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CKAPTE R I

INTRODUCTION AND STATEMENT OF TIIE PROBLEM

"The study of hydrodynamic lubrication is, from a mathematical

standpoint, the study of a particular form of the Navier-Stokes

equations (])* **." It was not until the 1880's that the theory of

hydrodynamic lubrication came into existence. A Committee of the

Institution of Mechanical Engineers had asked Beauchamp Tower to

determine the proper means by which a railroad journal bearing should

be lubricated. The investigation indicated that bath lubrication

significantly lowered the coefficient of friction of the bearing.

When a hole was drilled in the bearing to allow lubricant to be

added, it was noticed that a considerable amount of oil was flowing

from the hole. Tower tried to plug the hole with a wooden peg but

it was soon worked out when the test was rerun. A gauge was then

attached and indicated a definite pressure greater than the projected

pressure of the load. Further measurements were then taken throughout

the bearing and gave an indication as to the pressure profile in the

bearing (2).***

Reynolds (3) analysis, in 1886, of Towers' experiment deduced

that the resultant pressure profile was due to hydrodynamic action

in the fluid film and was dependent upon the viscosity of the

lubricant being used. The differential equations formulated by

*Number in parentheses indicate reference in Bibliography.

**Reference in Bibliography, p. I.

***Reference in Bibliography, p. 149.



Reynolds for the determination of the hydrodynamic bearing pressure

were solved by an approximate series expansion for an infinitely long

bearing assuming steady state loading only.

As the speeds of the machinery using journal bearings increased

after the turn of the century, the interest in the development of

journal bearing theory increased considerably. The users of such

machinery were reporting large vibrational amplitudes under certain

conditions of loading and speed which in turn caused large forces to

be transmitted to the system foundation and the system's componentparts.

Newkirk (4) reported in ]924 the first recorded instance of

bearing instability. He demonstrated that under certain combinations

of speed and loading, the journal center did not remain fixed as

predicted by the steady-state Reynolds equation, but precessed or

orbited about the equilibrium position at a speed approximately equal

to half the rotational speed. This phenomena was termed oil whip or

whirl and is a self-excited motion.

A complete dynamical analysis of such a system requires that

the hydrodynamic force terms be coupled to the dynamical equations

of motion of the rotor (journal), including the external loading

forces on the system and the unbalance of the journal (See Figures 3.], 3.2

for journal bearing schematic, force balance and unbalance represen-

tation).

The resulting equations of motion for the complete system are

highly nonlinear and the stability characteristics have been examined

primarily from a linearized or perturbation analysis about the

2



equilibrium position of a balanced journal under unidirectional loading.

The bearing stability obtained from linearized theory only

predicts the threshold of stability. It does not give any information

as to the magnitude of the journal orbit above the whirl threshold

speed. The linearized theory predicts that the journal motion will

grow exponentially or becomeunboundedwhen the rotor is operated

above the whirl threshold speed. In actuality, the journal motion

is bounded and the motion forms limit cycles.

With the aid of the high-speed digital computer and the proper

formulation of the hydrodynamic force expressions, the complete non-

linear motion of the journal bearing system maybe obtained through

the use of numerical methods for integrating the governing equation

of motion.

In addition to the determination of the journal motion under

arbitrary loading above and below the stability threshold, it is equally

important that the bearing forces and the bearing dynamic transmissibility

characteristics be determined (see p. _S for explanation of this term) .

The results of such an analysis follows a brief discussion of the

earlier investigations and the state of the art (CHAPTERII).



CIIAPTER II

BACKGROUND AND STATE OF THE ART

Under stable operating conditions the journal center will be

located at some equilibrium eccentricity, _, and at a given constant

attitude angle, _ *, as shown in Figure 3.1. This condition would be
O

ideal for smooth operation of the machinery supported in the journal

bearing. However, as mentioned earlier, numerous reports indicated

that such machinery was having serious vibrational problems.

Harrison (5) in 1913 who gave fluid-film force expressions, and

Newkirk (4) in 1924 were the earliest investigators of the problem of

rotor stability. Working at the General Electric Laboratory, Newkirk

observed and explained to some extent the phenomenon of whirl. This

experimental investigation is considered by many to be the point at

which the interest of the engineer and designer first centered on the

fluid-film journal bearing as a contributing factor to the instability

of rotating machinery (6).

Gunter (7) gives a detailed report on the findings of Newkirk (8)

and discusses the work of Robertson (9) who in 1933 used the forces

derived by Harrison to investigate the stability of an infinitely long,

ideal 360 ° journal bearing. This analysis disagreed with experimental

findings since the journal was shown to be unstable at all speeds. The

discrepancy arose from the fact that Harrison, as referenced above,

had included the negative pressure region of the bearing in his analysis

*See footnote on page 43 for further information about the

equilibrium attitude angles.



since he did not consider film cavitation or rupture. Thus the analysis

by Narrison is valid only for small eccentricities or for the case where

the ambient fluid pressure is greater than the maximum hydrodynamic

pressure developed. In this case the uncavitated film is closely

approximated.

In 1930 Cardullo's work (10) was published in which he considered

the development of equations for the pressure profiles in short

journal bearings. Sommerfeld (11) had earlier presented an approximate

solution to Reynolds' equation in which the bearing was assumed to be

infinitely long and hence the axial flow of the lubricant could be

neglected. Cardullo realized this approach was in error, especially

for very short bearings or bearings having circumferential grooving. He

proceded to develop a theory which accounted for only axial flow and

presented curves representative of the resulting pressure profiles in

short journal bearings. In a discussion to this paper, Howarth and

Needs called attention to the paper of A. G. M. Michell, "The Lubrica-

tion of Plane Surfaces," published in Zeit. _ Math. u. Phys. in 1905.

Michell had based his work on Reynolds' equation*; dropping the first

term on the left side of the equation. This gave the same results,

without going through the long derivation and assumption, that Cardullo

had presented. Due to the assumption made by Michell and Cardullo which

seemed to make the pressure gradient zero in the circumferential direc-

tion, no further analysis was made of the solution until the 1950's,

*Reynolds' equation is given as Eq. [3.]8], p. g3.
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when Ocvlrk, whose work will be discussed later, presented experimental

evidence of the validity of the solution and extended the analysis

considerably.

In 1946 Hagg (12) reported that the upper limit of the whirling

frequency was one-half the rotational frequency, the sameconclusion

reached by Robertson in 1933. Hagg's argument was based on the

required flow for a whirling journal whereas Robertson reached his

conclusion by considering the conditions necessary for a force balance

of a whirling ideal journal. The stability of several types of bearing

arrangements were tested experimentally and the tilting pad arrange-

ment was found to be incapable of exciting or sustaining a vibration.

Ocvirk (]3) in ]952 presented experimental data which supported

the theory of Michell and Cardullo for bearings having length to

diameter ratios up to about one. His complete analysis gave expressions

for applied load, attitude angle, location and magnitude of peak film

pressures, friction, and required oil flow rate as a function of the

eccentricity ratio. The basic nondimensional expression developed, the

capacity number, allowed performance curves to be drawn (capacity

numbervs. eccentricity ratio) and by comparison to experimental data

it was concluded that reasonable agreement existed between the short

bearing theory and the experimental test data.

Ocvirk's analysis clearly indicated that by dropping the first

term of Reynolds' equation the circumferential pressure gradient was not

zero but somefinite value. The part of the circumferential flow

proportional to the Journal surface velocity and varying film thickness

waa not lost by dropping the first term of Reynolds" equation.



Burwell (14) in 1951 presented analytical solutions for journal

paths under various simple types of loading (constant, square wave,

sinusoidal) for a very narrow bearing, llowever, the regions of

negative pressure were retained in the solution, which made the

analysis ambiguous for other than very small eccentricities.

Poritsky (15) in 1953 stated that by neglecting the negative

portion of the journal pressure profile (long bearing equation) the

journal could be shown to be stable below twice the critical frequency

of the rotor. However, in his analysis of the linearized equations a

stiffness term was added to the radial component of motion and the

negative pressure remained in the analysis. One conclusion reached by

his analysis was that rotor flexibility lowered the stable range of

operation. The same conclusion was reached by Hagg and Warner (16) who

devised an electric analog for the flexible rotor.

DuBois and Ocvirk (17) in 1955 considered a method for

estimating a maximum bearing operating temperature and discussed methods

of evaluating the effects of elastic deformation and misalignment on

bearing performance. A method for determining a factor of safety was

also presented.

Kreisle (18) in 1955 gave experimental findings concerning the

performance of short journal bearings under conditions approaching

zero minimum oil-film thickness. Six different load numbers were

defined and considered to be useful in predicting and analyzing the

performance of short journal bearings. The results of his experimental

torque measurements indicated that, as long as the minimum oil-film

thickness is of the order of or exceeds the sum of the predominant peak



surface roughness of the bearing and journal in the circumferential

direction, hydrodynamic film lubrication exists in the bearing.

Newkirk and Lewis (]9) reported from experimental observations

that short bearings, large clearances and moderate loads favored a

wider range of stable operation.

Boeker and Sternlicht (20) derived the stability threshold for

antiwhirl journal bearings* and justified the stiffness term used by

Poritsky as the contributing factor to predicting the region of stable

operation. Haggand Sankey (2]) provide analytical and experimertal

results for a rotor bearing system. Linearized elastic and damping

properties were incorporated in their analysis which reduced the

resonant amplitude of the rotor considerably in the analytic solution

and was in good agreementwith the experimental amplitudes recorded.

Newkirk (22) reports experimental results obtained from two

different test rigs; one rigid rotor (oil film dominant) and one more

flexible (elasticity of shaft more dominant). Three general definitions

were given and are repeated here:

a. "Resonant whirl [whip]" maybe defined as, "a resonant

vibration of a shaft in fluid film journal bearings which

occurs at speedsequal to or above twice the first critical

of the rotor, and at a frequency equal approximately to a

natural frequency of the rotor at the running speed."

b. "Half-frequency whirl" is, "a vibration that mayoccur at

any rotative speed of a shaft in fluid-film bearings and at

*These have grooving on the shaft or in the bearing surface and
therefore do have a radial componentof force whereas the 360° full
journal does not have the radial component if the negative pressures are

not neglected,
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a frequency approximately one half of such speed."

c. "Fluid-criticals" are, "rotor instabilities of limited

speed range due to fluid-film action in journal bearings."

Pinkus (23) reported that flexible mounting gave greater stability

to rotor-bearing systems. This was in direct opposition to the findings

of Poritsky (15) and Hagg and Warner (16) who stated that support

flexibility will lower the stability threshold speed. (Gunter explains

this apparent discrepancy in CHAPTER IV of reference (7)). High

loads and high viscosities were also reported by Pinkus to increase

stability, while unbalance had little or no effect on the resonant whirl.

Pinkus in his experimental investigations of bearing stability

indicates that the order of bearing stability is, starting with the

most stable bearing, as follows: 3-1obe, tilting pad, pressure,

elliptical, 3-groove, and plain circular.

Orbeck (24) in 1958 presented an analysis of oil whip that

incorporated pressure forces, viscous drag force_, and the centrifugal

forces acting on the journal. A vertical shaft was used for the model

and the experimental results of Kreisle were used to define the capacity

number. Equations are given that determine both the amplitude and the

whirling frequency for a vertical shaft arrangement. The results, as

based on the experimental curves of Kreisle, show for a particular

example cited that the frequency ratio varied from 0.497 at an

eccentricity of 0.05 to 0.499 at an eccentricity of 0.8.

Hull (25) in 1958 demonstrated oil-whlp resonance harmonics

experimentally by applying a rotating load to the Journal bearing

test rig. The Journal center traced out a different trochold for each

9



ratio of exciting force frequency to running speed. Inside loops

denoted a forward rotating load while outside loops denoted backward

rotating loads. The formula he gave was:

where:

L =Nj/NW. i
2.16

L = number of loops (inside - +, outside - -)

N.= journal speed
J

NW= speed of rotating load .

These results are true only when the single rotating load is

large in comparison to any other forcing function that might be acting

on the journal. If unbalance is present, then the resulting orbit center

traces will be altered considerably due to the synchronous unbalance

force. This will be shown in the following analysis.

In ]959 Hori (26) presented the results of an investigation

that allowed the inherent journal instability of previous analyses

to be avoided by assuming zero pressure in place of the negative pressures

in the oil film. Hori used the long bearing approximation to Reynolds'

equation and applied the Hurwitz criteria to the linearized equations

of motion.

Hori showed that the bearing is not unstable at all speeds as

indicated by the Robertson analysis, but has a finite stability

threshold which is a function of bearing clearance, transverse shaft

loading, journal speed and viscosity. He presented dimensionless

stability plots which show the influence of various bearing parameters

on rotor stability. One important aspect of Hori's analysis is the

I0



influence of the transverse bearing load on stability. For example

Horl states that in the case of a vertical balanced rotor in which

the transverse load due to gravity is zero, the journal will be unstable

at all speeds. This important stability characteristic of vertical

shafts has been verified by the author in this investigation. Hori

also shows that if the transverse loading is sufficiently large so as

to increase the operating eccentricity above 0.8 for the plain journal

bearing, the system will be stable regardless of shaft flexibility.

Sternlicht (27) presents a summary of nine earlier papers that

deal with both compressible and incompressible fluid film journal

bearings. The concept of force transmission and its effect on the

overall rotor system performance is discussed. Synchronous, half, and

fractional frequency whirl, critical speeds, and resonant whip are also

briefly discussed.

Reddi and Trumpler (28) in ]962 examined the stability of the

360 ° full journal and the ]80 ° partiallfilm bearings. End leakage

factors were applied to the film force expressions and the resulting

equations of motion linearized and examined for stability about the

equilibrium position by the Routh criteria. The complete equations of

motion were programmed on a digital computer and the resulting orbits

presented for the 360 ° journal.

Reddi also demonstrated that if bearing cavitation is not taken

into consideration, the bearing will be unstable at all speeds. For

example, he shows that for the case of the full film 360 ° infinite

length bearing excluding cavitation, the journal motion will always

become unstable and form limit cycles. He also shows a number of

11



cases in which the bearing fails for high loading and low speed

operation in which the stability data of Hori and Booker indicate high

stability if cavitation is included. This behavior has actually been

observed in practice. Pinkus reports on stabilizing a bearing by reducing

the oil inlet flow thereby changing the cavitation boundary conditions.

Thus the cavitation boundary conditions of the bearing will greatly

influence the stability characteristics of the system. The complete

cavitation equations obtained from the Navier-Stokes equations are

time transient and have not been completely investigated

A stability chart was presented for the 180 ° film bearing which

indicated regions of stable and unstable operation on a plot of

Sommerfeld number versus a speed parameter. The conclusion reached

was that the designer may expect large machine vibration and possible

bearing failure unless the equilibrium eccentricity ratio remains

> 0.76, _.e., a heavily loaded condition, or the speed parameter

= q _--< 0.22. This is equivalent to the stability parameter of the

author of WS = 1.38. Badgley and Booker(30)show that the short bearing

is stable for values of WS < 2.50

Alford (29) in 1965 presented a completely new concept as to the

possible causes of instability in turbomachinery. Forces arising from

two sources were considered. These were (a) forces due to circumferen-

tial variation of static pressure acting on the cylindrical surface

of the rotor (particularly within labyrinth seals) and _) forces due

to the eccentricity of the rotor causing variation of blade-tip

clearances which results in variation of local efficiency and creates

unbalance torques. These considerations are of extreme importance and

* Cole, J.A. and Hughes, C.J., "Oil Flow and Film Extent in Complete
Journal Beatings," Prec. Inst. Mech. Engrs. (London), Vol.170, No.17, 1956.
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are a key factor to instabilities of high-speed axial compressors and

turbines. It explains why some units run very smoothly at no load

test conditions while serious stability problems arise when testing at

partial or full load conditions.

Gunter (7) in 1966 after giving a complete discussion of the

background and state of the art, examined the single-mass unbalanced

symmetric rotor for synchronous, nonsynchronous, and zero precession

and the effect of gravity. The analysis included the influence of

support flexibility and damping on stability. Various stability maps

were presented for the case of symmetric and unsymmetric bearing support

flexibility. It was shown that foundation asymmetry alone could increase

the stable region of operation considerably.* The experimental orbits

obtained by Kushul** of precession above the stability threshold indicated

that the precession rate was constant and equal to the rotor critical

speed.

The stability of hydrodynamic bearings was also examined and

confirmed the findings of Reddi (28). Whirl orbits for both linearized

and nonlinear bearing characteristics obtained by analog computer

simulation indicated the formation of limit cycles in the nonlinear

case whereas the linearized equations gave whirl orbits that were

unbounded.

Badgley (3@ recently presented a nonlinear transient analysis of

*This explains the conflicting reports of Pinkus versus Poritsky,

Hagg and Warner, a8 mentioned earlier in this discussion.

**Kushul, M.Y., "The Self-lnduced Oscillations of Rotors," (Trans.

from Russian.) Consultants Bureau, New York, 1964.
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a plain journal bearing by simulating the whirl orbits on a digital

computer by forward numerical integration of the equations of motion.

The approximations to Reynolds equation used in that analysis were the

short bearing (Ocvirk), the long bearing (Sommerfeld), and the finite

length bearing using Warner's end leakage correction factor. Badgley

assumed a balanced, unloaded, horizontal rotor including film cavitation.

He examined the orbit behavior of the shaft for various disturbance values

and showed that the stability threshold at high eccentricity is reduced

by large initial velocity disturbances. Badgley did not include the

influence of rotor unbalance or external loading. In the author's

investigation these effects are included and it has been demonstrated

that these loads can have a profound effect on journal stability.

Also of considerable importance is the magnitude of the bearing

forces developed during whirl. Of the numerous papers presented on the

subject of bearing instability, no mention has been made of the actual

forces developed by the system. The force transmitted or the dynamic

transmissibility coefficient developed by a bearing is an important

factor in the design of a bearing which has been ignored in the past.

The most recent contribution to the analysis of nonlinear whirl

motion of a journal bearing was the paper presented by Tolle (30)

at the ASME ]968 Vibrations Conference. In this analysis the author

attempts to calculate the pressure profile by means of a series

expansion. The equations of motion are expressed in rotating

coordinates and are integrated on a digital computer using the fourth-

order Runge-Kutta procedure. Since Tolle has considered a noncavitating

film the journal motion is unstable at all speeds, forming limit cycles.

14



This analysis, similar to Badgley's work is also limited in its scope

and does not consider the influence of external loads on the system.

These authors have contributed greatly to the understanding

of journal bearing lubrication problems, however, at present there has

been little data published on the transient nonlinear motion and forces

transmitted in a journal bearing.

