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FORTRAN PROGRAM FOR CALCULATING AXIAL TURBOMACHINERY
BLADE COORDINATES
by Theodore Katsanis

Lewis Research Center

SUMMARY

A FORTRAN IV computer program has been written to calculate blade coordinates
with respect to the true blade chord. The required input is the axial blade chord, blade
stagger, leading- and trailing-edge radii, angles of tangency on leading- and trailing-
edge radii, and a few intermediate spline points. This input is identical to the geomet-
rical input required for blade-to-blade aerodynamic analysis programs previously pub-
lished by NASA (TN D-5427, TM X~1764, and TN D-5044).

INTRODUCTION

There are several NASA computer programs for calculating velocities on a blade-to-~
blade surface between blades (refs. 1 to 3). These programs are easy to use because the
blades can be described very simply. The required geometrical input consists of the
axial blade chord and stagger, leading- and trailing-edge radii, angles of tangency on the
leading- and trailing-edge radii, and a few intermediate points which are fitted with a
spline curve. This required geometrical input results in a precisely defined blade sur-
face. After a satisfactory blade surface velocity distribution is obtained, it is often de-
sired to calculate a large number of offset coordinates with respect to the true blade
chord. The true blade chord is tangent to the lower surface of the blade., Since the blade
shape is specified by mathematical equations, these coordinates may be calculated in a
straightforward manner, However, this is a tedious and time consuming hand calcula-
tion, It is the purpose of the program TFORM to perform these calculations.

The FORTRAN 1V program TFORM is presented herein with a complete description
of the input required and the output obtained, The input and output for an example case
are also given. The geometrical input is just a part of that required for the programs
TSONIC, TURBLE, or TANDEM (refs. 1 to 3).



SYMBOLS

r radius from axis of rotation
w linear coordinate in tangential direction

Wy w-coordinate of blade surface

W w-coordinate of (x,y) origin

Wy w-coordinate of (Xi’ 0)

b:¢ coordinate tangent to blade lower surface

X5 x~-coordinate at ith increment from blade leading edge
'y coordinate normal to x-axis

Vi y~coordinate at ith increment from blade leading edge

Yy ¥ for lower blade surface

yu, i ¥ for upper blade surface

Z axial distance from blade leading edge

zy, z-coordinate of blade surface

z z-coordinate of (%,y) origin

zq z-coordinate of (Xi’ 0)

6 angular coordinate about axis of rotation, radians
© blade angle from axial direction, deg

TRANSFORMATION PROCEDURE

The basic transformation consists of a rotation and translation. The input coordi-
nates are given as (z, 6) coordinates where z is the axial direction and 6 is the angular
coordinate in radians about the axis of rotation, The linear coordinate in the 6-direction
is equal to r6 =w. The origin in the w-z plane is at the leading edge of the blade, as
shown in figure 1. The entire curve for each surface is specified mathematically by the
leading- and trailing-edge radii and by a spline curve in between. The output coordinates
are given as (x,y) coordinates with the x-axis tangent to the blade lower surface and the
y-axis tangent to the blade leading edge, as shown in figure 2.

The first step in the program is to determine the angle ¢, the true chord, and (ZO’WO)f
which are the (z,w) coordinates of the (x,y) origin. These constants specify the amount of
translation and rotation and are calculated by equations (Al) to (A18) in the appendix.
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Figure 1. - Typical blade geometry.
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True chord

Figure 2, - Transformed coordinates and transformation constants,

The next step after the translation and rotation constants have been calculated is to
calculate the y-coordinates for each blade surface corresponding to each increment in
the x-direction. This is done by finding the intersection of the line x = X, and the curve
w = w(z) (see fig. 2). In w-z coordinates, the line x = X, is

W=w, - 1 (1)



where

Zy = Zg+ X; COS @

(2)

=W . Si
wy +xlsmgo

0

The blade surfaces are described mathematically by piecewise functions; that is, the
leading- and trailing-edge segments are given by the equation of a circle and the rest of
the blade by a spline curve which is a piecewise cubic polynomial (ref. 4). We can de-
note this by

W = W (2) (3)

For any z then, w is determined as indicated by equation (3), Equations (1) and (3) can
be solved simultaneously to determine (zb, wb) where the line intersects the blade. The
numerical procedure for solving equations (1) and (3) is described in the appendix. Then
y; is calculated by

v =‘/(z1 - 2%+ (wy - w)? 4)

DESCRIPTION OF INPUT AND OUTPUT

The computer program requires as input a geometrical description in (z, 6) coordi-
nates of the two blade surfaces, the radius r, a scale factor if desired, and the desired
x-increment for the output coordinates. Output from the program includes x- and
y-coordinates for the upper and lower surfaces (see fig. 2).

