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ANALYTICAL AND EXPERIMENTAL INVESTIGATION 
OF HIGH ENTRAINMENT J E T  PUMPS 

by  Kenneth  E.  Hickman,  Gerald B. Gilbert,  and  John H. Carey 

SUMMARY 

The  use of jet pumps is of increasing  interest  for  boundary  layer  control 

or control  force  augmentation  in V/STOL aircraft .  In  typical  applications,  a  small 
mass  flow of p r imary   a i r   a t   p re s su res  up to 400 psia  can be used to entrain  a  much 
l a rge r   mass  flow of secondary  air  at  ambient  conditions. The primary  nozzle flow 

is supersonic  while  the  secondary flow is  subsonic.  The  jet  pump  system  design ob- 

jectives  may  be  maximum  entrainment,  maximum  thrust  augmentation,  or  some 
combination of the two. Little  information is available in  the l i terature  to guide  the 

designer of jet pumps  for  such  applications. 

In this investigation,  a  simple  analytical  model  was  developed  to  predict 
the  performance of high-entrainment  compressible flow jet  pumps  with  constant  area 

mixing  tubes.  While  the  model is suitable  for  hand  calculation,  a  computer  program 

was  prepared  to  facilitate  calculation of jet  pump  performance  curves  and  allow  com- 

parison of different  jet  pump  designs.  Analytical  techniques  were  developed  for 

matching  the jet pump  design  to  its  associated  duct  system in order  to  achieve  maxi- 
mum  entrainment or  thrust  augmentation. 

The validity of the  analytical  model  was  confirmed  by  an  extensive test 
program  using  a  multiple-nozzle jet pump  with two different  mixing  tube  lengths. 

The  primary-to-secondary flow area  ratios  were  varied  from 0.0013 to 0.0067. 

The  primary flow pressure  ranged  from 55 psia  to 350 psia.and the pr imary flow 
temperature  ranged  from 200" F to 1200" F. The  observed  entrainment  ratios  varied 

from 15 to 37. The  performance of each  jet  pump  geometry  was  measured  over  a 

very  broad  range of operating  conditions in order  to  develop  performance  maps  for 
comparison  with  the  analytical  predictions. 



Section 1 

INTRODUCTION 

1.1 Background 

Jet  pumps  have  been  used  for  many  years  in  industrial  applications  where 

a high-pressure gas such  as  steam  is   used  to  pump a lower-pressure gas. The jet 
pump i s  a simple  low-cost  device  with no moving  parts  and is particularly  convenient 

for  use  with  troublesome  fluids  such  as  two-phase  flows,  high-temperature gases, 
or  corrosive  gases.  Jet pumps  are  usually  employed  as  low-pressure-rise  devices 

and  their  thermodynamic  efficiency  is  low, i. e . ,  under 20%. Because  they  are low- 

cost  devices of limited  performance  potential,  there  has  not  been a strong  incentive 

for  research  and  development  work on industrial  jet  pumps. 

In recent  years,   applications of jet  pumps  to  boundary  layer  control  sys- 

tems  have  become of increasing  interest  for  STOL  aircraft.  Systems  have  been  pro- 

posed  which use jet  pumps  to  entrain a large flow of secondary  air  which is then 

directed  over a deflected  flap  for  lift  augmentation. In a configuration  patented  by 

F. G. Wagner  (references 1 and 2 ) ,  a jet  pump  is  used  to  entrain  air  from  one sec- 

tion of the  trailing  edge of a wing  (boundary layer  suction  upstream of a deflected 

flap)  and  then  to  discharge  it  over a deflected  flap. In this  way,  the  inherent  ineffi- 

ciency of the  jet  pump  is  partially  balanced by the  double  employment of the  entrained 

air  for  boundary  layer  control.  Jet  pumps  may  also  have  application  in VTOL a i r -  

craft  for  direct  lift o r  control  force  augmentation.  The  primary,  high-pressure flow 

for  the  jet  pumps  can  be  provided  by a bleed  from  the  main  engine  compressors o r  by 

an  auxiliary  power  unit. 

The  use of jet  pumps  as  primary  components of V/STOL aircraf t  sys -  

tems  places new emphasis upon development of design  techniques  for  these  devices. 

It is   essential  to be  able  to  minimize  the  size of jet  pumps  for  particular  primary 

and  secondary  flow  conditions,  and  to  be  able  to  predict  the  performance of jet  pumps 

over a broad  range of operating  conditions.  However,  systematic  design  and  analy- 

s i s   p rocedures   a re  not  available  for  high-entrainment-ratio  compressible-flow  jet 

pumps. 
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1 . 2  Previous  Work 

A number of investigators  have  carried  out  analytical  and  experimental 

studies of a i r - to-air   je t   pumps,   p~imari ly   for   appl icat ions  requir ing high pressure 

rise or  thrust  augmentation. ThG entrainment  ratios  developed by these jet pumps 

are low,  generally less than 10. Thus,  this  work is not  directly  applicable  to  the 

high  entrainment  requirements of V/STOL aircraft   systems.  Nevertheless,   this 

work  provides  useful  guidance  for  the  development of performance  prediction  tech- 

niques  and  design  rules  for  high-entrainment jet pumps. A brief  review of some of 
the  principal  air-to-air jet pump  papers  follows. 

The  performance of constant-area  jet  pumps  was  analyzed by McClintock 

and Hood for a range of design  and  operating  conditions  in  reference 3.  The analy- 

sis  was  prepared  by  assuming  incompressible flow but  the  influence of compressi- 

bility  was  discussed  in  qualitative  terms.  Empirical  coefficients  derived by testing 

were  included  in  the  theory.  The  influence of mixing  length  and  the use of various 
multiple-nozzle  primary flow geometries  were  studied  experimentally. The jet  

pumps  treated  had  entrainment  ratios of 10 or  less;  the  design  goal  for  the  study  was 

achievement of maximum  thrust  augmentation. 

A one-dimensional  method of analysis of jet  pumps  was  developed  by 

Keenan,  Neumann , and  Lustwerk  in  reference 4. The  analysis  was  applied to  both 

constant-area  and  constant-pressure  mixing  processes.  Test  results were obtained 
for  jet  pumps  with  secondary-to-primary  area  ratios up to 100,  primary-to-secondary 

pressure  ratios  up  to 200, and a primary-to-secondary  temperature  ratio of 1 .0 .  

The  various  regimes of operation of jet  pumps  with  supersonic  primary  flows  and 

both supersonic  and  subsonic  primary  flows  were  described.  The  analytical re- 
sults  given  were  for jet pumps  developing  substantial  stagnation  pressure  rises 

(e. g. , pressure  ra t ios   f rom 2 to 10) a t  low entrainment  ratios  (under 10). 

Fabri   carr ied  out  a number of experiments on jet pumps  which  supple- 

ment  the  results  reported  by  Keenan,  et  al.  Fabri 's  results,  with  supporting  analy- 

sis, a r e  given  in  references 5 and 6. These tests also  were  confined  to low entrain- 
ment  ratio  jet  pumps.  Excellent  agreement  was  obtained  between  analytical  predic- 

tions  and  measured jet pump  performance. 
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An extensive  analytical  and  experimental  program  was  conducted  at  the 

University of Minnesota  Rosemount  Aeronautical  Laboratories  on  jet  pumps  with 

secondary-to-primary  area  ratios up to  36,  primary-to-secondary  pressure  ratios 

up  to  32,  and  primary-to-secondary  temperature  ratios up  to  3.3.  The  results are 
presented  in  references 7 ,  8,  and 9. Single-nozzle  primary  flows  with  constant- 

area  mixing  tubes  were  used  in  these  studies. High entrainment  ratios were not an 

objective of the  jet  pump  design;  typical  entrainment  ratios  reported  were  less  than 

3. A number of analytical  results  showing  the  influence of duct  matching upon jet 

pump  and  system  performance  were  included  in  the  reports. 

An analytical  procedure  for  constant-area  jet  pumps  with  subsonic  pri- 

m a r y  flow was  developed  in  reference  10. A computer  program  was  prepared  for 

use  in  optimizing  jet  pump  design  for  particular  application  requirements. An analy- 

sis  applicable  to  supersonic  primary  flows is given  in  reference 11. The  analysis 

was  compared  with  test   results,   but  was not otherwise  applied  for  jet  pump  design  or 

optimization. 

The  performance of a high-entrainment  jet  pump  was  measured  in  the 

Wagner  "Jet  Induced  Lift"  boundary  layer  control  system  (figure 1 ). These  tests 

were  performed by  the  present  investigators  under NASA contract No. NAS2-2518. 

The  resul ts   are   reported  in   reference 12.  The  jet  pump  component of the  system 

employed a variable-area  mixing  tube  (designed  in  an  effort  to  obtain  constant  pres- 

s u r e  mixing)  and a 9-nozzle  cluster  for  the  primary  flow.  The  jet  pump  was  tested 

in  the  system  at  secondary-to-primary  area  ratios  ranging  from 150  to 800, primary- 

to-secondary  pressure  ratios up to  26,  and  primary-to-secondary  temperature  ratios 

up to 5.5. The  desired  constant  pressure  distribution  in  the  mixing  tube  was  not 

achieved.  The  entrainment  ratios  predicted  for  the  complete sys temwere  notattained. 

The  results of the NAS2-2518 program  showed  that  the  methods  used  to  design  the 

high-entrainment  jet  pump  and  to  match  it  to  the  duct flow characterist ics were in- 

adequate.  These  results  provided  the  impetus  for  the  present  study. 
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1 . 3  Purpose 

The  objectives of this  investigation  were  as  follows: 

0 to  develop  analytical  procedures  for  predicting  the 

performance of high-entrainment-ratio  jet  pumps 

0 to  demonstrate  the  application of these  procedures 

to  match a jet pump  design to its  connecting  duct 

s y s  tem 

0 to  verify  the  analytical  procedures by testing a jet  
pump  over a broad  range of operating  conditions  and 

jet  pump  geometries. 

The  analysis  and  experimental w o r k w e r e  confined  to  constant-area  mixing 

tube  geometries  because  both  analysis  and  construction are simplified by this  choice. 

The  only  other  mixing  process  which  can be analyzed  without  complication is   the  con- 

stant  pressure  case.   However,  no reliable  methods  are  available  for  designing a 
mixing  tube  which  will  actually  achieve  constant  pressure  mixing.  Furthermore, 

this  condition  can  be  achieved  at  only  one  operating  point  for a jet  pump of fixed 

geometry. 

Some of the test results  obtained  under  contract NAS2-2518 indicated 

that  the  design of the  nozzle  cluster  and  its  position  in  the  mixing  tube  may  have 

created  either  high  pressure  losses  in  the  secondary  flow  or  poor  mixing  conditions 

at  the  mixing  tube  inlet.  The  mixing  process  did  not seem to  be completed  within 

the  length of the  mixing  tube  used.  These effects were  thought  to  be  partially  respon- 

sible  for  the  difference  between  predicted  and  measured  performance  for  the  com- 

plete  system.  Therefore,  an  additional  objective of the  present  investigation  was  to 

test two alternative  "low-drag"  nozzle  cluster  designs  and  an  extended  mixing  tube  to 
determine  whether  these  design  changes  would  lead  to  significant  performance  im- 

provements. 
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2 . 1  
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Section 2 

SYMBOLS 

Symbols  Used in the  Analysis and Test  Results 

a rea ,  f t  

area  ra t io  = AthCw/Am, dimensionless 

gas  specific  heat  at  constant  pressure,  Btu/lbm-"F 

nozzle flow coefficient,  dimensionless 

duct  diameters , inches 

friction  coefficient,  dimensionless 

dimensional  constant, 3 2 . 2  lbm-ft/lbf-sec 

stagnation  enthalpy,  Btu/lbm 

conversion  factor, 778.2  ft-lbf/Btu 

2 

2 

k gas  specific  heat  ratio,  dimensionless 

K duct  loss  coefficient , dimensionless 

L duct  length,  inches 

m  entrainment  ratio = Ws/W dimensionless 

m  maximum  entrainment  ratio,  dimensionless 

M Mach  number,  dimensionless 

PY 

max 

P pressure,   psfa   or   psia  
- 
P pressure  ra t io  = P /Pso, dimensionless 

P* pressure  ra t io  = Pm/P dimensionless 

q dimensionless  dynamic  head = pV /2 goPso, 

PO 

so' 
dynamic  head = p 9 / 2  go, psfa 

- 2 

r radius , inches 

r 
0 

outer  radius of mixing  tube  cross  section,  inches 

R gas  constant  for  air = 53 .35  ft-lbf/lbm-"R 
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T 

T 

” 
V 

V 

V* 

W 

- 

- 

CY 

p’ 

a 

6 

A P  

A ’ext 

A pS 

APs* 

A pt 

@t* 

P 

r 

7 
W 

cp 

temperature,  OR 

temperature  ratio = T /Tso, dimensionless 
PO 

system  thrust  augmentation = WmVb/W V dimensionless 
P P2’ 

velocity,  ft/sec 

velocity  ratio = V /V dimensionless 

velocity  ratio = V  /V dimensionless m  p2’ 
mass  flow rate,  lbm/min 

s 2  p2’ 

parameter  defined by equation  (34) 

parameter  defined by equation  (35) 

parameter  defined by equation (45) 

parameter  defined by equation  (46) 

pressure  change,  psf 

ambient  pressure  r ise  imposed upon jet  pump  system= 
’b - psf 

s ta t ic   p ressure  rise = P - pso, PSf 

dimensionless  static  pressure rise = (P  m - ps0)/ps07 

stagnation  pressure  r ise = Pmo - Pso,  psf 

dimensionless  stagnation  pressure rise = (P mo-’so)’‘so 

density,  lbm/ft 

thrust  augmentation = W mVm’WpVp2, dimensionless 

wal l   shear ing  s t ress ,   ps i  

impuls e function 

3 

7 



Subscripts 

a 

b 

d 

e 

i 

P 

m 

M T  

0 

P 

S 

SD 

th 

1 

2 

Superscripts 

( 

atmospheric  condition 

blowing  duct  exit  section 

original  conical  diffuser  exit  section 

test  rig  diffuser  exit  section 

suction  duct  inlet  section 

overall  duct  loss  coefficient 

section at end of mixing  region 

mixing  tube 

stagnation  value 

primary  stream  variable  at  nozzle  exit 

secondary  stream  variable  at  nozzle  exit 

section  duct 

primary  nozzle  throat 

section  at  primary  nozzle  exit 

section  at  end of accommodation  region 

value of parameter  at   end of frictional  mixing  tube 
extension  (Section 3 . 1 . 5 )  

71mass-momentum1'  averaged  value  from  test 
results 
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2.2  Symbols  Used  in  the  Computer  Program 

Formulation 
Name 

Constants 

g0 

J 

R 

Variables 
- 
A 

*th 

*P 

Am 

Not Used 

cw 
C 

P2 

cs2 

'm 

HP2 

Hs2 

Ksd 

Kmt  
M 

P2 

Computer 
Name 

GO 

CONV 

R 

ABARl 

ATH 

A P  

AM 

ABAR2 

cw 
c P2 

c s 2  

CM 

H P2 

HS2 

FDUCT 

FTUBE 

PMOK 

Definition  and  units 

dimensional  constant,  32.2  ft-lbm  lbf-sec 2 

conversion  factor, 778 ft-lbf/Btu 

gas  constant,  ft-lbf/lbm-OR 

A C /Am, dimensionless 

nozzle  throat  area,  ft 

nozzle  exit  area, f t  

mixing  tube  area, f t  

th w 
2 

2 

2 

A /Amy dimensionless 

nozzle flow coefficient,  dimensionless 
P 

primary  specific  heat  (C ) y  location  2, 
Btu/lbm-"R  P 

secondary  specific  heat (C ) , location 2 ,  
Btu/lbm-"R P 

specific  heat  (C ) at  location  my  Btu/lbm-"R 

primary  stagnation  enthalpy,  station  2, 
P 

Btu/lbm 

secondary  stagnation  enthalpy.station 2,  
Btullbm 

suction  duct  friction  coefficient 

mixing  tube  friction  coefficient 

pr imary Mach  Number,  location 2 , 
dimensionless 
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Formulation 
Name 

Ms2 

Mm 

m 
- 
P 

P 
PO 

'sei 

pso 

P 

P 

T 

m 

mo - 

T 
PO 

Tso 

T 
P2 

Ts2 

Trn 

vP2 

vs2 

'm 

wP 

wS 

wm 

pmo - pso 

Computer 
Name 

SMOK 

EMOK 

ENTR 

PBAR 

PPO 

PSOI 

PSO 

PM 

PMTOT 

TBAR 

TPO 

TSO 

TP2 

Ts2 

TM 

V p 2  

vs2 

VM 

W P  

ws 
WM 

DELP 

Definition  and  units 

secondary  Mach  Number,  location 2 , 
dimensionless 

Mach  Number at location  m,  dimensionless 

entrainment  ratio,  dimensionless 

P /Pso, dimensionless 

primary  stagnation  process,   psi  
PO 

secondary  stagnation  pressure  at  duct 
inlet,  psi 

secondary stagnation  pressure  at  nozzle 
exit,  psi 

s ta t ic   p ressure  at location my  psi  

stagnation  pressure  at  location  my  psi 

Tpo/Tso,  dimensionless 

primary  stagnation  temperature, "R 

secondary  stagnation  temperature, OR 

primary  temperature,  location 2 ,  OR 

secondary  temperature,  location 2 , OR 

temperature  at   location  my OR 

primary  velocity,  location 2,  f t /sec 

secondary  velocity,  location 2 ,  f t /sec 

velocity  at  location  m,  ft/sec 

primary  mass flow rate,  lbm/min 

secondary  mass flow rate,  lbm/min 

total  mass flow rate ,  W + Ws,  lbm/min 

stagnation  pressure  r ise,   psi  
P 
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. 
Formulation 

Name 

'mo - 'so 
P so 

'm - ' s o  

'm - 'so 
pso 

pm Vm2 
go 

2 
Pm vm 

2go  pso 

7 

Computer 
Name 

DDELP 

DSTAT 

DDSTAT 

ENER 

DENER 

AUG 

Arrays  

CHAR1 

CHAR2 

COUNT 
ENT 
PRISE 

PTITLE 

SUM 

THROS 

TTITLE 

Definition  and  Units 

dimensionless  stagnation  pressure  r ise 

static  pressure  change,  psi  

dimensionless  pressure  change 

kinetic  energy  at  location  m,  lbflft 2 

dimensionless  kinetic  energy 

wmvm/wp Vp2, momentum  ratio, 
dimensionless 

store  solutions  for  dimensional  table 

store  solutions  for  dimensionless  table 

store  number of solutions  for  plotting 

store  entrainment  ratio  for  plotting 
store  DDELP  values  for  plotting 
store  title  for  plotting 

store  number of solutions  for  table 

s to re  AUG values  for  plotting 

store  title  for  plotting 
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Section 3 

ANA LYSIS 

3 . 1  Formulation of the  Mathematical Model 

In this  section  an  analytical  model  is  developed  to  predict  the flow be- 

havior  in a compressible flow jet pump  with a constant-area  mixing  tube.  The  anal- 

ysis  is  intended  to  provide a complete  description of the  important flow parameters  

at  specific  locations  within  the  jet  pump  and  to  describe  the  overall  operation of the 

jet  pump  as  an  entrainment  and  thrust  augmentation  device.  The  analysis  was pre- 

pared  for  air-to-air  jet  pumps.  The  parameters  used i n  the  analysis  are  l isted i n  

section 2. The  geometr ical   parameters   are  shown in figure 2. 

The  fundamental  purpose of the  analytical  model  is to develop  the  per- 

formance  characterist ics of the  jet  pump  directly.  These  performance  character- 

istics  can  be  represented  by  plots of jet   pump  pressure rise and  momentum  ratio  as 

functions of entrainment  ratio  for a number of values of primary  jet   pressures  and 

temperatures  and  for  various  area  ratios.   The  performance  characterist ics  in  this 

form  are  analogous  to  head  vs.  capacity  curves  or  performance  maps  which are  

commonly  used  for  pumps  and  compressors. 

The  equations  describing  jet  pump  performance  and flow behavior  include 

the  entrainment  ratio  as  an  independent  parameter.  The  assumption of a particular 

value  for  the  entrainment  ratio  (together  with  the  inlet flow p res su res  and  tempera- 

tures  and  the  primary-to-secondary flow area  ratio)  allows  calculation of a l l  of the 

performance  and flow parameters  for  that  operating  point,  Then  another  value is 

assumed  for  the  entrainment  ratio  and  the  calculation  procedure  is  repeated. Suc- 

cessive  points  on  the  jet  pump  performance  curves  are  determined  in  this  way  until 

the  complete  curve  is  traced  out. In the  present  calculations,  the  entrainment  ratios 

were  l imited  arbitrari ly  to  the  range  from 10 to 40. In some  cases ,   the  Mach  num- 

b e r  of the flow in  the  accommodation  region  reached 1 . 0  for  an  entrainment  ratio 

less than 40. Higher  entrainment  ratios  cannot  be  achieved  in  such  cases  because 
the  constant-area  mixing  tube  chokeswhen  the  secondaryflow  Mach  number  reaches 1 . 0 .  

12 



3. 1. 1 " Assumptions - Used  in  the  Analysis 

The  following  assumptions are made  to  simplify  the  analysis  without 
seriously  compromising  its  accuracy: 

1. 

2. 

3. 

4 .  

5. 

6. 

The  values of specific  heat  at  constant  pressure (C) 

and  the  specific  heat  ratio (k) a re   exp res sed   a s  func- 

tions  of  temperature;  otherwise  the gas is considered 

to  be a perfect gas. 

Wall  shear  forces  are  assumed  to  be  negligible when 

compared to  the pressure  forces  and  the  momentum of 

the  primary  and  secondary  streams.  (This  assumption 

is  reviewed  in  section 3. 1.4.) 

No heat  is  transferred  across  the  wall of the  jet  pump. 

The  mixing  tube  is  assumed  to  have a constant  cross- 
sectional  area  along  its  entire  length. 

When  the primary  nozzle  is  operated  at  an  off-design  pres- 

sure  ratio,   the  primary  jet   is   assumed  to  expand  or  contract  
isentropically  until  the  primary  and  secondary  streams  have 

equal  static  pressures.  This  adjustment  process is assumed 

to  take  place  in  the  accommodation  region  between  sections 1 

and 2 (see figure 2 ) and is  assumed  to be  completed  before 

any  mixing  takes  place  between  the two s t r eams .  

The  stagnation  temperature of the pr imary flow is  assumed 

to  be  sufficiently high that  moisture  condensation  shocks do 

not occur as  the  flow  expands. 

3.  1.2  Analysis of the  Accommodation  Region 

The  geometrical   parameters  and flow  conditions  in  the jet pump are de-  

fined as  shown  in  figure 2 .  The  primary  stream  enters  the  accommodation  region  as a= 

very high  velocity jet; its  Mach  number  may  be  as high a s  3 .  5. The  large  momentum of the 
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pr imary  jet induces  a  secondary flow.  In  the  region  defined a s  the  accommodation 

region, it is assumed that the  primary  and  secondary jets do  not  mix,  but  the  prim- 

a r y  jet expands or  contracts  unti l  its static pressure  matches  that  of the  secondary 

s t ream. At  the  point  where  the  static  pressures are equal,  denoted a s  section 2, 

the  accommodation  process is assumed  to  be  complete  and  the  flows  are  parallel. 

This  accommodation  process is generally  accompanied by  a series of oblique  expan- 

sion  and  contraction  shock  waves  as  the  primary flow area  adjusts  to  match  the  local 

static  pressure  outside  the jet. However, if the  jet  pump is operated  close  to  itsde- 

sign  conditions,  the  degree of accommodation is small  and  the  losses  caused  by  the 

shock  waves  will  be  small. A simplified  oblique  shock  analysis  indicates  that a noz- 

zle  designed  for 350 psia  supply  pressure  can  be  operated down to 200 psis with 

a  total  pressure loss due to shock  waves of only 3%. For  the values of supply  pres- 

su re  to  be  considered  here, the e r r o r  introduced by treating both s t reams  as   i sen-  

tropic  flows is negligible.  In  fact,  one of the  aims of this   research  was to show  thal 

an  assumption of isentropic flow during  the  accommodation  process  will  produce 

good results  even  when the system is operated  at  conditions  quite far from the de- 

s ign  point. 

A s  long as the  ratio of (P /Pso) is sufficiently  high  to  guarantee  a  super- ! 
PO 

sonic  primary  flow,  as  in  the  cases  being  considered  here,  the  primary  mass flow 

rate  may  be  calculated  directly  using  equation (1). 
k + l  ' 
k- 1 144x P (60 x At. C,S 

w =  P R 5 (1) 

By specifying  an  entrainment  ratio,  m = Ws/Wp, the secondary  stream 

mass  flow rate   can  a lso  be found directly. 

ws = m W  
P 

In  a  perfect gas, the  local  values of total  and static pressure   a re   re la ted  

to  the  local  Mach  number  by the following  equation. 
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k 
k -  1 

Po/P = (1 + - k - l  M2) 2 

At  the  end of the  accommodation  region,  the  static  pressures of the primary  and 

secondary  streams  are  equal.   Therefore,   at   the  end of the  accommodation  region 

the  following  relation  must  be  satisfied. 

k k - 
k - 1  2 k -  1 k -  1 k - 1  

P /(1+- ) 
P O  2 P2 2 Ms2 ) 

- Pso/ (1+ - - (4) 

The  mass  flow rate  per  unit   area  for  an  isentropic flow i s  given by the 
relation below: 

The  geometry of the  constant  area  mixing  tube  requires  that A p2 + As2 - Am* 
Using  equation (5  ) to  represent A and As2, and  inserting  the  appropriate  unit 

conversion  factors,  the  geometry  condition  becomes  as  follows: 

- 

P2 

When W m, Ppo, 
P' 

Pso, Tpo,  Tso  and Am a r e  specified,equations ( 4  ) 

and ( 6 ) can  be  solved  simultaneously to obtain M and Ms2. Equation (5 ) can  be 

used to find A and As2. 
P2 

P2 

Since  the  flow of both  the  primary  and  secondary  streams is assumed to 
be  isentropic  in  the  accommodation  region,values of s ta t ic   pressure,   temperature ,  

and  velocity  can be obtained  for  each  stream  at  location (2) by  employing  the  follow- 

ing  equations. 
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k 

k - 1  
2 

2 k -  1 p = P / (1+-  P2 PO P2 ) 

T T / ( l + -  k -  1 2 
M )  P2 PO 2 P2 

3.1.3  Analysis of the  Mixing  Region 

The  primary  and  secondary  streams  enter  the  mixing  region  with  equal 

static  pressures  and  parallel  velocities. In this region,  complete  mixing  takesplace 

and  a  uniform flow with  constant  properties  across  the  channel is obtained at   section 

m.  Treating  the  mixing  region  as  a  control  volume  with  completely  specified  enter- 

ing  flows,  the  following  equations  can  be  applied. 

Continuity  Equation: Wm = W (1+ m) 
P (12) 

Mass  Flow Rate: Wm - - 6 0 X P m  V A  (13) 

Equation of State: 'm - 
- p, R  Tm/144 (14) 

Momentum  Equation: 
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Energy  Equation: 

where H is stagnation  enthalpy; 

V 2 
H =  P2 

P2 cp2  Tp2 + 2 g o J  

Hs2 - cs2  Ts2 + 2goJ 
2 

vs2 - 

The  equation  for  the  specific  heat  at   constant  pressure  for air as 
given  in  the "" Gas Turbine  Engineering  Handbook, G a s  Turbine  Publications,  Inc. , 

1966,  page  4, is presented  below. 

Ci = . 24916 - .482x  Ti  + .681 x (17) 

Equations (13) and (14) are combined  to  give 

Tm = 60 x 144 x (Pm Vm Am/R Wm) 

Equation (15) is written  in  the form 

and  equations  (16)  and  (18) are combined  to  yield 

Since  the  values of T and Ts2 are known at the  inlet  to  the  mixing P2 
region, Cp2 and C s 2  can  be  evaluated  directly  using  equation (17). Equations (12), 
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(17), (18), (N), and (20) represent  f ive  equations  for  the  f ive unknown exit  parame- 

t e r s ,  Wm, Tm, Cm, Pm and Vm. Therefore,  these  five  equations  represent a com- 

plete set which  describe  the  properties of the flow leaving  the  mixing  section. In 

most  instances,  T  and  Ts2 are sufficiently  close  in  value  to  permit  the  use of a 
constant  specific  heat,  Cp2 = Cs2 = C . This  simplifies  the  solution by removing 

equation (17) from  the  equation set. 

P2 
m 

3.1.4 Jet Pump  Performance  Parameters  

The  jet  pump  performance  parameters  which  are of particular  interest 

are the  stagnation  pressure rise and  the  momentum  augmentation.  These  parame- 

ters can  be  evaluated by using  the  following  expressions. 

