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AB STRACT 

1L-k~ sh-_owsl---kh=& t h e  s o l u t i o n  of  a second o r d e r  
2 

dx2 
o rd ina ry  l i n e a r  d i f f e r e n t i a l  equat ion  i n  t h e  form dy + p ( x ) *  + 
w ( x ) y  = 0 i s  ( expres s ib l e  i n  f i n i t e  terms by means of  elementary 
func t ions ,  provided t h e  c o e f f i c i e n t s  p (x) and u2 Cx) are r e l a t e d  

i n  c e r t a i n  specific ways. 
form y=C (x) e- +iQ 

of second o r d e r  are ob ta ined ,  and one i s  a b l e  t o  c l a s s i f y  va r ious  
s p e c i f i c  r e l a t i o n s  between t h e  c o e f f i c i e n t s  v ia  t h e s e  equat ions .  
The  d i f f e r e n t i a l  equa t ions  t h u s  obta ined  inc lude  those hyper- 
geometr ic  equat ions  which, owing t o  s p e c i f i c a l l y  ass igned  va lues  
of c o n s t a n t s  i n  t h e i r  c o e f f i c i e n t s ,  can be so lved  i n  terms of 
elementary func t ions .  

dx 
2 

By employing t h e  generail s o l u t i o n  i n  t h e  
, t w o  coupled non l inea r  d i f f e r e n t i a l  equa t ions  

T h e  condi t iong  of i n t e g r a b i l i t y  i n  f i n i t e  terms fo r  
t he  Malrnst6n equa t ion  9 + $$ + bxm + 5)  y = 0 are obta ined  

dx I X 
immediately by t h e  p r e s e n t  method. 

D i f f e r e n t i a l  equa t ions  s o l u b l e  i n  f i n i t e  terms are t h u s  
c l a s s i f i e d  i n  a manner similar t o  a t a b l e  of i n t e g r a l s  so t h a t  

one can recognize the v a r i a n t  forms of d i f f e r e n t i a l  equa t ions  
and f i n d  the i r  s o l u t i o n s  from t h e  t a b l e .  

This  work a rose  i n  sea rch  f o r  a n a l y t i c a l  s o l u t i o n s  t o  a 
l i n e a r i z e d  form of t h e  r e s t r i c t e d  three-body problem. 
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TECHNICAL MEMORANDUM 

1 . 0  INTRODUCTION 

To d e f i n e  p r e c i s e l y  t h e  scope of t h e  paper ,  w e  s h a l l  

s tudy  only t h e  problem o f  s o l v i n g  classes of second o r d e r  

o r d i n a r y  l i n e a r  d i f f e r e n t i a l  equa t ions  i n  f i n i t e  terms by means 

of  a l g e b r a i c  and elementary t r a n s c e n d e n t a l  f u n c t i o n s .  T h e  

s t anda rd  form of t h e  equat ion  w i l l  be taken  t o  be 

dx 

and it w i l l  be assumed t h a t  t h e r e  i s  a domain i n  which both 

y(x) and w (x )  are rea l  and a n a l y t i c  except  a t  a f i n i t e  number 

of po le s .  The behavior  of  s o l u t i o n s  i n  the neighborhood of 

s i n g u l a r  p o i n t s  w i l l  be i n v e s t i g a t e d  b r i e f l y .  

2 

To a p p r e c i a t e  the d i f f i c u l t i e s  i n  s o l v i n g  eq .  (1) w i t h  

a r b i t r a r y  c o e f f i c i e n t s  ~ ( x )  and w 2 (x) , w e  quote  Ince: "Apart 

f r o m  equat ions  w i t h  cons t an t  c o e f f i c i e n t s ,  and such equa t ions  as 

can be de r ived  therefrom by a change of independent var iable ,  

there i s  no known type  of l i n e a r  equat ion  of gene ra l  o r d e r  n 

which can be f u l l y  and e x p l i c i t l y  i n t e g r a t e d  i n  terms of elemen- 

t a r y  func t ions . "  Accordingly for a d i f f e r e n t i a l  equat ion  w i t h  
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a r b i t r a r y  c o e f f i c i e n t s ,  i t s  so. lut ion has  t o  be expressed i n  an 

i n f i n i t e  form, i . e . ,  an i n f i n i t e  series, an i n f i n i t e  cont inued 

f r a c t i o n ,  o r  a d e f i n i t e  i n t e g r a l .  Thus, m o s t  equa t ions  which a r i se  

o u t  of  problems of  phys ics  and a p p l i e d  mathematics have t h e i r  so lu-  

t i o n s  e x p r e s s i b l e  on ly  i n  t e r m s  of new o r  h i g h e r  t r anscenden ta l  

func t ions ,  such as hypergeometric func t ions  f o r  hypergeometric 

equat ions  and Bessell func t ions  f o r  Bessel equa t ions  excep t  f o r  

t hose  s p e c i a l  cases, e.g., when t h e  o r d e r  of t h e  Bessel equa t ion  i s  

an odd h a l f - i n t e g e r .  

b i l i t y  of i n t e g r a t i n g  Bessel equa t ions  i n  f i n i t e  terms of elementary 

func t ions  excep t  f o r  orders of an odd h a l f - i n t e g e r .  

I n  fac t ,  L i o u v i l l e  12] has shown t h e  impossi- 

I t  is  t r u e  t h a t  m o s t  d i f f e r e n t i a l  equat ions  a r i s i n g  i n  

p r a c t i c e  can be so lved  by b ru te - fo rce  numerical  i n t e g r a t i o n .  The 

method of  numerical  i n t e g r a t i o n  can y i e l d  u s e f u l  numbers b u t  n o t  t h e  

i n s i g h t  t h a t  an a n a l y t i c  s o l u t i o n  can supply.  I n  a d d i t i o n ,  a n a l y t i c  

s o l u t i o n s  u s u a l l y  save  enormous computing t i m e .  

The purpose of t h i s  paper  i s  t o  s h o w  tha t  t h e  s o l u t i o n  of 

eq. (1) i s  e x p r e s s i b l e  i n  a g e n e r a l  form, i n  f i n i t e  terms of elemen- 

t a r y  f u n c t i o n s  , provided t h e  c o e f f i c i e n t s  51 (x)  and w (x)  of eq .  (1) 

are n o n a r b i t r a r y  o r  related i n  a s p e c i f i c  f a sh ion .  A major p o r t i o n  

of the  paper  w i l l  d e a l  w i t h  t h e  p rocess  o f  showing c r i te r ia  under 

which p (x)  and w (x) can be r e l a t e d  i n  v a r i o u s  s p e c i f i c  f a sh ions .  

