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.I 

This report describes the results of an exploratory analysis of a pentapropellant 
( hydrogen/fluorine-oxygen/lithium-beryllium) upper stage conducted under Supple- 
mental Agreement No. 1 to Contract NASw-1965, Tripropellant Stage Study. 

lant stage, when it became evident that the triyropellant stage had a relatively poor 
mass fraction* - low enough to offset the advantage of its very high specific impulse. 
Chrysler recommended that other attractive propellant combinations also be investi- 
gated. A s  a result of this recommendation, the tripropellant stage study contract was 
subsequently modified to include evaluation of pentapropellant stage, 

The results of the pentapropellant investigation are  being documented separately 
since the tripropellant study schedule did not permit incorporation of these results in 
the tripropellant stage final report. The results of the tripropellant stage evaluation 
are  presented in Chrysler technical report TR-AE-70-29, “Evaluation of Hydrogen/ 
Fluorine/Lithium , Hydrogen/Fluorina , and Hydrogen-Lithium/Fluorine Upper Stages”. 

The objective of this study was to determine if  a hydrogen/fluorine-oxygen/lithium- 
beryllium pentapropellant stage would be sufficiently attractive to merit further inves- 
tigations. Since this objective was the same as that of the tripropellant stage study, the 
approach and analytical techniques used in both studies were identical; therefore, in 
the interest of brevity, the tripropellant report ( TR-AE-70-29) is referenced frequently 
in this report to avoid repeating this basic information. 

The pentapropellant stage effort evolved during the investigation of the tripropel- 

The pentapropellant stage investigated had a hybrid combustion system; (that is, 
both solid and liquid propellants. The liquid propellants (hydrogen, fluorine and oxy- 
gen) were stored in tanks, while the lithium and beryllium were a solid grain in a 
case similar to a solid rocket motor. The fluorine and oxygen were mixed and stored 
as  FLQX, while the hydrogen was stored separately. 

attractiveness of the pentapropellant, the pentapropellant stage was sized to achieve 
To ensure that reliable conclusions were obtained with respect to the relative 

*Mass Fraction = Propellant Weight/Stage Weight 
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maximum payload for various mission requirements and booster vehicles. However 
because of an unavailability of engine data, it was not possible to determine the op- 
timum combination of pentapropellant ine characteristics (e. g. mixture ratio, 
area ratio and chamber pressure) as had been done in the tripropellant effort. The 
basic engine characteristics assumed in this study are as follows: 

Specific Impulse 519 Seconds 

Chamber Pres sure 1000 psi 

Area Ratio 100:1 

Percent Hydrogen 27.5 

Table 1-1 compares the direct inject payload capability of the pentapropellant 
stage and the tripropellant ( hydrogen/fluorine/lithium) Gel ( hydrogen-lithium/ 
fluorine) bipropellant ( hydrogen/fluorine) stages evaluated in the tripropellant 
study. Each payload corresponds to a stage that has been optimized for the partic- 
ular booster and mission velocity identified. The optimum stage sizes were found 
to be a function of mission velocity as well as launch vehicle. The results show that 
the pentapropellant stage does not look as attractive as any of the other three stages, 

Ln addition to the direct injection missions, a long duration mission consisting of 
a single burn to achieve a velocity increment of 8000 fps after a 205-day coast was 
also evaluated. The results, which are summarized in table 1-2, show that the penta- 
propellant stage has a small payload advantage over the tripropellant stage, but has 
a lower performance than the bipropellant and Gel stages. 

Table 1-1. Direct Injection Mission Payload Summary 

TOTAL MISSION 

(EARTH ESCAPE) 

( 0.3 AU PROBE) 

( 0.2 AU PROBE) 

P E N  TAPROPE LLANT 

TRl PR OPELLANT 

BI  PROPE LLANT 

GELLED H i L i  

PE N TAPROPE L LAN T 

TR I PR OPE LLANT 

BIPROPELLANT 

GELLED H2/Li 

PE NTAPR OPE LLA NT 

TR I PROPELLANT 

BIPROPELLANT 

GELLED H2/Li 

** 4200 3870 

4400 4260 

4200 4510 

4350 4520 

**  

** 

** 

3900 820 

41 10 990 

900 300 3900 

970 140 4070 

1990 

2200 

22 10 

2080 

*** 

*** 

***  10 

125 

120 

150 

**b 

*** 

*** 

260-INCH SRM 
S-IVB 

TITAN I l lD 

*GROSS WEIGHT ABOVE CENTAUR LIMITED TO 12,000 POUNDS 
**KICK STAGE DOES NOT IMPROVE BOOSTER'S PERFORMANCE 

* * * N O  CAPABILITY 
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Table 1-2. Long Duration Mission Payload Summary 

Stage I Payload (lb) 

Bipropellant 

Gelled H2/Li 

Pentapropellant 
~ 

~ Tripropellant 

5270 

5110 

4990 

~ 4640 

Inspection of the detailed results show that the large size and weight of the penta- 
propellant engine is one reason for low stage performance when compared to the other 
stages. This could be attributed to the fact that the shape of the combustion chamber, 
which holds the solid lithium-beryllium propellant, was not optimized during the study. 

Also, the optimum engine parameters (mixture ratio, chamber pressure and area 
ratio) were not determined for the pentapropellant stage. This could be a second rea- 
son why the pentapropellant stage compared so poorly. 

If both of these facts had been accounted for, it is doubtful that the capability of 
the pentapropellant stage would have been improved enough to give it a significant 
payload advantage over any of the other stages investigated in the tripropellant stage 
evaluation. 
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The approach taken in evaluating the pentapropellant stage was identical to that 
used for evaluating the tripropellant stage ( see  TR-AE-70-29) 'except that the engine 
design parameters were not optimized due to the limited engine performance data 
available. Table 2 -1 summarizes the pentapropellant engine parameters considered 
during this study. 

