components as determined from the analysis are

summarized in Figures 1.1 thru 1.3. In general, SCRs and unijunction devices

appear to be very vulnerable and SCR response is especially unpredictable. For this

reason it is recommended that their usage be avoided where possible.

Power and low-frequency transistors appear to be the next most vulnerable

group. Since their behavior is better understood, these devices can be used if

sufficient gain margin is allowed or other concern is token. It should be noted that
i

in some cases shielding may be necessary.

Linear integrated circuits/ reference diodes, and MOS devices also present

a problem but if property characterized, should be usable. In ail three cases, in

order to assure reliable performance, testing of statistical samples is recommended.

Resistors and capacitors/ in comparison to the active semiconductor compo-

nents, do not present a serious degradation problem, although it is not clear that

the effects of low-level radiation exposures on long-term reliability has been fully

evaluated for all cases (especially for resistors).

From the study, it can be concluded that: 1) for the present state of the art

many active components will be seriously degraded by radiation during interplanetray

missions/ 2) in many cases data is inadequate to do more than make gross estimates

of degradation of part type performance, 3) data evaluating proton damage is not

available for many part types, 4) for most part types hardening and screening pro-

cedures are not known or are in a developmental stage, 5) although part degrada-

tion can be estimated for each environmental component/ there is no data indicating

how to assess the total degradation due to combined environments, and 6) using

currently available data system reliability in a radiation environment would be dif-

ficult to assess, particularly for part types for which the radiation levels are near

the threshold for damage. Even methods of assessing such damage needs to be more

2
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fully explored.

It is recommended that; 1) evaluation testing be performed to obtain data

on part types where no data exists and that lack of data is significant (these cases

ore noted in the report), 2) that testing in combined environments be performed to

obtain insight into how to assess the total threat to parts in interplanetary missions,

and 3) that methods of assessing reliability of irradiated components be more fully

explored.

1.20 References

1. 21 Bowman, W. C, et at, "Guide Book for AWACS Nuclear Radiation Sur-

vivability Study"/ Boeing Document 0204-10317-1, August, 1969.
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i
2.0 INTRODUCTION

The purpose of this program has been (a) to search existing industry and

government literature regarding the long-term neutron, and gamma radiation expo-

sure effects on electronic parts and, (b) to analyze the literature and information

reviewed during the search with primary emphasis on the'effects of pi uranium 238

neutron and gornmo radiation on electronic parrs. Although it was not included

in the scope of the contractual effort, data on charged particles such as protons and

electrons were included when it was convenient to do so.

The effort has been limited to the effects of long term, low intensity radia-

tion fields such as would bo encountered on deep space missions passing through

planetary radiation belts and having on board radio isotope thermoelectric generators.

The analysis included the consideration of catastrophic failures, permanent degrada-

tion, temporary parameter drifting during radiation exposure, radiation levels in

total integrated doses, degradation factors, and recommended testing.

The analyzed survey is presented in a form useful to persons having a know-

ledge of electronic parts but not necessarily familiar wijrh radiation effects.

The program began on July 1, 1969 and the analysis was completed Feb-

ruary, 1970.
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3.0 GENERAL CONSIDERATIONS
-i

Electronics to be used on boord spacecraft during deep space missions

encounter both participate and electro-magnetic radiation. The porticulate radia-

tion consists of protons, 'electrons/ and neutrons. The electromagnetic radiation

consists of gammo and xrrays.

Protons are elementary nuclear particles with a positive electric charge

equal numerically to the charge of an electron but whose mass is 1847 times the

mass of an electron, or approximately one atomic mass unit. Protons are encount-

ered in the vicinity of planets in the form of belts, i.e., charged particles trapped

in the magnetic fields of planets. It is believed that the proton belts around Jupiter

may be very intense. In interplanetary space, protons are encountered as a result
( f

of solar winds and solar flares, that is, protons are ejected by the sun and travel

through space. Such protons have energies ranging from 1 Mev to 100 Mev. A

typical spectrum is shown in Figure 3.1.

Electrons are nuclear particles having unit negative charge and rest mass of
-28

9. 107 x 10 grams. These particles are many times less massive than protons and

are much more penetrating. Energetic electrons in space ore primarily found in the

vicinity of planers as belts of charged particles trapped in the magnetic fields of

planets.

Neutrons are atomic particles having zero charge and having mass approx-
i

imately equivalent to that of a proton. Due to their lack of charge, neutrons are

highly penetrating and when penetrating are attenuated by collisions with' nuclei.

In space missions, neutrons in significantly large numbers originate on board the

spacecraft from radioisotope thermoelectric generators (RTGs).

Electromagnetic radiation encountered on spacecraft consists of gamma rays

emanating from nuclear reactions in on board power supplies such as RTGs. X-rays

are also generated by the stopping of energetic charged particles such as electrons

and protons in dense materials; such radiation is called bremsstrahlung and con be

8
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significant in trapped planetary radiation belts.

Radiation is usually measured in two ways. Either in terms of absorbed

energy (dose) or in terms'of particles per square centimeter (Fluence). For ab-

sorbed dose, the most commonly used unit is the Red. A Rod is defined as 100

ergs absorbed from the radiation field in one gram of irradiated material. It should

be pointed out that the rod expresses absoibed dose in a specific material and the

type of material is usually denoted by a suffix. For example, a Rod (Si)'is 100 ergs

of energy absorbed in one gram of silicon. Other common units are roenfgen (R),
-1

and ergs, g (Q- In magnitude these units ore fairly close. Conversions factors

are listed below: .

1 Rad(Si) = l.lroentgen = 96.4 ergs'9
(O

1 roentgen = 0.91 Rods(Si) = 67.7 ergs . g" (C)

100 ergs. g'^Q = 1. 037 Radi(Si) = 1. 141 roentgens

For purposes of this report, since the objective is to establish approximate

thresholds and relative sensitivities rarher than absolute dosimetry, these units have

been converted directly.

Particulate radiation such as electrons, protons, and neutrons are commonly

expressed in flue nee, or particles per centimeter square. Neutrons ore also frequen-

tly expressed in nvt where n is neutrons per unit volume, v is velocity and t is time.

This term has units of neutrons per centimeter square with the velocity expressing

energy spectra. For this report, since only one fission energy spectrum from the RTG

is involved, neutrons are expressed in flue nee and the energy spectrum is understood to

be a fission spectrum.

The effects of nuclear radiation on electronic materials can be grouped

essentially into two types:

(1) Displacement effects,

(2) lonization effects.

Displacement effects are the result of collisions between incident radiation particles

and atomic nuclei of the material being bombarded. Displacement in a crystal

10
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lattice leaves a hole or vacancy in the lattice at the original site of the displaced

atom. The displaced atom, in turn, comes to rest in some interstitial position in

the lattice. These vacancy interstitial pairs, commonly called Frenkel defects,

cause disruptions in the potential energy within the lattice creating new allowable

electron energy levels in the forbidden band gap. In semiconductors, the new

energy levels then act as recombination and generation sites and thus in an indivi-

dual sense may act in the same manner as an impurity (dopant) atom. However, it

has been observed that the net effect of displacements in silicon is very different
.f , '

from the controlled effect of donor and/or acceptors introduced for doping purposes.

For instance, donor and/or, acceptor levels increase the conductivity of the intrinsic

crystal, whereas radiation-induced vacancy-interstitial pairs usually decrease the

conductivity.

The introduction of vacancy-interstitial pairs, associated with the generation

of new electron energy levels in the forbidden band gap, has an effect on quantities

like electric and thermal conductivity, carrier mobility, and, especially, minority

carrier lifetime. The most important changes for most purposes are the changes in

conductivity and minority carrier lifetime.

Changes in conductivity are usually referred to as a process called "carrier

removal" and implies that majority carriers are removed and that the conductivity

decreases. The decrease in conductivity occurs in both n- and p-type silicon.

Possibly the most important effect of displacement damage is the enhance-

ment of recombination between conduction electrons and valence holes. Thus,

vacancy-interstitial pairs con be thought of as trapping centers for minority carriers,

leading to increased recombination with majority carriers.
;

An important question Is what type of nuclear radiation gives rise to dis-

placement damage. In order to displace an atom from its lattice site the bombarding

particle must impart sufficient energy to the struck nucleus to overcome the dis-

placement threshold value of the lattice. Since the energy transfer between the

radiation particle and the nucleus is o function of their respective masses, the

n
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heavier radiation particles are more capable of displacement production than the

lighter particles. The relative effectiveness of various particle types for producing

displacement in silicon hove been determined (Ref. 3.1) are are,presented in Table

3.1. •'_ . '

The effectiveness of a given particle type to cause displacements is also

a function of the particle energy. Figures 3. 2, 3.3 and 3.4 illustrate this for pro-

tons, electrons, and neutrons. As shown In Figure 3.2 protons become more effective

for causing displacement damage with decreasing energy. This fact has special sig-
•» ' t

nificance when designing shielding for spacecraft. This significance will be dis-

cussed further in the following paragraphs.
* 1

When considering the effect of radiation on electronic components, one

should consider the effect of shielding which may be inherent in the device packaging

or spacecraft structural materials. The range of protons and electrons in aluminum

is shown by the graphs in Figures 3.5 and 3.6. For shielding thicknesses that do not
t * '

completely stop the radiation particles, the transmitted particles emerge with re*
i7 i

duced energy. In the ease of protons, the reduction in energy increases the

efficiency for causing displacements.

lonization effects occur when radiation passes through matter and interacts

with atomic electrons within the material imparting sufficient energy to free the

electrons from their atomic orbits. "While it mightseem that only electrons, protons,
H

and other charged particles can cause ionizotion, gamma and x-rays are quite

effective in producing ionizotion and excitation; that is the generation of electron-

hole pairs. When a gamma photon travels through matter, it generates photo elec-

trons and compton electrons. In generation of photo electrons, alf of the energy

of the photon is lost, while in the compton process the photon imparts only part of

its energy to the scattered electron and reappears as a lower energy photon. The

compton scattered electrons, depending on the incident photon energy, generally

receive sufficient energy to cause further "secondary" ibnization along their path

or even displace atoms creating Frenkel defects along their path. Thus, photons

although they have zero mass, if sufficiently energetic can cause displacement

12
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do mage through secondary collisions between compran scattered electrons and nuclei.

The ionization process tends to raise the conductivity of insulating materials

through the creation of electron-hole pairs in the irradiated materials. For pulsed,

high intensity fields ionization induced currents become important; however, for

low intensity steady-state fields such as those encountered in space vehicles the

problem is less severe. -

Further, ionization energy may ac* as c catalysfto cause chemical changes

or .-nolecular restructuring within mateuals. Also, in come cases, a net positive

or negative charge may be left in the irradiated materials. In semiconductors,

these changes usually manifest themselves at the surface of rhe material or within

the oxide passivation layers of the silicon surfaces.

These general considerations of radiation effects and interactions should

prepare the reader for the discussion of specific effects on electronic parts in sub-
- - \

sequent sections.

3.2 References

3.21 Brown, R.R., Sivo, L. L., and Kelts, K., "Radiation Induced Nonlinear

Degradation of Transistor Gain", NASA Contract NAS5-10443, Boeing

Document D2-125680-3, October, 1969.

3, 22 Brown, R.R. and Home, W. t., "Space Radiation Equivalence for Effects on

Transistors", NASA Contract NAS5-9578, Final Report, November, 1966.

3. 23 Messenger, G. C., "Radiation Effects on Microcircuits", IEEE Transactions

on Nucl. Science, Vol. NS-13, No. 6, December, 1966.

3.24 Rich, Marvin, and Madey, Richard, "Rar^e - Energy Tables", U.S. Atomic

Energy Commission, UCRL-2301.

3. 25 Nelms, Ann T., '*Energy Loss and Range of Electrons and Positrons",

National Bureau of Standards Circular 577, July 26, 1956.
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4.0 BIPOLAR TRANSISTORS

4. 10 Permanent Parameter Degradation

Bipolar transistors are one of the more radiation sensitive electronic compo-

nents. In general, when transistors are irradiated/ their current gain, h__, decreases
i *~

while {unction leakage currents, saturation voltage, V~_< y and breakdown vol-

tage 3V_.., alt increase.

For pa&sivated silicon transistors, the degradation of curreor gain is generally

the most important effect. -

4. 1 1 Neutron Effects

f

Neutrons reduce transistor current gain primarily by two mechanisms, (1) the

reduction of minority carrier lifetime In the base region and (2) the increase of

recombination-generation currents in the emitter-base space charge region. Typical-

ly, for currents above a few milliamperes, the minority carrier lifetime effects in

the base region are dominant. These effects have been observed to be proportional

to the neutron fluence as expressed by equation 4. 1.

S,h.. - - - - ' ' (Eq. 4. 1)FEi +

h = Initial current gain

°
t, = Average base transit time
b r
K = Damage factor dependent on device parameters. K is

also a function of emitter current, neutron energy, and
device temperature.

2
$ = Neutron fluence, n/cm .

For first order damage evaluation, a number of simplifying assumptions can be mode.

Fora given fission spectrum, such as that for radioisorope thermoelectric generators,

RTG's, K con be considered a constant with respect to energy. Further, if one

assumes a temperature of 25 C and that the device is operating near its h__ vs. \r
* i r t {*

peak, then an estimate of neutron damage can be made from the nomograph, in

18
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Figures 4. I and 4. 2. It is noted here that the cutoff frequency/ fa^fy can be re-

lated to the base transit time by equation 4. 2 at high currents.

-.— (Eq. 4.2)
*b

In order to use the nomographs, one first aligns a straight edge so that it passes

through the frequency and initial gain, h_ , as shown on the nomographs as Step 1.

One than starts at the intersection of Step 1 with the pivot line and places the

straight edge through the neutron fluence of interest; as shown in Step 2, the inter-

section of the straight edge with the h,_ scale then indicates the final gain.

The above technique is only a first order estimate. If one is interested in

a more accurate prediction, a detailed method which is the subject of a document

by Frank and Taulbee (Ref. 4.71) can be used. Their method is not reproduced here

because of its length. For applications that are particularly critical, if a device

that is marginal by the above estimates must be used, actual radiation data should

be obtained on a fairly large sample of the transistors in question.

Leakage currents are not so amenable to prediction since they are strongly

influenced by surface effects, if the neutron fluence to ionization dose ratio is

> 10 then the surface leakage current increases can (to a first approximation) be

ignored and the leakage current predicted in the manner specified by Frank and

Taulbeo (Ref. 4.71), however, it should be noted that for an environment such as

TOPS the ionization dose is enhanced by charged particle radiation. For this reason,

leakage currents ore not amenable to prediction for the TOPS environment and the

rather detailed prediction technique is not included in this summary.

Saturation voltage, V-p. ., increases due to gain reduction which tends

to pull the transistor out of saturation and due to increases in the collector resistance.

The complexity of parameters influencing V_., » make it unpredictable at the

present time.

4.12 Proton Effects

Proton effects include not only displacement damage somewhat similar to

19
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V^VE

— io*-L

Figure 4.1 Nooiograph For First Oraer Neutron Damage Estimate for
Silicon Transistors. Note: Assumes Fission Spectrum,
25°C. and Device Operating at h _ vs. I_ Peak.
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5*10*-T-

Figure *+.2 Nomograph for first order neutron damage estimate for
Germanium transistors. Note: Assumes fission spectrum,
25° C, and device operating at h__ vs. I_ peak.
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neutrons, but, since protons are also heavily ionizing, significant surface damage

con result which is not as readily predictable.

Bulk displacement damage due to protons can be estimated using the nomo-

graph in Figure 4.3. It should be noted that this nomograph assumes the transistor

to be operating near its h__ vs. I- peak at about 25 C. To use the nomograph,

place a straight edge through the frequency and initial gain of the device as shown

in Step 1, then pass the straight edge through the intersection of Step 1, with the

pivot line and through the neutron fluence of interest.' The intersection of Step 2,

with the hp scale thus indicates the final gain. If more than a factor of 2 or 3

accuracy is required, one should use the detailed damage prediction technique re-

ferred to in Ref. 4. 71 for neutrons; however, the damage constant should be con-

verted to the equivalent proton damage constants as shown below:

8 -17 MeV protons Kproton = 33 Kneutron

100 MeV protons Kproton = 8 Kneotfon

where K * damage constant

In addition to the,displacement damage due to protons, one also has an

ionization dose which can'be calculated approximately by

Dose — 5x10 rods/(8-17 MeV on silicon chip) Protons/cm
" -7 2

Dose — 1 x JO rods/ (100 MeV on silicon chip) Protons/cm

Ionization effects on current gain are dependent on the operating conditions of the
I

rransistor during irradiation. There have been some observations (Ref. 4. 73) indi-

cating that proton irradiation causes anomalously high damage in NPN transistors

in comparison to an equivalent ionization dose incurred from electron or gamma

radiation. Then effects should be more fully investigated. Due to the observed

anomalies described above, it is not practical to make estimates of proton ionizo-

tion damage in NPN transistors at the present time. However, estimates of ioniza-

tion induced gain degradation in PNP transistors can be made on the basis of absorbed

dose (see gamma effects, Section 4. 13).

Further, the relative amount of ionization to displacements due to protons,

make leakage current predictions unfeasible. However, for passivated silicon

22
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— ,o»J.

Figure <*.3 Nomograph For Making First Order Estimate gf Proton Damage
in Silicon Transistors. Note: Assumes 25 C and Device
Operating at hpg vs. IG Peak.
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devices, leakage current changes ore generally unimportant compared to gain changes.

Figures 4.4 and 4.5 show typical leakage current changes as a function of proton

fluence.

4.13 Gamma Effects '

Gamma rays produce both ionization and atomic displacements in silicon,

however, their effectiveness for producing displacements is low compared to that of

particutaie radiation, such as neutrons and protons. The most significant effect for

gamma irradiation in transistors is, therefore/ ionization effects (the only exception

being low frequency power devices) below exposure doses of about 10 rads(Si).

Although the exact mechanisms by which ionization affects transistor sur-

faces is not well understood, the effects have been well characterized and several

models proposed to describe them. The present consensus seems to be that there are

two basic ways in which' ionization influences current gain, (1) ionization produces

recombination sites and trapping centers at the interface of the silicon and silicon

dioxide passivation layer. The mechanisms by which these states are produced are
•i

not well understood at this time; although it has recently been postulated that they

may be caused by devitrification, or compaction, of the SiCL layer (4.74), (2)

ionizing radiation ionizes the gas in the transistor can and the material in the silicon

dioxide passivation layer on the device surface. As a result, positive charge accumu-

lates within and on the surface of the oxide layer of the transistor. These positive

charges then cause changes in surface potential at the silicon surface, thus affecting

the surface recombination characteristics.

If an electrical bias is applied to the transistor during irradiation, then the

charge accumulation is influenced. For NPN devices, the charge accumulation is

influenced in such a way as to enhance gain degradation. It has been observed,

(Ref. 4.73), that evocuoting the transistor cons greatly reduces (if not eliminates)

the bias dependence of surface ionization damage.

Since ionization damage Is a surface effect, and is dependent on transistor
j

operating conditions during irradiation, it is not possible at this time to make accur-

ate predictions of the damage. However, from the observations of data on many

24
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devices, the nomograph in Figure 4.6 has been made to give an indication of typical

effects of ionizing radiation on transistor gain. CAUTION - This should not be

construed as a damage prediction, it is only a ballpark estimate and for NPN tran-

sistors is applicable only for those devices without bios applied during exposure.

The nomograph in Figure 4.7 provides an estimate of displacement effects

of gamma radiation on transistors. The nomograph assumes the device to be oper-

ating near its hp- vs. I-. peak at ~ 2o C.

The effects of gamma, radiation on leakage current are unpredictable. In

general, for pass!voted silicon devices, the leakage current changes are not as

important as the gain changes; however, there are some devices that form surface

channels and leakage becomes excessive. There is no well-proven method For de-

tecting channel-prone devices, although a technique involving avalanche noise

measurements has been proposed (Ref. 4.75). This technique will be discussed in a

later section.

4.14 Electron Effects

Electron effects are very similar to gamma effects except that electrons are

more effective for producing displacements than gamma rays. Figure 4.8 shows a

nomograph for estimating electron displacement damage. The nomograph is based on

s device operating near its h_ vs. I- peak at -~ 25 C. ,'

The nomograph shown in Figure 4.6 can be used to moke "ball park" estimates

of.typical gain degradation due to ionization effects of the electrons if the electron

fluence is converted to an equivalent ionization dose using stopping powers. Note

this is not a prediction technique and the text discussion of Figure 4.6 should be

read before using the nomograph.

4.20 Temporary Parameter Drift

For long-term steady-state radiation effects, there is no evidence in the

literature that parameters show drift other than the normal degradation already dis-

cussed. However, ionization damage does show some long-term annealing that

usually occurs over several weeks at room temperature. For this reason, it has been
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Figure k.7 Nomograph For Making First Order Estimate of Displace-
ment Damage in Silicon Transistors Due to 1 MeV Gamma
Radxation. Dote: Assumes 25 C and Device Operating
at h_, vs. IG Peak.
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suggested that ionization damage in low intensity ionizing environments may reach

an equilibrium state where production rate equals annealing rate; however, there is

no positive data to substantiate this. Furthermore, elevated temperature (i. e. , 50 C)

con accelerate surface damage recovery. Thus, circuits that are periodically exposed

to radiation and operate above 25^C may show considerable drift in gain.

4. 30 Parameter Degradation Factors

Due to the many different types of transistors, it is not practical to give gen-

erally applicable degradation factors for parameters at this point. After a device is

selected, its specific derating factors should be determined from the estimation tech-

niques outlined in the preceding sections. The parameters that should be derated are

h__, I-B^V and V,.-, .», although no specific estimating techniques are known for
re CBO Cc(sat;

or for ionization induced 1_D/^ changes. Fortunately, these parameters__,
Cc(sat;

are not usually as significantly degraded as h_ .

Data from the literature for specific devices on the TOPS parts list have

been collected and are shown in the Appendix 4. A.

In general, damage thresholds for different categories are shown in Table 4. 1.

Table 4. 1 General Radiation Damage Thresholds For Bipolar Transistors

Transistor
Category

Low Frequency
Power

Med. frequency
50 MHz < faco

< 150 MHz

High frequency
foco > 150 MHz

Radiation Type

Fission neutrons

8-17 MeV Protons

Gamma Rays

Fission neutrons

8-17 MeV Protons

Gamma Rays

Fission neutrons

8-17 MeV Protons

Gamma Rays

General Damage
Threshold

1010tolOn n/cm2

5 x 108 to 5 x 109 P/cm2

104 to 105 rads(Si)

10l2to 1013n/cm2

5 x 109 to 5 x 10]0 P/cm2

- 104 to 105 rads(Si)

10]3 to 1014 n/cm2

5x HJlOto 5x 1011 P/cm2

104 to 105 rods(Si)
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4.40 Radiation Hardening .

Bipolar transistors can be hardened against radiation damage by: (1) keeping

their effective base width as thin as possible, (2) designing them to operate near

their hp_ v«. (..peak, (3) keeping their emitter periphery as small as possible, (4)

placing metallization on the oxide over the emitter base junction, (5) maintaining

strict quality control over manufacturing processes to insure uniform surfaces, (6)

evacuating the transistor cases, and (7) utilizing PNP construction.

Keeping the basewidth thin reduces displacement'effects on h__. Operating

near the h__ vs. I- peak reduces displacement effects and minimizes ionization

effects.
' %

Maier, (Ref. 4.75), has found that ionizotion effects on h__ can be reduced

by keeping the emitter-base periphery small and by placing metallization on the

oxide over the emitter base junction. Since devices show such varied responses to

surface damage, it is not practical to estimate the amount of improvement this gives.

The role of manufacturing quality control on surface effects is very impor-

tant. Although one cannot estimate quantitatively the improvement, it is generally

conceded that variations in manufacturer's processes result in the wide variations in

transistor sensitivities to surface effects.

Evacuating Fairchild 2N1613 cans has been observed (Ref. 4. 73) to reduce

the bias dependence of surface damage, thus reducing the overall damage.

PNP devices have been found to be inherently harder to surface effects than

NPN devices. They show almost no bias dependence for surface damage.

4.50 Recommended Testing

All device! to be used should be characterized in statistical samples for

ionization effects. The dose ranges of interest are )0~ to 10 rads(Si).

The anomalies observed for proton ionization damage (Ref. 4.73) as discussed

in Section 4. 12 should be investigated further. The parameters influenced are h_
13 2

and L.. The fluenee range of interest is about 10 p/cm at 20 MeV.
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Studies should be mode of combined environmental effects to insure against

synergiitic effects and to determine how to evaluate total damage due to a mixed

environment by considering its separate components, i.e., neutron, proton, gamma,

and electrons.

4.60 Radiation Screening

Transistors to be used in a radiation environment should be screened by tran-

sit time or cutoff frequency measurements. Devices having abnormally low frequen-

cies (or large transit times) should be eliminated. This should provide optimum de-

vices for neutron and proton displacement damage resistance.

Several techniques hove been studied for ionization screening. Perhaps the

most thoroughly studied technique is one wherein the devices are irradiated in a

Co-60 gamma environment and then, after observing their relative radiation sensiti-

vities and eliminating the more sensitive devices, the remaining devices are annealed
0 }

by baking at 150 C. The damage anneals completely, and the devices tend to

retain their original radiation response characteristics. They have also been observed

(Ref. 4.76) to be able to fulfill mil spec lifetesting requirements after such a screen.
* / '

Another technique (Ref. 4.75) which has not been fully tested on modem

devices is the measurement of microplosma noise when a device is operating in the

avalcnche breakdown mode. Noisy NPN devices were observed to be more radiation

resistant than quiet NPN devices while quiet PNP devices were more radiation resis-

tant than noisy PNP units.

Further, considerable work (References 4.78, 4.79, 4.710, 4.711) has been

done to study the effectiveness of the Weibull probability distribution for predicting

radiation reliability and selecting reliable device types. This technique appears
I ,

very promising, but needs further study.
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5.0 JUNCTION FIELD EFFECT TRANSISTORS

5. 10 Permanent Parameter Degradation

Presently available junction field effect transistors, JFETs, are comparable

to high frequency (f --. > 150 MHZ) bipolar transistors in radiation sensitivity;

However/ recent studies have shown that, at least for displocemenr effects, they

can possibly be made much harder.

For displacement damage, the transconducrance, g , the drain to source

current, IftCC/ and the pinch off voltages, V_, are the sensitive parameters. Nor-
13 2

molly the devices show little degradation at fluences of the order 10 n/cm , but

show excessive damage between 10 and 10 n/cm . However, recent experi-

menters (Reference 5.71, 5.72) have fabricated special heavily doped devices which

are able to withstand from 10 to 10 n/cm". It has also been observed that n-

channel devices are more resistant to displacement damage than p-channel devices.

For ionization damage, the gate to source leakage current, !__, is the

most sensitive parameter and it usually increases very rapidly beyond 10 rods. It

has been observed (Reference 5. 73) that p-channel JFET s are more resistant to

ionizing radiation than n-channel units.

These observations indicate that a design tradeoff must be made in choosing

n-channel or p-channel devices for radiation resistance after considering the en-

vironment to be encountered.

5. 1 1 Neutron Effects

The predominant basic mechanism resulting from neutron exposure is the

production of atomic displacements. Since JFET s are majority carrier devices, the

most important effect of the displacements on device operation is carrier removal in

the channel region. Shedd et ol (Reference 5. 72) have summarized the theory of

permanent effects of neutrons in JFET s and presented the relation in equation 5. 1

to express the degradation: 9m( # )
~ — = exp (- -*-) (eq. 5. 1)
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#) = tronsconductcnee ot fiuenceff

_ = initio! transconductance
Tn

° 2
$ = fluence, n/cm

7

K = < - 398 P0* for a p-chonnel

0 QO

K = K = 93 N for a n-channeln o

Initial carrier concentrations

The Important point to observe here is that theory predicts n-channel devices to be

harder than p-channe! devices. The full development of the theory is not presented

here; however/ it appears to be in good agreement with empirical observations, it

should be noted, though, that the above relations have not been verified sufficiently

on o statistical basis. Therefore,' for the present, the relation should not be regarded

os more than o semiquantitative estimate of neutron degradation.

Empirical thresholds hove been established for neutron damage in presently

available JFET s and it is found that they are generally able to withstand fluences
13 2

of the order 10 n/cm with very little degradation butJ$ho,w significant effects at
1 A f\ i e f\

10 n/cm and are completely destroyed at 10 n/cm .
f

Further, some rate dependence has been reported (Reference 5. 74} in the

pinch off voltage, V_, bur the dependence appears to be significant only at rates
1 A « /

greater than 3 x 10 n/cm -sec plus 1 x 10 rads/hr (mixed environment). From

the data it was not clear whether the rate dependence was due to the gamma field or

the neutron field.

5. 12 Proton Effects ,

Protons cause both displacement damage, and' ionization damage. Therefore,

one would expect them to produce changes in gm, 1^̂ , and V . Unfortunately, the

only article located (Reference 5. 75) dealing with proton effects did not report the

effects of proton damage on I*. « It is interesting to note that V showed degradation
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at a fluence two orders of magnitude less than g or !ncc. This early change in V
01 WvJ P

probably reflects proton ionization effects. Protons hove been observed to cause

significant damage to gm and lrj$$ >n JFET s. Generally, rhe parameters gm and

Uccwere degraded 30 percent by a fluence of )012 - )013 P/cm2 (22 MeV).

A model was proposed for the degradation based on carrier removal in the

channel region. The model yielded equation 5. 2 and 5. 3

1DSS

. 5.3)

!DSS0
 = Jn!tJollOSS

9mo = 9m at zero 9ote voltage

gmo = initial gmo
o

• = proton fluence, P/cm

constant dependent on Initial carrier concentration,

NO, and initial carrier removal rate, (dN/d# }0,

as expressed y =

The constant y shows considerably variation between device types due to impurities

in the materials. Examples of the variations observed in yore shown in the equations

5. 4 and 5. 5 presented by Bryant (Reference 5. 75) for two typ3 s of devices.

Type 2N3070 9mo/9mo = (1.0 * 0. 148 x 10"13 * ) (eq, 5.4)
o

Type 2N2844 fl̂ /g = 0.986(1.0 - 0.737 x 10~M*) (eq. 5.5)
o

It should be noted that proton damage could probably be described by the neutron

theory discussed in Section 5. 1 1 which is not restricted to the condition of zero gate

voltage as are the above relations.
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5.13 Gamma Damage >,
j,

Gamma radiation produces primarily ionization damage. Since semicon-

ductor surfaces are altered by ionizing radiation, one would expect leakage cur-

rents to be the most sensitive JFET parameters to ionization damage.' These expec-

tations have been verified by experiment for both gamma and electron radiation

(electrons cause heavy ionization). The gate leakage current, I~M 's *ne parameter

most of fee ted. N-chonnel devices have been found more sensitive to ionizction

effects than p-channel devices. Stanley (Reference 5.73) has attributed this to the

build-up of inversion layers on the high resistivity p-type. material of the n-channel

devices due to charge accumulation in the oxide passivation layer. These inversion

layers cause channel formation over the junctions and, hence, leakage paths. The

charge accumulation in the oxide of p-channel devices is less effective at inverting
v '

rhe low resistivity p-type silicon source and drain of the p-channel JFETs. For this

reason, they ore less subject to channel formation. As has been observed before,

for similar oxide charge accumulation effects in bipolar and MOS devices, the !p<-

changes are bios dependent and, if the bias is removed, show considerable annealing.