2 

2 

I n  t h e  process  w e  a lso 

b i l i t y  i n  f i n i t e  t e r m s  

x dx 

o b t a i n  d i r e c t l y  t h e  cond i t ions  of i n t e g r a -  

fo r  M a l m s  t& s equat ion  [3  l 

(bxm + 3) y = 0, 
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which c l e a r l y  i s  a g e n e r a l i z a t i o n  of Bessel*s equat ion  and w a s  

i n v e s t i g a t e d  i n  1850 by Malmst6n. 

D i f f e r e n t i a l  equat ions  s o l u b l e  i n  f i n i t e  t e r m s  are 

c l a s s i f i e d  i n  a manner similar t o  a table of i n t e g r a l s  so t h a t  

one can recognize  the v a r i a n t  forms of d i f f e r e n t i a l  equa t ions  and 

f i n d  t h e i r  s o l u t i o n s  from t h e  t a b l e .  This  t ab le  concludes t h e  paper .  

2 . 0  FORMULATION 

I n  an a t t empt  t o  o b t a i n  the g e n e r a l  s o l u t i o n  of 

141 eq. (1) w e  assume t h a t  it t a k e s  t h e  fo l lowing  gene ra l  form: 

I ( 2 )  
y = C ( x ) e  +-iQ (x) 

where C ( x )  and Q(x)  are f u n c t i o n s  t o  be determined i n  terms of 

t h e  c o e f f i c i e n t s  ~ C X )  and w (x) of eq. (1). For s i m p l i c i t y  w e  

assume t h a t  both ~ C X )  and w (x) are either r e a l  o r  imaginary.  

S u b s t i t u t i n g  eq.  ( 2 )  i n  eq.  [l), w e  o b t a i n  

2 

2 

and 

where s i n g l e  prime and double primes i n d i c a t e  f i r s t  and second 

d e r i v a t i v e s ,  r e s p e c t i v e l y ,  w i t h  r e s p e c t  t o  x. Equat ions ( 3 )  

and ( 4 )  are coupled non l inea r  d i f f e r e n t i a l  equat ions  of second 

o rde r .  A t  a f irst  g lance ,  w e  m i g h t  t h i n k  tha t  the s o l u t i o n  i n  

t he  form of equat ion  ( 2 )  may r e p r e s e n t  a s t e p  backward i n  

so lv ing  equa t ion  (1). For tuna te ly  equa t ion  C3) can be n e a t l y  

i n t e g r a t e d  f o r  C i n  terms of Q B  and p f  and i t s  s o l u t i o n  i s :  
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where Co is a constant of integration. 

of eq. (l), therefore, is 

The formal solution 

' 0  e- +iQ .-1/2 Jx X udx , 
0 Y = -  JF 

where Q' is the solution of the following 

equation obtained by substituting eq. (3) 

1 3 

Through the transformation 

i z '  
- 2  z '  

Q ' = + -  - 

nonlinear differential 

into eq. ( 4 ) :  

2 
1-1 . ( 7 )  2 1-11 = w  - - - -  2 4 

eq. (7) can be converted into 

Equation ( 9 )  can be recognized as a nonlinear differential 

equation in Riccati form. Substituting eq. (8) into eq. ( 6 ) ,  

we can also obtain the formal solution of ea. (1) in terms 

of z and z 1  as 

-l/2 pdx 
y = (2') 1"' + c2z i (10) 

-1/2 : 

where 2'' is the solution of eq. (9) and C1 and C2 are arbitrary 

constants. 
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Our task of solving the second order ordinary linear 

differential equation (1) has been converted into that of 

solving the nonlinear differential equation (7) or (9). The 

formidable task of solving these equations in finite terms 

for arbitrarily prescribed ~ ( x )  and w (x) may not appear to 

be too helpful in general, since it is clear that only a 

limited number of classes of p ( x )  and w (x) will 

2 

2 

render eq. (7) or (9) soluble in finite terms. In fact, the 

only cases in which a class of Riccati equation is integrable 

in finite terms are the classical cases discovered by Daniel 

Bernoulli. [51 Examples to solve eq. (9)  in finite terms for 
2 "arbitrarily" prescribed 1-1 (x) and o (x) will be shown later. 

Equation ( 9 1 ,  however, can be solved approximately in finite 

terms for arbitrarily prescribed ~ ( x )  and w ( x ) ,  and we shall 

show this briefly later to avoid a lengthy diversion. 

2 

 or the moment, we will concentrate on finding solutions 

of either eq. (7) or (9) in finite terms, when the ~ ( x )  and 

w2(x) are related in a specific fashion. The choice of using 

eq. (7) or (9) depends on the specific relation between 1-1 (x) 

and w (x) in the differential equation to be solved. 2 

In an effort to show the significance of eq. ( 7 ) ,  

we show that the following five equations all have the same 

Q equation (ices, eq. (7)): 

2 y" + (2nt-1) y ' + T y = O  
X 
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2 1  n -7 

These five equations are transformed equations of one another 

by a change of dependent variable, and their solutions all 

depend on the solution of the invariant Q equation 

In passing it is interesting to note that the 

exponential factor in eq. (5) is exactly the standard trans- 

formation used in reducing eq. (1) into the normal form 

where 

and 
2 

(13) 2 1-1' P 
2 4 

F(x)  = 0 - - .- - 

Note the important fact that eq. ( 1 3 )  is identical to eq. (7). 

It is well-known that eq. (11) can be transformed into the 

canonical Riccati form 
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through the transformation 

f Zdx Y = e  

The identity between equations (9) and (14) can be established 

by noting 

Accordinglyit is not surprising that eq. (7) can be trans- 

formed into the Riccati form of eq. @ ) .  

It is also important to note the similarity between 

the solution of eq. (11) in the form of eq. (12) and that 

in the form of the WKB method of approximation. A comparison 

study between the two forms of solutions should be illuminating 

but will not be carried out here. 

3.0 DIFFERENTIAL EQUATIONS SOLUBLE IN FINITE TERMS OF 
ELEmNTARY FUNCTIONS 

Under the constraint that the coefficients ~ ( x )  
2 and w (x) of eq. (1) can be related in a specific fashion, we 

shall first obtain constraining relations between ~ ( x )  and 

w (x) from either eq. (7) or eq. (9) by simple assumptions 2 

and then solve the resulting nonlinear differential equation. 