A P t  - P ( I + -  - k-1 2 
m 2 m  ) - P  s o  

and 
7 = outlet  momentum/primary  momentum 

w v  ( m +  l ) V  
7 =  m m  - - m 

P P2 
w v  V 

P2 

During  the  jet  pump  test  program,  the  measurement of the  stagnation 

pressure  r ise  produced by the jet pump  proved  to  be  difficult to accomplish. It was 

much  easier  to  measure  the  stagnation-to-static  pressure  r ise  in  the jet pump. 

This   pressure  r ise   can be  used to define  another  jet  pump  performance  parameter, 

A Ps, which  serves as an  alternative  to  the  stagnation  pressure  rise  parameter, A Pt. 

A P  = P - P  
S m s o  

All of the  values  needed  to  compute A Pt, A Ps, and T are provided  by  the 

analyses of sections 3.1.2 and 3.1.3. 
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The  analysis of the  mixing  region  presented  in  section 3 . 1 . 3  neglected 
the  effect of wall  friction;  this  simplifies  the  equations  describing  the  mixing  process. 

In  this  section, a procedure is developed  to  include  the  effects of wall  friction  in  the 
jet  pump  analysis. 

The  mixing  region  was  assumed  to  extend  from  the  point  where  the  pri- 

mary and secondary  s t ream  pressures  are equal  to  the  point  where  they  have  merged 

into a uniform  flow  with  constant  properties  across  the  channel.  In  reality,  the  wall 

friction  effects  occur  in  conjunction  with  the  mixing  process.  Unfortunately,  it  is 

difficult  with  the  current  state of knowledge  to  predict  wall  friction  losses  accurately 

in  the  mixing  region.  Therefore,  rather  than  adjust  the  mixing  region  analysis  to 

include  the  wall  friction  effects,  we  considered  that  it would  be  preferable  at  this 
time  to  treat  the  mixing  process  and  wall  friction as independent effects by imagining 

the  mixing  tube  to  extend as shown  in  figure 3 beyond  the  point  where  the  mixing 

process is complete.  The  flow  phenomena  occurring  in  the  mixing  portion,  segment 

I ,  is a mixing  process  without  wall  friction as analyzed  in  section 3 . 1 . 3 .  The  fric- 

tional  portion,  segment 11, represents  the effect of wall   shear  forces upon a uniform 

adiabatic  flow.  The  hypothetical  extension of the  mixing  tube  is  meant  to  represent 
the  friction  occurring  within  the  actual  mixing  tube. 

The effect of wal l   shear   forces  in  ducts is commonly  represented by a 

coefficient of friction  defined as follows: 

7 
W f =  2 

PV /28, 
where T is the  shearing stress exerted upon the stream by the  wall.  The  corres- 

ponding  stagnation  pressure  loss is given by equation  (25). 
W 
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where 

L = duct  length 

D = duct  diameter 

In  many  flow  analyses,  the  value of the  coefficient of friction is taken 

from  test  results  for  pipe  flow.  The  friction  coefficient  is a function of wall  rough- 

ness  and Reynolds  number.  However, i n  the  case of the  mixing  tube,  the  wall fric- 

tion  occurs  in a very  non-uniform flow  which  has a high  level of turbulence.  The 

value of the  coefficient of friction for  the  mixing  tube  cannot  be  accurately  determined 

from  pipe flow data.   Therefore,  it is convenient  to  represent  the  mixing  tube  wall 

fr iction  loss  in  terms of a head  loss  factor,  KMT,  which  must  be  determined  experi- 

mentally. 
n 
L 

- Pm  vm 

mixing  tube - K~~ 2 go 

The  equations  for  an  adiabatic  flow  in a constant-area  tube  with a stagna- 

t ion  pressure  loss  are given  below.  Primed  variables  denote  parameters at the end 

of the  hypothetical  extension of the  mixing  tube. 

Momentum  Equation: 

k k 2 

144 Pm(l + k-l 2 m  M 2)m - 144 Pml(l + - k -  2 1 Mm .”)”= KNIT Pm 2go  I’m (27) 

Energy  Equation: 

V 
- m -  - Cm Tm’ + - 

2 

C m T m +  go  go 

Continuity  Equation: 

’m m ’m m v =  ‘ V  ‘ 
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State  Equation: 

Definition of Mach  Number: 

These  equations  can be combined  to  give  the  following  results: 
k - 

'm M m t 2  (1 + 2 k -  1 M,'") = B 

where 

2 p =  P k -  1 

(3 5 )  

(37 )  

21 

Eliminating P between  equation (34 ) and equation ( 3 5 )  yields  equation m 
(38) which  can be used  to  determine  Mmt . 



After  equation  (38) is solved  for  Mmf,  equation  (34)  can be used  to  determine P I .  

Combining equations (29), (3O), (31),  (32), and (33), an equation  for Tml is obtained. 
m 

Equation  (33) is then  used  to  determine Vm' 

The  equations  developed  in  this  section  can  be  used  to  compute  the  values 

of P m l ,   T m f ,   M m l ,  and  Vm' fo r  a jet pump  when  the  "ideal"  analysis of sections 

3 . 1 . 2  and 3 . 1 . 3  is completed and the  value of KMT is known or  assumed.  Alterna- 

tively,  these  equations  may  be  used  to  deduce  the  value of K  when  values of Pm', 

Tm 3 

puted  by  using  the  "ideal"  analysis. 

MT 
' and Vm' are known from test resul ts  and values of Pm,   Tm,  and Vm are  com- 

3 .  1 . 6  Dimensionless  Formulation 

In  this  section  the  equations  describing  the jet pump  operation are for--  

mulated  in  terms of dimensionless  variables.  The  non-dimensional  formulation is 

valuable  for two reasons: 

According  to  the  principles of dimensional  analysis, a 
solution  in  terms of independent  non-dimensional  groups 

is a general  one.  The  same  solution  may  be  applied  for 

jet pumps  having  great  differences  in  individual  design  or 

operating  parameters so long as the  independent non- 

dimensional  groups are identical.  For  example,  one 

such  group is the  primary-to-secondary  flow area ratio, 

Ath Cu/Am; if all other  non-dimensional  groups are the 

same ,  a large-scale and  small-scale jet pump  having 

identical area ratios will have  identical  non-dimensional 

performance  characterist ics.  

0 The  non-dimensional  formulation  permits  identification of 

the  minimum  number of independent  non-dimensional  groups 
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4 -  

which are required  to  completely  specify a jet  pump  design 

and its operating  characteristics. 

In the  derivation  which  follows,  unit  conversion  factors are not  included, 

and all values of the  specific  heats (C Cs,  Cm) are assumed to be  constant and 
equal. 

P' 

The  equations  which  apply in the  mixing  region are given  below. 

Continuity  Equation: W = W (1 + m )  m  P (12) 

Mass Flow  Rate: - 
Wm - Pm 'm Am (4 0) 

Equation of State : P =  m Pm Tm (4 1) 

Momentum  Equation: 

go Am (Ps2 - Pm) = Wm Vm - W V - m W V 
P P2 P s 2  

Energy  Equation: 

T -I- m Tso = (m + 1) C 
PO 

The  dimensionless  variables  to be used  are  defined  as  follows. 

v* = vm/vp2;  P* = Pm/Pso, F = P /Pso, 
PO 

- 
T = Tpo/Tso, A = Ath CJAm 

- 

Using these  variables,  equations (12 ), (40), (41), (42),  and (43) can  be  combined 
a s  follows, 

P* (ps2/psO) + y [I + m (vS,/vp2) - (m + 1) v*] 

(4 3) 

(44 ) 

(45 1 
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k 2P*V* 6 m 
T v * ~  + - ( m +  1) ( l + = )  = 0 

where 

Y =  wp ‘p2 o m so l g A  
and 

(4 7) 

The  equations  which  govern  the  flow  in  the  accommodation  region are 

developed  next. F o r  an isentropic   pr imary  s t ream, 

and I 1 

Equations (49), (50), and (5 1) can  be  combined  to  give 

(52) 
so 
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Similarly,  equati  ons (44) and (51) can  be  used  to  obtain a value  for 6 :  

k - 1  1 

Thus, y and 6 are shown to  be  functions of P, x, k and P /P 
s 2  so 

The  secondary  stream  velocity is given  by  equation  (54): 

Equations  (49), 

k -  1 

(511, and (54) 

Vs21Vp2 - 
- 

can  be  combined  to  yield 
I k -  1 1 

1 s 
- (52)- 

k -  1 
k 

- [+ (E)] 
From  the  definition of total  or  stagnation  pressure, 

k - 
k - 1  2 k -  1 

Ps2/Pso = 1 / (1 + - 2 Ms2 ) 

(54) 

(55) 

Considering  equations (5 1), (53),  (55), and (56)  together, it can  be  seen 

that  the  parameters y , 6 ,  Vs2/Vp2, and Ps2/Pso are functions of Ms2, P, T, A ,  
m and k only.  Equation ( 5 ) of section  3.1.2  can  be  written  for  the  secondary 
s t r eam as follows. 
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Equation  (57)  can  be  combined  with  equation (50) and wri t ten  in   terms of 
dimensionless  variables as given  below. 

k +  1 

Ms2 
k +  1 

- - 

F o r  high  entrainment  ratio jet pumps,  the  term A  /Am is of order 0.01. 

Thus,   the   term (1 - A  /A ) can  be  approximated as unity.  Equation (58) can now be 

written as follows. 

P 

P m  
k +  1 

Ms2  2 2 ( k - 1 )  F K  
- - 

k +  1 (+1) (5 9) 

k- 1 2 2- 
(1'7 Ms2 1 

Equation  (59)  shows  that Ms2 can  be  determined  from  m, F, A, T, and k. This  in- 

dicates  that y ,  6,  Vs2/V  and P /Pso are functions of P, T ,  x, k and m.  Re- 

turning  to  equations (45 ) and  (46), it can  be  seen  that  the  performance of the jet pump 

depends upon the  parameters  i?, T, x, k and  m.  For  given  values of P, T ,  E and k, 
a complete  dimensionless  solution  can  be  obtained  for  each  specified  value of entrain- 

ment  ratio. 

" 

" 

P2' s 2  

" 

The jet pump  performance  parameters  can be experssed  in  the  form of 

dimensionless  groups  using  the  fundamental  dimensionless  parameters.  The  momen- 

tum  augmentation, T , is already a dimensionless  group: 

The  dimensionless  stagnation  pressure rise parameter  is defined as follows: 
k 
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k- 1 
Apt * - - Apt = P* ( I+  2 k- 1 2 - 

Mm ) 
- 1  

pso 
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To evaluate  Apt *, it is necessary  to  know Mm2. Using  the  dimensionless 

Mm2 is given by equation (62). 

" 2 

Thus, Apt * is a function of the  fundamental  dimensionless  variables  which 

variables, 

(62) 

deter- 
mine V*, P*, and . The  s ta t ic   p ressure   r i se   parameter ,  A P  can  be  expressed 

in  dimensionless  form  as  follows: 
S Y  

APs* = 

Equations (60) through  (63)  show  that  the  dimensionless  jet  pump  per- 

formance  parameters  are  functions of the  fundamental  independent  dimensionless 

variables F, T ,  x, k, and m.  Five  such  independent  variables and  only  five  have 

to  be  specified  in  order  to  determine  the  jet  pump  performance  characteristics  in 

dimensionless  terms.  (This  conclusion is restricted  to  jet  pumps  which  satisfy  the 

assumptions  listed  in  section 3.1.1 and the  additional  assumption  that  the  specific 

heats of all of the  s t reams  are   equal ,  i. e . ,  C = Cp2 = Cs2 - - Cm . ) 

It is possible  to  use  a  different  set of five  independent  dimensionless 

variables.  For  example, a velocity  ratio v = Vs2/Vp2 can  be  used  in  place of T to 

complete  an  alternative  set of five  independent  variables, F, V, A,  k and m. An- 
other  possible  set is P, T ,  K ,  k, and v. The  velocity  ratio, 7, was one of the  basic 

design  parameters  used  to  select  the jet pump  geometry  for  the  boundary  layer COIF 

trol   system  tested  under  contract  No. NAS 2-2518. 

" 

These  remarks  can  be  summarized  by  the  expressions  below: 

Jet   Pump  Performance 
Characterist ics 

(dependent  variables) 

Design and Operating 
Conditions 

(independent  variables) 

Apt *, APst and T are  functions of F, T ,  K, k, m 
o r  
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3 . 1 . 7  Maximum  Entrainment  Ratio 

Equation (59) can be used  to  determine  the  maximum  possible  entrain- 

ment  ratio. This maximum  occurs  when  the  secondary  stream  Mach  number  reaches 

a value of unity.  Setting Ms2 = 1 , equation (59) can  be  written as follows. 

Thus,  the  maximum  entrainment  ratio  corresponding  to  the  choking of the  secondary 

stream  can be  determined  directly  from  the  dimensionless  initial  conditions. 

3 . 2  The  Computer  Program 

A computer  program  was  prepared  to  predict  the  performance  charac- 

te r i s t ics  of constant area jet  pumps  using  the  analytical  concepts  formulated  in  the 

preceding  sections. The program  was  written  to  develop  both  dimensional  and  di- 

mensionless  solutions.  Values of P, T ,  x, Pso, Tso, and Am are read  in as initial 

conditions.  Values of k, R ,  and m are included  within  the  program.  For  each  value 

of m,  values of T , Apt,  APS, Apt*,  and  APs* are calculated.  The  values of 7 , Apt*, 

and  APs*  depend  only on t h e  dimensionless  data,  while  APt  and  APs  depend  also upon 

” 

pso, TsO, and  Am. 

The  program is written in Fortran IV language.  The  machine  used  was an 

IBM System  360/65  with  an SC4020 plotter.  Automatic  plotting of the  performance  char- 

acteristics was  obtained by  using  the  subroutine  EZPLOT  developed by the  Missile  Sys- 

tems  Division of Avco  Corporation,  Burlington,  Massachusetts. 

A block  diagram of the  computer  program is shown  in  figure  4.  For  each 

set of initial  conditions,  solutions are obtained  for  values of entrainment  ratio  between 

10 .0  and 40.0 in  steps of 3.0.   The  results a re  printed as each  solution  corresponding 

to  a particular  value of entrainment  ratio is determined.   The  resul ts   are   a lso  s tored 

i n  a r r a y s   f o r  plotting  and  for  presentation  in  tabular  form. A printout of the  entire pro- 

gram is presented  in  Appendix A. A discussion of the  program by blocks is given  in 

Appendix B. Appendix C provides  typical  computer  solutions  which  indicate  the  form of 

the  output  data. 
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Certain of the  blocks  shown in figure 4 and  described  in  Appendix B are 

denoted as optional,  indicating  that  they  can be removed  from  the  program  without 

interfering  with  the  operation of the  remaining  blocks.  Instructions for removing 

these  blocks are given  in Appendix B, section B-2. 

When frictional  effects  in  the  suction  duct  and  mixing  tube  are  to be taken 

into  account  in  the  performance  predictions,  values of the  loss  coefficients K (de- 
fined  in  Appendix B) and QT must  be  provided as input  data  for  the  computer  solu- 

tion.  These  loss  coefficients are functions of the flow Reynolds  numbers. If values 

of Ksd and KMT have  been  established  for  ducts of one  size  and  the  computer  per- 

formance  predictions  are  to be used  for  ducts of much  larger or smaller   s izes ,  it 
may be advisable  to  adjust  the  values of the  loss  coefficients  used  by  the  computer 

to  account  for t h e  Reynolds  number  change. 

sd 

3. 3 Solutions . .  ~~ ~~ for a Range - of Jet  Pump  Designs 

The  computer  program  was  applied  to  develop  jet  pump  performance 

plots  for a broad  range of geometries  and  operating  conditions.  The  range of solu- 
tions  was  selected  to  encompass  all of the test conditions  used  in tRis investigation (sec- 

tion 4) and also  the  range of conditions of interest   to NASA for  boundary  layer  con- 

trol   systems and  momentum  augmentation.  The  performance  plots were developed 
for  use in preliminary  design of jet  pump  systems  for  matching  the  jet  pump  to a 

duct  system  and for predicting  the  resulting  system  performance  characteristics. 

Techniques  for  applying  the  solutions to system  design  are  described  in  section 3.4.  

The  range of conditions  used  to  obtain  the  performance  plots  were ini- 

tially  defined in dimensional  form  as  follows: 

T pr imary flow stagnation  temperature 450" F to 3500" F 
PO 

P pr imary  flow stagnation  pressure  100  psia  to 400 psia 
PO 

Tso secondary flow stagnation  temperature 20" F to 120" F 

Pso secondary flow stagnation  temperature 1500 psfa to  2116  psfa 

The  range of values  selected  for  the  corresponding  dimensionless  parameters  were 

a s  follows: 

29 



T = 1 . 5 t o 8 . 0  

= 5 t o  40 

The  nozzle  and  mixing  tube  geometries  available  for  the  test  program  had  area 

ratio  values (A) ranging  from  0.00125  to  0.0067.  The  range of values  selected  for 

the  performance  plots  is  given  below: 

- 
A = 0 .001  to  0.007 

The  ranges of values of P, T, and 3 given  above  were  used  to  prepare 

9 s e t s  of performance  plots  showing A Pt * vs.  m and T vs. m for  various  values 

of with T and  fixed;  these  plots  are  indexed  in  table 1 and  given  in  figures 6 

through 23. Table 1 includes  the  values of maximum  entrainment  ratio  attainable 

for  each  combination of P ,   T ,  and x values.  This  maximum  entrainment  ratio is 

s e t  by choking of the  secondary  stream  as  given by equation (64) of section 3. 1.7 .  

" - 

Typical  computer  output  sheets  for  one of the  solutions are  reproduced 

in  Appendix C. The  printed  output  includes  values of jet  pump  parameters  not 

shown i n  the  plots  but  required  for  the jet pump-duct  matching  techniques 

described  in  section 3 .4 .  These  parameters  are  given  in  dimensional  form  based 

upon standard  secondary  stream  inlet  conditions, = 2102 psfa,  Tso = 7 0 ° F .  

and A m  = 0.08726 ft . 2 pso 

In the l a s t  six cases,  the  higher  values of 6 cannot  be  attained  because of 

choking of the flow  in  the  mixing  tube.  For  the  cases  with T = 1.5  and 3.5, choking 

occurs  in  the  secondary  flow (Ms2 = 1) as  discussed  in  section  3.1.7. When T was 

set at  8.0,  choking  was  predicted  to  occur  first  at  the  mixing  tube  exit, i. e. , Mm= 1. 

Cross-plots  showing  AP * vs. m and T vs. m for  various  values of A 
with  and  fixed are presented  in  figures 24 and  25.  Lines of constant  mixing 

exit  Mach  number a r e   a l s o  shown.  These  cross-plots  provide  additional  insight 

the effect of the  area  ra t io  upon jet  pump  performance. 

t 
tube 

on 
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3.4 Jet Pump-Duct  Matching  Considerations 

The  previous  sections  have  developed  analytical  techniques  and a cam- 

puter  program  which  allow  prediction of the  performance  characteristics  of  high- 

entrainment-ratio  jet  pumps.  The  performance  characteristics  take  the  form of 

plots of jet   pump  pressure  r ise  and  momentum  ratio  as  functions of entrainment 
ra t io   for  a number of values of primary  jet   pressures  and  temperatures  and  forvnr- 

ious  area  ratios.   These  performance  characterist ics  are  analogous to  head v s .  ca- 

pacity  curves  or  performance  maps which a r e  commonly  used  for  pumps  and  com- 

pressors.  The  actual  point  (i.  e. , entrainment  ratio)  at  which a jet  pump  will  oper- 

ate when  connected  to a particular  system of inlet  and  discharge  ducts  is  dictated by 

the  geometry of the  duct  system. 

The  resistance  curve of a duct  system  is  roughly  parabolic  as shown in 

figure 26.  A typical  jet  pump  characteristic is also shown  on  the  figure . The  actu- 

al  operating  point of the  jet  pump-duct  combination is defined by the  intersection of 
the two curves.  The  duct  characteristic  curve is se t  by the  duct  geometry  and is 

essentially  independent of the  jet  pump  operating  conditions.  Therefore, i f  the  duct 

geometry  is  not changed,  the  operating  point of the  system  for  any  jet  pump  primary 
flow condition  must  be  located on the  parabola.  Figure 27 shows how the  operating 

points  for a system  can  be  determined if the  jet  pump  performance  at  various  pres- 

sure levels   is  known. 

This  section  establishes a procedure  for use to  determine  the  operating 

points of a jet pump  in a duct  system when the  loss  characterist ics of the  duct  sys- 

t e m   a r e  known. This  procedure  can  be  employed a s  shown  by  example  to  match  the 

jet  pump  design  to  the  duct  system so a s  to  achieve  maximum  entrainment  ratio  or 
maximum  thrust  augmentation  for  given  primary flow conditions. 

3.4. 1 R-egnttion .~ of Duct Loss Characterist ics 

When  the  analytical  model  developed in sections 3 .  1 and 3 . 2  is suppliedwith 
values of P ,  T and A ,  the  performance  parameters  such  as  stagnation  pressure  r ise 
and  momentum  ratio  (thrust  augmentation)  can  be  calculated a s  a function of entrain- 

ment  ratio. In order  to  determine  the  specific  value of entrainment  ratio  which  will 

” 
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be obtained  during  operation of a given jet pump of fixed  geometry,  the  associated 

duct  system flow character is t ics   must  be taken  into  account.  Using  the  notation 

shown  in  figure 2 , the  stagnation  pressure rise may  be  written  as  follows: 

The two bracketed  terms  together  represent  the  stagnation  pressure  loss of the  duct 

system  including  the  inlet  duct  (first  term)  and  blowing  duct  (second  term). 

At  low Mach numbers,  the  stagnation  pressure  loss  due  to  friction i n  a 
duct  is  proportional  to  the  kinetic  energy of the  flow. For high  entrainment  ratio 

jet  pumps,  the  mass  flow  rates  in  the  suction  and  blowing  ducts  are  nearly  equal. 

Therefore,  the  total  pressure loss of the  entire  ducting  system  may be related a s  a 

first  approximation  to  the  kinetic  energy of the  blowing  duct  inlet flow by equation (66): 

('mo - pb0> + (pa0- ps0) = K Q 'm"m 
go 

This  type of expression  has  been  shown  to  be  accurate  for  representing  frictional 

losses  in  duct  systems of various  shapes. 

3 . 4 . 2  Evaluation of the Loss Coefficient, I( 

The  loss  coefficient K depends on the  geometry of the  particular  ducts B 
being  used  and  the  Mach  number  level  (ref.13).  At  sufficiently low Mack numbers, 

(i. e. , under 0.3), compressibility  effects  can  be  neglected.  For flows a t  higher Mach 

numbers,  the  value of KQ can  be  corrected  for  compressibility  effects. 

Loss coefficients  have  been  presented  for a number of duct  configurn- 

tions  in  references 13 through 26 I The  configurations  reported  include  ducts of rec- 

tangular  and  circular  cross  section  with  varying  amounts of diffusion o r  acceleration. 

Bends  and  elbows  having a number of different  angles of turn  are  included in these 

references.  The  loss  coefficients  reported  were  measured  for  subsonic  flow  cover- 

ing a range of Mach  numbers up to 1 . 0 .  
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To  provide  an  example of typical  loss  data,  the  influence of Mach  num- 

ber   level  upon  the loss  coefficient  for  straight,  conical  diffusers  is  shown  in  figure 

28. The  variation of K with  inlet  Mach  number  is  significant  for a diffuser of speci- 
fied  geometry. 

Q 

Because  the  value of K is  closely  related  to  the  duct  configuration  and Q 
the  Mach  number  level,  and  values of K are  readily  available  for  only a few simple 

duct  shapes,  the  designer of a jet  pump  and  duct  system  generally  will not  be  able  to 

look  up  an  accurate  value  for K for  a new duct  design. If optimum  matching of the 

jet  pump  and  ducting  is  required,  the  loss  coefficient of a new  duct  geometry  will 

have  to  be  determined  experimentally.  Testing  can  be  done by using  either a ful l -  

scale o r  reduced  scale  model of the  duct.  The  tests  must  cover  the  Mach  number 
range  which  will  be  encountered  by  the  actual  duct  when  operating  with  the  jet  pump. 

Flow tes t s  of ducts  sometimes  have  additional  value;  regions of flow separation  or 

undesirable  velocity  profiles  may  be  revealed. When  the  duct  geometry  is  modified 

to  eliminate  these  problems,  the  loss  coefficient is usually  reduced. 

Q 

11 

3.4.  3 Development of System  Performance  Equations 

At  the  outlet of the  blowing  duct,  the  static  pressure  in  the flow must  be 

equal  to  the  local  "atmospheric"  pressure.  The  use of a blowing  duct  having  the 

same  cross-sect ional   area a s  the  constant-area  mixing  tube  will  limit  the  entrain- 
ment  ratio  which  can  be  achieved in the  jet  pump  system.  Higher  entrainment  ratios 

can  be  obtained  with  the  same  jet  pump if a diffuser  is  added  to  theblowing  duct.  The 

diffuser  allows  higher  velocities  and flow ra t e s  in  the  mixing  tube.  The  mixing  tube 

pressures  can  be  sub-atmospheric;   the  diffuser  decelerates  the flow to  increase  its 

s ta t ic   p ressure  up to  the  atmospheric  pressure  level  at  the  blowing  duct  exit. 

A calculation  method  can  be  developed  for  use  to  determine  the  actual 

operating  point  (i. e. , entrainment  ratio)  for a jet   pump  system  as a function of the 

area  ratio  selected  for  the  blowing  duct  diffuser.  The  calculation  method  makes use 

of the  generalized  jet  pump  performance  characteristics  developed by the  computer 
program  described  in  section 3. 2 and Appendix B. 
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The loss coefficient  defined  in  equation (66)is inserted  in  equation (65) 

with  the  following result: 

where 9 

'm m v "  
go 

- - 
'm 

Equation  (67)may  be  rewritten a s  follows: 

l P t  = (Pb-P ao ) +  K q + (Pbo-Pb) B m  (68) 

The  term (P -P  ) represents  the  external  ambient  pressure  difference  imposed 

upon the  jet  pump  system.  This  term  will  be  called A Pext: 
b ao  

The  value of 4 Pext was  zero  for  the  experimental  jet  pump  since  both 

the  discharge  static  pressure (P,) and  inlet  stagnation  pressure (Pao) fo r  the  jet 

pump  system  were  equal  to  atmospheric  pressure.  This  term  is not necessarily 

zero  for  jet   pump  systems  which  operate  in  the  presence of an  external  velocity 

field.  For  example, a jet  pump  used  for  boundary  layer  control  at  the  trailing  edge 

of a wing  will  have  its  inlet  pressure (Pao) established by  the  flow  behavior  in  the 

suction  slot   entry  passages  and  by  the  local  pressure  acting on  the  wing.  The  dis- 

charge  pressure (P,) will  be  set  by  the  local  pressure  field  on  the  wing  and by  the 

flow behavior  from  the  slot to  the  deflected  flap. 

The  term (Pbo - Pb) in  equation(G8)  represents  the  dynamic  head of the 

flow at  the blowing  duct  exit.   This  term  is  related to  the  blowing  duct  exit  Mach 

number a s  shown  in  equation(70) : 1, 
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In order  to  evaluate  this  term,  the  value of M must  be  calculated  using  the  selected 

blowing  slot  area Ab, the  exit   pressure  Pb,  and  the flow  conditions at   the  discharge 

of the jet pump  mixing  tube: 

b 

This  equation  is  based upon the  assumption  that  the flow  in  the  blowing  duct is   adia-  

batic.  The  values of Tmo and Wm a r e  output  values  from  the  jet  pump  performance 
calculations  described  in  the  previous  section.  The  evaluation of M can  be  made  con- 

veniently  by  using  figure 29. 
b 

Equations (70)  and(7l)zan  be  replaced by equation(72) when the  blowing 
duct  exit  Mach  number,  Mb,  is  less  than 0 .3 .  

The   e r ro r  in using  equation  (72)in  place of equations(70) and P1)is l e s s  than 2% of  the 
true (P - P ) difference  when Mb i s   l e s s  than 0.3. b o b  

A particularly  simple  jet  pump-duct  system  matching  equation  can  be 

derived  when  equation(72)is  used.  Equation(73)is  the  continuity  relation  for  the 
blowing  duct: 

p,  V m A m  = p V A .b b b (73) 

The  influence of the  blowing  duct area  ratio  is   introduced when  equation(73) is com- 

bined  with  equation  (72): 
n 

The  jet  pump-duct  matching  equation,  equation  (75),  is  derived by  combining  equa- 
tions(68),(W  and  (74): 

3 5  
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A p t  = 4 P  

f o r  

Mb 5 0 . 3  

For  preliminary  design  purposes,  the  value of pm/pb  can  be  taken a s  
1. 0.  A more  accurate  value  can be determined  as follows: 

For  a perfect  gas,  

With Mb less than 0 .3 ,  equation(77)  holds  with  an  error of less than 2%: 

Tb Tbo (7  7 )  

Since  the flow in  the  blowing  duct is adiabatic,  its  stagnation  temperature  remains 

constant; 
= T  173s mo 

The  last  relation  required  is  equation  (79): 

k -  1 2 
” Tmo - I +  - 
Tm 2 Mm 

When  equations  (76)  through  (79)  are  combined,  an  equation  for  calculating  pm/p 

is  derived: 
b 
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Equations  (74), (752, and ( 8 0 )  san  be  used  with  small  error  only if M b 
i s  less than 0 . 3 .  If M i s   g r e a t e r  than 0 . 3 ,  the  jet  pump-duct  matching  equation, 

equation (81), is   der ived by  combining  equations (68), (G9), and  (70): 
b 

for  all  values of  Mb 

where Mb is  computed by using  equation(71)  and  figure 29. 