The surface effects are not readily predictable, but a general threshold for

damage has been observed to be about 10 rads(Si). Above 10 rad(Si), the leakage

current degrades very rapidly. For applications requiring high input impedance, the

threshold should be lowered to about 10 rads(Si). t

5.20 Parameter Drift

The data indicate no significant parameter drift during irradiation other

than the long term degradation discussed above. An exception being the enhance-

ment of, and annealing of ionization damage by changing bias levels.
>

i '

5.30 Parameter Degradation Factors

The extent of radiation degradation of various JFET parameters can be

assessed from the data shown in Figures 5.1 through 5.6 and Tables 5. 1 and 5.3

which are typical of the data located in this literature search. From the data
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Table 5»t Leakage Currents During Irradiation (Ref. 5.73)

Type

n-channei

175

1

2

3

*

5

6

7

8

Unit

Irradiation
Conditions

Date

9/16/6;

?

Bias

*os- -6V

DS

Ini tial

' 0.11 nA

0.10 nA

0.16 nA

0.28 nA

0.29 nA

0.26 nA

0.35 nA

0.32 nA

Leakage Current at Total Dos«(e/ca j

1012

*faio«

1013

4.1X109

'lO1*

3.8xl010

1015

8.2X1011

Gate Current

0.35 nA

0.1.8 nA

0.63 nA

0.80 nA

0.75 nA

0.80 nA

1.10 nA

28.8 nA

15.7 nA

11.6 nA

11.5 nA

1.9 nA

3.2 nA
i

2.3 nA

0.90 aAJ 2.3 nA

5.2 A

3.8 A

5.0 A

6.0 A

760 A

2.46 t

562 nA

920 nA

9.9 A

•

9.9 A

4.4 A

5.5 A

1.0

.9

Normalized
Zero-Gate

T ransc onduc tance t

.7 -

.6 .

0 1.0 2.0- 3.0 3.5xl013

Integrated Flux, Protons,Cn

Figure 5.5 Normalized Zero-Gate Transconductance as a Function of
22-MeV Proton Flux. (Ref. 5.75)
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Toble 5.2 2N4448 N-Chonnel JFET (Ref. 5.76)

! PARAMETER

RON

(ohms)

VGS = ov
&

VDS = • 1V

VDS(ON)

(volts)

vG- = ov
*&

IDS= lOmc

'DStOFF)

(no)

VGS~ "10V

&

vp

Mts>

VDS - 5v
&

JDS * 3 M°

'GSS
(no)

VGS = -i5v
vDS

&= ov

UNIT
NO.,

t

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

'• 4

1

2

3

4

DOSE IN RAOS (SI)

0

10.5

11.0

8.4

10.0

.105

.110

.084

.100

<i
<'
<i

<>

-8.7

-4.6

-5.2

-2.8

<.l

<.3

< 1

<.l

IO4

10.8

11.5

8.7

10.0

.108

.115

.087

.100

<i
<i
<i
<i
-8.7

-4.6

-5.2

-2.8

.17

.85

.90

.19

io5 :

10.9 ,

11.3

8.6 ,;

10.0

.109

.113

.086

.100

1.5

6.2

1.0

0.6

-8.7

-4.6

-5.2

-2.8

2.8

16

1.5

.70

IO6

10.8 ,

11.3

8.8

10.0

.108

.113

.088

.100

500

360

3.0

1.8

-9.0

-4.9

-5.4

-3.2

90 >

89 '

6.1

4.0

8.3 x

IO6

10.9

11.7

9.0

10.0

.109

.117

.090

.100

570

97

17

10

-8.7

-4.6

-5.2

-2.8

1000

240

36

18

3.7x

IO7

11.2

11.6

9.1

10.1

.112

.116

.094

.101

1100

270

26

16

-8.7

-4.6

-5.1

-2.8

2700

950

53
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available in the literature, the general degradation factors (amount parameters are

expected to degrade) presented in Table 5.4 are estimated. The degradation factors

are defined as the percentage change expected in the parameter of interest.

5.40 Radiation Hardening

Recent studies (References 5. 71, 5. 72) have shown that JFET s con be

made considerably harder than presently available devices by increasing the chan-

nel doping level. Techniques have also been developed in these studies to offset

rhe deleterious effects of heavy doping in the channel region on breakdown voltage.

These hardening procedures are effective against displacement damage (neutron, proton)

only, however.

If has also been observed that n-chonnel devices are harder rhan p-channel

jnirs ro displacement damage; however, n-channel devices are more susceptible to

ionirarion damage than p -channel units. Thus, it con be seen that a choice must be

made by the parts engineer depending on the displacement to ionization ratio of the

environment In question.

\
5. 50 Radiation Testing

It is recommended that JFET s be tested further in proton environments with

jnore emphasis placed on observing the ionizing effects of protons on t _., lp^« and

Vp. It is further recommended that any specific JFET type to be used in a radiation

environment be characterized (on a statistical sample) in the environment in ques-

tion.

5.60 Radiation Screening

At present there are no screening techniques for JFETs. Lockheed (Ref-

erence 5. 74) as presented in Figure 5.4, has shown that the Weibull probability

distribution may be useful in determining general component reliability.
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Table 5.4 Degradation Factors for JFETs

Radiation
Type

Neutrons

(fission/

Protons

(22 MeV)

electrons
(1.5 MeV)

Parameter

9m

'DSS•^ vfm*

ft

9m

'DSS

V
P

|
G5

i

_.
i ^TCfllffiGi
Radiation
(Co -60 J

'oss

V
p

'GS

Fluence

14 - 2
10 <4 n/crn

10U n/cm2

14 , 2i ft — /.iu n/cm

1013 P/cm2

1013 p/cm2

5 x 1010p/cm2

1012e/cm2

105 rods(Si)

1C5 rad$(Si)
,

105 rads(Si)

Degrodotion
Factor

-10 percent

-25 percent

-25 percent

-15 percent

-20 percent

+100 percent

+300 percent

+250 percent

0 percent

>2800 percent

Fl uence

15 2
10° n/cm

10 -5 n/cm2

15 2
10 n/cin

. . J3 . 2
5 x 10 p/cm

Jx 1013p/cm2

i

4 x 101 V/cm2

1013 e/cm2

106 rads(Si)

106 rads(Si)

l06rad$(S?)
*

Degradation
Factor

-80 percent

-90 percent

--

-50 percent

-55 percent

+400 percent

+4000 percent

-

approaching
pomps

.

approaching
pomps
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6.0 INSULATED GATE FIELD EFFECT TRANSISTORS
»•

6.1 Permanent Parameter Degradation

At the present state of the art, ionization damage is the most important

degradation mechanism in metal-oxide-semiconductor field effect transistors,

MOSFET's. Although displacement damage can be present, the devices' sensitivity

to ionization effects in the oxide) in particular, generally'make the displacement

effects only of secondary importance.

The parameter most sensitive to radiation is the gate threshold voltage/
•' ^

V~T. For present, of f-rhe-shelf units, V__ of ten shifts several volts for radiation
^ 4 5

exposures between 10 and 10 rads(Si). The extent of degradation is a function of

applied gate bios during irradiation. The proposed mechanisms for radiation degra-

dation of V~_are: (1) the accumulation of trapped charge within the oxide insula-

tion layer, (2) the introduction of surface states at the oxide silicon interface.

As is the case with surface effects in transistors, MOSFET damage* is not

readily predictable at the present state of the art. Many studies have shown the

damage to be highly dependent on processing techniques during manufacture and

several processes (which will be discussed in Section 6.40) have proved promising for

hardening MOSFET's in the laboratory, but these techniques have not generally

reached commercial products yet. The best approach for estimating damage, at

present, is to obtain actual data on a fairly large sample of devices. In general/

for devices from identical production processes the radiation response h quite similar.

For devices from the same lot but different chips, the spread becomes greater; and for

different lots from the same production line the spread in response is again increased.

The extent of the different responses will be discussed in a later section.

Since the effects of radiation en MOSFET devices can be almost entirely

due to ionization, it is not particularly valuable to discuss each particle type

separately. Rather, it Is shown in Figure 6.1 that if particle fluences are converted

to ionization dose (rods) using stopping power rabies* reasonable agreement can be

established for damage from the different particle types.

•Neutron dose was converted on the basis of accompanying gamma dose reported
for the reactor type used and the ionization energy deposition by the neutrons.
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Figure 6.1 Comparison of Relative Effectiveness of Different Types
of Radiation For Damage in MOS Devices
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6.2 Temporary Parameter Drifts

Although some rather long term annealing is observed for MOSFETS, the

damage is usually considered permanent at room temperature. Therefore, the drifts

consist of normal degradation as discussed in the previous section. The degradation

does have a tendency to reach a saturation level ot high exposures ( > 10 rods).

This phenomenon is particularly true for biased units under radiation. Holmes-Siedle

(Re?. 5. 74) has observed that alternately biasing and unbiasing the devices during

irradiation can cause the gate threshold voltage to oscillate as illustrated in Figure

6. 2. He observed that the oscillations were bounded by the degradation curves of

devices having no gate bias during irradiation and devices having a gate bias equal

to the peak value of the cycled bias. He further observed that a device that is

cycled on and off during irradiation with, for example, a square wave wili experi-

ence a degradation curve at some median point between the zero bias condition and

the maximum bias level that is proportional to the duty cycle. For example, if the

bias alternated from zero to nine volts with a 50 percent duty cycle, the degradation

curve would approximate that for a continuous bias of 4.5 volts.

6.3 Parameter Degradation Factors

Due to the heavy dependence on operating conditions, it is not practical

to try to tabulate damage factors for MOS devices. Rather, typical degradation

data is shown in Figures 6.3 through 6.12. Figure 6.3 shows typical bias depen-

dence of the degradation.

Figure 6.4 shows the spread of radiation degradation curves for ten types of

P-channef MOS transistor types irradiated with gamma rays. Figure 6.5 shows the

spread in responses for devices irradiated with 22 MeV protons. Figures 6.6 through

6.11 show various degradation curves for Co-60, electron, and proton radiation.

Figures 6.12 and 6.13 show the effect of an alternating bios during irradiation.

As noted earlier, for such cases the bias dependence of the degradation teems to fall

oerween that of zero bias and the peak of the alternating bias. The mean degrada-

tion curve is proportional to the duty cycle of the alternating bios.
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Figure 6.2 Threshold-Voltage Shift of TA5361 1C, Somple No. 3,
P-Chonnel Cycled Over Long Time Intervals. (Ref. 6.74)

6.4 Radiation Hardening

Experimenters have found several fabrication techniques that seem to in-

crease the radiation resistance of insulated gate devices. The results of many of

these techniques are summarized in Figures 6.14 through 6.19.

It appears that the presence of phosphorous in the insulator tends to harden

devices considerably, it is not fully understood why this is true. It is thought that

the phosphorous may act as a getter for impurities in the oxide that may contribute

to the charge trapping in the oxide.

If has also been found (Ref. 6.77) that the introduction of chromium into

the silicon dioxide can reduce the formation of interface states between the oxide

and silicon interface. This is explained by the fact that silicon dioxide alone under

ionizing radiation tends to de-vitrify and undergo compaction or negative dilation.

The contraction of the oxide parallel to the silicon interface breaks bonds between

the two layers and the unsa tuna ted silicon bonds cause the interface states. Thus,

Hughes (Ref. 6.77) proposes that a composite structure utilizing a dielectric of

silicon nitride and a chromium doped silicon dioxide may lead to a radiation resis-

tant device.
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as a Function of 22 MeV Proton Fluence. (Ref. 6. 75)
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6.16

Change in V as a
Function of Co-60
Dose (V. = +20 V)

G
(Ref. 6.76)

-J J

-4

\ \
V

1
w* w*

X^MTtlDI

GOMMflOM

I

Figure 6.17

Change in V_ as a Function
of Co-60 Dose (VQ » -20V)
(Ref. 6.76)
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Thickness (10 mtn • 280 A) of 4 x 105 Rod«(Si). (Ref. 6.78)
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Another interesting technique is the use of a thin oxide layer over the

silicon followed by a nitride layer under the gate metal. Figure 6.19 shows the

effect of thickness of the oxide layer on the radiation response. The author (Ref.

6.78) comments that it appears that charge is trapped ot the oxide-nitride interface

and rhat the amount of charge is a function of the oxide thickness. The MNOS

structures can withstand 10 rods exposure. This process does, however, tend to

make the devices less temperature-voltage stable. The devices having 125 angstrom

oxide layers were found usable between -40 to +35 volts gate bios. A feet for

the relative state of the art in hardened MOS eon be obtained by the following

example: A production process which yielded hardened devices was reported by

Long (Ref. 6.76). Later an attempt was made to reproduce the process and devices

from both the original "hard" process and the second duplicate process were com-

pared at The Boeing Laboratory (6.79). The second process yielded border devices

than other commercial processes, but did not produce rhe some degree of resistance

as the original process. The results of the comparison are shown in Figure 6.20.

6.5 Recommended Testing

if a MOSFET device is to be used, It is recommended that a representative

sample be given qualification testing to fully characterize its radiation response.

6.6 Screening

At the present time, (as for the case of surface effects in bipolar devices),

there is no known technique for screening out hard, or soft, MOSFET's. The only

procedure seemingly is to characterize rhe port type statistically.
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7.0 UNIJUNCTION TRANSISTORS

Permonent Parameter Degradation

T'ne negative resistance characteristic of the unijunction transistor depends

on rhe conductivity modulation of a moderately high resistivity silicon bar by means

of injected minority carriers from the rectifying emitter contact. It is, therefore,

highly sensitive to radiation induced changes in minority carrier lifetime and resis-

tivity. Figure 7.1 shows a typical unijunction characteristic. Failure is brought

aoout fay increasing Volley voltage, V , decreasing valley curient, j , and de-

creasing peak point voltage, V .

VOLTAOC

Figure 7.1 Static Emitter Characteristic Curve Showing Important
Parameters (Ref. 7.71)

Failures are determined by the ratio of V to Vv thot con be tolerated by the circuit

application. Catastrophic failure can be considered as the point where V -V

-nc r-e negative resistance characteristic no longer exists. Typical failure thresholds

ore fisted in Table 7.1

TABLE 7.1 Typical Radiation Failure Thresholds (i.e. Vy« V )

Neutron (FlssJon)

Proton (17-20 MeV)

Prsrcr. \ 'CC .MeV)

Gamma ( 1 MeV)

5x 10

1.0 xlO10

— • • v

>4x 105rad(Si)

5 B j» 1

l .Ox 1011

7 x C *•

n/'cm

P/cm2

c-'2
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7. 1 1 Neutron Effects

The primary effects of neutrons are the reduction of minority carrier life-

time by displacement defects in the bulk silicon of the base one region. Ruwe,

(Reference 7. 72) has developed an empirical equation for predicting neutron effects

on unijunction transistors of the form

! n R = ( K . + K +L )lnI^K,/l (Eq. 7.1)
1 2 p d p .

R = saturation resistance of base 1 region

K., K«, K- ~ empirically determined constants

L = diffusion length of holes in base 1 .
P

He assumed that changes in the diffusion length of base 1 material was the only

significant effect. He had some degree of success in predicting failure points for

the specific devices (2N491) he studied; however, it is not clear that the equation

is generally valid. Rather, it seems that the constants are dependent on device

geometry and would have to be evaluated from test data on each device of interest.

7. 12 Proton Effects

Protons should produce simitar effects to those of neutrons with additional

ionization effects. As pointed out earlier for bipolar transistors, protons are more

effective than fission neutrons for causing displacement damage. One could apply
2 2

the equivalence factors (Reference 7. 73) I (8-17 MeV) Protons/cm £ 33 n/cm
2 2

and I (100 MeV) Proton/cm 5 7 n/cm to compare neutron and proton damage

thresholds but no data exists as to the ionizing effects of protons on unijunction

transistors. Gamma radiation data indicate (Reference 7. 73) that additional de-

creases in V may be incurred due to ionizotion effects. Also/ if one uses the

neutron damage thresholds for comparison, he should be aware that the estimate ig-

nores the ionizotion effects of protons.

7. 13 Gamma Effects

Gamma radiation will produce some displacement damage but it is much
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less effective than neutrons for displacement production. However, gamma radiation

can cause considerable lonixation. The effects of ionizotion on unijunction devices

would result primarily in an increase of surface leakage currents with some changes

in Vy and Vp at high dose levels. Measel (Reference 7.73) has tested unijunction

devices in o cobalt-60 gamma environment and found them to survive with only small

changes of all parameters for doses of 4 x 10 rads(Si)., Flescher, (Reference 7.74)

has found for 1.5 MeV electron radiation, which is highly ionizing, the peak vol-

tage, V , is the most sens

for displacement damage.

tage, V , is the most sensitive parameter as opposed to the Valley Voltage, V ,

7. 20 Temporary Parameter Drifts

There is no evidence in the literature that any unusual parameter drifts

occur in unijunction devices other than the permanent changes discussed-in the pre-

ceding section. One might expect that the ionization effects might show some an-

nealing over a period of time (perhaps weeks) similar to bipolar transistors, but this

hasn't been verified.
1

i "

7.30 Parameter Degradation Factors

The extent of effects of various radiation environments are shown in

Figures 7. 2 through 7.4 and in Table 7.2. Ruwe (Reference 7.72) has found that,
12

for neutrons, unijunction devices experience catastrophic failure between 10 and
13 2 "

10 (fission) n/cm . Curves for electron irradiation are shown in Figure 7. 2

through 7.4. Similar data were reported by Stanley (Reference 7.75). Data taken

by Mease! (Reference 7.73) for Co-60 gamma radiation are shown in Table 7. 2.

From these data, the degradation factors fisted,in Table 7.3 are estimated.
, i f

These degradation factors ore determined from data on a few device types only and
., i

should not be construed oi.more than a "ballpark" estimate. The degradation factor

is defined as the percentage the parameter may increase or decrease at a given

radiation fiuence.
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Table 7.3 Estimated Degradation Factors For Unijunction
Transistors

Parameter

interbase
Resistance

Valley
Vol tage

Peak Point
Voltage

Radiation Type

Neutrons

Protons

Electrons (1. 5 MeV)

Gamma rays

Neutrons

Protons (8-17 MeV)

Electrons (1.5 MeV)

Gamma rays

Neutron*

Protons (8-17 MeV)

Electrons (1.5 MeV)

Gamma Rays

PI uence

2x I0)2n/cm2

10U e/cm2

4 x 105 rods (Si)

1012n/cm2

10Un/cm2

10l5e/cm2

4x 105rad(Si)

_ - -

1014 e/cm2

4x 105 rods (Si)

Degradation Factor

+ 37 Percent
___

-26 Percenr

-16 Percent

+100 Percent

+100 Percent

+100 Percent

+10 Percent

_ __

—__

-18.7 Percent

-7. 0 Percent

7.40 Radiation Hardening

Due to their construction, dependence on minority carrier lifetime, and

requirements for moderately High resistivity material, unijunction transistors are

very sensitive to radiation. Rather than suggest hardening techniques/ researchers

have generally concluded that unijunction devices are unsuitable for use in even

low level radiation environments and should be avoided If possible.

7.50 Recommended Testing

if a unijunction device must be used, it is recommended that the specific

device type to be used be radiation tested. It should be noted that tne devices are
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sensitive to all components of the TOPS environment and thot, for protons, the pos-

sible nonadditiveness of the effects of combined displacement and ionization damage

have not been investigated.

7.60 Screening

There have been no screening techniques suggested in the literature.
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8.0 DIODES

The following discussion is intended to cover switching diodes, rectifier

diodes, and general purpose diodes. Where the discussion applies to only one of

the three types, this is noted. It should also be noted that only limited data is

available on general purpose diodes; however, it is felt that their behavior should

be similar to the switching and rectifier types.

8.10 Permanent Parameter Degradation

The parameters that are affected by radiation ore forward voltage, Vr,i '
reverse leakage current, L, breakdown voltage, BV-,^, and the switching and

' L K v.vJ
storage times. The switching and storage rimes decrease while the breakdown vol -

tage increases. Since these changes are not of great consequence in most applica-

tions, the discussion will deal only with changes in Vr and L.
. t K

8. 11 Neutron Effects

The forward voltage, which is the most sensitive parameter to radiation

in most cases, is influenced primarily by two effects, (1) minority carrier lifetime

reduction and (2) carrier removal effects. Minority carrier lifetime degradation

usually contributes to voltage'changes at much lower fluences than carrier removal

effects; however, carrier removal is generally the mechanism which causes ultimate

device failure.

The degradation rate in diodes appears TO be a function of the initial doping

concentration, the junction area, the cross sectional area, and the hose width, in

general, the higher the doping level the less radiation sensitive the device. Thus,
* bt

the lower the breakdown voltage of the diode (heavier doping) the more resistant
/•

it is. ^he junction and cross sectional area seems to ploy a fairly important role in
i , - •

switching diodes os indicated in Figure 8. 1. (The current rating being an indirect

indication of junction and cross sectional area). However, for rectifier diodes, the

device area has not proved so important. The data indicate very tittle evidence of

area dependence of damage in rectifier diodes. The data is too limited in the case

of general purpose diodes to make any observations. Muth (Reference 8. 81) has
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Figure 8.1 Comparison of Change in Vf Versus Current Bating for Switcning
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shown that degradation in device forward voltage is a function of base width, i.e.,

the thicker the boss, the greater the degradation for a given fluence.

Due to the many t/pes of diodes, there has not been a general model de-

veloped to accurately express degradation as a function of radiation fluence for

all types.

There have been two methods developed for estimating forward voltage

changes as a function of neutron fluence. Man lief (Reference 3. 82), Has proposed

a simplified model for rectifier diodes which neglects the effects of minority carrier

lifetime degradation and assume* a simple step junction. Thus, based on the initial

conductivity of the diode base region (or the reverse breakdown voltage which is

inversely proportional to the conductivity), he suggests that one can obtain a semi-

quantitative estimate of a diode's radiation sensitivity. Figure 8. 2 indicates the

correlation observed between neutron damage and breakdown voltage, in general,

it appears that a device having a breakdown voltage of 100 volts or less should
14 2

still be usable after exposures to neutron fluences greater than 10 n/cm .

From Manlief's equations/ one can develop equation 8.1 (See Appendix 8A

for derivation) for obtaining a semiquantitative estimate of rectifier diode degrada-

tion in a neutron environment. Figure 8.3 shows o graph of R/NQ (for p on n junc-

tions). Figures 8.4 and 8.5 show comparisons of predicted results and octual results.

It should be pointed out again that this technique should be considered only a pre-

JJL- ^ e(R/No*> (Eq.8.1)
fo

where V. * Jnitial forward voltage
o

* Semiquentitative estimate only

Iiminory screen. The neglect of lifetime effects means that the estimate may be low

for low fluences. If additional information is needed, one should obtain actual

radiation data on the device type or, if this is not possible, obtain more parameter

data from the manufacturer and use the estimation technique published by Frank and
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MANLIEF: NEUTRON-INDUCED DAMAGE TO SILICON RECTIFIERS
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To u I bee (Reference 8.83). Their technique is much more detailed and does consider

lifetime changes, etc.

The effects on reverse leakage current are, in most cases, less important

than the forward voltage changes. The changes in leakage current due to neutron

radiation can be estimated by the method outlined for transistor junctions in Ref.

8.83 . The leakage current is affected by changes in the minority carrier lifetime.

There are two components of leakage current, (1) the reverse-saturation current and

(2) the carrier-generation current which is dependent on the minority carrier life-

time. Another component of leakage current arises at the surface and, as stated for

Transistors, is unpredictable. For the TOPS environment the extent of ionization

present will probably result in the surface component being dominant. Thus, tech-

niaues for prediction of leakage currents are very questionable at the present state of

rhe art.

8.12 Proton Effects

Proton effects on diodes are not so well documented as the effects of

neutrons, in general, though, it should be possible to estimate proton damage in

diodes using the neutron theory and experimentally determined equivalences,

(Reference 8.84) between neutrons and protons. This technique ignores the ionizing

effects of protons. However, in the case of diodes, since the major effect is carrier

removal, the ionization effects on forward voltage are probably small. On the other

hand, this may not be the case for reverse leakage currents, since tonization can

cause channel formations over the junction regions. Unfortunately, to date there

are no techniques for predicting channel formation, forward voltage changes may be

estimated semiquontitotively using Maniief's technique outlined in Section 8. 11.

In no cose, should this be construed as final data. It is simply a "boll pork" estimate

and no more. For a more accurate estimate, one should consider the estimation

technique outlined in Reference 8.83 for neutron damage. When us ing these techniques,

the empirical equivalence factors listed in Table 8.1 should be used.
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Table 8.1 Proton - Fission Spectrum Neutron Displacement Equivalences

2 2
} (8-17 MaV) Protons/cm ^ 33 (fission spectrum) neutrons/cm

2 2
100 MaV Proton/cm a 8 (fission spectrum) neutrons/cm

if eitrier of the above estimation processes indicate marginal performance for the

part in question, the part should either be replaced by a more suitable type or actual

data obtained on a reasonably large sample of devices.

It should be noted that no applicable data was found in the literature to

verify the estimation.techniques lifted above.

No data was located to indicate leakage current effects, <but one would

expect the charged particles to induce surface leakage.

8.13 Gamma Effects *.
-v

Gamma rays cause essentially the same effects In diodes as do protons but

are much less effective. It is felt that if gamma damage produces significant effects

in r'ne TOPS environment, the effects will be due to channeling and increased leak*

age currents. As stated earlier, channel formation is not amenable to prediction

at the present state of the art.

8.14 Combined Environments

At present, there are no data available Indicating how to assess the effects

of a combined environment. For the present state of the art, the most reasonable

approach is to assess the effects of each individual environmental component and

assume that the effects ore additive on a one-to-one basis. For ionizotion effects

on leakage currents, this is probably a worst-cose assessment since lonization damage

does appear to saturate with increasing dose.

8.20 Temporary Parameter Degradation

For the radiation intensities expected in the TOPS environment, there is

no evidence in the literature that any abnormal drift in parameters will occur during
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irradiation other than the degradation discussed in the preceding section.

8.30 Parameter Degradation Factors

For diodes/ the parameters to which degradation factors should be applied

are forward voltage/ reverse leakage current, and peak current capabilities.

Since rhe extent of radiation damage is highly dependent on device type,

material, and construction, it is not feasible to list a universal degradation factor

versus radiation level; however, using the damage estimation techniques outlined In

Section 1, one can calculate reasonable degradation factors to be applied for a

specific diode type. An example of such a calculation will be given for the IN645

diode. Using the sample prediction given in Ref. 8.83, it is estimatea that the for-

ward voltage will be about 2.41 volts at L - 100 ma. The manufacturer data

sheets lists 0.8 volts as typical for the device type before irradiation. Thus, the for-

ward voltage at 100 ma will have to be uprated by +200 percent. The maximum allow-

able forward current at 25 C is listed by the manufacturer to be 400 ma. At 400 ma/

a typical forward voltage is 1.0 volts. Thus, maximum power dissipation of 400mW

is established. The new maximum forward current must be derated sufficiently so

that no more than 400 mW is dissipated in the device with the increased V,. Thus,

a reasonable derating factor would be calculated by the equation 8. 2.

,M . <*« »?» = MO. (.,.8.2)
f(max) 2.51 volts*

* (0.1 volt was added to allow for increased current so that I-, »
should be derated by 60 percent at 7.2 x 10*3 flj,^ t(ma*>
neutrons/cm'.

Table 8.2 lists estimated average degradation factors for diode parameters.

8.60 Radiation Hardening

Diodes can be hardened by increasing their doping levels. In general/ de-

vices with low breakdown voltages have heavy doping and, thus/ are relatively radia-

tion resistant. One should/ therefore, choose the lowest breakdown voltage unit

that is in keeping with the application.

Further, it has been found (Reference 8.82) that gold doping tends to har-

den diodes to neutron radiation.
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Table 8.2 Estimated Diode Degradation Factors

Parameter

Vf at 100 ma

F(mox)

IR at 100 volts

Fl uenee

7.2xl013

Neutron/cm

Degradation

+ 200 percent

-60 percent

Fiuenc*

2.2x1012

8-17 MeV Proton/cm

Degradation

+200 percent

-60. 0 percent

Unpredictable due to lonJzatJon*
Damage

* Leakage currents hove been observed to change
from 50 percent to 800 percent at a fiuence of

n/cm2.

8.70 Radiation Screening

The only screening technique that has been suggested ts preirradiaHon

end annealing for ionization effects as described for transistors in Section 4.60.
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APPENDIX 8A A(Vf) ESTIMATION TECHNIQUE

A method Has been suggested (Ref. 8.32) for estimating the amount of

neutron induced degradation in silicon rectifier diode performance. The method is

outlined here and extended to yield a relation far normalized change in forward

voltage. Although the method was developed for neutron damage, it should apply

equally well to displacement damage caused by protons.

The estimation technique assumes a diode model of a silicon rectifier with

a simple step junction, it is further assumed that the density of minority carriers

is much less than the density of majority carriers, i.e., no conductivity modulation

occurs. The above assumptions make the estimate sem {quantitative as a general pre-

diction technique.

The technique is developed mathematically starting with the relation for

forward current presented in equation 8A. 1.

I " I / q i \ to- 8A.D

(eq. 8A.2)

q = electronic charge

A = (unction area

D = diffusion constant of electrons in the p-type material

K = Boitzmann's constant

T = absolute temperature

V* = junction voltage

N » minority carrier density

tn - minority carrier lifetime in the p-type material

I = diode currant

iw
and V, = -£* <eq. 8A.3)
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width of base region

conductivity of the p-type base

Assumption - Primary affect is carrier removal in the p-type base region.
\

-a*o = o> eo

(over range of conductivities of interest).

o = conductivity

a s initial conductivity

a = constant

6 = radiation flux

e -04

(eq. 8A.4)

(eq. 8A.5)

= e

but the constant o can be related, to ° o by

1 do

but since ^ s P q|j

P = impurity concentration

|j = mobility ̂

then

dP

d*

(eq. 8A.6)

(eq. 8A.7)

(eq. 8A.8)

(eq. 8A.9)

(eq. 8A. 10)

(eq. 8A.il)
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R 3 initial carrier remove! rate

Thus o « + -2£- R
*«

£_) = + -SIL R*In (_

But from (3)

(eq. 8A. 12)

(eq. 8A. 13)

99
IW

(eq. 8A.

So that

(eq. 8A. 15)

or

(eq. 8A. 16)

If one assumes that changes in |j are of secondary importance as Man lief suggests

In /Vb \ = + K R + (eq. 8A. 17)

or

where

so that

/ V b \ = +

vw
ln(Vb) * In V

K * Jh. =

V fln vb«
or

end
77

for N on P diodes

for P on N diodes

(eq. 8A. 18)

(eq. 8A. 19)

(eq. 8A.20)

IT

(eq. 8A.21)

(eq. 8A.22)

bo
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If the initial conductivity of the base material is not known directly then it can be

estimated from the curve in Figure 8A-1. R and N hove been established from

Manlief's curves of $ * VS OQ and N VS V« and ore plotted in the graph

of Figure 8.3.
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9.0 ZENER DIODES

Due to close tolerances required by most zener diode applfcartons, they

must be considered os relatively radiation sensitive devices. They frequently show

changes of from 2 to 4 percent in the reference voltage at neutron fluences of the
1 2 2 6

order of 10 n/cm plus ionization doses of the order 10 rods.