In this way both the specific form of the differential equation 

and its solution can be obtained simultaneously. We start 

from the simplest case of both p ( x )  and w (x) being constant. 2 
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2 (I) Let both p(x) and w (x) be constant: 
2 

2 (I) (A) For w - - 'C - - constant 5 # 0 :  c 4  

In this case it is simpler to use eq. (9) than eq. ( 7 )  I and 

eq. (9) becomes 

By inspection we obtain a particular solution of eq. (15) as 

2 - = +i25 
2' - 

has shown that if a particular solution of a Riccati Euler 

equation is known the general solution can be effected by two 

quadratures. By his method the general solution of eq. (15) 

can be shown to be 

[61 

i5x -iSx 
Z I' e - ke -iT = -i25 

e i5x + ke -i<x ' 

where k is ar. arbitrary constant. 

Equation (16a) reduces to eq. (16) 

for k = + w  
z I' 
7 = i25 - z 'I - =-i25 for k=0; z' z 

Equation (16a) becomes 
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- 2Etan (Ex + $ )  z I t  

2' 
- -  for k>0 

or -2Ecot (EX + $ )  for k<O , 

where $J is the phase constant and is equal to zero for k = - +le 
Integrating either the particular solution [eq. (1611 or the 

general solution [eq. (16a)I to obtain z '  and z, we have from 

as the well-known general solution of the differential equation 

with constant coefficients: 

2 y" + vcy' + w y = 0 . 
C 

The normal form of equation (17a) becomes: 

2 G (I) (B)  For wc - - = 0 :  4 

In this case the general solution of eq. (15) is: 

z It 
Equation (18) reduces to the particular solution 7 = 0 for 

k = 0. The solution of eq. (17a) then is, from eq. (lo), 
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1 2 

2 (11) Let w = p 1  or 0: 

Equation (9) then becomes 

(20) 

By inspection we find that a particular solution of eq. (21) 

is p or -1.1 and the general solution is: 

When k = 0, eq. (22) reduces to the particular solution. 

1-1 or eq. (22), we obtain from eq. (10) Integrating - 2 I' 

2' 

as the general solution of 

y" + py' + F: y - - 0 or yI1+pyl = 0. 

The normal form of eq. (24) becomes 

Note that eq. (23) can be obtained by two simple quadratures 

of eq. (24) 
2 

(1111 Let u2 = (Q" + p 8 :  
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In this case we shall use eq. (7) instead of ea. ( 9 1 ,  

and eq. ( 7 )  becomes 

Equation ( 2 7 )  is identical to eq. ( 2 1 )  and i t s  s o l u t i o n  i s  shown 

in e?. ( 2 2 ) .  Integrating eq. ( 2 2 1 ,  we obtain 

-1 
Q = - :jelvdxdx\ 

k I 
+ K1 I when k # 0. ( 2 9 )  

= KJelvdxdx , when k = 0 . ( 2 9 a )  

Equation (1) then takes the form 

and its s o l u t i o n  is, from eq. (6), 

1 -/udx + i z  (30a) /'ldxdx e e- k 
= il - 

The normal form of eq. (30) becomes, from eq. (ll), 

- 4  (l-s/ e vdXdx - .'I 4 y=o (30b) 
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The s o l u t i o n  of eq.  (30b) can be obta ined  from eq. ( 1 2 ) .  

S ince  k i s  an a r b i t r a r y  c o n s t a n t  w e  f i r s t  s impl i fy  t h e  above 

equat ion  by l e t t i n g  k = 0: 

-/pdx + i K / e  /pax dx 
y = e  e- 

L e t t i n g  t h e  f u n c t i o n a l  dependence of p on x assume va r ious  forms, 

w e  o b t a i n  t h e  fol lowing cases: 

2 2 a x  
y" + ay' + B e y = o  

B ax -ax +i; e y =ae  e- 

Y = O  
Yll + ( B  e 2 a x  - 4 1 
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a 2 2  a x  2 - - + - ) y = o  
4 2 (33b) 

2 y = 0 (34) 
(a 2+x) a1 1 y" + - '+ p k 2  + XI 2a 1 - 

a 2+xy 

a +1 +i- (a2+x) 1 y = (a2+x)-al e- a l + l  (34a) 

It is important to note that we can identify eq. (34) with the 

transformed Bessel equation in the form [ 7 1  

Clearly eq. (34) and eq. (35) become identical, when 

1 B = 52, and n = +- -2 a1 = 1, a2 = 0, 

Accordingly, the solution of Bessel equation can be expressed 

by means of elementary functions in finite terms when its 

order is + - and has the form, from eq. (34a), 1 
- 2  



B E L L C O M M ,  I N C .  - - 14 - 

(36) 
2 2 

1 ix + c2e -ix2) = z5+ (x ) . 

It is also worthwhile to note the similarity between eq. (34) 
for a =O and Malrnst6n's differential equation L31 

2 

yI1 + - a y' + jhxm + %) y = 0 I 

X X 
(37 1 

for which MalmstGn investigated conditions of integrability 

in finite terms. We shall return to this equation later. 

C + -  x-c 
a b (111) (A) ( 4 )  For 1-1 = - + -  

x-a. x-bo 0 

C 
2 + 2 +  (x-ao) (x-bo) (x-co) "-'La e 4  

)2a(x-bo) 2b (x-co) 
0 

Equation (38) appears to be a differential equation of great 

generality and in fact for a=b=c=l it is in a form similar to the 



BELLCOMM, INC. - 1 5  - 

BGcher * equation. [ 81  

similar to the Riemann or Popperitz from which the 

If we set B=O, eq. ( 3 8 )  is in a form 

hypergeometric equation can be derived. When B = 0 ,  the 

solution of eq. (38) becomes 

-a -b -C y = (x-ao) (x-bo) (x-co) 

- - 
+ C2/ (x-ao) a (x-bo) b (x-co) 'dx i 

i 
L 

"2 (111) (A) (5) For 1-1 = a1 + - : X 

7 
, (39) 

+iBJxa2 e"lxdx e- l 
y = a ,  ",X F 

L I  x e  

It is obvious that various other differential equations 

and their respective solutions can be obtained by expressing p as 

other functions of x but we do not attempt here to exhaust all 

possible cases. 

Now we return to the general case of eq. ( 3 0 )  and 

eq. (30a) when k is any arbitrary nonzero constant. 