The following analysis will combine the nonlinear hydrodynamic

fluid-film forces to the dynamical equation of motion, which may then

be numerically integrated to obtain the transient behavior of the journal.

Horizontal, vertical, and unbalanced journals will be considered as

well as the transient response to loading, both constant and cyclic

(rotating and unidirectional). The instantaneous whirl and forces

transmitted to the bearing are easily obtained as a result of the

method of solution.
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CIU%PTER III

ANALYSIS OF THE SYSTEM

3.1 Introduction

This chapter contains the derivation of the equations of motion

for the Journal bearing. Figure 3.1 gives a schematic of a typical

Journal bearing. The clearance between the journal and bearing has

been greatly exaggerated to clarify the representation of the bearing

parameters. The journal center, oj, is free to move about in the

imaginary clearance circle depicted by the dashed circle in Figure 3._.

The radial displacement of the journal center, oj, from the bearing

center, Ob, is denoted as the eccentricity, e, of the journal, and

when divided by the clearance, c, the eccentricity ratio, £, may then

take on values only from zero to unity.* It is therefore possible to

represent the journal motion by a point moving about in a unit clear-

ance circle, where all displacements are made dimensionless by dividing

them by the clearance. This representation will be used extensively

throughout the following analysis.

Reynolds' equation for the plane slider bearing is derived from

the Navier-Stokes equation for incompressible fluids. This equation

is then further modified for journal bearings for both rotating and

fixed coordinates. The short bearing assumption is discussed and

compared to a finite width bearing solution. Wlth an expression for

*Unity represents bearing failure, while a value of zero has

the journal perfectly centered in the bearing. See Figure 3.2 for a

typical force balance.
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the fluid film forces, the equations of motion of the journal are

easily obtained in the fixed coordinate set. A derivation of the

instantaneous whirl and radius of curvature is presented and finally

someimport parameters used for bearing analysis are presented to

Clarify the terminology of the chapters that follow.

as:

3.2 Derivation of Reynolds' Equation;

Reduction to the Short Bearin_ Equation

The Navier-Stokes equations can be expressed in vector notation

D_
[3._1

For the purpose of this particular derivation, the incompressible

fluid film between two flat plates of length i and width b, separated

by some small distance, h = f(x, z) will be examlned_* If in addition

the body forces are neglected, Eq. [3.]] may be expressed as follows_**

D_
PEC" "vP +,u- v2u" [3.21

Furthermore, if the ratio of h/l is restricted to be much less

than unity, i.e. h/l << 1, it may be concluded that the reduced

Reynolds Number, (*) Re*, is much much less than unity and it is hence

possible to neglect the inertia force terms on the left of Eq. [3.2].

(*)Discussion of this quantity may be found in Section 5, page _.

** See Figure 3.3.

***This equation can also be applied in Journal bearing analysis

for the case of a compressible fluid due to the order of magnitude

of the term _C_._).
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Then Eq. [3.2] may be expressed as

O: -_i +_z
[3.31

[3.4]

[3.5]

_2 _2
where the terms -- have been neglected, since they are higher

8x 2 ' _z 2

order terms. By restricting the pressure to be constant across the

film, i.e. _p/_y = 0, it is now possible to integrate Eqs. [3.3] and

[3.5] to obtain expressions for the velocity profiles in the x and z

coordinate directions.

f r a2u. t OP-

Or
_ t aP

2"--_ _--_ _2 +C,a_.+ C2, [3.6.]

The next step is to impose the following boundary conditions:

At y = O, u = U 1 [3.7]

y ffih, u ffi u2 [3.8]

There fore,

C_=tt_, &rid

u4.- u.{._)• i aP _-+ c_fi+c_.
2# Dt

or. c,=--E---_-_
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Substituting these values of c I and c2 into Eq. [3.6] results in:

In a similar derivation, it can be shown that

where w = W 1 at y = 0

w = W2 at y = h

The remainder of the derivation consists of integrating the

continuity equation across the film. Continuity is expressed as:

_P + V. (p_)= 0 [3.11]_t

[3.10]

Integrating this expression from y = 0 to y = h,

[3.12]

where Eqs. [3.9] and [3.]0] are used for u and w in this equation.

Doing the indicated integrations yields the following equations:

k

[3.13]

[3.14]

B(pLu



Likewise,

[3.16]

Combining Eqs. [3.]3] through [3.16] and multiplying by 12 results in

the following equation:

a p

[3.17]

Inserting the conditions of:

P = constant

W I = W 2 = 0

bh/bz = O,

the following form of Reynolds' equation may be obtained:

ale _aP a [_aP+ +
-- t2(V2-VI)+6(LL,-Uz)_--_ L_-I(_,+(/_) [3.18]

It is now desired to relate this solution to the geometry of the

journal bearing. The first approach considers rotating coordinates, in

which the film thickness* may be expressed as (see Fig. 3.4):

Ft(e'). c(_+c cos_) [3.]9]

*For derivation see Reference (32), p. 104.
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Linear combinations of the following components of motion will

be considered.

a. Rotation of Journal about oj, at Wj.

b. Rotation of bearing about Ob, at w b.

c. Radial motion of oj along the llne of centers.

d. Precession of oj about ob with angular velocity, Wp= _-

If the film thickness Is "unwrapped" the velocities due to "8"

and "b", above may be expressed by =he following components:

U] - (R + C)w b_ RW b

U2 " Rwjcos_ ,.,RWj

V] - 0

v2 - Rwj sln_8_j" _j _hBe'

Since,

t_n(._) : _ : W-g-i"

and for CL <<< 1,

By neglecting the stretch effect in Eq. [3.18], the contributions due

to rotation W b and wj are given by:

b :

[3,20]

For the radial motion along the llne of centers it can be

shown that:

U2 l 6 sinG'

V2 - _ cos_

U I - V I - 0.
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The re fore,

(_ : (-&sue') _ oR e'

but by differentiating Eq.

_O----_: C (I+ C

[3.19],

or

_k

;bO'

and,

_t

Hence,

=Z T [3.211

For precession, it is known that every point in the

velocity _ and is directed normal to the line of centers.

the following velocity components are due to precession:

U2 = -e_cosO'

V2 = e_sinO'

U I = V 1 = 0

Substituting these expressions into Eq. [3.18] yields:

- k_ e/"_°: e'_ co,_ -S-_ +2e_s_

- -24) "ON

Combining Eqs. [3.20], [3.21] and [3.22] results in:

journal has

Therefore

[3.22]

-2¢,)_-,+2 _ [3.23a]
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or:

2 {3.23b]

This expression, i.e. Eq. [3.23], is the Reynolds equation for a plain

journal bearing using rotating coordinates, where e' is the angle

measured from the line of centers in the positive coordinate direction.

This form of Reynolds equation is the expression that most of the work

in this field is based on. However, for the purpose of this investi-

gation, the use of Eq. [3.23] was considered to be unnecessarily

complicated due to the choice of coordinates. To avoid the complexity

of coordinate transformations, the following derivation in fixed

cartesian coordinates is presented.

The following unit vectors will be used to express the derived

velocity components (see Figure 3.5):

_, = - Co_ e InR -- -5_ne Url0

= - S_nelrl R + CosO InO

In6-- SLne_ +Cose_ [3.24]

The velocities of the bearing and journal centers are as follows:

Voj - _2 t + _.

The velocity of poi'nt "Q" is:

- +R bme
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and also:

VQ -V lln R +LL IIn@

or

V, - VQ.I_ R = -_:,C_e- _SCn6

and

[3.25]

Lt,- V--q.ine . O0bR - _ ScnO +_I Cose [3.26]

For point "P", it is necessary to relate the velocities to

V2 and U2 .

The R_j component is not in line with the R_ b component; they

differ by the angle 6. For small displacements these are related

small angles and it is thus possible to approximate Ct as follows:

_ DX - R DE)

Also,

For the theta direction:

vd e: Rc0 co  . Rco 
and for the radial direction:

So, it is now possible to express the velocity of point"P" as:

Vp " X_t +_ +RCO_m O+cO i a_

Therefore,

and:
Lt_ : _p.InO --_ 5LnO +_ CosO +RCO_ [3.27]

• [3.28]
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By neglecting the stretch effect of Eq. [3.]8] i.e. h _- [U]+ U2]' _x '

substitution of the appropriate velocities into that equation gives:
_3

• _ t'_ (v2-v,)

- (_-_,)(2sc.e, _ _ co_

In addition, by neglecting the R _6 terms,

[3.29]

But for small deflection, the film thickness, h, is given as (see

Fig. 3.5) :

since from Eq. [3.19] we can write:

k(O) - C- eCo_ (e -(go-¢_))

= C- ecoso ScrUb- e s_.o Co,._
whe re :

es_._-x_-x, , _. _-_

It is now possible to rewrite Eq. [3.29] as follows:

[3.30]

[3.31]

It must be remembered that in this equation the "@" is

measured from the fixed x-axis and should not be confused with the

rotating coordinate set where the "_"' is measured from the line of
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centers.

Two basic approaches to the solution of Eq. [3.31] have been

reported in the Literature. If it is assumed that the journal bearing

is very long, then it is possible to neglect the fluid flow and

pressure gradients along the z-axis and hence reduce Eq. [3.31] to:

6R _ _e\_ De) = (OOb+O0_) _-_ + _ [3.32]

This solution is known as the Long Bearing Solution and was first solved

by Sommerfeld who used an adroite substitution and succeeded in

integrating the equation (]).*

On the other hand, if it is assumed that the bearing is relatively

short, the appropriate approach is to neglect the flow in the radial

direction due to pressure gradients and arrive at:

_t [3.33]

which is known as the governing equation for the Short Bearing Solution.

This approach to Reynolds' equation is the basis for the computer

program and resulting analysis to be presented in the following sections.

To have a better understanding of when the above assumption is a

valid one, the solid curves in Figure 3.6 were drawn from data for a

finite full journal bearing.** That data was reported to have come

from digital computer solutions of the general Reynolds equation. In

*Reference in Bibliography, p. 42.

**From Reference (I), pp. 86-88.
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addition, the corresponding Sommerfeld Number** obtained from the

short bearing solution is plotted for the same length to diameter

ratios. It is easy to see that the assumption is very good for L/D

ratios of 1/2 or less, or for L/R <_ 1. It is also apparent that more

deviation exists at larger eccentricity values for L/R > 1, whereas

for smaller values the agreement is very good indeed.

The reason for the deviation in the short bearing solution has

been explained by Ocvirk (13) to arise from the higher pressures

predicted due to neglecting the radial pressure flow in the journal.

However, by realizing the limitations of the solution there should

be no confusion about the results and conclusions obtained from the

given theory.

3.3 Dynamical Equations of Motion

The Reynolds equation has been derived in the previous section

for the plane slider and by proper substitution and assumptions, it

has been reduced to the following equation which is valid for a "short"

journal bearing:

(uab+c° l) ÷9_

In fixed coordinates, the film thickness, h, is given by:

[3.34]

[3.35]

_See Section 3.5, p. 4_ for explanation of Sommerfeld Number.
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This equation is valid for a Journal bearing that has no axial

misalignment and was derived by considering small motions in the x and

y directions to be linearily related. In addition, by limiting the

motion of the bearing to rotation, Wb, all displacements will be

relative to the bearing center, ob.

Equation [3.34] can be integrated directly and by applying the

boundary conditions:

P(o,o)= P(e.L)- O

to evaluate the two constants of integration, the following

equation results:

From [3.35],

_k

and:

i oo5o-++at

[3.36]

[3.37]

[3.38]

[3.39]

where:

Therefore,

The increment of force on the journal is given as:

A_ - P(e,}) Rded_R

o}InR ffi -Cose(, - 5_.n

and :

A_7.- (_._)_-- -[P(e,5)Rdod_co,e]i [3.4o]

[3.41]
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where the total force component Is:

Fv. ,, -j'; P(e,_) R cosede d_-

and:

The result of integrating over the length of the bearing and

substituting Eqs. [3.38] and [3.39] leads to the following equations:

" TJO (¢-x¢ose-_$_nS_- ---[S_.ne_.8 [3.42]

The integral of Eq. [3.42] must be integrated very carefully

since a subambient pressure will not be permitted to exist in the fluid

film. This follows from reports on experimental test rigs as discussed

by Reference (1), page 435. The approach to this particular integral

is discussed in more detail in Chapter 5, page 53 .

It is possible to put Eq. [3.42] into dimensionless form if

the following representation is used:

X= X C_
E_j ' cc_j ' °c" c_

then [3.42] becomes:

2_

: Case de [3.43]
2C _ (t- XCose-ysi.e)_ S_oO

The equations of motion of the journal can be derived by

considering Newton's second law.
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A position vector to the center of mass of the journal is:

where the mass center is located a radial distance of e from the

geometric center of the journal. Then the acceleration is given by:

there fore :

[3.44]

where the right hand side of the above equations represents all

loadin_ on the journal, including the forces given by Eq. [3.42] that

are developed in the fluid film. By letting:

e_
co_-.n., _L-T, --c--E_

dividing through by mjc_2,theand equations become:

__ ,U.R L:_OO FXd2_ Fo Co_(_r) + ;_, (X,V. _,';') + "'"
= E_Co.sT +m_Cs'17- 2mc_-q? • +-_---_Qz

[3.45]

d2y
= E,o.5i.nT + --

+ LLR L3OO FY

m it.n? "ZincS-n> mc-n-_
+--- [3.46]

where:

F = Rotating load at some multiple of the journal frequency
o

FX, FY = Constant loading in x and y direction respectively

Also, other loading can be added as noted by + -.-

The above equations are for a vertical Journal bearing since

we have not included the gravity loading in the equations of motion.
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If it is assumed that gravity is acting in the negative y-coordinate

0 2direction, then the term (-g/c ) must be added to [3.46] to account

for this affect.

The solution of Eqs. [3.45] and [3.46] will give the journal

orbit as a function of dimensionless time, T. Numerical methods will

be used to integrate these equations of motion forward in time. The

method of solution will be discussed in detail in CHAPTER V.

3.4 Journal Precession Rate and Radius of Curvature

When a journal bearing is acted upon by some unbalance force

or other cyclic forcing function the journal tends to move in an'orbit

due to the forces acting upon it. If the orbit encloses the center

of the journal then it is possible to think of the distance from the

bearing center to the journal center as the radius of the path and

the angular velocity with respect to the bearing center as the whirl

frequency. Refering to Figure 3.7, these quantities would be radius,

e, and angular velocity _.

These values may be expressed in terms of the displacements

and velocities, x, y, x, y by the following procedure. The velocity

of the journal center may be expressed as

v =×7+ j
]

The relation among the unit vectors is as follows:
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3.7 Typical Journal Trajectory Illustrating the
Instantaneous Radius of Curvature
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SOp

vj._ . e_ . • •
Therefore,

e (Co_ -s_n_i) ,

2 2 2
or, since e = x + y

the n,

In dimensionless form:

_) X_'- Y)(

£L X2 +Y_

where

and

X = x/c, Y = ylc

X = xlc[_, Y = ylc[_, with _ = Wj as before.

The radius, e, is given by:

e = C xix2+Y z

[3.47]

[3.48]

However, it is obvious that [3.47] has little meaning if the

journal orbit does not enclose the bearing center, "Ob".

The equations for the instantaneous radblsof curvature, p,

and angular velocity 0 will now be developed.

The velocity can be expressed for this purpose as:

where :

p ffi instantaneous radius of curvature

#

e = instantaneous angular velocity about o b
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The acceleration is expressed as:

-" d
a_. _ (v¢_ . ¢¢_ + v_t_--_-

V_

" _t ¢,+p- ¢_
But since:

and:

ai'¢" " _-
The new unit vectors are determined as follows:

".-p -.-o

V = V_ t = xi + yj

therefore,

&t = _"

and :

_n = k x ,_t =_

Hence,

and:

• = V
n

So, from Eq. [3.49],

V2/O = I x - x y
v

Solving for p and 0 = V/p results in:

p = v3/O"£ - "_"_')

and

6= yx-xy
•2 .2
x +y

since,

V2 "2 "2=x +y

[3.49]

[3.50]

[3.s_]
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In dimensionless form, the instantaneous whirl ratio is given by:

, , . , , ,

@ =YX- XY

+ 42 [3.52]

This expression is meaningful for any orbit path the journal

might traverse and will be easily calculated since it involves

quantities readily available in the method of solution of the journal

orbit.

3.5 Derivation and Explanation of Terms Used in Journal Bearin$ Studies

As the theory of lubrication has developed several important

equations and groupings of terms have evolved that are used frequently

in this field. One of the basic assumptions that has been used in the

derivation of the Reynolds equation arose from considering the ratio

of inertia to viscous forces in the incompressible Navier-Stokes

equation.

D_

P5i- : vp +

Considering the x-direction, the result is

Re• _- Ine.tC_ U _ U UL __.

where

Re* = modified (reduced) Reynolds Number

U

L

h

v

= velocity

= characteristic length

= film thickness

= kinematic viscosity

[3.531
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The distinction has been made to call this expression a modified

Reynolds number since the expression frequently used as the Reynolds

Number in fluid mechanics work is given as: Re = UL/_.

From this relation it is seen that:

h )2
Re* = Re x ( _ . [3.54]

Another much used expression known as Sommerfeld's Number resulted from

the work of Sommerfeld in 1904 when he presented the exact solution

to the long bearing assumption form of Reynolds' equation. The result

of this work was an expression for the loading of an idealized full

(*)
journal bearing. The result can be expressed as :

r )2_N'

where

(z+n 2) [l-n2
J2 if2

[3.55]

N' = journal speed (RPS)

n = eccentricity = e/c = c

r = journal radius = R

p = load per area of the projected area of journal

= W/(L x D), D = 2R

The expression,

p

is known as Sommerfeld's Number (S).

An equivalent expression can be derived for the short-bearing

assumption form of Reynolds' equation. Using polar coordinates and

making use of certain integral formulae due to Sommerfeld, it is

(*)See Reference (32), p. 122.
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!

L
F:

possible to successfully integrate Reynolds' equation to obtain the

load capacity. This result can be expressed (I)* by

[3.561

The same expression has been derived by Ocvirk (13) and is referred

to as the "capacity number" for the bearing in that report (see

Figure 3.8).

The attitude ¢ (see Figure 3.1) can be found by forming the

ratio of the tangential and radial load components, the result of

which is given by (I)**

tan . (t'e2)41z
4 E [3.57]

The value of P, the projected load is usually considered as the

effective journal weight divided by the product of length and diameter

of the bearing. When considering unbalance loading effects it may

be helpful to form the Sommerfeld Number based on the rotating load.

