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ABSTRACT

ordinary linear differential equation in the form §—§-+ u(x)%% +
, dx
wz(x)y = 0 is wexpressible in finite terms by means of elementary

functions, provided the coefficients u(x) and w2 (x) are related
in certain specific ways. By employing the generdl solution in the

ilQ(X), two coupled nonlinear differential equations

form y=C(x)e
of second order are obtained, and one is able to classify various
specific relations between the coefficients via these equations.
The differential equations thus obtained include those hyper-
geometric equations which, owing to specifically assigned values
of constants in their coefficients, can be solved in terms of

elementary functions.

The conditions of integrability in finite terms for

2
the Malmstén equation é—% + 249y,
ax x dx

immediately by the present method.

bx™ + 5%) y = 0 are obtained
X

Differential equations soluble in finite terms are thus
classified in a manner similar to a table of integrals so that
one can recognize the variant forms of differential equations
and find their solutions from the table.

This work arose in search for analytical solutions to a
linearized form of the restricted three-body problem.
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1.0 INTRODUCTION

To define precisely the scépe of the paper, we shall
study only the problem of solving classes of second order
ordinary linear differential equations in finite terms by means
of algebraic and elementary transcendental functions. The

standard form of the egquation will be taken to be

a2y d 2 -
Ex7+ n(x) a—‘>§+ W’ (x)y = O, (1)

and it will be assumed that there is a domain in which both
u{x) and wz(x) are real and analytic except at a finite number
of poles. The behavior of solutions in the neighborhood of

singular points will be investigated briefly.

To appreciate the difficulties in solving eq. (1) with
[1]

arbitrary coefficients un(x) and wz(x), we guote Ince: "Apart
from equations with constant coefficients, and such equations as
can be derived therefrom by a change of independent variable,
there is no known type of linear equation of general order n

which can be fully and explicitly integrated in terms of elemen-

tary functions." Accordingly for a differential equation with
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arbitrary coefficients, its solution has to be expressed in an
infinite form, i.e., an infinite series, an infinite continued
fraction, or a definite integral. Thus, most equations which arise
out of problems of physics and applied mathematics have their solu-
tions expressible only in terms of new or higher transcendental
functions, such as hypergeometric functions for hypergeometric
equations and Bessell functions for Bessel equations except for
those special cases, e.g., when the order of the Bessel equation is

an odd half-integer. In fact, Liouville[2]

has shown the impossi-
bility of integrating Bessel equations in finite terms of elementary
functions except for orders of an odd half-integer.

It is true that most differential equations arising in
practice can be solved by brute-force numerical integration. The
method of numerical integration can yield useful numbers but not the
insight that an analytic solution can supply. In addition, analytic
solutions usually save enormous computing time.

The purpose of this paper is to show that the solution of
eq. (1) is expressible in a general form in finite terms of elemen-
tary functions, provided the coefficients yu(x) and mz(x) of eq. (1)
are nonarbitrary or related in a specific fashion. A major portion
of the paper will deal with the process of showing criteria under
which u(x) and wz(x) can be related in various specific fashions.

In the process we also obtain directly the conditions of integra-

[31]

bility in finite terms for Malmstén's equation

bx" + —=

fo¥
N
+
M|
il 0,
R
+

Q
b
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which clearly is a generalization of Bessel's equation and was
investigated in 1850 by Malmstén.

Differential equations soluble in finite terms are
classified in a manner similar to a table of integrals so that
one can recognize the variant forms of differential equations and

find their solutions from the table. This table concludes the paper.

2.0 FORMULATION

In an attempt to obtain the general solution of
eq. (1) we assume that it takes the following general form:[4]

y = C(x)ettQ&), (2)

where C(x) and Q(x) are functions to be determined in terms of
the coefficients p(x) and wz(x) of eg. (l). For simplicity we
assume that both u(x) and wz(x) are either real or imaginary.

Substituting eg. (2) in eq. (1), we obtain

Q" + uo' + 2§ Q' =0, (3)
and
C|l+gl 2+ c|+ 2 —(Q')z— 0 (4)
c C kg v o = Y

where single prime and double primes indicate first and second
derivatives, respectively, with respect to x. Equations (3)
and (4) are coupled nonlinear differential equations of second
order. At a first glance, we might think that the solution in
the form of equation (2) may represent a step backward in
solving equation (l). Fortunately equation (3) can be neatly

integrated for C in terms of Q' and p, and its solution is:
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c _ X
c=_2 ¢ 1/2 j; pdx | (5)

/T °

where CO is a constant of integration. The formal solution

of eg. (1), therefore, is
X

HiQ _-1/2 jxoudx , )

10"

y:
4

©

where Q' is the solution of the following nonlinear differential

equation obtained by substituting eqg. (3) into eqg. (4):

! 2
, 2
ety 1o L T TR T
Through the transformation
N
eq. (7) can be converted into
2.
‘l . 2
R R L B P it = PR C)
e ] T

Equation (9) can be recognized as a nonlinear differential
equation in Riccati form. Substituting eg. (8) into eq. (6),
we can also obtain the formal solution of ea. (1) in terms

of z and z' as

y = (z") gCl + Cyz - (10)
L

where z' is the solution of egqg. (9) and Cy and C, are arbitrary

-1/2 - - —1/2‘fudx
J e

constants.
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Our task of solving the second order ordinary linear
differential equation (1) has been converted into that of
solving the nonlinear differential equation (7) or (9). The
formidable task of solving these equations in finite terms
for arbitrarily prescribed u(x) and w2(x) may not appear to
be too helpful in general, since it is clear that only a
limited number of classes of u(x) and wz(x) will
render eq. (7) or (9) soluble in finite terms. In fact, the
only cases in which a class of Riccati equation is integrable
in finite terms are the classical cases discovered by Daniel

[5]

Bernoulli. Examples to solve eq. (9) in finite terms for
"arbitrarily" prescribed u(x) and wz(x) will be shown later.
Equation (9), however, can be solved approximately in finite
terms for arbitrarily prescribed p(x) and wz(x), and we shall
show this briefly later to avoid a lengthy diversion.
For the moment, we will concentrate on finding solutions
of either eq. (7) or (9) in finite terms, when the up(x) and
w2(x) are related in a specific fashion. The choice of using
eq. (7) or (9) depends on the specific relation between u(x)
and wz(x) in the differential equation to be solved.

In an effort to show the significance of eq. (7),

we show that the following five equations all have the same

Q equation (i.e., eq. (7)):
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.
1 2 _n -
AN S A S (- '“‘Q‘)Y“O
X
n2-1
y" o+ %y' + £2 - “fi vy =0
X
2_1
nT7
y"j—_12€y"‘ - y:O
X
2 nz_%
y" + |87 - —5 y =0
X

These five equations are transformed equations of one another
by a change of dependent variable, and their solutions all
depend on the solution of the invariant Q equation

2.1
2 B 4)

' 2
+2(Q')2=2(€ -

R

In passing it is interesting to note that the

exponential factor in eq. (5) is exactly the standard trans-

formation used in reducing eq. (1) into the normal form

YY" + p(x)Y = O ' (11)

where lf
5 fpdx C .
Y = ye? = 0 B0 (12)
yQ'!
and
2
?
Flx) = w® - e (13)

Note the important fact that eq. (13) is identical to eq. (7).
It is well-known that eq. (11) can be transformed into the

canonical Riccati form
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2

] 2 _ 2 - mY B
through the transformation
y = o2 (14a)

The identity between equations (9) and (14) can be established
by noting

”
2= -3 . (14b)

Accordingly it is not surprising that eq. (7) can be trans-
formed into the Riccati form of eqg. (9).