The re   a r e  two figures of merit   which  are of interest  in the  evaluation of 

jet  pump  systems  for  boundary  layer  control  or  thrust  augmentation  applications. 

These  figures of merit  are  the  entrainment  ratio  and  the  thrust  augmentation.  The 

equations  developed  above  can  be  used  to  determine  the  entrainment  ratio  at  which 
a jet  pump  system  will  operate.  Several  additional  equations  are  required in o rde r  

to  calculate  the  thrust  augmentation  obtained  from a jet  pump  system. 

The  thrust  augmentation  obtained  with  the  complete  system  is  defined in 
equation (82): 

X = system  thrust  augmentation 

wm 'b 
w v  

P P2 
T T =  

The  thrust  augmentation  produced by the  jet  pump  alone  was  designated a s  T i n  section 
3. 1 . 4  (equation 22) .  The  computerized  jet  pump  performance  analysis of section 3 . 2  

provides   as  output  data  values of T a s  a function of entrainmentratio.  Thus,  once 

the  entrainment  ratio  is  known for a j e t  pump  system,  the  value of T i s  known and 

the  system  thrust  augmentation  can  be  calculated as  follows: 

wm  Vm 
7 =  w v  

P  P2 

so 



The  value of Vb/V, can be  related  to  the  blowing  duct  area  ratio by using  equation 

(73) : 

" vb 'm m 
'm  'b A b  

A 
"- 

The  value of pm/pb is given  by  equation (80) when Mb 5 0 . 3 .  When % exceeds 

0.3,  the  value of pm/pb is given by equation (8 5) : 

(1+ - k - 1  2 
"- 'm - 'm Mm ) 2 

'b 

where the  blowing  duct  flow  has  been  assumed  to  be  adiabatic  and  the  value of Mbis 

determined by using  equation(71) and figure 29. 

The  equations  given  above  can  be  used  to  compute  the  thrust  augmen- 

tation  parameter  once  the  operating  point of the jet pump is known.  The  next sec- 
tion  establishes  a  procedure for determining  the  operating  point. 

3.4.4  Calculation  Procedure fo r  Determining  the  Operating  Point of a Je t  
Pumr, in a Duct  Svstem 

The  operating  point of a  given  jet  pump  and  duct  combination  can  be  de- 

termined  as  follows: 

Required  Initial  Data : 

Given: Jet pump  design  and  performance  characteristics: 

basic  jet pump 
parameters  
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jet  pump  performance 
curves;  output  data  from 
computer  program 

values  characterizing  the 
particular  duct  system 

Solution  technique if  Mb 5 0. 3: 

The  specified  values of KQ , A  Pext, 

A P t  vs  m 

qm v s  m 

Mm vs m 
Pm v s  m 

KQ 
* 'ext 
'b 
*b 

P , and A are  inserted  into  equa- b  b 
tions (80) and (75 ) .  The  jet   pump  performance  curves  are  used to  find  associated 

values of L\ Pt, Mm,  and Pm which  satisfy  equation ('75). This  is a trial-and- 

error   process   which  is  begun by assuming a value  for  entrainment  ratio,  m.  The 
corresponding  values of Mm and Pm are  determined  from  the jet pump  performance 

curves  and  entered  into  equation (80). The resulting  value of pm/pb is entered, 

together  with  the  value of qm  from  the  jet  pump  curves,  into  the  right-hand  side of 
equation (75). If the  resulting  value of A Pt does not agree  with  the  curve  value, a 

new value of m is assumed and the process  is repeated.  The  iteration  process is 

simplified  by  graphical  solution  techniques  which  are  described in  the  section  en- 
titled  "Sample  Calculation".  This  calculation  process  finds  the  value of m a t  which 
the  jet  pump  system  will  operate  with  the  selected  value of A 

'm 9 

b' 

Solution  technique if  M > 0.3: b 

The  specified  values of KQ , A Pext, Pb,  and A are  inserted  into  equa- 

tions (81) and (71), The jet pump  discharge flow ra t e ,  W and  the  stagnation  tem- 

perature  of the  discharge  flow,  Tmo,  are  plotted a s  functions of entrainment  ratio, 

m.  Values of  Mb c m  be  determined  as a function of m using  equation  (7l)and  figure 
29. The  solution  technique is a trial-and-error  process  which is begun by assuming 

a value  for  m. The jet   pump  performance  curves  are  used  to  f ind  values of qmand 

b 

m'  
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A Pt for  each  value of m assumed.  Corresponding  values of M are   de te rmined   as  

above  and  entered  with  the qm values  into  the  right-hand-side of equation (81). If 

the  resulting  value of A Pt does not agree  with  the  curve  value, a  new value of m is 
assumed  and  the  process is repeated.  Graphical  solution  techniques,  described  in 
the  section  below,  can  reduce  the  number of iterations  required. 

b 

Evaluation of thrust  augmentation: 

The  solution  techniques  described  above  yield  the  value of entrainment 
ratio  at  which a jet  pump  will  operate in  a selected  duct  system.  The  performance 

data  provided by the  jet  pump  computer  program  allows  determination of the  values 

of the  following  jet  pump  performance  parameters  at  the  operating  point: T ,  pm, 

Mm 9 Wm,  and  Tmo. 
by using  the  equations  presented  at  the  end of section 3.4.3. 

These  values  allow  calculation of the  thrust  augmentation, TI, 

Additional  Comments: 

The  values of K P  and Pso a r e  not constant  for  all  values of entrainment 

ratio. At  high  entrainment  ratios,  the Mach number  levels  within  the  ducts  may 

become  sufficiently  high  that  the  influence of compressibility upon K must  be  taken 

into  account.  Similarly,  the  value of P which is a non-dimensionalizing  param- 

eter in  the  jet  pump  performance  analysis,  varies  slightly  as  shown  in  equation (86) 

when  the  entrainment  ratio (and secondary  stream flow rate)  changes. 

Q 
so’ 

pso - 
- where gm varies  with m 

The  variations of K and Pso with  entrainment  ratio  are  generally  second-order in 

magnitude.  These  variations  can  be  neglected  in  preliminary  design  calculations, 

then  included for final  design if K and K. a r e  known a s  functions of the  Mach  num- 

b e r  Mm S Mi. 

P 

P 1 

3 . 4 . 5  Sample  Calculation 

The  use of the  procedure  described  above to determine  the  operating 

point of a jet pump-duct  system is illustrated by the  sample  calculation  which  follows: 
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The  jet  pump  design  data is: 

P = 300 psia 
PO - 

P = 20.13 

pso = 14.9  psia 

T = 1200" F 

- 80" F 
PO 1 - 

T = 3.074 
- 

Tso 

Am 

AthCw' 

= 0.08726 ft2 1 - 
A = 545.4 (Test value  for  the  Case 4 

0.000165 ft2 nozzle) 

me computer  solution  for  the  jet  pump  performance  yielded  the  values  given  in 

table 2 . The  values of A p t ,  p,, Mm, and  qm a r e  plotted  against  entrainment 

ratio  in  figure 30.  

The  duct  system  design  conditions  were  assumed  to  be  as follows: 

A Fext = 0 (i.e. , Pb = P ) ao 

KQ 

'a o 

= 0 . 1  

= 14.9 psia 

The  blowing  slot  discharge  Mach  number, Mb, was  assumed  to  be less t h a n  0 . 3 .  

Using  these  values  in  equation ('75) equation (87) was  derived. 

The  calculations  were  begun  for a blowing  duct  diffuser  area  ratio, 

(A /A ) ,  equal  to I. 0. Three  values of entrainment  ratio, m = 13, 15, and 1 7 ,  

were  selected  arbitrari ly.  The corresponding  values of A Pt,  Mm, qm,  and Pm 

were  read off from  figure 30.  These  values  were  used  to  compute  pm/pb  from 

b m  
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equation (80) and  then  to  compute  the  right-hand  side of equation(87) ; the  right- 

hand  side  will  be  called A Pt ) trial. The  results  are  given  in  the  table below. 

F o r  Ab = 1.0 :  

m ) A Pt qm  pm - 'm * Pt  tr ial  
(PSf) Mm ( p s ~  psia  'b @sf) 

13 99.6 .205 65.3 15.  15 1.02 74.9 

15 98.5 .235 87 15.00 1.01 96.8 
17 97.5 .270 109 14.80 1.01 12 1 

The A Pt) trial values  can  be  plotted  against  entrainment  ratio  as shown  in figure 31 . 
The  intersection of the A Pt) trial curve with  the A P jet  pump  performance  curve 

represents  the  solution of equation (87) for  the  selected  value of Ab/Am. This in- 

tersection  is  the  operating  point of the  jet  pump  in  the  specified  duct  system. 

t 

3.4.6 Influence of Blowing  Duct Area  Ratio  and  Duct  Losses Upon Entrainment 

Similar  calculations  were  carried  out  for  values of Ab/Am equal  to 2, 3 ,  

and 4. The   resu l t s   a re  shown  in  figure 31. The  entrainment  ratio  increases  as the 

blowing  duct  area  ratio is increased;  the  trend  is  more  ulearly  shownwhen  the  results 

are  replotted  as  in  f igure 32. For  the  particular jet pump  and  system  design  condi- 

tions  assumed  for  this  sample  calculation,  the  maximum  entrainment  ratio  is 

achieved  when  the  mixing  tube is choked,  i .   e . ,  when Ms2 = 1.0. 

The  influence of the  duct  loss  coefficient  was  explored  by  setting K t  = 

0.2 instead of 0.1 as  previously  assumed.  The  duct  matching  calculations  were re- 
peated  using  equation (75); the   resu l t s   a re  shown  in  figure 32. Only a  small  increase 

in  entrainment  ratio  can be obtained by increasing  the  area  ratio  from 4 to 5. This 

is  a  consequence of the  fact  that, by using  a  sufficiently  large  area  ratio  in  the blow- 

ing  duct  diffuser,  the  term (Pbo - Pb) in  equation(G8)can be reduced  to  almost  zero. 

In that  case,  equation (75) takes  the  following  form: 
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A p t  = A P  + Km qm ext 

for  small   values of A,/A~ 

The  maximum  value of entrainment   ra t io  is the value  for  which  equation (89)  holds: 

A 't - A 'ext 

In the  present  example,  with K = 0.2  and A Pext = 0, the  limiting  value of entrain- 

ment  ratio is found  by use of figure 30 to be 34. The corresponding  mixing  tube  exit 

Mach number,  Mm, is 0.615.  

I 

The resu l t s  show  that  the  maximum  entrainment  ratio  which  can  be 

achieved  in  a  duct  system  driven by a  particular  constant-area jet pump is s e t  by 
one of two conditions: 

o r  

0 by choking at  the  mixing  tube  outlet o r  the  suction  duct 
inlet (i. e. , Mm= 1. 0 or M = 1. 0) if the  duct  losses  are 

sufficiently low 
s2 

0 by the duct  loss  limit  which is represented by equation 

(89) if the  value of Mm remains below 1.0.  

The  form of equation (75) is such  that,  along  curves  representing  con- 

stant  values of Kt , an  increase  in  blowing  duct  diffusion  always  yields  an  increase 

in  entrainment  ratio  until the limiting  value  is  reached. In practice,  K is a  vari- 
able  which  depends upon the diffuser  area  ratio. In jet pump  systems  with  low-loss 
inlets, the  value of K is determined  primarily by  the  blowing  duct  loss  coefficient 

which  increases as the area  ra t io   increases .   This   t rend is shown for  conical  dif- 
fusers  in  f igure28.  Examples of the effect of the variation of Km a r e  shown  by  the 

dashed  curves  in  figure 32; these  curves  represent  the loss character is t ics  of 15" 
and 20" conical  diffusers. The peak  entrainment  ratio  for  the 20" diffuser is 
achieved by using  an  area ratio of 3.; higher  area  ratios  lead  to  reduced  entrain- 
ment  because of increased  losses.  

e 

e 
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3 . 4 . 7  Influence of Blowing  Duct Area Ratio  and  Duct  Losses Upon Thrust  
Augmentation 

Figure 33  shows  the  thrust  augmentation  parameter, I-, for   the jet pump 

itself. This  curve  is   taken  directly  from  the  computer  calculations for  the  jet  pump 

selected  in  section 3.3.5. In o rde r  to determine  the  values of the  system  thrust 

augmentation  parameter PIT in  relation to the  blowing  duct  diffuser area ratio A d A m  
and  the  loss  coefficient M figure 32 was  used to determine  the  entrainment  ratio 

corresponding to selected  values of Ab/Am and KQ . Then f igu re  33 was  used to find 

the  associated  values of T. The  equations of section 3 . 4 . 3  permitted  calculation of 

T .  

P '  

The  variation of system  thrust  augmentation  with  blowing  duct  diffuser 

a rea   ra t io  is shown  in  figure 34. The  curve  for K = 0 yields  maximum  thrust  aug- 

mentation  when  the  mixing  tube  is  choked,  i.  e,  for Mm = 1.0.  Even  with a very low 

loss in  the  duct  system (Kt = 0. 1)9 the  thrust  augmentation  reaches a maximum 

value  at  a mixing  tube  Mach  number less than 1.0.  The  curves  for K = 0 . 1  and 

0.2 show that  the  thrust  augmentation  does  not  fall off rapidly if  the  diffuser  area 

ratio  is   made  larger  than  optimum.  This  suggests  that ,   when  designing a duct  sys- 

tem  without  complete  data  on  duct  losses,  it  is  preferable  to err on  the  side of in- 

creased  diffusion. 

Q 

P 

The  relationship of system  thrust  augmentation  to  the  entrainment  ratio 

i s  shown in figure 35. The  thrust  augmentation peaks on the  curve  for K = 0.  1 and 

0 . 2  and  then  falls off with  increasing  entrainment  ratio.  This is a consequence of 

the  fact  that  the  thrust  augmentation  is  proportional  to  the  product of entrainment 

ratio  and  blowing  duct  exit  velocity a s  follows: 

P 

where  (m + 1) fi: m for  high  entrainment  ratio  jet  pumps 
and V constant 

P2 

so 
TI-= 'b 
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In  order  to  achieve  entrainment  ratios  higher  than  the  value at the  peak of the TT 
curve,  the  diffuser  area  ratio  must  be  increased.  This has the effect of reducing 

the exit velocity Vb faster  than  entrainment  increases.   The  net  effect  is a reduction 

of the  product m Vb and  thus TT. 

The  maximum  entrainment  ratic.  attainable is set by  the  choking  limit 

for  the Kt = 0 and Kt = 0 . 1  cases .   For   the Kt = 0 . 2  case,  the  maximum  entrain- 

ment   value  is   se t  by  the  duct  loss  limit as  represented  by  equation  (84). At this 

l imit ,   the  diffuser  area  ratio  is   very  large  and  the  duct exit velocity is zero. Con- 
sequently,lTmust  be  zero a s  shown  by  equation (85). This  illustrates  the  general 

rule  that  the  thrust  augmentation  in a jet pump  system is always  zero  at  maximum 

entrainment  unless  the  jet  pump  mixing  tube is choked. 

3.4.  8 Conclusions 

The two previous  sections  have  shown  the  influence of duct  losses  and 

blowing  duct  diffuser  area  ratio upon  the  entrainment  ratio  and  thrust  augmentation 

obtained  in a jet  pump-duct  system.  The  results  shown  in figures 32, 34, and 35 a r e  

quantitatively  valid  only  for  the  particular  jet  pump  geometry  and  operating  conditions 

which  were  chosen i n  the  section 3 . 4 . 5 .  However,  the  figures  illustrate  trends  which 
a r e  qualitatively  correct for  high entrainlnent  compressible flow jet   pumps  as a gen- 

e ra l  class. 

The  results show  that  the  design  goals of maximum  entrainment  and  maxi- 

mum  thrust  augmentation  may  require  different  duct  geometries; a system  designed 

for  maximum  entrainment  may  have a low  value of the  thrust  augmentation  parameter 

and  vice  versa.  The  influence of duct  losses is shown  to  be  very  strong.  Entrain- 
ment  ratios  and  thrust  augmentation both can be improved  significantly by making 

only  minor  reductions  in  the  duct  loss  coefficient.  This  provides  considerable  in- 

centive  for  testing flow models of proposed new duct  designs  in  order  to  adjust  their 

geometry  to  achieve  minimum  losses.  Accurate  estimates of duct  loss  coefficients 

can be obtained  from  these  tests;  such  estimates are  required  in  order  to  predict  the 

performance of a new jet  pump  system  and  to  allow  selection of the  best  diffuser  area 

ratio. 
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The  design  problem  for a jet pump  system  often  takes the following  form: 

Given: Pr imary  flow pressure,   temperature,   and flow rate 

Duct  system  inlet  and  discharge  pressure  levels  and 

inlet   pressure 

Problem:  What  is  the  proper  mixing  tube  area  and  blowing 

duct  diffuser  area  ratio  to  be  used  to  achieve  the 

design  goal, e. g. , maximum  entrainment o r  thrust 

augmentation ? 

The  information  provided  in  plots  like  figures 32, 34 ,  and 3 5 ,  together  with  duct  loss 

estimates,  will  allow  the  designer  to  evaluate  the effect of diffuser  area  ratio upon 

entrainment  ratio  and  thrust  augmentation  for a selected  mixing  tube  area. By pre- 

paring  similar sets of curves  for  several  other  values of mixing  tube  area,  the  de- 

signer  can  chose  the  best  combination of mixing  tube  area  and  diffuser  area  ratio  to 

meet  the  design  goals. New jet  pump  performance  curves  analogous  to  figures  30and 

32 will  be  required  for  each  value of mixing  tube  area  to  be  considered.  Data  for 

these  performance  curves  can  be  obtained  by  using  the  computer  program  described 

in  section 3 . 2  A series of computer  solutions  covering a broad  range of j e t  pump 

geometries  and  operating  conditions  is  provided in section 3.  ? for use in  preliminary 

design  calculations. 
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Section 4 

TEST PROGRAM 

The  test  program  had two major  objectives: 

0 to  provide  data  for  use  to  evaluate  the  analytical  model 

0 to  determine  whether new, reduced-blockage  nozzle 

clusters  could  be  used  to  improve  the  performance 
of the  original  jet  pump 

Pr imary  Flow 

pressure  range 55 psia  to 400 psia 
temperature   range 200" F to 1200" F 

nozzle  throat  area  range 1 . 1  x  ft2  to 6 .0  x  ft2 

nozzle  cluster three  designs 

nozzle  geometry four  designs 

Secondary  Flow 

inlet   pressure laboratory  ambient 
inlet  temperature laboratory  ambient 

mixing  tube  geometry constant  area = .087 ft2, two lengths 

p re s su re  rise regulated by discharge  throttling  device 

This  section of the  report   describes  the jet pump  test  arrangement,  the  test  program, 

and  the  results  which  were  obtained. 

4.1 Test   Arrangement  

The jet pump test arrangement  with its instrumentation is shown schemat- 

ically  in figure 36. The pr imary  flow supply  system  employed  a  2-stage  reciprocating 
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compressor  capable of supplying 7 lbm/min of a i r   a t  400 psia.   Electrical   heaters 

were  used  to  achieve  temperatures up to 1200" F. The  primary flow was  delivered 

to a multiple-nozzle  cluster  directed  along  the  axis of a constant-area  circular  mix- 

ing  tube. 

The  momentum of the  primary flow entrains  a secondary  a i r  flow from 

the  room  into  the  bellmouth  inlet  and  then  into  the  mixing  tube.  Here,  the two s t r eams  

mix  together  and  the  stagnation  pressure of the  secondary  stream  is  increased.  The 

flow from  the  mixing  tube  passes  through a conical  diffuser  and  exhausts  to  the  atmos- 

phere  through  an  adjustable  throttling  cone. 

The  individual  components of the  experimental jet pump are   descr ibed 

below: 

1. Calibrated  bellmouth  inlet  section. 

This  component  consists of a wooden  bellmouth,  metal 

connecting  tube,  and  fiberglass  primary flow inlet  section. 

The  bellmouth  differential  pressure  was  calibrated in t e rms  

of flow ra t e  by using  an  orifice  and  blower  available in the 

laboratory.  The  calibrated  bellmouth  permitted  direct  meas- 

urement of secondary  mass flow ra te   for   a l l   j e t  pump  tests. 

A ceramic  insert   was  used  to  protect   the  f iberglass  duct 

from  the  hot  primary flow pipe  and  flange. 

2. Mixing  Tube 
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The  original  variable-area  mixing  tube  from  the  previous 

investigation (ref. 12)  was  used  for the f i rs t   tes ts   in   order  

to  provide  baseline  performance  data.  This  mixing  tube had 

a length of 6.87"  (figure 37).  After  the  initial  tests  were  completed , the 

mixing  tube  was  bored  out  to a constant  inner  diameter of 4.000". 

A mixing  tube  extension of the  same  diameter  was  also  fabri-  

cated.  The  remainder of the  test  program  was  completed  using 

both  the  original  mixing  tube  length of 6 .  87" and  the  extended 

mixing  tube  length of 18.87". 



3. Conical  Diffuser 

The initial  section of the conical  diffuser  had  a  length of 

10.98" and  an area ratio of 1.79. This diffuser  section  was 

previously  used  during  the  Wagner BLC system  tes ts .  An 
additional  section  was  added  to this diffuser  to  obtain  an  over- 

a l l   area  ra t io  of 5.0. The  purpose' of the  exhaust  diffuser  was 

to  maximize  the  static  pressure  recovery so that  the  highest 
possible  system  entrainment  ratio  could  be  achieved.  Changes 

in the axial  positioning of the throttle  cone  in  the  diffuser  dis- 

charge  produced  a  variable  system  resistance.  The jet pump 

performance  characterist ic  (pressure  r ise  versus  entrainment 

ratio)  was  generated  by  varying the system  resis tance  in   this  

manner,  

4. Nozzle  Cluster  Geometry 

The  nozzle  cluster  geometry  used  in  the  previous  investiga- 

tion (ref. 12) was  believed  to  cause  excessive  blockage of the 

secondary flow at  the  mixing  tube  inlet,  thus  causing  reduced 

performance. of the  jet  pump  system. Two  "reduced-blockage" 

nozzle  cluster  configurations  were  tested  in  order  to  determine 

whether  improved  performance  could  be  achieved. 

The  first  reduced  blockage  nozzle  cluster  was  made by placing 

2.0" long  nozzle  extensions  between  the  original  nozzle  cluster 

body  and  each of the  nine  nozzles.  This  change  moved  the  clus- 

ter body back  away  from  the  mixing  tube  inlet  in  order  to  reduce 
the  velocity  level  around  the  cluster by increasing  the  adjacent 

flow a rea .  This change is shown  on  figure 38, 

The  second  reduced  blockage  nozzle  cluster  was  a  completely 
new design  consisting of 7 nozzles at the  end of small   diameter 

tubes (1/4" dia. ). This low drag  c luster  is shown  on figure 39. 
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5. Primary  Nozzle  Geometry 

Five sets of pr imary flow nozzles  were  used  in  the test program. 

The  throat  size,  nozzle type, and  design  conditions  are  listed  in 

table 3. 

The first four  nozzle sets listed  in  table 3 were  used  with  the  original 

nozzle  cluster  and  also  the  first  reduced-blockage  configuration  (original  cluster 

with 2" extension  tubes). The fifth set, Case LD#2-4, consisted of seven  nozzles 

for  the  second  reduced-blockage  cluster.  The  Case LD#2-4 nozzles were designed 

for  the  same  operating  conditions a s  the  Case 4 nozzles of the  original  cluster. 

The  nozzle  flow  coefficients  listed  in  the  table  were  calculated  from test 
results  according to  the  definition  below: 

W 

cW 
=P 

ideal 
W 

where 

W = measured  nozzle flow rate   a t   design  pressure  and 
P 

temperature  

W = isentropic flow rate  through  nozzle  throat  at  design 

pressure  and  temperature;   based upon  one-dimensional 

flow  assumption 

4.2  Instrumentation  and  Data  Reduction P r o c ~ ~ d u r e s  

4.2.1  Instrumentation 

The instrumentation  used  to  determine  the  performance of the  experi- 

mental  jet  pump is shown on figure 40  and  described  in  table  4. 

The jet pump  inlet   bellmouth  was  calibrated  for  use  as  a  f lowmeter.   The 

calibration  was  accomplished  by  connecting  the  bellmouth  and  the  suction  duct  to  the 

inlet of a  blower. An orifice  and  a  throttling  arrangement  were  included  in  the  blower 

system.  The  blower  permitted  calibration of the  bellmouth  up  to  a  flow  rate of 200 

l b d m i n .  The  resulting  bellmouth flow equation is given  on  the  following  page: 
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wS 

where 

A hb = P differentia1  pressure,  inches of water  gage b 

= inlet  density,  lbm/ft 3 
pb 

Stagnation  pressure  traverses were made  in  the  mixing  tube  and  diffuser 
with a Kiel  probe. When the  short  mixing  tube  configuration  was  used,  traverses 

were taken  only  in  the  diffuser a t  the  location  shown in figure 4 0 .  When the  mixing 

tube  extension  was  used,  stagnation  pressure  traverses  were  taken in  the  tube  16.4 
inches  downstream  from  the  primary  nozzle  exit  plane.  Additional  traverses  were 

made  in  the  diffuser 26 .4  inches  downstream  from  the  primary  nozzle  exit  plane. 

The  angular  orientation of the  traverse  locations  is  shown on figure40 . 
The  same  numbering  system  was  used  for  all  traverse  locations. 

4 . 2 . 2  Data  Reduction Procedures  

The  measured  data were used  to  calculate  the  following  jet  pump  per- 

formance  parameters .  

wS m = -  
W - jet pump  entrainment  ratio 

P 

'm - 'so 
A P s  = - jet  pump  static  pressure 

pso  parameter  

* 
A P A  = 

pmo - pso 
n - jet  pump  stagnation  pressure 

L r s o  rise parameter  

2 
v vs. (F)  r - velocity  profiles 

0 

P vs.  distance 

P vs. m  and P 
- jet pump  static  pressures 

PO 
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The  static  pressure  parameter  was  calculated  using  the  wall  static  pres- 

sure measured  at  the  discharge of the  short  mixing  tube or  the  maximum  static  pres- 

sure reached  within  the  extended  mixing  tube.  The  secondary flow stagnation  pres- 

sure   a t  the  mixing  tube  inlet (P ) was  determined  by  subtracting  the  measured  bell- 

mouth  inlet  and  cluster loss (section  4.2.3)  from  the  barometric  pressure. 
so 

The  jet  pump  stagnation  pressure  rise  parameter, A Pt , is based upon 

the  secondary flow total  pressure Pso and upon P Our  f irst   tests showed  that  it 

was  not  possible  to  measure Pmo accurately  with  the  "short"  mixing  tube,  i. e. , the 
original 6 .  87" mixing  tube  length.  Complete  mixing  was not achieved by the  end of 

this  short  tube;  sharp  velocity  peaks  corresponding to the  primary flow jets  were ob- 

served  at  the  exit  section.  These  peaks were too sharp  to be accurately  measured 
by  stagnation  pressure  probes of reGsonable  size.  Therefore,  the  stagnation  probe 
measurements  could  not  be  used  to  determine P with  the  necessary  accuracy. 

* 

mo' 

mo 
To  obtain  an  approximate  value of Pmo for  the  short  mixing tube tests we 

used  the  following  procedure: 

Stagnation  pressure  probe  traverse  data  was taken  a t  the  conical 
diffuser  exit  section, Pdo in figure 40. This  data  was  used  to  de- 

termine  an  average  stagnation  pressure (P ) by procedures  des- 
cribed  below.  Then  the  value of Pmo was  computed by using  equ- 
ation  (92)  which  accounts  for  the  diffuser  stagnation  pressure  loss. 

do 

n 17 2 
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The  value of K was  selected  to  be 0 .05 ,  a value  representative of 

the loss  coefficient  for a good diffuser. 