In doing this, P becomes the quantity me_ 2, the magnitude of the

unbalance loading. The resulting expression is:

su- [3.581

where

2

PU =(me_.lWj )/(L x D)

SU = Sommerfeld Number for unbalance loading

*Reference in Bibliography, p. 49

**Reference in Bibliography, p. 92 has polar plots of eccentricity
for various L/D values.
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The stabilitY*oPlots for journal bearings that appear in the

literature are usually plotted with a dimensionless speed parameter

as ordinate and eccentricity ratio, C, as abscissa. The speed

parameter may be thought of as the square root of the ratio of the

unbalance force (with e = c) to the journal weight. That is:

or,

[3.59a]

where Ig_/c has units of sec. -] and, as stated previously, makes

the speed parameter dimenslonless.

An important consideration when designing bearings is the

magnitude of the actual forces transmitted to the bearing surface.

This quantity can be calculated from Eq. [3.43] and could be

represented as:

where Fx, Fy _ magnitude of fluid-film forces in the x and y

coordinate directions respectively.

It is possible now to form two dimensionless force parameters, to be

denoted as static and dynamic transmissibillty, given by:

rR S - _/W [3.60]

and,

TR D = _/(mel.l_j 2) [3.61]

*See CHAPTER IV for discussion of stability.
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These ratios give an indication of the isolation of the journal

from the support system. A value of ] is equivalent to a system on

rigid ball bearing supports, whereas for TR < I, there is an improvement

of performance due to lower forces transmitted. If TR > ], then

the journal bearings are actually developing higher forces than if the

system was mounted in rigid ball bearings. This later mode of operation

is not desireable and should be avoided by the designer. If this is

not possible, the transmissibility should be reduced to the lowest

value attainable.
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CIIAPTER IV

STABILITY ANALYSIS FOR SMALL DISPLACEMENTS

The equation for the fluid-film force components has been

derived for the short bearing model and is given by Eq. [3.43]. It is

now possible to obtain from this equation the stiffness and damping

coefficients which are given as:

These coefficients can now be inserted into the equation of motion

of the journal and a stability analysis performed. The equation to

be examined is given as follows:

w ' _j w- ' _jw
The assumed solution is of the form:

X_ = A e _t Be_ ;_tX'Z =

Making these substitutions results in the following equations:

[4.3]

[4.4]
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By ,'×l_aud[ng the detem_inant of coefficients the following fourth order

equation is obt_lined:

k 4 +(dll +eZl_k _ + ( _ + _ + C:,, C_ - C,_ £___')X 2

+ ( _(,,e_9 " + _'_ C,,-_,g_e'l,-_('2.,(_,._)k'k(_'l.2Kl'-_vl-_-,') =0 [4.5]

In general terms the characteristic equation can be expressed as:

N

__A N-_:)X% =O [4.6]

For N = 4,

A 4 + AbX + AzX _ -i-AiX 5 + AoX 4

The stability condition is given by (7)*

=O

[4.7]

A stability analysis has been performed by the approach just

described by Mr. Pranabesh De Choudhury.** His analysis considered

stability about the equilibrium eccentricity and attitude angle

considering the journal center to be initially at rest. The stability

map resulting from his work is shown in Figure 4.1 and is comparable

to that of Badgley and Booker (30) who examined orbital plots for the

journal center to determine whether or not the system was stable (see

Figure 4.2).

*Reference in Bibliography, p. 124.

**Doctoral candidate, Mechanical Engineering, University of

Virginia, doing research in stability of rotor systems.
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The criteria for instability that they used was an increasing

radius arm as the orbit tracked out the journal center path.

These approaches to the problem of stability have only considered

the horizontal, unloaded journal. A loaded journal will be shown* to

exhibit a greater area of stability on the stability map, while an

unloaded vertical journal will be unstable over the entire range of

the map. These are important facts that are not obvious from a plot

such as Figure 4.], or the similar plots of Badgley and Booker, Figure

4.2.

The analysis presented by Reddi (28) for the ]80 ° long bearing,

with end leakage considered, has given a lower threshold speed than the

stability analysis using the short bearing equations. The threshold

curve resulting from their analysis has been converted into the

parameter used by Badgley and Booker for the special case that the

loading is due to the weight of the journal (rotor) only. The Reddi-

Trumpler threshold speed is less than that of Badgley-Booker but the

limit of eccentricity at which the journal is completely stable is very

nearly the same. This value is in agreement with Hori who gave 0.8 as

the upper limit of eccentricity past which the journal is always stable.

In all of the various analyses of stability, only the threshold

speed of unstable motion is predicted. In an actual bearing operated

above the stability threshold speed, the journal does not fall but

forms a finite limit cycle which increases with speed.

In this analysis, the motion of the journal and forces

*See CHAPTER VII, page 95 , and Figure 6.14.
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produced whenoperating above the stability threshold will be examined.

52



CHAPTER V

METHODOF SOLUTION

5.1 Introduction

The analysis presented in CHAPTER III resulted in the equations

of motion for the journal bearing in the fixed cartesian coordinate

set. The present chapter presents computer drawn three-dimensional

plots of the pressure profile resulting from the Short Bearing Solution

derived in CHAPTER III. To obtain the fluid film forces the expression

for the pressure must be integrated over the bearing surface. A brief

discussion of numerical integration is presented to clarify the manner

in which the forces just mentioned are obtained.

The equations of motion for the journal are two coupled, non-

linear differential equations. A discussion of numerical methods for

the step-wise integration of this type of differential equation (initial

value proble_ is followed by a description of the computer program that

has been developed to solve the journal bearing equations of motion.

5.2 The Fluid Film Pressure Profile

The pressure in the fluid film was given in fixed coordinates by

Eq. [3.37]. Substituting Eqs. [3.38], [3.39] into Eq. [3.37] and

expressing the result in dimensionless form gives:*

q
where:

f , _= (Oi X i dt
o3b+coj CCOj&t [5.1 ]

*Note similarity of dimensionless group to 1/8, the inverse of

the Sommerfeld Number.
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If no values of negative pressure are allowed to exist in the

fluid film, then all P's less than zero are equated to zero. The above

equation was programmedon the digital computer and the results plotted

via a CalcompPlotter unit. Various cases were considered and are

presented as Figures 5.1 5.7.

The values of the dimensionless displacements and velocities are

given at the top of the figures. An end view of the section at the

bearing midspan is given in the upper left corner with the pressure

profile represented as radial lines. The center figure is a 3-dimen-

sional plot of the "unwrapped" pressure profile. At the bottom of the

figure is the film thickness, H, plotted versus angular distance, _.

The maximumdimensionless pressure increases as the journal

moves from near the center (Figure 5.1) out to X = 0.2, Y = -0.10

(Figure 5.2). Figure 5.3 shows the uncavitated pressure surface for

the case of Figure 5.2. The negative pressures cannot be sustained in

the fluid film and therefore cavitates (for discussion, see page 62).

A prominent pressure peak is noticed as the journal movesout to

X = 0.5, Y _ - 0.7 (Figure 5.4). In Figure 5.5 the case of Figure 5.4

is given a small velocity which results in a slight increase of peak

pressure.

In Figure 5.6 the journal has been shifted to X = -0.9, Y = -0.05

and is accompaniedby a shift in the pressure profile. Figure 5.7 has

been given the condition of synchronous whirl* at an eccentricity of

0.5. All cases plotted were for _ = I, i.e. w b = O.

*The journal center is precessing in the bearing at the journal

rotational angular velocity.
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5.2 Pressure Profile, Pressure Surface, and Film Thickness

for X = 0.2, Y = -0.10, X = Y = 0



I!

_:.× o
6

II

o

I

5'7



00

¥

.,,..---- 210.38
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5.3 Integration of the Pressure Profile

The forces arising in the fluid film have been expressed as an

integral over the circumference of the journal. The forces are given

by Eq. [3.43] and are given below in the following form:

t:_ = 9. C a -- ( I-_(CosG -N' Sine) _ l" Sin _3_'
0

The expression under the integral is now representative of the pressure

in the film and hence will be equated to zero when its value is less

than zero. This is equivalent to keeping only those pressures that

are greater than ambient (i.e. larger than zero, since the pressures at

the bearing ends are assumed to be atmospheric and hence it is gauge

pressures that will be used in the calculations). This will avoid the

subambient pressure contributions that appear in closed-form solutions

and the need to calculate the extent of the positive pressure region.

The exact region of film cavitation and the resulting pressure

therein are by no means well understood or well defined in the literature.

Reddi-Trumpler (28) states that cavitation occurs at or near the

vapor pressure of the fluid film if L/D >> I, while reference has

previously been made to Pinkus and Sternlicht (1) who reference test

data where the film cavitates at 0.13 psi below atmospheric (or the

pressure at the journal ends). The results of the work reported herein

are based on the latter argument. However, the nature of the method

of solution makes the task of dictating cavitation pressure as simple

as changing one card from the computer program deck. Ocvirk (13)
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argued that in the absence of high datum pressures, the effect of any

negative pressure (not exceeding atmospheric) could be neglected as

being negligible in comparison to the positive pressure region.

It is possible to use numerical methods of integration to solve

for the film forces from the above integral. It is only necessary to

choose an appropriate method from the various ones listed in numerical

analysis texts (34, 36). The most basic approach is the well-known

trapezoidal rule, which can be expressed as follows:

L N_

Xo i,o
where: N = number of subdivisions

X = Ln

By choosing a constant increment of X, it is possible to express the

trapezoidal rule as:
Xn

The error of the above formula is of course directly related to the

increment, AX and hence the numberof points chosen to evaluate, as

well as the order of curve that is being integrated.

Various other more accurate formulae exist, such as Simpson's

and Weddle's Rules which are two of the series of Newton-Cotes formulae.*

Less known is the method of Romberg(34)** which uses the Trapezoidal

Rule and an extrapolation process to improve the accuracy of the

*See Reference (36), p. 137 and (38), p. 110.

**Reference in Bibliography, p. 130.
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calculation.

For the purpose of integrating the pressure profile, a form of

the following Newton-Cotes quadrature formula was chosen:

[5.3]

The basic restriction to this formula is that the number of

intervals taken around the bearing must be a multiple of six. However,

this restriction is easily satisfied on the digital computer and presents

no problem for this application.

The above formula can be very closely approximated by (36).*

and can be applied in hand calculations more readily than can the

Newton-Cotes formula. This simplified version is known as Weddle's

Rule, and by inspection it can be seen that this formhas four less

multiplications per six intervals than the Newton-Cotes formula. Each

multiplication that can be omitted at no cost in desired accuracy must

be taken advantage of in this type of solution.

5.4 Integration of the Equations of Motion

With the ability to calculate the film force at any instant of

time the only remaining task is integrating the equations of motion of

*Reference in Bibliography, P. 138.
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the journal. The equations of interest are of the form:

[5.5]

[5.6]

Many methods of integrating first order differential equations

are reported in numerical analysis texts (34), (35), (36). Since any

second order differential equation can be expressed as two first order

equations, there will be four first order equations to integrate forward

in time. These equations are:

du fx(x " yd--_= ' y' x, ) [5.7]

dx

d--f--u [5.8]

dv °

d--t= fy(x, y, x, y) [5.9]

d-_ v

dt = [5.]0]

where the variables u and v have been introduced to represent the

velocities in the x and y directions, respectively and the expression

for fx, fy are as given in Eqs. [3.45], [3.46].

The methods of solution may be either (a) self-starting and

require only that the initial values of each dependent variable at time

t = t be known or (b) may require two or more initial values of each
O
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dependent variable at their respective times. It is obvious that the

type (b) methods must be supplemented by a type (a) method for obtaining

the numberof starting values necessary to begin the solution process.

The most basic self-starting method is simply a Taylor Series

Expansion truncated after somearbitrary number of terms, that is:

J'(t,at)- _Cq*At }'(q4 {-"Ctl+ .-- + _-q--

whe re

By truncating the series after only two terms,

= + At [5.12]

which is known as Euler's Method. Since in dynamics problems the

higher derivatives are not usually easily obtained in closed form,

this method gives easily calculated results which have accuracy O(h2).

For any second order equation that may be expressed as:

d2y = f(y, y, t)

dt 2

two first order equations may be written as:

dv = f(y, Y, t)
dt
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Euler's method can be written as:

f = f +hf'n+ ] n n

therefore,

V
n+ ]

likewise,

= Vn + At • f(Yn' Yn' in) • • [5.]3]

Yn + ] " Yn + At(Vn)

th
step is known, therefore aBut the value of v at the (n + ])

better guess for Yn + ] might be:

Yn+] = Yn +_t(Vn+]) • [5.13a]
(See Figure 5.8 for an indication of the capabilities of this method.

The Euler's method solution is so close to the actual solution that

it is hard to distinguish the prediction from the exact solution.)

More elaborate equations can be developed by using finite-

difference methods. Other self-startlng equations are second-order

Runge-Kutta, fourth-order Runge-Kutta, and sixth-order Runge-Kutta.

Of course the more elaborate the equations, the more time is required

for each solution and this is what must be kept to a minimum to make

the approach worthwhile.

The type (b) methods of solution usually are applied in pairs

(predictor-corrector). The predictor and corrector equations are

applied in an iterative manner until they agree to within desired limits

at some time in, then the same approach is repeated for the next

increment, t = t + At.
_+I n

This type of solution is obviously going to be very time

consuming if it is allowed to iterate at each increment. In addition,

solutions of this type have shown great numerical instability in

several test cases and must be applied with due caution (See Figure 5.9
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for example of instability of Adams Method with AT - 0.05).

The Milne (39) predictor-corrector pair and the Hammings(40)

method have each proven to be highly unstable for the problem under

discussion. The Adams-Bashforth predictor equation can be expressed

in finite difference notation as (34)*

where

and,

m n =

t.

/_m = m -
n-] n mn-]

Akm . dk- ] _ Ak" ]
n-1 mn n-I

Expanding this equation,

_n,l ,_Xn -I-72_[|9OI. D_n - 2774 ran-l+ _6_6 mn-_-1274 ran-3 +9-5_ mn-1] [5.15]

which is the fifth-order equation. Keeping only terms through A3 gives:

_(n+_ ,Xn+2_---4 [55D_n159mn-_+57rnn-%-gmn-5_

The Adams-Moulton corrector equation can be expressed as (34)*:

I A2 t AS mn_5.,Ig -4Xn= Xn-, +_(mn - Amn-, - _ ran-% "Z4 _{O a ran-4)

*Reference in Bibliography, p. 226.

**Reference in Bibliography, p. 235.
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Expanding this results in:

Yn,.l" Xn+T2"O 2'51mn,_ + 646 rnn -'2-64 m,-, +I06 rhn._.-_9t_n.) [5.18]

or, keeping terms through 43 gives:

Xrjt_'Xn+_ [ 19 rl'_n.t.i+ 19Y_n----_ Frln-i q"_'Y_n-?. [s.19]

The above equations are typical of the predictor-corrector

type formulations, some being less complex while others are much more

elaborate and lengthy. The proper choice of the method of solution

is very difficult and has proven to be dependent upon the particula_

problem being solved. As an example, while testing several of the

methods of integration on a simple sine wave, the Milne equations gave

excellent results. However, upon applying the same method to the

journal bearing equation, violent oscillations occurred indicating

numerical instability, whereas the simple Euler equations gave very

smooth response predictions. Figure 5.9 gives an indication of the

instability which may be encountered when too large a stepping increment

is used.

The computer program that has been developed has several options

as to the method of solution desired and will be explained in the

following section.
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5.5 Explanation of Computer Program

A listing of the actual computer program developed from the

• eory discussed in the earlier chapters is given as Appendix B. The

program was written in ALGOL programming language and all runs have

been made on the Burroughs B-5500 machine at the Computer-Science Center

of the University of Virginia. The most important feature of the

program is the fact that the results are automatically plotted by the

Calcomp Plotter unit from the magnetic tape output of the computer

program. The plotted data is also written out on the line printer

along with other information that is not plotted.

The major divisions of the program are as follows (See Figure 5.10

for Flow Chart):

I. Card Input of Specifications

2. Integration of Dynamical Equations of Motion

a. Integration of Pressure Profile

3. Line printer listing of results

4. Plotter Routine to Make Tapes for the Calcomp Plotter Unit.

A detailed explanation of the card input is included as a comment

at the beginning of the program (See Appendix B). Card 12 gives the

option as to the method of solution of the equations. Three methods

are available in the program at present and additional changes in the

method of solution can easily be made by any proficient programmer.

The three methods included in the program are:

1. Sixth-order (self-starting) Runge-Kutta (41)

2. Adams - Moulton - Adams - Bashforth (Predictor-Corrector)

3. Modified Euler's Method
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Declarations
and

Procedures

PROGRAM

._ [_Bearing

I /Dat a

uti on

Call

T IME STEP

Bearing

Parameters

Calculated

JW ,TE// LP
Soluti onscaled

• for

Plotting /__7/W_'T__MT1

OPERATOR

_pao Ic°m

tterP_

5.10 The Short Bearing Program; General Flow Chart



For the purpose of integrating the pressure profile the Weddle's

Rule formula was chosen over the RombergMethod due to the anticipated

future additional feature of having circumferential grooving specified

over certain angles of the bearing surface. This addition will require

very little change to the program as a result of the "fixed nature" of

the Weddle's Rule formula.

The line printer output of the program gives the following

information (see example following computer program listing, Appendix B):

A. Case number (corresponds to numberon plotter output)

B. Bearing input data listed

C. Bearing information calculated in program (Sommerfeld

number, unbalance information, etc.)

D. Additional forcing functions on journal listed as given

on input cards

E. Journal retainer specifications (stiffness and damping

terms)

F. Continuous listing at each time increment of the following

information:

1. Dimensionless time (wt), [RAD.]

2. Displacement in x-direction (x/c), [DIM.]

3. Velocity in x-direction (x/_c), [DIM.]

4. Displacement in y-direction (y/c), [DIM.]

5. Velocity in y-direction (y/c_) , [DIM.]

6. Fluid film force, [lb.]

7. Static transmissibility, [DIM.]

8. Radius of curvature, [DIM.]
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9. Instantaneous whirl ratio, [DIM.]

]0. Whirl ratio about bearing center, [DIM.]

]]. Phase angle between unbalance and journal center

displacement vector, [DEG.]

The CalcompPlotter gives four plots for each case submitted

(see Figures 6.47 - 6.50 for examples). These are as follows:

(a) Journal Transient Orbit - (see Figure 6.47_

A list of important journal specifications appears at the

top of the plot as well as a case number corresponding to

the one on the line printer output. A six inch diameter

circle representative of the clearance circle appears below

the specifications. The journal center path is traced out

as a continuous curve. The small circles on the orbit path

are timing marks that represent one revolution of the journal

in real time with the initial input time as base reference.