It is also important to note the similarity between
the solution of eqg. (11) in the form of eq. (12) and that
in the form of the WKB method of approximation. A comparison
study between the two forms of solutions should be illuminating
but will not be carried out here.

3.0 DIFFERENTIAL EQUATIONS SOLUBLE IN FINITE TERMS OF
ELEMENTARY FUNCTIONS

Under the constraint that the coefficients u(x)
and mz(x) of eq. (1) can be related in a specific fashion, we
shall first obtain constraining relations between u(x) and
wz(x) from either eq. (7) or eq. (9) by simple assumptions
and then solve the resulting nonlinear differential equation.
In this way both the specific form of the differential equation
and its solution can be obtained simultaneously. We start

from the simplest case of both u(x) and wz(x) being constant.



BELLCOMM, INC. - 8 -

(I) Let both u({x) and wz(x) be constant:

2

(I) (A) For wz - ZS = constant £2 # O3

h o

In this case it is simpler to use eq. (9) than eg. (7), and

eq. (9) becomes

S

By inspection we obtain a particular solution of eg. (1l5) as

2.
c 2

n 2 u
z c 4

Fo= +i2e (16)

N

|

N

(6]

Euler has shown that if a particular solution of a Riccati
equation is known the general solution can be effected by two
quadratures. By his method the general solution of eq. (15)

can be shown to be

r (168.)

where k is an arbitrary constant.

Equation (l6a) reduces to eg. (16)

N

"
-:-,_ =-i2¢ for k=0; i2g for k = +=

-~

N

Equation (l6a) becomes
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i

%% 2ttan (Ex + ¢) for k>0

(16b)

or -2Zcot (&x +9¢) for k<O ,

where ¢ is the phase constant and is equal to zero for k = +1.
Integrating either the particular solution [eq. (16)] or the

general solution [eg. (l6a)] to obtain z' and z, we have from

eq. (10)

~Tu x il?-2l x —inz—luz X

y=e 2 ¢ cle c 47c + C2e c 4¢ J(l?)

as the well-known general solution of the differential equation

with constant coefficients:

+ ucy' + wiy =0 . (17a)

The normal form of equation (17a) becomes:

" 2 172 _
Y+{mc 4)Y—O. (17Db)

(I) (B) For wi -

In this case the general solution of eq. (15) is:

2" ] - %kx . (18)

+ = 0 for

N

Equation (18) reduces to the particular solution

N

k = 0. The solution of eqg. (17a) then is, from eq. (10),



BELLCOMM, INC. - 10 -

-1 1 1
_ _ 1 2 _ 1 ~=u X _ ~=u X
y = (l ka’ [C]_+C2 —k—(l —2—kx‘ }e 27c —(C3+C4xe 2
(II) Let w? = u' or O: (20)
Equation (9) then becomes
! 2
"t " 12 12
(-—-.—% - %— g%‘r) =qu' - FH© or —u'-zu (21)
i \

By inspection we find that a particular solution of eq. (21)

is p or -y and the general solution is:

de ke_fudx

" kef ,0r —u+ &

=u+
l—%[eﬂldxdx

N

+ (22)

B

When k = 0, eqg. (22) reduces to the particular solution.

Integrating —= W Or eq. (22) , we obtain from eg. (10)

y=e_ﬁdx C1+C2fe/de ax! or (23)

(.

y = c3+C%je Sudx dx
as the general solution of

y" +uy' t 0y =0 or y"tuy' = 0. (24)
The normal form of eq. (24) becomes

" 1 1.2 w_ 1 12 _
Y +-é-(.u'— Su )Y:OorY —i(u'+§—u ) Y=0 (25)

Note that eq. (23) can be obtained by two simple quadratures

of eqg. (24)
5 2
(ITI) Let w° = (@) + u " (26)
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In this case we shall use eg. (7) instead of eg. (9),

and eg. (7) becomes

ll! ."2
U REEE - REEIEE A

Equation (27) is identical to eqg. (21) and its solution is shown

in eg. (22). 1Integrating eg. (22), we obtain

. -2
Q' = k¥ (1 - EfeSudx dx) (28)
. i -1
- 2K _ kf Judx
Q = X P 2fe d% + Kl + WwWhen k # 0. (29)
= Kfef“dxdx ’ when k =0 . (29a)

Equation (1) then takes the form

y" + uy' +{K2€2,fudx [l ~ %]’efudxdx

-4
¥ u-} y=0  (30)

and its solution is, from eq. (6),

-1

_ 2K | . ko fudx
o JSudx kel I iJé dx

% (30a)

k (fudx
y = {l - ifé dx

The normal form of eq. (30) becomes, from eq. (11),

-4

' 2
Kzezfudx (1-%j’e/’“dxdx) + B - ] ¥Y=0 (30b)

Y' + 5

hr
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The solution of eqg. (30b) can be obtained from eq. (12).
Since k is an arbitrary constant we first simplify the above

equation by letting k = O:

yu + Uy, + (KZeZIUdX + ul) y =0 (31)
- . Judx

_ o /ndx ej—_lKIe dx (31a)
' 2

Y+ (K2e2fudx + -g—- - %‘1—) Y =0 (31b)

Letting the functional dependence of y on x assume various forms,

we obtain the following cases:

(ITI) (2) (1) For 1 = constant o :
y" + ay' + BZeZQX y =0 (32)
i, (B GoxX
y =oae ax eila € (32a)
2 20X az‘
Y" + [BTe -z Y =0 (32b)
(I1I) (A) (2) For p = oX

; 2
y" + axy' +(B e + u! y =0 (33)
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y = exp {—% X2 iiefexp % x2 dx} (33a)
" 2 ocx2 0L2X2 o _
Y" +{B”e - 7 + | Y = 0 (33b)
1
U= R .
(ITII) (A) (3) For 0, 4% ' al# 1l:
a 20 %1
2 1 —
yn + az}.xy|+[3 {uz + X) —(062+X) 2} y =0 (34)
_ . B a,+1
y = (a2+x) *1 eilal+l (a2+x) 1 (34a)
12 20 o (0+2)
Y" + 8 (ocz-l-x) 1 - ————-——-———4(@ +x)2 v = o. (34b)
2 .