9. 10 Permanent Parameter Degradation

9.11 Neutron Effects

Thatcher (Reference 9.71) has mode a survey of zener experiments through

1964 and his survey is reproduced in Table 9. t with radiation units changed to con-

serve consistency in this report. In addition to the data presented in the Table,

more recent tests (Reference 9.75) hove shown that, even through zencrs may, in

seme cases, show very little change with radiation or 25 C, the zener voltage versus

temperature characteristics change with increasing radiation so that the device may

show no change at 25 C, but show considerable change at higher or lower tempera-

tures. Tnis observation is illustrated in Figures 9.1 end 9.2.

9.12 Proton Effects

No data were found for proton effects on zener diodes, but the damage

mechanisms should be similar to those for neutrons. However, it is noted that pro-
2

tons are relatively more damaging than neutrons. For example, 1 (15 MeV) proton/cm

does damage equivalent to that of about 33 (fission) neutrons/cm . (Ref. 9.76).

This equivalence ignores the ionizing effects of protons.

9.13 Gamma Effects

The data for gamma effects on zener diodes, indicate that they appear to

be altered very little by doses a* high as 4 x 10 rads(Si) Co-60. Tests in combined
z tM A

environments of 10 reds and 10 n/cm , however/ show changes of from 2 to 4 per-

cent in zener reference voltages.

9.20 Temporary Parameter Drift

The effects of radiation on zener diodes are permanent; however, they have

109



02-126203-3

UJ
O
O
5
oe,
UJ

Z
UJ
N

O
VIt-
Uit:u.tu

t!

I

J

^^ ^* ^^ ^^

a." of <* o'

§111

111

cu
rr

en

4# *V ^ U

- . - 8 -g J? f
8 I .IS •* .5 ? -I '•»«
«• S 6 -S 7
X ft ° ^ e s " Z - "P

o
Is.

A " w ** O *• •*• »~i C "*• ^ CMt t O «i §j " *m fU tfl ^7

hi,l»l!{7i**i=Ji.:5 = 5 = » i = i i i { i
S^ | "* li 21 if tN
SI? e f & > "1 ".a0 • "'<>l'

J 1 1 .£7 ? If tt>
r ~ - ~

II> t « • • " a S-S
* 5 J! N N IM W a N S

e!

X X X I

I i I I
9 e> o "I
4U A ' °y^ ^u ^J *

2; c* <M uj
5 "~o "o .-T"

«> 40 IU

|-g2
W o o

I
7 -

8 ?

»
* 0 e

C g^s 1 e
1 > «

N.o

-*>

•5
I§ I.6 v

&

?- s I

•S 3 '* « «* "u 'I r * »* ^ î Jf ~ •- V
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Figure 9.1 Voltage-Temperature Characteristics for 1N829 (9*75)
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Figure 9.2 Voltage-Temperature Characteristics for 1N939 (9.75)
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been observed to show both a decrease and a subsequent increase under radiation.

For example, in one experiment (Reference 9.74) Motorola 1N943 devices were
15 2

observed to decrease 3 percent at 3 x 10 n/cm and to then show an increase
15 2

of ~ 30 percent by the end of the test (8 x 10 n/cm ).

9.30 Parameter Degradation Factors

Table 9.1 and Figures 9.1 and 9.4 summarize typical changes in zener

reference voltages due to radiation. It is observed that zeners appear to change
15 2

less than five percent at neutron fluences 10 neutrons/cm . However/ changes
12 2

of from 2-4 percent occur at radiation levels as low as 5 x 10 n/cm plus

7 x 10 rods (C). The designer should note that these changes may be either in-

creases or decreases with the pattern frequently being a gradual decrease in refer-

ence voltage followed by a rapid increase, it should also be noted rhat, as shown

in Figures 9. 1 and 9.2, the zener voltage versus temperature characteristics change

with radiation.

9.40 Radiation Hardening

No techniques for hardening zener diodes were located in the I iterature.

9.50 Recommended Testing

It is recommended that any zener device type to be used in a critical ap-

plication in a radiation environment be thoroughly characterized in the radiation

environment of interest. The zener voltage should be tested both as a function of

current and temperature.

9,60 Screening

No screening techniques for zener diodes were found in the literature.

9.70 References

9.71 Thatcher, R. K., Hammon, D. J., Chqpin, W. E., Hanks/ C. L. and
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10.0 TUNNEL DIODES

10.1 Permanent Parameter Degradation

Tunnel diodes are relatively resistant to radiation. This is true because they

depend on the tunneling of electrons from the conduction band to the valence band

for their operation. Thus, they ore not dependent on minority carrier lifetime.

Figure 10.1 shows a typical characteristic of a tunnel diode.

10.11 Neutron Effects

The primary effect of neutron radiation is to increase the excess current.

THJs increase is believed to be brought about by the tunneling of electrons via de-

fect energy states introduced b/ the radiation.

OCTTfO LINE iS
NORMAL 0-001
CHAHtC (ERISTIC

e*

Figure 10.1 Static Characteristic Curve of Germanium Tunnel Diode (Ref 10.71}

Neutron damage has been characterized fairly well for tunnel diodes. However,

although the damage has been theoretically described, there have been no models

developed for making quantitative estimates of an individual device's sensitivity to

radiation.

Thus, only ball park damage thresholds can be estimated from data in the

literature. These estimates will be presented in Section 10.30.
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10.12 Proton Effects

No dota were loco ted for proton effects on tunnel diodes; however/ there are

indications (from electron experiments) that ionization effects are relatively unimpor-

tant in these devices. If one neglects ionization effects, then damage thresholds

snould be related to neutron thresholds by the proton to neutron equivalence factors
2 2

1{8-17 MeV) proton/cm a 33 (fission) neutron/cm . (Ref. 10.72)

10.13 Electron Effects

Although there is very little dota on electron effects on runnel diodes, early
77 18

studies indicated that they could withstand very high levels (10* to 10 (1 MeV)
2

electrons/cm ). As in the case of neutron damage, the parameters that change are

the excess current. The fluences are about the magnitude one would expect for dis-

placement damage based on the equivalence factor (Reference 10.72) between fission

neutrons and 1 MeV electrons.

10.14 Gamma Effects

The device's resistance to electron irradiation should indicate their response

to gamma radiation which causes displacements primarily through compton scattered

electrons. Therefore, one would expect them to be resistant to gamma radiation.

Studies of n on pgermoniumdiodes have indicated that they can operate in a properly

designed circuit to 1.5 x 1016 n/cm2 (E > 0.3 MeV) and 2. 2 x 108 rads(C). Com-
g

pared to other semiconductor devices, 2.2 x 10 rods is an extremely large ioniza-

tion dose.

10.2 Temporary Parameter Drift

The data reviewed Indicate no radiation induced parameter drift other than

rn« permanent degradation discussed earlier.

10.3 Derating Factors

Based on available data, the derating factors listed in Table 10. 1 are estima-

ted. Figures 10. 1 through 10. 2 show typical degradation curves for tunnel diodes
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Figure 10.3 Degradation of 10-ma Tunnel Diode I-V Curves (Ref. 10.73)
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from the literature.

r

Table 10.1 Degradation Factors For Germanium Tunnel Diodes

Radiation
Type

• Meutrons

Proton (15
MeV)

Electron
(1 MeV}

Comma
(Co-60)

Parameter

Excess current

Excess current

Excess current

Excess current

Fluence

l.Ox 1014n/cm2

3 x 1012, p/cm2

> 1015 e/em2

> 108 rods

Degrad.

+ 20

+ 20

+ 20

+ 20

Fluence

1 x 1015n/cm2

•j in13 ' 2
3 x 10 p/cm

>10i6e/cm2

> 108 rods

Degrad.

+ 90%

+ 90%

-90%

+ 90%

10.4 Radiation Hardening

The only hardening suggestion noted in the literature was that of doping the

devices to be used as heavily as is compatible with other requirements of the design.

10.5 Recommended Testing

Ail available data indicate that tunnel diodes are somewhat more radiation

resistant than other semiconductor devices. No testing is felt to be necessary at

this time, although it would be desirable to verify the effects of protons on tunnel

diodes.

10.6 Screening

No screening techniques were noted in the literature.

10.7 References

10. 71 Motorola Tunnel Diode Handbook, published by Motorola Inc.
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1 1 . 0 : Sil icon Controlled Rectifiers and Switches

11.1 Permanent Parameter Degradation

The operation of 0 four layer PNPN device is generally analyzed using the

classic two transistor analogy (11.71, 11.72, 11.73) normally biased with a regenera-

tive feedback loop (Fig. 11.1 ) where the alphas of each transistor ( an & a ) are

strongly dependent on the. total anode current.

Using the circuit of Fig. 11. 1, the anode current through the device below

breakdown is expressed by Equation 11.1. '

where: M is the multiplication factor at the center {unction and
Alpha ( a) is defined as the emitter efficiency times the
base transport factor for the corresponding transistor.

It may be seen from Equation (1) that the anode current is well defined as

long as the demonimator does not equal zero. When ( a. + a_ ) M = 1, the equa-

tion is undefined and L becomes unstable, switching from the nonconducting "off"
i f^ i.

state to the conducting or "on" state. The failure criteria is, therefore, defined as

that ooint where (a. + a^ ) M < 1 and will not sustain 1 or when the surface

leakage across the center re versed -biased junction increases to a level where

(o l n+a2 n ,M>1. :

In general, forward breakover vol tage (VBQ)/ gate firing current (lpp)

and gate firing voltage (Vpp) should all increase with bulk damage while the for-

ward holding current (I, ) and reverse blocking current (L) will be sensitive to sur-

face ionization.
11.11 Neutron Effecti' " t;

i

The primary effect from neutron radiation is an increase in the recombination

rate of the base region when trapping centers are created in the bulk silicon. These

recombination and trapping centers not only increase the effective resistivity of the

bulk by carrier removal, but most important they reduce the minority carrier lifetime.

The reduction of the minority carrier lifetime decreases the alphas of the devices
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Figure 11.1 SCR Equivalent Circuit. (Ref. 11.72)
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thereby increosing the saturation or breakover voltage. As the saturation voltage

increases, a current much less than the rated value destroys the SCR by overheating.

Fig. 11.2 shows cu vs. I as a function of integrated neutron fluence for a

typical silicon controlled rectifier.

2N

Figure 11.2 Alpha vs Emitter Current'as a Function of
Integrated Fast-Neutron-Flux, d> (Ref. 11.7)

A secondary parameter of interest from neutron effects is the leakage

current !__. Sah (11.74) et ol., have shown that leakage currents generated in the

space charge region or the center junction may be orders of magnitude greater than the

normal diffusion leakage current. Since minority lifetime decreases under radiation

and the generation rate is inversely proportional to the minority lifetime, it seems

reasonable to expect that the leakage current will, therefore, increase.

11.12 Protons

No data has been published on SCR's for proton effects but as pointed out

earlier for transistor etc. / protons should produce similar effects to those of neutrons

with additional ionization. Since protons are more effective than neutrons for dis-

placement damage, one might expect a lower damage threshold.

11. 13 Gammas
r - ,,

Surface ionization from gamma radiation produces a lowering of the swit-

ching characteristics by the generation of leakage currents or channeling across the

center reversed biased junction. The turn-on characteristic of the SCR, neglecMng
«

recombination, depends basically on the number of majority carriers injected into
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specific regions, the transit time of the minority carriers in each base, emitter effi

ciency, and the base transport factor before regeneration can take place. As the

regeneration process builds from ionizotion, the leakage current (if «*J increases,

thereby causing alpha to increase, a critical threshold is reached at (CUKI *ai

At this time the center {unction has become slightly forward biased and

causes the device to turn completely on. This phenomenon, observed by Stanley

(11.72), Gwyn (11.75), and Measel (11.76), poses a serious radiation problem

(failures as low as 10 rods (Si) for devices under electrical bias during irradiation).

11.2 Temporary Parameter Drifts

There has been no evidence in rhe literature to suggest a temporary drift

in cny of the parameters normally measured other than those mentioned in the pre-

ceding section on permanent damage.

11.3 Parameter Degradation Factor

The literature study has revealed that while in o radiation field all charac-

teristics of a PNPN device appear to increase in magnitude, ranging from insigni-

ficant to orders of magnitude depending on the type of radiation and the particular

parameter.

Teste conducted by the Georgia Nuclear Lob (11.77) 1964 (lockheed-Georgio

Co.) revealed poor performance associated with SCR devices and the degradation

factors are given in Table 11.1 and Figures 11.3 through 11.8 for the 2N1774.

Table 11.1 Degradation Factors for 2N1774

Parameter

VGF

'OF

'h
'R

Pre-Radiotion

Mean

1.16V

5.0 mo

8.0 ma

5.5 ma

%Dev.

±25

±50

4-30 to -23

+ 2

Degradation - Factor

2 x 10*2 n/cm2

A mean % max%Dev.

+ 26 +37 to -27

+ 64 +56 to -60

104* +27* to -21

+ 0. 1 ma ±2

4 x 105 Rad
A mean % max%Dev.

+1 1 +30 to -29

+ 20 +58 to -52

+ 28 +32 to -28

__

* Derating factors given for the single mode \, condition only.
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2,0xl08 10'

Integrated Flux (n/cm )

Figure 11.3 SCR 2N1774 - Mean Gate Firing Voltage Versus integrated Flux

2.0x10' 102 103 ,104 105

Gamma Do»e (y)

Figure 11.4 SCR 2N1774 - Mean Gate Firing Voltage Versus Gamma Dose
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Figure 11.7 SCR 2N1774 - Holding Current (Specimens 1, 3, 4, 5, & 10)
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This poor radiation performance was further substantiated for neutron environments by

Leith and Blair (11.73), December 1965. The/ concluded that SCR's are not well
13 2

suited for use when subjected to an integrated fast neutron flux greater than 10 n/cm .

!n 1967, D. K. Wilson and H. S. Lee (11.71) conducted experiments on

narrow base PNPN devices and concluded that SCR's are not only superior in per-

formance in current switching and power handling but were more radiation resistant

than bipolar transistors of comparable base widths. Table 11.2 gives the derating

factors for the various structures tested and Fig. 11.9 through H. 10 show the for-

ward "on" voltage vs. neutron fiuence at two current levels. Fig. 11.11 and 11. 12

Table 11.2 Degradation Factors for Some SCRs

Parameter

VGF

'OF

n

Type

2N1765

35200 (WB)

ZB1001 (WB)

ZB1001 (KB)

2N1765

352001 (WB)

ZB1001 (WB)

ZB1001 (NB)

2N1765

352001 (WB)

ZB1001 (WB)

ZB1001 (NB)

Base Width
Wn(u)

100

50

20

15

100

50

20

15

100

50

20

15

Degradation Factor

1 x 1013 n/cm2

300 percent

v. 10 percent

± 10 percent

± 10 percent

14 ?
1 x 10 n/cm*

± 10 percent

± 10 percent

Refer to Fig. 11.

Refer to Fig. 12.

show I and i~, respectively. It is clear from the data of Wilson and Lee that the
n 13 2

conventional triple diffused 2N1765 is severely damaged at 10 n/cm which agrees

with previous investigators, whereas the narrow-based structure is relatively inde-
14 2pendent of neutron fiuence at levels greater than 5 x 10 n/cm . They also stated,
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NMION ruUNCI (H>UO

Figure 11.9 PNPN Forward "On" Voltage Versus
Neutron Fiuence (500 mo) (Ref. 11.71)

Figure 11.10 PNPN Forward Voltage Versus Neutron
Fiuence (100 ma) (Ref. 11.71)
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Figure 11.11 PNPN Gate Currents Versus Neutron Flue nee (Ref« 11.71)

i »

t»" »-
MfUTtON nutNCI (HtMn

Figure 11.12 PNPN Holdtr^ Current Versus ^4eutron Fluence 0^8k = * ) (M. 11.71)
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for the narrow-bose device, that it would be insensitive to transient ionization at
9 ' -10

dose rates greater than 10 rod/sec if the initial lifetime degraded to 3 x 10 sec.
r

.This value is apparently a design calculation since no'experimental data .were given

by them to substantiate the estimate.

Following the work of Lee and Wilson on neutrons, A. G. Stanley (11. 12)

reported on bulk damage and ionization effects from electrons and the results are

given in Table 11.4 and 11.5. Degradation factors could not be calculated from
f j

the data due to insufficient information. Bulk damage effects were assumed to pre-
14 2 %

dominate at a total electron dose of 5 x 10 e/cm .

G. D. Smith (11.78) 1966 reported on PNPNI devices using Cobalt 60

gamma radiation. The results of these tests and the degradation factors for the

2N683 ore given in Fig. 11. 13 through 11.17 and Table 11.3. C. W. Gwyn (11.5)

reported on narrow base PNPN structures with a cathode-base region of 1.6u width

and an anode-base width of 10.6 .̂ This study did not give data for determining

degradation factors, but showed that a rectangular radiation pulse wirh a peak dose
8

rate or 6.4 x 10 rad(Si)/sec at 10 n. s. pulse width or a neutron exposure of
13 2

5 x 10 n/cm is required for device turn-on. Mease) (11.76) also reported, using
3

a Co-60 source, that turn-on was observed at doses of less than 10 rod if the de-

vices were under operating bias during irradiation. Again, no factors could be

calculated, but the results are shown In Table 11.6. -

Table 11.3 Degradation Factors For SCR 2N638

Parameter

VGT

«GT

lh

'FWD

'R

Degradation Factor

Percent/meg, red

+ 4.1

+ 5

+ 6

330 percent ,

220 percent

2 x 105 R

+ 5-8 percent

•*• 10 percent

+ 14 percent

> 300 percent

—
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Table 11.4 Forward Vol tag* Drop at 4A (Ref. 11.72)

Unit

632

635

633

639

636

640

634

, 638

644

100

101

102

103

104

105

Irradiation Conditions
Bias

VA = 20 V, off

VA « - 20V, off
A

VA * 20 V, off

VA = 20 V, on

VA * -20 V, off

VA = 20 V, on

VA = 20 V, off

VA = - 20 V, off
i *•

VA = 20 V, on

VA = 50 V, off

•

VA = -50 V, off

;

Total Dose
(•/en?)

1.0 xlO13

4.95x K>13

l.Ox 1014

l.Ox 10U

5. 1 x 1014

5. 1 x 10 M

1.05x 1015

1.05 xlO15

1.05x 1015

2.0 xlO15

2.0xl015

i

Before
(vojr$)

1.5

1.56

1.66

1.71

1.45

1.52

1.66

1.76

1.82

1.7

1.8

1.5

1.46

1.42

1.72

After
(volts)

1.58

1.58

1.66

1.70

1.5

1.55
3

1.82

1.86

1.88

2.05

2.85

2.2

1.85

1.9

2.35
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Table 11.6 2N2323S.C.R. (Ref. 11.76)

Unit No.

1

2

3

4

5

1

2

3

4

5.

1

2

"3

_4

,5

VGT(Volts)

.5

.65

.545

.55

.6

.5

.55

^55

.55

.56

.5

.56

.55

.58

.56

Pw-l
REV.

Blocking i

'RQ (omps)

2. 2 x 10'9
.0

8. 2 x 10 y

4.4x 10"9

1.6x 10"9
.0

2.0x10 V

104 rad

2.5xUf9

l.lxlO'8

5.9x Uf9

2. 1 x 10"9

2.5x Kf9

4 x 105 red

3.4 xKf9

7.7x 10"9

7.5x 10~9

2.5xlO'9

-9
3.8x10^

rradiotlon
FWD

Blocking 1
lpo (omps)

5.6x Hf9 j
.0 '.

2.3 x 10 °

5. Ox 10"9

7. Ox 10'9

-8
2.2x10 °

6.4xlO"8

l.Ox Uf8

9. 2 x 10"6

UlxlO"7

9.5xlO"8

2.2X10"4

l.SxlO"4

2. Ox 10*4

3.0 xlO"4

«5
1.0x10°

lRGO(amps)

4.4x 10"6

' -10
6.6 x 10 IU

1.5x 10'9

3.2 xlO'10

-10
4.0x10 I0

.

5.8X10"6

l.Ox 10*9

2.2x 10"9

1.3xlO"9

6.0 xlO'10

6.2xlO"6

3.0 x 10"9

2.3x 10'9

1.3 x Kf9
.9

2.2 x 10 r

Fired in
Field'

...

—
— .

.—

...

yes

no

yes

yes

no

no

no

yes

yes

yes
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11.4 Radiation Hardening

It has been pointed out that narrow base PNPN or P N|PN devices may

be more radiation resistant than previously reported for conventional devices.
t- '

Further, by decreasing the base region lifetime, applying a negative gate bias during

Irradiation, decreasing the impedance between cathode and gate, or by decreasing

anode bios one may achieve some improvement in circuit hardening. However, it is

concluded that silicon controlled rectifiers shouia not be used in a radiation environ-
3

ment where gamma radiation approaches 10 rad(Si) or the neutron fiuences is
13 * 2

greater than 5 x. 10 n/cm * • (

11.5 Recommended Testing :•

It is recommended that SCR devices not be used in significant radiation
-f *.

environments, however, if any PNPN devices ore to Be considered for circuit appli-
'

cation, it is recommended that each type to be used be tested. SCR's are sensitive

ro all components of the TOPS environment and the combined effects from proton

damage has not been investigated. It should also be noted that the devices should

be rested while under electrical bias. >.
,i

11.6 Screening

There have been no screening techniques suggested in the literature.
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12.0 MICROCIRCUITS

12.10 Permanent Parameter Degradations

Integrated circuits differ from discrete component circuits (for junction

Isolated devices) due to the presence of parasitic components such as substrate trans-

istors and diodes and increased capacitance to ground. While these differences can
uave a dremotic effect on the transient response of the circuit to high dose rate

ionizing radiation environments, they appear to have no significant effect on the

permanent degradation of the circuit parameters due to low ievei steady state en-

vironments.

The parameters most adversely affected by permanent degradation are cir-

cuit gain, changes in bias currents, output voltage swing capability, and changes

in voltage offsets for linear circuits. In logic circuits the transistor gain degrada-

tion results in a degraded fan out capability and changes in propagation delay times,

while the increased leakage currents can modify the fan in capability for some type

of circuits (i. e.f ECO. The environment levels at which these circuit parameters

become significantly affected are a strong function of the environment (i. e. / par-

ticle end energy spectrum) and the circuit design (i.e., linear, logic, degree of

feedback, transistor gains, etc.).
j

12. 11 Neutron Effects

The primary damage mechanism of neutrons in microcircuits is atomic dis-

placement damage. For low~level steady state radiation the effects on circuit com-

ponents are no different than the effects on discrete components already discussed.

Therefore, the designer is referred to the preceding sections on discrete components

for active elements. The discussion here will be limited to effects on semiconductor

resistors and capacitors. I

i integrated resistors formed by diffusing a strip;of p-marerial into on n-type

epitaxial layer show increases in resistance with increasing neutron fluence. The per-

centage of change for a given fluence is dependent on the initial impurity concen-

tration. Low value resistors (higher impurity levels) ore less affected by neutron
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irradiations. Figure 12.1 shows a typical degradation curve for silicon resistors.
15 2

Normally, the change for ~ 10 n/cm is less than the initial tolerance on the

resistors (±20 percent). Further In the case of bias networks where resistance ratios

are of interest, the ratios tend to stay approximately constant if the resistors involved

hove comparable initial impurity levels.

Integrated capacitors may be formed by back biasing a diode. For back

biased diodes, since both n and p-*ype materials tend towards the electrical proper-

ties of intrinsic material, the capacitance decreases. As in the case of resistors,

the decrease in capacitance is usually less than the original device tolerance at

about 10 n/cm .

ti

9*

MCUTOtt

I integrated resistors in-
crease in value under radia-
tion, because the p-type
material lends to change its
behavior toward that of the
intrinsic semiconductor. The
percentage increase depends
on the amount of radiation
received and the original
imparity concentration.

Figure 12,1 Typical Semiconductor Resistor Degradation (Ref. 12.71}

12.20 Proton Effect*

As stated earlier in discrete component sections, proton effects should pro-

duce displacement damage similar to neutron damage with additional ionization dose

due to the positive charge of the proton.

The protons ore more efficient for producing displacements than neutrons.

The equivalences for producing displacements that hove been established (12.72)

are: 1 (100 MeV) Proton * 8 Neutrons (fission) and 1 (8-17 MeV) Proton » 33

Neutrons (fission). The ionization dose associated with the pro tons would produce

surface effects similar to those for transistors (i.e., increased {unction leakage
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currents ond decreased transistor gains).
^

12.13 Gamma Effects ;

The effects of gamma radiation on microcircuit elements are essentially the

same as those on discrete components described in previous sections. Some workers

have suggested that microcircuits are less susceptible' to surface effects (12.73) than

discrete components although it is not clear that this is generally true.

12. 20 Temporary Parameter Degradation

For high level bunt type environments short term annealing occurs. Short

term annealing data is very limited for integrated circuits. There is some data for

the neutron environment which indicates annealing factors as high as two exist for

rimes shorter than a millisecond. The data indicate the similarity between circuit

and transistor annealing factors. However, for low intensity, steady-state environ-

ments there is no evidence of annealing or drift other than the permanent degradation

discussed earlier except, that some parameters of linear circuits vary as a function of

fluence. This effect is discussed in Section 12.30.

12.30 Parameter Degradation Factors

Due to rhe many variations in circuits found in I. C. '$, it is not very practical

to try to list parameter degradation factors for each circuit type. Rather, general

thresholds for broad circuit categories are presented in Table 12, 2 and typical ex-
> ^ ~

amples of data are shown in figures 12.2 through 12.15 and Tables 12. 1 through
j

12.6. A general summary of thresholds of damage for broad categories of circuits

is presented in Table 12.1.

•>'•>
12.40 Radiation Hardening

Major manufacturers are currently designing "Radiation Hardened" inte-

grated circuits. In general, the hardening is for a transient environment which in-

cludes permanent damage due to neutrons and total dose. The techniques are mostly

oriented around using high gain high frequency transistors in low gain applications.
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Figure 12.2 Signet ice SE124 KonoUthic Binary Elenent. (Kef. 12.73)

j"
*•*

"

|0U I*1*

NEUTRON FLUENCE (N/CM2)

Figure 12.3 Neutron Degradation of SS124K-1 "off" Voltage, Saturation
Voltage, and Minioum pulse Aaplitude to Switch Q Output.
(8ef. 12.73)
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currents end decreased transistor gains).

12.13 Gamma Effects

The effects of gamma radiation on microcircuit elements are essentially the

same as those on discrete components described in previous sections. Some workers

hove suggested'that micrpcircuits are less susceptible to surface effects (12. 73) than

discrete components although it is not clear that this is generally true.

t

12.20 Temporary Parameter Degradation

* t y

For high level burst type environments short term annealing occurs. Short

term annealing data is very limited for integrated circuits. There is some data for

the neutron environment which indicates annealing factors as high as two exist for

times shorter than a millisecond. The data indicate the similarity between circuit

and transistor annealing factors. However, for low intensity, steady-state environ-

ments there is no evidence of annealing or drift other than the permanent degradation

discussed earlier except that some parameters of linear circuits vary as a function of

fluency. This effect is discussed in Section 12.30.

12.30 Parameter Degradation Factors

Due to the many variations in circuits found in I. C. '$, it is not very practical

to try to list parameter degradation factors for each circuit type. Rather, general

thresholds for broad circuit categories are presented in Table 12. 2 and typical ex-

amples of data are shown in figures 12. 2 through 12.15 and Tables 12. 1 through

12.6. A general summary, of thresholds of damage for broad categories of circuits
1

is presented In Table 12.1.
( ~ '

12.40 Radiation Hardening

Major manufacturers are currently designing ."Radiation Hardened" inte-

grated circuits. In general, the hardening is for a transient environment which in-

cludes permanent damage due to neutrons and total dose. The techniques are mostly

oriented around using high gain high frequency transistors in low gain applications.
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Figure 12.2 Sipietics S&124 MonoUthic Binary Element. (Ref. 13.73)
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1

NEUTRON FLUENCE (N/CM2)

Figure 12.3 Neutron Degradation of SE1̂ K-1 "ofr* Voltage, Saturation
Voltage, and Minimum Pulse Amplitude to Switch Q Output.
(Bef. 12.73)
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«4V

"it

»*••

*•».

Figure 12.4 MC201 Teat Circuit Configuration. (R*f. 12.73)

VU* IMtM* nMMS k

Figure 12.5 KC201 Transistor Current Gain Degradation. (Ref. 12.73)
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».*•

Figure 12.6 MC1525 Monoiitiiic Difrerential Aapiii'ier (*ief. 12.73)

figure 12.7 MC1525 Typical Transfer Ch*r»ct«ri«tios (Itef. 12.73)
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Figure 12.8 MC201 Monolithic DTL Gate Circuit Vulnerability (Ref. 12.73).

Figure 12.9 Neutron Degradation of MC201-3 Threshold
and Saturation Voltages. (Ref. 12.73)
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».»

Figure 12.10 Neutron Degradation of MC201F-3 Tronsfer FuncHon.
(R«f. 12.73)

, ««",

Figure 12.11 Neutron Degradation of MC201 Output Leakage Current.

(Ref..l2.73)
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Tcble 12.1 General Damage Thresholds

Radiation
Type

Neutron

Proton
(22!MeV)

Gamma
(Co-60)

Electron
(3 MeV)

Circuit
Type*

(bipolar
transistors)

Digital

Linear

Digital

Linear

Digital

Linear

Digital

Linear

General region for signi-
ficant damage or circuit
Failure

1013rol015n/cm2

. ~1012to 1014n/cm2**

-1011 TO 1013P/cm2

~1010to 1013 P/cm2**

> 106 rods

105 to 107 rads(Si)

1015 to 1017 e/cm2

- 1013 to 1015 e/cm2*

* There is insufficient data in the literature to specify MOS cir-
cuits; however, limited testing at Boeing has indicated that
Digital MOS circuitry can survive > ICr rad(Si) and other
workers (12.74) have indicated that properly designed MOS
logic can survive > 10' rads(Si).

** Estimated.

Levels of hardness due to permanent degradation are somewhat better than for normal

I. C. 's. System designers should rely on data to determine the level of hardness for

a given circuit type. System hardening eon be achieved by using circuits irv low

fan out or low gain configurations.