R *The B6cher equation is y"+P (x) y '+Q (x) y=O where 

lmn-1 1 (x-al) ml (x-a2) m2 e e . (x-an-l 
A +Alx+...+ARx 

0 
s m 

+e.. 
1 ml 2 P 

and mi, n and 2 are non-negative integers. 
x-alf - x- a2 
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(111) ( B )  (1) For u =  c o n s t a n t  a: 

The degenera te  case of eq. ( 4 1 )  can be obta ined  by l e t t i n g  

a=O, and it becomes 

wi th  
4B -- 

y = ( 1  - e5ik(2--kx) = Y . 

, a # - 1  : a (111) (B). ( 2 )  For p = x 
-5 

t c 
a -a 

( 4 3 )  
a 1 i32x2a 

y" + ;;y' + - -z ly = 0 , y = x a+l 4 0 l ( . - Y k )  x J  
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f 

y" + i 
7 I Y = O  a ( a + 2 )  

- 2  4x I 
J 

Note eq. (43) also reduces to eq. (42) when a=Q. When a = l ,  

eqs. (30) and (30a)hsve to he used directly. 

(111) (B) (3) For 1-1 equal to other function of x. 

(IV) Let Q' = constant 5 ,  5fO : (44) 

Equation (7) becomes 

145) 
(Q') 2 = w 2 - u' - It = 

2 4 

(IV) (A)  For constant pc: 

2 Equation (45) becomes 

(46) 
2 l-Ic 2 Q ~ = w  - - -  4 - 5  

Equation (46) indicates that u 2  must be a constant also, and 

therefore this case reduces identically to case (I). 

(IV) (B) For constant wC 2 :  

Equation (45) becomes 

1-1' + $: = 2 [w: - (Q') 27 I = 2 ( W E  - E 2 /  = 2X 2 , (47) 
2 

2 2 2 2 X = w - 5 = u 2  - (Q') C C 

where 

Equation (47) is similar to eq. (15) and its general solution 

is 
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-AX 

-Ax e 

exx - ke 
exx + ke 

!.l= 2x 

From eq. (6) I we have 

I 

Y =  AX e + kemAX 
I 

as the solution of 

2 -AX ehx - ke 

e + keeAx 
y ' + w  y = o ,  C 

y" + 2A 
AX 

(49) 

(49a) 

which has the normal form 

(49b) 2 2 2 Y " +  ( w c - A ) Y = Y " + 5  Y = O  . 

(IV) (B) (1) For k=O this case reduces to case (IV) (A). 

(IV) (B) ( 2 )  For k>O : 

Equation (49a) reduces to 

(49c) 2 y" + 2~ tan h(Ax ++) y' + wcy = 0 I 

where $I is a phase constant and is equal to zero for k=l. 

(IV) (B) ( 3 )  For k< 0 : 

y" + 2A cot h ( A X  + @ I  Y' + wcY - 0 ,  - (49d) 

where +=0 for k= -1 . 
Q (V) Let = - 1-1: ( 5 0 )  
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Equation (7) then reduces to the condition that 

-f pdx w = Q' = Ke 

Then 
y = e  kiKJe -/pdxdx , 

and 

y" + y y '  + K e y = o  I - 2 J y d x J  

(V)  (A) For 1-1 = constant a: 

2 &-2ax 
y" + a y '  + B y = 0 ,  

B - u x  + i p  y = e- 

Y "  + 

(V> (B) For y =  a 1  + a x: 2 

Y = e- +iB/ e dx 

.* i- 2 (a1+a2x) 2 
2 - . 4 - j -  a2] Y = 0 (53b) 

' 2 - (2a lx+a x ) Y" + B e 
i 
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. L  

I Y = e- +i l - ?  (54a) 

For a ' . = 1  eq. ( 5 4 )  is reduced to a special form of Cauchy's 

which can be converted into an equation with equation , 
1 

[ L O 1  

t constant coefficients by the transformation x=e  . Equation 

(54a) is not valid for a,=l and eq. (51a) must be used 
I 

directly to obtain the solution y 

to show that eq. ( 5 4 )  can be cast 

ab y' + 2 y =  1-a-b y" + 
X X 

= (a2 + x,". In an effort 
in a specific known form E 111 

we let a l  = 1 -a-b, a2=0 ,  and e2=ab under the constraint a=-b. 

c a+b-c+l - C a+b+l: 
- F(T=Ei - 1-x (V) (D) For 1.1 = 2 - 1-x 

y = o r  B 2  
2 (a+b-c+l) 

a+b+l 
1-x 

- C 

'2c (1-x) 
X 

(55) 
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- (a+b-c+l) (1-1 
y = e- (55a) 

(55b) 

i 

c(c-2) + c(a+b-c+l) - 
- 2  2x (1-x) 

B 2  
2 (a+b-c+l) 4x 2c (1-x) 

Y" + [ 
X 

- 
Y = O  (a+b-c+l) (a+b-c-1) 

2 
4 (1-x) "J 

If we set c=l and a+b=l, these equations reduce,respectively, 

to the following simple forms: 

2 
y" +(; - 2) y' + B 2  

x2 (1-x) 1-x 

1 + 4 B 2  y = o  . Y" + 2 
4x (1-x)2 

y = o  

I 

I 

(55e) 

Note the simple forms of these equations in this case are due 

to the constraint that the numerator of u is the derivative 

of the denominator of p .  

in separation equations obtained by separating the partial 

differential equation V $ + k $ = 0 in various separable 

coordinates, where V 2  is the Laplace operator. 

If we set, in eq. ( 5 5 ) ,  

This constraint[12] always appears 

2 2 

(56) 1 
2 b= -a, c=- , and B2= -ab I 
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eq. (55) degenerates into a special case of Gauss' hyper- 

geometric equation 

2 
(57) a y' + x(1-x) y = o  

1 
2 
- 

y" + 

If we keep the cmstraints of eq. (56) we find that the 

following equations will be satisfied for m = -2: 1 

a=m-nl b=m+n+ll and c=m+l. (58) 

Substituting eq. (58 )  in eq. (55) I we obtain a special case 
1 
2 (n= --) of a transformed Legendre equation[l3I of order m and 

degree n 

(m-n) (m+n+l) y=o 
Y "  +[.";;i.) - - $4 Y' - x (1-x) 

- - 2  I- 

Y" + + Y = o. (59b) 

1 In fact eqs. (57) and (59) are identical for m= -2 and 

a= -(ncZ) and belong to the special case when the solution 

of the hypergeometric equation can be expressed in finite 

1 

terms of elementary functions. 
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(a+b-c+l) dx +iBJxc (l+X) y = e  f 

- c(c+2) - c(a+b-c+l) 
Y'l + c -2c -2 (a+b-c+l) 2 2x (l+x) 

B 2  
4x x (l+x) 1. 