It is important to note that we can identify eqg. (34) with the
[71]

transformed Bessel equation in the form

4
yll+%y|+4 x2"{1__2_ y:O ’ Y=Z(X2) . (35)
2 n
x |

Clearly eg. (34) and eq. (35) become identical, when
_ 1

Accordingly, the solution of Bessel equation can be expressed
by means of elementary functions in finite terms when its

order is + % and has the form, from eqg. (34a),
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1 ix2 -ix2 2
y = 7 |C;e + C,e = Zi% (x7) . (36)

It is also worthwhile to note the similarity between eq. (34)

[3]

for a2=0 and Malmstén's differential equation

me+%
X

y = O ’ (37)

y" + %Y' +

for which Malmstén investigated conditions of integrability

in finite terms. We shall return to this equation later.

_ a b c

(ITI) (A) (4) For u = a + =B + PP
o) o o)

: b c
yll+ f + - + — yl+
b ao X bO X cO
2
8% (x-a) *? (x-b_) 2P (x-c_) ¢ - —2 b . ¢ y=0, (38)

(x-ao)2 (x—bo)2 (x-co)2

- _ - . _ a, b, _ c
y = (x_ao) a(x—bo) b(x—co) c eilﬁ/?x ao) (x bo) (x co) ax , (38a)
Y" + jéz(x—a )23 (x-b )PP (x-c )2¢ - L a + b + <
\ © © © 2 (x-a )2 (x-b )2 (x-c )2
. o o o’ _|
r T2
1 . a b c
- 7 - + = + o= y = 0, (38b)
4 i? ag X bO X co J}

Equation (38) appears to be a differential equation of great

generality and in fact for a=b=c=1 it is in a form similar to the
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[8]

Bocher* equation, If we set B=0, eqg. (38) is in a form

similar to the Riemann or Popperitz equation,[9] from which the

hypergeometric equation can be derived. When B=0, the

solution of eq. (38) becomes

_ _ -a, b, _ -C \
y = (x ao) (x,bo) (x co) 2
5 (39)
) a b | %
jCl + Czjf(x ao) (x—bo) (x—co) dXJ f
- -
%2
(ITI) (A) (5) For u = oy + —=
] a a
' 2 2 202 201X 2
y"+la, + = y' 4+ 87X e - 2| vy = 0 (40)
( 1 x) ( X2)
. a2 01X
v =iy e M (40a)
2 71
x ‘e
2 209 2a1x 1 O‘2\2 %2 ?
¥ o1 x4%2 %1% L o {4 42 - Y = 0 (40b)
4 1l x 2X2

It is obvious that various other differential equations
and their respective solutions can be obtained by expressing y as
other functions of x but we do not attempt here to exhaust all
possible cases.

Now we return to the general case of eq. (30) and

eq. (30a) when k is any arbitrary nonzero constant.

*The Bbécher equation is y"+P(x)y'+Q(x)y=0, where
1 ml m, mn—l '; A0+Alx+ o .+A9'x

1
Plx)=al —Los 2., L alx)= { ]
2 1 (x—a_-]_)ml(x-a;;_)mz...(x—an_l)mn'l

X-ay x-a, x-a, 4|
and m;, n and & are non-negative integers.

L
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(ITTI) (B) (1) For u= constant a:

-

Jﬁ B2 20x : —aX
y" 4 ay' + /5 by =0, y= e %o, (41)
3 k ax 1
t}-EE(Ye ~1) i
3

y = {1—% (fyeux—li[ exp{-aXii 28k ~ _‘S(4la)

ky[ 1-5-(ae®-1)

~

( B2 2ax 2 | ‘

yn +<, e - 9_4_ Y= 0O (4lb)

4
i[l - —z—g-(veax-l)-}

The degenerate case of eg. (4l1) can be obtained by letting

a=0, and it becomes

52 2
v o+ Ty =0=7Y"+ T_E__fz Y, (42)
ﬂl-kgx (1-§§ﬂ
. J L
with
kx +i B
y = {l -5 e~k{(2-k®) =Y . (42a)
(III) (B). (2) Foru= % ;. o # -1
o ? 62X2a o § -
1] BT ) _— o — - -
y'n 3y ot L( o Xa+l)4 XZJ?Y Oy =%, (43)
l—2 o+1 -

+ X
(1 -+ = l) x %ett 28 at+l (43a)
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r 7
‘ 2 2
Y" + B X 4 G(%""Z) ’ Y =0 ® (43}3)
Ky xu+l 4% ]
"2 Ta+l J

Note eq. (43) also reduces to eg. (42) when o=Q. When a=1,
egs. (30) and (30a)have to be used directly.

(III) (B) (3) For u equal to other function of x.

(IV) Let Q' = constant &, &#0 : (44)
Equation (7) becomes
2
2 _ 2 oul_pt_ 2
(@)% = w® - - b= 2, (45)

(IV) (a) For constant u:

Equation (45) becomes 2
Q' = w2 - E%— = 52 . (46)

Equation (46) indicates that w2 must be a constant also, and

therefore this case reduces identically to case (I).

(IV) (B) For constant w2 :

C
Equation (45) becomes
12 2 2] 2 2 2
wte gt =2 el - @F) =2 mc-—a)=2x,(47)
where
>\2=w2—£2=w2—(Q')2

C c

Equation (47) is similar to eq. (15) and its general solution

is
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A ke-Ax
= 2X -~ (48)
AX + ke AX
From eq. (6), we have
C elgx C e_lgx
e + ke
as the solution of
AX -AX
y" o+ 2 € ke y' o+ wg y =0 , (49a)
e>‘X + ke—)‘X
which has the normal form
Y o4 (wi—AZ)Y=Y"+52Y=O i (49b)

(IV) (B) (1) For k=0 this case reduces to case (IV) (A).
(Iv) (B) (2) For k>0

Equation (49a) reduces to
y" + 21 tan h(Ax +¢) y' + uly = O , (49¢)

where ¢ is a phase constant and is equal to zero for k=1,

(IV) (B) (3) For k< O
y" +.2x cot h (Ax +¢) y' + wiy =0 , (494)
where ¢=0 for k= -1 .

(V)  TLet %l'— =~y (50)
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Equation (7) then reduces to the condition that

w=q' = ke /¥, (51)
Then
y = eilgj; —fpdxdx , (51a)
and
y" o+ ouy! 4+ (KZ e“ZI“dX) vy =0 (51b)
2 -2/udx u! uz
¥" + (K™ e -5 - 3 Y =0 {51c)
(V) (&) For u = constant o:
y" + ay' + 82 e 20X y = O, (52)
B ~ux
y = eto® (52a)
2 =2ax a2
Y" 4+ [B7e -z Y = 0. (52b)
(V) (B) Foru= ay t o X;
2 ~{20.%x + a x2)
v" o+ (a1 + azx) y + B e 1 2 y= 0 (53)
1 2
» - fQ X +—-(x X )
v = ei;B/’e ( 1 2%9 dx (53a)
| 2 - (20.x+s_x2) (O‘f‘"zx)2 @ |
YY" + g7e 1 2 - g - E—i Y = 0 (53b)
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1,
(v) (C) For u= —i=*
2
a 2
1 B8
v o — =y y =0, (54)
a2+x (a2+x)2u1
B{,r“2+x)l—al
_+i (54a)
y = e— 1l - @y ’
- f g? _19yleym2)
L\a2+x)2al 4 (a2+X)2 ? Y 0. (54b)

For alél eqg. (54) is reduced to a special form of Cauchy's

[10]

equation, which can be converted into an equation with

constant coefficients by the transformation x=et. Equation

(54a) is not valid for al=l and eqg. (5la) must be used

directly to obtain the solution y = (uz + x)ilq In an effort

to show that eq. (54) can be cast in a specific known form[ll]

we Jet aq = l-a~b, a2=0, and 62=ab under the constraint a=-b.