Table 2 - 1. Pentapropellant Engine Characteristics 

Characteristic 

Specific Impulse 

Area Ratio 

Chamber Pressure 

Percent Hydrogen 

Percent Fluorine 

Percent Oxygen 

Percent Lithium 

Percent Beryllium 

Value 

519 Sec 

1 O O : l  

1000 psi 

27.5  

14.6 

33.6 

5 . 4  

18.9 

The upper stage sizing program was modified to adapt it to hybrid systems. The 
modifications enabled the sizes and weights of the combustion chamber, nozzle and 
pump to be computed internal to the program. 

ratio ( L/D) of 1 . 0  and a propellant bore-to-nozzle throat diameter ratio (q,/rt) of 
1.30. Although the combustion chamber's shape (i. e. , L/D and rb/rt) was not 
optimized, it was felt that the assumed values would provide a good shape from the 
standpoint of grain design. However, during the study it was found that combustion 
chamber size could have a large impact on overall system considerations, particu- 
larly on the interstage size and weight. The nozzle length was computed on the 
basis of a 17.5 degree nozzle half angle. 

The combustion chamber was sized on the basis of a cylinder length-to-diameter 
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An Aerojet-General( 1) method was used to compute the weights for a maraging 
steel (170 ksi yield strength) combustion chamber and a fixed nozzle. Figures 2-1 
and 2-2 show typical motor weights and dimensions, respectively, computed for 
various propellant loads. 

The liquid propellant pump weights were based on those found in Rocketdyne’s 
Tripropellant Engine Study(2) Although these were for a tripropellant engine, it 
was felt that they would be representative since the hydrogen pump consumes most of 
the pump power and the pentapropellant and tripropellant stages have approximately 
the same percentage of hydrogen by weight. Typical pump weights are depicted in 
figure 2-3. 

The sizing program was further modified so that several multiple tank configura- 
tions could be considered in addition to the tandem tank versions normally consid- 
ered for two liquid propellants, in this case hydrogen and FLOX The tandem tank 
versions are  illustrated in figure 2-4; they are identical to those considered for 
the bipropellant and Gel stages in the tripropellant stage evaluation (TR-AE-70-29) . 
These geometries were generally found to be best for both the direct injection mis- 
sions and the long duration mission. 

The three multiple tank configurations are similar to those considered for the 
tripropellant stage. Each has a single (spherical o r  cylindrical) hydrogen tank 
and two FLOX tanks diametrically opposed and located on the perimeter of the hy- 
drogen tank. Sketches of the three multiple tank versions a re  presented in figure 
2-5. The first two versions ( a  and b) have spherical FLOX tanks and, depending upon 
whether o r  not the combustion chamber can be submerged between the two FLOX tanks, 
have either a thrust cone or  spider beam type thrust structure. The last multiple 
tank version (c) has two cylindrical FLOX tanks. The radii of these tanks are  the 
largest possible without violating the specified geometric constraints. The cylin- 
drical lengths are computed to give the necessary tank volumes. There is no thrust 
cone version of this tankage arrangement. 

The modified version of the computer program has the same geometric con- 
straints on stage configuration geometry as  did the one used in the tripropellant 
study. These are covered in detail in TR-AE-70-29. 

( 1) Threewit, T. R. , “The Integrated Design Computer Program and the ACP-1103 
Interior Ballistics Computer Program , ’ 9  STM-180, Aerojet-General Corpora- 
tion, Sacramento, California, December l, 1964. 

R-7877, Rocketdyne Division, North American Rockwell Corporation, Canoga 
Park, California, November 3, 1969. 

(2)  Huntsinger, J. P. , “Tripropellant Engine System Study, Final Report, ” Report 
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Figure 2 -4. Tandem Tank Pentapropellant Stage Configurations 
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Figure 2-5. Multiple Tank Pentapropellant Stage Configurations 
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ection 

3 .I ERAL 

The same two general classes of missions analyzed during tripropellant stage in- 
vestigation were considered during the pentapropellant stage evaluation. The two types 
of missions were: 1) direct injection, and 2) long duration. The basic difference 
between these is that the direct injection missions have a very short coast prior to 
the single burn of the upper stage; whereas the long duration mission has a coast 
period of several months before the upper stage burn. 

The results of the direct injection missions and the long duration mission are  
presented in paragraphs 3.3 and 3.4, respectively. 

. 

3.2 DATA AND ASSUMPTIONS 

The constraints, guidelines, and pertinent design data used for both the penta- 
propellant stage direct injection and long duration missions were identical to those 
used in evaluating the tripropellant stage. In the interest of brevity, these will not be 
repeated in this report. The reader is referenced to sections 3.2.1 and 3.4.1 of 
TR-AE-70 -2 9. 

3.3 ECT INJECTION MISSION 

The basic direct inject mission profile consisted of a booster delivering the pen- 
tapropellant stage and payload to a velocity increment corresponding to the gross 
weight above the booster. After  burnout, the booster is jettisoned and, after a short 
coast, the upper stage is ignited to supply the remaining velocity increment necessary 
to fulfill mission requirements. Direct injection missions were investigated for total 
mission velocities ranging from earth escape to velocities corresponding to zero pay- 
load for each particular booster/gross weight combination. The five boosters inves- 
tigated for the direct injection missions were 1) Atlas/Centaur, 2) Atlas, 3) Titan 
IIID/Centaur, 4) Titan IIID, and 5) 260-Inch SRM/S-IVB. The results of the direct 
injection mission analyses are presented in the remaining paragraphs of this section. 

