N70-31883

EVALUATION OF A PENTAPROPELLANT UPPER STAGE

July 25, 1970

Prepared by: N. J.

Approved by: G. M. Joseph Study Manager

Approved by: 65 Maratt

C.E. Tharratt, Manager Advanced Vehicle Systems

Prepared for

The National Aeronautics and Space Administration, Office of Advanced Research and Technology, Washington, D.C. under Supplemental Agreement No. 1, Contract NASw-1965, Tripropellant Stage Study

CHRYSLER CORPORATION SPACE DIVISION, P.O. BOX 29200 NEW ORLEANS, LOUISIANA 70129

FOREWORD

This report was prepared by the Chrysler Corporation Space Division, New Orleans, Louisiana, and contains the results of a pentapropellant stage study performed for the National Aeronautics and Space Administration, Office of Advanced Research and Technology, under Supplemental Agreement No. 1 to contract NASw-1965, Tripropellant Stage Study.

The tripropellant stage work conducted under the original contract was documented separately and published as "Evaluation of Hydrogen/Fluorine/Lithium, Hydrogen/Fluorine, and Hydrogen-Lithium/Fluorine Upper Stages", TR-AE-70-29, June 25, 1970.

ACKNOWLEDGEMENTS

The Tripropellant Stage Study was performed under the direction of Dr. Robert S. Levine, NASA Headquarters, telephone (202) 962-1703.

Chrysler Corporation Space Division personnel responsible for major contributions to the study include:

G.M. Jose	ph - 8	Study Manager, tel	lephone (504) 2	255-2395
J.D. Magn	ess – 7	Fechnical Leader,	Stage Design a	and Structures
R.C. Pock	lington – 7	Fechnical Leader,	Performance	and Mission Analysis
P.D. Thon	npson - 7 t	Fechnical Leader, ems	Propulsion an	d Mechanical Sys-

TABLE OF CONTENTS

Paragraph	Title	Page
	Section 1 - INTRODUCTION	
1.1	General	1-1
1.2	Summary of Results	1-1
	Section 2 - STUDY APPROACH	
	Section 3 - STUDY RESULTS	
3.1	General	3-1
3.2	Data and Assumptions	3-1
3.3	Direct Injection Mission	3-1
	 3. 3. 1 Atlas/Centaur Booster Results	3-1 3-3 3-13 3-13 3-13
3.4	Long Duration Mission	3-29
	Section 4 – CONCLUSIONS AND RECOMMENDATIONS	

iv

LIST OF ILLUSTRATIONS

Figure

Title

Page

2-1	Typical Hybrid Engine Weights	2-3
2-2	Typical Hybrid Engine Sizes	2-4
2-3	Typical Liquid Propellant Pump Weights	2-5
2-4	Tandem Tank Pentapropellant Stage Configurations	2-6
2-5	Multiple Tank Pentapropellant Stage Configurations	2-6
3-1	Payload Variation with Stage Weight (Direct Injection Mission, Atlas/Centaur)	3-2
3-2	Pentapropellant Stage (Direct Injection Mission,	
	Atlas/Centaur)	3-6
3-3	Payload Variation with Stage Weight (Direct Injection	
	Mission, Atlas)	3-8
3-4	Pentapropellant Stage (Direct Injection Mission,	
	Atlas)	3-10
3-5	Payload Variation with Stage Weight (Direct	
	Injection Mission, Titan IIID/Centaur)	3-14
3-6	Pentapropellant Stage (Direct Injection Mission,	
	Titan IIID/Centaur)	3 - 17
3-7	Payload Variation with Stage Weight (Direct	
	Injection Mission, Titan IIID)	3-19
3-8	Pentapropellant Stage (Direct Injection Mission,	
	Titan IIID)	3-22
3-9	Payload Variation with Stage Weight (Direct	
	Injection Mission, 260–Inch SRM/S–IVB)	3-24
3-10	Pentapropellant Stage (Direct Injection Mission,	
	260-Inch SRM/S-IVB)	3-27
3-11	Pentapropellant Stage (Interplanetary Mission,	
	120-Inch Booster)	3-33

LIST OF TABLES

Table	Title	Page
1-1	Direct Injection Mission Payload Summary	1-2
1-2	Long Duration Mission Payload Summary	T-9
2-1	Pentapropellant Engine Characteristics	2 - 1
3-1	Major Stage Characteristics Summary (Direct Injection Mission, Atlas/Centaur)	3-4
3-2	Engine Data Summary (Direct Injection Mission, Atlas/Centaur)	3-5
3-3	Design Data Summary (Direct Injection Mission, Atlas/Centaur)	3-5
3-4	Weight Statement Comparison (Direct Injection Mission, Atlas/Centaur)	3-7
3-5	Weight Statement Comparison (Direct Injection Mission, Atlas)	3-9
3-6	Major Stage Characteristics Summary (Direct Injection Mission, Atlas)	3-11
3-7	Engine Data Summary (Direct Injection Mission, Atlas)	3-12
3-8	Design Data Summary (Direct Injection Mission, Atlas)	3-12
3-9	Major Stage Characteristics (Direct Injection	3-15
3-10	Engine Data Summary (Direct Injection Mission,	0-10
3-11	Titan IIID/Centaur) Design Data Summary (Direct Injection Mission,	3-16
0 10	Titan IIID/Centaur)	3-16
3-12	Mission, Titan IIID/Centaur)	3-18
3-13	Major Stage Characteristics (Direct Injection Mission, Titan IIID)	3-20
3-14	Engine Data Summary (Direct Injection Mission,	3-21
3-15	Design Data Summary (Direct Injection Mission,	0 21
	Тitan ШD)	3-21

LIST OF TABLES (continued)

Table	Title	Page
3-16	Weight Statement Comparison (Direct Injection	
	Mission, Titan IIID)	3-23
3-17	Major Stage Characteristics (Direct Injection	
	Mission, 260–Inch SRM/S–IVB)	3-25
3 - 18	Engine Data Summary (Direct Injection Mission,	
	260–Inch SRM/S–IVB)	3-26
3-19	Design Data Summary (Direct Injection Mission,	
	260–Inch SRM/S–IVB)	3-26
3 - 20	Weight Statement Comparison (Direct Injection	
	Mission, 260-Inch SRM/S-IVB)	3-28
3-21	Weight Statement Comparison (Interplanetary	
	Mission, 120-Inch Booster)	3-30
3-22	Major Stage Characteristics (Interplanetary	
	Mission, 120-Inch Booster)	3 - 31
3-23	Engine Data Summary (Interplanetary Mission,	
	120–Inch Booster)	3-32
3-24	Design Data Summary (Interplanetary Mission,	
	120–Inch Booster)	3-32

Section 1

INTRODUCTION

1.1 GENERAL

This report describes the results of an exploratory analysis of a pentapropellant (hydrogen/fluorine-oxygen/lithium-beryllium) upper stage conducted under Supplemental Agreement No. 1 to Contract NASw-1965, Tripropellant Stage Study.

The pentapropellant stage effort evolved during the investigation of the tripropellant stage, when it became evident that the tripropellant stage had a relatively poor mass fraction* - low enough to offset the advantage of its very high specific impulse. Chrysler recommended that other attractive propellant combinations also be investigated. As a result of this recommendation, the tripropellant stage study contract was subsequently modified to include evaluation of pentapropellant stage.

The results of the pentapropellant investigation are being documented separately since the tripropellant study schedule did not permit incorporation of these results in the tripropellant stage final report. The results of the tripropellant stage evaluation are presented in Chrysler technical report TR-AE-70-29, "Evaluation of Hydrogen/Fluorine/Lithium, Hydrogen/Fluorine, and Hydrogen-Lithium/Fluorine Upper Stages".