The  procedure  used  to  determine  an  average  stagnation  pressure 

from  the  stagnation  pressure  probe  readings  was  the  "mass-momentum 

integral  method".  The  stagnation  pressure  was  measured  along a diameter 

a t  the  diffuser  traverse  location. A wall  static  pressure  measurement 

was  obtained a t  that  cross-section.  Using  the  ratio of the  local  stagnation 

pressure  and  the  wall  static  pressure  at  each  point  along the diameter, 

the  local  Mach  number  was  determined.  Using a plot of (1 + kM ) vs. 

cross-section  area (i. e. , r /r  ), the  impulse  function  was  determined 

by graphical  integration: 

2 

2 2  
0 



cp = impulse  function = P I  (1 + kM2) dA (-93) 

The  following  equations  were  used to determine  the  "mass  momentum" 

averaged  properties of this  non-uniform  compressible flow: 

- calculate P (static)  from: P = 
- 

(1 + kG2) A 

k - 
k- 1 

- calculate P (stagnation) P = F [ 1 +(?I - 

from: 0 0 

These  "mass-momentum  average"  values of pressure  satisfy  the 

measured  mass  flow r a t e  and  integrated  momentum of the  flow. 

They  correspond to values  that would be obtained if the  actual non- 

uniform flow was  mixed  to a uniform flow in a frictionless,  con- 
stant  area  duct.  

To  calculate Pm0 for  the  extended  mixing  t.ube,  the  "mass  momentum 

integral  method''  was  applied to  the  traverse  data  taken in the  mixing  tube 16 .4"  

downstream  from  the  primary  nozzle  exit  plane. No correction for  diffuser  losses 
was  needed in this  case. 

The  velocity  profiles were calculated  from  the  local  values of Mach  num- 

be r  and  the  measured  jet  pump  exhaust  temperature  (T ). eo 

4 . 2 . 3  Suction  Duct  and  Nozzle  Cluster  Losses 

In order  to  calculate  the  jet   pump  pressure  r ise  parameters .IPS and * 
A Pt , the  mixing  tube  inlet  stagnation  pressure P is   required.  The value of Pso 

was  determined by subtracting  the  appropriate  suction  duct  and  nozzle  cluster 
so 
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stagnat ion  pressure  losses   f rom  barometr ic   pressure (the  suction  duct  inlet  stagna- 

t ion  pressure).  The loss  data  used  for  the  determination of Pso is given  below. 

Bellmouth  Inlet 

The  stagnation  pressure  losses in the  bellmouth,  suction  duct,  and  nozzle 

cluster  configuration  used  in  the test rig  (figure 36) were  measured  for  the  following 

four  configurations: 

1. Original  nozzle  cluster 

2. Original  nozzle  cluster'with 2Ic nozzle  extensions  (figure 38) 

3. "Low-dragll  nozzle  cluster  (figure 39) 

4. No nozzle  cluster 

The loss measurements  were  made by connecting  the  jet  pump  including  the  initial 

section of the  conical  diffuser  (area  ratio  1.79)  to  the  suction  line of a blower  and 

orifice  installation.  Air  was  drawn  through  the  bellmouth  and  jet  pump  system by 

the  blower.  The  stagnation  pressure  at  the  end of the  constant  area  mixing  tube  was 

calculated  using  the  measured  wall  static  pressure  and  the  Mach  number(computed 

on a one-dimensional  basis)  at  the  same  measuring  station.  The  stagnation  pressure 

loss was set  equal  to  the  difference  between  this  value  and  the  atmospheric  pressure. 

The loss values  for  the  four  nozzle  configurations  are  presented on figure 41.  These 

loss  values  include  the  suction  duct  loss,  the  nozzle  cluster  loss,  and  the  short  mix- 

ing  tube  wall  friction  loss  (L/dm = 1.35) .  

The  results show  that  the  losses  are  identical  for  the two reduced  block- 

age  clusters #2 and 3. A comparison of the  losses  for  the low blockage  clusters  to 

the  losses  for  the  original  cluster  and  the  minimum  possible  losses  (the "no cluster" 

curve) shows  that  the  reduced  blockage  clusters cut the  cluster  losses by about427;. 

These  results  were  used  for two purposes: 

1. to  guide  the  selection of the  'foptimum"  nozzle  cluster 
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2. to  permit  calculation of P at  the  jet  pump  inlet  by  sub- 
so 

tracting  the  suction  tube  and  nozzle  cluster  losses  from 

the  atmospheric  pressure.  The Pso value  was  used  to 

calculate  the  static  pressure  parameter 1 Ps * and  the 

stagnation  pressure rise parameter  A Pt*. 

BLC Suction  Duct 

The data obtained  during tests of the  Wagner  BLC  system  under  the  pre- 
vious  contract NAS 2-2518 indicated  that  the  aerodynamic  drag of the  present  nozzle 

cluster  was  much  higher  than  had  been  expected.  This  drag  was  considered to be 

one of the  principal  reasons  for  the  difference  between  the  predicted  and  actual  per- 
formance of the jet pump BLC system. To  check  this  point,  the NAS 2-2518 suction 

duct (figure 4 9 ,  the  short  mixing  tube,  and  the  initial  section of the  conical  diffuser 

were  connected  to  the  inlet of the  blower  and  orifice  system.  The  original  nozzle 

cluster  geometry  was  installed  in  the  suction  duct.  The  tests  results  are  shown  on 

figure 41. The BLC suction  duct  produced  higher losses than  the  bellmouth  config- 

urations. 

Still  using  the NAS 2-2518 suction  duct,  the  nozzle  cluster  was  dismantled 

in 3 steps  with a loss  test  made  between  each  step.  The  nine  nozzles  only  were re- 
moved first   but no decrease in loss was  measured.  Next,  the  cluster body was re- 

moved  but  the  elbow was  left  in  place.  The  measured  losses  dropped by 13% to  the 

"no cluster"  curve  shown on figure 41.  This  amounts  to a 5 psf loss  reduction  for a 
jet  pump  entrainment  ratio of 20 ( w s  = 128 lb/min). When  the  elbow  was  removed, 

no further  reduction of losses  was  observed.  Therefore,  the  cluster body with  its 

extensions  produced  the  nozzle  cluster  losses. 

This series of loss  tests  shows  that  the  nozzle  cluster  losses  are  much 

smaller  than  had  been  deduced  from  the  experimental  data  obtained on the  jet  pump 
BLC  system.  The NAS 2-2518 final  report  showed  suction  duct  losses  to be three 

times  the  values  shown  on figure 41. At that  time, a large  percentage of these  losses 
were  attributed  to  the  nozzle  cluster.  The  results  in  figure 41 show  that  this  conclu- 

sion  was  incorrkct  for two reasons: 
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1. The  calculation of suction  duct  stagnation  pressure loss from 

the  BLC  system  data  is  sensitive  to  the  choice of the s h t i c  

pressure  value  at  the  mixing  tube  inlet to he  used for the  cal- 

culation.  The  static  pressure  data  recorded by the  first 2 o r  
3 pressure   t aps  in the first half-inch of the  mixing  tube  always 

showed a sharp  spike of low static  pressure  at   the  mixing  tube 

inlet.  The s h t i c  pressure  variation  becomes  more  gradual 

from  about  the  fourth  tap  onward in the  mixing  tube.  Testing 

of the  mixing  tube  with  the BLC suction  duct  during  the series 

of loss   t es t s  of figure 4 1  showed  this  same  variation of static 

pressure  even  without  the  nozzle  cluster in place.  The  spike 

of static  pressure  must  be  caused by the  local  curvature of the 

s t r eaml ines   a s  the  flow reaches  the  mixing  tube  throat. If suc- 

t ion  duct  losses  are  calculated  from  the  third  orfourth  static 

pressure  tap  instead of the  first  tap  measurement,  the  calcu- 

lated  BLC  suction  duct  losses  would  compare  favorably  to  the 

measured  losses  shown  on  figure  41. 

2. The loss tes ts  on the BLC suction  duct  showed  that  the  duct  it- 

self causes  most of the  suction  duct  losses.  The  nozzle  cluster 

accounts for  about 13% of the  suction  duct loss which  may  amount 

to 4% to 8% of the  total  system  resistance. 

4 .2 .4   Pressure   Loss  Due to  Wall  Friction in  the  Constant-Area  Mixing  Tube 

The  mixing  tube  wall  friction  loss  levels  must  be  taken  into  account  when 

comparing  the  experimental   pressure  parameters  to  the  analytical   predictions which 

do not  include  these losses. Therefore,   the  pressure  loss in the  extended  mixing  tube 

was  measured  during  the  nozzle  cluster  loss tests which  were  described in section 

4.2.3.   The  wal l   s ta t ic   pressure  was  measured  a t  two points 10.88 inches  apart  in 

the  constant 4" diameter  mixing  tube  while  air  was  being  drawn  through  the  tube  by 

the  blower.  The  total  pressure  change  was  calculated  using  the  local  Mach  numbers 

(determined  on a one-dimensional  flow  basis) a t   the  two cross  sections.   The static 
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pressure  change  and the stagnation  pressure  loss as  a function of flow r a t e  are given 

in  figure 43. The static pressure  change is larger than  the  stagnation  pressure  loss 
because of compressibility effects. The  measured  loss  levels agree well  with  pre- 

dictions  based upon pipe  friction  factors  for  fully-developed  turbulent flow. 

When the jet pump is  operating,  the  mixing  tube  velocity  profiles  differ 
from  the  profiles  for  fully-developed  turbulent flow in  pipes  because of the  primary 

flow - secondary flow interactions.  Therefore,  wall  friction  losses in a jet pump 

mixing  tube  can  be  expected  to  differ  somewhat  from  the  losses  predicted  for  fully- 

developed  turbulent  flow. No data  correlations  or  analytical   procedures  are  avail-  
able  to  allow  accurate  prediction of wall  friction  losses in mixing  tubes.  Thus,  pipe 

friction  factor  correlations  or  equivalent  test  results a s  in figure 4 3  must  be  used a s  
a first approximation  in  order  to  estimate  mixing  tube  wall  friction  losses so that the 
analytical  predictions of jet pump  performance  can  be  compared to the  experimental 

r e s l l t s .  

4. 3 ~ Tabulation of Test Conditions 

The jet pump  testing w a s  car r ied  out  in  three series of tests.  The  con- 

figurations  used  and  the  test  objectives  are  described  below. 

Ser ies  1: The jet pump  included  the  calibrated  bellmouth  inlet, 

the  original  short NAS 2-2518 mixing  tube  with  varying  area, 

and  the  original  nozzle  cluster.  The  purpose of this test series 

was  to  determine  the  performance of the jet pump a s  used  in  the 
NAS 2-2518 BLC system tests. 

Series  2:  The jet pump  included  the  calibrated  bellmouth  inlet, 
the  short  constant-area  mixing  tube,  and  three  nozzle  clusters; 

the  original NAS 2-2518 cluster,   the  same  cluster  with 2" noz- 

zle  extensions  and  moved  back  from  the  mixing  tube  throat (i. e. , 

low-drag cluster #1),  and  the  low-drag  nozzle  cluster #2 a s   i n  
figure 39. The  objectives of this test ser ies   were  to   determine 
the  effect of nozzle  cluster  design upon jet pump  performance 

and  to  determine  which  cluster would be best for  subsequent 

testing. 
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Series  3: The  jet  pump  configurations  tested  included  the  calibrated 

bellmouth  inlet, both  the short  and  the  extended  constant-area 

mixing  tubes,  and  the  optimum  nozzle  cluster  selected  from  the 

resul ts  of tes t   se r ies  #2 (the  LD#1  cluster). The purpose of this 

t e s t   s e r i e s   was  to provide  experimental  verification of the  jet 

pump  performance  analysis  over a broad  range of operating  con- 

tions.  Each of the  four  nozzle  sets  described  in  table 3 were 

used;  they  were  operated  not  only  at  their  design  points  but  also 

a t  off-design  pressures  and  temperatures. 

A description of the  individual  tests,  operating  conditions 

and  configurations  is  given in table 5. 

4. 3. 1 Presentation of Data 

Tabulated  data  and  graphical  results  are  presented  for  each of the  run 

numbers  listed  in  table 5 . An index  to  the  tables  a4d  figures  is  given  in  table 6 . 
The  test   data  is   presented in  tables 8 to  19  and  figures 44 to 84. 

4.4  Discussion of Test  Results 

4.4. 1 Comparison of Constant-Area  and NAS 2-2518 Varying-Area  Mixing  Tubes 

The  original NAS 2-2518 short  mixing  tube  was  designed  to  have a 5.5% 

contraction  in  area  from  inlet  to  outlet.  The  tube  was  intended  to  have  constant- 

pressure  mixing  at  its  design  point.  Since  the  jet  pump  has  not  been  able  to  produce 

a flow rate a s  high a s  the  mixing  tube  design flow rate,  the  constant  static  pressure 

condition  was  never  achieved.  However, a nearly-constant  static  pressure  distribu- 

tion  has  been  approached  near  the  discharge  end of the  mixing  tube  at  the  higher flow 

rates  obtained  during  the  test  program. 

The  short  constant-area  mixing  tube  was  made by boring  out  the NAS 2- 

2518 mixing  tube  to a constant  internal  diameter of 4.00". 
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Entrainment  Ratio  Results 

Tables 8 and 9 present  the  primary  and  secondary flow rates  and  the 
entrainment  ratio  for  each  test  point  recorded  for  the two short  mixing  tube  config- 

urations.   For  each  primary  stagnation  pressure,   the  maximum  entrainment  ratio 
represents  the  test   where  the  thrott le  cone  was  moved  out of the  exhaust  diffuser a s  

f a r   a s   i t  would  go.  The two test  configurations  were  then  completely  identical  except 

for  the  mixing  tube.  The  data  shows  that  use of the NAS 2-2518 mixing  tube  resulted 

in  maximum  entrainment  ratios  about 6% to 8% higher  than  the  constant-area  mixing 

tube  configuration. A basic  difference  was  observed  between  the  measured  velocity 

profiles  at  the  diffuser  discharge (see below). 

Je t  " . Pump  Stagnation - and "" Static ... ~ Pressure ~ ~ ~ Parameter  Results 

The  experimental  results  for  both  mixing  tube  configurations  are  com- 

pared  to  the  analytical  predictions  in  figure 48. Both  the  stagnation  and  static  pres- 

sure   parameters   are   plot ted  for   four   pr imary  pressures .  

The  experimental  stagnation  pressure rise values  calculated  from a sin- 

gle  traverse  were found  to  be 13% to 32% below  the  analytical  predictions.  The  one 
experimental  value  calculated  from  traverses  in two perpendicular  directions  was 

8% below  the  analytical  prediction.  The  differences  between  the  experimental  and 

analytical   values  are  caused by a combination of effects listed  below. 

0 The  experimental  value is very  sensitive  to  the  accuracy 
and  thoroughness of the  traversing of the  diffuser  discharge 

to  determine Pdo. 

0 The  estimated  diffuser  losses  between  the  mixing  duct  exit 

and  the  traverse  station  are  added  to Pdo to determine Pmo. 

Since  the  diffuser  inlet flow is highly  distorted  (the  mixing 

tube is too  short  and  primary  nozzle jets persist  into  the  dif- 
fuser  inlet)   the  estimated  losses  may  be  too low. 

0 The  suction  duct  and  nozzle  cluster  losses  must  be  subtracted 
from  the  barometric  pressure in o rde r  to  determine Pso. The 
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loss  characterist ics  used  were  obtained  by  drawing  air   past  

the  nozzle  cluster  using a blower a t  the  discharge of the  duct 

system  (section 4.2.3).  The flow around  the  cluster  may  he 

different  when  the  primary  nozzles are in  operation.  Higher 

inlet   losses  may  be  the  result .  

0 Wall  friction  losses  in  the  mixing  tube (not  taken  into  account 

in  the  analytical  predictions)  reduce  the  jet  pump  stagnation 

pressure  r ise   (sect ion 4 . 2 . 4 ) .  

The  experimental   static  pressure  parameter curves a re   s imi l a r  in  slope 

to  the  curves  for  the  analytical  predictions.  The  experimental  curves  are  shifted to 

higher  negative  values of the  s ta t ic   pressure  parameter .   This   means  that   the   meas-  

ured  static  pressure  values  are  too low just  as  the  integrated  stagnation  pressure 

values  were  too  low.  There  are two reasons why this  occurred. 

0 The  data  shows  that  the  static  pressure  is  still  increasing  at 

the  end of the  constant-area  mixing  tube.  This  means  that  con- 

siderable  mixing is still  taking  place. A longer  constant-area 

mixing  tube  improves  the  agreement of the  experimental  and 

analytical   static  pressure  parameters  as  shown in section4.4.  3 .  

0 The  suction  pipe  and  nozzle  cluster  losses,  which  are  used  to 

determine P may not  be accurately  represented  by our  

measured loss characteristics.  This  problem  was  discussed 

above  for  the  stagnation  pressure  loss  parameter. 

so’ 

To  improve  the  agreement  between  the  experimental  and  analytical re- 
sults,  the  length of the  mixing  tube  was  increased  using  the  mixing  tube  extension 

piece.   The  stagnation  pressure  traverses  were  then  repeated  at   the end of the  ex- 

tension  tube. 
Velocity  Profiles  at  the  Diffuser  Discharge 

Velocity  profiles  were  calculated  from  the  stagnation  pressure  traverse 

data  used  to  calculate  the jet pump  discharge  stagnation  pressure.  The  velocity  pro- 

files measured for the two mixing  tubes  are  presented  in  figures 44, 45, and 49. 
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Figure44  shows  velocity  profiles  taken  at  four  throttle  settings  at a pri- 

mary  flow pressure of 350 psia  using  the NAS 2-2518 mixing  tube.  Three  observa- 
tions  can be made  from  this  figure. 

0 The  profiles are generally  not  symmetrical, 

0 a sharp  dip  in  velocity  occurs  at  the  center of the flow 

for  the  higher  entrainment  ratios, 

0 the  velocity  dip  becomes less pronounced as  entrainment 

ratio  decreases.  

Figure  45  shows two velocity  profiles  for  the NAS 2-2518  mixing  tube a t  

reduced  pressures  and one  velocity  profile  measured  with  an  unheated  primary flow. 

In all  profiles, a sharp  dip  in  velocity  occurs  in  the  center of the  tube.  The  unheated 

pr imary flow  velocity  profile is nearly  symmetrical.  Tde  asymmetry of all of the 

heated  primary flow velocity  profiles  is  probably  caused  by a radial  shift of the  noz- 

zle  cluster  relative  to  the  mixing  tube  due  to  thermal  expansion of the  elbow  which 

feeds  hot air to  the  cluster.  This  shift  has  been  measured  to  be  about vi6 inch. 

This  situation  was  corrected in some of the  subsequent  tests by setting  the  nozzle 
cluster  off-center  at  room  temperature to compensate  for  thermal  expansion  at op- 
erating  temperature. 

Figilre 49 presents  velocity  profiles  measured  for  the  short  constant-area 

mixing  tube  configuration.  The  velocity  profiles are not symmetrical  for  this  mixing 

tube  either.  For  run  24, two perpendicular  velocity  traverses  were  obtained. Both 
t raverses   were  asymmetr ical   and both were  shifted  in  the  direction  which  would  be 

expected if caused  by  elbow  thermal  expansion  (the  location of the  traverse  planes 

relative to  the  elbow is shown  in  figure  40).  The  dip  in  velocity a t  the  center of the 

tube was much  smaller for  the  constant  area  mixing  tube  configuration  than  for  the 

NAS 2-2518 mixing  tube.  Further  discussion of the  dip  in  the  velocity  profile i s   p re-  

sented  in  section  4.4.4.  The  presence of the  exhaust  cone  was  shown  to  have no ef- 

fect  on  the  velocity  profile  and a wedge  probe  traverse  revealed that a small  amount 

of swirl   was  present  in  the flow. 

61 

I ". 



Mixing. Tube  Static  Pressure  Distribution 

Static  pressure  data  is   presented  in  f igures 46, 47,  and  50.  Figure  47 

compares  the  variation of static  pressure  along  the  mixing  tube  and  diffuser  for  three 

configurations: 

1. NAS 2-2518 mixing  tube  in  the BLC duct  system. 

2. NAS 2-2518 mixing  tube  in  the  Dynatech Test Rig. 

3. Constant  area  mixing  tube  in  the  Dynatech  Test  Rig. 

The  test  conditions  for  each of the  three  configurations  are  listed  below. 

Slight  differences  in  primary  temperature  and  entrainment  ratio  existed  for  the  three 

conditions . 

P T W 

psia " F lbm/min  lbm/min Ibm/'min 
Configuration PO  PO P wS Wrn m 

1 350 1200" 6.4 118.5 124.9 18.5 

2 350 1085" 6.  70 118.20 124.9 17.65 

3 350 1130" 6.65 118.25 124.9 17.8 

The  static  pressures  for  configuration 2 are   about  2"  of water   larger  

than  for  configuration 1. This shift  in  the static pressure  level   i s  a result  of re- 
duced  losses  in  the  suction  duct  and  bellmouth  as  compared  to  the BLC suction  duct. 

The 2" of water  shift  is  equivalent  to a 10.5 psf  decrease  in  suction  duct  losses. Com- 

parison of this  number to figure  41  shows  that  10.5  psf  is  about half of the  difference 

between  the  measured  losses  for  the two inlet  geometries. 

The  effect of changing  from  the  contracting NAS 2-2518 mixing  tube  to a 

constant  area  tube  is  shown by configurations 2 and 3 in  figure  47.  The  static  pres- 

sure   r ises   more  rapidly in the  constant  area  tube  because of the  lower  velocity  levels 

However,  the  static  pressure  recovery  obtained  in  the  diffuser is substantially  larger 
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for  the NAS 2-2518 mixing  tube  case.  This  effect  may be. the  result of lower  mixing 

tube  stagnation  pressure  rise  or  reduced  diffuser  effectiveness  for  the  constant-area 

mixing  tube  case. 

Figures  46 and 50 show  the  variation of s ta t ic   p ressure  at two locations 

in  the  mixing  tube  for  configurations 2 and 3 a s  a function of the  pr imary  pressure 

and  the  entrainment  ratio.  The  increase  in  static  pressure  for  the  constant  area 
tube  above  that of the  contracting  tube  was found to exist for   a l l   pr imary  pressure 

levels  and  entrainment  ratios  tested. 

4.4. 2 - Reduced  Blockage  Nozzle  Clusters 

Two reduced  drag  nozzle  cluster  configurations  were  tested  to  determine 
the  influence of the  cluster  drag upon jet pump  performance  and  to  allow  selection of 

the  best  cluster  for  further  testing.  Section 4.1 presents  the  dimensions of each of 
the  cluster  configurations.  Table 5 lists  the test conditions  and  table 6 provides 

an  index  to the results  obtained. 

The  jet  pump  performance  with  the  three  nozzle  cluster  configurations 
(original,  original  cluster  with 2-inch  nozzle  extension,  and  the  low-drag  cluster #2) 

were compared  in  the  following  ways: 

1. System  performance  at  minimum  throttling (wide 

open  throttle  cone) 

2. Static  pressure  parameter 

3. Static  pressure  variation  along  the  mixing  tube  at 

a selected  total flow ra t e  

4. Velocity  profiles 

5. Cluster   pressure  loss   character is t ics  
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Entrainment  Ratio  Results 

The  system  performance  at   minimum  thrott l ing is presented  in  figure 51 

where  secondary flow ra t e  is plotted a s  a  function of pr imary flow rate.  Except  for 

the  loss  characterist ics of the  nozzle  clusters  themselves,  the  system  loss  charac- 

teristics  are  identical  for  all  three  nozzle  configurations  when  the  cone  is in  the  wide 

open  position.  Both of the  modified  nozzle  clusters  show  equal  improvement  with 

respect  to  the  performance of the  original  cluster. Both have  an  increased  second- 

a r y  flow rate   for   the  same  pr imary flow rate.  

The LD #2-4 cluster  nozzles  were  designed  for  a  slightly  lower  pri- 

mary  flow ra t e   a t   a  given  pressure  and  temperature  than  the  Case 4 Nozzles. This 

difference  in  design  accounts  for  the  shift  in  data  points  along  the  curve  for  the two 
reduced  drag  c lusters .  

Jet   Pump  Static  Pressure  Parameter  Results 
. . . - - - -. - - - 

The  analytical   and  experimental   static  pressure  parameters  are  com- 

pared  for  the  three  nozzle  clusters  in  the  following  figures: 

Original  Nozzle  Cluster:  figure 48 

LD#1 - Low-Drag  Nozzle  Cluster:  figure  52 

LD#2 - Low-Drag  Nozzle Cluster :  figure 56 

The  best  agreement  between  analytical  and  experimental  results  was  obtained  for  the 

LD#1  cluster  (figure 52). The  higher  nozzle  cluster  losses  in  the  original  cluster 

(figure 48) and  the  less-complete  mixing  obtained  with  the  7-nozzle  arrangement of 

the LD #2 cluster  (figure  56)  are  the  causes of the  poorer  agreement  between  analy- 

s i s  and test resul ts   for   these  c lusters .  

Velocity  Profiles  at  the  Diffuser  Discharge 

The  velocity  profiles  for  the  original  cluster  without  and  with  nozzle  ex- 

tensions  are   presented  in   f igures  49 and  53.  The  profiles  had two velocity  peaks  with 

a dip  in the center  amounting  to 30 to 60 fps. The velocity  profiles  for  the  LD#2 

cluster  are  presented  in  f igure 57. Three  nearly-equal  velocity  peaks were obtained 
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with  the  LD#2  cluster  when  traversing  along  a  line  passing  through  three  nozzles, 
and  one  velocity  peak  was  obtained  when  traversing  along  a  line  passing  between noz- 

zles.  The  difference  between  the  profiles for the  original  cluster  and  for  the  LD#2 

cluster  appears  to  be  related  to  the  number of nozzles  used.  The  LD#2  nozzle  clus- 

ter has  seven  equally-spaced  nozzles,  each  having  an  equal  share of the  mixing  tube 

flow cross   sect ion to energize.  The  original  cluster  has two additional  nozzles 

around  the  outside,  leaving  the  center  nozzle  with  a  larger  percentage of the  mixing 

tube flow area  to  energize. The velocity  dip  probably  was  not  caused by nozzle  clus- 

ter losses  (i. e. , a  wake  effect)  because  the  LD#1  and  LD#2  clusters  apparently  had 
s imi la r  loss characteristics  (figure  51). 

Several tests were  completed  with  and  without  the  throttle  cone in place. 

No change  in  the  velocity  profile  was  detected.  Therefore,  the  presence of the  throt- 
tle  cone at the  diffuser  exit  does  not  seem  to  be the  cause of the  dip  at t he  center of 

the  velocity  profile  when  the  original  nozzle  cluster was  used. No satisfactory ex- 

planation  for  the  dip  was  developed  during  this  program. 

Mixing  Tube  Static ~~ ~ Pressure  Distribution 

The static pressure  variation  along  the  mixing  tube is shown for  all  three 

clusters  in  figure 55. The  static  pressure  levels  are  dictated  primarily by the  total 

flow ra t e ,  but  they are  also  slightly  affected  by  changes  in  the  mixing  process  which 
accompany  modifications of the  nozzle  cluster  geometry. The original  nozzle  clus- 

ter produced  similar  pressure  distributions  with  and  without  the  nozzle  extensions. 

The pressure  distribution  for  the  LD#2  cluster  shows  higher  static  pressures  near 
the  mixing  tube  inlet  because of reduced  blockage,  and  lower  static  pressures  at  the 

mixing  tube  exit  because of less  complete  mixing  (the  result of the  reduction  in num- 
be r  of nozzles  from 9 to 7). 

" Cluster  Drag 

The  cluster  loss tests were  discussed  in  section  4.2.3,  Both of the low- 

drag  clusters  showed  equal  reduction in loss  characteristics  relative  to  the  original 
cluster  (figure  41). 
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Selection of the ODtimum Nozzle  Cluster 

The measured  nozzle  cluster  losses  (figure 41) and  the  jet  pump per- 
formance  characteristics  with  minimum  throttling  (figure 5 1 )  show  that  the two lob- 

drag  nozzle  clusters  yield  similar  results.   The  comparison of experimental  and 

analytical   static  pressure  parameters  and  the  comparison of static  pressure  distri-  

butions  along  the  mixing tube for  both  low-drag  clusters show that  the  original  clus- 

t e r  with 2 inch  nozzle  extensions  (LD#1)  is  slightly  preferable  to  the  LD#2  cluster. 

The  original  cluster  with 2 inch  nozzle  extensions  (LD#l)  was  selected 

as  the  best   cluster  for  the  remainder of the  test  program  for  the  following  reasons: 

1. The  nozzles  for  the  remainder of the  test  program 

were  already  available  for  this  cluster. 

2. This  cluster  gives  better  agreement  between  experi- 

mental  and  analytical  static  pressure  values  because 

of the  more  complete  mixing  upstream of the  measur- 

ing  station. 

3. The  LD#2 cluster offers no advantages  in  comparison 

to  the  original  cluster  with  extensions;  the  measured 

losses  are  equal  for  both  clusters  and  the flow ra te  

curves  at   the wide-open  throttle  position a r e  the  same. 