_ ¢ _atb-c+l _ ¢ _ atbtl,
(V) (D) For u = g 1=x T x(1-%) 1-x
¢ a+b+1 2
n + - v
Y (x(l—x) 1-x JY * . y = 0O (55)
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_ oy~ (@at+b=-c+1)
eii&/; c(l-x)

y = (55a)
2 N
Yo+ B _ c(c-2) + c(a+b-c+1)
X2c(l-x)2(a+b_c+l) 4X2 2x (1-x)
- > (55b)
(a+b—c+1)(§+b—c—l) % Y = 0
4(1-x) | J

If we set c=1 and a+b=1, these equations reduce, respectively,

to the following simple forms:

S SR T 82
VMR T IR Y Y 37 YT O (35¢)
x"(1-x)
is _ iB
N
1+ 482
YY" + 5 > Y =0 . (55e)
4x” (1-x)

Note the simple forms of these equations in this case are due
to the constraint that the numerator of u is the derivative

of the denominator of u. This constraint[lz}

always appears
in separation equations obtained by separating the partial
differential equation vzw + kzw = O in various separable
coordinates, where V2 is the Laplace operator.

If we set, in eqg. (55),

b= -a, c=% , and 62= -ab , {56)
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eq. (55) degenerates into a special case of Gauss' hyper-

geometric equation

1
" 2 1 a?

- t [ S,
y'o ot x(1-x) 1-x y + x(1-x) Y

=0 (57)

If we keep the constraints of eqg. (56) we find that the

following equations will be satisfied for m = -

N

a=m-n, b=m+n+l, and c=m+1l. (58)

Substituting eqg. (58) in eg. (55), we obtain a special case

[13]

(o= —%) of a transformed Legendre equation of order m and

degree n

" Cm+l _ 1 v _ (m-n) (m+n+1)
X (1-%) l—x] 4 X (1-%) y=0
oL (59)
= -5
. 1 -1 1
y = eil(n+7)cos (1-2x) Pn 7 (%), (59a)
i~ 2 -
| 1 |
(n+3) _ 2
Yo+ ix(lfx) yixddx |y o, (59b)
- (4x) © (1-x%) “_
In fact egs. (57) and (59) are identical for m= —% and
a= —(n+%) and belong to the special case when the solution

of the hypergeometric equation can be expressed in finite

terms of elementary functions.
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_ C . atb-c+l ¢ _ atb+l
(V) (B)  For w =%~ {00 =~ x(iF%) | 1+%
" _g’_ c + a+b+lwi - 32 y=0 (60)
i : - - — v
Lx(l+x) 1+x J < 2c(1+x) 2 (a+b=-c+1)
. c 4, (a+b-c+1)
y = etlsfx (1+x) dx, (60a)
2
YU o+ B _ c{c+2) _ clatb-c+l)
1X—2c(l+x)—2(a+b-c+l) 4x2 2% (1+x)
(a+b-c+1)(3+b—c+3)’ v=0 (60Db)
4 (1+x)
3 1 2 .
If we set a = - 5 b=c= ~5 and B“= —ab in the above egs.,
we have
o1 1 o3 ]
y' + {2 % (14x) + 1+x | y' dx (14x) Y T o , (61)
y = (/x + ‘/l+X)i‘/5 , (61a)
[ 344x+dx? 3 i
LA 7" (i | 150 - (61b)
t(4x) (1+x) g
a b C
(V) (F) For u= x=a_. T x bt x=c
o o o
" a b C '
y" + X=-a + X-b + xX-C y' +
o o o
B2
Yy = 0 7 (62)

(x—ao)za(x—bO)Zb(x—co)zc
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_ ejiBf(x—ao)'a(x—bo)"b(x—co)_cdx ) (62a)

2

Yll + 8 —

2a 2b 2c
(x—ao) (x—bo) (x—co)

ENTS

h(h-2) + c(c-~2)‘g
(x-b )7 (x~c )2‘
o o

ala=-2)
2

+
(62b)
(x—ao)

?gb(x—co)+bc(x—ao) ac(x-bo)!
T2 | TR B ) g

[8]

Note eqg. (62) is clearly in a form of Bocher equation . If
we set a=b=c=1, eq. (62) becomes Fuchsian type with four

regular singular points at the points x=a s bo' C and

», and thus can be recognized as in a form of Riemann or

(9]

Papperitz equation
2

-1 (Q" = —2(Qn) %+20P - - = £(x) : (63)

(VI) Let ( =

It will be seen that the philosophy of approach in this case
is different from that in cases (III) through (V). For a
particular choice of f(x), we may obtain a solution of the

equation

2

o'\ "L (en|” .
(Q.) 7 (&) - e (63a)

For any arbitrary u, we have

w? = 3 (f(x) +ou' o+ %) + (01?2 . (63b)
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Let the solution of eg. (63a) be S(x), then

2 - s, o' = ge/S(x)AxX (64)

B 2
y" + uy' + %% tf(x)+p'+37) + K282IS(X)d*}y=O (65)

1 . sd
_ e-_2..'['(U+S)dx ei;Kfef *ax (65a)

14

Yy

-

|
Y" o+ ;%—f(x) + K2e2fS(x)de.£ Y =0 (65b)

Note that eg. (65b) is independent of yand solely dependent
of £(x). Accordingly for a prescribed f(x) the form of eq.
(65b) will be the same for any chosen yu (x).

(VI) (&) Let £(x) = O

The general solution of eqg. (63) is, from eq. (18) ,

" 2k K
S5(x) =X =3s5=; Q' = '
Q 1-kx (l—kx)2
N S
Q= Iy R

where both k and K are arbitrary constants and k#0. When
k=0, this case reduces to case (IV).

(VI) (p) (1) PFor u = oy + o X
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“2 1 2
" J ——— ——
y" + (a1+uzx)y + 5 + 4(a1+a2X) +

—

2
___5__1 v=0 , (66)
(1-kx)
X 4 K
y=(1-kx) e 2217 ,¥) FMEaTmy |, kt0 (66a)
2
YY" o+ —7 Y =0 o (66b)
(1~-kx)

Note that eg. (66b) is identical to eq. (42).

o

_ 1
(Vi) (A) (2) For u = o X
o o ((x -2) 2
1 R e i K
yl + y' i + Yy = 0 (67)
@ tx 4(a2+X)2 (1-kx) ©
. K
(1-kx) R e e
y = —=T e—k(1-kx) , k#o (67a)
(o« y+x)

Note the particular simple form of eq. (67) when o .,=2

1
(or the trivial case of al=0). This is the consequence of the
u 2
fact that u= is the general solution of p' + %% = 0.
o 2+x 2
When o =0, eq. (67) reduces to eqg. (42).