The objective of this study was to determine if a hydrogen/fluorine-oxygen/lithiumberyllium pentapropellant stage would be sufficiently attractive to merit further investigations. Since this objective was the same as that of the tripropellant stage study, the approach and analytical techniques used in both studies were identical; therefore, in the interest of brevity, the tripropellant report (TR-AE-70-29) is referenced frequently in this report to avoid repeating this basic information.

1.2 SUMMARY OF RESULTS

The pentapropellant stage investigated had a hybrid combustion system; (that is, both solid and liquid propellants. The liquid propellants (hydrogen, fluorine and oxygen) were stored in tanks, while the lithium and beryllium were a solid grain in a case similar to a solid rocket motor. The fluorine and oxygen were mixed and stored as FLOX, while the hydrogen was stored separately.

To ensure that reliable conclusions were obtained with respect to the relative attractiveness of the pentapropellant, the pentapropellant stage was sized to achieve

^{*}Mass Fraction = Propellant Weight/Stage Weight

maximum payload for various mission requirements and booster vehicles. However, because of an unavailability of engine data, it was not possible to determine the optimum combination of pentapropellant engine characteristics (e.g., mixture ratio, area ratio and chamber pressure) as had been done in the tripropellant effort. The basic engine characteristics assumed in this study are as follows:

Specific Impulse	519 Seconds
Chamber Pressure	1000 psi
Area Ratio	100:1
Percent Hydrogen	27.5

Table 1-1 compares the direct inject payload capability of the pentapropellant stage and the tripropellant (hydrogen/fluorine/lithium), Gel (hydrogen-lithium/ fluorine), bipropellant (hydrogen/fluorine) stages evaluated in the tripropellant study. Each payload corresponds to a stage that has been optimized for the particular booster and mission velocity identified. The optimum stage sizes were found to be a function of mission velocity as well as launch vehicle. The results show that the pentapropellant stage does not look as attractive as any of the other three stages.

In addition to the direct injection missions, a long duration mission consisting of a single burn to achieve a velocity increment of 8000 fps after a 205-day coast was also evaluated. The results, which are summarized in table 1-2, show that the pentapropellant stage has a small payload advantage over the tripropellant stage, but has a lower performance than the bipropellant and Gel stages.

BOOSTER		PAYLOAD (POUNDS)				
TOTAL MISSION VELOCITY (FPS)		ATLAS CENTAUR*	ATLAS	TITAN IIID CENTAUR*	titan iiid	260-INCH SRM S-I∨B
	PENTAPROPELLANT	4200	3870	**	12400	37200
36,140	TRIPROPELLANT	4400	4260	**	13100	40500
(EARTH ESCAPE)	BIPROPELLANT	4200	4510	**	12700	39500
	GELLED H2/Li	4350	4520	**	13000	39500
	PENTAPROPELLANT	820	***	3900	3 180	12600
48,500	TRIPROPELLANT	990	***	4110	3600	14500
(= 0.3 AU PROBE)	BIPROPELLANT	900	300	3900	3680	13800
	GELLED H ₂ /Li	970	140	4070	3800	13700
	PENTAPROPELLANT	10	* * *	1990	930	6030
54,500 (~0.2 AU PROBE)	TRIPROPELLANT	125	***	2200	1300	7600
	BIPROPELLANT	120	* * *	2210	1480	7300
	GELLED H ₂ /Li	150	* * *	2080	1470	6950

Table 1-1.	Direct Injection	Mission	Payload	Summary
------------	-------------------------	---------	---------	---------

*GROSS WEIGHT ABOVE CENTAUR LIMITED TO 12,000 POUNDS

**KICK STAGE DOES NOT IMPROVE BOOSTER'S PERFORMANCE

***NO CAPABILITY

Stage	Payload (1b)	
Bipropellant	5270	
Gelled H ₂ /Li	5110	
Pentapropellant	4990	
Tripropellant	4640	

Table 1-2. Long Duration Mission Payload Summary

Inspection of the detailed results show that the large size and weight of the pentapropellant engine is one reason for low stage performance when compared to the other stages. This could be attributed to the fact that the shape of the combustion chamber, which holds the solid lithium-beryllium propellant, was not optimized during the study.

Also, the optimum engine parameters (mixture ratio, chamber pressure and area ratio) were not determined for the pentapropellant stage. This could be a second reason why the pentapropellant stage compared so poorly.

If both of these facts had been accounted for, it is doubtful that the capability of the pentapropellant stage would have been improved enough to give it a significant payload advantage over any of the other stages investigated in the tripropellant stage evaluation.

Section 2 STUDY APPROACH

The approach taken in evaluating the pentapropellant stage was identical to that used for evaluating the tripropellant stage (see TR-AE-70-29) except that the engine design parameters were not optimized due to the limited engine performance data available. Table 2-1 summarizes the pentapropellant engine parameters considered during this study.

Characteristic	Value
Specific Impulse	519 Sec
Area Ratio	100:1
Chamber Pressure	1000 psi
Percent Hydrogen	27.5
Percent Fluorine	14.6
Percent Oxygen	33.6
Percent Lithium	5.4
Percent Beryllium	18.9

Table 2-1. Pentapropellant Engine Characteristics

The upper stage sizing program was modified to adapt it to hybrid systems. The modifications enabled the sizes and weights of the combustion chamber, nozzle and pump to be computed internal to the program.

The combustion chamber was sized on the basis of a cylinder length-to-diameter ratio (L/D) of 1.0 and a propellant bore-to-nozzle throat diameter ratio (r_b/r_t) of 1.30. Although the combustion chamber's shape (i.e., L/D and r_b/r_t) was not optimized, it was felt that the assumed values would provide a good shape from the standpoint of grain design. However, during the study it was found that combustion chamber size could have a large impact on overall system considerations, particularly on the interstage size and weight. The nozzle length was computed on the basis of a 17.5 degree nozzle half angle.

An Aerojet-General (1) method was used to compute the weights for a maraging steel (170 ksi yield strength) combustion chamber and a fixed nozzle. Figures 2-1 and 2-2 show typical motor weights and dimensions, respectively, computed for various propellant loads.

The liquid propellant pump weights were based on those found in Rocketdyne's Tripropellant Engine $Study^{(2)}$. Although these were for a tripropellant engine, it was felt that they would be representative since the hydrogen pump consumes most of the pump power and the pentapropellant and tripropellant stages have approximately the same percentage of hydrogen by weight. Typical pump weights are depicted in figure 2-3.

The sizing program was further modified so that several multiple tank configurations could be considered in addition to the tandem tank versions normally considered for two liquid propellants, in this case hydrogen and FLOX. The tandem tank versions are illustrated in figure 2-4; they are identical to those considered for the bipropellant and Gel stages in the tripropellant stage evaluation (TR-AE-70-29). These geometries were generally found to be best for both the direct injection missions and the long duration mission.

The three multiple tank configurations are similar to those considered for the tripropellant stage. Each has a single (spherical or cylindrical) hydrogen tank and two FLOX tanks diametrically opposed and located on the perimeter of the hydrogen tank. Sketches of the three multiple tank versions are presented in figure 2-5. The first two versions (a and b) have spherical FLOX tanks and, depending upon whether or not the combustion chamber can be submerged between the two FLOX tanks, have either a thrust cone or spider beam type thrust structure. The last multiple tank version (c) has two cylindrical FLOX tanks. The radii of these tanks are the largest possible without violating the specified geometric constraints. The cylindrical lengths are computed to give the necessary tank volumes. There is no thrust cone version of this tankage arrangement.

The modified version of the computer program has the same geometric constraints on stage configuration geometry as did the one used in the tripropellant study. These are covered in detail in TR-AE-70-29.