3.3.1 ATLAS/CENTAUR BOOSTER RESULTS 

The payload of the pentapropellant stage is shown in figure 3-1 for several of the 
total mission velocities investigated. Although the figure shows that various payloads 
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are obtainable at a single stage weight, the booster-upper stage velocity split is dif- 
ferent for each mission velocity, and hence do not correspond to identically config- 
ured stages, 

A summary of the major stage characteristics, engine parameters, and major 
stage design characteristics are  given in tables 3-1, 3-2, and 3-3, respectively. 
These data correspond to a 12,000 pound gross weight stage (payload, stage and 
interstage) sized to achieve an earth escape velocity ( 36,140 fps) 
these tables are strictly applicable to the specified mission and gross weight; how- 
ever, in general, these data are  representative of the stages designed for other 
missions and gross weights. This mission and weight combination was selected so 
that comparison could readily be made with the tripropellant,'Gel, and bipropellant 
stages presented in reference 1. 

interface with the Atlas/Centaur for the described mission. 

For the missions and gross weights investigated, the pentapropellant stage per- 
formance does not exceed that of the best stage considered in the tripropellant stage 
evaluation. The reasons for this can be seen in a weight comparison of the four stages, 
(See table 3-4.) The largest penalty, in this instance approximately 250 pounds, is 
found in the engine,, The pentapropellant stage combustion chamber and nozzle are 
longer than the equivalent liquid engine, hence the interstage on the pentapropellant 
stage is larger and weighs more than those on the other stages. These penalties 
might have been reduced and performance of the pentapropellant stage improved, 
had the combustion ehamber shape (L/D and q/rt) been optimized during this 
study. 

Data given in 

Figure 3-2 shows an external profile of the pentapropellant stage designed to 

3.3.2 ATLAS BOOSTER RESULTS 

Figure 3-3 presents the payload as a function of stage weight for the pentapro- 
pellant stage atop the Atlas booster. The single mission velocity (36,140 fps) shown 
was the only velocity investigated for this launch vehicle which produced finite pay- 
loads. At  this mission velocity the pentapropellant stage performance was inferior 
to the stages evaluated during the tripropellant investigation. 

A s  was the case with the Atlas/Centaur booster, the pentapropellant stage perfor- 
mance is degraded because of the weight and size of the engine. When used with the 
Atlas  booster, the engine size and weight have a more serious degrading effect on 
stage performance. A weight comparison of the pentapropellant stage with the tri- 
propellant, bipropellant, and gelled configurations is depicted in table 3-5. The 
data presented in this chart are  for a 30,000 pound gross weight stage and an earth 
escape mission (36,140 fps) e 

through 3-8 summarize the major stage and engine characteristics, and pertinent 
design data for the pentapropellant stage. 

Figure 3-4 depicts the external profile of this pentapropellant stage. Tables 3-6 
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Table 3-1. Engine Data Summary ( Direct Injection Mission, Atlas/Centaur) 

Total Mission Velocity: 

Stage Velocity Increment - First Burn: 

Stage Velocity Increment - Second Burn: 

First Coast Time: 

Second Coast Time: 

Gross We inht: 

Stage 

Payload (lb) 

Specific Impulse (sec)  

Thrust (lb) 

Interstage Weight (lb) 

Total Stage Weight (lb) 

Inert Stage Weight (lb) 

Total Propellant Weight (lb) 

Propellant Consumed 

First Burn (lb) 

Second Burn (lb) 

Residual Propellant Weight ( lb) 

Stage Mass Ratio 

Stage Payload Fraction 

Stage Structural Ratio 

Stage Velocity Ratio 

Stage Thrust to Weight Ratio 

36140 fps 

11390 fps 

0 fps 

0.5 hrs 

0 h r s  

12000 lb 

Pentapropellant 

42 17 

519 

8240 

227 

7556 

1648 

5908 

58 17 

0 

59 

1.988 

0.351 

0.225 

0.687 

0.7:l 
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Table 3-2. Engine Data Summary (Direct Injection 
Mis s ion, Atlas/ Centaur) 

Parameters 

Thrust ( lb) 

Specific Impulse ( sec) 

Expansion Ratio 

Chamber Pressure ( psi) 

Percent Hydrogen 

Percent Fluorine 

Percent Oxygen 

Percent Lithium 

Percent Beryllium 

Weight ( lb) 

Length ( in.) 
~ 

I Exit Diameter ( in.) 

Value 

8 2 4 0  

519.0 

1 O O : l  

1000 

27 .5  

14.6 

33.6 

5 . 4  

18.9 

3 7 8  

9 0 . 6  

2 2 . 1  

Table 3-3. Design Data Summary ( Direct Injection Mission, Atlas/Centaur) 

1 Propellant Tank 

Propellant Weights 
Usable (lb) 
Residual (lb) 
Boiloff (lb) 
Startup/Shutdown ( lb) 
Total Load (lb) 

Tankage 
Number of Tanks 
Volume (ft3) 
Radius (In. ) 
Cylinder Length ( In. ) 
Dome Thickness (In.) 
Cylinder Thickness (In. ) 
Design Pressure (psi) 