7 

(a+b-c+l) (a+b-c+3) y=o ..i - 
4 (l+x) 

3 1 2 If we set a = - - , b=c= -2' and B = -ab in the above eqs.f 

we have 

+ v 5  y = ( &  + G)- I 

C 
x-c + - :  + -  (V) (F) For ?J= - x-a. 

a b 
x-bo 0 

b + *) Y' + 
x-bo 0 

y = o  I 2a 2b 2c 
B 2  

(x-ao) (x-bo) (x-co) 
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l 
2b 2c ' T  

B2 
2a Y" + 

x-ao) (x-bo) (x-c0) 

.'. -j Y=O [ab (x-co) +bc (x-ao) ac (x-bo) 
x-c - 1 !x-ao) (x-bo) ( 0) 

Note eq. (62) is clearly in a form of Bocher equationr8]. 

we set a=b=c=l, eq. (62) becomes Fuchsian type with four 

regular singular points at the points x=aof bo' coI and 

m, and thus can be recognized as in a form of Riemann or 

If 

Papperitz equation [91 . 
2 

2 
2 2 

= -2(Q') +2u2-p' -1-I = f(X) (63) 

It will be seen that the philosophy of approach in this case 

is different from that in cases (111) through (V). For a 

particular choiee of f ( x ) ,  we may obtain a solution of the 

equation 

For any arbitrary p r  we have 
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Let the solution of eq. (63a) be S (x) I then 

- _  Q" - s (x) , 
Q' 

Note that eq. (65b) is independent of pand so le ly  dependent 

of f (x). Accordingly for a prescribed f (x) the form of eq. 

(65b) will be the same for any chosen p (x). 

(VI) (A) Let f (x) = 0 : 

The general solution of eq. (63) is, from eq. (18) , 

K 
2 ,  

Q! = Q 'I 2k 
Q' 1-kx ' S(x) = - = - 

(1-kx) 

where both k and K are arbitrary constants and k f O .  When 

k=O, this case reduces to case (IV). 

(VI) (A) (1) For 1-1 = al + a 2 x  : 
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+[' + - ( a  1 +a X I 2  + 
2 4 1 2  y" + ( a  +cr x)y' 1 . 2  

\ ! = o  r 
4 i  

K2 
(1-kx) 

y= (1-kx) 
K -X(2a +a x)  +i e 4 1 2 e- k ( 1 - k x )  , kfO 

Y = O  0 

K2 
4 Y" + 

(1-kx)  

Note that eq. (66b) is identical to eq. (42). 

2 

(1-kx) ' y = 0 (67) 
' a 1 (a, -2) 

Y '  + i 2 
4 (a  2+x) 

y '  + a+x 

I, 1 

K + a1 
2 

K 
, kfO ekik (1-kx) (1-kx)  

a 1  
2 
- Y =  

(a 2+x) 

Note the particular simple form Ofeq. 

(or the trivial case of a , = O ) .  This is the consequence of the 

(67) when a1=2 

2 I 

is the general solution of 1-1' + '7 = 0 .  1-12 fact that P =  a -  
2 

When a l = O ,  eq. (67) reduces to eq. ( 4 2 ) .  

(VI) (A)  ( 3 )  For v=20rltan h (alx+$ ) or -2alcot h ( a l ~ + $ )  : 

7 

2 y" + 2a tan h (a lx+$ ) + 2a + 
j 1 
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] (68a) 
+i -1 Y = (1-kx) e- h (a1x + 4 )  

!; 

j 2  K2 4] y=O (68b) y I' - 2al cot h (alx+@) + 12a1 + 
(1-kx) L 

(VI) ( A )  ( 4 )  For p =  

1 2- - + +J1+2a IF 2a 3J1+2a (a 2+x) - 

It can be shown by direct substitution (use either upper signs 

or lower signs only) that eq. (69) is the general solution 

. For a 1=a3=Owe obtain from eq. (69) a l  2 
P of u' + - = 

v = O  or - and case (VI) (A) ( 2 )  therefore can be derived 

from this case. 

a +x 2 

Y + 
1+J1+2a - + 2a3J1+2a (1+41+2a 1) (a 2+x) - +41+2a 

- 
(a 2+x) [1T2a 3J1c2cL (a 2+x) - +J1+2a1 1 Y' 
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"1 "2 (VI) (A) (5) For p =  -5; + 7 : 
X 

+ 

If u1=2, eq. (71) has a simpler form because of the fact 
2 

X 2 x  
2 " 2  I 1 - I  p 2  

p =  x + 7 is a particular solution of ~ . l  + - = - 
4 .  

2 (VI) (A) (6) For p =  x + 

1 
2" 2 

P 2  

1 
---a e 2 2 - a e  

( 7 2 )  ,3 
1 X 1 --a e 2 2 + a e  

2 3 
" 2  2 

Equation (72) is the general solution of P " + ~  = and 
2 x  

case (VI) (A) (5) can be derived from it by letting a3-0 and 

" 1=2. 

I a-i a, \ 
L -- 

"2 "2 
e 2 +a3 e--Z 
,. -- 

+ 

(73) 
2 

K2 *I y = o  
(1-kx) 
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1 
e 2 --I p dx K 

y = (1-kx) e t i  k(1-kx) 

( V I )  (A) ( 7 )  For p equa l  t o  o t h e r  func t ion  of x. 

( V I )  (B) L e t  f ( x )  = 2C2, where 5 i s  a cons t an t .  

The g e n e r a l  s o l u t i o n  of eq.  (63a) t hen  i s ,  from eq. (16a) ,  

isx - ke -iCx e 
i<x + ke-Ex ' S ( x )  = - Q" = i 2 5  

e Q' 

-1 - i s x  -2 K i2.5.x 
) , Q=i- (e +k) + K1 r 2 s  

Q' = K (eisx + ke 

( V I )  ( B )  (1) For p =  a ,  + a,x : 

x 
( 7 4 a )  

- - (2a  +a x)  K i2Sx 
+k) e 4 1 2 - i s x  +-(e y=(eiSx + ke 1 e--25 

2 I f  w e  set  al= -25 

simple form: 

and a2=0 i n  eq. ( 7 4 ) ,  it has t h e  fol lowing 
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b + - :  x-bo 
a (VI) (B) (2) For u =  - x-a. 