⁽¹⁾ Threewit, T.R., "The Integrated Design Computer Program and the ACP-1103 Interior Ballistics Computer Program," STM-180, Aerojet-General Corporation, Sacramento, California, December 1, 1964.

⁽²⁾ Huntsinger, J. P., "Tripropellant Engine System Study, Final Report," Report R-7877, Rocketdyne Division, North American Rockwell Corporation, Canoga Park, California, November 3, 1969.

Figure 2-1. Typical Hybrid Engine Weights

Figure 2-2. Typical Hybrid Engine Sizes

Figure 2-3. Typical Liquid Propellant Pump Weights

Figure 2-4. Tandem Tank Pentapropellant Stage Configurations

Figure 2-5. Multiple Tank Pentapropellant Stage Configurations

Section 3

STUDY RESULTS

3.1 GENERAL

The same two general classes of missions analyzed during tripropellant stage investigation were considered during the pentapropellant stage evaluation. The two types of missions were: 1) direct injection, and 2) long duration. The basic difference between these is that the direct injection missions have a very short coast prior to the single burn of the upper stage; whereas the long duration mission has a coast period of several months before the upper stage burn.

The results of the direct injection missions and the long duration mission are presented in paragraphs 3.3 and 3.4, respectively.

3.2 DATA AND ASSUMPTIONS

The constraints, guidelines, and pertinent design data used for both the pentapropellant stage direct injection and long duration missions were identical to those used in evaluating the tripropellant stage. In the interest of brevity, these will not be repeated in this report. The reader is referenced to sections 3.2.1 and 3.4.1 of TR-AE-70-29.

3.3 DIRECT INJECTION MISSION

The basic direct inject mission profile consisted of a booster delivering the pentapropellant stage and payload to a velocity increment corresponding to the gross weight above the booster. After burnout, the booster is jettisoned and, after a short coast, the upper stage is ignited to supply the remaining velocity increment necessary to fulfill mission requirements. Direct injection missions were investigated for total mission velocities ranging from earth escape to velocities corresponding to zero payload for each particular booster/gross weight combination. The five boosters investigated for the direct injection missions were 1) Atlas/Centaur, 2) Atlas, 3) Titan IIID/Centaur, 4) Titan IIID, and 5) 260-Inch SRM/S-IVB. The results of the direct injection mission analyses are presented in the remaining paragraphs of this section.

3.3.1 ATLAS/CENTAUR BOOSTER RESULTS

The payload of the pentapropellant stage is shown in figure 3-1 for several of the total mission velocities investigated. Although the figure shows that various payloads

are obtainable at a single stage weight, the booster-upper stage velocity split is different for each mission velocity, and hence do not correspond to identically configured stages.

A summary of the major stage characteristics, engine parameters, and major stage design characteristics are given in tables 3-1, 3-2, and 3-3, respectively. These data correspond to a 12,000 pound gross weight stage (payload, stage and interstage) sized to achieve an earth escape velocity (36,140 fps). Data given in these tables are strictly applicable to the specified mission and gross weight; however, in general, these data are representative of the stages designed for other missions and gross weights. This mission and weight combination was selected so that comparison could readily be made with the tripropellant, Gel, and bipropellant stages presented in reference 1.

Figure 3-2 shows an external profile of the pentapropellant stage designed to interface with the Atlas/Centaur for the described mission.

For the missions and gross weights investigated, the pentapropellant stage performance does not exceed that of the best stage considered in the tripropellant stage evaluation. The reasons for this can be seen in a weight comparison of the four stages, (See table 3-4.) The largest penalty, in this instance approximately 250 pounds, is found in the engine. The pentapropellant stage combustion chamber and nozzle are longer than the equivalent liquid engine, hence the interstage on the pentapropellant stage is larger and weighs more than those on the other stages. These penalties might have been reduced and performance of the pentapropellant stage improved, had the combustion chamber shape (L/D and r_b/r_t) been optimized during this study.

3. 3. 2 ATLAS BOOSTER RESULTS

Figure 3-3 presents the payload as a function of stage weight for the pentapropellant stage atop the Atlas booster. The single mission velocity (36,140 fps) shown was the only velocity investigated for this launch vehicle which produced finite payloads. At this mission velocity the pentapropellant stage performance was inferior to the stages evaluated during the tripropellant investigation.

As was the case with the Atlas/Centaur booster, the pentapropellant stage performance is degraded because of the weight and size of the engine. When used with the Atlas booster, the engine size and weight have a more serious degrading effect on stage performance. A weight comparison of the pentapropellant stage with the tripropellant, bipropellant, and gelled configurations is depicted in table 3-5. The data presented in this chart are for a 30,000 pound gross weight stage and an earth escape mission (36,140 fps).

Figure 3-4 depicts the external profile of this pentapropellant stage. Tables 3-6 through 3-8 summarize the major stage and engine characteristics, and pertinent design data for the pentapropellant stage.

Total Mission Velocity:	36140	fps
Stage Velocity Increment - First Burn:	11390	fps
Stage Velocity Increment - Second Burn:	0	fps
First Coast Time:	0.5	hrs
Second Coast Time:	0	hrs
Gross Weight:	12000	lb
Stage	Pentapropell	ant
Payload (lb)	4217	
Specific Impulse (sec)	519	
Thrust (lb)	8240	
Interstage Weight (1b)	227	
Total Stage Weight (lb)	7556	
Inert Stage Weight (1b)	164 8	
Total Propellant Weight (lb)	5908	
Propellant Consumed		
First Burn (lb)	5817	
Second Burn (1b)	0	
Residual Propellant Weight (1b)	59	
Stage Mass Ratio	1.988	
Stage Payload Fraction	0.351	
Stage Structural Ratio	0.225	
Stage Velocity Ratio	0.687	
Stage Thrust to Weight Ratio	0.7:1	

Table 3-1. Engine Data Summary (Direct Injection Mission, Atlas/Centaur)

Parameters	Value
Thrust (lb)	8240
Specific Impulse (sec)	519.0
Expansion Ratio	100:1
Chamber Pressure (psi)	1000
Percent Hydrogen	27.5
Percent Fluorine	14.6 '
Percent Oxygen	33.6
Percent Lithium	5.4
Percent Beryllium	18.9
Weight (1b)	378
Length (in.)	90.6
Exit Diameter (in.)	22.1

Table 3-2.Engine Data Summary (Direct Injection
Mission, Atlas/Centaur)

Table 3-3. Design Data Summary (Direct Injection Mission, Atlas/Centaur)

Propellant Tank	Hydrogen	FLOX	Li-Be Solid
Propellant Weights Usable (1b) Residual (1b) Boiloff (1b) Startup/Shutdown (1b) Total Load (1b)	1600 16 0 9 1625	2804 28 0 15 2847	1414 14 0 8 1436
Tankage Number of Tanks Volume (ft ³) Radius (In.) Cylinder Length (In.) Dome Thickness (In.) Cylinder Thickness (In.) Design Pressure (psi)	1 391.7 54.00 1.92 0.0250 0.0345 29.1	1 38.3 25.10 0 0.0250 N/A 25.4	Motor Case N/A N/A N/A N/A N/A N/A N/A
Thermal Initial Temperature (°R) Vent Temperature (°R) Insulation Thickness (In.)	36 38 0.18	150 159 0,11	Motor Case N/A N/A N/A

Figure 3-2. Pentapropellant Stage (Direct Injection Mission, Atlas/Centaur)