In addition, the computer tracks the forces in the fluid

film and places an asterisk at the point of maximum force

(magnitude printed as FMAX in specification list above orbit),

(b) Transmissibility and Journal X-Y Motion

This plot has the transmissibility scaled on the left

vertical axis while the journal X-Y motion is scaled on the

right vertical axis. Each quantity is plotted versus

cycles of motion of the journal. Arrows indicate which

scale is to be used in addition to labeling the dashed

X and Y motion curves.
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A selected group of specifications appears at the top

of each plot for easy reference (see Figure 6.48).

(c) Radius of Curvature and Whirl Ratio

The same general setup is used for this plot as was

explained for the second plot (see Figure 6.49). The

quantities plotted are the instantaneous radius of

curvature (solid line) and the instantaneous whirl ratio

(dashed line).

(d) Phase Angle VS Cycles of Motion

This plot gives the phase relation between the journal

center displacement vector and the journal unbalance vector

as a functioll of cycles of motion (see Figure 6.50).

The program was developed to allow the user to input bearing

specifications and program control cards with a minimum of effort.

Data card number eight gives the option of having the data printed

on the line printer without having it plotted. If plots are desired,

then data card number nine gives the option as to which plots will be

produced (exception: orbit plot is made regardless of the value

of PLOT1 if "plotter control" = I).
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CHAPTERVI

PRESENTATIONOF RESULTS

6.1 Introduction

The methods of solution incorporated in the computer program

described in the preceding chapter were chosen to give the program the

best overall features. The investigator has been given the choice of:

(a) Rapid solution and reasonable accuracy (Improved Euler's

method).

(b) Reasonable speed of solution and improved accuracy

(Modified Adam's method), but with the problem of numerical

instability greatly increased over (a) above.

(c) Excellent accuracy and less instability than (b) but very

time consuming (sixth-order Runge-Kutta method).

Many runs have been made with the program and an extensive file

of different operating conditions has been compiled. The following

chapter will be given four major divisions to help classify the material

being presented in a systematic manner. The basic journal bearing under

consideration has the following specifications:

Journal Weight - 50 lb.

Clearance - 0.005 in.

Diameter - 2.0 in.

Length - 1.0 in.

Viscosity of Lubricant - I x 10-5 Ib-sec/in. 2

Unbalance - Variable
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Lo_iding - Variable

Journal Speed- Variable

Modified specifications are used to help clarify the different

concepts being discussed and also to demonstrate the flexibility of the

developed program.

The stability of a horizontal balanced journal is considered

initially and results in a modification of the stability mapdiscussed

previously in CHAPTERIV. The next section deals with axially vertical

journal bearings. The last two sections will take into consideration

the effect of unbalance and other cyclic external loading functions on

the overall journal bearing performance.

Y!!

6.2 Instability of Horizontal Balanced Journal Bearinss

For the purpose of this discussion, a horizontal bearing is one

having the journal effective weight acting at right angles to the axial

coordinate of the journal. Figure 6.1 shows the orbit of the 50 pound

journal as it is started at the bearing center while operating at a

speed of 4,000 rpm. Five cycles of motion are shown in the figure

and it is obvious that the journal has settled to the equilibrium

eccentricity of 0.306 as computed from the bearing capacity number

and indicated as ES on the figure. The maximum force transmitted to

the bearing is indicated by FMAX and is recorded as 58.7 pounds and

occurs 0.29 cycles after the journal was released. By checking the

speed parameter, WS, and the eccentricity on the stability map (Fig. 4.2),

it is apparent that the system is operating in a stable region as

predicted by the stability map.
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HORIZONTRL BRLRNCED ROTOR
NO. IIZI

N = qO00 RPM WT = 1,00

R = 1,00 IN. W = 50 LB.
L = 1.00 IN. MUI5 = 1,000 REYNS
C = 5.00 MILS FMRX = 58.7 LB. RND
TRSMRX = 1.17 OCCURS RT 0.29 CYCLE
5 = 1.067 HS = 1.51
SS = 0,26? ES = 0.306

-0.8

-0.6

6.1 Journal Orbit of A Balanced Horizontal Rotor

(N = 4000, W = 50, C = 0.005, L/D = 1/2)
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HORIZONTRL BRLRNCED ROTOR
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0=.
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2. riO0 3.200 It. O00 _.81X) 5.600 6._00
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6.3 Radius of Curvature and Whirl vs Cycles of Motion (N = 4000)



=

The traasmissibility, TR, is plotted for this case in Figure 6.2

(the solid line). Notice that the TR factor levels off to a value of

] after about three cycles of motion. The dashed lines on this plot

give the X and Y motion versus cycles of journal motion as indicated.

Figure 6.3 shows the instantaneous whirl and radius of curvature for

this case. The radius reduces to zero as it should while the whirl is

oscillating in a very regular manner. Constant whirl ratios have been

reported to exis_ in test rigs but it will be apparent from the

following discussion and figures that this is a misnomer for the

horizontal bearing.

The next series of plots (Figures 6.4, 6.5, 6.6) represents the

previous case with =he speed increased to 6500 rpm. A different

behavior is immediately noticed and by checking the stability map

(Fig. 4.2), it is apparent that the system is operating on the threshold

of instability by the values given for WS and ES. The maximum force has

increased to 64.4 pounds and Ffgure 6.5 indicates that the force

variations are more pronounced than in the previous force plot (Figure

6.2). From Figure 6.6, the whirl is varying from a value of 0.44 up

to a value about 0.64. The timing circles on the orbit of Figure 6.4

are indicative of an average whirl of approximately one-half.

If the journal speed were now increased to ]0,500 rpm the speed

parameter, WS, would be 3.96 and well into the region of instability

as pre¢icted by Figure 4.2. Figure 6.7a shows this condition with

the final position in Figure 6.4 as the initial condition for this

plot. The spiral is evidence of the instability of the system and if
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HOR[ZONTRL BRLRNCED ROTOR
NO. II_]

N = 6500 RPM WT = 1.00
R = 1.00 IN. W = 50 LB.
L = 1.00 IN. HUIS = 1.000 REYNS
C = 5.00 MILS FHAX = 6½.½ LB. AND
TRSHRX = 1.29 OCCURS AT 0.53 CYCLE
5 = 1.733 WS = 2.½5
SS = 0.½33 ES = 0.211

6.4 Journal Orbit of A Balanced Horizontal Rotor

(N = 6500, W = 50, C = 0.005, L/D = 1"/2)
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HORIZONTAL 8RLRNCED ROTOR

N = 10500 RPM

R = 1.00 IN.
L = 1.00 IN.
O = 5.00 MILS
TRSMRX = 2.91
S = 2.800
55 = 0.?00

NO. 119B:I

NT = 1.00
N = 50 LB.
MUi5 = 1,000 REYNS
FMRX = 1½5,6 LB. RND

OOOUR5 RT 8.96 OYOLE

NS = 3.96
ES = 0.139

0.2 ).6 0.8

6.7 a. Journal Orbit of A Balanced Horizontal Rotor for Cycles

5 - I0 (N = 10,500, W = 50, C = 0.005, L/D = 1/2)
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HORIZONTRL 8F LRNCED ROTOR

N = lOSO0 RFH
R - 1.00 IN.
L = 1.00 IN.
C - 5.00 MILS
TRSHRX = 3.96
S = 2.800
SS = 0,?00

NT - 1.00

W = SO LB,

HUeS = 1,000 REYNS

FMAX - 197,9 lB, fiND

OCCURS fiT ]4.96 CYCLE
WS - 3.96
ES = 0,139

6.7 b. Journal Orbit of A Balanced Horizontal Rotor for Cycles
10 - 15 (N = 10,500, W = 50, C = 0.005, L/D = I/2)
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more cycles were run the orbit would reach a limit cycle* and continue

the violent whirling motion. Also notice the fact that the maximum

force has increased to 145.6 pounds (as compared to 58.7 pounds for

the stable condition, i.e. Figure 6.1. The orbit of Figure 6.7a is

continued for five additional cycles in Figure 6.7b. It is apparent

that the rate of growth of the orbit has reduced and a limit cycle would

eventually be formed. The maximum force has increased to a value of

197.9 pounds. Figure 6.7c show the cyclic nature of the resultant

forces on the bearing surface. The whirl ratio is oscillating around

approximately 0.5_ as shown in Figure 6.7d.

Figure 6.8 depicts the initial transient orbit for a heavier

journal with an effective weight of 200 pounds and operating at 6500 rpm.

This case is still at the threshold of stability although the equilibrium

eccentricity has increased to 0.497. An increase of journal speed to

10,500 rpm raises the stability speed parameter to 3.96 and the system

exhibits the predicted instability as shown in Figure 6.9. The maximum

force is indicated to be 826.8 pounds, or 4.13 times the weight of the

journal.

The stability map predicts that for systems with an equilibrium

eccentricity above approximately 0.73, there should exist stable

conditions at any speed. With the journal weight increased to 1800

pounds, Figures 6.10 and 6.11 indicate that the system is tending

toward the stable equilibrium position, even when the speed is increased

to 10,500 rpm. The stability map of Figure 4.2 has predicted all the

*See Figure 6.17 for example of a limit cycle.
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HORIZONTRL BRLRNCED ROTOR

N = 6500 RPM
R = 1.00 IN.
L= 1.00 IN.
C = 5.00 MILS
TRSMRX = 1.80
S = O. 433
SS = 0.108

NO.IIIIB|

HT = 1.00
H = 200 LB.
MU=5 = 1.000 REYNS
FMRX = 359.9 LB. RND

OCCURS RT 0.54 CYCLE
HS = 2.45
ES = 0.497

6.8 Journal Orbit of a Balanced Horizontal Rotor for 5 Cycles

(N = 6soo, w = 2o0, c = o.oos, L/D = 1/2)
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HORIZONTRL

N = 10500 flPM
R = 1.00 IN.

L = 1.00 IN.
C = 5.00 MILS

TRSMAX = ½.13

5 = O.700

SS = 0.175

BRLRNCED ROTOR
NO.II|IBI

HT = 1.00

H = 200 LB.

MUe5 = 1.000 REYNS

FMRX = 826.8 LB. RND
OOCUR5 RT 9.30 CYCLE

W5 = 3.96
E5 = 0.395

6.9 Journal Orbit of a Balanced Horizontal Rotor for Cycles

5 - I0 (N = 10,500)
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HORIZONTRL BRLRNOED ROTOR

N = 6500 RPM
R = 1.00 IN.
L = 1.0C IN.
C = 5.00 MILS
TRSHRX = 4.77
S = 0.048
SS : 0.012

NO.IIIIB2

WT = 1.00

W = 1800 LB.

MUm5 = 1.000 REYNS

FMRX = 8588.7 LB. RND

OCCURS AT 0.56 CYCLE
WS = 2.45
ES = 0.81q

I I I I 1 I ! I I

-O.B

-0.6

m

I I I I I I I I I
0.2 0._ 0.6 0.0

6.10 Journal Orbit of a Balanced Horizontal Rotor for 5 Cycles

(N = 6500, W = 1800, C = 0.005, L/D = 1/2)
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HORIZONTRL BRLRNOED ROTOR
NO.LI]LB2

N = 10500 RPM
R = 1.00 IN.
L = 1.00 IN.
C = 5.00 MILS
TRSMRX = 1.79
S = 0.078
SS = 0.019

WT = 1.00

W = 1800 LB.

MUo5 = 1.000 REYNS

FMBX = 3221.1 LB. RND
OCCURS BT 5.01 CYCLE

WS = 3.96
ES = 0.766

I I I I I I I I I

w

-0.8

-O.B

-0.2

I I I I I '1 I I I
0.2 0._ O.B 0.0

6.11 Journal Orbit of a Balanced Horizontal Rotor for Cycles

5 - I0 (N = I0,500)
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results obtained thus far in this analysis. However, no indication can

be obtained from such a stability map of the behavior of a system that

has external loading. To examine this condition, a constant force of

_-_-=150 pounds was applied vertically downward (i.e. negative y-direction)

to the 50 pound journal to see if the conditions of the 200 pound

journal were repeated. Figure 6.12 gives the interesting results of

that loading. The journal has settled very smoothly into its equilibrium

eccentricity of 0.497. The speed parameter corresponding to Figure 4.2

is still 2.45 and indicates that the system should be at its threshold

.... speed. An increase of journal speed to ]0,500 rpm should produce

violent whirling if Figure 4.2 is valid. It is readily apparent from

Figure 6.13 that the system is stable at 10,500 rpm and has settled

very nicely into the new equilibrium eccentricity of 0.395. In

response to these results, Figure 4.2 has been modified to indicate the

stability of a journal bearing with constant external loading. Figure

6.14 presents the stability map that was formulated after the results

of the previous test case were examined. The quantity WT is an

indication of the magnitude of all constant forces acting on the

system. For a horizontal unloaded journal, the value for WT is unity

whereas for the case of the 150 pound loading on the 50 pound journal

the value of WT is four. The old speed parameter, _s' for ]0,500 rpm

and clearance of 5 mils resulted in a value of 3.96 and a value of

eccentricity of 0.]39, which has obviously changed. However, going

into the modified stability map of Figure 6.14 with those values for

_s and eo, plus the value of WT = 4, it is apparent that the journal

is stable as verified by the highly damped transient rotor orbit
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HORIZONTAL BALANCED ROTOR

N = 6500 RPM

R= 1.00 IN.

L = 1.00 IN.

O = 5.00 MILS

TRSMFIX = 5.33

S = 0.½33
55 = O. I08

FOCY =-150 LB.

NO. 11R82

biT= ½.00
14= 50 LB.
MUm5 = 1.000 REYNS
FMRX = 266. u, LB. RND

OCCURS RT 0.2½ CYCLE
145 = I. 22
ES = 0._97

-0.2

I I I I I I I I I i I I I I I I I I I
0.2 0._ O.S 0.8

6.12 Journal Orbit of a Horizontal Balanced Rotor with Constant

Load for 5 Cycles (N = 6500, W = 50, C = 0.005, L/D = I/2,

FOCY = -150)
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HORIZONTAL BALANCED ROTOR

N = 10500 RPH
R= 1.00 IN.
L= 1.00 IN.
C = 5.00 HIL5
TRSHRX= 6. q6
5 = 0.700
55 = O, 175
FOCY =-150 LB.

NO. ll2m

WT- _.00
M - 50L8.
RU.5 = 1.000 REYN$
FHI:IX ,, 32:3.1 LB. FiND

OCCURSAT 5.01 CYCLE
W5 = 1.98
ES -- 0.395

! I I I I I I I I

°' \

o, \
-0.2

I I I I I I I I I

0.2 O.q 0.8 O.B

6.13 Journal Orbit of a Horizontal Rotor with Constant Load for

Cycles 5 - 10 (N = 10,500)
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6.14 Stability Map for the Short Journal Bearing Considering

Constant External Loading
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shown in Figure 6.13.

If a new speed parameter* is defined as:

4

where,

and,

_s = _j/ \/WT/mjc '

WT = total loading _ WT

E = eccentricity of journal calculated by using WT instead of
o

W in the projected load, P, of the Sommerfeld equation (Ss)

then the stability map of Figure 6.]5 may be obtained. By redefining

the speed parameter and using the actual value of equilibrium

eccentricity, then and only then can the curve of Figure 4.1 or 4.2

be considered as correct for other than unloaded bearings.

For a vertical journal the equilibrium eccentricity, Eo,

approaches 0 as can be seen from Figure 3.8, while the speed parameter,

_s' approaches _. Therefore, from Figure 6.]5, it is apparent that the

vertical journal is unstable regardless of the speed of operation. The

same conclusion was reported by Hori (26) but it cannot be shown from

the stability map as presented by Badgley (Fig. 4.2).

6.3 Instability of Vertical Balanced Journal Bearinss

The stability map of Figure 6.15 in the previous section indicates

that the vertical unloaded journal bearing is unstable for the entire

operating speed range. To verify this condition several cases were

*This is the same parameter used by Reddi and Trumpler (28) in

their linearized approach to the stability problem.
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examined, some of which will be presented here for discussion.

The same 50 pound journal is considered in Figure 6.]6. The

initial conditions were all zero and as the plot indicates, no orbit

was obtained for the five cycles the program was allowed to run. The

forces on the bearing are zero, as they should be, By inspection of

the equations of motion it is readily apparent that the origin is an

equilibrium point for the unloaded vertical journal bearing. To

investigate the stability of this point, the system is given a small

displacement from the origin and released. If the system is in stable

equilibrium then the journal would return to the origin, otherwise the

configuration is an unstable equilibrium point (saddle point) and the

solution will continue to grow as time increases until it eventually

forms a limit cycle due to the bearing nonlinearity.

Figure 6.17 represents twenty-five cycles of motion of the

journal with the initial conditions all zero except for a displacement

of 0.01 (dimensionless, i.e. x = 0.01 x c) in the positive x-coordinate

direction. The initial exponential growth is readily apparent. The

figure is an excellent example of a limit cycle, which arises from the

nonlinear nature of the fluid-film force expression derived in

CHAPTER III. The whirl for this particular case is constant and

has a value very _ea_ one-half, as indicated by Figure 6.18. The

vertical rotor is the only configuration that has produced a constant

value for the whirl ratio. It was shown in the previous section that

a horizontal rotor does not have a constant whirl ratio, but one which

varies in a cyclic manner due to gravitational loading. Because the

system being considered has gone into the half-frequency whirl, the
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VERTICRL BRLRNCED ROTOR

NO, '_1591

N = qO00 RPM NT = 0.00
R = 1.00 IN. W = 50 LB.
L = 1.00 IN. MUm5 = 1.000 RETNS
C = 5.00 MILS FMRX = 0.0 LB. RND
TRSMRX = 0.00 OCCURS RT 0.00 CYCLE
S = 1.067 WS = 1.51
SS = 0.267 ES = 0.306

• -0.8

_!0.6

°i

I I I I f

6.16 Journal Orbit of a Balanced Vertical Rotor with Zero

Initial Conditions (N = 4000, W = 50, C = 0.005, L/D = 1/2
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VERTICRL BRLRNCED ROTOR

N = _000 RPM
R = 1.00 IN.
L • 1.00 IN.
C = 5.00 MILS
TRSMRX = O. 38
5 = 1.087
SS = O. 267

X( T-- O) = 0.01

NO. %]_i1

HT • 0.00
14 = 50 LB.
HUm5 = 1.000 REYN5
FMRX = 18.9 LB. AND

OCCURS RT 25.00 CYCLE
HS = 1.51
ES • O. 306

6.17 Journal Orbit of a Balanced Vertical Rotor with Small

Initial Displacement for 25 Cycles (N = 4000)
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VEI=ITIP-,RLBRLRNCEDROTOR

mwl N• !.&.o.=o. =" "'.'=- _.="" _"-o.=... ,,,. o..o_,._ o.,oo. ,.=, ,,=.].,==.,.,

m
C_"

20.000 2t.MO 2_11_ 25.200 2_lmO 2_.000 25.1108
CYCLESOF HOTION

6.18 Radius of Curvature and Whirl vs Cycles o_ Motion for

Cycles 20 - 25 (N = 4000)
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VERT! ORL 81::ILI::INCEDROTOR

N ,, 6500 RPH
R = 1.00 IN.
L ,, 1.00 IN.
C - 5.00 MILS
TRSHRX = 1.39
S ,, 0.0_8
55 = O. 012

)_(T=O) =0.1

NO.llllSll

NT= 0.00
H = 1800 LB.
MUa5 = 1.000 RES'NS
FHRX = 2½93.0 LB. lIND

OCCURS RT _.96 CYCLE
HS = 2. q5
ES ,, 0.81Lt

6.19 Journal Orbit of a Balanced Vertical Rotor with Small

Initial Velocity for 5 Cycles (N = 6500, W = 1800, C = 0.005,
L/D = I/2)
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VERT IORL

N= 10500 P,PH
,':i = 1.00 IN.
L- 1.00 IN.
C ,, 5.00 MILS
TBSHf:tX = 5.33
S - 0.0"/8
SS - O. 019

BALANCED ROTOR
_.ilILB

HT,,, O.OQ
I,,1"=- --tSOO_B.
HLImS- 1.000 REYN5
FHRX = 9598.1 LB. RND

OCCURS RT 5.01 CYCLE
HS ,,- 3.96
ES = O. 766

6.20 Journal Orbit of a Balanced Vertical Rotor for Cycles 5 -10

(N = 10,500, W = 1800, C = 0.005, L/D = I/2)
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VERTICRL BALANCED ROTOR
NO. _tSZ!