12.50 Recommended Testing

It is recommended that test data be obtained for each integrated circuit in

the environment in question.
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Toble 12.3 Electron Fluence ot First Failure For Gates Tesred. (Ret. 12.77)

Failure Fluence,
10]4 e/cm2 (3 MeV)

7
17
25
33
84
100
130
180

Specified
Typical

Propagation
Delay, ns

>150
12
40
25
30
43
6
9

Logic
Configuration

RCTL
RTL
RTL .
DTL
OTL
DTL
ECL
T2L

v-

Function

NOR
NOR
NOR
NAND
NAND
NAND
NOR
NAND

Construction
Method

Diffused(b)

Epitaxial
Epitaxial, %
Diffused*
Diffused(b'
Epitaxial
Epitaxial
Epitaxial

Table 12.4 Electron Fluence at First Failure For Flip-Flops Tested. (Ref. 12.77)

Failure Fluence,
10U e/cm2 (3 MeV)

12
22
50
55
74
77
93
110

Specified
Typical Clock
Rate, me

1.0
10.0
4.8

12>}

10.0
8.5
8.0

-

Logic
Configuration

RCTL
RTL
DTL
ECL
DTL
T2L
RTL
DTL

-

Type

RS
JK
JK

dcRS
RS
RS
D
JK

Construction
Method

Diffused(b)

Epitaxial
Diffused<b}

Epitaxial
Diffused^'
Epiraxial
Epitaxial
Epitaxial

(a) Estimated.

(b) No epitaxial processing.
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12.60 Screening

Pre-irradiarion and thermal anneal5ng of circuits while still in the wafer

stage has been found to be successful. Such a screening technique requires irradia-

rion ro specification levels, however/ because data is not readily extrapolated to

high levels with any degree1 of accuracy. The temperature required to anneal the

circuits (400 - 500 C) are experienced in the normal packaging process. The effects

of irradiation on normal reliability for this screening procedure have not been deter-

mined. The screening procedure is currently being carriea out at Motorola for neu-

tron environments and may well be in effect elsewhere. It is thought that surface
. !

damage due to ionization would be amenable to such c screen as' well as bulk damage.

12.70 References

12.71 Kubinec, J. J., "Will Radiation Wrech Your 1C Design?", Electronic

Design Vol. 4, February, 1969.

12.72 Brown, R. R., Home, W. £., "Space Radiation Equivalence for Displace-

ment Effects on Transistors", Boeing Doc. D2-84088-2, NASA CR-S04,

July 1967,

12.73 Messenger, G. C., "Radiation Effects on Microcircufrs", IEEE Trans, on

Nucl. Sci., Vol. NS-13, Dec. 1966, p. 141-159.

12.74 Poch, W. and Holmes-Siedle/ A. G., "Permanent Radiation Effects in

Complementary-Symmetry MOS Integrated Circuits", IEEE Trans. Nucl.

Sci., Vol. NS-16, No. 6, Dec., 1969.

12.75 Bryant, f. R., Fales, C. L., Jr., Breckenridge, R. A., "Proton Irradia-

tion Effects In MOS and Junction Fields-Effect Transistors and Integrated

Circuits", RADC Physics of Failure in Electronics, Vol. 5, June, 1967.
i

12.76 Partridge, P. E., Report on Radiation Test Series No. 15, The Martin Co.,

IDEP No. 347.65.00.00-56-13.

12.77 Hamman, D. J., "Space Radiation Effects in Integrated Circuits", IEEE

Trans. Nucl. Sci., Vol. NS-13, No. 6, 1966.

155



02-126203-3

13.0 PHOTOCELLS

The photocells were ISghr sensitive semiconductor devices with peak res-

ponse in or near the visible spectrum (.4 to .75 microns). Data collected in rhe

search were primarily on CdS, Si, and GaAs materials and/or devices. The data

reported are on permanent damage effects, mostly in the bulk material.

Only o brief summary from a few of the many extensive solar cell reports

are cited here. For photovoltaic devices used as solar ceils '•he main parameters

of interest are the short circuit current, the efficiency, and rhe open circuit vol-

tage. . ,

in general, the parameters of interest on photocells include the effecrs on

both electrical properties and optical properties. Electrical properties of interest

include carrier concentration, resistivity, end energy (acMvarion) levels introduced

into the semiconductor. These electrical properties, and the oprical properties of
j

interest (attenuation, transmission versus wavelength) together with noise are useful

in giving the usual detector parameters of interesKimpedance, resisrcnce, noise,

spectral responsiviry, noise equivalent power, detectivity, time constant, and

quantum efficiency).

13. 10 Permanent Parameter Degradation
t

13. 11 Neutron Effects

For n-type cadmium sulfide material thermal neutron irradiations at 30 C

introduced acceptors (13.71) thought to be due to preferential displacement of S

atoms over Cd atoms. Table 13.1 shows radiation damage introduction rates (centers

introduced per incident particle) (13. 71). Figure 13. 1 shows the effect of thermal

neutrons on carrier concentration.

- Fast neutrons (13.72) give rise to a continuous optical absorption spectrum

for wavelengths beyond the fundamental absorption edge, with the absorption in-

creasing as the inverse square of the wavelength. Figure 13. 2 shows the percent

transmission versus photon energy (wavelength in microns is given by 1.24/photon

energy in eV). Some annealing (after 3 months at room temperature) is evident.
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This continuous absorption Is attributed to a similar mechanism to that to be discussed

in the case of GaAs (below), and is exhibited as a continuous radiation-induced

attenuation, beyond the fundamental edge at 2.4 eV photon energy, with no evidence

that discrete levels are introduced into the semiconductor. These would be evidenced

by peaks in the absorption spectrum.

.•

For silicon, two units of the Texas Instruments LS 600 npn silicon planar

phototransistor were irradiated wifrh fission neutrons at the White Sands Fas! Burst

Reactor. (13.73) Figuee 13.3 shows the damage produced by fast neutrons in rerms

of decrease in the transfer ratio, T, defined as A

Table 13.1 Radiation Damage Rates Determined From CdS Data. (13.71)

Typ* of radiation end Mai dot*
Tfcwmol iwurnxis

4« 1016n/cm2
O

109rad*

Hydrogenlc donor (0.04?eV)
Dairae* rate*.
Confer demlty* 3.8* 10'*

Acceptor!
Damage rote
Center deniltv

O.UeV level
Damage wte
Center denilty ;

».C<*200.0)xH>~

0.033>10'«
0.5(*O.I)xlO~
O.M«10'* •

460.0(410. 0}x JO"4

)oO.S2«IO

O.SfcO.lfcHf4 -
0.23* 1016 2.2*

• Oomoga rot* b cb»rv«d mdlolton-daiiag* mto In unlli of cantan Introduced p*r
, ce p«r IneldMit eortteU.
b Oantlry of rh» center bvfora Inadletlon.

For GaAs, specimens of either n on p type, after sufficiently heavy neutron irradiation,

( ~ 10 n/cm , or to where carrier concentration is reduced below 10 /cm )

are characterized by the following properties: (a) a very low carrier density (semi-

insulating), (b) anomalously low Hall mobility, (c) anomalously steep temperature

dependence of Hall mobility, (d) photoconductivity with a very long recovery time

(hours or days), (e) instability and sensitivity to ambient temperature (13.72). All

of these observations point to the presence of slow surface states which may consider-

ably modify the bulk properties.

Carrier removal rate is 4 to 8 electrons/cm of path for an n-type sample
17 1

with 10 carriers/cm initially. Annealing of conductivity change begins at 220 C
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with a second stage at 550 C and a finai anneal between 600 and 700 C.
i

Optical attenuation beyond the fundamental absorption edge in GaAs is sur-

prisingly large after fast neutron irradiation (Fig. 13.4). The attenuation coefficient
_2

increases as A and is proportional to the integrated flux when free carrier ab-

sorption can be neglected. No structure was observed in unannealed samples at

room temperature or 60 K. This fact is not well understood but may be related to
1 t

the damage characteristic of fast neutrons or other heavy particies,(i. e., inhomo-

geneous damage such as clusters or dislocation loops, etc.) since a GaAs sample

heavily irradiated with electrons did not show these effects,

Even heavily neutron irradiated specimens (carrier concentration below
14 3

10 /cm ) remained the same conductivity type. Three levels, E -0. 1, E -0.5,

and £ +0.6 eV were introduced.

13. 12 Proton Effects

Two thin film polycrystalUne CdS p-on-n photocells were studied using
15 2 "

1.6 MeV protons to a total fluence of 10 protons/cm . -The short circuit current

of cell 1 was reduced 33 percent while that of cell 2 was down 66 percent. (13. 74)

Typical data for n-on-p silicon photovoltaic cells show (13.74) that at
11 2

10 1.6 MeV-protons/cm the short-circuit current has dropped 33 percent. Other

data (13. 75) on silicon phototrcnsistors irradiated by 30, 60, 100, and 140 MeV
10 "2

protons to 1 x 10 protons/cm , showed no significant changes in the important

phototransistor parameters, which is consistent with the above data.

13. 13 Gamma Effects - • /'

137
Low energy gamma irradiations ( Cs, 0.662 MeV) of n-type CdS intro-

duce acceptors by preferential displacement of sulfur atoms, while higher energy
XA - "*

gamma irradiations Co, 1.17 and 1.33 MeV) introduce donors by preferential

displacement of cadmium. (13.71)

Figure 13.5 shows the effect of Co gamma ray irradiations at ambient
137

on carrier concentration. The effects of Cs gammas are shown in Figure 13.6.

Some irradiations at liquid nitrogen were made to determine whether results would
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be significantly different. No differences were noted.

Damage introduction rates are shown in Table 13. 1. The rate of center

introduction versus total dose is shown in Figure 13.7 and is seen to decrease wirh .

total dose.

Data for 10 Hoffman Electronics Corp. Type 120 C silicon soiar cells

tested by Lockheed Missiles and Space Center (13.76) were obtained with a Co

source. Permanent damage (in short circuit current) was noted at 8. 8 x 10 rod (C),

and for some cells at doses as low as 8. 8 x 10 rod (C). On the average, the reduc-

tion in rhis parameter was 25 percent ot 8.8 x 10 and 50 percent at 8.8 x 10 rod
4

(C). The open circuit voltage was permanently affected ct 8. S x 10 red (C).

On rhe average, it dropped 10 percent at 4.4 x 10 rod (C).

13. 14 Electron Effects

The proion-irradiated cells of 2 above were-also irradiated with 0.8 MeV

electrons to determine efficiency degradation. It was found that the efficiency of

cell 1, initially less tnan 1 percent, was degraded 11 percent by 9.7 x 10 electrons/
2 T i A

cm , and cell 2, initially 3.4 percent was degraded 39 percent by 8. 8 x 10
2

electrons/cm ,

In another study (13.77) CaS was irradiated ,by electrons to determine the

mechanisms involved in producing fluorescence. It was found that the threshold for

displacement of a sulfur atom in CdS from a lattice point is 3.7 eV, but requires

electrons (perpendicular ro the C axis of the material) of at least 115 keV. This is

also the threshold for'production of the well known green edge emission centers res-

ponsible for photoluminescence (fluorescence excited by ultraviolet) at liquid nitro-

gen with peaks at 5140, -5225 and 5310A, and for production of the red fluorescence

band centered at 7200A. - In crystals which show (green) edge emission before bom-

bardment this is removed by electrons in the energy range available for use in the

reference (2.5-200 keV). The red fluorescence was, however, not removed by this

electron irradiation but increased in intensity with bombardment above the threshold.

Green edge-emission has been produced in CdS whiskers (single crystals)
2 »o l
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2
fluence it disappeared. At 120 keV and 240 ̂ A-hr/cm red fluorescence was pro-

duced; the intensity of this increased with bombardment.

The model proposed to account for the various effects observed assumes

that an Interstitial sulfur atom is the responsible center for edge emission and a sul-

fur vacancy is the center for the red fluorescence. The threshold for the production

of vacancy-interstitial pairs of sulfur atoms in CdS by electron irradiation is 115

s 5 keV corresponding to a maximum energy transfer of 8.7 eV. The sulfur inter-

stitial exists as o negatively charged ion at room temperature in these crystals. It

is proposed that another electron could be bound to the sulfur interstitial at liquid
i

nitrogen and that the recombination of a free hole with the second electron trapped

at this center would result in edge emission. .

A very extensive study was mode of permanent damage effects of electrons

on silicon n-on-p photovoltaic cells using electron energies in the 0.5 to 7 MeV

range. (13.78) The main effect appeared to be a decrease in the base diffusion

length brought about by a decrease in the p-type base lifetime. A reduction in shorr

circuir current of 25 percent was arbitrarily used as a criterion to establish a critical

electron fluence, 4>^ . The change in reciprocal lifetime with fluence and of

short circuit current with fluence were obtained for various electron energies (Fig. -

13. 8). From this the dependence of damage constant (K* =£ — /A <P ) and

4»£ on electron energy was obtained and fitted to twp.different models (Figure

13.9). The model that has the much better fit to the data (solid curve) attributes

the electron damage to bound pain of primary defects rather than to individual

defects. This model allows predictions of damage to be made.

The data of Figure 13.8 (b) indicate that the short circuit degradation

"threshold" is between 10 and 10 for all three energies considered (1, 2, and

4.9 MeV) with the damage increasing with electron energy. The original base
• ' 16

resistivity of 1 ohm-cm corresponds to an acceptor concentration'of 2 x 10 atoms

per cm . The initial lifetime of ~ 2 usec was reduced by a fluence of 10

electrons/cm to the following values from Figure 13. 8 : ~2 usec (4.9 MeV),

- .33 usec (2 MeV), and 1 usec (1 MeV). The threshold for electron damage in
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Figure 13.8 Reciprocal lifetiae l/r («) and current I (b)
« «- » jj BC

in silicon photocells as functions of electron fluence.
Electron energy 1) 1 MeV; 2) 2 MeV; 3) ̂ .9 MeV.
(Ref. 13.78)

Figure 13*9 Damage coefficient (1) and reciprocal of the critical
fluence; (2) aa functions of the bombarding electron
energy E. < Continuous curve shows bound defect pairs
model. Dashed1 curve shows individual defect model.
(Ref. 13.78)

164



D2-126203-3

p-type silicon was found to be 220 keV.
-^

Electron irradiation effects on optical transmission have also been studied

(13.79). While the reported .findings were somewhat qualitative, they ore worth

noting. The absorption in silicon induced by 1.5 MeV electron irradiation (bands

at 7. 75 and 11. 98 microns) is only 6 percent as severe for liquid-nitrogen-ambient

irradiation followed by warming to room temperature as for room temperature ambient

irradiation. Tne proposed interpretation is that defect motion is required for forma-

tion of the defect center responsible for the absorption.

For 4.5 MeV electron irradiations at liquid nitrogen and warming to room

temperature (induced absorption bands at 11.98, 11.56 and 1.8 microns) the obsorp-
,i " t

tions were over 50 percent as severe as the room temperature irradiation induced
' j '

absorptions. The assumed implication was that a defect motion requiring an activa-

tion energy was not as important for irradiations with high energy electrons.
i

An important finding (from practical considerations)was that the irradiation
i j.

induced absorption (at 1.8 microns) ts antsotropic. This could be significant where

the photocell mounting introduces strain in the semiconductor - a fairly likely situa-

tion.

For GaAs Figure 13.4 presents the optical attenuation data for electrons.

1 MeV electron irradiation induced conductivity is annealed out by, 220°C.

•

13.20 Temporary Parameter Degradation •_

No data.

13.30 Parameter Degradation Factors

Since the data discussed in the literature deals primarily with radiation

effects on material parameters, no device degradation factors ore listed. It is noted,
12 2however, that the thresholds for material damage appear to be about ~ 10 n/cm ,

10 2 8 13 2
> 10 p/cm , ~ 10 rods gamma, ~*10 e/cm .
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13.40 Radiation Hardening

No dote.

13. 50 Recommended Testing

It is recommended that any photocells to be-used in the environment be

tested in neutron , proton , and electron environments to characterize the device

behavior.

13.60 Screening : '

No techniques for screening for radiation sensitive photocells were found

in the literature.
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14. 0 Piezoelectric Crystals

14. 10 Permanent Parameter Degradation

There are many types of crystals thot exhibit piezoelectric response. Of

these, quartz is rhe most widely used. Due to the precision required of crystals used

as frequency standards, it is important to know their response under radiation.

Most of the earlier tests on crystals involved complete working devices and

ir is difficult to separate the radiation response of the crysrals from rhot of the pack-

age ond mountings. Due to this fact, no general theory of damage was developed.

The early tests evaluated specific crystals and very little more. Thatcher (14. 71)

has adequately summarized rhe studies of steady state radiomen effects on crystals

before 1964. His summation is presented here with the only changes being conver-

sion of radiation units to maintain consistency in the present report. Following his

summary is a recap of more recent work as i oca red in this program.

"Most studies of radiation effects deal directly .with the complete working

device which consists of the quartz control element and the crystal holder as opposed

to crystal sections or configurations. As such, the crystal loses Us identity os to its

type of material and sometimes class cf cryival section and becomes identified wirh

type numbers and manufacturers' names. IP. view of the loss of crysra! identity, the

exact nature of the damage mechanism has become extremely difficult to identify

and, in most cases, left unexplained. The most commonly used electrical parameters

for determining radiation effects are: (I) series resonant frequency, (2) parallel

resonant frequency, (3) equivalent parallel impedance, (4) equivalent series impe-

dance, and (5) electrostatic shunt capaci ranee. A comprehensive study of radiation

effects on crystals by manufacture and type number was made by Pfaff and She! ton

(Ref. 14.72). In their report, it was concluded that the radiation effects depended
^

on the type of crystal cut, the manufacturer's processes; and the type of radiation.
i

The nuclear environment to which the crystal units were exposed was approximately:
1 2 2 ' 9 - 2

thermal neutron flux, 2. 5 x 10 n/cm -sec, epiccdmium neutron fiux, 3 x 10 n cm
-1 3

; ana1 gamma exposure rate, 5. 6 x 10 rods/sec. The total neutron fluence for

various crystal units varied from 2 x 10 n/cm to 9 x 10 n/cm. Frequencies of
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i

the 14 types of crystals varied from 60 kHz to 70 MHz, and crystal units from five

manufacturers were used in this study. An analysis and study of the data obtained
r

during (his experiment indicated that, in general, the low-frequency crystal units,

i.e., those under 1 megacycle, showed the least radiation effects. A majority of
<

the higher frequency crystals exhibited decreases in series and parallel resonance

frequencies up to more than 4000 parts per million. Examination of measurements

under Transient radiation fields indicated that the changes were gradual. No apparent

rate effect, such as abrupt changes in frequency, were observed with changes in

reactor power level. For the lower frequency crystal units, some indications of rate

effect were observed and frequency changes were both negative and positive. In

some instances, nuclear damage was observed on the'various crystal holders, in

particular, the glass bases were found to be affected. No one manufacturer's crystal

jnlts displayed superior resistance to radiation for ail the'units tested. There was

soTie ind'Carion that some of the manufacturers consistently produced a radiation-

resistant crystal unit within a narrow frequency category; however," other frequency

ur.its that they manufactured failed. Jn determining when a crystal unit was con-

sidered to have failed, the criterion used depended on whether the crystal unit

could or could not be resonated. In the interest of pointing out the sensitivity to

nuclear radiation, a summary was made of the 154 crystal units without regard to
' v . i

manufacturer or frequency category. Of the 154 units tested and exposed to nuclear

radiation, 54 percent were classified as failures. When 41 crystal units were irradiated

in a gamma ray environment, only one crystal unit was observed to.fail. In attempting

fo correlate changes and failure occurrence with material differences and manufac-

turing procedures, it appears that certain types of crystal cuts are more sensitive to

nuclear radiation than others. For example, it was stated that AT cut quartz plates

are more susceptible to radiation damage than any of the other types of cuts studied.

It was hypothesized that this may be a factor of orientation of the dimensions of the

plate with respect to the crystal Ipgraphic planes. Thus, it appears that radiation

effects on completed crystal units are of major concern, and designers of electronic

equipment utilizing crystal units have many factors to explore when selecting crystal

devices for possible use in nuclear environments.
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In a test by Belser, Hick! in, and Young (Ref. 14.73), the effects of gamma

radiation on quartz crystals and their coverings were studied. Four kinds of quartz

(natural, swept natural, 'cultured, and swept cultured) were used with three types of

plating (aluminum, silver, and gold). The Q-values of the resonators exposed to

3.C x 10 rods from a GS-137 source were found to change with the species of quartz.

The Q of natural and cultured quartz resonators was degraded by about 25 percent,

whereas that of the swept natural and swept cultural quartz was changed little.

Crystals other than quartz ore also being studied to determine the effect of

nuclear radiation. Lead zirconium titanate and barium titancte have been exposed
18 2 '"

to 1 x 10 n/cm, (Ref. 14. 74). The barium crystals showed about -22 percent change

in voltage and an average change in resonant frequency of + 7.;5 percent. This

average was raised because one unit (of five) showed + 16.4 percent change while

another showed 12. 5 percent change. The lead zirconium crystals showed an aver-

age change of + 4.0 percent for frequency response and an average negative change

of 19 percent for voltage. Separate gamma exposures were performed on these types

of crystals, and the barium crystals showed an average -2.0 percent change in
8

capacitance for an exposure of 1.5 x 10 rods. The lead zirconium crystals showed

an average negative change of 14 percent in capacitance for an exposure of 1. 2 x 10

rads.

In another study (Ref. 14.75), a lead metaniolate crystal was tested in a
" 8

Genera! Electric Type LM-278 transducer to an exposure of about 3 x 10 rads and

at temperatures up to 800 F. Under these conditions;'the device operated favorably.

The relation between nonelectrical parameters, such as crystal lattice

shifts as indicated by X-ray diffraction and those parameters mentioned earlier, is

not clear. In the interest of establishing threshold information,' a comparison of

effects was studied so that data and results from many of the experiments conducted

in which effects-were discussed in terms of physical characteristics could be used.

For example, one report states that barium titanate was exposed to fast-neutron
> |g o

irradiation up to a neutron fluence of 10 n/cm, and no changes were observed in

the crystal lattice parameters, (Ref. 14. 76). However, with increased exposure up
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20 2
to 1.4 x 10 n/cm , a transformation of the tetragonal barium tiranate into a non-

ferroelectric cubic phase similar to properties possessed by Roche!ie salt was indi-

cated by X-ray diffraction. Earlier reports have been issued concerning radiation

effects on piezoelectric crystals in which resonant frequencies remained relatively
6 2 " "

stable at fast fluences of 3.6 x 10 n/cm , the frequency changes being less than

1000 parts per million. Some exceptions (Ref. 14.77) have been reported where

presence of discoloration, because of radiation exposure, coincided with large

resonant frequency changes for BT crystal cuts. The relationship between color

change and resonant frequency change is more obvious in the various synthetic quartz

types. Studies conducted with AT crystal cuts have indicated that the natural quartz

is less sensitive to radiation than the synthetic quartz.

The improvement of electron-component resistance to radiation damage

through use of shielding against damage from thermal-neutron bombardment has

been recommended for various future studies. Some work along these lines is cur-

rently in progress for crystal units or the Admiral Corporation (Ref. M. 78) which

has as its objective the determination of frequency shift at high Temperature for

units exposed to a radiation environment. The units being studied in this program

consist of Types CR-24/U and CR-51U crystals. A portion of the crystal units were

wrapped in a'cadmium foil to determine whether any improvement could be defected

in the irradiated state. Some units were active in circuits, whereas others were

passive. Frequency characteristics at 180 C were used to determine whether the

radiation environment caused measureable changes in the various crystal units. The
18

crystal units were exposed to a total radiation flux of between 0.40 and 1.4 x 10
2 i

n/cm at an energy level greater than 0.5 Mev. An examination of the pre-and

postirradiation curves of high-temperature frequency characteristics for the shielded

Type CR-51/U crystal showed a 10.003 percent transalation, and the crystal would

not oscillate at 180°C. The unshielded crystal unit, Type CR-51/U, exhibited the

same percent of frequency translation; however, failure to function at the high

temperature was not indicated. The reverse was noted for the Type CR-24/U crystal

units. For these crystals, the unshielded units exhibited increases in frequency and

finally went out of tolerance. The shielded Type CR-24/U unit displayed a decrease
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in frequency; however, it remained within the specified tolerance for the unit.

Some low-frequency crystals, Type CR-18/U, were studied in much a

similar manner as those above. Both shielded and unshielded (Ref. 14.78) units dis-

played increases in frequency; however, frequency jumps or discontinuities were

observed for the unshielded crystals. Discontinuities of this type were not noticed

in any previous crystal studies. It was postulated that .'this occurrence was caused

by structural changes in the crystal blank, resulting in coupling to spurious modes.

The ultimate effects of cadmium shielding could not be defined at this time since

the mechanisms involved are not completely understood, and further conjecture on

this phenomenon was left to future observation. "

>. i

More recent studies/ (References 14.79, 14.710, 14.711) have shown thaf

crystals of Z-growth swept-synrhetic quartz ore the most resistant to steady-state

radiation effects. AT-cut 5. 27 MHz crystals were found to withstand > 10 rods
8

with only about 8 pp 10 max shift in frequency. The spread between crystals of

the same type cut from different bars of material was found to be approximately
ft 5 '

12 pp 10 at 10 rods gamma. For a mixed neutron and gamma environment such

crystals exhibited shifts of 11 pp 10 at 3.0 x 10 n/cm and 1.4 x 10 rods.

The area of proton effects on crystals has not been explored. This could
!

be a serious discrepancy since protons cause both heavy ionization and displacement

along their paths.
^t

14.20 Temporary Parameter Degradation

14.30 Parameter Degradation Factors

Due to the complexity of responses observed for cystals of different cuts

and manufacturing techniques, it is not practical to lilt degradation factors.

However, the relative sensitivities of several types of crystals are shown in Table 14.1.

It is recommended that any crystal type being considered for use, be fully characterized

in the radiation environment of interest and that strict quality control be maintained

to see that manufacturing techniques not be altered.
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14.40 Radiation Hardening

;

No specific hardening techniques were noted in the literature except that

certain crystal cuts (as described in Section 14*10) seem more resistant than others.

Ir has also been noted that Z-growth swept synthetic quartz seems to be more resis-

tant than other types.

14.50 Recommended Testing ;

It is recommended that crystals to be used be tested in neutron and proton
14 2 12 2radiation environments to fluences of the order of 10 n/cm and 10 P/cm .

14.60 Radiation Screening

No screening techniques for radiation resistant quartz crystals were noted

in rhe literature.

Table 14.] Relative Sensitivity of Various Crystal Types

Crystal Type

Natural quartz ,

Cultured quartz

Swept natural

Swept cultured

Lead Zirconium titanate

Barium titanate

Lead metaniolate

Quartz

Swept quartz

Lead Zirconium titanate

Barium titanate

Lead metaniolate

Radiation Level for
Moderate Damage

3x 10 rods (Co-60)

3 x 107 rods (Co-60)

> 3 x 107 rods (Co-60)

> 3 x 107 rads (Co-60)

1.5x JO8 rods (Co-60)

>1.5x 108 rods (Co-60)

> 3 x 108 rods (Co-60)

in13 inu / 2
10 - 10 iycm

3 x 1013 n/cm2

1018 n/cm2
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15.0 CAPACITORS ,

Hanks and Hammond (Ref. 15. 71) published a rather thorough survey of the

effects of a combined environment of neutron and gamma radiation on capacitors in

1966. Since no more recent data has been located in this search,- and since the ex-

pected fluences for the TOPS mission are below levels expected to produce signifi-

cant degradation in capacitors, only a brief summary of effects are treated in this

report. ^

Figure 15. 1 shows Ballpark ranges for neutron damage in the capacitor types

included in the TOPS parts list. It appears that the neutron exposure expected for

*he TOPS mission should not cause significant effects in capacitors except for met-

allized mylar units under elevated temperatures. However, for completeness, a

summary of effects in each part type is included.

15. A GLASS AND PORCELAIN CAPACITORS

15. 1A Permanent Effects

Glass and porcelain type capacitors can be considered as the most radiation-

resistant capacitors of all the conventional types. They have shown permanent

changes ranging from -?. 5 to » 3. 5 percent under neutron irradiation. Changes in

dissiparion factor are generally temporary although some permanent changes have

been reported in porcelain devices.

Proton damage in capacitors is not so well characterized as neutron damage.

At present, one can only estimate proton damage in capacitors since very little data

exists.

15. 2A Temporary Parameter Drifts

Glass and porcelain capacitors show temporary'changes in capacitance rang-

ing from -2.5 to 4.0 percent and increases in dissipation factors. These changes

recover after removing the devices from the radiation field. It is felt that the tem-

porary changes are ionization effects and as such in the low intensity ionization

fields of the TOPS mission should not be a significant factor.
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15.3A Parameter Degradation Factors

From the literature, the parameter degradation factors listed in Table 15. 1

are estimated. These factors are felt to be conservative and usually the parameter

shifts would be smaller. No estimates for temporary changes due to protons ere

given due to the unknown absorbed dose due to the charged particles. Further, no

permanent changes are listed for the dissipation factor since the results that have been

reported are erratic.

Table 15.1 Parameter Degradation Factors

Parameter

Capacitance

Dissipation
Factor

Capacitance

Dissipation
Factor

Radiation Type

Fission Neutrons
+ Gammas

Fission Neutrons
+ Gammas

8-15 MeV
Protons -

8-15 MeV
Protons

Fiuence

1.9x 10l6n/cm2

3.8x 10]°rads(C)

1.9x 1016n/cm2

3.8xl010rads(C)

5.7x 1014p/cm2.

5. 7 x 10 p/em

Derating Factor

Permanent ' Temporary
±4.0 ±3.5
Percent Percent

, < 0. 10

i4.0
Percent

— • —

15.4A Radiation Hardening

No specific hardening techniques were found in the literature of glass and

porcelain capacitors.

15. 5A Radiation Testing

No radiation testing is recommended for glass and porcelain capacitors for

the TOPS mission.

15.6A Radiation Screening

No screening techniques were reported.
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15B MICA CAPACITORS

\5. IB Permanent Parameter Degradation
1

Steady-state nuclear radiation (fission neutron and gamma) has been observed

to cause permanent changes in the capacitance values and dissipation factors of micq

capacitors. This damage is thought to be due to changes in the physical structure of

the devices.

Proton irradiation should cause similar effects to those stated above for fission
i

neutrons and gammas.

15. 2B Temporary Parameter Drifts

The insulation resistance of mica capacitors decreases during irradiation and

recovers upon termination of the radiation. These changes are probably due to

ionization and should not be a problem for the low intensity TOPS environment.

15.3B Parameter Degradation Factors

Capacitance measurements on mica capacitors may show permanent changes
' 16 2 8

of 6 percent when exposed to 10 n/cm (fast) and 10 rads(C) gamma. Dissipa-
'16 2

tion factors may increase by as much as 6 percent at neutron fluences of 10 n/cm ,
8

and 10 rads(C) gamma. The insulation resistance may decrease to the order of
8 9 1 0 ' 1 1

10 to 10 ohms during radiation as opposed to 10 fo 10 ohms before irradiation.

These resistance changes recover upon termination of the radiation. Further/ since
f

they ore probably ionization induced, they should be a function of the ionization

dose rate or intensity.

1S.4B Radiation Hardening

No specific hardening techniques were located.

15.58 Radiation Testing
I

No radiation testing is recommended for mico capacitors for the TOPS mission.

15.6B Radiation Screening

No screening techniques were located.
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15C CERAMIC CAPACITORS

15. 1C Permanent Parameter Degradation

Ceramic capacitors generally show decreases in capacitance and increases

in dissiparion factors due to neutron and gamma irradiation. From the literature, it

is not clear just how much of the observed effects are due to Temperature and aging.