STAGE	PENTAPROPELLANT	TRIPROPELLANT	GELLED H ₂ /Li	BIPROPELLANT
STRUCTURE	597	589	582	417
SHELL	124	96	127	84
THRUST STRUCTURE	44	44	44	23
TANKAGE	132	198	146	06
Hydrogen	(109)	(120)	(123)	(57)
Fluorine or FLOX	(23)	(28)	(23)	(33)
Lithium	()	(20)	()	()
INTERSTAGE	227	169	172	122
TANK SUPPORTS	70	82	93	98
PROPULSION	499	309	267	230
ENGINE	378	139	139	116 .
PRESS. SYSTEM	38	59	54	53
FEED SYSTEM	70	98	61	48
RCS	13	13	13	13
THERMAL CONTROL	14	39	34	15
INSULATION	14	39	34	15 .
Hydrogen	(21)	(23)	(31)	(11)
Fluorine or FLOX	(2)	(4)	(3)	(4)
Lithium	()	(12)	[]	()
Li TANK HEATERS, ETC.	1	0		L
METEOROID SHIELD	0	0	0	0
MISCELLANEOUS SYSTEMS	650		650	650
CONTINGENCY (7.5%)	115	106	102	89
TOTAL INERT (INCL. I/S [*])	1875	1693	1635	1401
PROPELLANT	5908	5920	6015	6402
USEABLE	5817	5829	5922	6302
RESIDUAL	59	59	60 60	64
BOILOFF START/SHUTDOWN	32 ⁽	32 0	33 0	39 C
TOTAL STAGE ($INCL, I/S^*$)	7783	7613	7650	7803
ΡΑΥΓΟΑD	4217	4387	4350	4197
GROSS WEIGHT ABOVE BOOSTER	12000	12000	12000	12000

Table 3-4. Weight Statement Comparison (Direct Injection Mission, Atlas)

* INTERSTAGE

PAYLOAD (POUNDS)

STAGE	PENTAPROPELLANT	TRIPROPELLANT	GELLED H ₂ /Li	BIPROPELLANT
STRUCTURE	1891	1994	1841	1236
SHELL	570	669	558	294
THRUST STRUCTURE	62	130	62	62
TANKAGE	513	633	517	213
Hydrogen	(458)	(418)	(463)	(135)
Fluorine or FLOX	(55)	(77)	(54)	(78)
Lithium	()	(138)	()	()
INTERSTAGE	489	228	362	318
TANK SUPPORTS	257	304	342	349
PROPULSION	1347	717	618	552
ENGINE	1116	367	366	298
PRESS. SYSTEM	106	161	142	135
FEED SYSTEM	112	176	97	106
RCS	13	13	13	13
THERMAL CONTROL	74	124	102	37
INSULATION	74	124	102	37
Hydrogen	(11)	(81)	(26)	(29)
Fluorine or FLOX	(3)	(11)	(5)	(8)
Lithium	()	(32)	()	()
LI TANK HEATERS, ETC.		0	LFC	[[[
METEOROID SHIELD	0	0	0	
MISCELLANEOUS SYSTEMS	. 650	650	650	650
CONTINGENCY (7.5%)	261	244	214	162
TOTAL INERT (INCL. I/S)	4423	3729	3425	2637
PROPELLANT	21910	22053	22200	23082
USEABLE	21602	21753	21897	22763
RESIDUAL	219	220	221 Ĵ	231
START/SHUTDOWN	0	0 80	82 0	0 68
TOTAL STAGE (INCL. I/S)	26133	25782	25625	25719
PAYLOAD	3867	4218	4375	4281
GROSS WEIGHT ABOVE BOOSTER	30000	30000	30000	30000

Table 3-5. Weight Statement Comparison (Direct Injection Mission, Atlas)

* INTERSTAGE

Figure 3-4. Pentapropellant Stage (Direct Injection Mission, Atlas)

Tota	l Mission Velocity:	36140	fps
Stage	e Velocity Increment - First Burn:	22040	fps
Stage	e Velocity Increment - Second Burn:	· 0	fps
Firs	t Coast Time:	0.5	hrs
Seco	nd Coast Time:	0	hrs
Gros	s Weight:	30000	lb
Stage	e	Pentapropell	ant
Paylo	oad (lb)	3867	
Speci	fic Impulse (sec)	519	
Thru	st (1b)	20657	
Inter	stage Weight (1b)	489	
Total	Stage Weight (1b)	25644	
Inert	Stage Weight (1b)	3734	
Total	Propellant Weight (1b)	21910	
Prop	ellant Consumed		
]	First Burn (1b)	21611	
2	Second Burn (1b)	0	
Resid	dual Propellant Weight (lb)	46	
Stage	Mass Ratio	3.775	
Stage	Payload Fraction	0.129	
Stage	Structural Ratio	0,154	
Stage	Velocity Ratio	1, 329	
Stage	Thrust to Weight Ratio	0,7:1	

Table 3-6.Major Stage Characteristics Summary (Direct Injection
Mission, Atlas)

.

Parameters	Value
Thrust (lb)	20657
Specific Impulse (sec)	519.0
Expansion Ratio	100:1
Chamber Pressure (psi)	1000
Percent Hydrogen	27.5
Percent Fluorine	14.6
Percent Oxygen	33.6
Percent Lithium	5.4
Percent Beryllium	18.9
Weight (1b)	1116
Length (in.)	141.2
Exit Diameter (in.)	34.9

Table 3-7.Engine Data Summary (Direct Injection
Mission, Atlas)

Table 3-8. Design Data Summary (Direct Injection Mission, Atlas)

Propellant Tank	Hydrogen	FLOX	Li-Be Solid
Propellant Weights Usable (1b) Residual (1b) Boiloff (1b) Startup/Shutdown (1b) Total Load (1b)	5943 60 0 22 6025	10416 106 0 38 10560	5252 53 0 19 5324
Tankage Number of Tanks Volume (ft ³) Radius (In.) Cylinder Length (In.) Dome Thickness (In.) Cylinder Thickness (In.) Design Pressure (psi)	$1 \\ 1483.6 \\ 54.00 \\ 207.84 \\ 0.0250 \\ 0.0428 \\ 36.0 $	1 142.2 38.85 0.0 0.0250 N/A 25.4	Motor Case N/A N/A N/A N/A N/A N/A N/A
Thermal Initial Temperature (°R) Vent Temperature (°R) Insulation Thickness (In.)	36 40 0, 36	150 159 0.07	Motor Case N/A N/A N/A

3.3.3 TITAN IIID/CENTAUR BOOSTER RESULTS

The performance of a Titan IIID/Centaur/Pentapropellant stage launch vehicle is presented in figure 3-5, as a function of stage weight and mission velocity.

Tables 3-9 through 3-11 provide summaries of the major stage characteristics, engine parameters and computed design data for a 12,000 pound gross weight pentapropellant stage used to perform a 48,500 fps mission. The stage shown does not have the maximum payload which could have been obtained. This is because it was assumed that the maximum weight that could be interfaced with the Centaur stage was 12,000 pounds. Therefore, the results were constrainted to stages where the gross weight (payload, stage and interstage) did not exceed 12,000 pounds.

Figure 3-6 is a sketch of the pentapropellant stage for this mission and gross weight, and table 3-12 is a comparative weight statement for the pentapropellant, tripropellant, Gel and bipropellant stages. Examination of the weight statement reveals that the pentapropellant stage again suffers from the longer and heavier engine.

3.3.4 TITAN IIID BOOSTER RESULTS

The performance of the pentapropellant stage when mated to the Titan IIID booster is presented in figure 3-7 for various mission velocities. Although the figure shows the payload of this launch vehicle combination to be rising at the low mission velocity (36, 140 fps), it is doubtful that much higher performance could be expected because of the greater length to diameter ratio this stage would have at larger gross weights.

As with the Atlas booster results, a gross weight of 30,000 pounds and a mission velocity of 36,140 fps (earth escape) have been selected for comparative purposes. Again, this particular size stage is not optimum.