N = 4000 RPM HT = 1.00
R = 1.00 IN. H = 50 LB.
L = 1.00 IN. MUm5 = 1.000 REYNS
C = 5.00 MILS FMRX = 58.9 LB. AND
TRSMRX = 1.18 OCCURS RT 0.28 CYCLE
S = 1.067 HS = 1.51
SS = 0,26? ES = 0.306
FOCY =-50 LB.

I 1- T--'I"--T--"F'I m t

-0.6

-0.6

-D.q

I I .... I I I' I I I I

6.21 Journal Orbit of a Balanced Vertical Rotor with Constant

Load (N = 4000, W = 50, C = 0.005, L/D = I/2, FOCY = -50)
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bearing surfaces are being loaded as a result of the journal whirling.

The value of TR had leveled off at a constant value of 0.38 as indicated

by the plot of that quantity (not included in this report).

The next two plots (Figures 6.19 and 6.20) are for the 1800

pound journal that was found to be stable in the horizontal position.

As indicated by these present plots for the vertical journal, the

violent half-frequency whirl has developed a static transmissibility,

TRS, equal to 5.33, (i.e. FMAX _ 9598.1 pounds). The whirling was

initiated by an initial velocity as indicated by Figure 6.19.

The stability plot given by Figure 6.14 indicates that the ver-

tical journal can be stabilized by adding an external force. With

the addition of a 50 pound force directed along the negative y-direction

(perpendicular to axial coordinate), Figure 6.21 indicates that the

system is very stable and furthermore, the resulting transient orbit

is identical to an unloaded 50 pound horizontal rotor operating at the

same speed (See Figure 6.1 for comparison).

The sample cases presented in this section have supported the

stability maps as presented in Figures 6.14 and 6.15. This concludes

the discussion of balanced journals and any future reference to stability

will refer to the plot of Figure 6.14 or 6.15 as being the appropriate

stability boundaries.

6.4 Effect of Unbalance on Journal Bearin$ Performance

6.4.1 The Vertical Journal Bearing

The discussion thus far has been restricted to balanced journals.

This section is devoted entirely to the effect of unbalance as indicated
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by the section heading. In view of the fact that all journals or rotor

systems have some residual unbalance, the effect of unbalance on

bearing performance is of great importance to the manufacturers of such

units. This is especially true when the company must guarantee the

reliability of the units to the buyers and give compensation for lost

production due to "downtime" when the unit does not function as

specified in the guarantee.

The following journal orbits should help clarify the effect

that unbalance has on a vertical system. Figure 6.22 shows the initial

transient motion of the 50 pound vertical journal with an effective

unbalance of 0.20 (i.e. EMU = e = 0.2 x c) or an unbalance load of

5.68 pounds at the given shaft speed of 2000 rpm. Notice there is a

small half frequency whirl component present which appears to

diminish in time. The speed parameter for the vertical rotors is

calculated as w s and not as _s" The value of the unbalance Sommerfeld

number, SU, gives an eccentricity of 0.085 and indicates that the

steady-state orbit radius, based on the rotating load value of F = 5.68
U

pounds, should be 0.085. Figure 6.23 gives the journal motion for five

more shaft revolutions. The inner loop continues to increase in size

as the outer loop reduces indicating that the nonsynchronous component

is damping out. Notice that the orbit is approaching the calculated

steady-state orbit radius.

An increase of journal speed to 4000 rpm results in the larger

transient motion of Figure 6.24. The same behavior of the inner

and outer loops converging is also observed in this figure. Figure

6.25 confirms that the instantaneous radius of curvature is converging
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VERTICAL UNBALANCED ROTOR
NO. _1_

N = 2000 RPM WT = 0.00
R = 1.00 IN. g = 50 LB.
L = 1.00 IN. MUo5 = 1.000 REYNS
C = 5.00 MILS FMflX = 6.1 LB. AND

TRSMRX = 0.12 OCCURS RT 0.53 CYCLE
S = 0.533 WS = 0.?5
SS = 0.133 ES = 0._53
EMU = 0.20 FU = 5.68 LB.
SU = _.698 FURRTIO = 0.11
TRDMRX = 1,08 ESU = 0.085

! I
! -I ! I I i _ 0.2 O._ 0.6 0.8

6.22 Journal Orbit of an Unbalanced Vertical Rotor for 5 Cycles

(N = 2000, W = 50, C = 0.005, L/D = 1/2, EMU = 0.2)
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VERTICAL UNBALRNCED ROTOR

NO. _IS_

N = 2000 RPM NT = 0.00
R = 1.00 IN. W = 50 L8.

L = 1.O0 IN. MUa5 = 1.000 REYNS
0 = 5.00 MILS FMRX = 5.7 LB. AND

TRSMRX = O.ll OCCURS RT 6.59 OYOLE
S = 0.533 WS = 0.75
SS = 0.133 ES = 0._53
EMU = 0.20 FU = 5.68 LB.
SU = _.698 FURRTIO = 0.11
TRDMRX = 1.01 ESU = 0.085

6.23 Journal Orbit of an Unbalanced Vertical Rotor for Cycles

5 - 10 (N = 2000, W = 50, C = 0.005, L/D = 1/2, EMU = 0.2)
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VERTICAL UNBALANCED ROTOR
NO. li:1593

N = 4000 RPM WT = 0.00
A = 1.00 IN. W = 50 LB.
L = 1.00 IN. MUm5 = 1.000 REYNS
0 = 5.00 MILS FMRX = 25.1 LB. AND
TRSMAX = 0.50 OOOURSRT 0.56 OYOLE
5 = 1.067 WS = 1.51
SS = 0.267 ES = 0,306
EMU = 0.20 FU = 22.70 LB,
5U = 2.3½9 FUBQTIO = 0.45

TBBMQX = I.I0 ESU = 0.163

6.24 Journal Orbit of an Unbalanced Vertical Rotor for 5 Cycles

(N = 4000, W = 50, C = 0.005, L/D = I/2, EMU = 0.2)
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VERTICRL UNBALANCED ROTOR
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6.25 Radius of Curvature and Whirl vs Cycles of Motion

(N = 4000, EMU = o.2)



toward the calculated value of ESU = 0.]63 as given in Figure 6.24.

The whirl is oscillating about the value of one, with the oscillation

becoming smaller as the motion continues. Figure 6.26a shows five more

cycles of motion, the initial conditions corresponding to the final

values of Figure 6.24. The value of TRDMAX is 0.94 which indicates

that the bearing force is less than the unbalance loading, a very

desirable mode of operation.

Gunter (7)* explained that an orbit such as Figure 6.24 is

composed of a synchronous and a nonsynchronous component and as the

inner loop approaches the outer one the nonsynchronous component is

reducing and approaches zero as the orbits coincide. In the same

discussion, Gunter notes that the expression "half-frequency whirl"

has been given to this type orbit since two vectors, one rotating at _,

I

the o_her at _ w and placed head to tail will trace out the pattern as

indicated in the orbit of Figure 6.22 or 6.24. This effect is shown

for different magnitudes of the two vectors in Figure 6.26b.

It might seem reasonable to assume that the amount of unbalance

in the journal could be made very small and produce a very small

synchronous limit cycle. Figure 6.27 indicates that this assumption

is false. The resulting journal center orbit is growing and should

reach the same limit cycle as the perfectly balanced journal (See

Fig. 6.17). Figure 6.28 shows the increased rate of growth with the

same unbalance of 0.01 but at the higher speed of ]0,500 rpm. The

high value of TRDMAX = 19 in this orbit and the previous value of 10

*Reference in Bibliography, pp. 133-140.
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VERTICAL UNBALANCED ROTOR
liB. IllgB_l

N = _000 P,PM WT ,, 0.00
R = 1.00 IN. W- 50L8.

L = 1.00 IN. MI.I=5= 1.000 REYi_3

C = 5.00 MILS' FI,W:D(= 21.Y LB. lIND
I'RSHRX = 0.½3 OCCURS RT 6. _ CYCLE
5 = 1.06"/ W5 = 1.51

SS = 0.267 ES = 0.306
EMU ,, 0.20 FU = 22.70 LB.

SU = 2.3t19 FIIRRTIO = O.Y5
TI=EI_X = 9.9¢t ESU = 0.163

L8

6.26 a. Journal Orbit of an Unbalanced Vertical Rotor for

Cycles 5- 10 (N = 4000, EMU = 0.2)
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A= I A=0.9 A=0.8 A=0.7 A=O.6
B =0 B =0.1 B= 0.2 B =0.3 B =0.4

(;:o1

O_

A= 0.5 A= 0.4 A= 0.3 A= 0.2 A= 0.1
B=0.5 B=O.6 B'O.7 B=O.8 B=O.9

Y

A =MAGNITUDE OF SYNCHRONOUS
WHIRL COMPONENT

B= MAGNITUDE OF HALF-FREOUENCY
WHIRL COMPONENT

,_e i_t
-"-. .1[.............. _"-X

6.26 b. Analog Computer Traces of Various

Combinations of Synchronous and Half-Frequency Whirl



VERTICAL UNBALRNCEDROTOR
_o

N= _O00BPX NT= 0.00

R= 1.00 IN. N= 50LB.

L = 1.IX) IN, HUI5 = 1.000 l_'fNS

C = 5.00 H ILS FHRX - ! !.8 LB. FIND
TRSHRX ,, 0.2q OECtJRSRT 10.00 CYCLE
S = 1.067 NS - 1.51
SS = 0.26'/ ES = O. 306
EHU = 0.01 FU = l.lli LB.
SU • lt6.981 FUP_TIO • 0.132
TRDHRX - l O. 38 ESU = O. 009

6.27 Journal Orbit of a Slightly Unbalanced Vertical Rotor

for ]0 Cycles (N = 4000, EMU = 0.01)
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VERT ]CAL UNBRLRNCED ROTOR

N., 10500 RPI4
R = 1.00 IN.
L = 1.00 IN.
C = S.O0 HILS
TRSHAX • 2.98
S = 2.800
SS • O..7OO
EMU • 0.01
5U - I?.89'7
TRDHRX = 19.02

140. _91

liT ,- 0.00
14 ,, 50 LB.

RUo5 " 1.000 flEYNS
FHRX -. I q8.8 LB. FIND

OCCURS RT 9.qO CYCLE
WS - 3.96
ES - 0.139
FU - '7.82 LB.
FIJRRT I0 • O. 16
ESU - O. 023

6.28 Journal Orbit of a Slightly Unbalanced Vertical Rotor for

10 Cycles (N = 10,500, EMU = 0.01)
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indicate that this is a very undesirable mode of operation.

The stability speed parameter of Figure 6.15 for a horizontal

rotor under constant loading is given by the following relation:

_s : wj _T [6.1]

This parameter may be used to approximate the stability charac-

teristics of the vertical rotor with unbalance by assuming that the

constant load WT may be replaced by the rotating load component:

2

Wr : me_j [6.2]

Therefore, an approximate stability parameter for the unbalance vertical

rotor is:

a s = _,=p = \. < 2.5 [6.3]

for stability.

The above appears to be a necessary but not sufficient condition

for complete stability. For example in Figure 6.24 EMU = 0.2 and the

speed parameter from Eq. 6.3 is 2.236 which lies in the stable region

of Figure 6.15. In Figure 6,27 ENU = 0.01 for which the speed

parameter is 10.0 and well into the unstableregion of the stability

map. For ENU = 0.1 the speed parameter is 3.16 which is just

above the threshold. In Figure 6.29 where ENIJ = 0.1, 10 cycles of

the initial transient motion are shown which confirms the predicted

instability. The threshold speed has a value of 2.5, therefore the

critical unbalance value is given as:

1
EMUcR = _ = 0.16

(2.5) _ [6.4]
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Figure 6.30 shows the initial transient orbit of the 50 pound

journal with EMU equal to 0.14, just past the threshold or just below

the critical value of unbalance. Figure 6.31 verifies that the system

is in the unstable region since the orbit is increasing in size and

the value of TRDMAX has increased to 1.13.

Figures 6.32 and 6.33 are for the critical value of unbalance,

EMU = 0.16. The orbit is decreasing in size and the value of TRDMAX

has reduced from 1.09 in Figure 6.32 to 1.03 in Figure 6.33.

The behavior of the journal according to the level of unbalance

can be predicted from the stability map (Figure 6.15), but it is

obvious that as the speed increases, the size of the resulting limit

cycle will increase. Figures 6.34 - 6.39 demonstrate the effect of

increasing the speed for a given unbalance level of 0.2. Figure 6.34

gives the initial transient at the speed of 6500 rpm. The size of the

initial orbit has increased and the predicted steady-state orbit would

have a radius (dim.) of 0.244. The inner loops are precessing counter-

clockwise as have all the orbits having EMU > 0.]6. Gunter (7)*

indicates that this is caused by the nonsynchronous component of motion

having a frequency of less than one-half running speed. Figure 6.35

is a continuation of the orbit of Figure 6.34 and has the TRDMAX

reduced to 0.91.

For a journal speed of 10,500 rpm as shown in Figure 6.36, the

resulting transient orbit is similar to the case of Figure 6.29 for

which the orbit was unstable. The orbit is getting larger and the

*Reference in Bibliography, p. 134.
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VERTICF:IL UNBI:::ILI::INCEDROTOR

N - _000 I:IPM liT = 0.00
fl = 1.00 IN. 14 = 50 LB.
L = 1.00 IN. MUm5 = 1.000 P,ETN$
C = 5.00 MILS FMRX = 19.TLB. RND
Tfl,SHRX = O. 29 OCCURS AT 10. O0 CTCLE
5 = 1.067 H5 = 1,51
55 = 0.26'7 E5 = O, 306
EHU = 0.10 FU = 11,35 LB.
5U = _.698 FURRTIO = O. 23
TRDHRX = 1.29 ESU = O. 085

6.29 Journal Orbit of an Unbalanced Vertical Rotor for 10 Cycles
(N = 4000, EMU = 0.10)
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VERTICQL UNBQLQNCEDROTOR

N = qO00 RPH i,IT = 0.00
R= 1.00 IN. W= 50 LB.
L = 1.00 IN. MLk5 = 1.000 REYNS
C = 5.00 MILS FMRX = 17.5 LB. RND
TRSI'IRX = O. 35 OC_ RT q.53 CYCLE
S = 1.06"/ I,IS = 1.51
SS = 0.26'7 ES = 0.306
EHU = O. Iq FU = 15.89 LB.
SU = 3.356 FUI_TIO - 0.32
TRDI_z,X = 1.10 ESU = Q.117

I)._ CL6 I).O

6.30 Journal Orbit of an Unbalanced Vertical Rotor for 5 Cycles

(N = 4000, EMU = 0.14)
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VERTICAL UNBALANCED ROTOR

N,,, qOOORPH liT- 0.00
R-- 1.00 IN. 14- 501.13.
L - 1.00 IN. HLI=5 - 1.000 RETNS
C - 5.00 HiLS FHRX - 17.9 LB. liND

= 0.96 OCCURS liT 8.50 CYCLE
S - 1.067 NS ,, 1.51
SS = 0.26/ ES = O-3O6
EHU = O. lq FU = I5.89 LB.
SU - 3.356 F1JflRTIO - 0.32
Tf:Ofz,X = 1.13 ESU = 0.117

6.31 Journal Orbit of an Unbalanced Vertlcal Rotor for Cycles

5 - 10 (N = 4000, EMU = 0.14)
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VERTICAL UNBALANCEDROTOR

N ,, _000 RPH kiT ,,, 0.00
R ,, 1.00 IN. kl - 50 LB.
L ,, 1.00 IN. HUe5 ,, 1.000 REYNS
C ,, 5.00 HILS FHRX ,, 19.7 LB. RND
TRSHRX,, 0.39 OCCURSRT 0.56 CYCLE
S -- 1.067 klS -- 1.51
SS -- 0.26/ ES ,, 0.306
EHU - O. 16 FU - 18.16 LB.
SU ,, 2.936 FU_TIO ,, 0.36
TRDI_X ,, %.09 ESU ,, O. 133

6.32 Journal Orbit of an Unbalanced Vertical Rotor with the

Critical Value of Unbalance (N = 4000, EMU = 0.]6)
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VERTICAL UNBALANCEDROTOR
m. _|g{3

N.. qOOORPH kiT-- 0.00
R- 1.00 IN. H= 50L.B.
L - ).1)13 IN. HUI5,, 1.1300 REYNS
C = 5. OQ t4ILS FHRX = 18.6 LB. FiND
TRSHRX,, 0.3'/ OCCURSRT 6.60 CYCLE
S ,, 1.06/ HS - 1.51
SS = 0.267 ES = 0.306
EHU = O. 16 FU = 18.16 LB.
SU -- 2.836 FURRT]O - 0.36
TP,D_X -, !. 02 ESU = O. 133

6.33 Journal Orbit of an Unbalanced Vertical Rotor for Cycles

5 - 10 (N = 4000, EMU = 0.16) Illustrating Stable Half-

Frequency Whirl
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VERTICRL UNBRLRNCED ROTOR

14h q3S@3

N = 6500 FIPH HT = 0.00
R = l.O0 IN. N= .50lB.
L = l.O0 IN. HIJm5- 1.000 REYN5
C = 5.00 HIL5 FHRX = 65.7 LB. l:_O
TFLSI'tFiX= 1.31 OCCURS RT O. 58 CYCLE
S = 1.733 I,IS = 2. _5
$5 = 0.q33 ES = O.Zll
EHU = 0.20 FU = 59.95 LB,
51J = l.qq6 FURRTIO = 1.20
TRDHRX = 1.10 ESU = 0.21/@

6.34 Journal Orbit of an Unbalanced Vertical Rotor for 5 Cycles

(N = 6500, EMU = 0.2) with Damped Half-Frequency Whirl
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VERT I CFIL UNBgLFtNCED ROTOR

WO. =U&,_

N = 6500 RPM liT= 0.00

R "- I.DO IN. li= 50 LB.