Proton radiation should produce similar effects to those of combined neutron

and gamma environments.- '

15. 2C Temporary Effects

The capacitance, dissipation factor, and insulation resistance of ceramic

capacitors are all susceptible to temporary changes. .These changes are thought to

be due to ionization.

15.3C Parameter Degradation Factors

The capacitance of general purpose ceramic capacitors has been observed to

change as much as 20 percent, but o more typical change is 10 to 15 percent. Such

changes occur, however, at much higher fluences than those expected for the TOPS

mission.

Limited information on the dissipation factor of ceramic capacitors indicates

that it may increase by as much as a factor of five.

The insulation resistance decreases as much as rwo orders of magnitude during

irradiation, but recovers after irradiation. For the low intensity TOPS environment

this should not be a problem.

15. 4C Radiation Hardening

No hardening techniques were reported.

15.5<2 Radiation Testing -

No radiation testing of ceramic capacitors is recommended for the TOPS

mission.
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15.6C Radiation Screening :

No screening techniques were noted in the literature.

15.0 MYIAR CAPACITORS :,

15.10 Permanent Parameter Degradation

Generally, mylar capacitors show damage at neutron fiuences one order of

magnitude lower than the types having inorganic insulation such as, glass + ceramic.

The devices show damage due to several possible mechanisms. For example, in

oil impregnated devices (high voltage) the hydrocarbons tend to breakdown and re-

lease gases which distort the capacitor element and in some cases to rupture the

encapsulant.

It has also been observed that the application of voltage and high tempera-

ture during irradiation enhances the damage.

No data were located for proton effects, but the damage mechanisms probably

are similar to those for a reactor environment, i.e., combined neutrons and ionizing

gamma radiation. -

15. 20 Temporary Parameter Drift

The insulation resistance of mylar capacitors show decreases during irradiation

due to ionization effects. : The decreases recover when the radiation is terminated.

15.3D Parameter Degradation Factors

Maximum changes that have been recorded in dry mylar dielectric capacitors
16 2 " 7

are decreases of 10 percent at 10 n/cm (E > 0.1 MeV) plus 1.3 x 10 rads(C) and
15 2 6

an increase of 3.4 percent at 3.6 x 10 n/cm E > 0.1 MeV and 4.0 x 10 rads(C).

The leakage current at these fiuences showed average increases during irradiation of
, i • . '

from 20 percent to 100 percent.

For metallized mylar units, catastrophic failures due to shorting were re-
13 2' 7

ported at fiuences of the order of 1 x 10 n/cm plus 1 x 10 rods(C) when the

devices were irradiated in a combined environment of 100 C, vacuum and under
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electrical toad. The failure rate was shown to be enhanced by both the electrical

loading and the elevated temperature. Table 15.2 shows the failure rates for these

devices. Figure 15.2 shows the reliability index for mylar units.

15.40 Radiation Hardening

No specific hardening techniques have been located in the literature.

15.50 Radiation Testing
j

If metaliyzed mylar dielectric devices are to be used at elevated temperatures,

It might be advisable (in the light of the tests on metallized units) to perform radia-

tion tests on c large sample of the device to be used to fluences of the order of
1^1 9

10 n/cm at the ambient and electrical conditions to which the devices will be

subjected during the mission. ••

15.60 Radiation Screening ;

No specific screening techniques were located !n the literature.
,. . ? >

(

15.E METALLIZED PAPER CAPACITORS

•> t

15. IE Permanent Parameter Degradation

Paper dielectric capacitors show permanent degradation in capacitance at

neutron fluences approximately three orders of magnitude lower than do glass and

ceramic devices.

Perhaps the most-significant mechanism is the distortion of the capacitive

elements due to dimensional changes and due to the evolution of gas in the case oil

or hydrocarbon impregnated devices. Also, changes in the dielectric constant of

the dielectric may be a contributing factor.

No data were found for proton effects, but the proton damage mechanisms
» '' ;.' '

should be similar to those for neutron plus gamma environments.

15.2E Temporary Parameter Degradation

i ,

lonization causes o decrease in insulation resistance which recovers upon

termination of the radiation.
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Table 15.2 Failure Rate for 683G10592W2 Capacitor at 50, 60, and
90 Percent Confidence Levels. (Ref. 15.73).

Test Group*

1
II
III
IV
V

VI
VII

All test groups

Failure Rate at Indicated Confidence Level,
percent/1000 hr.

.

50 Percent

1.23"
0.30
36.70
18.76
0.30
0.30
0.30,
2.83

60 Percent

1.43
0.39

38.85
20.02
0.39
0.39
0.39
2.95

-

90 Percent

- 2.44
- 0. 98 ,
48.38
25.53
0.98
0.98

% 0.98
1 3.48

Percent
Recorded as

Failed

10
0

95
75
0
0
0

25.7

* Group Test Conditions

(1) A temperature of 100 C and normal atmospheric pressure (Test Group !).

(2) A temperature of 100 C and a vacuum of approximately 10 mm Hg

(Test Group li). -

(3) A temperature of 100 C, a vacuum the same as (2), and exposed to

radiation for a period of 10,000 hours. The neutron fluence and total
13 - -2

gamma exposure were approximately 10 n cm " (E > 0.1 MeV) and

109 ergs g"3 (C) .(Test Group III).

(4) A temperature of 100 C, under vacuum, and'the some total radiation expo-

sure as in (3) but at a flux that would provide this exposure in 100 hours.

The capacitors were then left on operational load for the balance of the

10,000-hour period with no further irradiation (Test Group IV).

(5) A temperature of 50 C, under vacuum, and exposed to radiation under the

same conditions as in (3) (Test Group V).

The additional test groups (VI and VIl) of 20 capacitors were subjected to the

same conditions as (1) and (3) above, but without the application of a d-c voltage.
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15.3E Parameter Degradation Factors
j

|, The reported changes for metallized paper capacitors range between 8 per-

• cent increases and decreases greater than 20 percent. -Generally, the dissipation

: factor shows increases of less than 1 percent with radiation. These typical changes
*' i " -

I have been observed in experiments in which the radiation levels ranged to

; 4 x 1017 n/cm2 (fast) + 3.0 x 108 rod5(C).

i One study of metallized paper capacitors provided some insight into the

! reliability of the devices. Table 15. 3 and Figure 15.3 shows the failure rates and

! reliability index for capacitors irradiated under various conditions of electrical
1 loading, temperature, and atmospheric pressures. Tne results of this study indicate

13 2 7
;, that for radiation levels of, 10 n/cm and 10 rads(C), the radiation is an insigni-

) ficant factor compared to the effects of temperature and vacuum.
{•

-, 15. 4E Radiation Hardening
I

: No specific techniques for hardening paper capacitors were located; however/

•; It wos observed that units impregnatec with oils are more sensitive than the non-
t, ' i

impregnated units due to gas evolution as the hydrocarbons break down.
ii
> 15.5E Radiation Testing
'i ' '
* •

\ • From the test reported in the literature, it appears that no radiation testing
i\ -
|t of metallized paper capacitors is necessary for TOPS environment.
i ^ *
i

' 15.6E Radiation Screening
{•
/ No screening techniques were reported.
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Table 15.3 Failure Rate For H8P10592S2 Capacitor at 50, 60, and 90
Percent Confidence Levels. (Ref. 15.73}

Test Group*

1
II
III
IV
V

Al 1 test groups

Failure Rate at Indicated Confidence Level,
percent/1000 hr.

-

50 Percent

0.30
0.30
0.30
0.29
0.30
0.06

60 Percent

0.39
0.39
0.39
0.39
0.39
0.08

t
,
- 90 Percent

, 0.98
' 0.98.'

0.98
0.97
0.98
0.20

Percent
Recorded as

Failed

0
0
0
0
0
0

* Group Test Conditions

(1) A temperature of 100 C and normal atmospheric pressure (Test Group I).

(2) A temperature of 100 C and a vacuum of approximately 10 mm Hg

(Test Group II).

(3) A temperature of 100 C, a vacuum the same as (2), and exposed to radia-

tion for a per Sod of 10,000 hours. The neutron fluence and total gamma
: 1 3 - 2 - 9 - 1

exposure were approximately 10 n cm (£ > 0. \ MeV) and 10 ergs g

(C) (Test Group III). <

(4) A temperature ,of 100 C, under vacuum, and the same total radiation

exposure as in (3) but at a flux that would provide this exposure in 100

hours. The capacitors were then left on operational load for the balance

of the 10,000-hour period with no further irradiation (Test Group IV).

(5) A temperature of 50 C, under vacuum, and exposed to radiation under the

same conditions as in (3) (Test Group. V).

The additional test groups (VI and VII) of 20 capacitors were subjected to the

same conditions as (1) and (3) above, but without the application of a d-c voltage.
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15.5F TANTALUM CAPACITORS

15. IF Permanent Parameter Degradation

The capacitance and dissipation factor of tantalum capacitors experience

permanent changes under irradiation, in addition, they sometimes show structural

damage due to dimensional changes particularly in units employing teflon seals.

15.2F Temporary Parameter Changes
\

The capacitance, dissipation factor, and the leakage current in tantalum

capacitors oil show temporary changes due to irradiation. The temporary effects

usually are attributed to ionization and recover upon termination of the radiation.

15.3F Parameter Degradation'Factors '_,

The capacitance of tantalum capacitors has been observed to very between

maximum of -25 percent and +20 percent while more typical changes are ± 10 per-

cent. The changes have been observed in some cases to recover and in some cases

not, to recover or even to increase upon radiation being terminated.

The dissipation factor has been observed to increase to values ranging from

< 0.05 to 0.10.

The above changes occurred in experiments in which neutron fluences ranged

from 0. 3 x 10'* n/cnrr (fast) to 6 x 10'' n/cm^ (fast) plus gamma doses rarging from

8.7 x 105 rods(Q to 4.4 x 108 rod$(Q.

The leakage current of tantalum capacitors have increased as much as two

orders of magnitude due to ionizotion; however,'for the low intensity TOPS environ-

ment, this should not be a problem.

The reliability of tantalum capacitors has been checked in several tests.

Figure 15. 4 shows the reliability index and Tables 15. 4 and 15. 5 shows failure rates

observed.

15.4F Radiation Hardening

No specific hardening techniques were observed in the literature; however,
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Table 15.4 Failure Rate For 5K106AA6 Capacitor at 50, 60, and 90
' Percent Confidence Levels. (Ref. 15.73)

Test Group*

1
II
ill
IV
V
VI

AH test groups

j

. Failure Rate at Indicated Confidence Level,
percent/1000, hr.

50 Percent

0.30 ,
0.30
0.39
0.29
0.30
0.30
0.05

60 Percent

0.39
0.39
0.39
0.39
0.39
0.39
0.06

90 Percent

0.98
•0.98
0.98
0.97
0.98
0.98
0.16

Percent
Recorded as

Failed

0
0
0
0
0
0
0

* Group Test Conditions

A temperature of 100 C and normal atmospheric pressure (Test Group I).(1)

(2) A temperature of 100 C and 4 vacuum of approximately 10~ mm Hg

(Test Group II). j

(3) A temperature of 100 C, a vacuum the same as (2), and exposed to

radiation for a period of 10,000 hours. The neutron fiuence and total
13 -2

gamma exposure were approximately 10 n cm (E > 0. 1 MeV) and

109 ergs g"1 (C) (Test Group 111).

(4) A temperature of 100 C, under vacuum, and the same total radiation ex-

posure as in (3) but at a flux that would provide this exposure in 100 hours.

The capacitors were then left on operational load for the balance of the

10,000-hour period with no further irradiation (Test Group IV).

v i __

(5) A temperature of 50 C, under vacuum, and exposed to radiation under the

same conditions as in (3) (Test Group V).

The additional test groups (VI and Vil) of 20 capacitors were subjected to the

same conditions as (1) and (3) above, but without the application of a d-c voltage.
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Table 15.5 Failure Rate for HP56C50D1 Capacitor at 50, 60, and 90
Percent Confidence Levels. (Ref. 15.73)

Test Group *

1
II
III
IV
V

All test groups

Failure Rote at Indicated Confidence Level/
percent/1000 hr.

50 Percent

11.82
7.31
0.30
0.75
0.75
3.25

60 Percent

12.56
7.31
0.39
0.89
0.90
3.39

90 Percent

15.80
10.05
0.98
1.74
1.72
4.02

Percent
Recorded as

Failed

35
30
0
5
5

25

* Group Test Conditions

(1) A temperature of 100 C and normal atmospheric pressure (Test Group I).

(2) A temparorure of 100 C ond o vacuum of approximately 10 mm Hg

(Test Group II).

(3) A temperature of 100 C, a vacuum the some as (2)/ and exposed to

radiation for a period of 10,000 hours. The neutron fluence and total
13 -2

gamma exposure were approximately 10 n cm (E > 0.1 MeV) and

109 ergs g"1 (C) (Test Group III).

(4) A temperature of 100 C, under vacuum, and the same total radiation

exposure as in (3) but at a flux that would provide this exposure in

100 hours. The capacitors were then left on operational load for the

balance of the 10,000-hour period with no further irradiation (Test

Group IV).

(5) A temperature of 50 C, under vacuum, and exposed to radiation under

the same conditions as in (3) (Tesr Group V).

The additional test groups (VI and VII) of 20 capacitors were subjected to the

same conditions as (1) and (3) above, but without the application of a d-c voltage.
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it was observed that units having teflon seals are more susceptible to mechanical

damage due to radiation.

15.5F Radiation Testing

No specific radiation testing of tantalum capacitors is recommended for the

TOPS mission.

15.6F Radiation Screening

No radiation screening techniques were located in the literature.
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16,0 RESISTORS
\

Due to their relative hardness/ resistors have received litrle attention in

recent /ears. The data that exist have been summarized by other workers quite
* i

thoroughly (16.71). Since permanent effects in resistors are dependent on materials

and mechanical construction details, no prediction models hove' been formulated;

therefore, this report will discuss the effects of radiation that are particularly per-

tinent to the TOPS environment. Very little proton data were found for resistors;

therefore, damage threshold estimates ore made for protons.

°t i

16. 1 Permanent Parameter Degradation

Carbon Composition Resistors

* s

Carbon composition resistors are the most radiation sensitive of the four

common type* discussed in this report. They have been observed to be sensitive to
T-

fast neutrons and, to c lesser degree, to gamma rays. Very little data were found

for proton effects on resistors, but an estimate can be made based on the assumption

that protons produce displacement damage. This estimate ignores the ionizing effects

of protons which, based on gamma radiation (principally ionization) results, is

probably not too serious. This is substantiated by the fact that carbon composition
13 2

resistors have been exposed to 2 x 10 (22 MeV) p/cm without significant per-

manent damage. (16.72)

The resistance of carbon composition resistors'usually decreases under

neutron and gamma notation. It has been postulated that the decrease is probcbiy

a result of carbonization of the epoxide-resin binder, which increases the conduc-

tivity of the resistor, in general, for carbon composition resistors, the higher the

resistance value, the larger the percentage resistance change due to radiation. In

addition, rate effects have been observed for high resistance values. The rate effect'

is not very significant for a low level environment such as TOPS.

Carbon Film Resistors

Generally, deposi fed-carbon-film resistors show better results than carbon
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composition resistors. However/ there are severe) techniques used in manufacturing

a'eposited-carbon-film resistors and these techniques have some influence on radia-

tion degradation of the devices. Out of the different manufacturing techniques,

there ore essentially two basic types; the coated film resistor and the moisture-

resistant resistor. Coated film resistors usually hove an acrylic coating to protect
ii-

the film. The moisture-resistant units ore either hermetically sealed in an imper-

vious ceramic sleeve via silver-alloy solder or are molded using an epoxide-resin

encapsulation. The conductive element is a pyrolyticaily deposited carbon film on

substrates such as steatite, alumina, or alkali-free glass.

It should be further pointed out that carbon film resistors without encapsu-
: ' ' "i r- 13

lotion are no better than carbon composition resistors. < Exposures of 2 x 1 0
2 ~~~t' ' "-

(22 MeV) p/cm produce no permanent effects in carbon film resistors. (16.72)

Metal Film Resistors :

in construction metal-film type resistors ore similar to carbon-film resistors

except that the resistive element is composed of a metal alloy or metal oxide. The

body enclosure is usually an acrylic or Vitreous material. Sometimes the devices

are enclosed in an epoxide resin.

The radiation resistance appears to be quite good, especially for units

having low nominal values of resistance. Low resistance devices come close to

wire-wound resistors in hardness. Unfortunately, all types of metol-film resistors

do not show good radiation resistance and in some coses catastrophic failures have

been observed. As with the case of carbon-film resistors, the epoxide-resin en-

capsulated devices are preferable. For resistive elements, elemental tin has been
-, f

observed to be less radiation sensitive than oxides and alloys. The above discussion

is based on neutron and gamma data. No data was found for proton effects.-

Wire-wound Resistors

Wire-wound resistors are the least radiation sensitive type of resistor.
i ~

Although there is some variation in the response of units from different manufacturers,

it is not felt the wire-wound resistors should present any problem in TOPS environ-

ment.
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16. 2 Temporary Parameter Degradation

There is no evidence of drift other than the permanent degradation discussed

earlier for carbon composition, carbon film, and metal film resistors at the dose rates

expected on the TOPS mistion.

Wirewound resistors sometimes show a small change ( 0.1 percent) in resis-

tance immediately upon insertion in a radiation environment, but they eventually

settle bock to their original values.

16.3 Parameter Degradation Factors

From the data presented in the preceding section, semiquantitative estimates

can be made of the amount of degradation of carbon composition resistors in o nuclear

environment. For the TOPS mission, the threshold fluence for damage appears to be

above the neutron fluence expected; however, for protons, the fluence expected

could produce 09 much as 4 percent change. The overage changes that have been

observed arc presented in Figure 16.1.

Due to the many construction types available in metal film resistors, it is

not possible to make accurate degradation predictions. However, from the data

available, the average parameter changes have been estimated and are presented

in Figure 16.2 and 16.3. For the TOPS environment, it appears that carbon film

resistors would change no more than 1 percent.

Figure 16.4 shows estimated changes for metal film resistors in a nuclear

environment. An equivalent proton environment has been estimated. It should be

noted that there Is no experimental data for proton effects.

From the Figure/ it can be further noted that ot fluences of neutrons and

protons well above those expected for the TOPS mission the change in resistance is

less than one-half percent. Early studies indicate that for high-value resistors

(> 1 megohm) the change was greater and diallyl phtholate plasric units are hardest.
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197



D2-126203-3

Wirewound resistors should be adequate for the TOPS mission with a degra-

dation factor (or tolerance) of ± 0. 1 percent applied. Figure 16.5 shows the aver-

age observed changes.

16. 4 Radiation Hardening

No hardening procedures have been proposed for carbon composition resis-

tors.

Aside from rhe comments in the permanent pa/amerer section regarding con-

struction type selection, there are no specific hardening techniques suggested in the

literature for carbon film resistors.

Further, no hardening techniques have been found in the literature for

metal film or wirewound resistors.

- ii

16. 5 Radiation Testing

No specific testing of resistors is recommended for the TOPS program.

16.6 Radiation Screening

No screening techniques for identifying radiation sensitive resistors were

found in the literature. .

16.7 References
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17.0 Relays, Switches, and Fuses

No recent work has been located on relays, switches, and fuses. The work

that has been done has been reviewed by other workers (17. 21) and reveals that for

missions such as TOPS there probably is no real radiation problem with these devices.

Most of the reported effects arise from insulation breakdown or degradation.

Figure 17.1 shows the approximate tolerances of popular insulation materials.

Thatcher (17. 21) has reviewed the literature on relays end switches and his

report is included here with only the radiation units converted for consistency.

Hardening of switches and relays is accomplished by choosing herd materials

for construction; however, for a mission such as TOPS it appears that (with the

possible exception of teflon) the thresholds for damage of most insulation materials

is well above the expected mission radiation levels.

"Nuclear radiation effects relays and switches primarily by damage to the

organic insulating and construction materials. Data examined for some relays (17. 22)

indicate rhcr they operate satisfactorily m a nuclear-radiation field up to integrated

neurron fluxes of 6.5 x 10 n/cm , witn energies greater than 2.9 MeV or 5.7 x 10
2 9

n/cm (epicodmium) or integrated gamma-ray exposures of 10 rods (17. 23). Some

micro-switches suffer damage to the plastic cases and actuators (17. 24) at gamma-
, t 1 5 2

ray exposures as low as 4 to 6 x 10 rods or integrated neutron fluxes at 10 n/cm

(> 0. 7 MeV). Typical behavior of relays and switches in the nuclear environment is

shown !n Table 17.1. *

"Other experiments (17. 25) have indicated that ionizing radiation does not

affect the potential of the air gap, but does affect the potential required to quench

any arc struck. Solutions to this problem would be to operate the relay in an evacu-

ated container, or to operate the relay in a container filled with an arc-quenching

gas, SUCP as sulfur hexa-fluoride. "

The major factor in the radiation resistance of relays and switches is insulating

materials. Teflon is an especially undersirabie material for such applications. The

only screening technique suggested is on the basts of materials used. Designers
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Table 17. 1 Radiation Effects on Relays and Switches

Radiation

Relay or Switch Typo Raforanco

Sensitive-type, ISGO-ohm, 45 mw,
ceil relay

5.7.,O15

(epi cadmium)
1 » 1C7

SRJ-2000G(hermetlMlly seeled)

S8-2000G (dust cover)

SP-MO (uncovered)

27S-C (herm«fleally sealed)

MH-180 (hermetically staled)

A-29A34 (uncovered)

4.S«I012 S.3«108

above 2.9Mev
7.6.10"

above 2.9
4.5«10l*

10

5.2 « 10
,8

4.8« tO
obov«2.9

4.4« I012 8

3.4» JO12

5.4« 10"

4.9* lO1

4.4 M I

Four wmplai «•>« tested and (17.26)
thawed ncgtloifai* dcgrodatton.
No indication of any Insulation
feiluf*. On* tampli ihewod an
incr«<M« in eantact rasiitcnee from
0.015 to 0 S ohm. PeittrredJatian
•xaminotian ihovxed this unit to
haw* slightly bleek*ned eon toe t
points, cut no widancs of pining
9T burning. Drop-out resiUenc*

ihow«d no change from pr»- to post-
{frodlotion and Us* than 5 per cent

In-pile. Pull-in voltogc and
chanaed * 2 p«r cent in-pile

end * 6 percent pre- to petfirmdtotion.

Some ihowed dacrooMS in contact rv- (17.27)
sistortce at much a* 33 pa; cant from pre-
to postirradiatton ireasureiTttnts. TKit
M« not Kiought to be o radiation effect
but rather a mechanical removal, during
operation, of on oxfd* loyer built up
during ttotofte. Changes in coil resia-
tanc* and opergting time* wera noted
as large as 10-IS per cent. However,
these change* ware determined to be
primarily temperature effects witn the
radiation contribution less than 2 per
certr. Beleate times showod initial
decrease of 5-10 per cent, then steady
operation in-ptte with random per-
manent effect*. Pull-in current showed
no trend.
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Table 17.1 (Continued)

Kcloy or Switch Type

SMSDS (hermetically Moled)

22RJC-200G (hermetically sealed)

76-3 (uncovered)

M!c raw itch

WestingnouM. Type UN3 12587 -002
rrloyt

Price. Type 300fcG22 relay*

leden rotary twitch**

Centrolab Kigh^oltoge
twite h-tp*ciol

ledex ceramic wafer
tw i ten -ttandard
low koltoge

Standard ceromlc wafer
iwitcnei-Ledex

Centrolob MgH^ottoge twitch

Potrer-BrumfWId relay

ftaaiatien Eaposjre

n/cm2 Boc* Ertecti Reference

4.9 «1052 5.5 «I03

6. t « I0>2 7 9 1 IOS

6. Ial0 t 2 76.108

obeve2.9Mev

1 • 10 5 » 10 25 percent change in plastic cote
above 0. 7 Mev and actuator.

2 x 1016 5 x 10 Twelve retted. All units exceeded
(epicodmiumt ipacificolian limitt.

2x1016 J.JO7 Twelve tetted. Aii unir* enceeded
Ipecificatian limitt.

6. 2 « 10 — Four twitchet tetted. All iwitcnet
above 0. S Muv were erratic.
).3» I0'5 >. At fnn expeture the ratchet mecho-

nitm Jammed, and the coniequent
awerneating detttoyta the coil.

6. 2 • 10 — Solenoid action become intermittent.
However, twitch rotation could be
continued by -normally pulling the
voltage. Solenoid coil rotittonee.
coil inivlohor. mitance, and switch
contact retittonce varied tlightly.

1. 1 x )0 -- buulation mittonce remained
fairly content at 6 x lu ohim
when reactor wot at a power level of
I Mw.

S x tO •- Some contact! toiled after on expo-
sure of aoout 0. 5 x 1015 n cm'*.

6. 1 x 10 — Performed fair; pining of contacts
E > . 5 Mev covwo reifttonc* to increota to

about 1 ohm.

(17 28)

(17.29.
17.30)

(17.29.
17.30)

(17.31,
17.32)

(17.33)

(17.33)

(17.33)

(17.33)

(17.34)
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Table 17.1 (Continued)

Radiation exposure

Way or Switch Type n/cm Kadi

Potter-Brumtteld reloy l.lxtO17 —
E>.SMev

Iron Fireman 1. 2 x 10
E>.5Mev

MH Type X-27516 , ~3.8»ic'*
micreswiteh

MH _ l.2x 1010 ~
V3-245
1SX1 -i
11SM3

I

'

'

OLA 30302 1.4 1 x JO*5 3. 9 x 108

ftendix L-15514-65 ' .' (£>2.9Mav)
•

!

Microtwirch Nan* 9^3xl08

1HT1, high temperature

GE, FB100YI. ZL174 ' * » 1015 - 8.8*10*
magnet wire r

GE. FB100Y2, TFE, ;;
Teflon magnet drive

GE. FB100Y3, Ml, ' '
enamel magnet wire

•arrer-Brumtoid.
LMSC 1600639-1,
PSSCHOA, D?OT

- ,

Effects inference

Performed good, no incraaie in (17.34)
contact resistance,- about 1-volt.
change in pull-bvand drop-out

Performed excellent regaraing pull- (17. 34)
in and drop-out current stability.

Operated satisfactorily throughout (17.35)
test.

An aver-all and thorough inspection (17.36)
of the irradiated twitehe*. indicated
the V3 terie* and SM teries unit*
were orJy affected by case embnrtle-
ment, and the electrical functioning
of the switches wot not altered.
Other iwiteha* shewed a variety of
waaknasMs such a seal failures and
baor'embrirrlemcnt.

Leakage1 currents remained constant (17.37)
during rest. After exposure fhe GLA
erftch i&owad dmpln laeAegocunont
ond'the other twitch showed a large
incnase. (

Operated satisfactorily. (17.38)
r-

Coil resistance showad no more than (17.39)
2 per cent change between ore- and
pott-test measurements for all twelve
relays- Insulation resilience deerocsed
with increasing temperature end flux.
rVjst-*e«t measurements showed full re-
covery. The General Electric units
uppapr ID meet specifications. The
Pottef-firumfield (PS) relay* exceeded
fhe «pecifieo»ions at 2 amp (but not at
100 no). H was specified that fhe
maximum contact resistance allowable
wos'SO million**.
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Toble 17.1 (Continued) "

Relax or Switch Typ»

Kinetic* Corp.
M362-1. Ser0043.
SPOT

Leoch Corp. 400 eps. ,
9410. LMSC 1060603-1. Sariol 123

Autrenia Corf. 400 cps,
Type 111, '.300, LMSC
1461396.

Tromco Products, Inc.
SPOT, Rf switch.
13730*30

Miciaswirch ISM1

Microjwitch 1SE1-3 ' :

.
MicfoswiteK V3-1

Micros*. ten V3-1301

Micnwwircn 82-2R

MicroswiKh BA-2R

Microswitch 1 EN 1-4.

Microswtreh 2EP2-8

i

Mieroswitch 1LSI
r

Microswiteh IHS1

Radiation expatum

n/cm Bads

5.3 »U>'5 8.3 « 10°

8x1013 8.8xl04

6.8«IOW

8x 1015 1.3* I07

J.I x 108^

— "1. t X 10

j
1.1 » iC

KOSxlO8

1 i „ jo

II. 108

— 1.3* JO3

1 1 « I03

l.OSx I08

1. 1 » JO8

' 1
Effects Reference

Operated istitfoctorily rhroughout (17.39)
the test.

, '

Operated totisfactoniy root least (17.39)
this exposure.

Operation becoma'o^est.onebie at (17.39)
4 x 10'^ n en-"4 when rh« drop-cut
voltage 'ncreased from 65 to 93 volts.
The unit toiled to transfer ar rne
measurement taken et 3 K 10 '̂  n-cm .
Insertion iou showed negligible (17.39)
changes during and after test.

j

The case material wes becoming (17.40)
brittle.
Ther» was on increase in operating (17.40)
and ntleqje force and pretiavel at
1. 3 « 10 nxb (O tt> end °f

tett this wot further magnified due to
seal boot neto'ening.
TH* cover raotervo! was becoming brittle.

TKe cose matoria! was suspected of ( 17 40)
becoming brittle.

Case material became brrrtle. (17.40)

Case material became brittle. (17.40)

Possibly some deterioration of the (17. 40)
Teflon teal ung. '

r g i

At 1. ! x 10 mck there was o (17.40)
slight decrease m.opumhng and
releote fore* ona differential travel.
At e-v* of te*t the teul heeame DriMle
and oraken on iinr oporetien.

NO of tec' on switch, but rubber (17 40)
seals Had hardened.

No effect. (17.40)

204



02-126203-3

should select devices on the bosis of the most resJstont rooteriols (see Figure )7. 1).

A genera! idea of the effects to be expected can be obtained from Table 17.1.
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18.0 GLOSSARY OF TERMS;
f

1. ATOM - Smallest particle of an element which is capable of entering into a
chemical reaction.;

2. BETA PARTICLE - A' negatively or positively charged electron with an energy
range of approximately 1 mev.

* -* '
3. CARRIER REMOVAL - A radiation effect in semiconductors whereby a defect

is introduced into the material which may act as a donor-or acceptor. In
the event that the defects act as donors in a material doped \yith acceptors/

then the'net external effect is the removal of a carrier from the semiconduc-
tor.

4. CHARGED PARTICLE - Any nuclear particle (electron, proton, etc.) having
anelectrical charge associated with it.

Z - '-
5. COLLISION - Encounter berween TWO subatomic particles (including photons)

which changes the existing momentum and energy conditions. The products
of the collision need not be the same as the initial systems.

' \
6. COMBINED ENVIRONMENT - A radiation field or environment consisting

of two or more types of radiation. :

7. COMPTON EFFECT - The interaction of a photon with dn electron where
some of the energy of the photon goes to the recoil electron and the rest
remains with the photon (non degraded in energy) which may make still more
collisions.

8. COSMIC RAY - High-eneigy particles or electromagnetic radiation origina-
ting in interstellar space.

9. CROSS SECTION 7 The probability that a certain reaction berween a
nucleus and an incident particle or photon will .occur. It is expressed as
the effective area that the nucleus presents for .the reaction. Usually ex-
pressed in barns.