Tables 3-13 through 3-15 depict the major stage characteristics, engine parameters and major design data, respectively, of this 30,000 pound stage. A sketch of the pentapropellant stage is shown in figure 3-8, and a weight statement illustrating the differences between the pentapropellant stage and the other stages is given in table 3-16. Again, the large engine size on the pentapropellant stage accounts for its poor performance relative to the other stages.

3.3.5 260-INCH SRM/S-IVB BOOSTER RESULTS

The largest booster investigated was the 260-inch Solid Rocket Motor (SRM) / S-IVB. The results, shown in figure 3-9, indicate that at lower velocities the optimum stage sizes would have exceeded gross weights greater than 70,000 pounds, which was the highest gross weight investigated. This was the largest tripropellant stage evaluated due to the lack of tripropellant engine data over 50,000 pounds thrust. The 70,000 pound gross weight was selected as a convenient size for the 48,500 fps mission.

Figure 3-5. Payload Variation with Stage Weight (Direct Injection Mission, Titan IIID/Centaur)

Total Mission Velocity:	48500	fps
Stage Velocity Increment - First Burn:	12200	fps
Stage Velocity Increment - Second Burn:	0	fps
First Coast Time:	0.5	hrs
Second Coast Time:	0	hrs
Gross Weight:	12000	lb
Stage	Pentapropell	ant
Payload (lb)	3895	
Specific Impulse (sec)	519	
Thrust (1b)	8256	
Interstage Weight (1b)	204	
Total Stage Weight (1b)	7900	
Inert Stage Weight (1b)	1696	
Total Propellant Weight (lb)	6204	
Propellant Consumed		
First Burn (lb)	6110	
Second Burn (lb)	0	
Residual Propellant Weight (1b)	62	
Stage Mass Ratio	2.087	
Stage Payload Fraction	0,325	
Stage Structural Ratio	0,222	
Stage Velocity Ratio	0.736	
Stage Thrust to Weight Ratio	0.7:1	

Table 3-9.Major Stage Characteristics (Direct Injection Mission,
Titan IIID/Centaur)

Parameters	Value
Thrust (lb)	8256
Specific Impulse (sec)	519.0
Expansion Ratio	100:1
Chamber Pressure (psi)	1000
Percent Hydrogen	27.5
Percent Fluorine	14.6 [′]
Percent Oxygen	33,6
Percent Lithium	5.4
Percent Beryllium	18.9
Weight (1b)	390
Length (in.)	91.6
Exit Diameter (in.)	22.1

Table 3-10.Engine Data Summary (Direct Injection
Mission, Titan IIID/Centaur)

Table 3-11. Design Data Summary (Direct Injection Mission, Titan IIID/Centaur)

Propellant Tank	Hydrogen	FLOX	Li-Be Solid
Propellant Weights Usable (lb) Residual (lb) Boiloff (lb) Startup/Shutdown (lb) Total Load (lb)	1680 17 0 9 1706	2945 30 0 15 2990	1485 15 0 8 1508
Tankage Number of Tanks Volume (ft ³) Radius (In.) Cylinder Length (In.) Dome Thickness (In.) Cylinder Thickness (In.) Design Pressure (psi)	$1 \\ 429.34 \\ 54.00 \\ 9.00 \\ 0.0258 \\ 0.0516 \\ 43.4$	1 40.25 25.51 0 0.0250 N/A 25.4	Motor Case N/A N/A N/A N/A N/A N/A N/A
Thermal Initial Temperature (°R) Vent Temperature (°R) Insulation Thickness (In.)	36 42 0,30	150 159 0.11	Motor Case N/A N/A N/A

Figure 3-6. Pentapropellant Stage (Direct Injection Mission, Titan IIID/Centaur)

STAGE	PENTAPROPELLANT	TRIPROPELLANT	GELLED II ₉ /Li	BIPROPELLANT
STRUCTURE	501	570 770	560	
SHELL	118	86	118	202± 77
THRUST STRUCTURE	44	44	44	24
TANKAGE	152	194	154	94
Hydrogen	(128)	(114)	(131)	(09)
Fluorine or FLOX	(24)	(29)	(23)	(34)
Lithium	()	(12)	()	()
INTERSTAGE	204	150	155	110
TANK SUPPORTS	73	85	98	101
PROPULSION	518	312	269	233
ENGINE	390	139	139	115
PRESS. SYSTEM	44	61	56	55
FEED SYSTEM	11	66	61	50
RCS	13	13	13	13
THERMAL CONTROL	24	44	34	16
INSULATION	24	44	34	16
Hydrogen	(22)	(28)	(31)	(21.)
Fluorine or FLOX	(2)	(4)	(3)	(4)
Lithium	()	(12)	()	()
LI TANK HEATERS, ETC.		0		
METEOROID SHIELD	0	0	0	0
MISCELLANEOUS SYSTEMS	650	650	650	650
CONTINGENCY (7.5 $\%$)	118	108	103	90
TOTAL INERT (INCL. I, S [*])	1061	1673	1625	1395
PROPELLANT	6204	6215	6312	6703
USEABLE	6110	6121	6217	6600
RESIDUAL	62	62	62	67
BOILOFF START/SHUTDOWN	32 0	32 0	33 0	0 36
TOTAL STAGE (INCL. I. s^*)	8105	788×	7937	8098
РАҮЬОАD	3895	4112	4063	3902
GROSS WEIGHT ABOVE BOOSTER	12000	12000	12000	12000

Table 3-12. Weight Statement Comparison (Direct Injection Mission, Titan IIID/Centaur)

* INTERSTAGE

Figure 3-7. Payload Variation with Stage Weight (Direct Injection Mission, Titan IIID)

PAYLOAD (POUNDS)

Т	otal Mission Velocity:	48500	fps
S	tage Velocity Increment - First Burn:	24000	fps
S	tage Velocity Increment - Second Burn:	0	fps
F	'irst Coast Time:	0.5	hrs
S	econd Coast Time:	0	hrs
G	ross Weight:	30000	lb
S	tage	Pentapropell	ant
Р	ayload (lb)	316 8	
$\mathbf{S}_{\mathbf{i}}$	pecific Impulse (sec)	519	
Т	hrust (lb)	20787	
In	terstage Weight (1b)	304	
Т	otal Stage Weight (1b)	26528	
In	ert Stage Weight (1b)	3593	
Т	otal Propellant Weight (lb)	22934	
Р	ropellant Consumed		
	First Burn (1b)	22625	
	Second Burn (lb)	. 0	
R	esidual Propellant Weight (lb)	229	
St	tage Mass Ratio	4,250	
St	tage Payload Fraction	0,106	
St	tage Structural Ratio	0.144	
St	tage Velocity Ratio	1,447	
S	tage Thrust to Weight Ratio	0.7:1	

Table 3-13. Major Stage Characteristics (Direct Injection Mission, Titan IIID)

Parameters	Value
Thrust (lb)	20787
Specific Impulse (sec)	519.0
Expansion Ratio	100:1
Chamber Pressure (psi)	1000
Percent Hydrogen	27.5
Percent Fluorine	14.6
Percent Oxygen	33.6
Percent Lithium	5.4
Percent Beryllium	18.9
Weight (1b)	1156
Length (in.)	142.8
Exit Diameter (in.)	35.1

Table 3-14.Engine Data Summary (Direct Injection
Mission, Titan IIID)

Table 3-15. Design Data Summary (Direct Injection Mission, Titan IIID)

Propellant Tank	Hydrogen	FLOX	Li-Be Solid
Propellant Weights Usable (lb) Residual (lb) Boiloff (lb) Startup/Shutdown (lb) Total Load (lb)	6222 63 0 22 6307	10905 111 0 39 11055	5498 56 0 19 5573
Tankage Number of Tanks Volume (ft ³) Radius (In.) Cylinder Length (In.) Dome Thickness (In.) Cylinder Thickness (In.) Design Pressure (psi)	$1 \\ 1552.9 \\ 54.00 \\ 220.92 \\ 0.0250 \\ 0.0428 \\ 36.0 $	1 148.8 39.45 0 0.0250 N/A 25.4	Motor Case N/A N/A N/A N/A N/A N/A N/A
Thermal Initial Temperature (°R) Vent Temperature (°R) Insulation Thickness (In.)	36 40 0,36	150 159 0.07	Motor Case N/A N/A N/A