Thermal 
Initial Temperature (OR) 
Vent Temperature (OR) 
Insulation Thickness ( 

3-5 

1600 2804 
16 28 

0 0 
9 15 

162 5 2 847 

1 
391.7 
54.00 

1.92 
0.0250 
0.0345 

2 9 . 1  

36 
38 

0.18 

Li-Be Solid 

14 14 
14 

0 
8 

1436 



STA, 0.0, DLA = 39.5 

ALL DIMENSIONS IN INCHES 

STA. 100.4,’ DIA = 112.0 

STA. 141.0, DIA = 112.0 

STA. 197.0 

i- sTA* 287*5 STA. 293.5, DLA = 120.0 

Figure 3-2. Pentapropellant Stage ( Direct Injection 
Mission , Atlas/ Cent aur ) 
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STA. 0.0, DIA = 70.6 

STA. 136.7, DLA = 112.0 

ALL DIMENSIONS IN INCHES 

STA: 374.4, DIA = 112.0 

STA' 430.7 

rSTA- 571e6 
STA. 577.6, DLA = 120.0 

Figure 3-4. Pentapropellant Stage ( Direct Injection Mission, Atlas) 
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Table 3-6. Major Stage Characteristics Summary ( Direct Injection 
Mission, Atlas) 

Total Mission Velocity: 

Stage Velocity Increment - First Burn: 

Stage Velocity Increment - Second Burn: 

First  Coast Time: 

Second Coast Time: 

Gross Weight: 

36140 fps 

22040 fps 

0 fps 

0.5 h r s  

0 h r s  

30000 lb  

Stage 

Payload (lb) 

Specific Impulse (see)  

Thrust (lb) 

hterstage Weight (lb) 

Total %age Weight (lb) 

hert Stage Weight (lb) 

Total Propellant Weight (lb) 

Propellant Consumed 

First  Burn (lb) 

Second Burn (lb) 

Residual Propellant Weight ( lb) 

Stage Mass  Ratio 

Stage Payload Fraction 

Stage Structural Ratio 

Stage Velocity Ratio 

Stage Thrust to Weight 

Pentapropellant 

3867 

5 19 

2 06 57 

489 

2 5644- 

3734 

2193.0 

21611 

0 

46 

3.775 

0.129 

0.154 

1.329 

0,7:1 
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Table 3-7. Engine Data Summary (Direct Injection 
Mission, Atlas) 

Parameters 

Thrust ( lb) 

Specific Impulse ( see) 

Expansion Ratio 

Chamber Pressure ( psi) 

Percent Hydrogen 

Percent Fluorine 

Per cent Oxygen 

Percent Lithium 

Percent Beryllium 

Weight ( lb) 

Length ( in.) 

Exit Diameter ( in.) 

Value 

20657 

519.0 

1OO:l 

1000 

27.5 

14.6 

33.6 

5.4 

18.9 

1116 

141.2 

34.9 

Table 3-8. Design Data Summary (Direct Injection Mission, Atlas)  

Propellant Tank 

Propellant Weights 
Usable (11)) 
Residual (lb) 
Boiloff (lb) 
Startup/Shutdown ( lb) 
Total Load (lb) 

Tankage 
Number of Tanks 
Volume (ft3) 
Radius (In. ) 
Cylinder Length (In. ) 
Dome Thickness (he ) 
Cylinder Thickness (h. ) 
Design Pressure (psi) 

Thermal 
Initial Temperature (OR) 

Vent Temperature (OR) 
Insulation Thickness ( he ) 

Hydrogen 

5943 
60 
0 

22 
6025 

1 
1483.6 
54.00 

207,84 
0.0250 
0.0428 
36,O 

36 
40 

0,36 

FLOX 

10416 
106 
0 
38 

10560 

1 
142.2 
38.85 
0.0 

0.0250 
N/A 
25.4 

150 
159 

0.07 

A-Be Solid 

52 52 
53 
0 
19 

5324 
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3.3.3 TITAN IIID/CENTAUR BOOSTER RESULTS 

The performance of a Titan IIID/Centaur/Pentapropellant stage launch vehicle 
is presented in figure 3-5, as a function of stage weight and mission velocity. 

Tables 3-9 through 3-11 provide summaries of the major stage characteristics, 
engine parameters and computed design data for a 12,000 pound gross weight penta- 
propellant stage used to perform a 48,500 fps mission. The stage shown does not have 
the maximum payload which could have been obtained. This is because it was assumed 
that the maximum weight that could be interfaced with the Centaur stage was 12,000 
pounds. Therefore, the results were constrainted to stages where the gross weight 
(payload, stage and interstage) did not exceed 12,000 pounds. 

Figure 3-6 is a sketch of the pentapropellant stage for this mission and gross 
weight, and table 3-12 is a comparative weight statement for the pentapropellant, 
tripropellant , Gel and bipropellant stages. Examination of the weight statement re- 
veals that the pentapropellant stage again suffers from the longer and heavier engine. 

3.3.4 TITAN ZIID BOOSTER RESULTS 

The performance of the pentapropellant stage when mated to the Titan IIID boos- 
te r  is presented in figure 3-7 for various mission velocities. Although the figure 
shows the payload of this launch vehicle combination to be rising at the low mission 
velocity (36,140 fps) , it is doubtful that much higher performance could be expected 
because of the greater length to diameter ratio this stage would have at larger gross 
weights. 

velocity of 36 140 fps ( earth escape) have been selected for comparative purposes. 
Again, this particular size stage is not optimum. 

eters and major design data, respectively, of this 30,000 pound stage, A sketch 
of the pentapropellant stage is shown in figure 3-8, and a weight statement illustrating 
the differences between the pentapropellant stage and the other stages is given in 
table 3-16, Again, the large engine size on the pentapropellant stage accounts for its 
poor performance relative to the other stages. 