Input

Figure 3 shows the input'variables as they are punched on the data cards. The first
input card is for a title, which will serve for problem identification. The remaining
cards are for input variables. All variables are real (decimal point must be punched) in
a 10-column field. & should be noted that the input corresponds very closely to the blade
geometry input for the NASA blade-to-blade analysis programs of references 1 to 3.
Further explanation of the input variables is given in the Instructions for Preparing Input
section.
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TITLE

CHORD

STGR

RMI

SCALE

DELX

RI1

RO1

BETIL

BETO1

SPLNO1

MSP1 ARRAY

THSP1 ARRAY

RI2 RO2

BETI2 BET02 SPLNO2

MSP2 ARRAY

THSP2 ARRAY

Figure 3. - Input form.

The input variables are as follows:

CHORD
STGR

RMI

SCALE

DELX

RIl, RI2
RO1, RO2

BETTI,
BETI2

BETOI,
BETO2

Overall length of blade in the z-direction, see fig. 4

Angular 6-coordinate for center of trailing-edge circle of blade with respect
to center of leading-edge circle, radians, see fig. 4

Radius of blade section from the axis of rotation ( RMI = 1, then all
g-coordinates are the actual linear dimension w.)

Ratio of output dimensions to input dimensions (For example, if input is in
feet and output is desired in inches, SCALE = 12 should be used.)

Spacing of output coordinates in the x-direction, see fig, 5 (DELX should
be chosen to be at least CHORD*SCALE/100. DELX must be given in the
output units; i.e., if input is in feet and output is in inches (SCALE = 12),
then DELX is in inches.)

Leading-edge radii of the two blade surfaces, see fig. 4
Trailing-edge radii of the two blade surfaces, see fig. 4

Angles (with respect to z-direction) at tangent points of leading-edge radii
with the two blade surfaces, deg, see fig. 4 (These must be true angles
in degrees.)

Angles (with respect to z-direction) at tangent points of trailing-edge radii
with the two blade surfaces



SPLNOI1, Number of blade spline points given for each surface as input, maximum
SPLNO2 of 50 (These include the first and last points (dummies) that are tangent
’ to the leading- and trailing-edge radii (fig. 4).)

MSP1, Arrays of z-coordinates of spline points on the two blade surfaces, meas-

MSP2 ured from blade leading edges, see fig. 4 (The first and last points in
each of these arrays must be left blank, since these values are calculated
by the program. If the last point is on a new card, a blank card must be

used. )
THSPI1, Arrays of 6-coordinates of spline points corresponding to MSP1 and MSP2,
THSP2 radians, see fig. 4 (Blanks must be used in positions corresponding to

those in MSP1 and MSP2.)

Instructions for Preparing Input

Units of measurement. - Two units are used: one for linear measurements and one
for angles. Any unit may be used for linear measurement. If a different unit is desired
for output, this may be accomplished by the use of a scale factor in SCALE. 1 SCALE
= 1, the output units are the same as the input units. The angular measurement 6 must
be given in radians. However, if RMI=1 is specified, the 6-coordinate can be given
as a true linear measurement,

Blade geometry. - The upper and lower surfaces of the blade are each defined by
specifying three things: leading- and trailing-edge radii, angles at which these radii are
tangent to the blade surfaces, and z- and 6-coordinates of several points along each sur-
face. These angles and coordinates are used to define a cubic spline curve fit (ref. 4) to
the surface. The standard sign convention is used for angles, as indicated in figure 4.

The blade must be oriented with a concave lower surface.

A cubic spline curve is a piecewise cubic polynomial which expresses mathematic-
ally the shape taken by an idealized spline passing through the given points. Reference 4
describes a method for determining the equation of the spline curve. When this method
is used, only a few points are required to specify most blade shapes accurately, usually
no more than five or six, in addition to the two end points. As a guide, enough points
should be specified so that a physical spline passing through these points would accurately
follow the blade shape, This means that the spline points should be closer where there is
large curvature and farther apart where there is small curvature.

The coordinates for either surface of the blade are given with respect to the leading
edge, with the leading edge of the blade being defined as the furthest point upstream.