Figure 3-8. Pentapropellant Stage (Direct Injection Mission, Titan IIID)

STAGE	PENTAPROPELLANT	TRIPROPELLANT	GELLED N ₂ /Li	BIPROPELLANT
STRUCTURE	1528	1697	1533	1024
SHELL	356	434	349	182
THRUST STRUCTURE	62	146	62	62
TANKAGE	537	660	541	222
Hydrogen	(480)	(437)	(485)	(142)
Fluorine or FLOX	(57)	(80)	(56)	(80)
Lithium	()	(143)	()	()
INTERSTAGE	304	140	224	194
TANK SUPPORTS	269	317	357	364
PROPULSION	1392	730	625	558
ENGINE	1156	369	368	299
PRESS. SYSTEM	111	167	147	140
FEED SYSTEM	112	181	97	106
RCS	13	13	13	13
THERMAL CONTROL	77	128	105	37
INSULATION	77	128	105	37
Hydrogen	(74)	(84)	(100)	(29)
Fluorine or FLOX	(3)	(11)	(2)	(8)
Lithium	()	(33)	(()
Li TANK HEATERS, ETC.		0		1
METEOROID SHIELD	0	0	0	0
MISCELLANEOUS SYSTEMS	650	. 650	650	650
CONTINGENCY (7.5 $\%$)	251	230	202	156
TOTAL INERT (INCL. I.S.)	3898	3435	3115	2425
PROPELLANT	22934	23011	23186	24029
USEABLE	22625	22701	22873	23700
RESIDUAL	229	229	231	240
BULLUFF START, SHITTDOWN	0 0	0 13	0 68	0 o
	00	1 0	04	20
TOTAL STAGE (INCL. I. S.)	26832	26446	26301	26454
ΡΑΥΙΟΑΒ	3168	3554	3699	3546
GROSS WEIGHT ABOVE BOOSTER	30000	30000	30000	330000
* INTERSTAGE				

Table 3-16. Weight Statement Comparison (Direct Injection Mission, Titan IIID)

•

PAYLOAD (THOUSANDS OF POUNDS)

Figure 3-9. Payload Variation with Stage Weight (Direct Injection Mission, 260-Inch SRM/S-IVB)

Tables 3-17 through 3-19 summarize the major stage characteristics, engine parameters, and major design data for this size pentapropellant stage. Figure 3-10 depicts an external profile of the stage, and table 3-20 gives a weight statement for the comparable pentapropellant, tripropellant, Gel, and bipropellant stages.

As with the pentapropellant stages investigated for the other boosters, the engine size detracts from the pentapropellant stages capability.

Total Mission Velocity:	48500	fps
Stage Velocity Increment - First Burn:	20200	$_{ m fps}$
Stage Velocity Increment - Second Burn:	0	fps
First Coast Time:	0.5	hrs
Second Coast Time:	0	hrs
Gross Weight:	70000	lb
Stage	Pentapropell	ant
Payload (lb)	12622	
Specific Impulse (sec)	519	
Thrust (lb)	47166	
Interstage Weight (1b)	2608	
Total Stage Weight (1b)	54770	
Inert Stage Weight (1b)	6859	
Total Propellant Weight (lb)	47910	
Propellant Consumed		
First Burn (lb)	47249	
Second Burn (lb)	0	
Residual Propellant Weight (1b)	182	
Stage Mass Ratio	3.377	
Stage Payload Fraction	0.180	
Stage Structural Ratio	0.134	
Stage Velocity Ratio	1.217	
Stage Thrust to Weight Ratio	0.7:1	

Table 3-17.Major Stage Characteristics (Direct Injection Mission,
260-Inch SRM/S-IVB)

Parameters	Value
Thrust (lb)	47166
Specific Impulse (sec)	519.0
Expansion Ratio	100:1
Chamber Pressure (psi)	1000
Percent Hydrogen	27.5
Percent Fluorine	14.6 ·
Percent Oxygen	33.6
Percent Lithium	5.4
Percent Beryllium	18.9
Weight (1b)	2337
Length (in.)	194.3
Exit Diameter (in.)	52.8

Table 3-18.Engine Data Summary (Direct Injection
Mission, 260-Inch SRM/S-IVB)

Table 3-19. Design Data Summary (Direct Injection Mission, 260-Inch SRM/S-IVB)

Propellant Tank	Hydrogen	FLOX	Li-Be Solid
Propellant Weights Usable (lb) Residual (lb) Boiloff (lb) Startup/Shutdown (lb) Total Load (lb)	12993 132 0 50 13175	22774 231 0 88 23093	11482 116 0 44 11642
Tankage Number of Tanks Volume (ft ³) Radius (In.) Cylinder Length (In.) Dome Thickness (In.) Cylinder Thickness (In.) Design Pressure (psi)	1 3211.7 109.84 0 0.0395 N/A 32.7	1 310.8 50.43 0 0.0250 N/A 25.4	Motor Case N/A N/A N/A N/A N/A N/A N/A N/A
Thermal Initial Temperature (°R) Vent Temperature (°R) Insulation Thickness (In.)	36 39 0.31	150 159 0.06	Motor Case N/A N/A N/A

Figure 3-10. Pentapropellant Stage (Direct Injection Mission, 260-Inch SRM/S-IVB)

	مارد و به مراجع می ایند. می از می ایند. این می ایند و با ایند این این می ایند و این می می می می می می می می می ا			
STAGE	PENTAPROPELLANT	TRIPROPELLANT		LNETTAOMAIG
STRUCTURE	5372	4560	4803	2973
SHELL	1009	778	917	662
THRUST STRUCTURE	524	378	498	187
TANKAGE	790	953	687	365
Hydrogen	(697)	(639)	(591)	(232)
Fluorine or FLOX	(93)	(114)	(96)	(133)
Lithium	()	(200)	()	()
INTERSTAGE	2608	1793	1951	1221
TANK SUPPORTS	441	658	750	538
PROPULSION	2875	1704	1469	1254
ENGINE	2237	921	918	763
PRESS. SYSTEM	204	324	273	265
FEED SYSTEM	321	446	265	213
RCS	13	13	13	13
THERMAL CONTROL	92	162	125	65
INSULATION	92	162	125	65
Hydrogen	(88)	(105)	(116)	(55)
Fluorine or FLOX	(4)	(11)	(6)	(10)
Lithium	()	(46)	()	()
Li TANK HEATERS, ETC.		0		6
METEOROID SHIELD	0	0	0	0
MISCELLANEOUS SYSTEMS	650	650	650	650
CONTINGENCY (7.5%)	479	396	382	279
TOTAL INERT (INCL. I/S^{*})	9468	7472	7429	5221
PROPELLANT	47910	48357	49226	51297
USEABLE	47249	47690	48544	50580
RESIDUAL	479	484	493	513
BOLLOFF START/SHUTDOWN	0 182	0 183	0 189	0 204
TOTAL STAGE (INCL. I/S [*])	57378	55819	56655	56518
РАҮLОАD	12622	14171	13345	13482
GROSS WEIGHT ABOVE BOOSTER	20000	20000	20000	20000
* INTERSTAGE				

Table 3-20. Weight Statement Comparison (Direct Injection Mission, 260-Inch SRM/S-IVB)

3.4 LONG DURATION MISSION

Only one long duration mission was investigated during this study. Basically, this mission profile consisted of a booster placing the upper stage and payload on a Mars trajectory. After separating from the booster, the upper stage and payload coasted 205 days with a full propellant load to the vicinity of Mars, where a single 8000-fps retro burn placed the upper stage and payload into a low circular orbit around Mars. A gross weight of 12,000 pounds, including payload and interstage, was used for this analysis since it is intermediate to the optimum size stages for use with the Titan IIID/Centaur and 260-Inch SRM/S-IVB boosters, which are 10,000 and 14,000 pounds, respectively. Therefore, the conclusions pertinent to a 12,000 pound stage may be applied to either the Titan IIID/Centaur or the 260-Inch SRM/S-IVB.