As  with the Atlas booster results, a gross weight of 30,000 pounds and a mission 

Tables 3-13 through 3-15 depict the major stage characteristics, engine param- 

3.3.5 ~ ~ O - I N C H  SRM/S-IVB BOOSTER RESULTS 

The largest booster investigated was the 260-inch Solid Rocket Motor (SRM) / 
S-IVB. The results, shown in figure 3-9, indicate that at lower velocities the optimum 
stage sizes would have exceeded gross weights greater than 70,000 pounds, which 
was the highest gross weight investigated. This was the largest tripropellant stage 
evaluated due to the lack of tripropellant engine data over 50,000 pounds thrust. The 
70,000 pound gross weight was selected as  a convenient size for the 48,500 fps mis- 
sion. 
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Table 3-9. Major Stage Characteristics ( Direct Injection Mission, 
Titan IIID/Centaur) 

Total Mission Velocity: 

Stage Velocity Increment - First Burn: 

Stage Velocity Increment - Second Burn: 

First Coast Time: 

Second Coast Time: 

Gross We inht: 

48500 fps 

12200 fps 

0 fps 

0.5 hrs 

0 h r s  

12000 lb 

Stage 

Payload (lb) 

Specific Impulse (sec) 

Thrust (lb) 

Interstage Weight (lb) 

Total Stage Weight (lb) 

Inert Stage Weight (lb) 

Total Propellant Weight (lb) 

Propellant Consumed 

First Burn (lb) 

Second Burn (lb) 

Residual Propellant Weight (lb) 

Stage Mass Ratio 

Stage Payload Fraction 

Stage Structural Ratio 

Stage Velocity Ratio 

Stage Thrust to Weight Ratio 

Pentapropellant 

3895 

5 19 

82 56 

2 04 

7900 

1696 

62 04 

6 110 

0 

62 

2.087 

0.325 

0.222 

0.736 

0.7:l 
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Table 3-10. Engine Data Summary (Direct Injection 
Mission, Titan ILID/Centaur) 

Parameters 

Thrust ( lb) 

Specific Impulse ( sec) 

Expansion Ratio 

Chamber Pressure ( psi) 

Percent Hydrogen 

Percent Fluorine 

Percent Oxygen 

Percent Lithium 

Percent Beryllium 

Weight ( lb) 

Length ( in.) 

Exit Diameter ( in.) 

Value 

82 56 

519.0 

100: 1 

1000 

27.5 

14.6 

33.6 

5.4 

18.9 

390 

91.6 

22,l 

Table 3-11. Design Data Summary (Direct Injection Mission, 
Titan IIID/Centaur) 

Residual ( lb) 
Boiloff (lb) 
Startup/Shutdown ( lb) 
Total Load (lb) 

Number of Tanks 
Volume (ft.3) 
Radius (In, ) 
Cylinder Length (InLn. ) 
Dome Thickness (h.) 
Cylinder Thickness (In. ) 

Initial Temperature (OR) 

3-16 



STA. 0.0, DIA = 40.3 

ALL DIMENSIONS I N  INCHES 

STA. 101.5; DIA = 112. G 

STA. 148.9, DIA = 112.0 

STA. 205.0 

JSTA* 296a5 
STA. 302.5, DIA = 320.0 

Figure 3-6. Pentapropellant Stage ( Direct Injection Mission, 
Tit an IIID/ Cent aur) 
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Table 3-13. Major Stage Characteristics ( Direct Injection Mission, 
Titan IUD) 

Total Mission Velocity: 

Stage Velocity Increment - First Burn: 

Stage Velocity Increment - Second Burn: 

First Coast Time: 

Second Coast Time: 

Gross Weight: 

Stage 

Payload (lb) 

Specific Impulse (sec)  

Thrust ( lb)  

Interstage Weight (lb) 

Total Stage Weight (lb) 

Inert Stage Weight jlb) 

Total Propellant Weight (lb) 

Propellant Consumed 

First Burn (lb) 

Second Burn (lb) 

Residual Propellant Weight ( lb) 

Stage Mass Ratio 

Stage Payload Fraction 

Stage Structural Ratio 

Stage Velocity 

Stage Thrust to Weight Ratio 

48500 fps 

24000 fps 

0 fps 

0.5 h r s  

0 hrs  

30000 lb 

Pentapropellant 

3168 

5 19 

2 0787 

304 

26528 

3593 

22934 

22625 

0 

22 9 

4.250 

0.106 

0.144 

1.447 

0. ?:1 

3-2 0 



Table 3-14. Engine Data Summary (Direct Injection 
Mission, Titan IIID) 

Parameters 
Thrust ( lb) 

Specific Impulse ( sec) 

Expansion Ratio 

Chamber Pressure ( psi) 

Percent Hydrogen 

Percent Fluorine 

Percent Oxygen 

Percent Lithium 

Percent Beryllium 

Weight ( lb) 

Length ( in.) 

Exit Diameter ( in.) 

Value 

2 0787 

519.0 

100: 1 

1000 

27 .5  

14.6 

33.6 

5 . 4  

18.9 

1156 

142.8 

35.1 

Table 3-15. Design Data Summary (Direct Injection Mission, Titan PIID) 

Propellant Tank 

Propellant Weights 
Usable (lb) 
Residual (lb) 
Boiloff (lb) 
Startup/Shutdown (lb) 
Total Load (lb) 

Tankage 
Number of Tanks 
Volume (ft3) 
Radius ( Incn, ) 
Cylinder Length ( In. ) 
Dome Thickness (In.) 
Cylinder Thichess  (In. ) 
Design Pressure (psi) 

Thermal 
Initial Temperature (OR) 
Vent Temperature (OR) 
Insulation Thickness ( Ine ) 