10. CUMULATIVE DOSE (Radiation) - The total dose resulting from repeated
exposures to radiation of the same region, or the whole body.

11. DAMAGE, THRESHOLD - The flue nee or dose at which detectable degra-
dation of a component parameter or parameters occurs.

'• " '
12. DISPLACEMENT DAMAGE - Degradation induced in a material by the dis-

placement of atoms.from their initial location* By collisions with bombarding
nuclear radiation. K - r

13. DISPLACEMENT SPIKE - When a fast moving atom collides with another
atom, displacing it,from its normal position, the end of the trail of the dis-
placed atom is believed to be in a region containing 1 to 10 K atoms in
which local melting and turbulent flow have occurred in an extremely short
period of time. Effect is important where heavy metals and semiconductors
are subjected to displacement forces.
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GLOSSARY OF TERMS (Continued)

14. DOSE - According to current usage, the radiation delivered to a specified
area or volume or to the whole body. Units for dose are roentgens for X or
Gamma ray, reps or equivalent roentgens for beta rays. No statement of
dose is complete without specifying location. It is usually specified as the
amount of energy absorbed by tissue at the site of interest per unit mass.

15. DOSE RATE - Radiation dose delivered per unit time.

16. EPITHERMAL NEUTRON - Neutron having energy beiween 0.1 and 100 eV.

17. ELECTRON - A charged particle with unit mass and unit charge which is a
constituent of every neutral atom. Has a rest mass of 9. 107 x 10 °̂ grams.
These particles are less massive than protons or alpha particles, therefore
have greater penetration powers.

18. ELECTRON VOLT - The kinetic energy of an electron based on its mass and
the velocity attained through an acceleration produced by a potential
difference of one volt (abbreviated ev, 1 ev= 1. 6 x 10~'2 ergs of energy).

19. ENERGY LEVELS - Groups of energy bands or levels in which the electron
and nucleus of a solid material exist.

20. ENERGY SPECTRUM - Number of particles per unit energy over range of
energy represented in a nuclear radiation field.

21. ENVIRONMENTAL COMPONENT - Any specific type of radiation con-
tributing to a radiation environment consisting of mixed radiation types.

22. EV - Electron volt

23. EXCITATION - Process by which an atom or molecule gains energy to raise
its ground state to an excited state without particles being ejected. Process
often produces secondary radiation.

24. FAST NEUTRON - A neutron with an energy level of 10 kev or more.

25. FISSION - The splitting of a nucleus into at least (wo fragments accom-
panied by emission of a number of neutrons and the release of energy.

26. FLUENCE - Number of particles incident on a one square centimeter surface
or area, i.e., particles/cm^.

27. GAMMA RAY - A quantum of short wavelength electromagnetic radiation
emitted by a nucleus in its transition from a lower energy state. The range
of wavelengths is from about 10~° to 10"'' cm. Gamma rays have zero
rest mass and zero charge but energies in tKe range of approximately 1 mev.
The intensity of 1 mev of gamma is halved in 4 inches of water.
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GLOSSARY OF TERMS (Continued)

28. HARDNESS - Radiation Resistance

29. INTERFACE STATES - Allowable energy levels at the interface or junction
of silicon material and silicon dioxides passivation layer.

30. INTEGRATED FLUX - Cumulative number of particles per square centimeter
over an interval of time. • ,

31. INTERSTITIAL ATOMS - Atoms which are displaced from their equilibrium
positions in a nearby vacancy.

32. ION1ZAT1ON, DAMAGE - Damage caused by interaction of incident radia-
tion with orbital electrons.

33. IONIZATION EFFECT - An effect resulting from material being ionized by
incident radiation, ionization damage.

34. IONIZING RADIATION - Radiation that interacts primarily with orbital
electrons of material it is incident upon.

35. MEV - One million electron volts
\

36. NEUTRON - An atomic particle with zero change and a mass approximarely
that of a hydrogen atom. Neurrons are highly penetrating and when passing ,
through matter.are attenuated exponentially,while colliding with nuclei.
(Do not coHide.'with electrons), in a free state, neutrons decay into a proton
and an electron.

*.*

37. NUCLEAR RADIATION - Neutrons, alpha, beta, and gamma rays from
primary or secondary power plants, nuclear weapons, natural space radia-
tion. ^Only neutrons and gamma rays penetrate shielding. Neutron energies
range to 20 mev.(about 35 percent at 0. 8 mev). Gamma ray energies range
from about 300 kev to at least 8.0 mev (average about 1.5 mev)

38. NUCLEUS - The positively charged core of an atom which accounts for.
practically all of the atom's mass. ',J ,

• • ' " , , . " : - '
39. NVT -<Total number of neutrons passing through a unit area during period

of time under ̂ consideration, f f

40. PARTICLE RADIATION - Radiation consisting of energetic particles such as
electrons, protons, neutrons, and alpha particles.

41. PERMANENT DAMAGE - Occurs when displacement and/or rearrangement
of atoms or groups of atoms takes,place in a material. .Degree of permanent
damage depends on total or integrated dose received, type of radiation,
and temperature. . ;

t

42. PROTON - An elementary nucleor particle with a positive electric charge
equal numerically to the charge of an electron but whose mass is equal to
approximately 1847 times the mass of an electron.
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GLOSSARY OF TERMS (Continued)

43. R - Abbreviation for roentgen

44. RAD - A unit of absorbed dose. One rod is equal to TOO ergs of absorbed
energy per gram of absorbing material. This unit cannot be used to describe
a radiation field.

45. ROENTGEN - Quantity of X or gamma rays which will produce as a result
of ionizotion eiectostatic unit of electricity (either sign) in 1 ec of dry air
at 0°C and standard atmospheric pressure. One roentgen = absorption of
83. 3 ergs of energy per gram of air.

46. SCATTERED ELECTRON - Electron that has been freed from its atomic orbit
due to collisions with bombarding radiation.

47. SLOW NEUTRON - See thermal neutron.

48. SOLAR FLARES - Chromospheric eruptions occurring in the vicinity of surk-
spot groups. These eruptions are observable in certain lines in the visible
and far ultraviolet ranges,. Consist of intense streams of X rays, ultraviolet
rays, protons and electrons ejected from the sun at irregular intervals by
electromagnetic storms associated with sun spots. Most of these streams are
absorbed by the earth's atmosphere.

49. SOLAR WINDS - Streams of protons that have been ejected by the sun and
are traveling through space.

50. STOPPING POWER - Total energy lost by incident particle per unit distance.

51. TEMPORARY DEGRADATION - Radiation induced damage or degradation
which recovers at room temperatures upon termination of the radiation,
usually in times of o few hours or less.

52. THERMAL NEUTRON - A neutron which is in thermal equilibrium with its
surroundings. Energy level is less than 1 ev. Thermal neutrons cause
capture gamma radiation (excitation energy emitted on capture).

53. THRESHOLD DOSE - The minimum dose fluence that wilt produce o detect-
able degree of any given effect.

54. TRANSIENT EFFECTS - A phenomena which occurs when radiation causes
electronic excitation without atomic displacement in a material. Usually
results from ionizing radiation and is a function of the dose rate.

55. TRANSMUTATION - The process in which one species of atom is transformed
into another by a nuclear radiation.

56. THRESHOLD OF DAMAGE - Dosage level at which any additional radiation
will change the basic characteristics of the material under irradiation.
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GLOSSARY OF TERMS (Continued)

57 VACANCIES - Vacant lattice sites created by collision of energy particles
with atoms in a solid lattice.

5S. X RAY - A form of penetrating electromagnetic radiation (zero charge,
zero mess) having wave lengths shorter than those of visible light (approxi-
mately 10"** cm). Usually produced by bombarding a metallic target with
a particle *m a high vacuum. In nuclear reaction, it is customary to refer
to photons originating in the nucleus as gamma, rays and those in the extra
nuclear part of rhe atom as X rays. Often cal'jed roenrgen rays.

I '

213



D2-126203-3

19. BIBLIOGRAPHY

Aiken, Jarr.es G. , Buehler, Martin G , Crabbe, James S., Matzen, W. T. , "Inves-
tigation of Radiation Effects in Semiconductors", Texas Instruments, Inc. , AD-679
634, Tl -0368-67, AFCRL-68-0520, SR-2, N69-18167.

Alley, R.E. , Jr., "Effects of Nuclear Reactor Radiation on Aluminum Solid Elec-
trolyric Capacitors", Bell Telephone Laboratories, Inc. , Whippany, New Jersey,
First Tiiannual Technical'Note (March 1- June 30, 1.959), WADC TN 59-295,
AF33(6l6)-6235, ASTIA, AD 226168 (July 15, 1959), Part 3, 'Appendix K.

Ante! ink, H , ' Nuciecr Radiation Effects on Electronic Comporents and Apparatus' t

(A Solec. Bibliography^, Techrusch Documentatie Hn 'nrcrriGfie Centrum Voot De
\-rujsmochr, TDCK-49707, N68-23&56, AD 832 258, Decembei, 1967.

.Alrcov, G. , Lobanov, Ye, M., Shad'yev, N., "Or. Radiation Damage to Radio
Components in c High-Intensity Gamrpa-Radiatior Field", Sborn.k, Radiutsionr.ly
Effeckty V. Tverdykh Yelakh, Anuzbssr Tshkent, pp. 68-70, 1963.

Armsri-ong, £. L., "Results of JrraaJot/on Tests on fleci'i-ooic ^orts and Modules
Conducted or Vallecitos Atomic Lcboraroiy", Lcc-khe'ed Aircrcfr Corp., Missile*
and Space Division, AF04(695)-13o (August 1962).

Auxermcin, L. W, , etal,., "Rodiarion £h'ech in GaAs", J. Appi. phys. 34,
p. 3590-9, Dec., 1963.^

n, L. W. , "Radiation Effects i^ tll-V Compounds", Aeiospcce Corp.,
E! Segundo, Calif., TR- 1001 (2230- 13} -4, SSD-TR-67-&, AD807-753, X67-15195
December 1966.

Aver J E. and Pokorny, G. J. , "The Performance of a Motor, c Switch, and Two
Types of ^ressure Pickup in a high-Gcmma-Flux Environrhenr", Argonnt- National
Laboratories, ANL-6347 (June, 1961)

. Z. , "Increased transistor Reliability in Nuclear Environment" Edgerton,
Germeshousen and Grier, inc., Santa Barbara, Calif., Tech. Repr., S-297-R/
EGG-1183-?046, October, 1965. '

Baba, A. J., "Effect of Low Gamma Exposure Rotes on Commercial Capacitors",
Harry Diamond Labs. , Washington D. C. , HDL -TR -'1175, AD-423369, N65-8187I,
Seprember 27, 1963. ';

Baeuerlein, R. , Wohlleben, K., Siemens-Schuckertwerke, A.G., "Radiarion
Damage of Half-Life Structural Elements Through Electron and Proton Radiation",
WGLR/aDGRR Annual Meeting, Karlsruhe, Wesr Germany, N68-12279,
October, 1967.

Saicker, j.A. , Rappaporr, P., " Rod ianon Damage to Solai Cells", RCA Lab.,
Pi i.xeron, N. J. Symposium on the Protection Against Radiation Hazards in Space,
Proceedings, Gatlinburg, """ennesbee, November 5-7, 1962, TI D-7 652 Book I,
ooe'.ngLib., No. A STIC 057199, pp. 118-135.

214



D2-126203-3 - ',,

19. Bibliography (Continued)

B.akirov, M. Ya, Azizov, T. S., "Effect of Accelerated Electrons on Rectification
Properties of Selenium Photocells", Radio Eng. & Elect. Phys., Vol. 12, pp. 1747-
1748, October 1967.

i

Barrett, M. J., Stroud, R. H., "Proton-Induced Damage to Silicon Solar Cell
Assemblies-A S tote-of-the-Art Survey", Exotech., Inc., Qr. Rept., NASA
CR-95997, N68*31622, July 10, 1968. , /

C '

Barry, A. L , Page, D. F.\ "Radiation Hardening of MOS Transistors for Low
Ionizing Dose Levels", Defense Research Telecommunications Establishment,
Ottawa, Canada, IEEE Annual Conf. on Nuclear and Space Radiation Effects,
Polo Alto, Calif., July 18-21, 1966, IEEE Trans, on Nuclear Science, Vol. NS-
13, pp. 255-261, December 1966.

Bartel, W. B., "Study of Reliability of Electronic Components in a Nuclear
Radiation Environment Reliability Engineering Document No. 8", Batrelle
Memorial Institute, Columbus, Ohio, JPL-62-2lO, AD-459801, X65-82218,
July 5, 1962.

1 t

Bartko, J., Sauvageot, Robert E., "Hardness of a Dielectric Switch to ionizing
Radiation", Martin Marietta Corporation, IEEE Annual Conference on Nuclear
and Space Radiation Effects, 4th, Ohio State U., Columbus, Ohio, July 10-14,
1967, IEEE Trans, on Nuclear Science, Vol. NS-14,'pp. 217-220, December
1967.

Bechmann, R. > "Effects,of Irradiation on Quartz and Quartz Crystal Units -
Recorded Experiments - A Bibliography", U.S. Army Signal Research and Develop-
ment Laboratory, Fort Monmouth, New Jersey, Tech. Memo M-l892, May, 1958.

Beever, E. R., "Study to Reduce and Compile ESAF NAP Radiation Effects Data
Final Report", North American AviaHon,' Inc., Downey, Calif., SiD-64-3,
WL-TDR-64-1, AD-600054, N64-20901, April 1964.

Belser, R.B., Hicklin, Wl K., and Young; R.A., "Quartz Crysia! Aging Effects",
Georgia Institute of Technology,, DA-36-039-AMC-0225l(E), August 1963.

Bendlx Aviation Corp., "Nuclear Irradiation of Potter-Brumfielc! Relays",
Systems Division, Ann Arbor, Michigan, Test Report BSR-15, AF33(600)-35026,
October, 1958. ':

Bendix Corp.,. Systems Division, Ann Arbor,| Michigan, BSR-371, Final Rpt.,
Volr I, Part II, AF33(600)'-35026, DecembeV, I960. "'

Bergens, D.M., "Photon.!Activoted, Solid S;ate Switch Development", JPL,
Space Programs Summary 37-44, Vol. IV, Stic. XXII Spacecraft Telemetry and
Command, pp. 320-325, April 30, 1967, Boeing Library No. AST 1C 009517.

Berggren, C.C., Honnold, V. R., "Transisto'j- Design Effects on Radiation Resistance
Hughes Aircraft Co., Fulterton, Calif., NA'JA CR-1167, N68-33767, (Boeing
File No. ASTIC 074580), September 1968.

215



02-126203-3

19. Bibliography (Continued)

Binder, E., Kuehne, B.M., Steele, D.A., "Surface -Effects of Radiation on Micro-
electronic Devices, Part II, Final Report", Hughes Aircraft Co., Fullerton, Calif.
FR-66-17-186, USNRDL-TRC-44, AD-635 583, N66^37079, April 15, 1966.

Black, R.M., Reynolds, E.H., "lonization and Irradiation Effects on High-Voltage
Dielectric Materials", British Insulated Calender's Cables U., London, Institution
of Electrical Engineers Proc., Vol. 112, No. 6, pp. 1226-1236, June, 1965.

Blacknall, D. M., Cox, R.H., Harp, E. E., Strack, H.A., "Gallium Arsenide
Microwave Transistors, Interim Eng. Rept.," Texas Instruments, Inc., Rept.
-08-65-169, AD 824 456, X68-82542, November, 1965.

Blair, R.R., "Surface Effects of Radiation on Transistors", Bell Telephone Labs.,
Inc., Whippany, N. J., IEEE Nuclear Radiation Effects Conf., Toronto Canada,
June 16-21, 1963, IEEE/Trans, on Nuclear Science, Vol. NS-10, pp. 35-44,
November, 1963.

Blais, J.A., Hansen, W:-, Woodward, L. L., "Rift Reliability and Maintainability
Considerations Arising from Nuclear Propulsion", IEEE Reliability in Space Vehicles
Seminar 4th Papers, 12 pages, 1963.

Blin, A., D'Harcourt, A., LeBer, J., "Fiobilite De$ Composants Soumis a la
Contrainre "Reyonnemants1 - Probiemes a Resoudfe et Quelques"Resultats Experi-
rrentaux", Dept. d *Electronique Generale, Atomic Energy Commission, Onde
Etecrrique, Vol. 46, No. '474, pp. 945-954, September, 1966.

Sonis, S. A., "A Technique for Analyzing the Interaction of Gamma Rays WiJfa a
Silicon Epitaxial Resistor", IBM Electronics Systems Center, IEEE Annual Conf.
on Nuclear and Space Radiation Effects, Ohio Stare U., Columbus, Ohio,
July 10-14, 1967.

Bostian, Charles W., Manning, Edward G., "The Selecrion of Transistors for Use
in Ionizing Radiation Fields", U. North Carolina, Raleigh, IEEE Trans, on Nuclear
Science, Vol., NS-12, pp. 437-443, February, 196&

Brown, R.R., Home, W. E., Hamilton, A. E., "Recovery of Gamma Dose Mil.
Spec. Failures During Low and High Power Life Testing of Silicon Transistors",
The Boeing Company, Seattle, IEEE Conf. on Nuclear, and Space Radiation Effects,
July, 1968.

Brown, R.R., "Proton and Electron Permanent Damage in Silicon Semiconductor
Devices", The Boeing Company, Seattle, Washington, Presented at the Joint Conf.
of Am. Nucl. Soc. and Am. Soc. for Testing and Mater., Syracuse, October,
1964, D2-90570, N65-25238, 1964. •'.

Brown, R.R., Siva, L. L. Kells, K. E., "Radiation Induced Nonlinear Degradation
of Transistor Gain," The Boeing Company, Seattle, Wash. D2-125680-1,
March, 1968.

216



D2-126203-3 *
> ;

19. Bibliography (Continued)

Brown, R.R., Home, W, E., "Study of Semiconductor Reliability Following an
Exposure to Nuclear Weapon Gamma Radiation", The Boeing Company, Seattle,
Washington, D2-125743-1, USNRDL-TRC-68-32, Jume, 1968.

Brown, R.R., Horne, W. E., "Space Radiation Equivalence for Displacement
Effects on Transisrors", The Boeing Company, Seattle,, Wash., 02-84088-2,
Nov., 1966, NASA CR-804, July, 1967.

Brown, R.R., "Relative Radiation Vulnerability Analyzed in Study of Components",
The Boeing Company, Seattle Wash., Aviation Week'and Space Technology,
p. 89, November 22, ]965.

•;

Srown, R. R., "Identification of Radiation Preferred Electronics", The Boeing
Company, Seattle, Wash., Record of the 1965 International Space Electronics
Symposium, Published by IEEE Space and Electronics and Telemetry Group,
November, 1965.

Brown, R.R., Horne, W. E., "Space Radiation Equivalence for Effects on Transis-
tors", The Boeing Company, Seattle, Wash., NASA-CR-814, July, 1967.

Brown, R.R., "Damage Constants for Surface Effects.in Bipolar Transistors", The
Boeing Company, Seattle, Wash, IEEE Annual Conf.,-on Nuclear and Space
Radiation Effects, Pennsylvania State U., July 8-11, 1969, IEEE Trans, on

""Nuclear Science, Vol., NS-16, December, 1969. }

Brown, R.R., "Energy Dependence of Proton and Electron Displacement Effects
on Silicon Semiconductor Devices", The Boeing Company, Seattle, Wash.,
Journees D'Electronique/ Colloque Sur Loction Des Rayonnements Sur Les
Composants A Semiconducteurs, Toulouse, France, March 7-10, 1967.

Brucker, G.J., Dennehy, W. J., Holmes-Siedle, A.G., "lonization and Dis-
placement Damage in Silicon Transistors", RCA Astro-Elecrronics Div., David
Sarnoff Research Laboratories, Princeton, New Jersey, IEEE Annual Conf. on
Nuclear and Space Radiation Effects, Stanford U., Palo Alto, Calif., July 18-
21, 1966, IEEE Trans, on Nuclear Science, Vol. NS-^13, pp. 188-196, December
1966. ; ' ' '• ''

', ' i }
Bryant, F. R., Fales, C. L, Jr., Breckenridge, R.A., "Proton Irradiation Effects
in MOS and Junction Field-Effect Transistors and Integrated Circuits", RADC
Physics of Failure in Electronics, Volt 5, June, 1967%

-i *v ' •
Bryson, Vern E., "Annealing of Radiation Damage in Semiconducting Devices",
AD 215 601, March, 1959. , ,i

Bubriski, Stanley W., "Electrolytic Capacirors in Space Electronic Equipment",
Sprague Electric Co., North Adams, Mass., IRE Annual Seminar, 1963, (Boeing
Lib. No. 629.406ln7R-1963), 20 pages, c. 1964, Fourth Annual Seminar on
Reliability in Space Vehicle, Los Angeles, California, December 6, 1963.

217



D2-126203-3

i
19. Bibliography

Burnett, J. R.7 Azary, Z., and Sandifer, C. W., "Flashing Light Satellite System
for SNAP Radiation Environments", Edgerton Germeshousen & Grier Inc.,
EGG-3-227-R, AF 19(628)-495, January, 1963.

Caldwell, R.S., "Permanent Radiation Effects in Semiconductor Devices", Boeing
Company, Seattle, Washington, Institute of Environmental Sciences, 1963 Annual
Technical Meeting, Proceedings, Mt. Prospect, institute of Environmental Sciences
pp. 145-151, 1963, Boeing Library No. 620 11206 SY68E, 1963.

Calkins, V.P., "Radiation Damage to Non-AAetaMic Materials", General Electric
Company, Atomic Products Division, APEX-172, August, 1954.

Corr and Binder from FZM-12-6U8-ili, 18 October 1968, (SRD) Unclassified
Curve. ' ' - j

' ^Carr, E. A., Binder, D., "Radiation-Induced Second.Breakdown in Transistors'1,
Hughes Aircraft Company, Fullerron, IEEE Arnual Conf. on Nuclear and Space
Radiation Effects, Pennsylvania State U., July 8-1 If 1969.

Cary, H., Hansen, J.F., Chapin, W. £., Wyier, E. N., Scheffler, H.S., "The
Effect of Nuclear Radiation on Electronic Components", REIC Bartelle, REIC Rept.
No. 8, AD 214697, N63-86218, July, 1959.

Chester, R.O., "Radiation Damage in Cadmium Sulfidc and Cadmium Teilwide",
Journal Applied Phys. 38 (4) March 15, 1967, pp. 1745-1751.

Chott, J.R., Goben, C.A., "Annealing Characteristics in Neutron Irradiated
Silicon Transistors", U. of Missouri at Rollo, iEEE Annual Conf. on Nuclear
and Space Radiation Effects, Ohio State U., Coiumbus, July 10-14, 1967, IEEE
Trans, on Nuclear Science, Vol. NS-14, pp. 134-146, December, 1967.

Christian, S.M., "Radiation Tolerance of Field-Effect Transistors", Field-Effect
Transistors - Physics, Technology and Applications, Ed byJ.T. Wai I mark and
Harwick Johnson, Englewpod Cliffs, N.J., Prentice-Hall, Inc., pp. 176-186,
1966. Boeing Library No. 621-381528 w!58F. '

Cooper, Martin J., Payne, M. Gay, "Nuclear Radiation Damage to Transistors,
Vol. II, Permanent Damge Part I Theoretical Aspects", Diamond Ordnance Fuze
Labs., Washington, D.C,, TR-975, Sup. T) N63-15513, June 28, 1962

i' .
Crabtree, R. D., and Wheeler, G.A., "Investigation of Radiation Effects Problems
in Nuclear Heat Exchanger Rockers", General Dynamics, FZK-160, Final Summary
Report, NAS8-1609, January, 1963.

Crowther, D. L., Lodi, E. A., DePangher, J., Andrew, A., "An Analysis of Non-
Uniform Proton Irradiation Damage in Silicon Solar Cells", IEEE Trans, on Nuclear
Science (USA), Vol. NS-13, No. 5, pp. 37-46, October, 1966.

1
D'Anronio, L. J., Gutierrez, W. A., Wilson' H.L., Feldman, C., "High
Stability of Thin-Filn Triodes to Nuclecr-Reocror Radiation", Mel par, Inc., IEEE
Trans, on Nuclear Sc fence, Vol. NS-12, ppl 42-45, April 1965.

218



D2-126203-3

19. Bibliography (Continued)

-Dennehy, W. J., Brucker, G. J., Hoimes-Siedle, A.G., "A Radiation-induced
instability in Silicon MOS Transistors", RCA Astro-Electronics Div., David
Sarnoff Research Center, Princeton, New Jersey, IEEE Conf. on Nuclear and
Space Radiation Effects, Palo Alto, Calif., July 18-21, 1966, IEEE Trans,
on Nuclear Science, Vol. NS-13, pp. 273-281, December, 1966.

Diakov, T., Kortenski,_ T., Ivanov, S., Antonov, N., "Influence of Gamma-
Radiation on Certain Parameters of Transistors and Diodes", Physics-Yearbook
of the Higher Technical Institutes of Lear ning, Vol..-3, edited by S. Ivonov,
Publ. D'Rzhavno Izdatelstvo Tekhnika, pp. 39-50, 1967.

Dorst, Stanley O., Wurzel, Leonard H., "The Effect of Radiation Environment
on Film Resistors", Sprague Electric Co., Nashua, N5 H., IRE International
Convention Record, pp. 206-214, 1962.

i
Doshay, I., "Space Radiation Resistor Evaluation", Space-General Corp.,
"El Monte, Calif., IRE I promotion Convention Record, pp. 192-214, Pt. 2, 1962.

Dowdey, J. E., Travis, ,C. M., "An Analysis of Steady-State Nuclear Radiation
Damage of Tunnel Diodes", Ling-Temco-Vought, Dallas, Texas, IEEE Trans, on
Nuclear Science, Vol.'NS-ll, pp. 55-59, November, 1964.J

Drennan, J.E., Hamman, D. J., "Space Radiation Damage to Electronic Compo-
nents and Materials", REIC Battelle Memorial Institute, Columbus, Ohio, REIC
Rept. No. 39, AD480010, X66-17798, Boeing-Lib. No. ASTIC 031826,
Jan. 31, 1966.

Dye, D. L., "Current Status of Space Radiation Effects on Materials and Compo
nents", The Boeing Cc , Seattle, Wash., NASA,'Washington Protection Against
Space Radiation, pp. 19-32, 1968, N68-26128 or N68-2613Q.

Easiey, J.W., Blair, R.R., "Fast Neutron Bombardment of Germanium and
Silicon Esaki Diodes'1,, Beill Telephone Labs., Inc., Whippany, N. J., Journel of
Applied Physics, Vol."31, No. ,10, pp. 1772^774/October, 1960.

Emdee, Daniel J., "Reduction and Compilation of Nap Radiation Effects Data",
Air Force Weapons Lab. ̂ Ki'rtland, AFWL-TR-67-98i AD 821 956, X68-12499,
October, 1967. v '

Fan, H.Y. and Beacham, J.R., Purdue Research Foundation, AD-245-096.

Finnell, Joseph T. Jr., Berletti, David D.,; Karpowich, FredW., "Equivalent
Circuits Estimate Damage^from Nuclear Radiation", Avco Corp., Wilmington,
Mass., Electronics, Vol. 40, pp. 73-82, October 30," 1967.

t '• /
Finnell, Joseph T., Jr., Karpowich, Fred,W., "Skipping the Hart Part of-
Rodiation Hardening", AvcojCorp., Wilmvrgton, Mass., Electronics, Vol. 41,
pp. 122-127, March 4, 1968., /

219



D2-126203-3

, 19. Bibliography (Continued)

Fischell, R.E., Martin, J.H., Rodford, W.E., Allen.W. E., "Radiation Damage to
Orbiting Solar Ceiis and Transistors", Applied Physics;Lab., TG-886, IDEP 347.
65.00.00-S6-09, March,, 1967.

i

Fitzgerald, D. J., Grove^ A. S., "Rodiation-lnduced-Increase in Surface Recom-
bination Velocity of Thermally Oxidized Silicon Structures"/ Fairchild Semicon-
ductor, Palo Alto, Calif., IEEE Proceedings, Vol. 54, ,pp. 1601-2, November,
1966.

k *

Flanagan, T.M., Wrobe!, T. F., "Radiation Effects in*Swept-Synrheric Quartz11,
Gulf General Atomic, IEEE Annual Conf. on Nuclear and Space Radiation
Effects, Penn. State U., July 8-11, 1969.

Flescher, H.L., Szymkowiak, E. A., "Effects of Electron Radiation on Unijunction
Transistors", Martin-Marietta Corp., Baltimore, Md.,' NASA CR-526, N66-31669,
Boeing Lib. No. ASTIC 037221, July, 1966.

. " I

Frank, Max, "Development of a Non-Destructive Radiation Effects Prediction
Technique",Bendix Corp, Southfield, Mich. Rept. -384l> AD-805 464, X67-
15916, December 31, 1966. .;

Frank, Max, "Exploratory Development of the Q-Factor Technical, Final Report",
BendixCorp., Southfield, Mich., RLD-3059, AFWL-TR-65-166, AD-476408,
X66-14297, December, 1965. •

Frank, M., Larin, F., "Effect of Operating Conditions and Transistor Parameters
on Gain Degradation", BendixCorp., Southfield, Mich., IEEE Trans, on Nuclear
Science, Vol. NS-12, No. 5, pp. 126-133, October, 1965.

Frank, Max, Sweet, R. J., "Development of Nondestructive Radiation Effects
Prediction Technique, Final Report", Bendix Corp., Southfield, Mich.,
Rept. -4173, AFWL-TR-67-109, AD 826 859, X68-14450, January, 1968

Frank, M., Taulbee, C.D., "Factors Influencing Prediction of Transistor Current
Gain in Neutron Radiation", Bendix Research Labs., Southfield, Mich., IEEE
Annual Conf. on Nuclear'and Space Radiation Effects, .Ohio State U., Columbus
July 10-14, 1967, IEEE Trans, on Nuclear Science, Vol. NS-14, pp. 127-133,
December, 1967. , ' V >~

Frank, Max, Taulbee, C. D., "Handbook for Predicting Semiconductor Device
Parameter in Neutron Radiation", BendixCorp., Southfield, Mich., AFWL-TR-
67-54, AD 818 971, X67r22692, August 1967. !

Frank, Max, Taulbee, C.-D., "Handbook for Predicting Semiconductor Device
Performance in Neutron Radiation", Bendix Corp., Southfield, Mich., AFWL-TR-
67-54, AD 832613, April, 1968. ,

220



D2-126203-3

19. Bibliography (Continued)

Gandolfo, D. A., Arnold/ D. M., Baicker, J.A., Flicker, J., Porker, J.'R.,
Vilms, J., Voomer, J., "Proton Radiation Damage in Semiconductor Devices",
RCA, Symposium on the Protection Against Radiation Hazards in Space Proceedings,
Gatlinburg, Tennessee, November 5-7, 1962, TID-7652, Boeing Lib., No.
ASTIC057199, pp. 230-242.