4 .4 .3  Comparison of Short  and  Extended  Mixing  Tubes 

Performance  data  was  obtained  for  both  the  short  and  the  extended 

constant-area  mixing  tubes  using  each of the  four  nozzle sets with  the LD #1 nozzle 

c luster .   The  tes t   resul ts   are  indexed  in  table 6 . 

The  extended  mixing  tube  was found to  change  the  jet  pump  performance 

in  the  following  ways: 

1. The  static  and  stagnation  pressures  both  reached  a 

maximum  value  within  the  extended  mixing  tube. 
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This  indicates  that  complete  mixing  was  achieved.  The 

extended  mixing  tube  was  superior  to  the  short  mixing 

tube,particularly  with  respect  to static pressure  recovery 

a t  low entrainment  ratios.  

2. The  wall   fr ictim losses in  the  extended  mixing  tube  were 

significant  in  comparison to the  stagnation  pressure rise 
developed by the jet pump. 

3. The  velocity  profile  at  the  diffuser  inlet  was  improved by 

extending  the  mixing  tube. 

Identical  duct loss characteristics  existed  for  the  maximum-entrainment 
ratio  runs  for  each  test  number.  The  throttle  cone  was  withdrawn  to  a  fixed  location 

for  these  runs.  Thus,  the  performance  characteristics ,of the  jet  pump a s  influenced 

by  nozzle  design,  mixing  tube  length,  and  primary flow p res su re  and temperature 

can  be  determined by comparing  these  maximum-entrainment  runs. 

Entrainment  Ratio  Results 

A Comparison of the  maximum  entrainment  ratio  achieved  with  the  long 

and  short  mixing  tubes  operated'with  the  same  nozzles  and  the  same  primary flow 
conditions  shows  that the short  mixing  tube  configuration  achieves  a  slightly  larger 

entrainment  ratio  in  all  cases.  The  mixing  tube  extension  section  allows  more  com- 

plete  mixing  and  improves  the  diffuser  inlet  velocity  profile.  However,  the  extended 
tube  introduces  an  additional  frictional  loss  which  becomes  significant  at  large flow 
rates  (figure 43). The  reduction  in  entrainment  for  the  extended  mixing  tube  shows 

that  the  extra  friction  losses in  the  longer  tube  cancel  the  effects of improved  mix- 

ing.  The  use of a  mixing  tube  length  longer  than  the  short  tube  and  shorter  than  the 
extended  tube  would  probably  lead  to  a  higher  entrainment  ratio  than  was  developed 

by either of the  tested  lengths. 
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Jet   Pump Static P res su re   Pa rame te r  ~~ Results -~ 

Table 6 lists the  figure  numbers  which  show  the  static  pressure  para- 

me te r s   fo r  the eight  nozzle  and  duct  configurations  tested.  The  experimental  values 

shown are based  upon  measured  static  pressures (Pm o r  Pmax) and upon secondary 

flow  stagnation  pressures (P ) calculated  from  the  measured  inlet  losses,  cluster 

losses,  and  mixing  tube  losses  (figures 4 1  and43).  The  analytical  values  shown  in 

the  figures  were  calculated by the  computer  using  the  ideal jet pump  analytical  model 

which  neglected  inlet,  cluster,  and  mixing  tube  losses. 

so 

The  results show  that  the  extended  mixing  tube  test  data  corresponds 

more  closely  to  the  analtycal  predictions.  The  biggest  difference  between  the  short 

and  long  mixing  tubes  occurs  at low entrainment  ratios  because  the  extended  mixing 

tube  significantly  increases  the  static  and  stagnation  pressure  recovery  at low  flow 

ra tes .  At high  entrainment  ratios, no improvement  is  produced by the  extended  mix- 

ing  tube  because  the  increased  frictional  losses  cancel  the  potential  gains  from  more 

thorough  mixing. 

Inclusion of the  inlet  and  mixing  tube  losses  in  the  analytical  model would 

give  lower  (more  negative)  values of the  static  pressure  parameter  which would agree 

more  closely  with  the  experimental  values.  The  biggest  changes  would  occur  at  high 

entrainment   ra t ios   where  the  curves   are   present ly   fur thest   apar t .  

Jet   Pump  Stagnation  Pressure  Parameter  Results 

Table 7 l i s t s   a l l  of the  experimental   stagnation  pressure  r ise  parameters 

which  were  calculated  from  the  traverse  data  taken.  Traverses  were  made  either 

a t  the  mixing  tube  discharge  or  in  the  conical  diffuser  at a station  where  the  area  is 

1 .61  x the  inlet   area.   The  stagnation  pressure  at   the  traverse  station  was  calculated 

by  the  mass-momentum  method  presented  in  section 4.2.2. Each  result   represents 

the  integration of one o r  two traverses  as  indicated  in  the  table.  The  value of Pmo 

was  determined  from  the  diffuser  exit  traverse  values (Pdo) by correcting  for  the 

diffuser  losses  using  equation (92) of section 4.2.2. 
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Figure  59  compares  the  analytical  predictions  and  experimental  values of 
the  stagnation  pressure rise parameter  for  the  extended  mixing  tube  tested  with  the 

Case 4 nozzles a t  300 psia  and 1150" F pr imary  flow conditions.  The  experimental 

values  were  obtained a s  follows: 

'0 b The  stagnation  pressure  value Pmo was  calculated 

using  the  diffuser  exit  stagnation  pressure  traverse 

data  and  correcting  for  diffuser  losses  by  using 

equatior  (92) of section 4.2.2. 

d a'' The  stagnation  pressure P was  calculated  by mo 
using  stagnation  pressure  traverse  data  obtained 
at  the  mixing  tube  exit. 

An additional  correction  was  made  to t h e b  b data 

to  account  for  mixing  tube  wall  friction  effects.  The 

wall  friction  pressure  losses  are  taken  from  figure 43 

to  make  this  correction. 

($ ,,The wall  friction  pressure  losses  in  the  mixing  tube 

(figure 43) w e r e  added  to  the d d d a t a .  

The. correction of the  stagnation  pressure rise parameter  to  account  for  duct  losses 
places  three of the  four  experimental  points  within  6  psf of the  analytical  value.  The 

differences  which  remain may be  due to the  factors  discussed  in  section 4.4.1 where 

s imi la r   resu l t s  were presented  for  the  short  mixing  tube  test. 

Additional comparisons of the  analytical  and  experimental  stagnation  pres- 

sure values  are  made  in  section 5 .  1 of this  report .  

Velocitv  Profiles  at  the  Diffuser  Discharge 

Table  6  lists  the  figure  numbers  showing  the  velocity  profiles  obtained 

with  both  the  short  and  long  mixing  tubes.  The  effect of extending  the  mixing  tube 

can  be  seen  clearly on figure 73 where  results  for  both  mixing  tubes  are  plotted  for 
the  Case  2  nozzles.  The  centerline  depression  at  the  diffuser  discharge  is  much 
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smal le r  when  the  extended  mixing  tube is used  since  the flow has  a  longer flow path 

for  mixing.  The tests with  the  Case 3 and  Case 4 nozzles  gave  the  same result. The 
longer  mixing  tube  improves  the  symmetry of the flow entering  the  diffuser  and re- 
duces  the  likelihood of flow separation  in  the  diffuser. 

For  the  Case 3 nozzles  with  the  extended  mixing  tube, two t raverses  

each  were  taken  at  the  mixing  tube  exit  and  at  the  diffuser  exit. One t r ave r se   a t  

each  location  passed  along  a  diameter  through  the  wake of three  noz?!es.  The  sec- 

ond traverse  in  each  location  passed  through  the  wake of only  the  ceaerline  nozzle 

(figure 79). The  four  traverses show  the flow to be reasonably  symmetrical. A re- 
duced  velocity  exists  along  the  centerline  while two peaks of velocity  appear on ei- 

ther  side.  The  velocity  profiles  in  the two planes  at  one  station  were  nearly  iden- 

tical.  Further  discussion of the  velocity  profiles  is  included  in  section 4.4.4. 

Mixing  Tube  Static Pressure Distribution 

Table G l is ts  the figures  showing  the  static  pressure  variation  alongthe 

mixing  tube.  These  variations  are  plotted  only  for  the  extended  mixing  tube  tests. 

The  static  pressure  at   each  location  in  the  duct  is   a  result  of the  interaction of the 

following  factors: 

1. The  local Mach number of the  flow, 

2. The stagnation  pressure  rise  achieved by mixing of 

the two s t r e a m s ,  

3. The frictional  losses  on  the  walls. 

The  data  in  figures 71, 75, and 81 show  that  the  static  pressure  reaches  a  maximum 

a t  the  middle o r   n e a r  the  end of the  mixing  tube  extension. In the  duct  upstream of 

the  location of maximum  static  pressure,   the  increase  in  stagnation  pressure due to 
mixing is l a rge r  than  the  reduction  in  stagnation  pressure  due  to  wall  friction. Be- 

yond the  maximum  point, the added  wall  friction loss becomes  dominant.  The  loca- 

tion of the  maximum  static  pressure  point is closer  to  the  mixing  tube  inlet  for  the 

high  flow ra te  test points  because of the increased  magnitude of frictional  pressure 

loss  which  accompanies  the  increased  velocity levels. 
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These   resu l t s  show that  an  optimum  mixing  tube  length  exists  which will 
produce  the  maximum  static  pressure.  This  optimum  length  is  a  function of flow 
rate.  

4 .4 .4  Velocity  Profile  Investigations 

A s  mentioned  in  other  portions of section 4 . 4 ,  the  velocity  profiles 

measu red   a t  the mixing  tube  exit  and  the  discharge of the  initial  diffuser  section  have 

shown  various  degrees of distortion. This distortion is due  to  the  following  causes: 

1. Angular  and/or  radial  misalignment of the  nozzle  cluster 

and  mixing  tube  centerlines. 

2 .  Non-uniform  pumping. 

The  alignment of the  nozzle  cluster  elbow  with  the  mixing  tube  center- 

line  was  accomplished  with  a  special  centering  plug  which was  inserted  snugly  into 

both the  elbow  and  the  mixing tube. The  original  centering  plug  aligned  the  elbow 

and  tube  concentrically  with  the  elbow  at  room  temperature.  Traverses  taken  with 

low primary  air   temperatures  (from  ambient  to 200" F) gave  velocity  profiles  which 

were  quite  symmetrical  about  the  centerline,  thus  indicating good alignment. How- 

eve r ,  when  the pr imary  flow was  heated  to 1150" F, the  elbow  flange-to-centerline 
dimension  increased by  about 1/16" due  to thermal  expansion.  The  high  velocity 

region in the  velocity  profile  shifted  noticeably in  the same  direction  (an  example 

is given by figure49 ). 

To compensate  for  the  t6ermal  expansion,  an  offset  plug  was  made  to 

position  the two centerlines 1/16 inch  apart when  the  elbow  was at  room  tempera- 

ture. The  offset  plug  was  used  to  position  the  cluster  for  all of the  high  tempera- 
tu re  tests performed  subsequent  to test No. 16. Even  with  the  offset  plug,  some  of 

the  short  constant  area  mixing  tube  tests  showed  distorted  velocity  profiles.  indicat- 

ing  that  the  mixing  process  in  the  short  tube is highly  sensitive  to  slight  misalign- 

ments. A l l  of the  velocity  profiles  for  the  extended  mixing  tube  tests  were  reason- 
ably  symmetrical  showing  that  the  mixing  process  in  the  longer  tube  is  relatively 

insensitive  to  misalignment. 
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Most of the  velocity  profiles  exhibited a slight  depression of the  center- 

line  velocity  below  the  velocity of the  surrounding  flow.  This  depression  was less 
pronounced  when  the  extended  mixing  tube was used  (an  example is given by figure 

73). To  determine  the  reasonhr  the  sl ight  depression of velocity  along  the  center- 

line,  the  following series of tests were run: 

1. Velocity  profiles  were  obtained  with  the  Kiel  probe  with 

and  without  the  throttle  cone  in  place.  The  same  primary 

flow  conditions  were  maintained  for  both tests. 

2. A wedge  probe  was  used to measure  local   s ta t ic   pressure 

and  flow  direction  for  comparison  with a Kiel  probe  measure- 

ment. 

3. A nozzle  arrangement  using 8 Case 2 nozzles  around  the  cir- 

cumference of the  cluster  and 1 Case 4 nozzle  located  in  the 

center  was  tested  to  explore  the  effect  of increasing  the  mo- 

mentum  in  the  center of the  mixing  tube. 

The  first  test  described  above  showed  conclusively  that  the  throttle  cone 

does  not  influence  the  flow at  the  traverse  station.  There  was no detectable  dif- 

ference  in  the  traverse  results  with  and  without  the  cone. 

The  traverse  results  for  tests 2 and 3 above a r e  shown on figure 85. The 

wedge  probe  results,  like  the  Kiel  probe  results,  show  the  depression  in  velocity 

along  the  centerline.  Associated  with  this  depression  in  velocity  was a reduction  in 

s ta t ic   p ressure  of about 1 inch of water  and a departure of the velocity  from  the 

axial  direction  by  roughly + - 2" all  along  the  diameter.  These  results  indicate  that 

a slight  swirl  exists  in  the  flow. 

The  third  test  above  employed a center  nozzle  with a throat  area  about 

50% larger than  that of the  surrounding  eight  nozzles.  The  velocity  profile  still 

shows a centerline  depression.  Thus,  the  depression  cannot  be  accounted  for a s  

only a pr imary flow momentum  deficiency  in  the  center of the  mixing  tube. 
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The  small  amount of swirl  that  appears  to  be  pre'sent  in  the flow is  not 

likely  to  have a significant  effect  on  the  test results. This  small  amount of swirl 

could  be  caused  by  one or more of the  primary  nozzles  being  bent at a  small  angle 

to  the  axis,  by  the  presence of the  primary  nozzle  elbow,  or by wakes  shed off of 

objects  in  the  laboratory  outside  the  jet  pump. 

No satisfactory  explanation  for  the  centerline  depression  in  the  velocity 
profile.remained after these  tests  were  completed.  The cause of the  depression is 

unknown. 
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Section 5 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL  RESULTS 

5 .1  Jet Pump  Stagnation  Pressure  Rise 

The  experimental  measurements of the jet pump  stagnation  pressure 

rise parameter,   Apt*,   generally  fell  below  the  analytical  predictions.  Examples 

a r e  given  in  section 4.4.1 (figure 48) and  section 4.4.3 (figure 59). Additional 

values of A P  * were  measured  in   other   tes ts   and  the  resul ts   are   given  in   table  7. t 

The  analytical  values of Apt* were predicted by neglecting  wall  friction 

losses  in  the  mixing  tube, by assuming  complete  mixing,  and by neglecting  suction 

duct  losses  and  conical  diffuser  losses.  Thus,  the  analytical  values  represent 

TTideal"  jet  pump  performance. The measured  performance  fell below  the T'idealTf 

values  for  the  following  reasons: 

the  experimental  value  is  very  sensitive  to  traversing 

thoroughness  and  accuracy 

mixing  tube  wall  friction  losses  were  not  included in 

the  analysis;   these  losses  are not  negligible 

in  many  tests,  the  stagnation  pressure  traverses  were 

made  in  the  conical  diffuser.  The  test  results  were 

corrected  to  account  for  diffuser  losses  between  the 

measuring  section  and  the  mixing  tube  exit.  These 

corrections  may  be  inaccurate. 

to  determine  the  measured  value of APt = Pmo-Pso, the  value 

of Pso had  to  be  estimated by subtracting  suction  duct  and 

nozzle  cluster  losses  from  the  atmospheric  pressure.  These 

losses  cannot  be  measured  under the conditions  which  exist 

during jet pump  operation so  the  corrections  may  be  inaccurate. 
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0 the  adjustment of the  supersonic  primary  flow  to  match 

the  secondary flow stat ic   pressure  was  assumedto be  isen- 

tropic  in the analysis. When the  primary flow at   the  noz- 

zle  exit   is   appreciably  over- o r  under-expanded,  the  flow 

is non-isentropic  and  stagnation  pressure  losses  occur  in 
the  primary  flow  adjustment  process. 

The  effects of mixing  tube  wall  friction  can  be  estimated  by  using  the 

loss  measurements  of  figure 43. The  analytical  values of Apt*  were  reduced  by 
the  appropriate  loss  taken  from  figure  43  to  derive  the  column  in  table 7 entitled 

"Corrected  for  Duct  Friction".  The  corrected  analytical  values  were  used  to  pre- 

pare  the  right-hand  column  which  shows  the  percentage  error  between  the  corrected 

analytical  value  and  the  test  measurement of Apt*, i.e. : 

pmo) - pmo) 
analytical  experimental 
corrected 

pl l lO\  - pso 
analytical 

'corrected 

The  table  shows  that  the  difference  between  the  corrected  analytical  value  and  the 

test  value of l P t *  is 10% o r  less when t r ave r ses  in two directions were made  during 

the  test.  The  difference  can  be 20% o r   m o r e  if only  one  traverse  was  made,  par- 

ticularly  when  the  short  mixing  tube  was  used  or  distorted  velocity  profiles  were 

observed. 

The  remaining  differences  between  the  corrected  analytical  value  and 

the  test  value  are  due  to  incomplete  traversing  and  possible  inaccuracies  in  the 

conical  diffuser  and  suction  duct  loss  corrections.  Furthermore,  the  pressure  loss 

measurements  shown  in  figure43were  made by drawing a i r  through  the  mixing  tube 

with a blower.  The  wall  friction  losses  may  be  different  when  the  jet  pump is opera- 
ting  because  the  mixing  action  changes  the  velocity  profiles  considerably.  Thus, 
even  the  mixing  tube  wall  friction  corrections  may  not  be  exact. 
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5.2  Jet   Pump  Stat ic   Pressure  Rise  

The experimental  measurements of the jet pump  s ta t ic   p ressure   r i se  

parameter ,  APs*, fell consistently  below  the  analytical  predictions.  The  measured 

static  pressure  values  at  the  mixing  tube  exit  were  lower  than  predicted.  The  rea- 

sons  for  this  discrepancy were a s  follows: 

mixing  tube  wall  friction  losses  were not  included  in 

the  analysis;   these  losses  are not  negligible 

in  the  case of the short  mixing  tube,  the  tests  showed 

that mixing  was  not  completed  within  the  tube,  Thus, 

the  static  pressure-did  not  reach  its  mixed-out  value, 

the  value  which  the  computer  program  seeks to predict. 

the  distorted  velocity  profiles  existing in the  actual  mix- 

ing  tube  lead  to  lower  static  pressures  than  the  uniform 

velocity  profiles  assumed  in  the  computer  analysis. 

to  determine  the  measured  value of I P S  = Pm- Psb, the 

value of Pso was  estimated by subtracting  suction  duct  and 

nozzle cluster losses   f rom  the  a tmospheric   pressure.  

These loss corrections  may  not  be  exact. 

the  primary flow i s  not isentropic  in  the  accommodation 

region  when  the  primary flow is  over- o r  under-expanded 

a t  the primary  nozzle  exit.  Isentropic  accommodation is 

assumed  in  the  analysis. 

The  differences  between  the  experimental  measurements  and  the  analy- 

tical  predictions  are  most  pronounced  at low entrainment  ratios  when  poor  mixing 

occurred,  when  the short  mixing  tube  was  used,  and  particularly  with  the  7-nozzle 

LD#2 nozzle  cluster.  The  extended  mixing  tube  improved  the  recovery of static 

and  stagnation  pressure  at low  flow ra tes .  At high flow ra t e s  (high entrainment 

ratios),  the  increased  frictional  losses  in  the  extended  mixing  tube  cancel  the po- 

tential  gains  from  more  thorough  mixing. 
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The  computer  program  was  modified a s  described  in  sections 3 . 1 . 5  and 
appendix B. 1 to allow  inclusion of mixing  tube  wall  friction  and  suction  duct  losses 

in  the  analytical  performance  predictions.  Preliminary  values of KMT and Ksd can  be 

obtained  by loss tests a s  infigures  4land43,  or  by  estimates  using  duct loss cor- 

relations  available  in  the  literature.  More  accurate  values of K MT  and Ksd must 

be obtained  empirically  from jet pump  testing. 

An example of the  empirical  approach is shown  in  figure  86,  Test 
values of APs* are  replotted  for  the 260 psia  operating  condition  from  figure 72. ' 

A number of alternative  values of KMTwere  assumed  and  used a s  input  data  for 

the  computer  performance  analysis.  The  value of Ksd was  assumed  to  be  0.006 
for  all  calculations.  The  results  show  that  selection of kT= 0.055 makes  the 
analytical  prediction  agree  closely  with  the  test  results.  The  loss  coefficient ST 

a s  used here includes not  only  the effect of  mixing  tube  wall  friction,  but  also  the 

effects of the  other  sources of discrepancies  mentioned  above.  The  mixing  tube 

loss coefficient  measured by drawing  air  through  the  mixing  tube  with a blower 

(figure43)  was KNIT = 0.053. 

This good agreement  between  the  value of Kn/rT measured in the  blower 
t e s t  and  the  value of KMT deduced  from t h e  computer  calculations  suggests  that  the 

blower  test  method  may  afford a simple  and  accurate  way  to  determine K for 

a new jet  pump  design.  However,  the  mixing  action  which  occurs when the  jet  pump 
M T  

is operating  may cause the  mixing  tube  wall  friction  characteristics  to  vary when 

the  primary flow pressure  and  temperature  are changed.  To  determine  whether 
such  variations of KMT are  significant,  more of the test resul ts  of section 4 could 

be  analyzed by the  computer  to  determine  the  appropriate  values of KMT. These 
"jet-pump-derived"  values of KMT could  be  compared  to ST as  measured  by  the 

blower test method  to  determine  whether  serious  discrepancies can occur.  This 

report  includes  sufficient  data  to  make  such  comparisons. 
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Section 6 

CONCLUSIONS 

The conclusions  which  may  be  reached a s  a   resul t  of this  investigation 

a re   l i s ted  below: 

1. Validity of the  Analysis: 

The  analytical  model  developed  in  section  3.1  for  high-entrainment 

compressible-flow  jet  pumps  with  constant  areamixing  tubes is based 

upon the simplifying  assumption  that  the  supersonic  primary  nozzle 

flow adjusts  isentropically  to  match  the  secondary flow static  pres- 

sure. The analytical  predictions of jet   pump  pressure  r ise and  thrust 

augmentation  based  upon  this  assumption  agree  closely  with  test re- 
sults when  mixing  tube  wall  friction  effects are  taken  into  account. 

The  agreement  is good over  a  very  broad  range of operating  condi- 

tions. 

2. Mixing  Tube  Wall  Friction: 

The  stagnation  pressure  losses  which  occur  in  the  mixing  tube 

due  to  wall  friction are significant  in  comparison  to  the  stagnation 

p res su re   r i s e  developed  by  a  high-entrainment jet pump.  Measure- 

ment of the  wall  friction  losses by drawing  air  through  the  mixing 

tube  with a blower  may  yield  values of the  friction  loss  coefficient 

which are accurate  enough for  design  purposes.  Further  analysis 

of the  data  in  this  report  is required  to  check  this  point. 

3. Jet   PumpDuct  System  Matching: 

A technique for selecting  the  optimum  design  for a jet  pump to 

match  given  operating  conditions  was  presented  in  section  3.4.  For 

the  same  pr imary flow  conditions,  the jet pump  geometry  to  achieve 

maximum  entrainment  was shown to  be  different  from  the  geometry 
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required  to  achieve  maximum  thrust  augmentation. In order  to  match 

a jet  pump to  its associated  duct  system  to  obtain  peak  performance, 
it is essential that  the  loss  coefficients of the  duct  components  be es- 
timated as accurately as possible. 

4. Optimum  Mixing  Tube  Length: 

The  mixing  tube  length  must  be  selected  to  balance  the  increased 
pressure  recovery  resulting  from  more  complete  mixing  in a longer 
tube  against  the  increased  wall  friction  losses  in  the  longer  tube.  The 
results of this  investigation  suggest  that no simple  length-to-diameter 
rule is applicable  to  mixing  tube  design.  The  optimum  mixing tube 
length is a function of the  primary  flow  conditions  and  the  entrainment 
ratio at the  operating  point.  This  entrainment  ratio is set by the  loss 
characteristics of the jet pump  duct  system. 

5. Nozzle  Cluster  Design: 

The  original  position of the  nozzle  cluster  close  to  the  mixing  tube 
inlet  led  to  increased  losses  and  inferior jet pump  performance. When 
the  nozzle  cluster  was  moved  upstream  away  from  the  mixing  tube  inlet, 
its pressure  loss  and  blockage effects were  minimized and the  perform- 
ance of the jet pump  was  measurably  improved. A special  "low-drag" 
nozzle  cluster  design  was no better than  the  original  cluster when  both 
were-positioned  away  from  the  mixing  tube  inlet. 

A reduced  centerline  velocityappeared  in  most of the  velocity pr* 

files measured at the  mixing  tube  exit  and  in  the  conical  diffuser.  The 
cause of the  reduced  centerline  velocity is unknown. 

6 .  Performance of the  Wagner Jet Induced  Lift  System: 

The  loss  characteristics of the  suction  duct  and  nozzle  cluster 
arrangement  used  in  the NAS 2-2518 test program  were  measured 
during  this  program.  The  high  suction  duct  and  nozzle  cluster  losses, 
incomplete.  mixing  in  the  too-short  mixing  tube,  and  non-optimum  match- 

ing of the  jet  pump  to  the  duct  system all acted  to  reduce  the  entrainment 
ratios  achieved  with  the  system  substantially below the  peak  values  attain- 
able. 
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7. Mixing  Tube  Design: 

The  original  mixing  tube  geometry,  which  had  a  small  reduction 

in  cross-sectional  area  along its length,  produced a slightly  higher 

entrainment  ratio  than the constant-area  mixing  tube  under  similar 

test  conditions.  Further  analytical  and  experimental work should 

be  carried  out  to  determine  the  performance  characteristics of a 

variety of mixing  tube  shapes.  Significant  performance  improvements 

may  be  possible if mixing  tubes  other  than  the  conveniently-analyzed 

constant  area  and  constant  pressure  designs  are  used. 
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APPENDIX A 

Listing of the Computer Program 

An 'I*'' before  a  line  indicates that it  can be removed if there i s  to be 
no plotting  with  the EZPLOT subroutine. 
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000 1 
0002 
0003 
0004 

0005 
0006 
0007 
0008 
0009 
00 10 
0011 
0 0 1 2  
0013 
00 14 
0 0 1 5  
0016 
0017 

0018 
00 19 
0020 
002 1 
00 22 
0023 
0024 
0 0 2 5  

0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 

0 0 3 5  

0036 
0037 
0038 
0039 
0040 
0041 

0 0 4 2  

D I M E N S I O N  P R I S E ( ~ ~ T ~ ~ ) T T H R U S ( ~ ~ ~ ~ ~ ) ~ E N T ( ~ ~ ~ ? ~ ) ~ A R A Y ( ~ ~ T ~ ~ )  
D I M E N S I O N  C O U N T ( ~ ~ ) T X ( ~ ~ ) ~ Y ( ~ ~ ) , P T I T L E ( ~ S ) ~ T T T I T L E ~ ~ ~ ) T N C ~ ~ )  
D I M E N S I O N   C H A R 1 (   1 1 ~ 6 ) r c H A R 2 ( 1 1 ~ 5 )  
D A T A   N C / 3 8 ~ 6 3 ~  1 6 ~ 5 5 ~ 4 4 ~  19,249 5 2 /  

C C L E A R  A R R A Y S  
DO 26 K = ~ T   1 5  
C O U N T ( K ) = O  
X ( , K )  =O 
Y ( K ) = O  
P T I T L E ( K ) = O  
T T I T L E ( K ) = O  
DO 25 J = ~ T  11 
P R I  S E (  J , K ) = O  
T H R U S (   J T K ) = O  
E N T ( J T K ) = O  
A R A Y (   J * K ) = O  

2 5   C O N T I N U E  
2 6  C O N T I N U E  

C C A L L   I D F R M V   R E M O V E D   F R O M   P R O G R A M   H E R E  
L i n e  1 R E A D ( ~ T ~ ~ O ) N T P T ( P T I T L E ( I ) T I = ~ T ~ ~ )  
L i n e  2 R E A D ( ~ ~ ~ ~ ~ ) N T T , ( T T I T L E ( I ) T I = ~ T ~ ~ )  
L i n e  3 R E A D ( 5 9 5 2 ) N  

G = l  e 4  
GO=3 2.2 
R = 5 3 . 3 5  
C O N V = 7 7 8 . 1 6  
K = O  

C B E G I N   D l J T E R   L O O P T   E A C H   L O O P  USES A NEW S E T   O F   I N I T I A L   C O N D I T I O N S  
1 W R I T E ( 6 r 1 0 0 )  

DO 7 6 1  J=l~ll 
DO 760 M = 1 ~ 5  
C H A R l ( J ? M ) = O  
C H A R 2 (   J T M ) = O  

760 C O N T   I N U E  
761 C O N T I N U E  

C 
K = K +  1 
R E A D   D I M E N S I O N L E S S   I N I T I A L   C O N D I T I O N S  

L i n e  4 R E A ~ ( ~ T ~ ~ T E N D = ~ O ~ ) P B A R T T B A R T A B A R ~ T A B A R ~  
C R E A D   D I M E N S I O N A L   I N I T I A L   C O N D I T I O N S  

L i n e  5 R E A D ( S T ~ ~ ) P S O I T T S O T A M  
L i n e  6 R E A D ( ~ T ~ ~ ~ ) F D U C T T F T U B E  

C H A R l (  l l r 6 ) = 0  

W R I T E ( ~ T ~ ~ ~ ) P B A R T T B A R  
W R I T E ( ~ T ~ ~ ~ ) A B A R ~ , A B A R ~  
W R I T E ( ~ T ~ O ~ ) P S O I T T S O T A M  
W R I T E ( ~ T ~ ~ ~ ) F D U C T T F T U B E  

C C A L C U L A T E   O T H E R   D I M E N S I O N A L   V A L U E S   F R O M   D I M E N S I O N L E S S   V A L U E S  
P P O = P B A R * P S O I  
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. 
0043 
0044 
0045 

0046 
0047 
0048 

0049 
00 50 
0 0 5 1  
0052 

0 0 5 3  
0 0 5 4  
0 0 5 5  
005 6 
0 0 5 7  
005 8 
0059 
0060 
0061 

0062 
00 63 
0064 
0 0 6 5  
0066 
0067 
0 0 6 8  
0069 
0070 
007 1 
0 0 7 2  
0073 
0074 
0075 
0076 
0077 
0 0 7 8  
0079 
0080 
0 0 8 1  

00A2 
0083 
0084 
0 0 8 5  

0 0 8 6  

T P O = T B A R * T S O  
A T H = A B A R   1 * A M  
A P = A B A R Z * A M  

C B E G I N   I N N E R   L O O P ,   E A C H   T I M E   T H R O U G H   G I V E S  A S E T  OF S O L U T I O N S  
C F O R  A D I F F E R E N T   V A L U E   O F   E N T R A I N M E N T   R A T I O .  