Hydrogen 

6222 
6 3  

0 
22 

6307 

1 
1552.9 

54.00 
220.92 
0.0250 
0.0428 

36.0 

36 
40 

0.36 

FLOX ILi-Be Solid 

10905 5498 
111 56 

0 0 
39 19 

11055 5573 

1 
148.8 
39.45 

0 
0.0250 

25 .4  
N/A 

15 0 
159 

0.07 

3-2 1 



STA. 0.0, DIA = 72.1 

STA. 134.9, DIA’ = 112.0 

ALL DIMENSIONS IN INCHES 

STA. 388.7, DIA = 112.0 

. STA. 444,7 

A- ST** 58705 
STA. 593.5, DIA = 120.0 

Figure 3-8. Pentapropellant Stage ( Direct  Injection Mission, 
Titan IIID) 
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Tables 3-17 through 3-19 summarize the major stage characteristics, engine 
parameters, and major design data for this size pentapropellant stage. Figure 3-10 
depicts an external profile of the stages and table 3-20 gives a weight statement for 
the comparable pentapropellant, tripropellant, Gel, and bipropellant stages. 

gine size detracts from the pentapropellant stages capability. 
As  with the pentapropellant stages investigated for the other boosters, the en- 

Table 3-17. Major Stage Characteristics ( Direct Injection Mission, 
260-1nch SRM/S-IVB) 

Total Mission Velocity: 

Stage Velocity Increment - First Burn: 

Stage Velocity Increment - Second Burn: 

First Coast Time: 

Second Coast Time: 

Payload (lb) 

Specific Impulse (sec) 

Thrust (lb) 

Interstage Weight (lb) 

Total Stage Weight (lb) 

Inert Stage Weight (lb) 

Total Propellant Weight (lb) 

Propellant Consumed 

First Burn (lb) 

Second Burn (lb) 

Residual Propellant Weight (lb) 

Stage Mass Ratio 

Stage Payload Fraction 

Stage Structural Ratio 

Stage Velocity 

Stage Thrust to Weight 

48500 fps 

20200 fps 

0 fps 

0 . 5  hrs  

0 hrs  

70000 lb  

Pentapropellant 

12622 

519 

47166 

2608 

54770 

6859 

479 10 

47249 

0 

182 

3.377 

0.180 

0.134 

1.217 

0 .7: l  
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Table 3-18. Engine Data Summary (Direct Injection 
Mission, 260-Inch SRM/S-IVB) 

Thrust ( lb) 

Specific Impulse ( sec) 

Expansion Ratio 

Chamber Pressure ( psi) 

Percent Hydrogen 

Percent Fluorine 

Percent Oxygen 

Percent Lithium 

Percent Beryllium 

Weight ( lb) 

Length ( in.) 

Exit Diameter ( in.) 

Value 

453166 

519.0 

100: 1 

1000 

27.5 

14.6 8 

33.6 

5.4 

18.9 

2337 

194.3 

52.8 

Table 3-19. Design Data Summary (Direct Injection Mission, 260-Inch SRM/S-IVB) 

Propellant Tank I Hydrogen 

Propellant Weights 
Usable (lb) 
Residual (lb) 
Boiloff (lb) 
Startup/Shutdown ( lb) 
Total Load (lb) 

12993 
132 

0 
50 

13175 

Tankage 
Number of Tanks 
Volume (ft3) 
Radius (In. ) 
Cylinder Length (In. ) 
Dome Thickness (In. ) 
Cylinder Thickness ( In. ) 
Design Pressure (psi) 

1 
3211.7 
109.84 

0 
0.0395 

32. '7 
N/A 

Thermal 
Initial Temperature (OR) 
Vent Temperature (OR) 
Insulation Thickness ( In. ) 

36 
39 

0.31 

FLOX /Li-Be Solid 

22774 
231 

0 
88 

23093 

11482 
116 

0 
44 

11642 

1 
310.8 
50.43 

0 
0.0250 

25.4 
N/A 

150 
159 

0.06 
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DIA FLoX = 100.8 A 
= 73.7 

INCHES 

- STA. 231.5, DIA = 252.0 

- STA. 254.4, DIA = 252.0 

- STA. 374.5 

- STA. 574.8 

- STA. 580.8, DIA = 260.0 

Figure 3-10. Pentapropellant Stage ( Direct Injection Mission, 
2 6 O-Inch SRM/S-IVB) 
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Only one long duration mission was investigated during this study. Basically, 
this mission profile consisted of a booster placing the upper stage and payload on a 
Mars trajectory. After separating from the booster, the upper stage and payload 
coasted 205 days with a fu l l  propellant load to the vicinity of Mars, where a single 
8000-fps retro burn placed the upper stage and payload into a low circular orbit around 
Mars. A gross weight of 12,000 pounds, including payload and interstage, was used 
for this analysis since it is intermediate to the optimum size stages for use with the 
Titan IED/Centaur and 260-Inch SRM/S-IVB boosters, which are 10,000 and 14,000 
pounds, respectively, Therefore, the conclusions pedinent to a 12,000 pound stage 
may be applied to either the Titan IIID/Centa.ur or the 260-Inch- SRM/S-IVB. 

Table 3-21 summarizes the weights of the pentapropellant stage and those stages 
investigated during the evaluation of the tripropellant stage. A s  depicted, the penta- 
propellant stage, though it has a larger and heavier engine, out-performs the tripro- 
pellant stage. This can be attributed to the added weight of the thermal control sys- 
tem for the lithium tank on the tripropellant stage. The bipropellant and Gel stages, 
however , have payloads greater than the pentapropellant stage. 