L = I.DO IN. MU=S = 1.000 BE'rNs

C = 5.DO MILS FMRX = 5q.6 LB. _tJO
TRSMRX = I.09 OCCURS @T 6.'/6 CYCL_
5 = 1. 733 145 = 2.45

SS = 0. q33 E$ = 0.21!
£MU = O.20 FU = 59.9S LB.

SU = 1.4q6 FURBTIO = 1.20
TROI'fi:IX= 0.91 ESU = O,2qq

6.35 Journal Orbit of an Unbalanced Vertical Rotor for Cycles

5 - I0 (N = 6500, EMU = 0.2) Showing Motion Approaching
Syncnronous Precession
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VERT [ Cf:lL UNBRLI::INCEDROTOR
Nil, qlSgl3

N = 10500 FIPH liT = 0.00
R = 1.00 IN. 14= 50L.B.
L = 1.00 ]'N. HUI5 = 1.000 FIEYNS
C = 5.DO HILS FNRX = 188.1 1.B. RIND
TRSHRX = 3."/6 OCCURS RT _. 53 CYCLE
S = 2.800 I,IS = 3.96
SS = O. ?00 ES = O. 139
EHU = 0.20 FU = 156.R_'-LB.
511 = O. 895 FUItRT IO = 3.13
TRDHRX = 1.20 ESU = O. 392

6.36 Journal Orbit of an Unbalanced Vertical Rotor Above the

Stability Threshold for 5 Cycles (N = 10,500, EMU = 0.2)
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VERTICAL UNBALANCEDROTOR
liB. _ISBSI

N = 10500 RPH lIT - 0.130
R= 1.00 IN. 14= SOI..B.
L = 1.00 IN. RlJm5 = 1.000 I=IEYNS
C = S. O0 HI LS FI_IX = 201.0 LB. lIND
TRSHRX = _.02 OCCURS RT 8. q9 CYCLE
S = 2.800 14S = 3.96
SS = O. 700 ES = O. 139
EHU = 0.20 FU = 156._5 LB.
SU = 0.895 FURRTIO = 3.13
TFIDHI:IX= 1.28 ESU = O.

6.37 Journal Orbit of an Unbalanced Vertical Rotor for Cycles

5 - 10 (N = 10,500, EMU = 0.2)
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VERTICAL UNBALANCEDROTOR

N - 21000 RPH
R- 1.00 IN.
L - 1.00 IN.
C - 5.00 HILS
TRSHRX- 21.3[l
S- 5,600
SS- 1,[t00
EHU- 0.20
SU = O._Y7
TRDHRX= 1.71

NO. 111_

HT- 0.00
H - 50LB.
HUI5 - 1.000 REYNS
FHRX - 1067.0 LB. FiND

OCCIJflSRT 8.22 CYCLE
HS - 7.91
ES - O.0'72
FU - 625.'79 LB.
F1J_TIO - 12.52
ESU - O. LI91

6.38 Journal Orbit of an Unbalanced Vertical Rotor for 10 Cycles

and Showing the Limit Cycle (N = 21,000, EMU = 0.2)
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UNBI::ILRNOEDROTOR
N = 18000 RPM

R = 1.00 IN.
L= I.O0 IN.
C = 3.76 MILS
TRSHRX = 77.38
5 = 2.122
SS = 0.531
EHU = 1.00

SO = 0.06!
TROHRX = 2.2½

NO. _7_

N = 200 L8.
MUm5 = 1.000 REYNS
FMRX = 15475.2 LB. RND

OCCURS RT 0.22 CYCLE
N5 = 5.88
ES = 0.178

FU = 6914.85 LB.
FUFIRT[O = 34.57
ESU = 0.791

EULER'S METHOD g-60 H = 0.10
VERTIOAL ROTOR

6.39 Journal Orbit of a Highly Unbalanced Vertical Rotor

Experiencing Synchronous Whirl Above the Stability Threshold

for 5 Cycles (N = ]8,000, W = 200, C = 0.00376, L/D = ]/2,

EMU = 1.0)
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inner loop is precessing clockwise and becoming smaller, indicating a

predominant nonsynchronous componentof motion. The orbit is continued

in Figure 6.37 where the TRDMAXhas increased from 1.20 to ].28.

With the journal speed increased to 21,000 rpm, the transient

orbit of Figure 6.38 shows the limit cycle is well above the predicted

unbalance radius of 0.491 and is predominated by the nonsynchronous

componentof motion. From these figures there is a strong indication

that if the value of journal speed is above 2.5 x g_c (i.e. ws > 2.5),

the vertical rotor with EMU> 0.16 will be unstable. In addition, the

stability map indicates that if the predicted bearing eccentricity _ESU)

due to unbalance is larger than 0.73, then the system should have

synchronous motion only. Figure 6.39 represents five cycles of a 200

pound rotor with large unbalance (EMU= 1.0), a speed of 18,000 rpm,

and a speed parameter of _s " 5.88. The predicted unbalance eccentricity

ESUwas 0.791 and the motion is completely synchronous as indicated by

the timing marks. The orbit has a radius of 0.8] which is slightly

above the predicted value. This modeof operation is obviously

undesirable even though the nonsynchronous componentof motion is not

present, as predicted. The TRDMAXis 2.24 which indicates that the

bearing is subjected to a load of over 7 tons.

The results of the discussion on the unbalanced vertical rotor

give strong indications that a stability criteria can be developed for

this system. The results of this section have shownthat the level of

unbalance and the speed of the journal are both factors that must be

considered when trying to determine the stability of the vertical

Journal.
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The results of this limited study on the stability of the

vertical rotor sho_s that:

I. The balanced unloaded rotor is always unstable.

2. Unidirectional loads can stabilize the bearing according

to Figure 6.15.

3. For light values of unbalance EMU < 0.16 the system will

exhibit nonsynchronous motion for all speeds.

4. The necessary and sufficient conditions for complete

stability (synchronous precessive motion only) is that the

unbalance EMU must be greater than 0.16 and the speed

parameter U s must be less than 2.5.

5. For large values of rotor unbalance where ESU > 0.73,

then the resulting orbit will be synchronous even for values

of the speed parameter w above 2.5. Stabilizing the rotor
s

by the addition of large unbalance values is highly

undesirable due to the large bearing forces transmitted.

6.4.2 The Horizontal Journal

Figure 6.40 represents the behavior of a horizontal 50 pound

journal operating at 6500 rpm. Due to the gravity loading, the orbit

is displaced by the steady-state eccentricity ES = 0.21 (see Figure

6.34 for the vertical case). The nonsynchronous component is less than

one-half due to the inner loop precessing in a counterclockwise

direction. The unbalance load is 59.95 pounds as indicated by FU. The

TR factor (Figure 6.41) is observed to be oscillating between a value

of almost zero and up to a maximum of about 2.3. This is approximately
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HORIZONTRL UNBRLRNCEDROTOR

N = 6500 RPH
R = 1.00 IN.
L = 1.00 IN.
C = 5.00 MILS
TRSHAX = 2.66
S = 1.733
55 = 0,433
EMU = 0.20
5U = 1.446

TRDHRX = 2.22

NO. 2)'/91-A

HT = 1.00
H = 50 LB.
MUl5 = 1.000 REYN5
FHRX = 133.0 LB. lIND

OCCURS RT 0.86 CYCLE
HS = 2.45
ES = 0.211
FU = 59,95 LB.
FURRTIO = 1.20
ESU = 0.244

6.40 Journal Orbit o_ an Unbalanced Horizontal Rotor at the

Stability Threshold for 5 Cycles (N = 6500, W = 50,

C = 0.005, L/D = I/2, EMU = 0.2)
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HOB[ ZONTFtL UNBRLFINCED ROTOR

N = 6500 BPM

R= 1.00 IN.

L= 1.00 IN.
C = 5.00 MILS

TRSMRX = 2.70

S = I.733

SS = 0.433
EMU = O.20

5U = 1.446
T_ = 2.26

Nil.2179l-E

WT = 1.00

W = 50 LB.

MUm5 = 1.000 BEYNS
FMRX = 135.2 LB. RND

OCCURS RT 0.86 CYCLE

WS = 2.45
ES = 0.21!

FU = 59.95 LB.

FUFI_TIO = I.20

ESU = O.244

/

j/
/

6.42 Journal Orbit (by Euler's Improved Method) of an Unbalanced

Horizontal Rotor for 5 Cycles (N = 6500, W = 50, C = 0.005,
L/D = ]/2, EMU_= 0.2)
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HORIZONTRL UNBI::ILI::INCEDROTOR

NO. 21'/9|

N - 10500 RPM HT - 1.00
R = 1.00 IN. N = 50 LB.

L - I.O0 IN. MUm5 - 1.000 REYNS
C = 5.00 MILS FMRX = 2q8.? LB. RND
TRSMRX = q.9"/ OCCURS RT 8.95 CYCLE
5 = 2.800 H5 - 3.96
55 = 0.'700 E5 = O. 139
EMU = 0.20 FU = 156.q5 LB.
SU = 0.895 FURRTIO = 3.13
TRDMRX = I. 59 ESU = O, 3L12

6.45 Journal Orbit of an Unbalanced Horizontal Rotor above the

Stability Threshold for Cycles 5 - 10 (N = 10,500)
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HOFIIZONTAL UNBRLRNCED BOTOB

N- I0500RFH
fl= 1.00 IN.
L = 1.00 IN.
C ,, 5.00 HILS
TflSt'IRX = 5. ! 1
5 = 2.800
55 = 0.700
El'ILl = 0.20
51J= 0.895
T_ = 1.63

NO. 2]"/g|

liT = 1.00
M = 50L8.
I'lk_= 1.000 RE_N5
FI'IRX = 255._ LB. P,ND

OCCL/R5 RT 10.9/ c'rCLE
N5 = 3.g6
£5 = 0.139
FU ,, 156.LJ5 LB.
FURRT]O = 3.13
ESIJ = O. 392

6.46 Journal Orbit of an Unbalanced Horizontal Rotor for Cycles

10 - 15 Showing the Non-Synchronous Limit Cycle (N = 10,500)
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HORZZONTFtL IJNSFtLFtNCEDROTOR
NO. 21792

N = 6500 flPM

B : l.O0 IN.

L = 1.00 IN.

0 = 5.00 MILS
TBSMAX = 8.27

5 = I. 733
SS = O.433

EMU = O.80

5U = O.361

TBDMAX = I.72

WT = 1.00

W = 50 LB.

MUm5 = 1.000 BEYNS

FMRX = _13.5 LB. FIND

OCCURS RT I.TB CYCLE
WS = 2.45
E5 = 0.211

FU = 239.82 LB.

FUBATIO = ½.BO

£SU = 0.533

-O.6

-0._

I--

6.47 Journal Orbit of an Unbalanced Horizontal Rotor Showing

Synchronous Motion at the Stability Threshold for 5 Cycles

(N = 6500, W = 50, C = 0.005, L/D = ]/2, EMU = 0.8)
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HORIZONTAL IlNSRLANCED ROTOR

]_ m. _,_2 u. so Le. ,- eSO0ae_ c - s.oo ,z_ LID ,, O.SO I
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6.49 Radius of Curvature and Whirl vs Cycles of Motion (N = 6500)
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501.8. N- 6SOOflPI4 C- 5.00#[I.5 L/O- 0.50
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6.50 Unbalance-Displacement Phase Angle vs Cycles of Motion

(N = 6500)
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HORIZONTAL UNBRLRNCED ROTOR
NO. 2|Tg2-E

N = I0S00 I_M
R= 1.00 IN.

L= 1.08 IN.

C = 5.00 MILS

TRSMRX = 20.89

S = 2.8OO
SS = O.?00

EMU = O. BO
SU = O.22q

TRDMI:IX = 1.6?

WT = 1.00

W = 50LB.
MUllS = I.000 BEYNS

FMRX = 10½½.5 LB. AND

OCCURS AT 5.?? CYCLE
WS = 3.96
ES = 0.139
FU = 625.79 LB.
FURRTI0 = 12.52

ESU = 0.620

D

-0.8

"D°

' o'.2'o'.,_'o'._' o'.o'

6.51 Journal Orbit of an Unbalanced Horizontal Rotor above the

Stability Threshold for Cycles 5 - 10 Showing Synchronous

Limit Cycle (N = 10,500)
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An increase of EMU to a value of 0.8 produces the "synchronous"

limit cycle of Figure 6.47. Figures 6.48, 6.49, and 6.50 are the

transmissibility, whirl and radius, and phase angle plots for this case.

Note the cyclic nature of the forces on the bearing as indicated

by the TR plot and the fact that the whirl is oscillating about the

value of ].0 while the timing marks on the orbit plot are coming on

top of each other and make it appear that the orbit is absolute

synchronous while it is not.

With an increase of speed to ]0,500 rpm, the limit cycle grows

accordingly as shown in Figure 6.5] and the synchronous forcing function

prodominates the resultant orbit motion. The plot of TR in Figure 6.52

resulted from the improved Euler solution and is the correct result for

the case presented in CHAPTER V as Figure 5.9. The radius and whirl

plot for this case is included as Figure 6.53 and concludes the series

of figures being presented which are related to unbalance loading

along.

The cases presented have shown that unbalance in a horizontal

rotor will increase the forces being transmitted to the bearings and

therefore should be reduced to the smallest value possible. No

advantage, as was found for the vertical journal, can be had from

unbalance in a horizontal rotor.

6.5 Motion of a Journal Bearin$ Experiencin$ Cyclic External Loadin$

A journal bearing in actual use must support the journal and

rotor system and in addition it must be able to maintain its stability

and load-carrying capacity under any type of external loading that
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might occur. For example, the main bearings of an internal combustion

engine experience severe cyclic loading functions through the connecting

rods. Journal bearings must be able to support shock loading, plane

cyclic loading, rotating loads other than unbalance, or any other type

loading that a particular application might involve.

The following sample cases were chosen to illustrate the ability

of the method of solution to produce the resulting journal orbits.

Figure 6.54 indicates the orbit of a 200 pound vertical journal

with a clearance of 3.76 mils operating at 3600 rpm and experiencing

a -200 pound load that is rotating backwards at I/2 the journal angular

frequency. The resulting "three-bladed propeller" is the resultant

motion of a forward synchronous component plus a nonsynchronous

component rotating backward at one-half the angular velocity of the

synchronous component.

By applying the formula given by Hull (25)* there should have

been approximately two outer loops. The difference is, of course, that

the unbalance forcing function has altered the effect of the external

rotating load and results in the three outer loops of Figure 6.54. This

type of motion has actually been observed experimentally with two-pole

electric motors supported in plane journal bearings_Z) •

The same conditions for a horizontal bearing is shown in Figure

6.55 with the corresponding whirl and curvature plot presented in

Figure 6.56.

*See CHAPTER II, p. 10 for equation given by Hull.
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UNBI::ILRNCED ROTOR

N = 3600 RPM
NO. 8r/83

R = 1.00 IN. 14 = 200 LB,

L = 1.00 IN, MI.I=5 = 1,000 REYNS

C = 3,76 MILS FHRX = ½25,9 LB, RND
I'RSMRX = 2.13 OCCURS RT 1,72 CYCLE
S = 0,q24 14S = 1,18

SS = 0i06 ES = 0.500

EMU = 0,27 FU = 73,57 LB,
SU = I, 154 FURRTIO = 0,37

TRDHRX = 5, 79 ESU = O, 289
FO = -200,0 LB, EN = -0,50

0.2 0._ 0.6 0.8

EULER' S METHOD W-60
VERTIOAL ROTOR

H = 0.10

6.54 Journal Orbit of an Unbalanced Vertical Rotor Having a

Backward Half-Frequency Rotating Load for 5 Cycles (N = 3600,

W = 200, C = 0.00376, L/D = 1/2, FO = -200, EN = -0.5,
EHU = 0.27)
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UNBI::ILRNOEDROTOR

N - 3600 RPR
NO. 82381

R = 1.00 IN. W = 200 LB.
L = 1.00 IN. HUB5 = 1.000 REYNS
C = 3.76 HILS FHAX = 567.2 LB. RND
TRSHRX = 2.8½ OCCURS RT 1.63 CYCLE
S = 0.½2½ WS = 1.18

SS = 0.106 ES = O.SO0
EHU = 0.2? FU = 73.57 LB.
SU = 1.15½ FURRTIO = 0.37
TRDHRX = 7.71 ESU = 0.289

B

I I I I I I p,_l A ! I I : I _4" II I I

R-K' 4 W-60 E = 0.05

5 pt. rule

6.55 Journal Orbit of an Unbalanced Horizontal Rotor Having a

Backward Half-Frequency Rotating Load for 5 Cycles

(N = 3600, W -- 200, C = 0.00376, L/D = I/2, FO = -200,

EN = -0.5, EMU = 0.27)
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The next three series of figures are for a 50 pound journal with

a clearance of 5 mils experiencing cyclic loading functions. Each

case is allowed to run for five cycles of journal rotation, which is

6500 rpm.

The first case, Figure 6.57 has a forward rotating load, rotating

at one-half the journal speed. A maximum load of about 500 pounds is

developed in the bearing after 3-]/2 cycles as indicated on the plot.

The second case, Figure 6.58,is for a ]00 pound backward rotating

load (EN = -0.5). This case is very similar to that of Figure 6.55

but the synchronous component is not as prevalent so the motion is very

close to being backward half-frequency* whirl. The instantaneous

whirl is given in Figure 6.59 and is oscillating about the -0.5 value.

It is obvious that the direction of rotation of the external

load has a great effect on the size of the resulting orbit for the given

case of the frequency ratio being 1/2. From Equation 3.23, it is

obvious that the entire wedge effect of the journal bearing is lost if

the precession rate, _, is exactly one-half shaft speed. This explains

the large limit cycle for the case of the forward rotating load

(Figure 6.57) as compared to the relative small orbit for the backward

rotating half-frequency load (Figure 6.58).