-1 a b 
icx -icx +- K (e i2cx +k) (x-ao)-y (x-bo)-Z (75a) y = (e +ke ) e-2 

If we set a=l, a =b=K=k=O, eq. (75) becomes the Bessel 

equation of order n= +- : 

0 
1 

-2 

1 Accordingly, we see that Bessel's equation of order n=fz 

is expressible in elementary functions as shown in eq. (75c). 

If we set a=2, a. =b=k=K=O, . eq. 

of order m=O or -1: Bessel equation 

(75) becomes the spherical 
[I41 

1 y = 0, m=O or -1, (75d) 
2 2 m(m+l) 

2 y" + x y' + i c  - 
L X - 
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where jo(Sx) and j-l(Sx) are the spherical Bessel functions 

of the first kind of order 0 and -1 respectively. Note the 

connection between eqs. (75c) and (75e) r .i.e., Yc = &  Ye 

We shall use this opportunity to show briefly a simple and 

direct method for expressing the solution of the Bessel 

eq. 

terms of elementary functions. 

(75b) for n = m + I, where m is any integer, in finite z 
Using the transformation 

z, we can convert the Bessel equation into 1 +igx 
Y = p-- 

If m is allowed to be any value, eq. (75f) can only be solved 

by an infinite series which involves Gamma functions. 

m, however, is an integer the series terminates as a poly- 

nomial. The solutions of eq. (75b) therefore are: 

When 
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n=k2 7 

"1 
2 (VI) (B) ( 3 )  For p =  

("*+XI 

K2 3 

a l ( a l  - 4a2 - 4x1 
+ 

4 (a,+x) 

y = o  ( 7 6 )  

( 7 6 a )  
"1 

+ k ) ' l  K i 2 < x  - i < x  +- (e y = (eigx + ke  1 e-25 e 

If w e  se t  a2=0, K=k=O, t h e n  

2 

y " + 2 y ' +  "1 < +--21 y = o  I 

X ( 9:4 x 3 

( V I )  (B) ( 4 )  For p =  ae bx : 
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c 

bx a2 2bx + + r e  y" + ae yl + 152 + * ebx 

K 2  (eigx + ke - i < x  ) m 4 ]  

2 

y = o  (77)  

a b For k=O, K = . + i z  I and 5 =  i-2 I eqs.  ( 7 7 )  and (77a) reduce 

r e s p e c t i v e l y  t o  

- 

bx 

y = C l e  --X b 2 + C 2 e  -(; + E ebx) 

(77b) 

( V I )  (B) (5)  For  u equa l  t o  o t h e r  f u n c t i o n  of x 
5 (VI) (c) L e t  f (x) = 

( X + d 2  

From case ( V I )  (A)  ( 4 )  w e  know t h a t  a p a r t i c u l a r  s o l u t i o n  of eq.  

( 6 3 a )  f o r  t h c  above f (x)  is: 

B = -1+ ba=z S ( x )  = - - - Q" - B 
P x+x 

B Q '  = K(X+x) - + K1 Q = -  B + 1  (X+x) 
B + 1  
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The general solution of eq. (63a)t of course, can be used, but 

the resulting differential equation is rather complicated. 

(VI) (C) (1) For LI= a1 + a x : 2 

+ -  a 2  + 5 
y" + (a1 + a 2 X )  y '  i 2  ( X * X )  2 2 

i 5  2 + K 2 ( A + x )  
2 ( h + X )  

L. J 
where 

If we set a =X=K=O, then 
2 

Note the close resemblance between eqs. (78c) and (75f). 
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"1 

a1 (a1-2)  + "1 
2 y" + - 

a2+x  y +[ 4 (a2+x) 
2 + 2 (A+x) 

where 

B= -1d1-25 

If we let a2=A=0, eqs. (79) and (79a) become, respectively, 

+ K x  
"1 - a1 (a1-2)+25 

2 y" +- y' + 1 
4 x  X 

L. 

1 +m 
y=x ---(al-l2=) 2 i.. i C  1 ei& x- + 

131 Equation (79b) can be identified as eq. (37), the MalmstGn 

equation, if 
1 2  c=z (a1 - 2a1 + 2 5 )  , 2 b=K I a=" 1 

where a l l  K, and 6 are three arbitrary constants. 
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Eliminating 5 in eq. (79d), we have 

Accordingly the condition of eq. (79e) is required for the 

integrability of the Malmstgn equation in finite terms of 

elementary functions. For c=O we have, from eq. (79d), 

k = (ul-l), and eq. (79b) and (79c) , respectively, 
become 

2 2Ca1-2) Y" + y Y ' + K x  y = 0, 

f i- K xa l - l  
y = xl-'l e l-al 

(79f) 

(79g) 

For u1=2 eqs. (79c) and (79g) reduce, respectively, to eqs. 

(75d) and (75e). Note that eq. (651 will have a very simple 

form, if we set 

Since f (x) = & in this case, we have a particular 
(Ai-XI 

- 

solution of eq. C8Q) as ]I = - where B = - l ? j = .  This is 
?i+X 

equivalent to setting a -A and al= -6  in eq. (79) and the 

latter becomes 
2- 
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y' + K 2 (A+X) 26 y = 0 I Y" - - X+X 

$+I + i- (X+x) y = e- $+1 

Note eq. (81) is identical to eq. (54). 
[71. I f  we set K=O, eq. (79b) becomes the general Cauchy equation . 

(a -2) + 25 
y = o  I (82) "1 1 y" + - y' + 

X 4x2 

When a l = l  in eq. ( 5 4 ) ,  it reduces t o  the form of eq. (82). 

in eq. (82) then eq. (82a) becomes 1 
4 1 1  L2t - [ a  ( a  -2) + 251 = a 2  

., - - 
3 -- ' ( a  -1fi dzil-1)2), If we set a l = l  and 5 = -2, eq. 

y=x 2 1 
(79b) is reduced to eq. (35) f o r  n = +I o r  2 

K -2 + i-x y = xe- 2 

I f  we set al=l and 5=0, eq. (79b) is reduced to eq. (75b) or 

-1 1 +ikx y = x T e -  f.82e) 
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If we set al=2 and <=Or eq. (79b) is reduced to eqs, 

(75d) and (79e) or 

y " + - y ' + T  2 K2 y = o  , 
X X 

+ ikx-l y = e- 

Note eq. (82d) and (82f) are also the special cases of eq. (67). 