Line 7 DO 13 J = l r l l  
E N T R = 7 . 0 + J * 3 . 0  
W R I T E ( 6 r l 0 5 ) J t E N T R  

C C A L C U L A T E   P R I M A R Y   A N D   S E C O N D A R Y   M A S S   F L O W   R A T E S  
W P = G ~ G O * ( l / R ) ~ ( 2 . 0 / ( G + l ~ ~ * ~ ( ( G + l ~ / ( G - l ~ )  
WP=SQRT(WP)*144.0*60.O*PPO*ATH/SQRT(TPO)  
W S= ENTR*W P 

Line 8 PSO=PSOI-FDUCT*WS*WS*R*TSO 
1 / ( 3 6 0 0 . 0 * 2 ~ O * G O * P S O I * A M e 1 4 4 . 0 * 1 4 4 ~ 0 * 1 4 4 ~ 0 )  

Line 9 C I T E R A T E   T O   F I N D   S E C O N D A R Y   M A C H   N U M B E R  
820 1=0 

GUESS=O. 2 
Z ~ W S ~ S Q R T ~ T S 0 ~ / ~ 6 0 ~ 0 * 1 4 4 ~ O * P S O * ~ A M ~ A P ~ * S O R T ~ G * G O / R ) ~  

2 PARAM=l+(G-1)/2.0*GUESS*GUESS 
Z C A L C = G U E S S / P A R A M * * (   ( G + 1 ) / ( 2 . O * ( G - l ) ) )  

Line 10 I F  ( G U E S S - 1 . 0 )  1 4 9  1 4 9  15 
14 I F  ( 1-100) 3 9 3 9  5 
3 I F I A B S ( Z C A L C - Z ) - . 0 0 0 5 ) 6 1 6 r 4  
4 D E R I V = P A R A M * * ( - ( G + l )   / ( 2 . 0 * ( G - l )  1 ) - ( G + 1 ) / 2 . 0 * G U E S S * G U E S S  
l+PARAM**((1-3.0*G)/(2.O*(G-l))) 

G U E S S = G U E S S - ( Z C A L C - Z ) / D E R I V  

GO T O  2 
I = I + l  

5 W R I T E ( 6 9 6 6 )  
GO T O  405 

1 5  W R I T E ( 6 9 1 1 5 )  
GO TO 13 

6 C O N T I N U E  
S M O K = G U E S S  
P S = P S O / (   1 + ( G - l )  /2.08SMOK*SMOK)**(G/(G-l) 1 
TS=TSO/(l+(G-l)/2.0*SMOK*SMOK) 
VS=2.O*G*GO*R*(TSO-TS)/(G-l) 
V S = S Q R T ( V S )  
P S O R = P S O I - F D U C T * V S * V S * P S / (  2 .0*GO*R*TS 1 
IF(ABS((PSOR-PSO)/PSOR~-~OOO5) 8OOr80098I.O 

A10 P S O = P S O R  

800 P S O = P S O R  
GO T O  8 2 0  

W R I T E ( 6 9 4 5 7 ) P S O  
W R I T E ( 6 9 6 0 0 )  I 

I =o 

P M O K = S Q R T ( 2 . 0 * P M O K / ( G - l ) )  

C M A K E   C O R R E C T I O N   F O R   U N D E R  OR O V E R   E X P A N S I O N  

1 6  P M O K = ~ 1 + ~ G - 1 ~ / 2 . 0 * S M O K * S M O K ~ * ~ P P O / P S O ~ * * ~ ~ G - l ~ / G ~ ~ l ~ O  

A M 2 ~ W S * S Q R T ~ T S O ~ * ~ 1 + ~ G ~ l ~ / 2 ~ O * S M O K ~ S M O K ~ * ~ ~ ~ G + l ~ / ~ 2 ~ O * ~ G ~ l ~ ~ ~  
l / ( P S O * S M O K )  

l / ( P P O * P M O K )  
A M 2 ~ A M 2 + W P * S ~ R T ~ T P O ~ * ~ l + ~ G ~ l ~ / 2 ~ O * P M O K * P M O K ~ * * ~ ~ G + l ~ / ~ 2 ~ O ~ ~ G ~ l ~ ~ ~  
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0087 A M Z = A M 2 ~ S S n R T ( R / ( G ~ : G O )  ) / (  14G.O:~hO.O) 
0 0 8 8  I F ( A R S ( G M 2 - A M ) - . 0 0 0 0 5 )  19,19117 
00F9 17 S ~ O K = S M n K + ( ( A M 2 - ~ M ) / A ~ S ( A ~ 2 - A ~ l )  ) * F X P ( 5 . 2 * S M O K * S M O K ) * 5 . E - 5  
0090  I F ( I - 2 0 0 ) 1 8 , 5 7 5  
009 1 18 C O N T   I N l J E  
0092 
0093 

I = I + 1  
GO T O  16 

0094 19 C O N T I N U E  
0095 W R I T E ( 6 , 6 0 1 )  I 
0096 A P = ( 1 + ( 6 - 1 ) / 2 . 0 * P ~ O K ~ ~ P M O K ~ * * ( ~ G + l ~ / ~ 2 ~ 0 * ~ G ~ l ~ ~ ~  
0097 A P = A P * W P * S Q R T (   T P O )  / (  1 4 4 . 0 e 6 O .  O--:PPfl*PMflK:::SORT (G:::GO/R 1 )  

009 8 P S 2 = P S O / (  l + ( G - 1 ) / 2 . O " S M O K * S M O I ~ ) * ~ ~ ( G / ( G - l ) )  
0099 T S 2 = T S O / (  I + ( G - 1 ) / 2 . 0 ~ ~ S M @ K = S M f l K )  
0 100 VS2=2.0*G:::GO*Rz:( T S O - T S 2 )   / ( G - l )  
O l C l  V S 2 = S O R T ( V S 2 )  
0102 P P 2 = P S 2  
c) 103 T P 2 = T P O * ( P P 2 / P P n ) * * (   ( G - l ) / G )  
0104 V P 2 = 2 . 0 * G : : : G O * R * ( T P O - T P 2 ) / ( G - l )  
0105 V P 2 = S O R T ( V P 2 )  
0106 C Z = S Q R T ( G * G O * R * T P 2 )  
0107 P M U K = V P Z / C 2  

0108 WM=WP*:( l + E N T R  1 
0109 C P 2 = . 2 4 9 1 4  
0110 C S 2 = .  249 14 
0111 
0 1 1 2  

I = O  
H P 2 = C P 2 * T P 2 + V P 2 * V P 2 /   ( 2 . 0 : x G O * : C O N V )  

0113 H S 2 = C S 2 * T S 2 + V S 2 * V S 2 /   ( Z . O : S G O * C O N V )  
0114 I N T = O  
0115 PMG=PS2+.4  
0116 7 V M = V P 2 + E N T R * V S 2 + 6 0 . 0 * 1 4 4 . 0 * G O * A M * ( P S 2 - P M G ) / W P  
0117 VM=VM*WP/WM 
0118 T M = 6 0 . 0 * 1 4 4 . 0 * P M G * V M * O M / ( R r W "  
0119 CM=. 24914 
0120 PM=(HPZ+ENTR*HS2)*R*WP/(b0.0s144.0*144.O*VM*AM*CM) 
0 1 2 1  PM=PM-R*WM*VM/ (2 .0 *144 .0 :~60 .0*GO*CONV*CM*AM)  
0 1 2 2  I F ( I - 8 0 0 )  8 , 8 9 1 5  
0 1 2 3  8 I F ( A B S ( P M G - P M ) - . O l )  1 1 9 l l r 9  
0124 9 I F ( P M  .GT. P M G )  GO  TO 2 0  
0125 I F ( I N T  .EO. 1 ) G O   T O  11 
0126 PMG=PMG+(  PMG-PM)  /PMG 
0127 I=I+1 
0128 GO T O  7 
0 1 . 2 9  2 0  I N T = l  
0130 PMGzPMG-. 001 
0 131 
0132 GO T O  7 

I = I + 1  

0133 10 W R I T E ( 6 r 6 6 )  
0 1 3 4  GO T O  405 
0 1 3 5  11 C O N T I N U E  
0136 W R I T E ( 6 r 6 0 2 1  I 
0 1 3 7  PM=PMG 

C C A L C l J L A T E   C l l N O I T I C l N S   A T  END O F  C C C O F C l D A T I O N   R F G I n N  

Line 11 C B E G I N   I T E R A T I O N   T O   F I N D   O U T L E T   C O N D I T I O N S  
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0138 

0139 
0 140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 
0149 
0 1 5 0  
0151  
0 1 5 2  
0153 
0154 
0155 
0156 
0157 

0 1 5 8  
0 1 5 9  
0 160 
0161 
0162  
01 63 
0 164 
0165 
0 166 
0167 
0168 
0169 
0 170 

0171 
0 1 7 2  
0173 
0174 
0 1 7 5  
0176 
0177 
0178 
0 179 
0180 
0 1 8 1  
0182  

0183 
0 1 8 4  
0185 

Line 1 2  C 

Line 13 C 

C 

C 

E M O K = V M / S Q R T ( G * G O * R * T M )  
C A L C U L A T E   T H E   E F F E C T   O F   W A L L   F R I C T I O N  
G A M l = l o O + ( G - 1 ) / 2 o O * E M O K * E M O K  
A L P H = 1 4 4 . 0 * P M * ( G A M l * * ( G / ( G - l )  ) -FTUBE*EMOK*EMOK*G/2oO) 
B E T A = A L P H / S Q R T (  1440 O*PM* 1 4 4 . O * P M * E M O K * E M O K * G A M l )  

GMOK=EMOK 
1=1 

700 GAM2=1 .O+(G- l )   /Z .O*GMOK*GMOK 
A = ( l / G M O K ) * G A M 2 * * ( ( G + 1 ) / 0 . O * ( G - l ) ) )  
D A = ( G + ~ ) / ~ o O * G A M ~ * * ( ( ~ - G ) / ( ~ ~ O * ( G - ~ ) ) )  
DA=DA-(l/(GMOK*GMOK))*GAM2**((G+l)/(Z.O*(G-l))) 
I F (  I .GT. 2 0 0 ) G O   T O  10 
I F ( G M O K - l ~ 0 ) 7 0 1 e 7 0 1 ~ 1 5  

701 I F ( A B S ( A - B E T A ) - . 0 0 0 1 ) 7 0 3 c 7 0 3 c 7 0 2  
702 I=I+l 

G M O K z G M O K - (   A - B E T A )   / D A  
GO T O  700 

W R I T E ( 6 e 6 0 4 )  I 
P 2 = (  1 / 1 4 4 . O ) * A L P H / G A M 2 * * ( G / ( G - l ) )  

C A L C U L A T E   O l J T L E T   P A R A M E T E R S  
V M = G M O K * S B R T ( G * G O * R * T M )  
P M = P 2  
EMOK=GMOK 

703 C O N T I N U E  

T M = T M * ( P ~ / P M ) * * ~ . O * ( G M O K / E M O K ) * * ~ O O  

P M T O T = 1 4 4 . 0 * P M ~ ~ 1 . 0 + ~ G - l ~ / 2 . O * E M O K ~ E M O K ~ * ~ ~ G / ~ G - l ~ ~  
D E L P = P M T O T - l 4 4 , 0 * P S O  
D D E L P = D E L P / (   1 4 4 . O * P S O )  
D S T A T = 1 4 4 . 0 * ( P M - P S O )  
D D S T A = ( P M - P S O ) / P S O  
A U G = W M * V M / ( W P * V P Z )  
ENER=144,0*PM*VM*VM/(   Z .O*GO*R*TM)  

N D E L P = D E L P  
I F   ( N D E L P  .LE. 0 )  GO T O  1 
S T O R E   S O L U T I O N S   F O R   T A B L E   P R E S E N T A T I O N  
S U M = J  

D E N E R = E N E R / (   1 4 4 . O * P S O )  

C H A R l ( J e l ) = E N T R  
C H A R l (   J t Z ) = D D E L P  
C H A R  1 ( J c  3 1 = D D S T A  
C H A R l (   J t 4 ) = E M O K  
C H A R l (   J c 5 ) = D E N E R  
C H A R l (   J T ~ ) = A U G  
C H A R 2 (  J c  l ) = E N T R  
C H A R Z (   J e 2 I = P M  
C H A R 2 (   J t 3 ) = D E L P  
C H A R 2 (   J T ~ ) = D S T A T  
C H A R 2 (   J c 5   ) = E N E R  
S T O R E   S O L U T I O N S   I N   A R R A Y S   T O  B E  P L O T T E D   L A T E R  
P R I S E ( J t K ) = D D E L P  
T H R U S (   J t K ) = A U G  
E N T (  Jt K ) = E N T R  

0186 C O U N T ( K ) = J  
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- ”. 

0 1 8 7  
0 1 8 8  
0189 
0 190 
0191 
0 1 9 2  
0193 
0 194 
0 1 9 5  
0196 
0197 
0 1 9 8  

0199 Line 

0 2 0 0  
0 2 0 1  
0 2 0 2  
0 2 0 3  
0 2 0 4  
0 2 0 5  
0 2 0 6  
0 2 0 7  
0 2 0 8  

0 2 0 9  
0 2 1 0  
0 2 1 1  
0 2 1 2  
0 2 1 3  
0 2 1 4  
0 2 1 5  
0 2 1 6  
0 2  17 DO 7 2 6  J = l r M  
0 2 1 8  W R I T E ( ~ ~ ~ ~ ~ ) C H A R ~ ~ J T ~ ) ~ C H A R ~ ( J ~ ~ ) T C H ~ R Z ( J T ~ ~ T C H A R ~ ~ J T ~ ~ ~ C H A R ~ ~ J T ~ ~  
0 2 1 9   7 2 6  CONTINUE 

0 2 2 0  Line 15 I F ( K  .GE. N )  GO TO 300 
0 2 2  1 GO TO 1 
0 2 2 2  300 CONTINUE 

0 2 2 3  PMAX=TOP ( P R I  S E I  
0224  TMAX=TOP(THRUS) 

0 2 2 5  K =  1 
0 2 2 6   N A = 1 7  
0 2 2 7  NO= 2 7  
0 2 2 8   N F = 1  
0 2 2 9  GO TO 303 
0 2 3 0   3 0 1  NTP=O 
0 2 3 1  
0 2 3 2  
0 2 3 3  

C END OF OUTER  LOOP 

C F I N D  LARGEST  VALUES I N  ARRAYS P R I S E  AND THRUS 

C ENTER  PLOTTING  SECTION OF THE PROGRAM 

NA= 0 
NO= 0 
NF=2 

86 



0 2 3 4  
0 2 3 5  
0 2 3 6  
0 2 3 7  
0 2 3 8  
0 2 3 9  
0 2 4 0  
0 2 4 1  
0 2 4 2  
0 2 4 3  
0 2 4 4  

0 2 4 5  
0 2 4 6  

0 2 4 8  
0 2 4 9  
0 2 5 0  
0 2 5 1  
0 2 5 2  
0 2 5 3  
0 2 5 4  
0 2 5 5  
0 2 5 6  
0 2 5 7  
0 2 5 8  
0 2 5 9  
0 2 6 0  
0 2 6 1  
0 2 6 2  
0 2 6 3  
0 2 6 4  
0 2 6 5  
0 2 6 6  
0 2 6 7  

0 2 6 8  
0 2  69 

0 2 7 0  
0 2 7 1  
0 2 7 2  
0 2 7 3  
0 2 7 4  

0 2 4 7 .  

0 2 7 5  

0 2 7 6  
0 2 7 7  

3 0 2   K = K + 1  
3 0 3  M=COUNT( K )  

X (  J ) = O  
Y (  J ) = O  

DO 3 0 5  J= l t  11 

3 0 5  CONTINUE 
DO 304 J=l tM 
X (  J ) = E N T (   J t K )  
Y (  J ) = P R I S E (   J t K I  

304   CONTINUE 

C CALL  EZPLOT REMOVED FROM DECK HERE 
NP=COUNT(K) 

I F ( K  .GEm N)GO TO 400 
I F ( K - 2 ) 3 0 1 ~ 3 0 2 ~ 3 0 2  

400 K = l  
NA=17 
NO=28 
NF=1  
GO TO 403 

NA=O 
NO=O 
NF=2 

401 NTT=O 

4 0 2   K = K + 1  
403 M=COUNT( K )  

X (  J ) = O  
Y ( J ) = O  

DO 406 J= lv11 

406  CONTINUE 
DO 404 J= l tM  
X ( J ) = E N T (   J t K )  
Y ( J ) = T H R U S ( J t K )  

404 CONTINUE 
L A S T = l  

C CALL  EZPLOT REMOVED FROM DECK  HERE 
I F ( K  .GE. N ) L A S T = 2  

I F ( K  .GE. N )  GO TO 4 0 5  
I F ( K - 2 ) 4 0 1 ~ 4 0 2 ~ 4 0 2  

C CALL  PLTND REMOVED FROM DECK  HERE 
4 0 5  CONTINUE 

50   FORMAT(4F10 .5 )  
5 1  FORMAT(  3F10.5 1 
5 2  FORMAT (I 10) 

100 F n R M A T ( / / 2 5 X t 6 5 H * * * * *  THE FOLLOWING  CASES  WILL USE  THESE I N I T I A L  C 
lONDIT   IONS ***** 1 

101 FORMAT(  /2Xt15HPRESSURE R A T I O = T E ~ O . ~ ~ ~ O X ~ ~ ~ H T E M P E R A T U R E  R A T I O = t  
1E10.4)  

102 F O R H A T ( / ~ X T ~ ~ H ( A T H * C W / A M ) = T E ~ O . ~ T ~ ~ X ~ ~ H A P / A M = ~ E ~ O . ~ )  
103 FORMAT(/2Xt19HSECONDARY P R E S S U R E = T E ~ O . ~ ~ ~ X ~ ~ ~ H S E C O N D A R Y  TEMPERATUR 
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... . , . . .. . - .. . . . ". ". . . - ." 

0278 

0279 
0280 
0281  
0282 
0283 
0284 
0 2 8 5  
0 2 8 6  

0287  
0 2 8 8  
0289  
0 2 9 0  

0291  
0292 
0293 
0294 
0295 
0296  
0297 
0298 

0299 

0300 

030 1 

0302 

0303 

0304 

0305 

0306 

0307 

0308 

0309 
0310 
0311 

l E = r E 1 0 . 4 , 3 X t 1 7 H M I X I N G   T U B E   A R E A = T E ~ O . ~ )  
105  F O R M A T (   / 4 O X r   1 0 H * * * *   C A S E  T 1292x1 1 8 H E N T R A I N M E N T   R A T I O = t F l O o 5 t  

1 5 ~  3 a w ~ )  
66 F O R M A T ( / 2 X , 1 9 H T 0 0   M A N Y   I T E R A T I O N S )  

106 F O R M A T ( / ~ ~ X T ~ ~ H A C C O M O D A T I O N  R E G I O N ~ ~ O X T ~ H * ~ ~ O X T ~ H O U T L E T )  
107 F O R M A T ( ~ ~ X ~ ~ H P R I M A R Y ~ ~ ~ X T ~ H S E C O N O A R Y ~ ~ X ~ ~ H * )  
108 F O R M A T (  / ~ X ~ ~ ~ H P R E S S U R E T P S I A T ~ ~ X T E ~ O . ~ T ~ O X T E ~ O . ~ ~ ~ X T ~ H X ~ ~ X T E ~ O . ~ )  
109 F O R M A T ~ / ~ X ~ ~ ~ H T E M P E R A T U R E ~ ~ ~ X T E ~ O ~ ~ T ~ ~ X ~ E ~ O ~ ~ ~ ~ X ~ ~ H ~ ~ ~ X ~ E ~ O ~ ~ ~  
110 F O R M A T ~ / ~ X ~ ~ ~ H V E L O C I T Y ~ F T / S E C ~ ~ ~ X ~ E ~ O ~ ~ ~ ~ O X ~ E ~ O ~ ~ T ~ X ~ ~ H ~ ~ ~ X T ~ ~ ~ ~ ~ ~  
111 F O R M A T ( / 2 X r l l H M A C H  N U M B E R T ~ ~ X T E ~ O . ~ ~ ~ O X ~ E ~ O ~ ~ ~ ~ ~ T ~ H * ~ ~ ~ T € ~ O ~ ~ ~  
112 F O R M A T ( / 2 X r Z 4 H M A S S   F L O W  R A T E t P O U N D / M I N ~ 4 X t E 1 0 ~ 4 ~ l O X ~ E 1 0 ~ 4 ~ 8 X t l H ~ t  

1 6 X * E 1 0 0 4 )  
113 F O R M A T (   / 5 X , 2 0 H T O T A L   P R E S S U R E  R I S E = T E ~ O . ~ T ~ X ~ ~ ~ H P O U N D / S Q .  F O O T )  
114 F O R M A T ( / 5 X , 1 5 H M O M E N T U M   R A T I O = , E l 0 . 4 )  
115 F O R M A T (   / 5 X , 4 7 H T H I S   V A L U E   O F   E N T R A I N M E N T   R A T I O  I S  I N A C C E S S I B L E  1 
116 F O R M A T ( / 5 X , 4 3 H T H E   P R I M A R Y   S T R E A M   A R E A   A F T E R   A C C O M O D A T I O N = t E 1 0 . 4 ,  

l l X , S H S Q .   F E E T )  
1 2 0  F O R M A T ( / 5 X , 2 8 H D I M E N S I O N L E S S  P R E S S U R E   R I S E = , E 1 0 , 4 )  
3 5 0   F O R M A T (  I 1 5 r  1 5 A 4 )  
4 5 0  F O R M A T  ( I  1 5 1   1 5 A 4 )  
600 F O R M A T  ( / 5 X 9   2 3 H M A C H   N U M B E R   I T E R A T I O N S =  9 I 3  1 
6 0 1  F O R M A T ( / 5 X v 2 4 H P R I M A R Y   A R E A   I T E R A T I O N S = r I 3 )  
602 F O R M A T  ( / 5 X t   2 0 H P R E S S U R E   I T E R A T I O N S =  t I 3  1 
603 F O R M A T ( / 5 X , 3 7 H D I M E N S I O N L E S S  S T A T I C   P R E S S U R E   C H A N G E = , E l O o 4 )  
707 F O R M A T ( / 1 X t 1 1 6 H X  * X X 3 * X * X 3 3 X 3 * X X X X * X 3 * X * * * 

l * * 3 3 X X X X X S S * * X 3 * X * X X 3 X X 3 * * * 3 * * X * )  

710 F O R M A T (   ~ ~ X T ~ ~ H D I M E N S I O N L E S S   S O L U T I O N   U S I N G   T H E S E   I N I T I A L   C O N D I T I O N  
1 s t  1 

720  F O R M A T ~ / ~ X T ~ ~ H E N T R A I N M E N T T ~ X T ~ H * T Z X T ~ ~ H D I M E N S I O N L E S S  T O T A L t 3 X q l H 3 t  
~ ~ X T ~ O H D I M E N S I O N L E S S  S T A T I C T ~ X ~ ~ H * T ~ X ~ ~ H M A C H ~ ~ X ~ ~ H * ~ ~ X ~ ~ ~ H D I M E N S I O N  
~ L E S S T ~ X T ~ H ~ T ~ X ~ ~ H M O M E N T U M )  

7 3 0  F O R M A T ( ~ X T ~ H R A T I O T ~ O X ~ ~ H * ~ ~ X T J . ~ H P R E S S U R E  R I S E T ~ X T I H * , Z X T ~ ~ H P R E S S U R  
1 E  C H A N G E T ~ X ~ ~ H * ~ ~ X T ~ H N U M B E R T ~ X T ~ H * ~ ~ X ~ ~ ~ H K I N E T I C  E N E R G Y T ~ X T ~ H * ~ ~ X T  
2 5 H R A T  IO 1 

704 F O R M A T ( / ~ X , F ~ . ~ T ~ X T ~ H * T ~ X ~ F ~ O ~ ~ ~ ~ ~ ~ T ~ H ~ T ~ X T F ~ O ~ ~ , ~ X , ~ ~ ~ , ~ ~ T F ~ ~ ~ T  
~ ~ X T ~ H * T ~ X T F ~ . ~ T ~ X T ~ H X T ~ X T F ~ O ~ )  

7 5 0  F O R M A T (   / 5 X t 5 2 H D I M E N S I O N A L   S O L U T I O N   U S I N G   T H E S E   I N I T I A L   C O N D I T I O N S T  
1) 

11 1 2 H ( A T H * C W / A M ) = 9 F 8 0 6 )  
7 5 1  F O R M A T ( ~ X T ~ ~ H P R E S S U R E  R A T I O = T F ~ . ~ ~ ~ X , ~ ~ H T E M P E R A T U R E  R A T I O = T F 5 . 2 T 3 X  

752  F O R M A T ( / 5 X v l 9 H S E C O N D A R Y  P R E S S U R E = ~ F ~ . ~ ~ ~ X , ~ H P S I T ~ X ~ ~ ~ H S E C O N D A R Y  T E  
l M P E R A T U R E = , F 7 . 2 t l X , l 4 H D E G R E E  R A N K I N E T ~ X , ~ ~ H M I X I N G   T U B E   A R E A = t F 8 . 6 *  
2 1 X ~ 7 H S 8 .   F T .  ) 

753 F O R M A T ( / 3 X t l l H E N T R A I N M E N T ~ 2 X ~ l H * ~ Z X ~ l l H E X I T  S T A T I C t 5 X p l H * r 2 X t l 4 H T O  
l T A L  P R E S S U R E T Z X T ~ H * , ~ X T ~ ~ H S T A T I C  P R E S S U R E I Z X , ~ H * T ~ X T ~ ~ H K I N E T I C  E N E  
2 R G Y )  

7 5 4  F O R M A T ( ~ X T ~ H R A T I O T ~ X T ~ H * ~ Z X , ~ ~ H P R E S S U R E  ( P S I ) , Z X p l H * , 2 X ~ l O H R I S E  (P 
~ S F ) T ~ X T ~ H * T ~ X ~ ~ ~ H C H A N G E   ( P S F ) ~ ~ X ~ ~ H ~ T ~ X T ~ H ( P S F ) )  

7 5 5  F O R M A T ( / 8 X ~ F 4 . l ~ 4 X t 1 H 1 1 4 X 1 F 5 . 2 r 9 X ~ l H ~ ~ 3 X ~ F 7 ~ 2 ~ 8 ~ ~ l H 3 ~ 3 X ~ F 9 ~ 4 ~ 7 X ~  
l l H * r 5 X t F 7 . 2 )  

604 F O R M A T ( / S X , 2 0 H F R I C T I O N   I T E R A T I O N S = r I 3 )  
4 5 5   F O R M A T ( 2 F 1 0 . 5 )  
4 5 6  F O R M A T ( / 2 X , 2 3 H I M L E T   L O S S  C O E F F I C I E N T = , E ~ O O ~ , ~ X , ~ ~ H M I X I N G  L O S S  C O E F  

l F I C I E N T = t E 1 0 . 4 )  
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0 3 1 2  
0 3 1 3  
0001 
0002 
0 0 0 3  
0004 
0005 
0006 
0007 
0008 
0009 
00 10 

4 5 7   F O R M A T ( / ~ X I ~ ~ H S E C O N D A R Y  TOTAL  PRESSURE  BEFORE M I X I N G = I E 1 0 . 4 )  
END 
FUNCTION TOP ( ARAY) 
DIMENSION ARAY ( I l r  1 5 )  
TOP=ARAY( l r l )  
DO 5 0 1   L = l r l l  
DO 5 0 0   M = l r 1 5  
IF (TOP  .LT .   ARAY(LrM1)   .TOP=ARAY(LtM)  

500 CONTINUE 
5 0 1   C O N T I N U E  

RETURN 
END 
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APPENDIX B 

B. 1 Discussion of Computer  Program by Blocks 

Block 1 - Declare  and  Clear  Arrays,   Set Values of Constants: 

To make  sure  that  the  storage  arrays  used  in  the  program  are  all  empty, 

zeroes  are placed  in  every  location by this  block of the  program. 