1

(Vi) (A) (3) For u=2xltan h (alx+¢) or —lecot h (alx+¢):

. 2
y" + 2 tan hla x+) +£2ai + ——5———Z y=0 , (68)
i (1-kx)

i
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tict | -1
y = (1-kx) e—"k(1-kx) [gec h (alX + ¢) (68a)
R
y" - 20, cot h (a,x+¢) + 2oc ———— | y=0 (68b)
1 1 L (1- kx)4

y = (1-kx) s KTT—§§T tsc h -1 (alx + ¢{} . (68¢)

(Vi) (a) {4) For -(m l-(l+ vl + 20L
2Vl+2al (69)
F 0 ,/T42a; (a +x)+‘/l+2°‘1

It can be shown by direct substitution (use either upper signs

or lower signs only) that eq. (69) is the general solution

2 o
of p* + Lo 1 For o.,=a.,= O we obtain from eqg. (69)
2 1 73
(a2+x)
u=0 or T and case (VI) (A) (2) therefore can be derived

2
from this case.

1#/T42u] + 204/T+20] (1+/TF207) (o, +x )_/1“““&”
yIl +
(0, +%) (1720 3/T¥25 | (o +x)+/l+2°‘lj
0!.1 2
2(u2+x) (1-kx)

. K 1
= (1-kx) eI R{I-kx) e 7/ndx , (70a)
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1 2
(VI) (A) (5) For u= '—;{ + -—2-
X
o a A\ 20.\ (0,~2)
1 2 2 1
y" +|=+ =} y' +| o, * +
(x XZ} ( 1 X )4x2
(71)
a2 2
—_]-2 + _..__:.ES..T‘ y = O
4x (1-kx) J
lu %2 K
= (1l-k ) ) L 71
y ( X) x 271 ex 5z + i k(l—kx)] (71a)

If al=2, eq. (71) has a simpler form because of the fact

2
2 %2 . . . 1 u2 Y
H= x + —5 1s a particular solution of u + 5 =7 -
X 2x
1
-1 50
2 0’,2 e 20‘2 - OL'3'e2 2
(vi) (aA) (6) For u= = T (72)
X —ia 2%2
e 272 + o€
2 ag
Equation (72) is the general solution of uf+%— = = and

al=2.
%2 %2
e 2 - e 2
y"+ _2..+a_2.& u'3 y' -+
* X2 %2 %2
e 2 +a3 e 2
(73)
2 7
“2

>
N
+
=
]
~ N
J
i
I
9
]
O
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. K 1
y = (1-kx) e~' kK(I-kx) "5/ 1ax

(73a)

(VI) (A) (7) For u equal to other function of x.

(V1) (B) Let f£(x) = 252, where £ is a constant.

The general solution of eq. (63a) then is, £

n iEx _ -iEx
e + ke
iEgx ~-iEx -2 K
Q' =K (e + ke ) , Q:i_z_g
(Vi) (B) (1) For u= aq + a,X 3
. -
" o+ (al + qzx) y' +l;52 + —%) +
. . -4
K2(elgx + ke—lgx) ~l Y =0
igx -igx +K—(éi2gx+k)“l
y=(e + ke ) e—2¢
_4"1

y" +[}2 + Kz(eigx+ke_lgx)

IFE

If we set aq= —2&2 and a2=0 in eq. (74), it

simple form:

. . -4
y"—2£2y' + Kz(elgx+ke 1£x) y = 0

rom eq. (lé6a),

i2
%% %ix) + x, ,

%—{o{,l + o(,ZX} +

(74)
X )
e T (200F0X) (944
0 (74b)

has the following

(74c¢)
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(VI) (B) (2) For u=

2
4(x ao)
—-— 2 )
bb=2) ab + —K | v=0 (75)
4 (x-b )2 2(X_ao)(x-'bo) igx . -igx, " |
o (e +ke )
. -1 a b
. s K i2gx - -=
gy = (el8% e 1gx) o135 (e +k) (x—ao) 2 (x—bo) 2 (75a)

If we set a=1, ao=b=K=k=O, eqg. (75) becomes the Bessel

equation of order n= i% :

=
il
@)
o
i
|+
D]

(75b)
=2z,1 (gx) . (75¢)

Accordingly, we see that Bessel's equation of order n=i%

is expressible in elementary functions as shown in eg. (75c).

If we set a=2, ao=b=k=K=O,, eq. (75) becomes the spherical

[14]

Bessel equation of order m=0 or -1:

1 Z 1 i - A\ - — — -
y" o+ <Y +LF x2 y = 0, m=0 or -1, (75d)
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= c3jO (F,X)+C4j_l (ex) (75e)

where jo(gx) and j_l(gx) are the spherical Bessel functions
of the first kind of order O and -1 respectively. Note the
connection between egs. (75c) and (75e), i.e.. Yo =/x ye
We shall use this opportunity to show briefly a simple and
direct method for expressing the solution of the Bessel

eg. (75b) for n=m + %, where m is any integer, in finite

terms of elementary functions. Using the transformation

1 _+i . .
y = 7§e—l€x z, we can convert the Bessel equation into
2t 4 i2gzt - B, oo (75£)
X

If m is allowed to be any value, eg. (75f) can only be solved
by an infinite series which involves Gamma functions. When
m, however, is an integer the series terminates as a poly-

nomial. The solutions of eg. (75b) therefore are:

+igx

3 1 +1i
For n=t5 (m=0 or -1), Y=7¢ €~ z = /x eTtEX

3 (e _ _ 1 +iEx, 4 i,72 Fizex
n=t+3 (m=1 or -2), y=7p e— ~"(£+y) [CoH+C,[(E£]) e dx
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.5 _ _ 1 +iex
n=t> (m=3 or -3) y=7ze [

2_3_ 3g} +12Ex
{El+czf (g >+ i Xl de
X
.3 5
n=t7 y=srelltx {ta(az L - i 35t 25)]
X
[C v, |[te3%128 £ 488 512 - eFi28x dx]
RESY B iy B
S X
9
=+Z
n==32

®1
(VI) (B) (3) For u= 5
(a,+x)
2
a i a4 (o 4o, - 4x)
"o+ 1 + E2 " 1'"71 2 +
K2 !

(76)

2
o o o —
b4 4x X
o
1 .
- 4+
y = elzx L &% (76¢)

(VI) (B) (4) For u= ae
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r 2
o'+ ey 4 LFZ paR by 2t aex

]
o
—
~J
~
S

. . -4
K2 (1% 4 ke LX) ] y

y = (e18% 4 ke 18X, eig— (M5 4x) -

(77a)

For k=0, K=-ii% , and = i% r egs. (77) and (77a) reduce

respectively to

2

Y" + aebe| + (ag bx _ %_) y =0 ’ (77b)
b a b

y = Cye 7* C,e [5 *p e:ﬁ . (77c)

(Vi) (B) (5) For u equal to other function of x

g

(VI) (C) Let f(x) = 5
(A+x)

From case (VI) (A) (4) we know that a particular solution of eq.