The next case (Figure 6.60) considered has a vertical (y-

coordinate) oscillating load of FHY = 100 pounds and the frequency is

one-half the journal angular velocity, _,. The orbit spirals out in
J

phase with the exciting force and would eventually reach a limit cycle

*This is of course an average or mean value as discussed earlier

for horizontal journal bearings.
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HORIZONTAL UNBALANCED ROTOR

N = 6500 RPM

R = 1.00 IN.

L = 1.00 IN.

C = S.O0 MILS

TRSMQX = I0.00

S = I.733

SS = O.433

EMU = 0.001

SU = 289.111
TRDMRX = 1667..33
FO = 100.0 LB.

NO.I_I081

WT = 1.00
W = 50 LB.
MUmS = 1.000 REYNS
FMRX = 499.8 LB. RND

OCCURS RT 3.50 CYCLE
WS = 2.45
ES = 0.211
FU = 0.30 LB.
FURRTIO = 0.01
ESU = 0.001

EN = 0.50

6.57 Journal Orbit of an Unbalanced Horizontal Rotor Having a

Forward Half-Frequency Rotating Load for 5 Cycles

(N = 6500, W = 50, C = 0.005, L/D = I/2, EMU = 0.001,

FO = I00, EN = -0.5)
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HORIZONTAL UNBFILFtNOEDROTOR

N = 6500 RPM

R = 1.00 IN.

L = l.O0 IN.

C = 5.00 MILS

TRSMFIX = 3.44

S = I.733

55 = O.433
EMU = 0.001
SU = 289.111
TRDMRX = 573.56
FO = 100.0 L8

NO. L2.10a2

HT = 1.00
la = 50 LB.
MUBS = l.O00 REYNS
FMRX = l"/l. 9 LB. RND

OCCURS RT 0.32 CYCLE
WS = 2.45
ES = 0.211
FU = O. 30 LB.
FURRTIO = 0.01

ESU = 0.001

EN = -0.50

6.58 Journal Orbit of an Unbalanced Horizontal Rotor Having

a Backward Half-Frequency Rotating Load for 5 Cycles

(N = 6500, W = 50, C = 0.005, L/D = l/2, EMU = 0.001,
FO = 100, EN = -0.5)
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6.59 Radius of Curvature and Whirl vs Cycles of Motion

(FO = 100, EN = 0.5)



HOBIZONTRL UNBRLRNCED ROTOR

N = 6500 RPH

R = 1.00 IN.

L -- 1.00 IN.

C - 5.00 MILS

TRSMRX = 4.13

5 I 1.733
SS = O. 433
EMU = O.001

SU I 289.111
TRDHRX = 688.45

FHY =IOO LB

III.12_@63

_T I 1.00

H = 50 L6.
HUi5 = 1.000 REYNS
FHRX = 206.4 LS. RND

OCCURS RT 3.43 CYCLE
MS = 2.45
E5 = 0.211

FU = O.30 LB.

FURRTI0 = O.01

ESU I 0.001
ENY =0.5

0.2 O._ O.@

6.60 Journal Orbit of an Unbalanced Horizontal Rotor Having

Unidirectional Harmonic Loading for 5 Cycles (N = 6500,

W = 50, C = 0.005, L/D = I/2, EMU = 0.001, FHY = I00,
ENY = 0.5)
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6.61 Radius of Curvature and Whirl vs Cycles of Motion

(FHY = I00, ENY = 0.5)



and continue the whipping motion. Figure 6.61 indicates a mean value

of 0.5 for the whirl under these conditions.

It would be impossible to include examples of all variations of

the loading functions possible with the present program makeup, not

to mention the capability of reading force values from data cards into

the program for each increment of dimensionless time, T.

The purpose of this section, as stated earlier, was to give an

indication of the possibilities that a program of this type has for

practical use in the design of journal bearing for arbitrary loading.

The average cost per case on the Burroughs B5500 has been approximately

ten dollars, including plotting costs. Two and one-half minutes processor

time and one and three-fourths minutes I/0 time have been required per

case on the Burroughs machine. The automatic plotting feature of the

program makes the data reduction the easiest part of the job, instead

of the hardest.
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CHAPTER VII

SUMMARY OF BASIC ASSUMPTIONS AND RESULTS;

SUGGESTIONS FOR EXTENDING THE ANALYSIS

7.] Discussion of Assumptions

The derivation of Reynolds' equation in CHAPTER III was based on

the following standard assumptions:

I. The flow is laminar everywhere in the fluid.

2. The shear stress is related to the shear rate by the

viscosity of the fluid (Newtonian fluid) which is

constant across the film.

3. Body forces are neglected (i.e. weight of fluid in the film

is small in comparison to the other forces acting there).

4. The inertia forces are neglected due to the modifi,_d
2F61

much less than unity, 0UL _r_ << 1Reynolds number being
tLj

5. The pressure across the film is constant.

6. The density of the fluid is a constant.

Reynolds' equation for the plane slider bearing was then

modified for the journal bearing configuration in rotating coordinates

by considering the linear combinations of the effects of rotation,

radial motion, and precession. Reynolds' equation was derived for the

journal bearing in fixed x-y coordinates by expressing unit vectors

and reducing the tangential velocities to the fixed coordinate set.

In so doing the small angle assumption was used to express sine and

tangents as their radian value. The journal bearing equation was then

reduced to the short bearing equation by neglecting the radial flow
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due to pressure gradients, this required the restriction that L/D be

less than unity, as verified by Figure 3.4.

The exact nature of this assumption is not readily apparent from

looking at the Reynolds' equation. To better understand the meaning of

this assumption Equation 3.9 should be examined. Letting x = R6, that

equation can be expressed as:

It should be apparent that the circumferential fluid flow is not

zero just because the expression containing _P/_0 is omitted. The

contributions due to the relative motion of the surfaces and the squeeze

film effect which result from integrating the continuity equation are

not lost by the short bearing assumption.

The equations of motion for the journal were next derived by

considering Newton's second law. Gyroscopic effects, angular accelera-

tion or shaft misalignment were not accounted for and therefore the

equations of motion reduced to two coupled_second-order nonlinear

differential equations. These equations were then solved by numerical

methods for the resulting transient journal motion as presented in the

previous chapter.

7.2 Discussion of Results and Conclusions

This analysis has proven the feasibility of incorporating fixed

cartesian coordinates in the study of journal bearings instead of using

the standard rotating coordinates. This makes the extension of a rotor

dynamics program to include fluid film bearings very simple since,
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without doubt, cartesian coordinates are the standard coordinate set

used in rotor-shaft analyses and therefore the extension would not

require a complicated transformation between coordinate sets.

The modified stability maps presented as Figures 6.14 and 6.15

are of great importance when considering the design of journal

bearings that are operating under external loading or those that are

used for a particular application where the system axial coordinate

might be inclined at an angle to the horizontal. Figure 6.14 indicates

clearly that the region of instability increases as the system is

tilted from the horizontal and the balanced vertical unloaded journal is

unstable for all speeds of operation as indicated by Figure 6.15.

The constant external loading has been shown to stabilize the

journal with far less total load than indicated as necessary by the

stability map of Badgley (30), (Fig. 4.2). The example given in

CHAPTER VI clearly illustrated that a 150 pound external load would

stabilize the 50 pound rotor, whereas the stability map of Badgley (30)

indicates that the only way to stabilize the system is to increase the

equilibrium eccentricity to a value greater than about 0.73, as

illustrated by Figure 6.11. The system was shown to be very stable at

an eccentricity of 0.395 under the external load, as shown in Figure

6.13 and predicted by Figures 6.14 and 6.15.

The orbits of the unbalanced vertical journal indicate that a

certain degree of unbalance is desirable to reduce the magnitude of

the journal motion and bearing forces transmitted. The large limit

cycle of the balanced vertical journal could excite unwanted modes of

shaft vibration in an actual system. It is of interest to note that
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the addition of unbalance can greatly reduce the magnitude of the limit

cycles encountered with vertical balanced rotors and also keep the

forces transmitted to a lower value than that of a perfectly balanced

shaft (See Figures 6.17 and 6.33 for example).

The horizontal journal, in all cases tested, did not have the

static or dynamic transmissibility below a value of one at any time.

Figure 6.50 was the only plot presented of the phase angle between

the unbalance and the journal center displacement. Two important

conclusions can be obtained from this plot for the unbalanced horizontal

rotor. Figure 6.47 shows the resultant synchronous limit cycle of the

journal center but the phase angle in Figure 6.50 has a substantial

variation in magnitude. Many investigators assume a constant phase

angle to reduce the labor involved in obtaining closed-form solutions

for less complex rotor simulations. This single plot clearly indicates

that this assumption is not valid. One other important aspect of

this plot is the fact that the phase angle is oscillating about the

approximate value of 90 ° . Gunter (42) explains that when the phase

angle does not or cannot go through a complete 180 ° inversion, large

resultant forces are transmitted to the support system.

Unbalance in a horizontal journal is highly undesirable and should

always be reduced to the lowest possible value. The vertical journal,

however, requires the proper unbalance level to allow the system to

operate at a low amplitude limit cycle. The conclusions regarding the

stability of the vertical journal are listed at the end of section 6.4.1.

The most desirable design for a vertical journal should have the

unbalance level (EMU) just above 0.16 while the speed parameter w s
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should be less than 2.5. Under these conditions, the journal should

exhibit small synchronous limit cycles and in some instances the

dynamic transmissibility will reduct to a value below unity.

The transmissibility plots have shown the cyclic nature of the

large resultant forces being transmitted to the bearing due to unbalance

of the journal. This could shorten the life of the bearing surface

considerably due to fatigue pitting and hence the loss of the load

carrying capacity of the bearing. However, as noted previously, the

proper unbalance level is necessary in a vertical journal to reduce the

journal motion and the forces transmitted to the bearing surface.

The concept of whirl has been derived and the plots of this

quantity indicate that a constant value of whirl cannot exist in a

horizontal journal (rotor), but can give the orbit the appearance of

a constant whirl due to the averaging of the cyclic nature. The

vertical balanced journal was the only configuration that gave a

constant whirl ratio.

The developed program has shown the ability to predict journal

orbits under various types of external cyclic loading functions and

leaves no doubt as to the capability of the program to track arbitrary

forcing functions. If the forcing function can be approximated by an

analytic expression, then the program may be easily modified to

incorporate this loading by changing a single card, otherwise a

procedure will have to be added to the present program to read data

cards containing values of force for each increment of time the

solution will track. The later process would present some difficulty

but any arbitrary time dependent forcing function could be incorporated
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in the program if desired.

With the more advanced methods of data display available to

researchers, the time required for the analysis of computer output has

been greatly reduced. This fact permits complex systems to be simulated

at a reasonable cost and within a minimum amount of time. Numerical

methods that were considered impractical several years ago are now

being used very effectively due to the speed and accuracy of the modern

digital computers. This fact is of great importance to the practicing

engineer due to the widespread availability of teletype terminals which

provide easy access to large time-sharing computers at a reasonable

cost to the user.

7.3 Su$$estions for Extendin$ the Analysis

The present analysis may be easily extended to include bearings

mounted in flexible, damped supports. This extension would require the

addition of two more equations of motion to represent the support motion,

The analysis by Gunter (7) and experimental investigations of Tondl (43_

indicate that bearing stability may be considerably improved by mounting

the bearing in a damped, flexible support system.

One feature of the present program that was not considered in

this discussion was the retainer stiffness and damping terms. These

quantities should considerably increase the stability of the system if

their values were properly chosen.

The conclusions presented in section 6.4.1 concerning the effect

of unbalance on the vertical rotor could be extended or corrected by a

more extensive study. The trend observed in the limited number of cases
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presented in CI_PTERVI indicate that the behavior of an unbalanced

journal can be predicted.

The present program has recently been modified to include only

the squeeze-film eff_,ct oL the bearing, which has application in regards

to oil-filled clearances being designed into ball bearing supports to

help reduce the vibration level of the system.

The effect of journal angular acceleration and varying torque

loads would provide somevery interesting transient journal motions

and would increase the understanding of the rotor orbits being observed

in experimental test rigs. The behavior of rotors under extremely high

acceleration rates is of great concern at present due to the require-

ments of the space vehicle boosters. A tremendousamount of energy

must be developed in only a few seconds to enable the booster to lift

the payload from the launch pad. A better understanding of acceleration

rates on rotor behavior could further the understanding of and, hopefully,

reduce the vibrations that have been encountered by the astronauts during

the initial stage of their flights.

Most analyses to date that have been performed on rotor systems

have assumedsimple supports or linear relations for the bearings.

The present equations in the fixed coordinates could easily be included

in such an analysis to give a muchbetter prediction as to the actual

system behavior.

Finally, for a complete analysis, the bearing should include

considerations for misalignment in addition to rotor angular accelera-

tion, torque, gyroscopic effects, and the forces as predicted by

Alford (29). This would then be an integral part of an n-bearing
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station, multi-mass, flexible rotor system. This solution will indeed

be of great interest to everyone in this field Of research.
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APPENDIX A

Listing of the Computer Program to Plot the Pressure Profiles,

Pressure Surfaces, and the Film Thickness for the Short

Journal Bearing (with a sample of the line printer output)
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APPENDIXB

The Short Journal Bearing

Computer Program Listing

(with a sample of the line printer output)
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HEGI
CLlqMENT PROGRAN AS OF APPIL a, 1969 ;

COM_ENT

THIS PROGRAW GIdLS T_E Tt_ANSIENT _(.]LUTION UF A R3TDR -FL.UIF) FILW

8EAkI_G SYSTEm, THE HYDRODYNAMIC FORCE3 IN X AND Y DIQECTIONS ARt_

CALCL_LAIED lh CARTESIAN CO-OHDINATES,

file E_uATIDNS LJF W;UTION ARE _EDUCED. TD 4-FIRST r)hDER

DIFFERF_;TI,wL F_JATIgNS AND friER THEY A_E SOLVED FOR TRANSIENT

SqLDIIO_ By INTEGRATING _OR_ARf) IN TI_4L BY 6TH D RUNGF-KUTTA

ME IFDD AS A STAGIER AND lHf. h EXTENI)F.D uY AI)AWS-BASHFORTH-M_ULTON

PREDICTDf_ CD6RL:IDR WETH{JD I_ GOEULFR iS FALSE DR HY A MOF)IFIFb

EgLEf_ tvETWuD If G[)EULER IS T_UE,

AN GPIIDN ;'OR KEEPING ONLY EVERy _SF CALCULATION IS INCLI_DED

AS AN OPTItJN ON CAR9 ll
IF_E INPUI U r THE PR(_bRAM IS A,_ FC}LLU_Sz

CARD I,

I, TMAX - NO, DF CYCLEa OF ROTOR MOTIF]h.

2,H'(RADI_N_)_STEP INCHE_ENT,

3,N-_D, 0; FIRST DkDER D,E, ID BE SOLVfD,
CArD 2,

I, _IMEGA - SPEED fIF ROTOR (REV/_IN)
_, I,'_CG_E_A - INCREMENT OF ROTOR SPEED {RPw_)

3, NuINC - NO, OF INCRLMFNTS THI_ SET OF DATA

4, CUWEGA - SPEED DF JOURNAL + BEARING (RP_)

CAhL 3,
|,EMU-[_IMZNSIONI.ESS UNBALANCE ,

2,F_-MAGNITUDE oF APPLIED Ff]RCE IN LBS,

3, EN - NJMBER REPRESENTING THE _RACTI_N DF THE ANGULAR

F4EQUENCY DF THE RDTUR 0_ THE APPLIED FFIRCE

a, FUCX - CONSTANT FORCE IN THE X-DIR,
5, FUC% - CONSTANT FORCE IN THE Y-DIR,

6, FtiX - -IARMDNIC F{]RCE IN X-DIR,

7, F,x), - CRACTION DF ROTOR ANG, FREQ rJF FHx
8, FrIY = qARMDNIC FDRCt. IN Y-DIR,

9, _NY = CRACTIDN DF RUTOR ANG, FREQ OF FHy

CArD A,

I,CL'CL[A_ANCE BETWEEN JOURNAL AND BEAF_ING (INCM),

?,R't_ADIUS DF THE JOURNAL (INCH),
3,L-LENGT4 DF THE _EARiNG (INCH),

a,W'_EIGHT DF THE ROTOR (LBS),

5,kU'VISC3SITY DF IHE LUHRICANT (REYNS),

_,, MURIZ - B[JDLEAN " TRUE FOR M{INIZONTAL ROTOR AND

FALSE FOR VERTICAL HOTORS

CAF_D 5,

I, KNX - _ETAINER SPRING RATE IN X-DIR,

2, D_X - RETAINER [,'AMPING FACTOR IN X-DIR,

3, KHY - _ETAINER SPRING RATE IN Y-DIR,

a, D_ - _ETAINER DAMPING FACTOR IN Y-DIR,

CARC 6,

|, INIIIA_, TIME,
P, II_lIIA, X-DISPLACEMENT,

3, I_,IIIAw, X-VELUCITY,

a, Ii_llIA= Y-DISPLACEMt.NT,
S, I_wITIA= Y-VELOCITY,

CARD l,
I, NI - IWTEGER TO BE OSFD IN wEUDLES RULE TNTEG, (IT
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SY_BnLC_.?Up6.3,0.1pALP6pOpI4)J NUMBERc4.Tp6.3pO.lpCLpO,2);
SYVBC)L(4,?_6,J,_,IpALP8pO_3); NUMBER(4.8pb.lpO.I,SpOp3)J
SY_BDL(e.3s6.3,_.IJALP25pO_5); NUMBER(6,4TpS.3_O.I_L/(2xR)_Oj_);
SYMBUL(6.0bp6.1PO.1pALPlI,0_20)I NUMBER(6.31_6.1pO.I,MU_Op_);
XOT _ 4 " NTxO.)6 t
SYVBOL (XOTp6.55,0.1_AL3pO,NT);

END OF SBGRID I

THE FDLLO_IN_ PROCEDURE CALCULATEs THE SHORT BEARING FORCE
BY THE USE OF WEDDLES RULE INTEGRATION
PROCEDURE FORCE (XpyeVX_VYjN)J
VALUE X,Y_VXpVY,NI

REAL X_Y_VX_VYt
INTEGER N;

BEGIN

REAL H3_FX,FY;
REAL HIT ;

INTEc_ER I,d;
KB * 0 ;

IF X # O nH Y # 0 THEN

KB * (XxVY'YxVX)/(XwX+Ywy)J

FOR I*O STEP I JNTIL N 00
BEGIN

COSKK * CDSK[I] ; SINKK * SINK[I] J
HII • 1 - X x CDS(K - Y x SINKK 1

H3 * HII x Nil _ HII ;

P[I]* (-XxSINK( + YxCOSKK + 2wALFD x( VXWCOSKK+VYw$INKK))/H3 ;
IF P{I]<O THEN _[I]*O;

PX[I] •P[I] x COSKK ;

PY[I] *P[I] x SINKK ;
END;

FX,O;

FY*O;

I • N / 6 ;

FOR J • ! STEP ! UNTIL I DD
BEGIN

JT ÷ Jx6 ; J6 * JT - t ;
J3 * J?-A; J2 • JT-5; Jl • J?'6)

FX • ( P([J1]+ 5xPX[J2]+

5xPX[J_]+ P([JT]) + FX ;
FY • ( PY[J1]÷ 5xPY[J2]+

5wpy[J6]+ Pt[JT]) + FY ;

END;

KKK * DEL x 0,3 ;

FX • FX x _KK ;

FY * FY x _KK J

FXX*'FX; FYY*=F¢;

END OF FDHCE;

J5 * J7"21 JA * J7-3 ;

PX[J3]+ 6xpx[J_]+

PY[J3]+ 6xPY[Ja]*

PX[JS]+

PY{JS]+

THE FOLLOWING P_OCEOuRE IS THE FUNCTION CALCULATOR FOR THE
_TM ORDER RUNGE-KUTTA INTEGRATION PROCEDURE.