Gandolfo, D. A., Stekert^ J. J., "An estimate of Rcdiotion Effects on Electronic
Components for the Lunar Excursion Module", RCA Applied Research, Camden 2,
New Jersey, Annual East Coast Conf. on Aerospace end Navigational Electronics,
10th, Baltimore, Md., October 21-23, 1963, Proceedings, North Hollywood
Western Periodicals Co.,-pp. 1.4.3-1 to i.4.3-11, 1963.

Gardner, Dr. Leonard B., "Reliability of Semiconducrors", Head, Radiation
Effects Group, Litton Systems, Woodland Hills, California, IRE 3rd Annual Seminar
Reliability of Space Veh'icies, 1011., 1962.

Goziev, Sh. M., Aripov, G., "Results of Gamma-Irradiation of Electronic Parts
(Nekotoryye Voprosy Prikiadnoy Fiziki)", Tashkeny, pp. 49-50, 1961

General Electric Co., Transistor Manual, Copyright 1964.

General Dynamics Corporation, "Nerva Components Irradiation Program, Volume I,
GTR Test 4", Nuclear Aerospace Research Facility, FZK -170-1, AF33(657)-7201
July, 1963).

George, W. L., "Optimization of the Neutron Tolerance of Junction F.ield Effect
Transistors", IEEE Trans.'Nucl. Sci. Vol. NS-16, No. 6, December, 1969.

Gerstein, B., Schleuter, A., Fueyo, A.,' Effects of-Nuclear Radiation on Quartz
Crystal Units", Admiral Corp., Chicago, ill., G2559-Q1-2, AD 273 480,
December 23, 1961. ,

"i j ^ '

Graham, F. E., Fueyo, A., and Donovan, A. F., "Nuclear Study of Crystal Con-
trolled Oscillations", Admiral Corporation, Nucleqr'Radiation Laboratory,
Chicago, Illinois, Interim Report BSR-120, AF33(666)-35026, June, 1959.

Green, R.C., "Electronic Circuit Research and Development of Nuclear Propelled
Vehicles", BendixCorp., Systems Div., Ann Arbor,- Mich., BSR-439,
AF33(600)42262, January, 1961.

G.oben, C. A., "Nuclear'Radiation Effects on Silicon P-N Junctions, Progress
Report", U. of Missouri, ,Rolla, C00-1624-6f N67-30320, February 17, 1967.

Gordon, Daniel I., "Irradiating Magnetic Materials", U.S. Naval Ordnance Lab.,
Electro-Technology, Vol. 75, No. 6, pp. 42-^5, June, 1965.

i
Gordon, D. I., Sery, R. S., "Effects of Charged Particles and Neutrons on
Magnetic Materials", U.S. Naval Ordnance Lob., White Oak, Silver Spring, Md.,
IEEE Trans, on Commun. Electronics (USA) No. 73, pp. 357-61, July, 1964.

22!
/



D2-126203-3

, 19. Bibliography (Continued)

Gordon, F., Jr., Wannemocher, H.E., Jr., "The Effects of Space Radiarion on
MOSFET Devices and Some Application Impljcations of Those Effects", NASA
Goodard Space Flight Center, IEEE Annual Conf. on Nuclear and Space Radiation
Effects, Palo Alto, Calif., July 18-21, 1966, IEEE Trans, on Nuclear Science,
Vol. NS-13, pp. 262-272, December 1966. NASA TM-X-55597, X-716-66-347,
N67-11373, August, 1966.

Gorodetskii, S.M , Grigor'eva, G.M., Kreinin, LB., Lozovskii, V.V.,
Landsman, A.P., and Sdminskii, M.S., "Influence of Electron Bombardment on
Some Paramerers of Silicon Photocells", Institute for Semiconductors, Academy
of Sciences of the USSR, Soviet Physics - Semiconductors, Vol, 2, No. 1, pp.
90-92, July, 1968.

Granneman, W.W., Southward, J. D., Shadel, D. J. ', Gates,, H. T., "Neutron
Damage Effects in Noise Diodes", U. of New Mexico, Albuquerque, AFWL-TR-
67-61, AD-820164, X67-22811, September, 1967. \

Grinoch, P., Rossi, M., "Preselecting and Preconditioning Off-the-Shelf Transis-
tors and Microcircuits for Radiation Reliability", Grumman, RM-332, AD 485 860,
N66-37112, July, 1966. /

Gwyn, C.W., Scharfetter, D.L., Wirth, J.L., "The Analysis of Radiation Effects
in Semiconductor Junction Devices", Sandia Laboratory, Albuquerque, N.M.,
IEEE Conf. on Nuclear and Space Radiarion Effects, 4th, Ohio-State U., Columbus
Ohio, July 10-14, 1967, IEEE Trans, on Nuclear Science, Vol. NS-14, pp. 153-
169, December, 1967. ..

Gwyn, C. W., "An Analysis of Ionizing Radiation Effects in Four-Layer Semi-
conductor Devices", IEEE Trans, on Nuclear Science, NS-16/Dec., 1969.

i

Hamman, Donald J., "Radiation Effects on Capacitors and Dielectric Materials",
REIC Battelle Memorial Institute, Columbus, Ohio, Institute of Environmental
Sciences, 1963 Annual Technical Meering,' Proceedings, Mt. Prospect, Institute
of Environmental Sciences, pp. 553-560, 1963..

Hamman, Donald J., "Space-Radiation Effects in Integrated Circuits", Battelle
Memorial Institute, Columbus, Ohio, IEEE Annual Conf. on Nuclear and Space
Effects, Stanford U., ?ato Alto, Calif., July 18-2 V'l 966, IEEE Trans, on
Nuclear Science, Vol.,; ,JNS-13, pp. 160-167, December, 1966.

Hamman, Donald J., "A Summary of Radiation Effects Thresholds", Radiation
Effects Information Center, Battelle, 2nd Symposium on Protection Against Radia-
tion in Space, NASASP771, pp. 117-120, 1965. -

i

Hamman, D.J., Chopin, W. E., Hanks, C.Lj, Wyler, E. N., "The Effect of
Nuclear Radiation on Electronic Components'', REIC Bortelle Memorial Institute
REIC-18, N63-83598, June 1, 1961. j

222



D2-126203-3
I

!_

19. Bibliography (Continued)

Hamman, D.J., Drennan, James E., "Radiation-Effects State of rhe Art, 1965-
1966", REIC Bottelle Memorial Institute, Columbus,;REIC Report No. 42, AD 802
986, June 30, 1966.

Hanks, C L, "The Effect of Nuclear Radiation on Capacitors", REIC Batteile
Memorial Institute, Columbus, Ohio, REIC Rept. No., 15, February 15, 1961.

honks, C. L., and Hamman, D.J., "A Study of the Reliability of Electronic
Components in a Nuclear-Radiation Environment, Vol. 1 - Results Obtained on
JPL Test No. 617, Phase II ro Jet Propulsion laboratory", Barteile Memorial
Institute, Columbus Laboratories, Columbus, Ohio,;June 1, 1966, Final Report,
800pp.

i

Hanks, C. L., Hamman, D. J., "The Effect of Nuclear Radiation on Capacitors",
REIC BatteUe Memorial Institute, Columbus, Ohio, REIC Rept. No. 44, Boeing
Lib. No. ASTIC 044554, December 30,1966. ; •

Harrity, J.W., Horiye, H., vanLint, V.A.J., Wikrier, E.G., "Research in
Radiation Damage in Semiconductors", General Atomic, AFCRC-TR-60-117,
GA-1201, AD-235017, February 10, 1960.

Heins, R. J., "Report on Radiation Effects Upon Components Used in Oscar Dual
Command Converter, Evaluation of These Effects Upon Circuit Operation",
Applied Physics Lab.,' Johns Hopkins U., S3R-67-295, IDEP 347.65. 00. 00-S6-11,
November 1, 1967. ' "'

c. -r'

Herskowitz, G.J., Kobylqrz, T.J., Zeheb, E., "Program in Electro-Physical
S tudies - Microcircuir Models and Diagnostic Techniques for Environmental Failure
Mode Prediction", Stevens Institute of Tech., Hoboken, NASA CR-95354, EP-1,

: N68-28055, May, 1968J" . ! .* '
'"' r

Hocroffer, V. D., "Permanent Effects of Gamma Radiation on Various Switches",
Minneapolis-Honeywell Regulator Company, Micro'Switch Engineering Test Lab.,
Freeport, Illinois, LTR-15027-1, File Reference 6335', December 30, 1960.

Holmes-Siedle, A.G., Dennehy, W.J., Zaininger/ K.H., "The Interrelation
of Process Techniques and Space Radiation Effects in'Metal-lnsulator-Semiconductor
Structures - Final Report", RCA David Sarnoff Research Center, NASA CR-95678,
N68-29421, July 31, 19671 :

Holmes-Siedle, A.G., Uiefderbach, F.J., Poch, W.;J., "The Prediction of
c»x->.~ D~«j:,-.i:*t.. cfr~_*. ^_ T___;.I^... ~~A c^ln. ^«.ll." DI^A A«*>»_CIA>»>__:Space Radiation Effects on and Solar Cells", RCA Astro-Electronics
Div., IEEE Annual Conf!. ch Electronic Reliability, 7th, j-Jew York, May 20, 1966,
Conference Record, Boeinjj Lib. No. 621.38106 C76N, 11 ?66, pp. 22-3 to 22-20.

Honaker, William C., "THe Effects of Protons on Semiconductor Devices", NASA
Langley Research Center^ Hampton, Va., Symposium on the Protection Against
Radiation Hazards in Spacij, Proceedings, Gotlinburg, Tennessee, November
5-7, 1962, TID-7652, Boeing Lib. No. ASTIC 057199, pp. 220-229.

223



02-126203-3

- 19. Bibliography

Honaker, W.C., Bryant, F.R., "Irradiation Effects of 40 and 440 MeV Protons
on Transistors", Lang ley Research Center, Hampton, Va., NASA TN D-1490,
January 1963.

Honnold, V.R., Berggren," C C., Peffiey, W.M., "Radiation Effects in Thin Film
Transistors", Hughes Aircraft Co., Fullerton, FR-67-10-178, ECOM-0052-2,
OR-2, AD-815593, X67-21647, May, 1967. ;

Honnold, V. R., Berggren, C.C., Peffiey, W. M. "Radiation Effects on Thin Film
Transistors", Hughes Aircraft Co., Fullerton, FR-67-38*8, ECOM-0052-3, QR-3,
Rept. -3, AD-819058, X67-22318, August, 1967.

Honnold, V.R., Thomas, G. C., Berggren, C.C., "Transistor Design Effects on
Radiation Resistance, Final Report", Hughes Aircraft Co., Fullerton Calif.,
Contract No. NAS 1-4595, December, 1965.

Hood, J. A., "Degradation of NPN Silicon Planar Transistors With Bombardment
by High-Energy Neutrons", Sandia Corp., Albuquerque, New Mexico, Semi-
conductor Products and Solid State Technology, Vol. 8, pp. 13-16, 1965.

Home, W. E. Brown, R.R., "Correlation of Electron Induced Changes in Transistor
Gain With Components of .Reconb ination Current", The Boeing Company, Seattle
Wash., IEEE Trans, on Nuclear Science, Vol. NS-13;JNo. 6, pp. 181-187,
December, 1966.

Home, W. E. and Folsom, ,J. A., "Predicting Low-Dose Radiation Survival
ProbabiIiry For Transistors", Boeing Document D2-126230-1, Dec., 1969.

Hughes, Harold L., "Surface Effects of Radiation", U.S. Naval Research Lab.,
Washington, D.C., Coiloque International Des Journees D'Eiectronique,
Radiation Effects on Semiconductor Components, Toulouse, France, March 7-10,
1967, paper 16 pages (B3).

Hughes, H. L., "Radiation-Induced Perturbations of the Electrical Properties
of the Silicon-Silicon Dioxide Interface", IEEE Trans. On Nucl. Sci., Vol. NS-16,
No. 6, Dec., 1969. i ' i

Hulten, William C., "Radiation Effects of 40 and 440 MeV Protons on Transistors",
NASA Long ley Research Center, Presented at the Soc. of Aerospace Material and
Process Engineers Symposium,,St. Louis, N62-12598, May 7-9, 1962.

Hulten, W. C., Honaker, ,W. C, Patterson, J.L., "Irradiation Effects of 22 and
240 MeV Protons on Several Transistors and Solar Cells", Langley Research Center,
NASA TN D-718, April, 1961.

'-'r

Huth, G.C., "The Effect of Variation of the Width of" the Base Region on the
Radiation Tolerance of Silicon Diodes", Third Radiation Effects Symposium, Vol.4,
October, 1958. , I

224



D2-'i 26203-3
,1 »

< 19. Bibliography i_

Johnson, C.F., "Design.ing for the Worst Cases - Nuclear War", TRW Systems
Group, Buena Park, Calif., Electronics, Vol'. 40, pp. 88-108,', August 21, 1967.

Johnson, E. R., "Unclassified Literature Survey on the Effects of Nuclear Radiation
to Electron Tube Materials", Stevens Institute of Technology, Hoboken, New
Jersey, Quarterly Report, DA-36-039-SC-73146, ASTIA, AD'208788, May 31 -
September 1, 1958. '•

Kaufman, AlvInB., Eckerman, Richard C., "Diode Resistance to Nuclear Radia-
.Tion", Litton Systems, Inc., Woodland Hills, Calif.|, 'Electronic Industries, Vol.
22, pp. 134-136, August, 1963. - ,

Keister, G. L., "Correlation of Proton, Neutron, Electron, and Photon Radiation
Damage in Transistors and Diodes", The Boeing Company, Seattle, Washington,
ASTM Special Tech. Publication 363, pp. 76-84, 1964.

* i-
Kesselman, R. t "Preliminary Report on Nuclear Radiation Effects on Piezo-Electrics",
Picatinny Arsenal, PA-TR-3045, January, 1963.

'Kingsland, R. H., Honnold, V.R., Loveland, R.D., Russell, R.L, Skavland, R. L.,
"Radiation Effects on Space Power Subsystems (Handbook), Vol. II, Part I", Hughes
Aircraft Co., Fullerton,: Calif., SAMSO-TR-69-7, Vol. II Part I, AD 846 145,
January, 1969.

Klippenstein, E. T., "Effects of Nuclear Radiation on Electronic Parrs", Jet
Propulsion Laboratory, Space Programs Summary No. 37-44, Vol. IV, pp. 81-83,
April 30, 1967, N67-29149, Boeing Lib. No. AST 1C 009517.

Klippenstein, E., Hanks, C. L., Hamman, D. J., "Effects of Nuclear Radiation os
Part of the Temperature-Vacuum-Power Environment", Conference - IEEE Annua!
Conference on Nuclear and Space Radiation Effects, V4th, Ohio State U., Columbus
O~hio, July 10-14, 1967,, Paper Publ. IEEE Trans, on Nuclear Science, Vol. NS-
14, pp. 195-199, December, 1967.

Kubinec, J.J., "Will Radiation Wreck Your 1C Design?", National Semiconductor
Corp., Santa Clara, Calif., Electronic Design, Vol. 4, February 14, 1969.

Kulp, B.A., and Kelley,- R.H., "Displacement of the Sulfur Atoms in CdS by
Electron Bombardment", J. Appl. Phys. 3, June, 1960.

Lacour, J., "Use of Integrated Circuits in Space Environment (Utilisation Oes
Circuits Integres En Ambiance Spatiale)", C. E. A. - C^E. N. -G. Service D'
Electronique, Group Transistor, Journees D'Electronique, Colloque Sur Laction
Des Rayonnements Sur Lss Composants a Semiconducteurs, Toulouse, France,
March 7-10, 1967 (in Fiench).

'i
Lade, R.W., Hauser, J.R., "Theoretical and Experimental Studies of Radiation
Induced Damage to Semiconductor Surfaces and the Effects of This Damage on
Semiconductor Device Performance, Final Report", North Carolina State College,
Raleigh, NASA-CR-66724, SDL-10-538, N69-12257, September 1, 1968.

225 '



D2-126203-3

19. Bibliography

Lcine, E.F., "Radiation Effects on Electronic Components", U. of Calif., Liver-
more, Lawrence Radiation Lab, LER-587-1, N63-84113, September 1, 1962.

Lorin, Frank, "Radiation Effects in Semiconductor Devices", BendixCorp., John
Wiley & Sons, Inc., New York, Boeing Lib. No. 621. 38152A324R, c. 1968.

Larin, Frank, Niehaus, D. J., "A Generalized Approach to Transistor Damge by
Radiation", Nucleonics, Vol. 22, pp. 62-65, September, 1964.

Latham, D. C., Allaen, R.j., Phalen, F., "Study of Proton Radiation Effects on
Solar Vehicle Electronic System", Martin Co., Baltimore, Md., NASA-CR-59524,
ER-13148, N65-11073, September, 1963.

Lauritzen, P.O. Fitzgerald, D. J., "Design Tradeoffs for a Neutron Radiation-
Tolerant Silicon Transistor", FairchiId Semiconductor, Palo Alto, IEEE Trans, on
Nuclear Science, Vol. NS-11, No. 5, pp. 39-46, November, 1964.

Leith, F. A., and Blair, "Study of the Effects of Fast Neutrons on Silicon Con-
trolled Rectifiers", IEEE Trans, on Nuclear Science, Vol. NS-12, December, 1965.

Levy, G., Fouse, R.R., and Costner, S.V., "The Effects of Nuclear Radiation on
Some Selected Semiconductor Devices", Proceedings of the Second AGET Con-
ference on Nuclear Radiation Effects on Semiconductor Devices, Materials, and
Circuirj, Cowan Publishing Corporation, Sept., 1959.

Ling-Temco-Vought, Inc., "A Study of Nuclear Radiation Effects on Telemetry 0
Volume I", RTD-TDR-63-4287, AF33(657)-11646, February, 1964.

Lockheed-Georgia Co., "Components Irradiation Test No. 2", NASA-CR-69074,
ER-7346, ND-4005, X66-12393, April 3, 1964.

Long, D.M., and Baer, R. D., "Radiation Effects on Insulated Gate Field Effect
(MOS) Integrated Circuits", Tech. Report ECOM-01520-F, Dec., 1967.

Madey, R., "Solar Cell Degradation by Protons in Space", Republic Aviation
Corp., Symposium on the Protection Against Radiation Hazards in Space, Pro-
ceedings, Gatlinburg, Tennessee, November 5-7, 1962, T1D-7652, Boeing Lib.
No. AST 1C 057199, pp. 243-259.

Magee, R. M., "Radiation Effects Parameters in Nap Applications, Final Report",
BendixCorp., Ann Arbor, Mich., BSR-988, WL-TDR-64-97, AD-609 302,
N65-15990, November, 1964.

Maier, R.J., "The Effect of Radiation Induced Charge on Transistor Surfaces",
Ncval Radiological Defense Lab., San Francisco, Calif., USNRDL-TR-997,
AD-633 468, N66-33239, March 21, 1966.

Maier, R.J., "Surface Effects on Transistors, Radiation Susceptibility of a Tran-
sistor with MOS-Guarded junctions", U.S. Naval Radiological Defense Labora-
tory, USNRDL-TR-68-9, January 4, 1968.

226



D2-126203-3

19. Bibi iogrophy

Maier, R. J., "Surface Effects on Transistors: Radiation Susceptibility of High
Emitter Peripheral Arc Length Devices", U.S. Naval Radiological Defense Lab,
USNRDL-TR-68-45, March 29, 1968.

Maniief, S. K., "Neutron-Induced Damage to Silicon Rectifiers", Sandia Corp.,
Albuquerque, New Mexico, IEEE Trans, on Nuclear Science, Vol. NS-11,
pp. 47-59, November, 1964.

Marquardt Corporation, Nuclear Systems Division, Van Nuys, Calif., Aircraft
Nuclear Propulsion Systems, Project PLUTO", Report 30002, Volume 3, AF33(616)-
6214, WADC-TN-59-365, November 15, 1959

Matfauch, R.J., Lade, R.W., "The Effects of Co60 Gamma Radiation on MOS
Diodes", U. of Virginia and North Carolina State U., IEEE Trans, on Nuclear
Science, Vol. NS-14, pp. 52-57, August, 1967.

Mcelroy, J.A., Boornarc, A., Gandolfo, D.A., "Neutron Induced Displacement
Damage in Integrated Circuits", RCA Applied Research Labs, IEEE Proceedings,
Vol. 53, pp. 1773-1774, November, 1965.

Melngvale, P. H., "Experimental Determination of Permanent Nuclear Radiation
Effects on Army Missile Control System Electronics", Army Missile Command,
Huntsville, Alabama, RG-TR-67-13, AD-817 995, X67-22099, May 25, 1967.

Measei, P. R., "Total Gamma Dose Effects on Several Types of Semiconductor
Devices", Boeing Memo 2-7911-00-882, August 15, 1968.

Messenger, G. C., "Displacement Damage in Silicon and Germanium Transistors",
Northrop Corp., Newbury Park, Calif., IEEE Trans, on Nuclear Science, Vol.
NS-12, pp. 53-74, April, 1965.

Messenger, G. C., "Radiation Effects on Microcircuits", Nortronics, Division of
Northrop Corp., Newbury Park, Calif., IEEE Annual Conf. on Nuclear and Space
Radiation Effech, Palo Alto, Calif., July 18-21, 1966, IEEE Trans, on Nuclear
Science, Vol., NS-13, pp. 141-159, December, 1966.

Messenger, G. C., "Radiation Effects on Semiconductor Devices", Autonetics,
Anaheim, Calif., AD-842337L, X8-1656/601, X69-71151, IDE? 347.65.00.00-
C1-07, August 15, 1968. ' - . *.

Millea, M. F., Aukermon, L.W., "Effect of Radiation Damage and Annealing of
the Electroluminescence in <3o As Diodes", Aerospace Corp., El Segundo, Calif.,
TDR-66996230-11H, SSD-TR-66-22, AD-478-218, X66-15967, Dec., 1965.

Mitchell, J.P., Wilson, O.K., "A Summary of Surface Effects of'Radiation on
Semiconductor Devices", Bell Telephone Labs., AFCRL-65-898, December 1, 1965.

Mitchell, J.P., Wilson, D. K., "Surface Effects of Radiation on Semiconductor
Devices", Bell Telephone labs., Inc., New York, N. Y., Bell System Tech.
Journal, Vol. 46, pp. 1-80, January, 1967.



02-12603-3

19. Bibliography

Moss, R.W., Kooi, C.P., Baldwin, M. E., "Neutron and Gamma Irradiation of
Some Square-Loop and Microwave Ferrites", AIEE Trans. Pt. I Comm. & Elect,
pp. 362-367, September, 1961.

Motorola Tunnel Diode Handbook, published by Motorola Inc.

Myers, David K., "Avoiding Radiation Effects Semiconductors", Foirchiid Semi-
conductor, Mt. View, Calif., The Electronic Engineer, pp. 71-75, Sept., 1967.

"NARF Finoi Progress Report", General Dynamics/Fort Worth, Nuclear Aerospace
Research Facility NARF-62-18P, FZK-9-184, Final Prog. Rpt., AF33(657)-720l,
Sept., 1962.

Nelson, D. L., Sweet, R.J., "Mechanisms of Ionizing. Radiation Surface Effecrs
on Transistors", Bendix Corp., Southfield, Mich., IEEE Annual Conf. on Nuclear
end Space Radiation Effects, Polo Alto, Calif., July 18-22, 1966, IEEE Trans.
on Nuclear Science, Vol. NS-13, December, 1966.

Nelson, D. L, Sweet, R.J., Niehaus, D.J., "Study to Investigate the Effects of
Ionizing Radiation on Transistor Surfaces, Final Report", Bendix Corp., Southfield
Mich., NASA<R-88482,, Rept. -3699V N67-36726, January, 1967.

Newman, P.A., Wegener, H. A. R., "Effect of Electron Radiation on Silicon
Nitride Insulated Gate Field Effect Transistors", NASA Goddordi and Sperry Rand
Research Center.

Olesen, H. L , "Radiation Effects on Electronic Systems", Missile and Space
Division, General Electric Co., Plenum Press, New York, 1966.

Olesen, H. L., "Radiation Hardening of Semiconductor Electronics", Missile and
Space Division, General Electric Co., Journees D'Electronique, Colloque Sur
Laction Des Rayonnements Sur Les Compose nts a Semiconducreurs, Toulouse,
France, March 7-10, 1967.

Overmeyer, R. F., Nichols, D.K., van Linr, V. A. J./"Radiation Effects on Di-
electric Materials", General Dynamics Corp., San Diego, GA-6715, AD 626 474
Boeing Lib. No. ASTIC 038109, December 17, 1965.

Paddock, R.R., "A Reliability Analysis of the Effects of Nuclear Radiation on the
Electrical Properties of Capacitors", Convoir, General Dynamics Corp., Fort
Worrh, Texas, IRE Trans. Reliability & Quality Control, pp. 27-33, December
1958.

Palkuti, L.J., Elliott, K. E., Thatcher, R. K., "A Study of the Effect of Space
Radiation on Silicon Integrated Circuits, Vol. I, Final Report", Battelle Memorial
Institute, NASA CR-95679, N68-28846, April 9, 1967.

226



D2-126203-3

19. Bibliography

Palkuti, I.J., Elliott, K. E., Thatcher, R.K., "A Study of the Effect of Space
Radiation on Silicon Integrated Circuits, Phase 3, Vol. 2", Batteiie Memorial
Institute, NASA CR-95676, N68-29516, April 9, 1968.

Partridge, P. E., "Report.on Radiation Test Series 12 at The Martin Company",
Applied Physics Lab., John Hopkins U., SOR-67-003, IDEP 347.65.00.00-S6-05,
January 10, 1967.

Partridge, P. E., "Report:on Radiation Test Series 13. at The Martin Co Gamma
Pool Facility", Applied Physics Lab., Johns Hopkins, SOR-67-069, IDEP 347.65.
00.00-S6-08, August 15, 1967.

Partridge, P.E., Report on Radiation Test Series No. 15, The Martin Co., IDEP
No. 347.65.00.00-56-13.

Partridge, P. E., "Report on Radiation Test Series 14 at the Martin Company",
Applied Physics Lab., Johns Hopkins U., SOR-68-028, iDEP 347. 65. 00.00-S6-
10, April 10, 1968.

Peck, D.S., Blair, R.R., Brown, W.L., Smits, P.M., "Surface Effects of
Radiation on Transistors", Bell Telephone Labs., A Symposium on the Protection
Against Radiation Hazards in Space, Proceedings, Gotlinburg, Tennessee,
November 5-7, 1962, TID-7652, Bock I, Boeing Lib., No. ASTIC 57199,
pp. 136-200.

Peck, D.S. Schmid, E. R., "Effects of Radiation on Transistors in the First Teistor
Satellite", Bell Telephone Labs., Allentown, Penn., Nature, Vol., 199,
pp. 741-744, August 24, 1963.

Peletier, D.P., "The Effects of Ionizing Radiation on Transistors", SIP-211-67,
ID EP 347.65.00.00-S6-06, Apr! I 17, 1967.

Perkins, C.W., Marshall, R.W., "Radiation Effects on Monolithic Silicon
Integrated Circuits", Hughes Aircraft Co., Fullerton Calif., IEEE Annual Conf.
on Nuclear and Space Radiation Effects, Poio Alto, Calif., July 18-21, 1966,
IEEE Trans, on Nuclear Science, Vol. NS-13, pp. 300-308, December, 1966.

Perkins, C.W., Thomas, G.D., "Determination of Transistor Figure-of-Merit for
Radiation Effects, Final Report", Hughes Aircraft Co., Fullerton, Calif.,
Contract No. DA 36-039, SC-90703, AD-430 132, December, 1963.

Perkins, C.W.^ Aubuchon, K.G., and Dill, H. G.,, "Radiation Effects and
Electrical Stability of Metal-Nitride-Oxide-Silicon Structures", Applied
Physics Letters, Vol. 12, No. 11, June, 1968.

Pfaff, E. R., "The Effects of Nuclear Radiation on Electronic Components", Ad-
miral Corp., Scientific Rept. No. 1, Phase 2, April, 1958.

Pfaff, E.R., "The Effects of Nuclear Radiation on Electronic Components",
Admiral Corp., Scientific Rept. No. 2, Phase 2, July, 1958.

229



D2-126203-3

19. Bibliography

Pfaff, £.R., "The Effects of Nuclear Radiarion on Electronic Components",
Admiral Corp., Scientific Kept. No. 3, Phase 1, April 1, 1956.

Pfaff, E.R. / "the Effects of Nuclear Radiation on Electronic Components",
Admiral Corp., Scientific Rept. No. 3, Phase 2, September, 1958.

Pfaff, E. R., "The Effects of Nuclear Radiation on Electronic Components",
Admiral Corp., Scientific Rept. No. 5, Phase 1, SR-5, X64-82199, October 15,
1956.

Pfaff, £. R., "The Effects of Nuclear Radiation or, Electronic Comporsants", Admiral
Scientific Rept. No. 6, Phase 1, SR-6, X64-82202, January 1, 1957.

Pfaff, E.R., "The Effects of Nuclear Radiation on Electronic Components",
Admiral Corp., Scientific Rept. No. 6, Phase 2, SR-6, AD227549, X64-82201,
August, 1959.

Pfaff, E.R., "The Effects of Nuclear Radiation on Electronic Components",
Admiral Corp., Scientific Rept., No. 8, Phase 1, SR-8, X64-82203, July 1, 1957.

Pfaff, E. R., "The Effects of Nuclear Radiation on Electronic Components", Admiral
Corp., Scientific Rept. Bf Phase 2, February, 1960.

Pfaff, E. R., "The Effects of Nuclear Radiation on Electronic Components",
Admiral Corp., Scientific Rept. No. 9, Phase 1, SR-9; X64-82204, October
1, 1957.

Pfaff, E.R., "The Effects of Nuclear Radiation on Electronic Components",
Admiral Corp., Scientific Rept., No. 10, Phase 1, Januao/, 1958.

Pfaff, E.R., Sheiton, R.D., "Effects of Nuclear Radiation on Electronic Compo-
nents, Vol. I", Admiral Corp., WADC TR 57-361, AD 155789, N66-83035,
August, 1958.

Philipp, L D. , Louritzen, P.O., "Susceptibility of MOS Transistors to Damage F
From Gamma Radiation", Battelle Memorial Institute, Richland, Wash., The
Trend in Engineering, Vol. 19, pp. 13, 14, 20-22, October, 1967.

Phillips, A.B., "Transistor Engineering", McGraw-HHi Book Co., Inc., 1962.

Phillips, A.R., Sullivan, W.H., "Radiation Evaluation of a Small Sample of
FN288 and SU2105 Junction Field Effect Devices", Sandia Corp., SC-RR-66-2664,
N67-29839, December, 1966.

Phillips, A.R., Tapp, C.M., "Radiation Evaluation of rhe G657155 Transistor
(A2410)", Sandia Corp., Albuquerque, SC-RR-65-300, X66-85149, October,
1965.

Phillips, A.R., Tapp, C.M., "Radiation Evaluation of the G657319 Transistors
(Motorola Sml756)", Sandia Corp., Albuquerque, SC-RRr65-245, X66-13620,
July, 1965. !