We can see accordingly that eq. (79) is a very general 

differential equation with asimple pole at x = -a2 and 

another singularity at x = -A. 

2 (VI) (C) ( 3 )  For 'J=, + -+ : 
X 

B + 1  c1 

B -1 E +i- (A+x) y = (A+x)-~' x e e - B+I I 

where 

For a=O in eq. 

equations become identical. 

(83) and for a1=2 in eq. (79b), these two 

(IV) (C) (4) For 'J equal to other function of x. 

(V I )  (D) Let f (x) = 4 
c 2  

2 (A+x) 
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From case ( V I )  (A) (6) w e  know t h a t  a p a r t i c u l a r  s o l u t i o n  of 

eq. (63a) f o r  the above f ( x )  is: 

5 -2 + i Q '  (h+x) (A+x) 
Q 'I S(x)  = - = I 

-2 - i s  ( ~ + x ) - '  Q' = K (X+x) e 

-1 
+ K1 t 

- i t  (X+x) Q = Ke 

( V I )  (D) (1) For u. = a1 + a x : 2 

"2 + -4 1 (a1+a2xI2 + 
[4(A::)4 + 

y '  + (a +a x ) y '  + 1 2  

- - (2a  X +a x)  5 - i s  ( ~ + x ) - l  
e 4  1 2  

i- (x+x) -' +ike  y = (X+x) e 2 e- 
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"1 -i5 ( ~ + X I  -- -1 

y = ( X + X I  e e- (a2+x) 2 (85b) is (x+x)-' + i k e  

c I" 3 3 

I f  w e  set  a= T i c r  eqs. ( 8 6 )  and (86a) reduce t o ,  r e s p e c t i v e l y ,  

-1 - i t  (x+x) +iKe y = e- 

( D )  ( 4 )  For 1-1 equa l  t o  o t h e r  f u n c t i o n  of x. 
1 2 2  

L e t  f (x) = S-:y 5 x : 
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+ a x: ( V I )  (E)  (1) For 1-1= al 2 

1 2 2  1 + (a +a x) y '  +[ . (s+u2)  - 5 x + &+a2x)2 + 1 2  Y 'I 

K e  y = o  
J 

I f  w e  set  a =O and a2= -5 , eqs- (87) and (87a) become, 

r e s p e c t i v e l y ,  
1 

1 2  
+ i k / e  z s x  dx 

y = e- 

Note t h e  i d e n t i t y  between eqs .  (87c) and (53). 

I f  w e  se t  al=O and a - 5 ,  eqs.  (87) and (87a)  become, r e s p e c t i v e l y ,  2- 

1, 2 

Equat ions (87c) and (87e) show c l e a r l y  t h e  e f f e c t  of 

changing t h e  s i g n  of a 2  i n  eq.  (87) - 
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If we set X = 0 in eq. (87e), it has the simple form 

y" + Sxy' + sy = 0 I (87g) 

Equation (87g) is in the form of eq. (24), the solution 

of which is eq. (23). Now note the similarity between eq. 

(87g) and the differential equation associated with Hermite 

polynomial for n = 1: 

For n=O 

For n=2 

For n=3 

y"-Sxy'+Sny = 0, n=l 

y=x c1+c2Jx e 

1 2  
dx ' Z S  X 

t 
y= C1+C2/e I 

- 2  $x 
CJ(1-SX 2 ) e 'dx], 

y = . . .  

The difference between the solution eq. (87h) and the solution 

eq. (88a) is certainly quite surprising due to a sinple sign 
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change in the coefficient of y '  in the differential equations 

(87g) and (88). If we set K= 0 in eq. (87b)l it becomes 

the Weber equation[14' for n = 0 :  

Note that is the normal form of (88). 

2 a1 (a1-2) 

4 (a2+x) 
Y + -  y '  +[% (2-5x ) + 

y = e 4  -Lx2 e- +ikleTx dx (a2+x) 2 . 

2 a +x 2 
5 2  

9 -- 

a1 +2: a 2  (VI) (E) ( 3 )  Let u =  
X 

2 2a2 (a1-2) 
y" + 1% + 31 y '  + [&2-Ix ) + (a +-) 2 

4x l x  
X 

(VI) (E) (4) 1-1 equal to other function of x. 

Choose f(x) equal to other function of x, 
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Q" 1 1 Q "  2 
such that (7) - -(?I = f(x) can be solved in finite terms 

of elementary functions. For example, if f (x) = ~ x - 3  , a 
Q 2 Q  

4 

-1 
-I 1 

and 3 particular solutionfl6I is - Q " = -35x-5 (l++m x 
J. 

Q' 

4.0 EQUATIONS WITH ARBITRARY COEFFICIENTS 

In this section we will show first that Sharpe's 
equation [ I71  

y" + -y' 1 + ( 6  2 + + ) y = o  , 
X 

can be solved in finite terms for a particular choice of the 

coefficient A in eq. (91). Equation (91) is a generalization 

of Bessel equation of order zero and was investigated by 

Sharpe during 1881-1900. He showed that the solution of eq. 

(91) for 5=1 can be expressed in a definite integral form 

(91a) 1 1 
y = K /z" COS (X COS 8 + A log cot 29) de 

0 

Since eq. (91) can not be fitted into any of the 

forms of differential equations discussed in the previous 

section, we may consider the coefficients as arbitrary and 

shall try to solve it in finite terms by using eq. (9) 
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Equation (91b) is soluble in finite terms, if A=ic, and 

has the solution 

The solution of eq. (91) for A=iS is, therefore, from 

eq. (lo), 

We will show next that the generalized Laguere 

equation 

y" +Ix a+l a 1) y' + x n y = 0 , 
6 

(92) 

can be solved in finite terms by using eq. (9) 

Equation (92a) is soluble in finite terms, if 

r (92b) 2" - n+l - (n+l) ex 
Z x ,  a (a) a= -n, then 7 - 1 - - z'=K x 
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The solutions of eq. (92) are, from eq. (101, the Laguere 

polynomials L:. 