Table 3-21 summarizes the weights of the pentapropellant stage and those stages investigated during the evaluation of the tripropellant stage. As depicted, the pentapropellant stage, though it has a larger and heavier engine, out-performs the tripropellant stage. This can be attributed to the added weight of the thermal control system for the lithium tank on the tripropellant stage. The bipropellant and Gel stages, however, have payloads greater than the pentapropellant stage.

Tables 3-22 through 3-24 summarize the major stage characteristics, the engine parameters and the design data of the pentapropellant stage selected for comparison. An external profile of this stage is shown in figure 3-11.

STAGE	PENTAPROPELLANT	TRIPROPELLANT	GELLED H ₂ /Li	BIPROPELLANT
STRUCTURE	672	653	624	420
SHELL	117	175	106	76
THRUST STRUCTURE	44	56	44	26
TANKAGE	254	267	248	123
Hydrogen	(234)	(209)	(227)	(94)
Fluorine or FLOX	(20)	(25)	(21)	(29)
Lithium	()	(33)	()	()
INTERSTAGE	197	79	147	115
TANK SUPPORTS	60	76	62	80
PROPULSION	531	365	346	293
ENGINE	326	140	138	115
PRESS. SYSTEM	56	69	76	63
FEED SYSTEM	99	83	57	47
RCS	83	73	75	68
THERMAL CONTROL	287	712	281	186
INSULATION	287	510	281	186
Hydrogen	(270)	(262)	(258)	(159)
Fluorine or FLOX	(11)	(32)	(23)	(27)
Lithium	()	(216)	()	()
LI TANK HEATERS, ETC.		202		
METEOROID SHIELD	145	193	133	88
MISCELLLANEOUS SYSTEMS	650	. 650	650	650
CONTINGENCY (7.5 $\%$)	156	187	142	114
TOTAL INERT (INCL. I/S^{*})	2441	2760	2176	1751
PROPELLANT	4567	4598	4712	4983
USEABLE	4489	4520	4632	4898
RESIDUAL	46	46	47	50
START/SHUTDOWN	32 0	32 0	33 0	0 35 ()
TOTAL STAGE (INCL. I S [*])	7008	7358	6888	6734
PAYLOAD	4992	4642	5112	5266
GROSS WEIGHT ABOVE BOOSTER	12000	12000	12000	12000

Table 3-21. Weight Statement Comparison (Interplanetary Mission, 120-Inch Booster)

* INTERSTAGE

Total Mission Velocity:	8000	fps
Stage Velocity Increment - First Burn:	8000	fps
Stage Velocity Increment - Second Burn:	0	\mathbf{fps}
First Coast Time:	4920	hrs
Second Coast Time:	0	hrs
Gross Weight:	12000	lb
Stage	Pentapropell	ant
Payload (lb)	4992	
Specific Impulse (sec)	519	
Thrust (1b)	8262	
Interstage Weight (1b)	197	
Total Stage Weight (1b)	6811	
Inert Stage Weight (1b)	2244	
Total Propellant Weight (lb)	4567	
Propellant Consumed		
First Burn (1b)	4489	
Second Burn (lb)	0	
Residual Propellant Weight (1b)	46	
Stage Mass Ratio	1.624	
Stage Payload Fraction	0.416	
Stage Structural Ratio	0.333	
Stage Velocity Ratio	0.485	
Stage Thrust to Weight Ratio	0.7:1	

Table 3-22. Major Stage Characteristics (Interplanetary Mission, 120-Inch Booster)

Parameters	Value
Thrust (lb)	8262
Specific Impulse (sec)	519.0
Expansion Ratio	100:1
Chamber Pressure (psi)	1000
Percent Hydrogen	27.5
Percent Fluorine	14.6 ·
Percent Oxygen	33.6
Percent Lithium	5.4
Percent Beryllium	18.9
Weight (1b)	325
Length (in.)	⁻ 85, 8
Exit Diameter (in.)	22.1

Table 3-23.Engine Data Summary (Interplanetary
Mission, 120-Inch Booster)

Table 3-24. Design Data Summary (Interplanetary Mission, 120-Inch Booster)

Propellant Tank	Hydrogen	FLOX	Li-Be Solid
Propellant Weights Usable (1b) Residual (1b) Boiloff (1b) Startup/Shutdown (1b) Total Load (1b)	1235 12 0 9 1256	2164 22 0 15 2201	1091 11 0 8 1110
Tankage Number of Tanks Volume (ft ³) Radius (In.) Cylinder Length (In.) Dome Thickness (In.) Cylinder Thickness (In.) Design Pressure (psi)	1 357.3 50.00 12.00 0.0517 0.1034 94.0	2 30.9 23.38 0 0.0250 N/A 45.5	Motor Case N/A N/A N/A N/A N/A N/A N/A
Thermal Initial Temperature (°R) Vent Temperature (°R) Insulation Thickness (In.)	36 50 2.94	150 176 0,94	Motor Case N/A N/A N/A

Figure 3-11. Pentapropellant Stage (Interplanetary Mission, 120-Inch Booster)

Section 4

CONCLUSIONS AND RECOMMENDATIONS

The result of this exploratory analysis of the pentapropellant (hydrogen/fluorineoxygen/lithium-beryllium) stage indicates that a hydrogen-fluorine bipropellant stage is superior to the pentapropellant stage. The large size and weight of the pentapropellant engine is the reason for its low performance relative to the bipropellant stage. Even though the pentapropellant stage engine parameters (mixture ratio, chamber pressure, and area ratio) and combustion chamber shape (length to diameter ratio) were not optimized during the study, it is doubtful that the capability of the pentapropellant stage could be improved sufficiently by optimizing these parameters to give it a significant payload advantage over the bipropellant stage. Therefore, it is Chrysler's recommendation that further studies of this pentapropellant combination not be undertaken.

COPIES RECIPIENT

DES IGNEE

Director

- NASA Headquarters, Washington, D. C. 20546
 Contracting Officer
 Patent Office
- 3 Chief, Liquid Propulsion Technology, RPL Office of Advanced Research and Technology NASA Headquarters Washington, D. C. 20546
- 1 Director, Technology Utilization Division Office of Technology Utilization NASA Headquarters Washington, D. C. 20546
- 10 NASA Scientific and Technical Information Facility P. O. Box 33 College Park, Maryland 20740
- Director, Launch Vehicles and Propulsion, SV Office of Space Science and Applications NASA Headquarters, Washington, D. C. 20546
- 1 Director, Advanced Manned Missions, MT Office of Manned Space Flight NASA Headquarters, Washington, D. C. 20546
- 1 Mission Analysis Division NASA Ames Research Center Moffett Field, California 24035

NASA FIELD CENTERS

COPIES	RECIPIENT	DESIGNEE
1	Ames Research Center Moffett Field, California 94035	Hans M. Mark
1	Goddard Space Flight Center Greenbelt, Maryland 20771	Merland L. Moseson Code 620
1	Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, California 91103	Henry Burlage, Jr. Propulsion Div., 38
2	Langley Research Center	Ed Cortwright

Langley Station Hampton, Virginia 23365

NASA FIELD CENTERS (CONT'D.)