Tables 3-22 through 3-24 summarize the major stage characteristics, the en- 
gine parameters and the design data of the pentapropellant stage selected for  com- 
parison. An external profile of this stage is shown in figure 3-11. 
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Table 3-22 Major Stage Characteristics ( Interplanetary Mission, 
120-Inch Booster) 

Total Mission Velocity: 

Stage Velocity Increment - First Burn: 

Stage Velocity Increment - Second Burn: 

First Coast Time: 

Second Coast Time: 

Gross Weight: 

8000 fps 

8000 fps 

0 fps 

492 0 h r s  

0 h r s  

12000 lb  

Stage 

Payload (lb) 

Specific Impulse (see) 

Thrust (lb) 

Interstage Weight (lb) 

Total Stage Weight (lb) 

Inert Stage Weight (lb) 

Total Propellant Weight (lb) 

Propellant Consumed 

First Burn (lb) 

Second Burn (lb) 

Residual Propellant Weight ( lb) 

Stage Mass Ratio 

Stage Payload Fraction 

Stage Structural Ratio 

Stage Velocity 

Stage Thrust to Weight Ratio 

Pentapropellant 

49 92 

519 

8262 

19 7 

6811 

2244 

4567 

4489 

0 

46 

1.624 

0.416 

0.333 

0.485 

0. ?:1 
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Table 3-23. Engine Data Summary ( Interplanetary 
Mission, 120-Inch Booster) 

Parameters I value 1 
Thrust ( lb) 8262 

Specific Impulse ( sec) 519.0 

Expansion Ratio 1 O O : l  

Chamber Pressure ( psi) 1000 

Percent Hydrogen 

Percent Fluorine 

27 .5  

14.6 

Percent Oxygen 33.6 

Percent Lithium 5.4  

Percent Beryllium 18.9 

Weight ( lb) 32 5 

Length ( in.) ' 85.8 

Exit Diameter ( in.) 2 2 . 1  

Table 3-24. .Design Data Summary ( Interplanetary Mission, 120-Inch Booster) 

Usable (lb) 
Residual (lb) 
Boiloff (lb) 
Startup/Shutdown ( lb) 

Number of Tanks 
Volume (ft3) 
Radius (In. ) 
Cylinder Length ( In. ) 

Initial Temperature (OR) 
Vent Temperature (OR) 



STA. 0.0,  DIA = 45.7 

ALL DIMENSIONS IN INCHES 

STA. 93.2, DIA = 112.0 

STA. 137.9, DIA = 112.0 

STA. 193.9 

1 STAS 279*.6 
STA. 285.6, DIA = 120.0 

Figure 3- 11. Pentapropellant Stage ( Interplanetary 
Mission, 120-Inch Booster) 
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ection 4 

The result of this exploratory analysis of the pentapropellant ( hydrogen/fluorine- 
oxygen/lithiwn-beryllium) stage indicates that a hydrogen-fluorine bipropellant 
stage is superior to the pentapropellant stage. The large size and weight of the penta- 
propellant engine is the reason for its low performance relative to the bipropellant 
stage. Even though the pentapropellant stage engine parameters (mixture ratio, 
chamber pressure, and area ratio) and combustion chamber shape (length to diameter 
ratio) were not optimized during the study, it is doubtful that the capability of the 
pentapropellant stage could be improved sufficiently by optimizing these parameters 
to give it a significant payload advantage over the bipropellant stage. Therefore, it 
is Chrysler 's recommendation that further studies of this pentapropellant combination 
not be undertaken. 
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1 Headquarters,  U. S . A i r  Force 
Washington, D .  C .  20546 

DESIGNEE 

Direc tor  

Hans G .  Paul 
Code R-P&VED 

Joseph G . Thibodaux, Jr . 
Chief ,  Propulsion & 
Power Division 

D r .  Kurt H.  Debus 

DESIGNEE 

D .  L .  Schmidt 
Code ASRCNC-2 

L .  H .  U l l i an  

Col .  Clark 
Technical Data Center 

D r .  H .  K .  Doetsch 

J. Kay 
RTMS-41 

Col . C . K .  Stambaugh 
.AFRS T 
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COPIES RECIPIENT 

1 A i r  Force Rocket Propulsion Laboratory 
Research and Technology Divis ion 
A i r  Force Systems Command 
Edwards, Ca l i fo rn ia  93523 

1 U .  S . Army Missile Command 
Redstone Arsenal 
Alabama 35809 

1 U. S . Naval Weapons Center 
China Lake 
Ca l i fo rn ia  93557 

C.P I A  

COPIES RECIPIENT 

1 Chemical Propuls ion Information Agency 
Applied Physics Laboratory 
8621 Georgia Avenue 
S i l v e r  Spring,  Maryland 20910 

INDUSTRY CONTRACTORS 

COPIES RECIPIENT 

1 Aerojet-General Corporation 
P .  0.  Box 1947 
Technical Library  
Bldg. 2015, Dept. 2410 
Sacramento, Ca l i fo rn ia  95803 

1 Space Divis ion 
Aerojet-General Corporation 
9200 E a s t  F l a i r  Drive 
E l  Monte, Ca l i fo rn ia  91734 

1 Aerospace Corporation 
2400 E a s t  E l  Segundo Boulevard 
P. 0 .  Box 95085 
Los Angeles, Ca l i fo rn ia  90045 

1 A t l a n t i c  Research Corporation 
Edsa l l  Road and Sh i r l ey  Highway 
Alexandria,  V i rg in i a  22314 

1 Beech A i r c r a f t  Corporation 
Boulder Divis ion 
Box 631 
Boulder, Colorado 

DESIGNEE 

RPRR/Mr . H .  Main 

M r  . Walter Wharton 

Code 4562 
Chief ,  Missile 
Propuls ion Div. 