(a) for a =  -n, 

= xn[cl+c2/x -(n+l)exdx) = L -n (x) , 
n y a 

(b) for a = -(n+l), 

(XI (92e) yb = eX(c3+c4/xn e -Xdx) = L - (n+l) 
n 

Lastly we mention in brief that the following 

equation, obtained by linearizing the nonlinear differential 

equation of a restricted three-body problem, 

y" + 2 E y' + wcy 2 = 0 1 

X 
(93) 

can be solved only approximately in finite terms. Note the 

similarity between eqs. (93) and (76b). We are interested 

in an approximate solution of eq. (93) in the region E <x<& , 2 1 

where E is a very small perturbing constant. w is also a 

constant. It is well-known that in the region E < X < E  , an 
C 
1 0 

approximate solution by Poincarg's small parameter perturbation 
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method should be u s e f u l  and it can be shown t h a t  t h e  error 

(1st o r d e r  s o l u t i o n )  i s  the o r d e r  -, which becomes s i g n i f i c a n t  

i n  the r eg ion  X < E .  An approximate s o l u t i o n  of eq.  (93) by o u r  

[I81 method has  t h e  fo l lowing  form 

2 
E 
X 

y = e  (93a) 

and i t s  e r r o r  can be shown t o  be of the order c 2  and almost 

independent of x i n  the range E ~ < x < G  The improvement of 

accuracy amounts t o  a f e w  o r d e r s  of  magnitude i f  ~ .<<1.  

5.0  CONCLUSIONS AND SUMMARY 

W e  have shown that classes of second o rde r  ordinary 
2 l i n e a r  d i f f e r e n t i a l  equat ions  w i t h  c o e f f i c i e n t s  1-1 (x) and w (x)  

related i n  a s p e c i f i c  f a sh ion  can be so lved  i n  f i n i t e  terms by 

means of elementary func t ions .  W e  a lso have shown e x p l i c i t l y  

the  s o l u t i o n s  f o r  several s p e c i f i c  r e l a t i o n s  between co- 

e f f i c i e n t s  p (x )  and w (x), b u t  have, of cour se ,  n o t  exhausted a l l  2 

p o s s i b l e  cases. O t h e r  equa t ions  w i t h  " a r b i t r a r y "  c o e f f i c i e n t s  

may be so lved  i n  t e r m s  of h ighe r  t r anscenden ta l  f u n c t i o n s ,  and 

Moon and Spencer have l i s t e d  va r ious  s e p a r a t i o n  equa t ions  

according t o  s p e c i f i c  types  of B6cher's equat ion  and t o  the 

number of s i n g u l a r i t i e s ,  t o g e t h e r  w i t h  the i r  s o l u t i o n s  i n  t e r m s  

of a p p r o p r i a t e  h i g h e r  t r a n s c e n d e n t a l  func t ions .  An approximate 

s o l u t i o n  of c e r t a i n  equa t ions  w i t h  " a r b i t r a r y "  c o e f f i c i e n t s  

u sua l ly  can be obta ined  by s o l v i n g  approximately i t s  e q u i v a l e n t  

equat ion  i n  Riccati form [eq. (9)  1. 
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A perusal of the elementary-functions solutions of 

the differential equations shown in the previous sections 

also indicates that when a differential equation has (A)  a 

regular singular point or (B) an irregular singular point, 

its general solution has, respectively, (A)  a pole or branch 

point or (B) an essential singularity.[201[211 We also note 

that the elementary-functions solutions of the differential 

equations are all in agreement with Liouville's two theorems 

concerning linear differential equations. 

Ince [221 and Kambe [ 231  have classified differential 

[41 

equations according to the number and the nature of their 

singular points. Our main classification here is based on 

various specific relations between the coefficients ~ ( x )  and 

u2 (x )  and our sub-classification on various arbitrary speci- 

fications of ~ ( x ) ,  which can be any analytic or singular function. 

A concise classification is shown in the attached table. Those 

second order homogeneous linear differential equations solved 

in terms of elementary functions and listed by Kambe [221 belong 

to some of our classifications. 
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6.0 DIFFERENTIAL EQUATION TABLE 

2 
y" + p ( x ) y '  + w (XI  y = 0 

2 Class (1): p(x )  and w (x) are related 

(1 1 - 

w 2  and p both  cons t an t :  
C C 

2 y" + pcy' + w y = 0, C 

1 

l 2  l 2  

1 
y = e  zvcX .fi w c  - T y c )  z x 

= 0 ,  2 1 2  when w - - c 4 vc 

Y" + w c  - pc  2 )  Y = O  l 2  
1 

(11 1 

2 
w = p' o r  0 :  p any func t ion  of x 

= 0, or y" + P Y '  = o  y" + py' + P ' Y  

p any f u n c t i o n  of x 
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k lpdx; -1pdx 
2 I 

y =  1 - - J e  ! e  e- 

-Ipdx +i K l e  / p d x  dx 
when k = 0 ,  y = e e- 

(IV) 

w 2  i s  c o n s t a n t  ((2' = c o n s t a n t  E )  
C 

2 Ax -Ax 

e +ke 
e -ke y" + 21 A x  -lx y '  + w y = O f  

C 
Y" + t 2  Y = 0 

.iEx - i < x  
+ C 2 e  2 2 2 

I where A = w - 5 1 

e + ke-Xx C Y =: A x  

(v) 

p any f u n c t i o n  of x -1vdx . w =  Q' = K e  

2 -2Jpdx \ y" + py' + ' K  e i y  = O f  
i 

y = e- +iK/e-lpdXdx 



I 

1 
2 

I - -  

2 
w - - -  f ( x )  + + + ( Q ' ) 2  2 :  

I 

y" + lJy1 + [+ f ( x )  + ' 1  + 3) 2 + K 2 e 2,fS(x)dx] y = o  

-I/ ('+S) dx e lSdxdx 
y = e 2  

yti + ' 1  f (x)  + K 2 e 21Sdx 1 Y = O  

2 
( V I )  (B) f (x)  = c o n s t a n t  2 5  , 

( V I )  (C) f ( X I  = 5 (X+x)-2 

( V I )  (D) f (x)  = E 2  ( X + X ) - 4 ,  

Q ' =  K (1-kx)-2 

Q ' = K ( X + X )  ( - l + J 1 - 2 5  - 1 

1 2  
75x 

Q' = Ke 
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1 

4 
(VI) (F) f (x) = C X - 3  

(VI) (G) f (x) = other function of x 

2 Class (2): p(x) and w (x) are arbitrary 

Differential equations soluble by known higher transcendental 

functions 

Differential equations soluble in definite integral form or 

continued fraction form 

Differential equations which can be solved only by approximate 

methods or other [unknown yet) higher transcendental functions. 

1014-CCHT- cp 
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