(63a) for the above f(x) is:

S(x) = gv=32= , 8 =-lp /I ;
Q' = K(a+x) " 0 = X O+x) BT 4 &

g+1
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The general solution of eq. (63a) of course, can be used, but

the resulting differential equation is rather complicated.

(VI) (C) (1) For u= oy + a2X

" ' ___..._._.._E 3__2_
y" o+ (al + azx) vy +[ t 3 +

2(A+x)2
1 (o, + a2x)2 + K2 (>\+x)26] y =0 (78)
B 4 K B+l _x
g= (v T2 ety %) g (2000, (78a)
{ -
"o+ —-—-‘5-——2- + K20+x)% v =0 (78b)
{2(A+X)
where
B = =1+/1-2¢"
If we set a2=A=K=O, then
az
" ] £ 1 —
y" o+ aly + —5 + 7 |Y = o , (78c)
2x
B o
y = x"-z- e"TX . (784a)

Note the close resemblance between egs. (78c) and (75f).
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(vi) (C) (2) For u=

a2+x

o o, (a,=-2)
RS S PR S B Sl

o ~+X 2 2

2 2 (A +x) 4(a2+X)
K2(A+x)26] y=0 , (79)

B o1 K B+1
y = 04x) 2 (a,40) 2 eIET (A+1) : (79a)
where

g= -1+/1~-2¢

If we let u2=x=o, egs. (79) and (79a) become, respectively,

- o, (0, =2)+2E
y" +—=y' + L 12 +
L 4x

K2x2(—li/l—2g{j y=0

1, .= . K +/1-2¢
N 1i/I“§€)iClel7T,7f x .

C e—i7]—§£

2

j
= xEV1728 J (79¢)

Equation (79b) can be identified as eq. (37), the Malmstén[3]

equation, if

b=K", c=z (ai - 2al + 2¢) ,

(794)
m=2(-1+ vV1-2¢g)

where Ay K, and ¢ are three arbitrary constants.

(79b)
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Eliminating & in eq. (79d), we have
m= 2 (—l i'V(l—a)2+4C] (79e)

Accordingly the condition of eq. (79e) is required for the
integrability of the Malmstén equation in finite terms of
elementary functions. For c¢=0 we have, from eq. (794d),

* /1-2¢ = (al—l), and eq. (79b) and (79¢), respectively,

become
%1 2_2(a,-2)
. K o,-1
y = x17%1 e ll—al 7L (799)

For al=2 egs. (79¢) and (79g) reduce, respectively, to egs.
(75d) and (75e). Note that eq. (65) will have a very simple

form, if we set

u' o+ %- 12 = ~f(x). (80)

Since f(x) = ——§¥~§ in this case, we have a particular

(A+x)
solution of eq. (8Q) as u = X%i” where B=-li‘Vl—28. This is
equivalent to setting a2=A and a,= -8 in eq. (79) and the

latter becomes
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y" - 7:% y' + K2(A+x)28 y=0 ,

, 1 K

i g+1
y = e— "B+l

(A+x)

Note eq. (81l) is identical to eq. (54).

If we set K=0, eqg. (79b) becomes the general Cauchy equation

o o, (a,=2) + 2¢
. 1 1
yl + x__ yI + ]-4X2 y = 0 ’
g = x3ley - /T2

When a1=l in eg. (54), it reduces to the form of eq.

1 L :
Lzt Z[al(al-Z\ + 2¢] = o, in eq. (82) then eqg. (82a)
_l -]t - —4-'2’ = =
y=x "2 ay 1*1 V4a2 (al 1)° ). If we set o 1l and ¢
(79b) is reduced to eg. (35) for n = i% or
2
" 1 K~ _ 1 -
PN RN
X X
.K_-2
y = xet 12% .

If we set a,=1 and £=0, eq. (79b) is reduced to eq.

1

(81)

(8la)

(82)

(82a)

(82).

becomes

¢+ €9,

(82b)

(82c)

(75b) or

(824)

182e)

[7

] H
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If we set a1=2 and £=0, eq. (79b) is reduced to egs.
(754) and (79e) or

<2
v+ & vy=0 , (82f)
X

RN

R
+
y = e— 1kx . (82g)

Note eg. (82d) and (82f) are also the special cases of eq. (67).

We can see accordingly that eqg. (79) is a very general

differential equation with asimple pole at x = -a, and

another singularity at x = -A.

(VI) (C) (3) For u=2 + % :
X

h 2 -
W ]2 2 28]
vy o+ {g + ;—{% y' + [ 3 + g | + K7 (A +x) 1y=0

2(k+x)2 4x
B 2 K B+1
y = (A+x) 2 x_1 e2x e ilB+l (A+x) ' (83a)
where
= -1 +/1-2¢ .

For a=0 in eq. (83) and for a1=2 in eq. (79b), these two
equations become identical.

(Iv) (C) (4) For u equal to other function of x.
.2
(V1) (D) Let £(x) = ——p
2 (A+x)

(83)
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From case (VI) (A) (6) we know that a particular solution of

eq. (63a) for the above f(x) is:

Q" _2 . g
S(X) = 2v = 5o 4 i ——2e
Q (A+x) (A+x)2

. -1
Q' = K (a4x) "2 o 18 (1#x)

1

Q= Ke-ig(x+x) + K

l ’

(VI) (D) (1) For u = a, + a.X

1 2
2 o
g 2 1 2
yv' + (a,ta xX)y' +{—2"—p + — + (o, +a,X) +
172 4(A+x)4 2 Z ‘*17%2
) e—i2£(x+x)_l_1
(A +x) J
\ -1
& -1 fo =1E (A+x) <
y = (h+x) e12(A+X) eilke e—z(2a1+a2x) ’
(84a)
r 2 2 e—i2£(x+x)_1 B
Yo+ + K Y =0 (84b)
Lfl(Hx)Z (i+x) 2 J
o
_ 1
(Vi) (D) (2) For u —

2
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- 40 -~

r ; - ~1|
] a | g2 al(al 2) 2 e i28 (A +x) i
V't IR + z *t 7+ K 4
2 L?(A+x) 4(a2+x) (A +x)
iso+x) 7L +ike—i£(>‘+X)—l e
y = (A+x) e 2 e— (a2+x) 2 (85b)-
2 o
(VI) (D) (3) For u = +
A+X (A+x)2
~ S 2, 2
w o2 ) e+
Yyt t 2 ij +|_§——L74’+
. (+x)“ ] [4 O+x)
5 e-izg(ux)"l {
(A +x) B
. -1
- .- +
y = olif + P rixe O

If we set a= -if, egs. (86) and

(86a) reduce to, respectively,

. -1
-~i28 (A 4x)
n 2 . £ 2 e 1
y" + -i—>-=] y' +K y=0
[“X (x+x)2] (%) 2
. -1
o =1E (A+x)
y = etike (86c)
(VI) (D) (4) For u equal to other function of x.
(VI) (E) Let £(x) = &% £%x°:
g 2
_ Qn _ . "2"X

0

Jy=o (85)

(86Db)
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(Vi) (E) (1) For us= oy + azx:

y" t (al+a2X) y' +[%(E+u2) - % szz + %(almzx)2 +

2
K2e£x ] y =0 (87)
_1,..2 . 2 21
y=e 7% ej'-lee dx e 4x(2al+a2x) , (87a)
1 2 2 £x?
YY" + ZE(Z—EX ) + K e Y =0 . (87b)
If we set al=0 and o= -£ ,egs. (87) and (87a) become,
respectively,
2 Exz
y" - gxy' + K'e y =0 , (87¢c)
L
y = eilkfe dx . (87d)

Note the identity between egs. (87c) and (53).