Numerical  values of G,  GO, R,  and CONV are also  defined  in  this  sec- 

tion of the  program.  The  numerical  values are not  read  in  as  input;  they  are  de- 

fined  within  the  program. To change  them,  the  appropriate  cards  in  the  deck  must 

be  changed. 

Block  2 - Read  Initial  Conditions  and  Initialize  Parameters: 

In the  segment of the  program  between  line 1 and 6 ,  the  initial  conditions 

are   read  in  and prepared  for  further  calculations.  These  initial  conditions  include 

data  required by the  plotting  routine. 

Titles  for  plots of dimensionless  pressure rise and momentum  ratio as 
functions of entrainment  ratio  (PTITLE,  TTITLE) and the  number of cases   to   be 

solved (N) a r e  introduced  in  lines 1, 2 and 3 respectively.  The  number  preceding 

each  title is the  number of charac te rs  and spaces  in  the  title.  Dimensionless  initial 

conditions  (PBAR,  TBAR,  ABARl  and ABAR2) are   read  in  on line 4. Although 
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ABARB has not  been  used  in  the  formulation,  it  is  used as   an  ini t ia l  guess for   an 

iteration  loop as  described  in  more  detail   in  the  discussion of block 5. Since a value 

of k has  been  specified  in  block 1, the  initial  conditions  for a dimensionless  solution 

are  complete  at   this  point.  

Values of PSOI,  TSO  and AM are   read   in  on  line 5, and  values of fric- 
tion  coefficients  (FDUCT, FTUBE) are  introduced  at   l ine 6. This  completes  the in- 

formation  required  to  begin  calculations.  Specific  values of PPO,  TOI, ATH and 

A M  a r e  obtained  by  multiplying  the  dimensional  initial  conditions by the non- 
dimensional  initial  conditions. 

Block 3 - Calculation of Suction  Duct Pressure Loss: 

The  performance of a jet  pump is dependent upon the  stagnation  pres- 
sure of the  secondary flow at  the  exit of the  primary  nozzles, PSO. It is difficult 

to measure   th i s   p ressure  in an  experimental  jet  pump.  Instead,  the  suction  duct 

inlet  stagnation  pressure  can  be  measured  and  the  loss  between  the  inlet  section 

and  the  primary  nozzle  exit  section  can  be  accounted  for by the  following  equation: 

A pt) 
- psvsL 
- Ksd 2 go suction  duct 

(97) 

The  loss  coefficient Ksd can  be  evaluated by drawing  air  through  the 
0 

suction  duct  with a blower  and  plotting  (Apt) 
L 

suction  duct 
vs. pSvs /2 go on a 

Cartesian  graph.  The  slope of the  resulting  curve is equal  to Ksd. 

The  correction  for  suction  duct  pressure  loss  begins  on  line 8 of the 

program.  The  equation  for  this  correction  is  given  below. 

where Psoi is the  secondary flow stagnation  pressure  at  the  suction  duct  inlet. 
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Blocks 4 and 10 - Specification of Entrainment  Ratio: 

Line 7 initiates a DO loop  which  encloses  all  statements down to  line 14 

(statement  number 13). The  entrainment  ratio  (ENTR) is initially  set  equal to 10.0 

and  the  loop is repeated,  increasing ENTR by 3 . 0  each  time  through,  until a value 

of 40.0 has  been  reached.  The  integer J is  used  to  count  the  number of loops  com- 

ple  ted. 

Block 5 - Solution of Equations  for  the  Accommodation  Region: 

Block 4 extends  between  line 9 and  line 11. Pr imary  and secondary  mass 

flow ra t e s  (WP, WS) are  calculated  using  equations ( 1 ) and ( 2  ). The  value of the 

secondary flow Mach  number (SMOK) is obtained  by  solving  equation  (57).  Equation 

(57) i s  solved  using  Newton's  method. A series of values of Ms2 are  tried  until  one 

is found  which makes  the  left  side of equation (57) sufficiently  close  in  value  to  the 

right  side.  The  numerical  criterion  for  acceptable  convergence  is  agreement  with- 

in 0.0005, which  gives a secondary flow rate  accurate  to  within 0.5 lbm/min. 

The  pr imary  mass  flow ra te  and  the  entrainment  ratio  are  specified in 

this  program  before  the  secondary Mach number is evaluated.  There  exists a maxi- 

mum  possible  secondary  mass flow rate  corresponding  to a secondary Mach number 

of 1 .0 .  Thus,  for  given  initial  conditions,  the  jet  pump  will  have a maximum  per- 

missible  value of entrainment  ratio,  which  can  be  calculated  from  equation (64). 

The  statement on line 10 was  inserted  to  recognize  trial  values of Ms2 which a r e  

g rea t e r  than 1.0.  If the  program  tries  to  obtain a solution  for  an  entrainment  ratio 

greater  than  the  maximum  possible  for  the  system, a message  "This  value of en- 

trainment  ratio is inaccessible"  is  printed  and  the  program  proceeds  to  block 9 (line 

number  15)  to look for  another  set  of initial  conditions. 

When the  secondary Mach number has been  determined,  the  static  pres- 

s u r e   a t  the  end of the  accommodation  region (P = P ) is  calculated  using Pso and 

Ms2 in  equation ( 3 ) .  Then  equation ( 3 )  is  used  with P and P to  calculate M 

This  procedure  neglects  the  effect of primary  stream  expansion o r  contraction upon 

the  secondary  stream  area.  Equation ( 6 )  is used  to   correct   for   pr imary flow a rea  

P2 s 2  

PO P2 P2' 
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changes a s  follows.  The  calculated  values of M and Ms2 are  substituted  into  the 

left  side of equation ( 6  ) and  the  result is compared  with  the  actual  mixing  tube  area. 

If the  values  are not  sufficiently  close,  the  value of Ms2 i s  changed  slightly,  a new 

value of M is determined  from  equation (3 ) , and  the test to see if equation ( 6  ) i s  

satisfied is repeated. When values of Ms2 and M which  satisfy  equation ( 6 ) a r e  

determined,  equations ( 7 ), ( 8  ), ( 9  ), ( lo) ,  and (11) a r e  employed to calculate  the 
pressure,  temperature  and  velocity  for  each  stream  at the end of the  accommodation 

region. 

P2 

P2 

P2 

The  solution of equation (57) for  Ms2 requires  a  value of A the a rea  of 
P’ 

the  primary  nozzle  flow,  which is introduced as  an  initial  condition  through  the  di- 

mensionlessarea  ra t io  ABAR2. However,  this  value of M is  used  only  temporarily; 

i t  is eventually  modified a s  the  effect of primary  area  changes is considered.  There- 

fore,   even though  the  analytical  formulation  did not make  use of  ABARB, the  program 

is made  more  efficient by using it to  obtain  a  preliminary  value of M 

s 2  

s 2’ 

Block 6 - Solution of Equations  REpresenting  the  Mixing  Region: 

The  segment of the  program  which  solves  the  mixing  region  equation  ex- 

tends  from  line 11 to  line 12. The  solution  is  obtained by an  iteration  technique  in 

which  the  value of one  variable is assumed  and  the  equations  are  solved  to  obtain  a 

calculated  value of that  variable. When the trial  value  is  sufficiently  close to the 

calculated  value,  an  acceptable  solution has been  determined. 

Values of stagnation  enthalpy  (HP2, HS2) are  calculated  for  the  primary 

and  secondary  streams  using  their  properties  at  the  end of the  accommodation re- 
gion. A trial  value of P M  (PMG = PSO + 0.4) is  chosen  and  equations  (19), (18), (17) 
and (20) are  solved  sequentially  to  determine  a  calculated  value of PM. If the  trial 
and  calculated  values  satisfy  the  criterion  below,  the trial value  is  accepted  as  the 

solution. 

~ P M G  - PMJ 5 0 . 0 1  

If this  convergence  criterion is not satisfied,  a new trial  value is chosen  and  the  pro- 

cedure is repeated.  The  convergence  cri terioncorresponds  to  anerror of l e s s  than 0.1%. 
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The  integer I keeps  track of the  number of iterations  performed in order  

to  limit  their  number  to 400. Convergence is generally  obtained  in less than 100 it- 

erations. In some  cases,   the  tr ial   value  will   oscil late  about  the  calculated  value 

without  quite  converging.  When  this  occurs,  the  trial  value is within a region  very 

close  to  convergence.  Therefore,  the  logical  variable  INT  is  used  to  detect  this  con- 

dition,  stop  the  iteration,  and  accept  the  current  trial  value  as a satisfactory  solu- 

tion. 

In the  course of the  development of a satisfactory  value of PM,  corres-  

ponding  values of VM and TM are  determined.  These  three  values  completely  speci- 

fy  the  conditions  at  the  end of the  mixing  region. If no frictional  effects  are  included, 

all   the  desired  jet   pump  performance  parameters  such  as  stagnation  pressure  r ise,  

static  pressure  change  and  momentum  ratio  can  be  determined  from  PM, VM, and 

TM. 

F o r  the  temperature  ranges of interest,  the  variation of specific  heat 

with  temperature  has  been found tohavea  negligibleeffect on the results (figure5).  This 

computerprogram,  therefore,  has  beenwritten  to  treat  specific  heatand k as   constants .  
A s  a result,  equation (17) has not been  used  in  the  program. If it is desired  to in- 

clude a variable  specific  heat,  an  equation  such a s  (17) can  be  added  to  the  existing 

program  without  altering  its  basic  structure. 

Block 7 - Solution of Equations  Representing  Mixing  Region  Friction  Effects: 

Block 7,  from  lines 12 to 13,  corrects  the  values of Mm, Pm, Tm  and 

Vm for  frictional  effects.  Equation (38) is  used  to  accomplish  this.  For a specified 

value of mixing  duct  friction  coefficient, K both a and P can  be  determined 

from  the  results of block 6. Equation  (38) is  then  solved  using  Newton's  method  to 

give a new value of Mach number  at  location  m. A new value of p re s su re   i s  obtained 

from  equation  (34).  Corrected  values of temperature  and  velocity a r e  then  determined 

using  equations (39)  and (33). 

MT ' 

Block 8 - Print  Solutions  for One  Value of Entrainment  Ratio: 

When a solution  for a particular  value of entrainment  ratio  is  obtained, 

all  variables  are  printed  together  with  appropriate  titles. Data internal  to  the  program 
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is also  printed, e .  g., the number of iterations  required  for  convergence  in  each sec- 
tion  in  which  an  iterative  method is used. When a new set of initial  conditions  are 

used,  this is indicated  by  an  appropriate  statement  and a l is t  of the new initial condi- 

tions. 

Block 9 - Store  Solutions  for  Plots  and  Tabular  Presentation: 

The  results  which  are  printed a s   e a c h  solution  is  obtained are   a l so   sum-  

marized  in  tabular  form.  To  allow  the  tabular  form  to be pr in ted ,   a r rays   am  f i l l ed  
with the numbers  from  each  solution. 

Arrays  of the  same type a r e  used  to  store  solutions  for  the  plotting  routine. 

These  arrays  are   larger   because  the  plot ter  is used  for  several   sets of initial con- 

ditions  whereas the tabular  results  are  printed  for  each  individual  set of initial  con- 

ditions. 

Block 11 - Print  Solutions  in  Tabular  Form: 

After a   set  of solutions  for  one  set of initial  conditions has been  obtained 

and  stored  in  the  arrays of block 9, the  results  are  printed  in  a  table.  Values of the 

desired  performance  parameters   are   pr inted vs. entrainment  ratio. Two tables   are  
printed;  one  presents  dimensionless  variables  and  the  other  presents  dimensional 

variables. The dimensionless  solutions  are  independent of the  dimensional  initial 

conditions  unless  frictional  effects  have  been  included  in  the  solution. 

Block 13 - Plot  Dimensionless  Pressure Rise and  Momentum  Ratio: 

Values  which  have  been  stored in  the a r r a y s  PRISE  and THRUS in  block 9 

a r e  plotted a s  functions of entrainment  ratio. Two plots  are  obtained;  dimensionless 
pressure  r ise  and  momentum  ratio  vs.   entrainment  ratio.  If it is desired  to  plot 

variables  other  than  these,  this  may  be  done by storing  the  desired  variables  in  the 

PRISE  and THRUS arrays  in  place of the  dimensionless  pressure rise and  momen- 
tum  ratio  values. 

The  plotting  system is too  complex  to  discuss  in  detail  here.  Unless  the 

user  has  access  to  the  EZPLOT  routine  used  in  this  program,  i t  is unlikely  that  he 
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will  be  able  to  use  the  plotting  section  directly.  However,  the  storage  arrays  devel- 

oped  within  the  program  should  be  useful  for  providing  data  to  any  other  plotting  de- 

vice  which  may  be  available. 

B.  2  Using  the  Computer  Program 

This  section  discusses  the  various  options  which  may  be  exercised  when 

using  the  program  and  the  tasks  which  must  be  performed  to set them up. 

The  Complete  Program: 

The  complete 

effects  and  plotting of the 

program  includes  suction  duct  and 

resu l t s .   t a lues  of PBAR, TBAR, 

mixing  tube  frictional 

ABAR1, ABARB, PSOI, 

TSO,  and AM must be provided a s  input  data  together  with  empirically-determined 

values of FDUCT  and  FTUBE. A value of N equal to the  number of cases  to  be 

solved  must  be  included  to  maintain  control  within  the  plotting  block.  It is best  to 

vary  only  one  parameter  such  as A in  a  single set of solutions.  The  plot  titles 

(which a r e  provided a s  input  data)  can  then  denote  this  parameter on the  plots  as  il- 

lustrated  in  the  sample  solutions  provided  in  section 3. 3. 

If variables  other  than  DDELP  and AUG a r e  to be  plotted,  this  may  be 

done  by  storing  them  in  the PRISE  and  THRUS a r rays .  

Omission of Frictional  Effects: 

Frictional  effects  may  be  omitted  by  inputting  zero  values  for FDUCT 

and/or  FTUBE,  depending  on  which  frictional  effect is to  be  eliminated. 

Omission of the  Plotting  Section: 

The  plotting  function  may  be  temporarily  omitted  by  punching  a  charac- 

ter in  the first column of the  "CALL  EZPLOT"  cards.  The  necessary  input  data  for 

plotting  must  still   be  read-in  or  else  the  input  format  will  not  function  correctly. 
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If tlle plotting  section is to  be  removed  permanently, it is   best   to  re- 
move  all  cards  associated  with  the  plotting  function.  This  includes READ state- 

ments,  logic  for  data  manipulation,  storage  arrays,  and  the  function  TOP (ARRAY). 

The  cards which  may  be  removed  are  noted by an   as te r i sk  on the program  l ist ing . 
of Appendix A .  
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APPENDIX C 

Typical Computer Solutions 
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**I** THF F r l I I n w I Y G  CASFS U I L L   I I Z F  THCqF I N I T I A L  C r ) Y P I T I O ~ I 5  b b b b b  

DQFSSUQF  QAr In=0.3000F 0 7  TcUPFPBTIJRF  QAT10=0.1 COO€ 01 

1 4 T H b C Y 1 4 ~ I - f l . ' O O O F - O ~  APIAU=O.QOOOE-O? 

S C r O N Q B R Y  PQFSSIIRF=0.14COF O ?  S~Cl~ '1OAIV   TFMPFRBTI IRE-O.~ lOO~ 03 M I X I N G  TURE  APFI=n.q77hF-01 
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mmax: 49 41  35  30.5  27 

3.5 899 F: 40 45  50  55  60  65 

* 

A 3 
697 F: 25 30  35 40 45 1.5 .OOl 
Nos. 

- 
T Values of P and Corresponding  Maximum Fig. 

t m - 47 40.5  35  31.5 max' 

.003 12,13 F: 9 10  11  12  13 14 1.5 

m - 47 41.5  37.5  34  31  29 max' 

I 8.0 IF: 60 70 80  90 

m . 45.5  41 37 34  31.5  29 max' 
3.5 E 20  22  24  26  28 

mma: 47 43  39  36  34 

8.0 P: 20  22  24  26  28 
m * 47  43  39  36  34 max' 

10,ll 

14,15 

16,17 

7 1.5 F:  4 4.5 5 5.5 6 18,19 

3.5 F: 5 6 7 8 9 20,21 

m 44 39  35  32  29 max' 

m . 53.5  44.5  38 33.5  30.0 max' 
8.0 F: 9 10 11  12  13 14 22,23 

Table 1: Index to  Analytical  Jet Pump Performance  Plots 
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-~ 

Entrainmer 
Ratio 
(m) 

10.0 

13.0 

16. 0 

19.0 

22.0 

25.0 

28.0 

31. 0 

34.0 

37.0 

ret Pump  Total 
Pressure  Rise  

PSf 
(A Pt) 

" " _  ~ - 

10 1.5 

99.59 

97.86 

96.35 

95.05 

93.96 

93. 12 

92.61 

92.60 

93.52 

~ 

Mixing  Tube. 
Outlet  Static 

Pres su re  
psia 
(Pm) 

. . .  

15.32 

15. 13 

14.90 

14.62 

14.29 

13.88 

13.40 

12.81 

12.06 

11.03 

~ 

Mixing  Tube 
Dynamic Head 

40.83 

65.30 

96.04 

133.47 

178. 30 

231.09 

293.75 

368.  10 

458.39 

573.92 

~ 

Mixing Tube 
Sxit Mach No. 

Mm 

. 163 

.206 

.255 

.300 

.352 

.407 

.469 

.535 

. 615 

.722 

Table 2 - J e t  Pump Performance  Characterist ics  from  Computer Output 
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I Nozzle  Nozzle  Design  Design Flow Flow Rate at 1 
Throat  Throat  Nozzle  Pressure  Temp.  Coefficient  Design 

inches ft2x104 
Diameter  Area  Type psia 7? cw W 

P 

Case 2 

Case 3 

Case 4 

Case 4A 

Case 
LD- 4 

0.047  1.089 converging- 350  200°F  .938 6.39 lbm/min 
diverging 

0.1109  6.05 converging- 100  1200°F  .965  6.52 lbm/min 
diverging 

0 .0596  1 .75  converging- 350  1200°F  .965. 6.60 lbm/min 
diverging 

0.063  1.952 converging 350 1200°F  .935  7.11 lbm/min 

0.0658  1.650 diverging 350  1200°F  .941 converging- 6.08 lbm/min 

Table 3. Primary  Nozzle  Characteristics 



Primary Flow 

Secondary Flow 

Mixing  Tube 
and  Diffuser 

Flow 
Parameter 

Instrumentation 
Used  to  Measure 

Parameter  Recorded 
How 

Manually 

Photographically 

Required lor  Determining , Data Reduction  Procedure I 

P Bourdon  Tube  Gage  and Jet  Pump Input Conditions None needed 
PO 

T Thermocouple Manual,y 
PO and Bridge 

Jet  Pump Input  Conditions None needed i 

Orifice Flow Meter  Standard  calibration  curves 
W and  Manually Jet  Pump Input Conditions  provided  by  flowmeter  manu- 

P Psnel Gage facturer 
1 

Dial  Gage 
Tso In Suction  Duct  Manually  Secondary Flow Temperature None needed 

'atm kercury   Barometer  
Manually  Atmospheric Pressure None needed 1 .I 

I I I 
Manually I 

'b Manometers and  Secondarv Flow Rate See below I 
I 

Photographically 

Manually wS 
Calibrated 
Bellmouth in lb/min  Equation (9 1) I Secondary Flow Rate 

P vs.  lengtf  Manometer  Board  Photographically Mixing  Tube  and  Diffuser 
Static  Pressures None needed 

'rno 1 
'do 

Kiel Probe  Discharge  Stagnation Pres- "Mass-momentum"  method 
Traverse Manually sure for Jet Pump for  Compressible Flow 

(See Text) 

Dial  Gage Near 
End of Diffuser  Tel;:?erature Manually 

Jet  Pump  Discharge None needed 

P 
P 
w Table 4. Measured  Parameters and  Instrumentation 



Test  Series #1: Reference  Test 

I"L 
Y 
rp Teat K O .  

Run 
No. Nozzle Set Primary Flow Primary Flow 

Pressure Temperature - 
(psis) (" F) 

I 1 1-5 4  350 
2  6-9 3 00 
3 10-14 260 
4  15-18 225 

Test  Series #2: Nozzle Cluster  Performance  Comparison 

I 
I 
I 

5 19-22 
6  23-26 
7 27-31 
8  32-35 
9  36-39 

1 0  40-43 
11 44-47 
12  48-51 
13 52-55 
14  56-59 
15  60-63 
16  64-67 

Test  Series #3: 

' 17 96-99 
18 100-103 
19  104-107 
20  108-111 
21  80-83 

4 22 84-87 
23  88-91 
24  92-95 
25 68-71 
26  72-75 

.27  76-79 

4  350 
3 00 
260 
225 
350 
3 00 
260 
2 25 
350 
3 00 
260 
225 

I 
I 
I 

4 

LW2-4 

Final  Performance  Tests 

4 350 
3 00 
260 
225 
3 00 
260 
225 
175 
260 
225 
175 

1085" 
1160" 
1185" 
1145" 

1130" 
1160" 
1165" 
1158" 
1160" 
1180" 
1200" 
1200" 
1130" 
1195" 
1190" 
1180" 

1110" 
1150" 
1200" 
1200" 
75 0" 

I 
455" 
460" 
460" 

Secondary 
Flow Rate 

4 values 
4 values 
5 values 
4 values 

4 values 

1 
I 
1 

4 values 

4 values 

4 values 

Discharge Cluster 
Configuration Configuration 

NAS2-2518 mixing tube Original 

I 
t 

Constant-area 

Constant-area 
long mixing tube 

Original 

I 
LD#1 

1 
LD#2 

I 
I D#l 

Table 5.  Jet Pump Test  Program 



Test No. No. Run Nozzle  Set - 

28  242-245 4A 
I29 246-249(aonverging) 

I 32 33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

4 48 
49 
50 
51 
52 
53 

k 54 
55 
50 
57 
58 
59 
60 

I-J 

UI 
w 

250-253 
254-257 
140-143 
144-147 
148-151 
152-155 
124-127 
128-131 
132-135 
136-139 
112-115 
116-119 
120-123 
180-183 
184-1 87 
188-191 
192-195 
196-199 
200-203 
204-207 
208-211 
212-215 
216-219 
220-223 
224-227 
168-171 
172-175 
176-179 
156-159 
160-163 
164-167 
228-231 
232-235 
236-239 

3 

Primary Flow 
Pressure 

(Psis) 

350 
3 00 
260 
225 
350 
3 00 
260 
225 
3 00 
260 
225 
175 
260 
225 
175 
350 
3 00 
260 
225 
400 
35 0 
260 
225 
4 00 
350 
260 
225 
100 
85 
70 
85 
70 
55 

100 
85 
70 

Primarv Flow 
Temperature 

(" F) 

1160" 

1150" 
1150" 
1160" 
1150" 

1095"-1031" 
1020" 
750" 

1150"-1100" 

1 
745" 
455" 
455" 
460" 
200" I 
455" 
455" 
450" 
450" 
460" 
455" 
450" 
450" 

1160"-1115" 
1140" 
1145" 

755 
750" 
745" 

1150"-1110" 
11 55" 
11 55" 

Secondary 
Flow Rate 

4 values 

t 

4 values 

v 
4 values 

t 

Discharge 
Configuration 

Constant-area 
short  mixing  tube 

1 
Constant-area 

Constant-area 
long mixing  tube 

t 
Constant-area 
short  mixing  tube 

1 

I 
Constant  area 
long mixing tube 

Constint-area 
short  mixing tube 

Cluster 
Configuration 

LWl 

t 
LD#1 

T 
LD#1 

t 

'Table 5. Jet Pump Test Program (Continued) 



Constant 
Area 

Mixing 
Tube 

Static 
Pressure 
Parametel 

Pm  -P 

pso 
so 

Stagnation 
Pressure 

Rise Velocity 
Parameter  Profiles 

Static  Static Thrust 
pressures  Pressures Augmentation 

vs. vs .  Parameter 
PDo and m Distance 

Tabulated 
Data 

Test 
Date 

Nozzle 
Case No. 

T 

25 July 
1968 short Table 8 Table 7 Figure 44 

Figure 48 I Figure 45 
4 

no extension 

4 
no extension 

Figure 46 1 Figure 47 I - 

- 

- 

-. 