230



D2-1 26203-3

' 19. Bibliography

Poblenz, F.W. , "Analysis of Transistor Failure in a Nuciecr Environment",
Research Labs. , Bend ix Corp. , Southfield, Mich., IEEE Trans, on Nucieor Science,
Vol. NS-10, pp. 74-79, January, 1963.

Poch, W. J., Holmes-Siedle, A. G. , "A Prediction and Selection System for
Radiation Effects in Pianar Transistors", RCA, Princeton, N.J., IEEE Annual
Conf. on Nuclear and Space Radiation Effects, Missoulo, Mont., July 15-18,
1968, IEEE Trans, on Nuclear Science, Vol. NS-15, No. 6, op. 213-223,
December, 1968

Poch, W. and Holmes-Siedie, A.G. , "Permanent Radiation effects in Comple-
mentary-Symmetry MOS Integrated Circuits", iEEETrcrs. on Nuci. Sci. , VoS.
NS-16, No. 6, Dec., 1969.

Price, W. E., Gaines, E. E., Miles, J. K. , Newell, D.M., Pecrson, E. 8.,
Smith, E.A., "Electronic Components end Materials" in Space Mo'ericis Handbook
Ed. Gcetzei, C. G. , Rittenhouse, J.8., Singietary,- J.B. , Lockheed Missiles and
Space Co., 3-06-64-1, January 1964, X65-14878, ASTiC 004082, pp. 429-491,
\o5-i4394, A65-22748.

Price, W. E. , Lee, J.C., "Behavior of Electronic Materials ar.d Components Under
Space Radiation Environment", Lockheed Missiles ana Space Co., Palo Aito,
Calif., Institute of Environmental Sciences, 1962, Annual Technical Meeting,
Proceedings, Mt. Prospect, III., pp. 379-384, 1962.

Price, W.E., Newell, D. M. , "Radiation Tolerance of Materials era CoiTrponer.^
in Space Applications", Lockheed Missiles and Space Co. , Sunnyvale, LMSC
8-19-62-8, N63-19395, A D4 17 896, August, 1962.

Propos, D. j., "Reliability of Herrnetica'iy Seaiea Liquid Elecrroiyro
Capacitors Under Extreme Environmental Conditions", Maiiory Capacitor Company,
National Aerospace Electronics Conf ., pp. 148-153, 1964, Boeing Lib., No.
621.381063/SY68N, 1964.

Pryor, S.G., III, "Reliability Testing of Capacitors In Combined Environments",
Lockheed Aircraft Corp. , Gaojgia Div. , Nuclear Kept. 116, AD 249 049,
Dec., 1960.

Raburn, W. D. , "SCR Switching With Ionizing Radiation", AC Electronics Div.
of General Motors Corp., also U. of Alabama, IEEE Annual Conf. on Nuclear
and Space Radiation Effects, Ohio State U., Columbus, July 10-14, 1967,
iEEE Trans. on Nuclear Science, Vol. NS-14, pp. 187-189, December, 1967.

Ramsredt, C.P., Zagorites, H.A., "Bias influence on Radiation-Induced Transistor
Surface Effects", Naval Radiological Defense Lab., Son Francisco, USNRDL-TR-
849, AD-466611, X65-20038, May 17, 1965.

231



02-*! 26203-3

1 9. Bib! jography

RCA Puoiication, "Soiar Cel! Arrcy Optimization", Tecr. R&ccfi ASD-'.'R-o'i-'i'i,
Vol. iiS, 1962.

Ready, J.F., "Comma irradiation Effects on infrared Detectors'1, Proceeasr.gs
of the Second AGE7 Conference on Nuclear Radicrion Effects on Semiconductor
Device;, Materials, and Circuits, Cowan Publishing Corp., September, i°59.

Reid, F. J. , "The Effect of Nuclear Radiation on Semiconductor Devices",
ASTIC T24-RE1C-R-1C, No. "..

Ro'.c, ?. J, , 'Viocoy, j. W. , "The Efi'ecr o-" Njc.ccr i<calo?^cr, on Mc^noiic
Mareriols", REiC ScTtelie Memorial Institute, RE1C Tech, Mev.o i\o. "V2, Decem-
ber 31 .958.

Rind, E.TX.'-.uai, Br/cnr, Floyd?.., "Experimenrai ir.vcsriocnon of Sirr.uia'fec. Spoce
?oriicuiate Radiation Effects on MicroeUcrror.ics1', NASA Lc.-^iey Rcs^crch
Center, Pres»er,7ecl cr 1964 SZ£H inrernc(ior,ai Conv. , New York, Mcrch 23-26,
';9c4, pp. 57-63.

Roblr.sor, M. iM. , Davies, N. F. y Kirrisje, S.G. , "Ererjy Dep=,r*:encc o,r N'^urron
ond Garr.mc Rac'ICiT.'on Dcriiogo In SlKcor", Ajorr.ici :nyerrarioncii, N. A.rier.
Aviotiwn, NAA-SR-rj687, Booing Lib., No. ASTIC 0^274 ,̂ N67-17725, Atoy
25, 1966.

Robinson, .V.. N. , Kimbie, S. G. , Ocv^es, N.F., Walker, D.M., "Lew rlux
Nuclear Raci!ai:on Effects or. Stecrronic Componenrs (3Mt-Lr-2)", A.'ornics
Snte-nononoi, XAA-SR- ̂ 0284, N65-22999, Aprli 20, I9c5.

Robinson, M. N. , Kimbie, S. G. , Waier, D. M. , "Low Flux Nucieor Xadlario--.
Jf^ects on E'ecfrical cr.d Electronic Carriponsnte (SMi-tr-3)", Arorr^cs inter rciionoi
Cenogo Park, NAA-SR-9654, N65-'i2o42/ December i', 19c4.

Rogers, S.C., "Methods of Predlcring \ne Perfor.Tonce of Serriccnaucror Electronic
Circyirs cna Sysfefrs in a Nuciaor Environment1' , Sanciia Corf., Aibuquerque,
Ni.M., institute of Environnientoi Sciences, 1963 Annual Tecnnicci Meeting,
Proceedings, Ml. Prospect, III., institute of Environmentoi Sciences, pp. 129-
138, 1963, Boeing Lib., No. 620. 11206/SY63E, 1963.

JcohrbacH, E.J., Goldstein, H.S., "Rooiorlon Vs. Electronic Comp
Airborne Inbrro.r^nrs Lab. , C^lsf Hcmmer, Jnc., Machine De&Ign, Vol. 35,
pp. 101-104, Januarys, 1963.

Sosenzweig, W., "Space Radiation Effects in Silicon Devices", IEEE Trans, on
Nuciear Science, Vol. NS-12, pp. 18-29, October, 1965.

Rjwe, V.W., "The Effect of Neurron and Temperature EnvIroaTienr or. Sensistors,
Srobistors, and Zener Diodes", Army Missile Command, Hunhviiie, Aia. ,
RG-TR-67-20, AD 819 719, X67-23278, August 15, 1967.

232



D2-126203-3

19. Bibliography

Ruwe, V.W., "The Effect'of Neutron Radiation on Unijunction Transistors end
Silicon Controlled Rectifiers", Army Missile Command, AD-842-808, August, 1968

Ryerson, C. M., Webster, S.L., Albright, F.G., "RADC Reliability Notebook
Vol. II, Final Report", Hughes Aircraft Co., RADC TR-67-108, Vol. II,
AD 821 640, September, 1967.

Sah, C., Noyce, R. N., Shock!ey, W., "Carrier Generation and Recombination
in P-N Junctions and P-N Characteristics", Proc. of the IRE, 45, pp. 1228-1243,
1957.

Schindler, 1.A., Kernohah, R.H., Weertmon, J., "Effects of Irraaiorlon on
Mogneric Properties of Fe-Ni Alloys", U.S. Navel Research Lob, Wcshingron,
D.C., J. Applied Physics,'Vol. 35, No. 9, pp. 2640-2646, September, 1964.

Schlueter, A. W., "The Effect of Nuclear Radiation on Electronic Components",
Admiral Corp., SR-10, Phase 1, N64-84887, January, 1958.

Schmitz, G.E., "Selection of Reliable Radiation Hard Components", Univac
Federal Systems Div., St. Paul, Proceedings 1969 Annual Sumposium on Reliaoiiity,
January 21-23, 1969, IEEE Cat. No. 69 C 8-R, pp. 100-107.

Schnurr, R. H., Southward, H.D., "Radiation Effects Upon Gallium Arsenide
Devices", U. of New Mexico, Albuquerque, IEEE Annual Conf. on Nuclear end
Space Rcdiction Effects, U. of Montana, Missoula, Mont. Juiy 15-18, 1968,
IEEE Trans, on Nuclear Science, Vol. NS-15, pp. 306-310, December, 1958.

Sery, R.S. Gordon, D. I., "Irradiation of Magneric Materials with L5and4MeV
Protons", Ncvcl Ordnance Lab., Silver Springs, Md., J. Applied Physics, Vol.
34, No. 4, Part il, pp. 1311-1312, April) 1963.

Shedd, W., Buchanan, B., and Do I an, R., "Radiation Effects on Junction Field
Effect Transistors", IEEE Trans. Nucl. Sci., Vol. NS-16, No. 6, Decemoer, 1969.

Shelton, R. D., "The Effects of Nuclear Radiation on Electronic Components",
Admiral Corp., SR-4, Phase 1, N64-84888, July 1, 1956.

Shelton, R. D., "Effects of Nuclear Radiation on Electronic Components",
Admiral Corp., Chicago, III., Electrical Manufacturing, pp. 76-81, Sept., 1957.

Shelton, R. D., "Radiation Physics Research at MASFC", NASA Marshall SFC,
Research Achievements Review, Vol., II, Rept. -1, NASA TMX-53556, ,
N67-24547, LI966.

Shelton, R. D., "Radiarion Physics Research at Marshall Space Flight Center",
NASA Marshall Space Flight Center, Huntsville, Ala., Research Achievements
Rev., Vol. 21968, N69-18060, (NASA TM-X-53793, Vol. 2).

Shelton, R. D., Kenney, J.G., "Damaging Effects of Radiation on Electronic
Components", Admiral Corp., Chicago, 111., Nucleonics, Vol. 14 9,
pp. 66-69, September, 1956.

233



D2-126203-3

19. Bibliography

Shorwir, R., and Montner, J., "Performance of Radiation-Resistant Magnetic
Amplifier Controls Under Fast Neutron and Gamma Irradiation", Marquardt Corp.,
Report S-222, AF33(6l6)-7857, August, 1961.

Smith, G. D., "Performance of Silicon Controlled Rectifiers in Radiation Environ-
ment", EISDFairchiId Miller Corp., Bladensburg, Md., IEEE Annual Conf. on
Nuclear and Space Radiation Effects, Palo Alto, Calif., July 18-21, 1966, IEEE
Trans, on Nuclear Science, Vol. NS-13, December, 1966.

-- -S

Smith, K.R., "Techniques for Determination of Transistor Characteristics in o
Neutron Environment1, Army Missile Command, Huntsviile, Ala., RL-TR-67-6,
AD-S2S 558, X68-15929, February 2, 1968. i

Snow, E.H., Fitzgerald, D.J., "Radiation Study on MOS Structures Interim
Scientific Report", rairchild Semiconductor Corp., Mr. View, Calif.,
AFCRL-6S-0045, SR-4, AD-666 435, X68-21644, January, 1968.

Snow, E.H., Grove, A.S., Fitzgerald, D.J., "Radiation Study on MOS Struct-
ures, Interim Report", Fairchi Id Semiconductor Corp., AFCRL-67-0381, SR-3,
AD-656 678, N67-36754, August, 1967.

Snyder, D. M., "Electron-Gamma & Neutron Irradiation Testing of Voltage
Rectifier UR-210", Genaral Electric, Philadelphia, 741-241, IDE? 741. 30.40.00-
EL-01, August 22, 1966.

Snyder, D. M., "Electron-Gamma & Neurron Irradiation Testing of Voltage
Rectifier Diode UR-220", General Electric, Philadelphia, 741-242, !D£P 741". 30.40
.OO-yL-02, August 23, 1966.

Snyder, D. M., "Electron-Gamma and Neutron Irradiation Testing of Voltage
Regulator Diode IN3692B", General Electric, 741-246,,IDEP 741.50. 40. OO-EL-03,
August 25, 1966.

Southward, H. D., and Schnurr, R.H., "Radiation Effects on GaAs Devices and
Schottky Diodes", Tech. Report, AFWL-TR-68-31, Vol. II, Aug., 1968.

Sowin, D.C., Kells, K. £., Wicklein, H.W., Hunter, L.T., "Microcircuit
Hardening Study", The Boeing Company, Seattle, Wash., IEEE Annual Conf. on
Nuclear and Space Radiation Effects, Stanford,U., Palo Alto, Calif., July 18-
21, 1966, IEEE Trans, on Nuclear Science, Vol. NS-13, pp. 316-324, Dec., 1966.

Spears, A. B., "Effect of Radiation on the Electrical Properties of Electronic
Components - V. Relays", Co.nvoir, Fort Worth, Texas, NARF-58-35T, MR-N-216,
AF33(600)-32054, August 22, 1958.

Spencker, A., Schnell, G., Wagemann, H. G., Meinhardt, O., "Radiation
Damage of Bipolar Transistors by Protons", Hahn-Meitner-lnstitute fur Kernforschung,
Berlin, West Germany, HMI-B-61, N68-14100, July, 1967 (in German).

234



D2-126203-3

19. Bibliography

Spradiin, B.C., "Nuclear Radiation Effects on Resistive Elements", Radiation
Effects information Center, Battelie, REIC Memorandum 31, Boeing Lib. No.
ASTIC041142, July 15, 1966.

Stanley, Alan G., "Effect of Electron Irradiation on Carrier Mobilities in Inversion
Layers of Insulated Gate Field Effect Transistors", Lincoln Lob., MIT.

Stanley, Alan G., "Effect of Electron irradiation on Electronic Devices", Lincoln
Lab, MIT, Lexington, ESD-TR-65-487, TR-403, AD-489 617, X67-10916,
November 3, 1965.

Stanley, Alan G., "Effect of Electron irradiation on insulated-pate and Junction-
Gate Field Effect Transistors", Lincoln Lab, MIT, Journees D'Eiectronique,
Colloque Sur Laction Des Rayonnements Sur Les Composanrs a Semiconducteurs,
Toulouse, France, March 7-10, 1967

Stanley, A. G., "Space Radiation Effects on High Gain Low Current Silicon
Planar Transistors", Lincoln Lob, MIT, Group Rept. 1965-T1, C3D-TDR-65-49,
Feb. 9, 1965.

Steinemann, A., "Damaging Electronic Systems by Radioactive Radiation",
European Organization for Nuclear Research Geneva, Switzerland, ABC Bulletin
No. 10, Np-16772, N68-10622, 1966. 1

Swartz, J.M., Closser, W.H., Thurston, M. O., "Silicon Diode Fast Neutron
Dosimeter, Phase 2, Isochronal and Isothermal Anneals of Radiation Damage",
Army Edgewood Arsenal, Md., NDL-TR-83-11, AD 661 323, October, 1967.'

S edon, J. R., Sander, J. E., "The Effect of Low-Energy Electron Irradiation
of Metal-Oxide Semiconductor Structures", Appl. Phys. Letters, Vol. 6, No. 9,
p. 181, 1965.

Thatcher, R.K., Hamman, D. J., Shapin, W, E., Honks, C. L., Wyler, E. N.,
"The Effect of Nuclear Radiation on Electronic Components, Including Semi-
conductors", REIC Battelie Memorial Institute, Columbus, Ohio, REIC Rept.
No. 36, October 31, 1964.

The Boeing Company, "Analytical Methods and Fundamental Parameters for
Predicting Responses of Electronic Circuits to Transient Nuclear Radiation With
Application to Hardened Circuit Design", AFWL TR-65-105, July, 1965.

Vavilov, V.S., "Radiation Type and Energy Dependence of Radiation Damage in
Semiconductors: Fundamental Aspects and Application to Devices", P. N. Levedev
Institute of Physics, Academy of Sciences, Journees D'Electronique, Colloque
Sur Laction Des Rayonnements Sur Les Composanrs A Semiconducteurs, Toulouse,
France, March 7-10, 1967.

235



D2-126203-3

19. Bibliography

Viswanorhan, C. R., Messenger, G. C., Alexander, D.H., Cooper, J.E., Heoton,
E.G., Lane, R.N., "Neutron Damage Constant for Bipolar Transistors", IEEE
Annual Conf. on Nuclear and Space Radiation Effects, Pa. State U., July ,8-11,
1969.

Wagemann, H.G., Zander, K., "investigations of the Electrical Properties of
MNS-Transistors, Produced in the U.S. Under Influence of Gamma-irradiation
of Cc°° (4000 ci) Nuclear Reactor Neutrons, and 1.5 MeV Electrons", Hahn-
Meitner Institut Fur Kernforschung, Berlin, West Germany, HMI-B-70, BEW-13,
N69-17148, L1968.

Wannemocher, Harry E., "Gamma, Electron, and Prbton Radiation Exposures of
P-Channel, Enhancement, Metal-Oxide Semiconductor, Field Effect Transistors",
Goddard Space Flight Center, Greenbelt, Maryland/August, 1965.

Wesrrom, J.L., "Design Guidelines for Circuitry in a Nuclear-Reacror-Propelled
Spacecraft, Final Rept.," Lockheed Missiles and Space Co., Hunfsville, NASA-
CR-77419, LMSC/HREC-A782893, N66-34793, 1)4 pages, July 1, 1966.

Wicklein, H.W. Hunter, L.T., Kells, _«.£., Sowin,,D.C, "MicrocircuiT
Hardening Study", The Boeing Company, Seattle, Wash., IEEE Annual Cohf. on
Nuclear and Space Radiation Effects, Palo Afto, Calif., July 18-21, 1966,
IEEE Trans, on Nuclear Science, Vol. NS-13, pp. 316-324, December, 1966.

Wieder, H. H., "Performance of Solid State Materials end Devices Subject to a
Nuclecr Radiation Flux", U.S. Naval Ordnance Laboratory, Corona, Calif.,
NAVORD-4621, ASTIA, AD 143467, Aug., 1957.

Wilson, D. K., Lee, H. S., "Permanent Damage Radiation Effects in Narrow Base
PNPN Devices", Bell Telephone Lab., Whfppany, N. J., IEEE Annual Conf. on
Nuclear and Space Radiation Effects, Palo Alto, Calif., July 18-22, 1966, IEEE
Trans, on Nuclear Science, Vol. NS-14, pp. 15-32, October 1967.

Wilson, O.K., Mitchell, J.O., Suthbert, J.D., Blair, R.R., "Effects of
Radiation on Semiconductor Materials and Devices, Final Report", Bell Telephone
Labs., AFCRL-67-0068, AD650-195, N67-29514, December 31, 1966.

Wood, O. Lew, "Radiation Effects on Silicon Solar Cells", Sperry Utah Co.,
Electro-Technology, Vol. 77, pp. 52-54, April 1966,

Woodward, J., Grannemann, W.W., "The Fabrication and Irradiation of Titanium
Dioxide Diodes", U. of New Mexico, Albuquerque, Research Lab. Testing and
Theorer. Studies Supporting AFWL TREES Program, see N65-19244, pp. 47-70,
N65-19247, January, 1965.

Zaininger, K. H., Holmes-Siedle, A.G., "A Survey of Radiation Effects on
Merc I-Insulator-Semi conductor Devices", RCA, Princeton, N.J, RCA Review,
pp. 208-240, June 1967.

236



02-126203-3

19. Bibliography

"Components irradiation Test No. 1, Transistors and SCRV, Lockheed-Georgia
Co., Marietta, NASA-CR-56575, ER-6783, N65-16805, February 21, 1964.

"Components Irradiation Test No. 2, Transistors, Diodes, Quartz Crystals, and
2500 Volt Power Supply", Lockheed-Georgia Co., Marietta, NASA-CR-69074,
ER-7346, ND-4005, X66-12393, April 3, 1964.

"Components Irradiation Test No. 3, Field Effect Transistors", Lockheed-Georgia
Co., Marietta, NASA-CR-60683, ER-7360, X65-12332, June 15, 1964.

"Components Irradiation Test No. 4, 2N1132 Transistors", Lockheed-Georgia Co.,
Marietta, NASA-CR-60585, ER-7483, X65-12152, July 10, 1964.

"Components Irradiation Test No. 5, HPA-1002 and IN1616, Diodes S2N1724 and
2N2222 Transistors, 2N51J Flip Flop Bistable Network, SN522 Operational
Amplifier", Lockheed-Georgia Co., Marietta, NASA-CR-60840, ER-4510,
N65-17526, July 24, 1964.

"Components Irradiation Test No. 6, 2N2222 Transistors and T1-257 Diodes, Final
Report", Lockheed-Georgia, Marietta, NASA CR-60417, ER-7564, X65-12050,
August 21, 1964.

"Components irradiation Test No. 7, 2N834 Transistors, IN540 and 1N649 Diodes,
S1N752A Zener Diodes", Lockheed-Georgia Co., Marietta, NASA-CR-57107,
ER-7620, N65-18250, September 28, 1964.

"Components Irradiation Test No. 8, 2N918 Transistors, 1N250 Diodes Tantalum
Capacitors", Lockheed-Georgia Co., Marietta, NASA-CR-57352, ER-8786,
N65-19758, October 30, 1964.

"Components irradiation Test No. 9, 2N708 Transistors", Lockheed-Georgia Co.,
Marietta, NASA-CR-57462, ER-7717, X65-13522, January, 1965.

"Components Irradiation Test No. 10, S2N657A, 2N718A, S2N1016D Transistors",
Lockheed-Georgia Co., Marietta, NASA-CR-57725, St-7738, X65-13986,
February 1965.

"Components Irradiation Test No. 11, 2N1711, S2N930, and 2N250] Transistors",
Lockheed-Georgia Co., Marietta, NASA-CR-57722, ER-7759, X65-13989,
January 29, 1965.

"Components Irradiation Test No. 12, S2N657A and 2N1711 Transistors, Comple-
mentary and Darlington Pairs, Differential Amplifierj, and Capacitors", Lockheed-
Georgia Co., Marietta, NASA-CR-63186, ER-7824, X65-16638, March, 1965.

"Components Irradiation Test No. 13, 2N2501 Transistors, Tl 551 Diodes and
Various Types of Thermistors", Lockheed-Georgia, Marietta, NASA-CR-64433,
ER-7899, N65-32081, April, 1965.

237



D2-126203-3

19. Bibliography

"Components Irradiation Test No. 15, 2N708, 2N918, S2Nl486and S2N2412
Transistors ond 2N2498 Field Effect Transistor", Lockheed-Georgia Co., Marietta,
NASA-CR-71927, ER-8006, N66-23844, June, 1965.

"Components and Sub-assemblies, SNAP 8, Radiation Effects Test Program,
Vol, W", Lockheed-Georgia, Marietta, ER-7644, N65-23009, January, 1965.

"Determination of Transistor Figure-of-Merit for Radiation Effects Kept. 1",
Hughes Aircraft Co., Fullerton, Calif., FR62-17-146;r ESW63-5, AD293 162,
January 1, 1963.

"Determination of Transistor Figure -of-Merit for Radiation Effects, Rapt. 2",
Hughes Aircraft Co., Fullerton, Colif., FR-63-17-53, AD 298 Oil, September
1 - November 30, 1962.

"Derermination of Transistor Figure-of-Merit for Radiation Effects, Rept. 3",
Hughes Aircraft Co., FuUerton, Calif., FR-63-17-174, AD410542.

i

"Development of a Method of Preconditioning and/or Testing Semiconductor
Components", Motorola, Inc., Phoenix, Ariz., NASA CR-95203, X68-17187,
November 1967.

"The Effects of Nuclear Radiation on Electronic Components", Admiral Corp.,
Scientific Rept. No. 4. Phase 1, July 1, 1956.

"The Effects of Nuclear Radiation on Electronic Components", Admiral Corp.,
Scientific Rept. No. 7, Phoje 1, April 1, 1957.

"The Effects of Nuclear Radiation on Electronic Components", Admiral Corp.,
Scientific Rept. No. 9, Phase 1 SR-9, X64-82204, October 1, 1957.

"Electronic Components Testing in a Nuclear Environment Test 3 Transducers II",
Lockheed-Georgia Co., Marietta, Georgia, ER-9815, AD-842 322L, X69-71282,
NASA CR-98652, IDE? 852.74.09.00-FH-01, February, 1968.

"Gamma Irradiation of S2N?30 Transistors", Lockheed-Georgia Co., Marietta,
NASA-CR-75799, ER-8496, X66-18841, February, 1966.

"Introduction to Nuclear Radiation Effects Flight Control Circuits11, Autonetics,
Anaheim, Calif., EM-0363-019, AD-459724, X65-82388, April 4, 1963.

"Neep Nuclear Electronic Effects Program", Bell Telephone Labs., WADC-TN-
59-295, AD 226 168, July 15, 1959.

"NGL Platform Nuclear Radiation Program, Vol. I Research and Analytical Data
Section", Aeronautical System Division, Wright Patterson AFB, Ohio, ASD-TR-
61-511, Vol. I, AD 284 445, June, 1962.

238



D2-126203-3

19. Bibliography

''Predict Final Report (A Computer program wcs written to retrieve, tabulate, and
statistically analyze data regarding permanent radiation effecb in various requested
parameters of transistors, diodes, and capacitors)11, IBM Corp., Owego, New York,
AFWLTR-65-101, Vol, II, AD 474 078, October, 1965.

"Preliminary Space Radiation Evaluation for Sprague Electric Company Solid
Tantalum Capacitor Type 350D Hyrel St., " Space-General Corp., El Monte, Calif.
Rept. -222R-1, AD-298536, N64-83200, IDEP 151.75.40.50-A7-01, Sept., 1962.

"Radiation Effecb on Capacitors", TRW Capacitor Oiv., Ogallala, Nebr., Rept.
-27A0007, N65-86303, 1962.

"Radiation Effects State of the Art 1963-1964", Applied Physics Lab., Johns
Hopkins U., RElC Rept. No. 34, June 30, 1964.

"Radiation Effects, Surveys of Soviet-Block Scientific and Technical Literature",
Library of Congress, Aerospace Tech. Oiv., ATD Rept. P-65-12> A0460 799,
Boeing lib. No. ASTIC 020615, March 24, 1965.

"Report on Radiation Effects Upon Components Used in Oscar Duo! Command
Converter Evaluation of these Effects Upon Circuit Operation'1, Applied Physics
Lab., Johns Hopkins Umv., Silver Spring, AO-841 3761, S3R-67-295, X69-70602,
IDEP347.65.00.00VS6-01, November 1, 1967.

"Report on Radiation Test Series No. 15 (Test of Radiation Effects on Semiconductors)
Applied Physics Lab., Johns Hopkins U., Silver Spring, AD-845 954,
IDEP-347.65.0000-S6-13, APL-SOR-68-058, X69-72688, October 21, 1968:

"Study to Determine Effects of Fission Product Gamma Radiation on Electronic
Ports and Equipment, Final Rept.," Bendix Corp., Ann Arbor, Mich., BSC 39655,
AD-423 286, August, 1964.

"Technology, Design and Application of Integrated Circuits", Army Electronics
Command, Fort MonmouJh, N.J., Tech. Rept. ECOM-2747, AD641 642,
August, 1966.

"Preliminary Space Radiation Evaluation for Sprogue Electric Company Solid
Tantalum Capacitor Type 350D Hyrel St.," Space-General Corp., El Monte, Calif.
Rept. -222R-1, AD-298536, N64-83200, IOS> 151.75.40.50-A7-01, September,
1962.

"Radiation Effects on Capacitors", TRW Capacitor Div., OgaHofo, Nebr., Rept.
-27A0007, N65-86303, 1962.

"Radiation-Effect* State of the Art 1963-1964", Applied Physics Lab., Johns
Hopkins U., RE1C Rept. No. 34, June 30, 1964.

239



02-126203-3\

19. Bibliography (Continued)

"Radiation Effects, Surveys of Soviet-Block Scientific and Technical Literature",
Library of Congress, Aerospace Tech. Div., ATD Rept. P-65-12, A0460 799,
Boeing Lib. No. AS TIC 020615, March 24, 1965.

"Report on Radiation Effects Upon Components Used in Oscar Dual Command Con-
verter Evaluation of These Effects Upon Circuit Operation", Applied Physics Lab,,
Johns Hopkins Univ., Stiver Sprirg, AO-841 376L, S3R-67-295, X69-70602,
IOEP 347.65.00.00-S6-01, November 1, 1967.

"Report on Radiation Test Series No. 15 (Test of Radiation Effects on Semicon-
ductors)", Applied Physio Lob., Johns Hopkins U., Silver Spring AD-845 954,
IDEP-347.65.0Q.OO-S6-13, APL-SOR-68-058, X69-72688, October 21, 1968.

"Study to Determine Effects of Fission Product Comma .Radiation en Electronic
Ports and Equipment, Final Rept.," Bendix Corp., Ann Arbor, Mich., BSC 39655,
AD-423 286, August, 1964.

"Technology, Design and'.Application of Integrated Circuits", Army Electronics
Command, Fort Monmouth, N.J., Tech. Rept. ECOM-2747, A0641 642,
August, 1966.

"Preliminary Space Radiation Evaluation for Sprague Electric Company Solid
Tantalum Capacitor Type 3500 Hyrel St.," Space-General Corp., & Monte,
Calif., Rept. -222R-1, AO-298536, N64-83200, IDE? 151.75.40.50-A7-01,
September, 1962.

"Radiation Effects on Capacitors", TRW Capacitor Oiv., Ogollala, Nebr.,
Rept.-27A0007, N65-86303, 1962.

"Radiation-Effects State of the Art 1963-1964", Applied Physics Lab., Johns
Hopkins U., REICRept. No. 34, June 30, 1964.

"Radiation Effects, Surveys of Soviet-Block Scientific and Technical Literature",
Library of Congress, Aerospace Tech. Div., ATD Rept. P-65-12, A0460 799,
Boeing Lib. No. ASTIC 020615, March 24, 1965.

"Report on Radiation Effects Upon Components Used in Oscar Dual Command Con-
verter Evaluation of These Effects Upon Circuit Operation", Applied Physics
Lab., Johns Hopkins Univ., Silver Spring, AO-841 3761, S3R-67-29S,
X69-70602, IOEP 347.65.00.00-56-01, November 1, 1967.

"Report on Radiation Test Series No. 15 (Test of Radiation Effects on Semiconductors)"
Applied Physio Lab., Johns Hopkins U., Silver Spring, AO-845 954,
IDEP-347.65.00.00-56-13, APL-SOR-68-058, X69-72688, October 21, 1968.

240



D2-126203-3

\ 9. Bibl iography (Conti nued)

"Study to Determine Effects of Fission Product Gamttta Kodlotior, on Electronic
Ports and equipment, Fino! Rept. ", Bendix Corp., Ann Arbor, Mich., 85C 39655,
AD-423 286, August, 1964.

"Technology, Design and Application of Integrated Circuits", Army Electronics
Command, Foit Monmouth, N.J., Tech. Repr. ECOM-2747, A0641 642,
August, 1966.

241