If we set o,=0 and o = £, egs. (87) and (87a) become, respectively,

1
2 gxz T
y" + gxy' + (£+K"e ) y=0 , (87e)
_1 2 . 2 dx
y = o7 £ griKfe . (87£)

Equations (87c) and (87e) show clearly the effect of

changing the sign of o, in eq. (87).
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If we set K = O in eq. (87e), it has the simple form

y" + Exy' + &y =0 , (87g)

1.2
_1. .2 FEX
y = e 2°% (c + ¢y fe” dx) . (87h)

Equation (87g) is in the form of eq. (24), the solution
of which is eg. (23). Now note the similarity between eq.
(87g) and the differential equation associated with Hermite

polynomial for n = 1:

y"-Exy'+Eny = 0, n=1 (88)
1,2
_5 F&EX
y=x|c +C [x %e? axjr (88a)
1 72
1.2
FEX
For n=0 y= C1+C2j'e2 dx (88b)
2
For n=2 y=(1l-gx )[?1+

1,2
2 -2 7EX
sz(l—gx ) e dx}, (88c)

FOI' n=3 y - e . .

The difference between the solution eg. (87h) and the solution

eq. (88a) is certainly quite surprising due to a simple sign
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change in the coefficient of y' in the differential equations

(87g) and (88). If we set K= O in eq. (87b), it becomes

the Weber equation[l4] for n = O:
Yo+ ok [ + 3 (-5 2)] Y=0, n=o0, (89)
1,.2
1, .2 FExX
e ¢ 2 dx (89a)
Y=¢e 4 (cl + C,fe ) !

Note that eg. (89) is the normal form of eqg. (88).

o o (0,~-2) 2
Y a 1x y' +[% (2-£x?) + —21 5 +K2e£x_jy=o
2 4(0L2+X)
£ 2
_E. o 28 !
y = e 2% ik fe® dx (o y+) "2
o o
_%, %2
(VD) (B) (3) Let u= 3=+ —
o o 20 (a,-2)
- 1 2 £ 2 %2 1
X X
5
.o 27
+ Z + K2 egx J‘ y =0 , (90)
4x

(Vi) (E) (4) u equal to other function of x.

(Vi) (F) Choose f(x) egual to other function of x,
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" n 2
such that (6T - %(87) = f(x) can be solved in finite terms
4
of elementary functions. For example, if f(x) = ¢x 3 , a
1 L
particular solution[l6] is %; = -3tx 3 (1+%V25 X3) and
o, 3 3w 3
Q"= {1+3/2ex" |e 2 X,

4.0 EQUATIONS WITH ARBITRARY COEFFICIENTS

In this section we will show first that Sharpe's

equation[l7]

(91)

I
O

W, 1 2 A
yt eyt &7+ D)y

can be solved in finite terms for a particular choice of the
coefficient A in eq. (91). Equation (91) is a generalization
of Bessel equation of order zero and was investigated by
Sharpe during 1881-1900. He showed that the solution of eq.

(91) for &=1 can be expressed in a definite integral form
in 1
y = K ‘/fz cos (x cos 6 + A log cot 5@) de (91a)
o}

Since eq. (91) can not be fitted into any of the
forms of differential equations discussed in the previous
section, we may consider the coefficients as arbitrary and

shall try to solve it in finite terms by using eq. (9)
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' 2
IZ" Z" ) 2 1
: - = 2{e” + = + =—= (91b)
t z ) (Z | ax?

N
L b

Equation (91b) is soluble in finite terms, if A=ig, and

has the solution

%T = 12¢ = % r 2= kX_l e12£x (91c)
The solution of eq. (91) for A=itf is, therefore, from
eq. (10),
~igx | e 128X
y = e (Cl + CJ—;—— dx . (914d)

We will show next that the generalized Laguere

equation

g+ a+l

. 1) y' + 2 y=0 |, (92)

can be solved in finite terms by using eg. (9)

L ; 2 2
o z" 1 ‘z) 1-o 2n+1+o 1
{ 1 Y 1 = + Y . (92a)
| 2 } 2 |z 7x2 X 2
Equation (92a) is soluble in finite terms, if
(a) a= -n, then Z4+ =1 - Eil, z'=K x_(n+l)ex, (92b)
z X a
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z" n n -x
(b) a= -(n+l1l), then Z7 - -1+§ , 2! =Kbx e (92c)

The solutions of eqg. (92) are, from eqg. (10), the Laguere

polynomials Lﬁ.

(a) for a= -n,
_.n -(n+l) x -n
y,= X C1+C2fx e’dx| = L (x) , (924d)
n
(b) for a = -(n+l),
Yy = ex(c3+C4fxn e-xdx) = L;(n+1) (x). {(92e)

Lastly we mention in brief that the following
equation, obtained by linearizing the nonlinear differential

equation of a restricted three-body problem,
Y+ Sy +uly =0 (93)
2 c !

can be solved only approximately in finite terms. Note the
similarity between eqgs. (93) and (76b). We are interested
in an approximate solution of eqg. (93) in the region €2<X<al,
where ¢ is a very small perturbing constant. W, is also a
constant. It is well-known that in the region sl<x<eo, an

approximate solution by Poincaré's small parameter perturbation
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method should be useful and it can be shown that the error
(1lst order solution) is the order 5;7 which becomes significant

in the region x<e. An approximate solution of eq. (93) by our

method has the following form[18]
‘ 82 X €2 €
y = et |¥* T 2% Cy + C, et {2ux = e” dx (93a)
X

and its error can be shown to be of the order 82 and almost
independent of x in the range e?<x<Vz. The improvement of

accuracy amounts to a few orders of magnitude if e<<1.