- 

Figure 70 Figure 71 Table 14 

Figure 74 Figure 75 Table  15 

Figure 77 

Figure 80 Figure 81 Table 17 

Figure 84 I 

31 July 
1968 " 9-12  36-51 

~~ 

Table 9 Figure 48 Figure  48 Figure 49 Figure 50 Figure 47 I I 
13 Augus 
1968 short 4 Table  10 Figure 52 Table 7 I Figure 53 Figure 54 I Figure 55 I 
19 Augus 
1968 13-16 52-67 Table 7 I Figure 57 short Table 11 Figure 56 Figure 58 I Figure 55 I LW2-4 

4 

4A 

28 Augusl 
1968 

~~~ 

Table 12 + Table 7 Figure 61 
Figure 59 Figure 62 

Table 7 Figure 66 

Figure 59 
Figure 60 

Figure 65 13 Sept. 
1968 short Table  13 Figure 67 

3  Sept. 
1968 32-42  112-155 extendec 4A Table 14 Figure 68 

Figure 69 

Figure 72 

Figure 7G 

11 Sept. 
1968 2 extendec 

short 

Table  15 

Table 16 11 Sept. 
1968 2 

10 Sept. 
1968 55-60 I 156-17: extendec 3 Table 17  Figure 78 Table 7 1 Figure 79 

12  Sept. 
1968 I 61-63 228-241 short 3 Table 18 Figure 82 Table 7 1 Figure 83 " 

Table G 

Index  to Test  Results 



Table 7. Tabulation of Stagnation Pressure  Results 



P T W 

psia O F lbm/min O F lbm/min Test No. Run PO PO P TBO wS m 

1 1 350  1094 6.69 95 175.5  26.2 

2 1086 6.70  93  150.8  22.5 

4 1084 6.66 95 122.8  18.4 I 5 I 1085 6.70 95 104.4  15.6 

2 6 300  1164 5.66  93  163.4  28.9 

7 1158 5.66 94 143.5  25.35 

8 1158 5.65 95 124.0  21.95 

1160 5 ,67  95 99.0  17,45 1 9  I 
3 10 260  1185 4.91  91  153.5 31.3 

11 1186 4.87  93  144.8  29.7 

12  1185  4.87  93  128.1  26.3 

1184 4.89 92 108.3 22.15 

1185 4.90 92  92.0 18.8 

4 15 2 25 1139  4.39  93  143.2  32.6 

16 1158 4. 20 92 128.0  30.5 

17 1158 4.34  93  112.6  25.9 

18 1145 4.40  93  94.1  21.4 I 1 
Table 8 

Jet Pump Test  Results 
NAS 2-2518 Mixing Tube 
Original Nozzle Cluster 

Case 4 Nozzles 
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~ ~ ~~~~ 

P T w 
psia O F lbm/min O F lbm/min 
PO P O  Test No. Run P Tso ws m 

5 19 35 0 1162  6.57  89  162.5  24.74 

20 1131  6.75  88  151.4  22.43 

2 1  1124  6.66  86  125.4  18.83 

22  1130  6.63  82  104.6  15.78 I I 
6 23  300  1158  5.70  90  151.4  26.57 

24  1162  5.70  88  145.7  25.56 

25  1162  5.70  88  124.4  21.83 

26  1160  5.70  88  99.9  17.52 I I 
7 27  260  1166  4.84  89  141.0  29.  13 

29  1165  4.84  89  129.2  26.68 

30  1165  4.84  89  110.2  22.76 

3 1  1166  4.84  89  91.8  18.97 I 1 
8 32 2 25 1156  4.33 90 132.6  30.63 

33  1158 4. 29  89  128. 1 29.85 

34  1158  4.29  89  111.5  25.98 

135 1158  4.29  88  92.4  21.54 1 I 
Table 9 

Jet Pump Test  Results 
Short Constant Area Mixing Tube 

Original Nozzle  Cluster 
Case 4 Nozzles 
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Test No. Run P T W 
PO PO P so wS 

m 

psia OF lbm/min "F lbm/min 
9 36 

37 

38 

39 I 
I 
1 
I 

10 40 

41 

42 

43 

11 46 

47 

44 

45 

12 48 

49 

50 

51 

3 50 

1 
I 
I 
I 

300 

260 

225 

1164 

1158 

1158 

1158 

1209 

1187 

1160 

1161 

1207 

1201 

1200 

1202 

1188 

1196 

1201 

1203 

6.  82 

6. 82 

6.82 

6.82 

5.72 

5.75 

5.78 

5.78 

4.95 

4.98 

4.98 

4.98 

4.32 

4.32 

4.27 

4.32 

88 

87 

86 

87 

85 

86 

85 

85 

86 

86 

86 

86 

86 

86 

85 

85 

182.0 

149.5 

125.0 

107.4 

170.0 

146.9 

125.0 

98.5 

160.0 

139.7 

112.5 

93.6 

151.0 

129.0 

113.1 

95.5 

26. 7 

21.95 

18.35 

15.80 

29.8 

25. 6 

21. 6 

17. 0 

32.3 

28 .1  

22.6 

18.8 

35.0 

29.9 

26. 5 

22.1 

Table 10 

Jet Pump Test  Results 

LD#1 Nozzle  Cluster 
Case 4 Nozzles 

Short Constant Area Mixing Tube 
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q -  

'est No. Run P T 
" _" . . . .. psia . ~. OF - . lbm/min ." . ~- OF lbm/min 

13 52 350  1137  6.18 82 177.4  28.7 

53 1128 6.21 80 153.1 24.7 

1125 6.21 82 125.1 20.2 

1122 6.20 83  105.0 16 .9  

PO PO 
W 

P Tso wS 
m 

___. ~ "" . 

~~ 

14 56  300 1195 5.24  85 164.3  31.4 

57 1160 5.34 83 146.1  27.4 

1194 5.21 82 125.1  24.0 

1194 5.23 82 . 100.4  19.2 I I 
15 GO 260  1192 4.63 84 154.7  33.4 

61 11 91 4.61 84 129.7  28.1 

11 90 4.58 84 109.8  24.0 

1190 4.59 84 93.3  20.3 

1 6  64 11 84 3.99  84 144.3  36.2 

65 11 83 3.99 84 129.4  32.4 

1182 3.96 82 115.1  29.1 

11 82 3.96 84 95.3  24.1 

Table 11 

Jet Pump  Test  Results 
Short  Constant  Area Mixing  Tube 

LD#2 Nozzle Cluster 
LD#2-4 Nozzles (7 Nozzles) 
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Test No. Run P 
PO TPo wP Tso wS 

m 7 

psia "F lbm/min "F lbm/min 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 

2r 
'I' 3r 
1 2r 
l r  

I 3r 
'0" 

260 

350 

225 

453 
452 
453 
455 
454 
456 
460 
462 
459 
459 
463 
463 
753 
753 
762 
752 
749 
745 
74  9 
752 
753 
750 
74  9 
74  8 
744 
745 
745 
748 
1116 
1115 
1112 
1105 
1147 
1149 
1154 
1159 
1195 
1198 
1199 
1203 
1198 
1203 
1205 
1204 

6.48 
6.48 
6.46 
6.48 
5.67 
5.67 
5.65 
5.64 
4.43 
4.43 
4.43 
4.42 
6.63 
6.60 
6.59 
6.59 
5.66 
5.65 
5.64 
5.62 
5.03 
5.02 
5.01 
5.02 
4.0 
3.96 
3.94 
3.94 
6.82 
6.81 
6.76 
6.77 
5.78 
5.78 
5.77 
5.73 
5.01 
4.98 
4.98 
4.96 
4.35 
4.35 
4.26 
4.30 

Table 12 

P 
78 
79 
79 
77 
78 
79 
79 
79 
82 

I 
81 
80 
80 
80 
82 
80 
81 
81 
82 
80 
83 
80 
88 
88 
88 
89 
88 
87 
86 
86 
83 
83 
83 
80 
83 
82 
81 
81 

Jet Pump Test  Results 

163.4 
140.4 
122.9 
110.5 
153.2 
139.3 
124.7 
104.2 
133.8 
121.6 
106.8 
94.3 
172.3 
153.2 
130.0 
111.4 
161.8 
142.2 
123.5 
107.6 
150.4 
134.3 
117.8 
103.9 
132.2 
119.9 
107.3 
95.7 
179.8 
153.0 
129.7 
117.3 
167.3 
153.1 
127.7 
112.7 
156.7 
137.4 
115.1 
106.7 
145.5 
134.7 
119.0 
101.0 

25.2 
21.7 
19.0 
17.1 
27.0 
24.6 
22.1 
18.5 
30.2 
27.5 
24.1 
21.3 
26.0 
23.2 
19.7 
16.  9 
28.6 
25.2 
21.9 
19.2 
29.9 
26. 7 
23.5 
20.7 
33.1 
30.3 
27.2 
24.3 
26.4 
22.5 
19.2 
17.3 
28.9 
26.5 
22.1 
19.7 

31.3 
27.6 
23.1 
21.5 
33.4 
31.0 
27.9 
23.5 

5. 06 
3. 64 
2.77 
2.24 
5.05 
4.11 
3.28 
2.28 
4.92 
4.04 
3.09 
2.42 
4.96 
3.81 
2.71 
1.99 
5.07 
3.81 
2.86 
2.19 
4.89 
3.83 
2.94 
2.28 
4.  77 
3.92 
3. 15 
2.50 
4.85 
3.35 
2.39 
1.96 
4.76 
3.91 
2.68 
2.08 
4.67 
3.54 
2.47 
2.13 
4.61 
3.92 
3.09 
2.22 

Extended  Constant  Area  Mixing Tube 
LD#1 Nozzle  Cluster 

Case 4 Nozzles 
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P . T  
psia OF lbm/min OF Ibm/min 
Po PO 

W 
Test No. Run P T S O  wB 

m 

-~ 

28  242  350  1160 7.25 86 175.3  24.17 
243  1139  7.24  86 . 156.4  21.60 
244  1156 7.25  86  134.3  18.53 
245  1156 7.24 85  105.5  14.57 1 

~~ 

29 

7 

246 3 

247 
248 
249 
258 
259 

0 1165 6.31 85  166.0 26.30 
1154 6.24 85  148.0 23.71 
1143 6.23 85 127.3 20.43 
1126 6.23 84 101.0 16.21 
1103 6.26 87 166.8 26.64 

1103 6.30 88  167.7 26.62 
~~ ~~ 

250  260  1149  5.44 85 157.7  28.99 
251  1149  5.41  85  142.5  26.35 
252  1149  5.38 85 122.0  22.68 
253  1150  5.38 84 100.5  18.68 1 

31 254 

I 255 
256 

257 

1148 4.70 84 150.0 31.91 
1150 4.69 84 136.6 29.13 
1150 4.66 84 119.0 25.54 
1150 4.64 83  95.3 20.53 

Table 13 
Jet Pump Test  Results 

Short  Constant  Area Mixing Tube 
LD#1 Nozzle  Cluster 

Case 4A Nozzles 
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40 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

41 

42 

36 

37 

38 

39 

32 

33 

34 

35 

112 
113 
114 
115 

116 
117 
118 
119 

120 
121 
122 
123 

124 
125 
126 
127 

128 
129 
130 
131 

132 
133 
134 
135 

136 
137 
138 
139 

140 
141 
142 
143 

144 
145 
146 
147 

148 
149 
150 
151 

152 
153 
154 
155 

225 

1 

310 

I 

225 'I' 

175 

1 
I 
1 
1 
1 
1 

175 

350 

300 

260 

225 

453 
457 
459 
462 

4 56 
455 
456 
457 

458 
4 62 
463 
4 64 

753 
750 
74 9 
750 

751 
752 
754 
756 

745 
743 
744 
746 

73 9 
743 
74 6 
74 8 

1175 
1162 
1158 
1140 

1146 
1149 
1148 
1124 

1094 
1057 
1048 
1031 

1021 
1021 
1021 
1021 

6.96 
6.92 
6.91 
6.89 

6.05 
6.02 
5.98 
5.98 

4.81 
4.81 
4.78 
4.78 

7.10 
7.10 
7.08 
7.07 
6.20 
6.19 
6.17 
6.17 

5.35 
5.35 
5.36 
5.35 

4.26 
4.24 
4.23 
4.22 

7.26 
7.18 
7.17 
7.18 

6.26 
6.23 
6.28 
6.27 

5.52 
5.55 
5.56 
5.58 

4.95 
4.94 
4.94 
4.93 

Table 14 

78 
78 
79 
79 

79 
80 
80 
80 

80 

I 
1 
1 

1 
1 
1 
1 

84 

85 

86 
86 
85 
85 

86 

92 

94 

94 

94 

165.6 
142.8 
125.2 
108.3 

155.4 
138.5 
124.3 
103.2 

140.2 
123.5 
107.3 

96.5 

172.1 
150.4 
128.7 
111.7 

161.9 
140.5 
123.7 
106.8 

152.6 
134.2 
117.8 
103.2 

137.0 
119.7 
105.4 

95.9 

174.6 
151.1 
124.5 
115.5 

165.1 
145.2 
124.6 
110.7 

156.8 
129.7 
112.8 
105.1 

148.7 
129.7 
114.5 
101.9 

Jet P u m p  Test  Results 
Extended  Constant  Area Mixing Tube 

LD#1 Nozzle Cluster 
Case 4A Nozzles 

23.8 4.93 
20.6 3.57 
18.1 2.72 
15.7 2.05 
25.7 4.96 
23.0 3.89 
20.8 3.  12 
17 .3  2. 16 

29.1 5. 06 
25.7 3.89 
22.5 2.94 
20.2 2.38 

24.2 4. 73 
21.2 3.  50 
18.2 2.  54 
15 .8  1. 92 

26.1 4.75 
22.7 3 .49  
20.1 2. 70 
17 .3  2 .01  

28. 5 4. 86 
25.1 3. 69 
22.0 2. 82 
19 .3  2. 1 7  

32.2 4.94 
28.2 3.73 
24.9 2.89 
22.7 2. 40 
24.1 4.34 
21.1 3. 17 
17.4 2. 13 
16 .1  1. 83 
26.4 4 .43  
23.3 3.35 
19 .8  2.43 
17.7 1.93 
28.4 4. 60 
23.4 3.  05 
20.3 2.30 
18 .8  1.99 
30. 0 4. 62 
26.3 3 .47  
23.2 2. 70 
20.7 2. 14 
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7 ID -- 

P 
Test No. Po TPo P TSO ws 

W 
Run gsia "F lbm;/min "F Ibm/min m I- 

.~ ~~~~~ " 

43 

1 
T 
4 
I 

180 
18 1 
182 
183 

184 
185 
186 
187 

188 
189 
190 
19 1 

192 
193 
194 
195 

47 19 6 
197 
198 
199 

200 
201 
202 
203 

204 
205 
206 
207 

208 
209 
2 10 
211 

1 

T 
T 

300 

I 
1 
1 

260 

225 

4r 
350 I 
1 
I 

260 

225 

20 1 
199 
199 
200 

200 
205 
204 
205 

201 
203 
20 1 
201 

19 7 
197 
196 
199 

456 
453 
455 
454 

444 
454 
454 
454 

449 
450 
45 1 
452 

447 
447 
449 
450 

6.35 
6.38 
6.39 
6.39 

5.51 
5.47 
5.45 
5.44 

4.80 
4.79 
4.78 
4.78 

4.14 
4.14 
4.  14 
4.12 

6.30 
6.30 
6.29 
6.29 

5.56 
5.54 
5.54 
5.52 

4.07 
4.08 
4.08 
4.08 

3.58 
3.58 
3.59 
3.58 

Table 15 

78 

1 
is 
1 
I 
1 
I 
1 

79 

79 

81 

81 

82 

82 

158.7 
140.2 
123.3 
106.4 

148.8 
137.0 
123.6 
101.3 

138.4 
126.3 
114.1 
96.4 

128.4 
118.9 
108.1 
93.9 

167.7 
147.3 
129.3 
110.5 

158.3 
140.8 
126.4 
104.8 

137.0 
126.7 
115.4 
97.2 

127.8 
116.2 
106.5 
93.2 

25.0 5.55 
22.0 4.21 
19.3 3.21 
16.7 2.38 

27.0 5.53 
25.0 4.  68 
22.7 3.79 
18.6 2.53 

28.8 5.52 
26.4 4. 56 
23.9 3. 70 
20.2 2.63 

31.0 5. 52 
28.7 4.70 
26. 1 3.86 
22.8 2.92 

26.6 5.43 
23.4 4.06 
20.6 3.09 
17.6 2.24 

28.5 5.43 
25.4 4.21 
22.8 3.36 
19.0 2.31 

33.7 5. 50 
31.0 4.63 
28.3 3.82 
23.8 2.70 

35.7 5.45 
32.5 4.  47 
29.7 3.73 
26.0 2.  85 

Jet Pump Test  Results 
Extended Constant Area Mixing Tube 

LD#1 Nozzle  Cluster 
Case 2 Nozzles 
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c. 

Test No. RUn Po TPo P TBO 
P 
psla "F Ibxdmin "F I b d m i n  
400 

W m 

1 5-1  2 12 456 85 171.4 27.4 
. . .. . . ~~ 

2  13 

2 14 

2 15 

459 6.26 85  149.6 23.9 

458 6.25 85 127.4 20.4 

458 6.24 86 i. 3.  a 15.8 

52 216 350 451 5.52 86 161.3  29.2 

2  17 452 5.52 85 150.8 27.3 

2 18 456 5.50 84 128.3  23.3 

2 19 457 5.49  83  96.6  17.6 1 I 
53 220 260 45 1 4.12 81  142.5  34.6 

221 45 1 4.12 81 128.6  31.2 

222 451 4.09 82 109.5 26.8 

223  45 1 4.09 82 92.1 22.5 1 I 
54 224 225  449  3.57  83  133.4  37.4 

225  448 3.58  83  120; 9 33.8 

226  448  3.58  83  105.9  29.6 

227  448  3.58 83  88.9  24.8 1 1 

Table 16 

Jet Pump Test  Results 
Short Conetant Area Mixing Tube 

LD#l Nozzle  Cluster 
Case 2 Nozzles 
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Test No. 
~ ~~~ " 

58 

I 

I 
T 
I 
I 

60 

56 

57 

Run 
~~ -~ 

156 
157 
158 
159 

160 
161 
162 
163 

164 
165 
166 
167 

168 
169 
170 
17 1 

17 2 
173 
174 

175 

176 
177 
178 

179 

P T 
peia "F I b d m i n  "F lbm/min 
PO Po 

W 
P T s O  wS m T 

. " - ~~ 

85 

1 
I 
I 
1 
I 
I 

70 

55 

100 

85 

70 

755 
758 
7 58 
758 

751 
748 
748 
749 

743 
743 
744 
746 

1158 

1140 
1128 
1116 

1141 

1138 
1138 

1138 

1141 
1146 

1148 
1154 

6.64 

6.59 
6.59 
6.58 

5.44 
5.42 
5.43 
5.41 

4.40 
4.40 
4.40 
4.40 

6.61 

6.66 
6.68 

6.67 

5.74 
5.75 
5.76 

5.76 

4.81 
4.80 

4.76 
4.77 

Table 17  

540 158.3 23.8 4.95 
541 138.6 21.0 3.75 

542 124.3 18.9 3.02 

543 105.5 16.0 2.18 

542 141.9 26. 1 4.97 
542 128.9 23.8 4.07 
542 113.4 20.9 3.  13 
542 98.0 18.1 2.35 

542 121.6 27.6 4.  68 
543 114.2 26.0 4.  16 
543 105.0 23.9 3.  52 
543 90.2 20.5 2.59 

550 161.2 24.4 4.62 
550 146.1 21.9 3.  68 
550 128.3 19.2 2.81 
550 107.9 16.2 2.00 

549 149.4 26.0 4.58 
550 134.5 23.4 3.67 

550 120.7 21.0 2.94 

550 104.3 18.1 2.20 

549 133.4 27.7 4.  41 

548 120.5 25.1 3.58 

548 110.7 23.3 3.06 

549 96.4 20.2 2.33 

Jet Pump Test  Results 
Extended Constant Area Mixing Tube 

LD#1 Nozzle  Cluster 
Case 3 Nozzles 
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I 
~ Test No. RWl PO PO 

P T 

psia "F lbm/min "F Ibm/min 
W 

P Tso wS m 
k ~ .~ ~ ." - ~~ ~ 

61 

1 
1 228 100  1151  6.80  88  167.6  24.65 

229 1130  6.80 87 148.0  21.76 

230 1124  6.79 87 124.6  18.34 

23 1 1110  6.77  87  99.1  14.63 I 
62  232 85  1161  5.82  86  156.3  26.86 

233 

1159 5.73 92 150.4  26.25 240 

1153  5.80  85  98.3  16.95 235 

1154  5.80  a3  121.6  20.96 234 

1159 5 .81   81  143.7  24.74 

1149 5. 76 93 152.1 26.40 241 
t t 

~ ~ ~ . .  " ~~~~. .~ - 

63 23 6 70 1158 4.81  86  141.8 29.47 

23 7 1155  4.81  86  126.2 26.23 

238 1152  4.81  86  112.5  23.38 

239 1152  4.81  86  92.8  19.29 1 1 
-~ 

Table 18 

Jet Pump Test  Results 
Short  Constant  Area Mixing Tube 

LD#1 Nozzle  Cluster 
Case 3 Nozzles 
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Figure 1 

BLC Jet   Pump Duct Arrangement 
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Figure 2 

Jet R m p  Definitions 
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Figure 3 

Mixing Tube Wall Friction  Approximation 
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Figure 4 

Block magram of the Computer Program 
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PUMP CHARACTERISTICSI PARAMETER IS PRESSURE RATIO 

e 10 20 

ENTRAINRENT RATIO 
Figure 6 

n .nlm 

0 .o 

Jet  Pump  Performance  Characteristics 
Dimensionless  Pressure  Rise (Apt*) vs. Entrainment Ratio 

- 
- A = 0.001 
- T =  1.5 
P = 25, 30, 35, 40, 45 
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MOMENTUM RATIO.  PARAMETER IS PRESSURE RATIO 

1 0 tD 40  

ENTRAINMENT RATIO 
Figure 7 

Jet Pump  Performance  Characteristics 

A = 0.001 
T =  1.5 
P = 25, 30, 35, 40, 45 

Momentum  Augmentation (7) vs. Entrainment  Ratio 
- 
- 
- 
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PUMP CHARACTERISTICS. PARAMETER IS PRESSURE RATIO 

ENTRAINWENT RATIO 

Figure 8 
Jet  Pump  Performance  Characteristics 

Dimensionless  Pressure  Rise (Apt *) vs. Entrainment Ratio 

- T =  3.5 
P = 40,  45,  50,  55,  60, 65 
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MOMENTUM RATIO. PARAMETER IS PRESSURE RATIO 

ENTRAINMENT RATIO 

Figure 9 

Jet  Pump  Performance  Characteristics 
Momentum  Augmentation (7)  vs. Entrainment  Ratio - 

A_= 0 .001  
T =  3 .5  
P = 40, 45,  5 0 ,  55, 60, 65 
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Figure 10 
Jet Pump Performance Characteristics 

Dimensionless Pressure  Rise (A Pt*) vs. Entrainment Ratio 
h = 0.001 

= 8.0 

P = 60, 70, 80, 90 
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Figure 11 

Jet Pump Performance  Characteristics 

Momentum  Augmentation ( T ) vs. Entrainment Ratio 
x = 0.001 
- 
T = 8 . 0  

P = 60,  70, 80 ,  90 

40 
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PUMP CHARACTERISTICS.  PARAHETER IS PRESSURE  RATIO 

ENTRAINMENT  RATIO 
Figure 12 

Jet Pump Performance  Characteristics 
Dimensionless  Pressure  Rise (Apt*) vs. Entrainment Ratio - 

- A = 0.003 
- T =  1.5 
P =  9 ,  10, 11, 12, 13, 14 
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MOMENTUN RATIO. PARAMETER I S  PRESSURE R A T I O  
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PUMP CHARACTERISTICS. PARAMETER IS PRESSURE RATIO 

0 
r) .11m11 

211 

ENTRAINMENT RATIO 
Figure 14 

Jet Pump Performance Characteristics 
DLmension~ees Pressure  Rise (Apt*) vs. Entrainment Ratlo - 

A_= 0.003 
- T =  3.5 
P = 13', 15, 17, 19, 21 
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MUMENTUH RATIO. PARAMETER I S  PRESSURE RATIO 
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Figure 15 

Jet Pump Performance Characteristics 
Momentum  Augmentation ( 7 )  vs. Entrainment  Ratio - 

A, = 0.003 

P = 13, 15, 17, 19, 21 
x =  3.5 
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Entrainment Ratio 

Figure 16 

Jet Pump Performance Characteristics 

Dimensionless Pressure Rise (Apt*) vs. Entrainment Ratio 

x = 0.003 
T = 8.0 

P = 20 ,  22,   24,   26,  28, 30 

- 
- 
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Figure 17 

Jet Pump Performance  Characteristics 

Momentum  Augmentation (7) vs. Entrainment Ratio 
x = 0.003 

T = 8.0 
- 

= 20, 22,  24, 26, 28, 30 
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PUMP CHARACTERISTICS. PARAMETER I S  PRESSURE RATIO 

10 m w, A l l  

ENTRAINRENT RATIO 
Figure 18 

Jet mUnp Performance Characteristics 
Dimensionless Pressure  Rise (Apt*) vs.  Entrainment  Ratio 

0 . o m  
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L. 
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0 .o 

- 
A = 0.007 

P =  4 ,   4 .5 ,  5 ,  5 . 5 ,  6 

- 
- T =  1.5  
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MOMENTUM RATIO* PARAMETER IS PRESSURE RATIO 
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Figure 19 

Jet Pump Performance  Characteristics 
Momentum Augmentation ( 7 )  vs. Entrainment Ratio - 

4= 0.007 

P = 4, 4 . 5 ,  5, 5.5, 6 
- T =  1.5 
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PUHP CHARACTERISTICS. PARAMETER IS 

. - l .  

2G 

ENTRAINWENT RATIO 

Figure 20 

PRESSURE RAT I O  

. .  . . . .  * 4 -  
. b . .  

-. 
' ,  I 

Jet Pump Performance  Characterist ics 
Dimensionless  Pressure  Rise  (4Pt*) vs.  Entrainment  Ratio - A = 0.007 
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ENTRAINMENT RATIO 
Figure 21 

Momentum  Augmentation (7) vs. Entrainment  Ratio 
Jet Pump  Performance  Characteristics 

- 
A = 0.007 

P = 5 ,  6, 7,  8, 9 

- x =  3 . 5  

MOWENTUH RATIO. PARAMETER I S  PRESSURE RATIO 
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PWP CHARACTERISTICS. PARAHETER IS PRESSURE RATIO 

0 . O P  
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0.020 

BNTUAImENT RATIO 
Figure 22 

Jet Pump Performance Characteristics 
Dimensionless Pressure  Rise (Apt*) vs. Entrainment  Ratio - 

A = 0.007 
T = 8.. 0 
P = 9, 10, 11, 12, 13, 14 
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nOwENTUM RATIO* PARAMETER IS PRESSURE R A T I O  
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ENTRAINMENT RATIO 
Figure 23 

Jet Pump Performance  Characteristics 
Momentum Augmentation (7) vs. Entrainment Ratio 

- 
A = 0.007 
T =  8.0 
P = 9, 10,  11,  12. 13, 14 
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PUMP CHARACTERISTICS. PARAPETER rs AREA R A T I O  

ENTRAINMENT R A T  IO 

Figure 24 

Jet  Pump Pressure  Rise in  Relation to 
Geometry (x,) and Mixing Tube Exit Mach Number 
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ENTRA I tCIEt4T R A T  IO 

Figure 25 

Jet Pump  Momentum  Ratio  in  Relation to Geometry (A,) 
and  Mixing  Tube  Exit  Mach  Number 

40  
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System  Operating  Point 

/ Jet Pump 
Characteristic 

Figure 26 

Jet Pump System Operating Point 
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Figure 27 

Influence of Pressure  Ratio on Jet  Pump-System 
Operating Points 
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Figure 28 

Loss Coefficients for Straight  Conical  Diffusers 
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Figure 29 

Chart for Determining Mb (Equation 66) 
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Figure 30 

Jet  Pump  Operating  Characteristics 
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Determination of System  Operating  Points 
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Figure 32 

Influence of Blowing  Duct  Diffusion Upon Entrainment  Ratio 
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Figure 33 

Jet Pump Thrust  Augmentation  Characteristic 
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Figure 34 

Influence of Blowing  Duct  Diffusion Upon System  Thrust  Augmentation 
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Figure 35 

Relationship of Thrust  Augmentation to Entrainment  Ratio 
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Figure 36 

Jet Pump Test Rig 



Figure 37 

Original Mixing  Tube Geometry 
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Figure 38 

Low Drag Nozzle Cluster #1 ,' I 



Figure 39 

Low-Drag Nozzle Cluster #2 
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Figure 40 

Dynatech Jet Pump Test  Instrumentation 
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Bellmouth  Inlet: 

Ws - Secondary  Flow  Rate - lbm/min 
Figure 41 

P r e s s u r e  Loss Character is t ics  
Four  Inlet  Duct  and  Nozzle  Cluster  Configurations 

No C l u s t e r   o r  Elbow 
Original  Cluster  and 
Nozzles 

Original  Cluster  with 
2 Inch Nozzle  Extensions 

Low Drag  Cluster #2 

NAS 2-2518 Suction  Duct: 

Original  Cluster  and  Nozzle 

No Cluster o r  Elbow 

(Measurements  Made at End of Short 
Mixing  Tube, L/d, = 1.35) 
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Figure 42 

NAS 2-2518 BLC System  Suction Duct 
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Figure 43 

Pressure  Loss Characteristics of the 
Extended  Constant  Diameter Mixing Tube 

(Pressure  Measurements  Taken 
2.72  Duct  Diameters  Apart ; 

dm = .4.0 Inches) 
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Velocity  Profiles  at  Diffuser  Discharge 

d = 5.084" Ad 

Am 
- = 1.71 

NAS 2-2518 Mixing  Tube 
Original  Nozzle  Cluster 

Case 4 Nozzles (350 psia, 1090O.F) 
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P 
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Figure  45 

Velocity  Profiles  at  Diffuser  Discharge 

Ad d = 5.084" - - - 1.71 
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Velocity  Profile  with 
Heated  Primary  Flow 

Symbol @ 
Run No. 7 11 

P (psia) 300  260 

T (OF) 1158"  1186" 
PO 

PO 
W (lbm/min) 5.66 4. 87 

Ws(lbm/min) 143.5  144.8 

m 25.35  29.7 

P 

Velocity  Profile  with 
Cold P r imary  Flow 

p = 191 psia 
PO 

PO 

P 

T = 83 "F 

W = 6.06 Ibm/min 

W = 139. 00 Ibm/min 

m = 23.2 
S 

NAS 2-2518 Mixing Tube 
Original  Nozzle  Cluster 

Case  4  Nozzles 

173 



I 

PI 

0 

- 10 

- 20 

-30 

- 40 

-50 

-60 

-70 

0 

- 10 

- 20 

- 30 

-40 

-50 

-60 

-70 

0 10 20 30 40 

m - Entrainment Ratio 
Figure 46 

Static Pressure in NAS 2-2518 Mixing Tube 
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Case 4 Nozzles 
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Figure 47 

Variation of Static Pressure in Mixing Tube and Diffuser 

Case 4 Nozzles 
For Three Configurations 

P = 350 psia 

T = 1100°F to 1200°F 

Wm = 124.9 lbm/min 
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Jet Pump Pressure  Rise Parameters Calculated  at 
Mixing  Tube Discharge 

Original Nozzle Cluster 
Case 4 Nozzles 
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Secondary  Flow Vs. Pr imary Flow 
Wide  Open  Throttle  Condition 

Short  Constant Area Mixing  Tube 
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Figure 52 

Jet Fkmp Static Pressure Parameter Calculated at 
Mixing  Tube Discharge 

Short Constant Area  Mixing Tube 
Low-Drag Nozzle Cluster #1 

Case 4 Nozzles 
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Velocity Profiles at Diffuser  Discharge 
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Static Pressures in  Mixing  Tube 

LD #1 Nozzle Cluster 
Short Constant Area .Mixing  Tube 

Case 4 Nozzles 
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