DESIGNEE 

Tom Reedy 

DESIGNEE 

R .  S t i f f  

S . Machlawski 

John G .  Wilder 
MS-2293 

D r .  Ray Friedman 

J .  H. Rodgers 



INDUSTRY CONTRACTORS (CONT ' D . ) 
COPIES RECIPIENT 

1 Bel l  Aerosystems Company 
P .  0 .  Box 1 
Buffalo,  New York 14240 

1 Bellcomm 
955 L'Enfant P laza ,  S .  W .  
Washington, D .  C . 

1 Bendix Systems Divis ion 
Bendix Corporation 
3300 Plymouth S t r e e t  
Ann Arbor, Michigan 

' 1  Boeing Company 
P .  0 .  Box 3707 
S e a t t l e ,  Washington 98124 

1 Boeing Company 
P .  0 .  Box 1680 
Huntsv i l le ,  Alabama 35801 

1 Republic Aviat ion Corporation 
F a i r c h i l d  H i l l e r  Corporation 
Farmingdale , Long I s l a n d ,  New York 

1 General Dynamics, Convair Divis ion 
Library & Information Services  (128-00) 
P .  0 .  Box 1128 
San Diego , Cal i fo rn ia  92112 

1 Miss i le  and Space Systems Center 
General E l e c t r i c  Company 
Valley Forge Space Technology Center 
P .  0 .  Box 8555 
Phi ladelphia  , Pa. 

1 Gruman A i r c r a f t  Engineering Corp. 
Bethpage , Long Is land  , New York 

1 Hughes A i r c r a f t  Co . 
Aerospace Group 
Cent inela  and Teale Streets 
Los Angeles, C a l i f .  

1 Walter Kidde and Company, Inc .  
Aerospace Operations 
567 Main Street  
B e l l e v i l l e ,  New Jersey  

DESIGNEE 

W .  M .  Smith 

H .  S . London 

John M .  Brueger 

J .  D .  Alexander 

Ted Snow 

Library 

Frank Dore 

F .  Mezger 
F .  E .  Schul tz  

Joseph Gavin 

E .  H .  Meier 
V . P .  and Div. Mgr. 
Research and Dev. Div. 

R .  J .  Hanville 
D i r .  of Research Engr. 
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Ling-Tendo-Vought Corporation 
P. 0 .  Box 5907 
Dallas, Texas 75222 

Arthur D. Little, Inc. 
20 Acorn Park 
Cambridge, Massachusetts 02140 

Lockheed Missiles and Space Co. 
Attn.: Technical Information Center 
P. 0 .  Box 504 
Sunnyvale, California 94088 

Lockheed Propulsion Company 
P. 0 .  Box 111 
Redlands, California 92374 

The Marquardt Corporation 
16555 Saticoy Street 
Van Nuys, California 91409 

Denver Division 
Martin Marietta Corporation 
P. 0 .  Box 179 
Denver, Colorado 80201 

Orlando Division 
Martin Marietta Corp. 
Box 5837 
Orlando, Florida 

McDonne11 Douglas Aircraft Corp. 
P. 0 .  Box 516 
Municipal Airport 
St. Louis, Missouri 63166 

Missile and Space Systems Division 
McDonne 11- Doug la s Aircraft Company 
3000 Ocean Park Boulevard 
Santa Monica, California 90406 

Space & Information Systems Division 
North American Rockwell 
12214 Lakewood Boulevard 
Downey, California 90241 

Rocketdyne (Library 586-306) 
6633 Canoga Avenue 
Canoga Park, California 91304 

DESIGNEE 

Warren G. Trent 

Library 

J. Guill 

H. L. Thackwell 

Dr . Morganthaler 

J. Ferm 

R. A .  Herzmark 

R. W. Hallet 
Chief Engineer 
Adv. Space Tech. . 

Library 

Dr. R. J. Thompson 
S. F. Iacobellis 



INDUSTRY CONTRACTORS (CONT'D.)  

COPIES RECIPIENT 

1 Northrop Space Laborator ies  
3401 West Broadway 
Hawthorne, Ca l i fo rn ia  

1 Aeronutronic Divis ion 
Phi lco Corporation 
Ford Road 
Newport Beach, Ca l i fo rn ia  92663 

1 Astro-Electronics  Divis ion 
Radio Corporation of America 
Prince ton,  New Jersey  08540 

1 Rocket Research Corporation 
520 South Port land S t r e e t  
S e a t t l e ,  Washington 98108 

1 Stanford Research I n s t i t u t e  
333 Revenswood Avenue 
Menlo Park,  Ca l i fo rn ia  94025 

1 TRW Systems Group 
TRW Incorporated 
One Space Park 

. Redondo Beach, Ca l i fo rn ia  90278 

1 Thiokol Chemical Corporation 
Hunt svi  1 le Divis ion 
Huntsv i l le ,  Alabama 

1 Research Labora tor ies  
United A i r c r a f t  Corporation 
400 Main S t .  
Eas t  Har t ford ,  Connecticut 06108 

1 United Technology Center 
587 Methilda Avenue 
P. 0 .  Box 358 
Sunnyvale, Ca l i fo rn ia  94088 

1 F lo r ida  Research and Development 
P r a t t  and Whitney A i r c r a f t  
United A i r c r a f t  Corporation 
P.  0 .  Box 2691 
West Palm Beach, F lo r ida  33402 

DESIGNEE 

D r .  W i l l i a m  Howard 

D. A: Garrison 

Y .  B r i l l  

Foy McCullough, Jr .  

D r .  Gerald Marksman 

G .  W .  Elverum 

John Goodloe 

Erle  Martin 

D r  . David Altman 

R .  J .  Coar 
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