COPIES RECIPIENT

2	Lewis Research Center
	21000 Brookpark Road
	Cleveland, Ohio 44135
1	Mr. Donald Nored

- 1 Marshall Space Flight Center Huntsville, Alabama 35812
- 1 Manned Spacecraft Center Houston, Texas 77001
- 1 John F. Kennedy Space Center, NASA Cocoa Beach, Florida 32931

GOVERNMENT INSTALLATIONS

COPIES RECIPIENT

Aeronautical Systems Division	
Air Force Systems Command	
Wright-Patterson Air Force Base	
Dayton, Ohio 45433	

- 1 Air Force Missile Test Center Patrick Air Force Base, Florida
- 1 Space and Missile Systems Organization Air Force Unit Post Office Los Angeles, California 90045
- 1 Arnold Engineering Development Center Arnold Air Force Station Tullahoma, Tennessee 37388

1 Bureau of Naval Weapons Department of the Navy Washington, D. C. 20546

- 1 Defense Documentation Center Headquarters Cameron Station, Building 5 5010 Duke Street Alexandria, Virginia 22314 Attn.: TISIA
- 1 Headquarters, U. S. Air Force Washington, D. C. 20546

DESIGNEE

Director

Hans G. Paul Code R-P&VED

Joseph G. Thibodaux, Jr. Chief, Propulsion & Power Division

Dr. Kurt H. Debus

DESIGNEE

D. L. Schmidt Code ASRCNC-2

L. H. Ullian

Col. Clark Technical Data Center

Dr. H. K. Doetsch

J. Kay RTMS-41

Col. C. K. Stambaugh AFRST

GOVERNMENT INSTALLATIONS (CONT'D.)

<u>COPIES</u>	RECIPIENT	DES IGNEE
1	Air Force Rocket Propulsion Laboratory Research and Technology Division Air Force Systems Command Edwards, California 93523	RPRR/Mr. H. Main
1	U. S. Army Missile Command Redstone Arsenal Alabama 35809	Mr. Walter Wharton
1	U. S. Naval Weapons Center China Lake California 93557	Code 4562 Chief, Missile Propulsion Div.
<u>CPIA</u>		
COPIES	RECIPIENT	<u>DES IGNEE</u>
1	Chemical Propulsion Information Agency Applied Physics Laboratory 8621 Georgia Avenue	Tom Reedy

INDUSTRY CONTRACTORS

Silver Spring, Maryland 20910

COPIES	RECIPIENT	DES IGNEE
1	Aerojet-General Corporation P. O. Box 1947 Technical Library Bldg. 2015, Dept. 2410 Sacramento, California 95803	R. Stiff
1	Space Division Aerojet-General Corporation 9200 East Flair Drive El Monte, California 91734	S. Machlawski
1	Aerospace Corporation 2400 East El Segundo Boulevard P. O. Box 95085 Los Angeles, California 90045	John G. Wilder MS-2293
1	Atlantic Research Corporation Edsall Road and Shirley Highway Alexandria, Virginia 22314	Dr. Ray Friedman
1	Beech Aircraft Corporation Boulder Division Box 631 Boulder, Colorado	J. H. Rodgers

INDUSTRY CONTRACTORS (CONT'D.)

<u>COPIES</u>	RECIPIENT	DESIGNEE
1	Bell Aerosystems Company P. O. Box 1 Buffalo, New York 14240	W. M. Smith
1	Bellcomm 955 L'Enfant Plaza, S. W. Washington, D. C.	H. S. London
1	Bendix Systems Division Bendix Corporation 3300 Plymouth Street Ann Arbor, Michigan	John M. Brueger
1	Boeing Company P. O. Box 3707 Seattle, Washington 98124	J. D. Alexander
1	Boeing Company P. O. Box 1680 Huntsville, Alabama 35801	Ted Snow
1	Republic Aviation Corporation Fairchild Hiller Corporation Farmingdale, Long Island, New York	Library
1	General Dynamics, Convair Division Library & Information Services (128-00) P. O. Box 1128 San Diego, California 92112	Frank Dore
1	Missile and Space Systems Center General Electric Company Valley Forge Space Technology Center P. O. Box 8555 Philadelphia, Pa.	F. Mezger F. E. Schultz
1	Grumman Aircraft Engineering Corp. Bethpage, Long Island, New York	Joseph Gavin
1	Hughes Aircraft Co. Aerospace Group Centinela and Teale Streets Los Angeles, Calif.	E. H. Meier V.P. and Div. Mgr. Research and Dev. Div.
1	Walter Kidde and Company, Inc. Aerospace Operations 567 Main Street Belleville, New Jersey	R. J. Hanville Dir. of Research Engr.

INDUSTRY CONTRACTORS (CONT'D.)

<u>COPIES</u>	RECIPIENT	DESIGNEE
1	Ling-Temco-Vought Corporation P. O. Box 5907 Dallas, Texas 75222	Warren G. Trent
1	Arthur D. Little, Inc. 20 Acorn Park Cambridge, Massachusetts 02140	L i brary
· 1	Lockheed Missiles and Space Co. Attn.: Technical Information Center P. O. Box 504 Sunnyvale, California 94088	J. Guill
.1	Lockheed Propulsion Company P. O. Box 111 Redlands, California 92374	H. L. Thackwell
1	The Marquardt Corporation 16555 Saticoy Street Van Nuys, California 91409	
1	Denver Division Martin Marietta Corporation P. O. Box 179 Denver, Colorado 80201	Dr. Morganthaler
1	Orlando Division Martin Marietta Corp. Box 5837 Orlando, Florida	J. Ferm
1	McDonnell Douglas Aircraft Corp. P. O. Box 516 Municipal Airport St. Louis, Missouri 63166	R. A. Herzmark
1	Missile and Space Systems Division McDonnell-Douglas Aircraft Company 3000 Ocean Park Boulevard Santa Monica, California 90406	R. W. Hallet Chief Engineer Adv. Space Tech.
1	Space & Information Systems Division North American Rockwell 12214 Lakewood Boulevard Downey, California 90241	Library
1	Rocketdyne (Library 586-306) 6633 Canoga Avenue Canoga Park, California 91304	Dr. R. J. Thompson S. F. Iacobellis

INDUSTRY CONTRACTORS (CONT'D.)

,

<u>COPIES</u>	RECIPIENT	DESIGNEE
1	Northrop Space Laboratories 3401 West Broadway	Dr. William Howard
	Hawthorne, California	
1	Aeronutronic Division Philco Corporation Ford Road	D. A. Garrison
	Newport Beach, California 92663	
.1	Astro-Electronics Division Radio Corporation of America Princeton, New Jersey 08540	Y. Brill
`1	Rocket Research Corporation 520 South Portland Street Seattle, Washington 98108	Foy McCullough, Jr.
1	Stanford Research Institute 333 Revenswood Avenue Menlo Park, California 94025	Dr. Gerald Marksman
1	TRW Systems Group TRW Incorporated One Space Park Redondo Beach, California 90278	G. W. Elverum
1	Thiokol Chemical Corporation Huntsville Division Huntsville, Alabama	John Goodloe
1	Research Laboratories United Aircraft Corporation 400 Main St. East Hartford, Connecticut 06108	Erle Martin
1	United Technology Center 587 Methilda Avenue P. O. Box 358 Sunnyvale, California 94088	Dr. David Altman
1	Florida Research and Development Pratt and Whitney Aircraft United Aircraft Corporation P. O. Box 2691 West Palm Beach, Florida 33402	R. J. Coar

GOVERNMENT FIELD PRINTING PLANT IUNDER CONTACT NAS 8-14017) NASA - MICHOUD ASSEMBLY FACILITY - 1970 NEW ORLEANS, LOUISIANA 70129

.