5.0 CONCLUSIONS AND SUMMARY

We have shown that classes of second order ordinary
linear differential equations with coefficients u(x) and wz(x)
related in a specific fashion can be solved in finite terms by
means of elementary functions. We also have shown explicitly
the solutions for sevefal specific relations between co-
efficients p(x) and w2(x), but have, of course, not exhausted all
possible cases. Other equations with "arbitrary" coefficients
may be solved in terms of higher transcendental functions, and
Moon and Spencer[lgl have listed various separation equations
according to specific types of BOcher's equation and to the
number of singularities, together with their solutions in terms
of appropriate higher transcendental functions. An approximate
solution of certain equations with "arbitrary" coefficients
usually can be obtained by solving approximately its equivalent

equation in Riccati form [eq. (9)].
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A perusal of the elementary-functions solutions of
the differential equations shown in the previous sections
also indicates that when a differential equation has (&) a
régﬁlar singular point or (B) an irregular singular point,
its general solution has, respectively, (A) a pole or branch

[20] [21] We also note

point or (B) an essential singularity.
that the elementary-functions solutions of the differential
equations are all in agreement with Liouville's two theorems

[4]

concerning linear differential equations.

[22] [23] have classified differential

Ince and Kambe
equations according to the number and the nature of their
singular points. Our main classification here is based on
various specific relations between the coefficients p(x) and
wz(x) and our sub-classification on various arbitrary speci-
fications of u(x), which can be any analytic or singular function.
A concise classification is shown in the attached table. Those
second order homogeneous linear differential equations solved

in terms of elementary functions and listed by Kambe[22] belong

to some of our classifications.
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6.0 DIFFERENTIAL EQUATION TABLE

yv" +ux)y' + wz(x) y =0

Class (l): u(x) and wz(x) are related

(1)

mi and Mo both constant:

n ] 2 — " 2 - l
y" o+ pcy + w, Y = o, " o+ W, 7 M
1
TP 4 2 _ 1 2\ =
g = e? c eil(wc 4“0) 2 X
. 1 2 _ _
when w”~ = z Mo = o, y = kl + C2 x}
an
2 _ ., .
w" = u' or O: 1 any function of x
yII + uyl + ]J‘y = O’ or yll + l-lY' = O
" 1l 1 " 1 1
Y +§ (}1' —jpz) Y =0, orY +'2— (Ll' —5].12) Y
_ _~fudx Sudx - -
y = e Cl + C2f e dx}, or ¥ = C3 + C4fe
(IT1)
2 2 2 27udx Kk rudax. |74
we = (Q")° + u' = K% (l - Ef e dx + u

u any function of x
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—4
y" o+ ouy' o+ [%ZeZIudxrl - %k fefudx dx : +u'; y=0
\ ’ -~
2 2fpdx i, 1, , [pdx Tt 2
Y" o+ [Re“IVET Il - Ik [e!/MTT ax |+ L-EL lvy=0
; 2 2, 1
k o fudx, -fudx +i2K[1-Kfe/udx gy -
y= 1-3 [e " le HE2T ki~ 2
-fudx _+i Kfef1de dx
when k = 0O, vy =e e—
(IV)
wi is constant (Q' = constant &)
AX -AX
y" o+ 2) A;ke mper y' o+ wz y = 0, Y" + €2 Y =0
e ~+ke
c.ett¥ 4 g 718X
y = lxx —fx + where Az = wi - £2
e + ke
)
—fudx .
w= Q' = Ke i any function of x
-— -— 1
yU o+ uy' + K2 2[nax Ey = 0, Y" + Kl 2[uax_ 5

eiine_f“dxdx

2
B
4

Y

0]
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(VI)
for ' 1o 2 2 2 u?
‘57; Y 257’ = 20" =2(Q')" - u' - =5 = f(x):u any function of x
! w2
91] S © Q" _ v o /S (x)dx
'Ql’ 2 Q' = f(X)I Q' S(X) ’ Q ke

2
1l . i 2
w =3 ;f(X) +u'+‘u—§}+ (Q")
1 u2
y" +ouy' 4|5 X))+l

+ K262IS(x)d£] g =0

dex

1 .
= e_fj (u+s) dx +ikfe dx

y.—

Y" + :% fix) + K2e2deX ] Y =0

(VI) (a) £(x) = O, Q'= K (1-kx) 2
2 iex . -iex | T2
(vi) (B) f£(x) = constant 2&~ , Q'=K e +ke :
- /TS
(VI) (C) £(x) = £(r+x) "2 Q'=K (r4x) (TIEVI-2E )
1.2 -4 ~2 —if(a+x) T

(vi) (D) £(x) =35 & (A+x) 7, Q'=k (A +x) e

1

28X

(VI) (E) £(x) = g(1-3gx°), Q' = Ke
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-% Q'= l+% /2¢ x3le”2

(VI) (F) £(x) = &x

(VI) (G) f(x) other function of x

Class (2): u(x) and wz(x) are arbitrary

(1)

—

Differential equations soluble by known higher transcendental
functions

(IT)

———

Differential equations soluble in definite integral form or

continued fraction form

(ITTI)

Differential equations which can be solved only by approximate

methods or other (unknown yet) higher transcendental functions.

1014-CCHT- cp C. C. H. Tang
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References



BELLCOMM, INC.

REFERENCES

1. 1Ince, E. L., Ordinary Differential Egquations, p. 158,
Dover print, 1956.

2. Watson, G. N., A Treatise on The Theory of Bessel
Functions, p. 117-123, 2nd edition, Cambridge Univer-
sity Press, 1962.

3. Watson, G. N., op. cit., p. 99-100
4. Watson, G. N., op. cit., p. 112-117
5. Watson, G. N., op. cit.,p. 123
6. Ince, E. L., op. cit., p. 23-24

7. Gradshteyn, I. S., and I. M. Ryzhik, Table of Integrals
Series, and Products, p. 971, Academic Press. 1965.

8. Moon, P., and Spencer, D. E., Field Theory Handbook,
p. 144-146, Springer-Verlag, 1961.

9. Whittaker, E. T., and Watson, G. N., A Course of
Modern Analysis, p. 206-207, Cambridge University
Press, 1965.

10. Agnew, R. P., Differential Eguations, p. 166, McGraw
Hill, 1942,

11. Morse, P. M., and Feshbach, H., Methods of Theoretical
Physics, p. 536, McGraw Hill, 1953.

12. Morse, P. M., and Feshbach, H., op. cit., p. 523.

13. Erdéylé, A., Higher Transcendental Functions, Vol. I,
p. 121-122, McGraw Hill, 1953.

14, Abramowitz, M. and Steguw, I. A., Handbook of Mathematical
Functions, p. 437-438, National Bureau of Standards, 1964.

15. Ince, E. L., op. cit., p. 159, and p. 501.



BELLCOMM, INC. -2 -

l6.
17.

18.

19.
20.

21,

22,

23.

Watson, G. N., op. cit., p. 88-89.

Watson, G. N., op. cit., p. 105.

Tang, C. C. H., "Almost Exact Solutions to Oscillatory
Problems with Perturbing Varying Damping." Bellcomm
Technical Memorandum to be published.

Moon, P., and Spencer, D. E., op. cit., p. 154-162.
Morse, P. M., and Feshbach, H., op. cit., p. 532-534,.

Whittaker, G. N., and Watson, G. N., op. cit., p.
194-200.

Ince, Eo Lo' Opo Cit., po 494—5070
Kambe, E., Differential Gleichugen Lgsungsmethoden Und

Losungen, p. 396-507, Chelsea Publishing Co., New York,
1959,