PROCEDURE FRK(X,Y_DX); VALUE X;

REAL X; ARHAY Y[O]_OX[O] ;

BEGIN

FORCE (YL I],Y[ 3],Y[ 2]_Y[ _]_N1} ;
IF K • 2 THEN
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BEG I h
FXXL (- FXX ; FYYL _- FYY ;

END ELSE BEGIN
FXX + FXXL + Fx_xRELAX + FXXL x (1"RELAX) ;

FYY + FYYL + FYf x RELAX + FYYL x (I'R[LAX) J
END ;

0_([I] + Y[2] ;
OX[2]_EMUxCUS( _( )+ KIxCOS(ENx X )+K2xFXX + K5

-(k9xY[t] + KII x Y[2]) + K7 x SIN(ENX x X );

D_([3.1 + Y[W] ;

DX[_]'," EMU x SIN( X )+KIwSIN(ENw X ) +K2xFYY'K3 + K6
-(K1U x y[_] + <12 x Y[A]} + K8 x SIN(ENY x X )l
END ()F F RK I

IHE FDLLOWIWG PROCEDURE CALCULATES THE FUNCTIONS NEEDED IN

_DAMS-BASHFDRT_-MOULTON INTEGRATION METHOD

PROCEDURE FUNCIIDN ( K); VALUE K; INTEGER K;

BEGIN
FORCE (Y[ I],Y[ 3t,Y[ 2]pY[ A],NI} I

IF K = 2 TMEN
BEGIN

FXXL + FXX ; FYYL + FYY J
END ELSE BEGIN

FXX * FXXL + Fx(xRELAX + FXXL x (!"RELAX) J
FYY + FYYL • FYf x RELAX + FYYL x (I-RELAX} J

END ;

F[2]+EMUxCUS(Y[ 0])+ KIwCDS(ENwY[ O])+K2xFXW + K5
-(K9xY[1} + Kll x Y[2]) + K7 x SIN(ENX x Y[O])J

AY[II,K-I] + F[2] ;
F[_]_ EMU x SIN(y[ O]}+KIxSIN(ENwy[ O]) +K2wFyy'K3 + K6
-(klO x Y[3] + <22 x Y[4]) + K8 x SIN(ENY x Y[O])J

AY[12,K'I] • F[l] ;
END OF FUNCTION;

THE FOLLOMING _RDCEDURE IS THE ADANS'BASHFORTH'MOULTDN

I_TEGRATIUN PR3CES5

PROCEDURE TIMESTEP (TMAX, Hp N_ AY_ NA}J

VALUE T_AX_HpN;

REAL TMAXJH3 IWTEGER N_ NA J

REAL ARRAY AYE3,0}

BEGIN

INTEGER IpJ J LABEL REPEAT _ SMASH;

FOR I * 0 STEP I UNTIL 4 DO

AY[I,I]+Y[ I];

K+2;

REPEATI
BEGIN
REAL PPJINTEGER l_J3

REAL VELD2
FUNCTION ( K};

JOURANG + Y[O] ;
JOURANG + JOURAWG - PI2 x ENTIER (JOURANG / PI2 ) J

AY[IOpK-I] * (JDURANG-ANGLE(Y[3].Y[I])) x CONSTI J

K+K-1;
IF AY(10_K] • 150 THEN AY[IO_K] + AY[iOsK] " 360

ELSE
i F AY[IO,K) $ -180 THEN AY[tUeK] • AYIIO_K} + 360 ;
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K] (" W/_KK l

Kll + K2 x _KK J

K5 + FDCX I KKK

K? • FHX/K_K J

KK_ _- KKK / CL

KK_ ,,-KK_ / bME,_A J

Ktl • DRX/_KK

K6 • FDCY / KKK
K8 • F HY/KKK )

KIO • KRY/KKK J

K12 • DRYIKKK J

COMMENT

S = SDM_ERFELD WUMBER = MU(NJ-RPS)x(LDR*2)/(WWTW_WC*2}

SS = SHORT BEARING SDMMERFELD NUMBER = S x (L/D)*2
SU = SOMME_FELD NUMBER BASED ON THE ROTATING UNBALANCF LOAD

WHERE FU = MXC_EMUx(OMEGA-RAD/SEC)*2

NkT = LOAu kATID = SQRT((MG-FDCY)*_+FDCX*2)/MG

P = PRDJEC[EO LJAD =(WWT/(LXQ))x W
WS = DYNAMIC SPEED PARAMETER = (NJ-RPS)XSQRT(MC/(WWTwW))w2PI

TRS =STArlC TH_NSMISSIBILITY = S(L/R)*2 wF(DIM, BEARING FDRCE)
IRD = DYkAMIC T_ANSWISSIBILITY = G/(CxDMEGA*2)SS/EMUxF(DIM,)

ENO DF COMMLNT

WWT * SQRT((_-F]CY),2+FDCX,2)/W )
IF _T = 0 THEN BEGIN

S + MU x CUMEGA xLxRwRxR / (CLxCLxWxPI) J

WS ÷ OMEGA x SQ_T(CL/G)

E_b ELSE BLGIN

S + MU x UMEGA xLxRxRxR / ( CLXCLxWwPIxWWT } )

WS • OMEGA x SQqT (14xCL/(WWTxW)))

END
SS • Sx(LI(2xR))*2 1

PBRG+(WWT/ (Lx2xR)) x W }
FMAX * 0 J

EMAX • O}

ITERATIVE P_OCESS TO FINQ EQUIL, ECCEN, FOLLOWS

ANSI • FIR • IN:R + 0,I

DL? +(2xRIL)*2 J

_ONCE_ORE s

EE + ANSI x ANSI _ EE2 • I={E

SSU • OL2 x EE2 x EE2 / (PI x ANSI x SQRT (PIwPIwEE2 + 16wEE) )

IF SSU < S THEW o
IF ABS((SSU'S ))IS < 0,01

BEGIN
ASS + ANSI ) G] TO SKIPIT

END

ELSE
BEGIN

ANSI • ANSI = IWCR )

INCH • INCH /_ !

END)

ANSI • ANSI + IqCR )

GO TO MDNCEMORE )

5KIRIT I

THEN

IF ENU # 0 THEN
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NUMBER (3+ 3xNU_B'.52J2.75_O.I _NUMBpO, t)I
FOR NUMB * 0,2 STEP 0.2 UNTIL 0.801 DO
NUMBER (2.T2s3+ 3xNUMB'O.05 p 0.1 _NUMB_Opl)_

SYMBOL (AY[Ipl], AY[3pl]p ,49p ALPHA! p 0p'13);
SYMBOL (AY[IpNM]pAY_3*NM]pO.IpALP]_O,-15)J
CS * 6e2B /(HxKSF) J

FOR ! • CS STEP CS UNTIL NA O0

SYMBOL (AY[IpI|, kY[3, Z]p .Ore ALPHA1 p O, "5))
IF FAIL THEN

SYMBOL (AY[lpNA]p AY[3pNA]pOeI4pALPHAI,O_-12)_
LYNE (AYEIp,], kY[3p,], NAp l)J
IF EMU • 0 THEN

BEGIN
IF HORIZ THEN

SYMBOL (O,94pg.25pO.21pALP40pO,25)
ELSE

SYMBOL (I.12p9.25,0.21,ALP41,0,23);
END

ELSE
IF HORIZ THEN
SYMBOL (O,76pg,25,0,21,ALP42pO,27)
ELSE

SYMBOL (O,gn,9,25,0,21,ALP43,0,25)J

MU * MU x 100003
CL * CL x 1000 ;

SYMBOL(5,60_B.9,.I,ALP2,0p3)J

NU_iEER (5._5,8.)poI ,CNO,O,O)I
SYk'BUL(O,75_B,5)p,]_,ALP3,0,13)J

SYMBOL(O.TSpB.25,.t_,ALP4,0,13)l

SYMBDL(O.Tb,B,O}p.I_pALP5pO_I3)J

SYMBDL(O,Tb_l.T_p.14, ALP6pO_I4)I

SY_BULCO.Tbpl.5)_.14tALPTpop_)I

SYMbOL(O.T_pl.25p.I_,ALPBpO,_);

NUMRER(5.Tb,8.9,.I ,MDy ,0,0);

NUMBEM(I.tt,8,50,.I_,_MEGA,O,O);

NUMBE_(O,lS,B.25,,]4,R,O,2);

NUMBER(O,lS,8°OD,.14,L,O,2);

NUMBEH(O.IS_I.TS,.|4,CL,O,2)I

NUMRER(1.35,7.50,.Ia,TRSMAX,O,2);

NUMBER(O.BT,7.25,.I_,S_Op3)t
SYMBOL(O.7),7,0,.I4,ALPg_O,A); NUMBER(I,O,/.O_.IQ,SS,h,3);

SYMBDL(3.Tb_B,5},,IQ_ALP_Q_O_b); NUMBER(3.BT,8,SD_.I_,WWT,O,2);

SYPBOL(3.T)_.25,.1Q,ALP10,O_13); NUMBLR(a.I],B,25_.Ia,W,O,O)I

SY_BDL(3.?b_B.O3,.t_ALP11,0,20)_ _UMBLR(Q.tI_B.DO,,ta,MU,O,3);

SY_IBDL(3°Tb,7.TS_,I_ALP%2_O,22); NUMBLR(4.5,T.TS,.I_,FMAX,O_I)_

0,2);

SYMBDL(3.7_7,25,°IQ,ALPI_,O,_)_ NUMBEH(3.TS, T.25,.I_,W$,O,_)_

SYMBDL(3,TS_/oO,.IQ,ALP15,0,_)_ NUMRER(3.T5,T.O_.I_,ASS,O_3)J
IF E_U # 0 ThEN

BEGIN

SY_bDL(.75,6,Tb,.I_,ALPIb,O,b)_ NIIMBER(I,6.TS,°I_,EMU,O,2)I

SY_BOL(.75,6°50,.Iq,ALPIT,O,W)_ NUMRER(I,6.5,.I_SU,O,3);
SY_bOL(.lS,6.?5,.IQ,ALPt_O,O)/ NUMRER(I.59,6.25,.Ia,TRDMAX,O,2);

SY_OL(3,T_6,TS_,I_,ALPlg,O_t6)J NUMBLR(_°I]_6.TS_.tO,Fu,O_2_;

SY_BOL(3.7b_b.5)_.I_ALP20,O,9)I _UMBE_(a,59_6,50,°I_,FLIRATI_,O,2)_

SY_BOL(3.T),b.25,°I_,ALP21,0,5)_ NUM_EM(_.II,6,25,,I_,ANS,O,3)I
IF F& # 0 IHEN BEGIN

SY_h_L(,lS"6.00'.I4'AL.P?2,0*15); NUMBEH(I.}I,6.0D,,Ia,FD,O,I)|

19P.
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AYf?pNA ] + 0 ; AY[T_NA'1] & t.20 ;
AY[BpNA ] + 0 ; AY[8_NA't] & 1.20;
SCALE (AY[fp*],_A,6_yMIN pDY _1);

SCALE (AY[_p*]p_A_6pYMINIpDYI_|)J
NA + NA " Z ;

IF ENU = 0 ThEN BEGIN

IF hbRIZ THEE
SBGEID (ALP30,I;,ALP27,1b,ALP40,25,ALP33pS,TRUE)

ELSE
SBGEID (ALP3b,l_,ALP27,1b, ALP41p23pALP33pS,TRUE)

ENO
ELSE
IF HbRIZ TMEk

SBGkID (ALP30, I_ALP2T,1b,ALP42,27,ALP33,5, TRUE)

ELSE
SBGB]D (ALP30, lP_ALP2T,tb,ALP43,25pALP33p5pT_UE)

LYNE (AY[Oe*],A_[Tj*],NAel)/
DASHLINE (_Y[O,*],AY[8_*]_NA_t);

FOR d * 1,4 bO

BEGI_
KK_ ÷ ENTILR (NA w J / 5 )3

SYMBOL (AYIO,KK(],AY[T,KKK],,21,ALPI, 90,'I0);

KR_ • KKK + LNTIER (NA x I / 15 ) ;

SYMbDL (AY[O,KK<],AY[8,KKK]_,21,ALPI,'90,'10);

END;

NA * NA+2 ;

END;

IF FLOT_ THEE

BEGIN

PLDT(I?,O,-3);

YWIN + -18Q ;
SCALES

)Y + 60 ;

(AY[ I0,* ], NA, YMIN,DY, I);

IF EMU = 0 THEN BEGIN

IF HDRIZ THEN

SBGRID(ALP3A,IB,ALP2T,16,ALP40_25_ALp34,18,FALSE)

ELSE

SBGBID(ALP_,lB,ALP27,I6,ALP_1,23_ALP3q,18_FALSE)
END
ELSE

IF HORIZ THEN

SBGNID(ALP_,tB,ALP2_,I6_ALP_2,27,ALP3q, tB,FkLSE)

ELSE
SBG_ID(ALP3_,lB,ALP27,16,ALP_3,25, ALP3_,18_F_LSE)
LYNE (AY[O**],AY[IO,*]_NA,I);

E_D;

IF FAIL THEN

PLDT(12,0,-5)l

IF FAIL TH_N rO_ I * 1 STEP I UNTIL

PLDT(O_O,-3) E6SE ?LOT(12,0,-3)l

(I+4w(NOINC-INCSDFAR)) DO
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cD

H =O,OSO0 RAO, TMAX = 31.416 RAD.
EMU • 0,010 OIMo FU • 0,000 LB,

L • 1,00 IN. W • $0,00 LB,

OMEGA = aOOO,O0 RPM
CL • 5,OOP-03 IN,

NU = loOOP-OS REYNS

COMEGA • 4000.00 RPq

R • 1,00 IN.

FO z O,O00OP÷OO AND E M = O.O00

RELAXATINN EACTNR • 1,000 GOEULER • TRUE R(6LTM •

WT = O,O0
h I = 60

MAX, ECCENTRICITY mOoD•T2 AT 5oOOB CYCLES MWIN • 4,564 MILS AT 192,7 DEGREES CC FROM X AXIS

EQUIL, POS, • 0,3063 FMAX •
S • 1,066T TRSMA_ •

SS • 0,266T FOCX •
WS = 1,5068 FOCY •

PBRG = OoO000
FHX •
FHY =

2,4839

0o049T
0,0000

O,O00O

O,OOO0 AND ENX • O,OO
0,0000 AND ENY = 0,00

EQUIL. POS,(UNBALAMCE) = O,OOBT
SU = 46,9806
FU = 1.1352

FURATIO = OeO22T
TRDMAX = 2,1N80

RETAINEH SPECS AREI
KRX • 0,0000_*00 LB/IN

KRY = O,O000_+O0 LB/IN

DRX • O,OOO0@÷O0
DRY = O,OO00P+O0

LB'SEC/IW

LB'SE¢IIW

I I El!' e=_n_'llt! IF nil !



o_

I
Ol

!

¢o

TIME

0.0000
0,0500
0,1000

0,1500
0.2000
0,2500

0,3000

0*3500
0.4000
0.4500
0.5000

0.5500
0,0000
0.6500

0.7000
0.T500
0.8000
0.8500
0.9000

0.9500
1,0000
1.0500
1.1000
1.1500
1.2000

1.2500
1.30"00

1.3500
1.4000
1.4500
1.5000
1.5500

1.6000

1.6500

1.7000
1.7500
1.8000

X'hiE.

3.0000P+O0

1.20_8P-05
0,.6309@-05

1,00Jt@-04

I=80(8@-04

2.76_8@'04
3.8503P'04

5.0487P'04
6.3399@'04

?.7089@'04
9.1398@'04
1.0618@'03
1.21_1@'03
1.3665@'03

1.5208@'03
1.6748@-03

1.827_@-03
1,97(9P-03

2.12_9@-03
2.2676@-03

2.40_0@o03
2.5304@-03
2.660_@-03
2.77f4@-03
2.88_6@-03

2.9845@-03
3.0735@-03

3.1519@-03
3,2191P'03
3.27_6@'03
3.31_@'03

3.34/9@'03
3.3648@'03

3.3679@'03
3.3569@'03
3,3314@'03
3.2910@'03

X'VEL.

0,0000@_00

a,7190@-04

8,9092@=04

1,2615@'03
1.6093@-03

_.9119@'03
2.1730P-03

2.3959@'03
_.5834@-03
?.7380@°03
2.8619_=03
2.9570_'03
3.0251@'03

3.0676_'03
3.0859@'03
3.0813@'03
3.0547P'03
3.0073@'03

?.9400@'03
?.8536@o03

2.7489@-03
?.6268@-03
2.4880@-03
2.3331@'03
2.1631@o03

1.9784@-03
1.7799B-03

1.5683@'03
1.3442@-03
1.1085@-03
8.6170@'04
6.0468@'04

3,3815@'04

6.2883@=05
"2.2036@'04

-5.1079@-0n
"B.0762@'04

Y'DIR,

0.0000@÷00
2,0529P-07
1.6176@-06

5,3752@-06
1.4079@-05

2.7264@'05
4.5906@-05
7.0890@'05

1.0301@'04

1,4298@'04
1.9141@-0a

2.4886@-04
3.1578@'04
3.925T@-04
_.7952@-04
5.7688@'04
6.8482@'04
8.03448"04
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1,064

1.0_2

1.097
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0.317
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0,_25

0.44P
0,_58

0.473
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