Format for input data, - All input variables are real numbers (punch decimal point)
in a 10-column field.
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STGR(-)

Blade surface 1
/ (upper surface)
1

O Spline point

Blade surface 2 7
(lower surface) —~

THSP2(-)

MSP2

CHORD

BETOI(-}

>~ BETO(-)

Figure 4. - Geometric input variables. Angles BETI1, BETI2, BETOI, and BETO2 must be given as true angle
in degrees, not angle as measured in z-8 plane.

TABLE 1. - INPUT FOR SAMPLE PROBLEM

2ND ROTOR HUB SECTION
CHORD STGR RM1 SCALE
0. 7966700E-01 -0.3615000£~01 0.2593300 12.000000
BLADE SURFACE 1 ~—-- UPPER SURFACE
RI1 RO1 BETI1L BETO1
0.3125000E-02 0.8330000E~03 41.000000 -46.300000
MSP1 ARRAY
~0 0.5883000E~01 -0
THSP1 ARRAY .
-0 0.3454000E-01 -0
BLADE SURFACE 2 -—— LOWER SURFACE
RI2 RO2 BETI2 BETO2
0.3125000E-02 0.8330000£-03 29. 000000 -35.500000

-0

-0

MSP2 ARRAY

THSPZ2 ARRAY

0.5883000E~01 -0

0.4820000E-02 -0

DELX
0.5000000E-01

SPLNOL
3.0000000

SPLNGB2
3.0000000



TABLE II. - OUTPUT FOR SAMPLE PROBLEM

BLADE DATA AT INPUT SPLINE POINTS

SLADE SURFACE 1
L THETA DERIVATIVE 2ND DERIV.
0.10748c-C2 0.90945E-02 3.35205 ~1J1.424
0.58830E-01 0.34540E-01 ~2+.45348 ~93,6146
0.79436E~-C1 -0.33931E~-01 ~4. 03517 =53.9014
BLADE SURFALE 2
Z THETA DERIVATIVE 2ND DERIV.
0.46400E-02 -0.10539E-01 213747 ~66.5432
0.58830E-C1 0.48200E-02 —-1. 62164 ~-72.1948
0.78350E-CL -0.38765E~01 -2. 715052 ~43,4682
NO. OF POINTS = 21 PHI = -5.3371 DEGREES
X Y LOWER Y UPPER
0 0.37500E~-01 0.37500E-01
0.50000E~-Cl1 0.21445€-02 0.10269
0.10000 0.33325E~01 0. 14606
0.,15000 0.61872E-01 0.18273
0.20000 0. 86266E~01 0.21294
0.25000 0. 10657 0.23691
0.30000 0.12285 0.25485
0.35000 0. 13516 0.26696
0.40000 0.14356 0.27343
0.45000 0. 14812 0.27443
0.50000 0. 14888 0.27014
0.55000 0. 14591 0.26071
0.60000 0. 13926 0.24630
0.65000 0.12899 0.22705
0.70000 0.11513 0.20310
0.75000 0.97808E-01 0.,17468
0.80000 0. 7729BE-01 0.14224
0.85000 0.53936E-01 0.10626
0.90000 0. 28038E-01 0.67T177E-01
0.95000 0.32655E-03 0.25395E-01
0.96253 0. 99960E-02 0.99960E~02

Output

Sample output is given in table II for the example blade given in table I, The first
output gives additional computed blade data at the input spline points. This includes the
z- and 6-coordinates at the points where the spline curves are tangent to the leading- and
trailing-edge radii. Also, the first and second derivatives are given at each spline point,

Of particular interest are the second derivatives. Any error in blade geometry input will



Figure 5. - Output coordinates.

usually result in wild values for some of these second derivatives.

The next output gives the transformed blade coordinates. The first line of output
gives the number of x-coordinates and the orientation angle ¢, as shown in figure 5.
This is followed by a tabulation of the x- and y-coordinates for the upper and lower sur-
faces (see fig. 5).

Error Conditions

The error message is given first for each error condition:

(1) BETI2 MUST BE GREATER THAN PHI AND BETO2 MUST BE LESS THAN PHI
TO HAVE X AXIS TANGENT TO LOWER BLADE SURFACE

It is assumed in the program that the x-axis is tangent to the leading- and trailing-
edge radii. I either BETIL2 is less than ¢ or BETO2 is greater than ¢ this tangent line
will not actually be tangent to the lower blade surface, and part of the lower surface will
be below the x-axis. Normal calculations will still be made, but there will be negative
values for Y LOWER.

(2) PART OF BLADE HAS NEGATIVE X VALUES

This message is printed if part of the blade would extend to the left of y-axis, This
can happen if BETIL is greater than ¢ + 90° or if BETI is less than © - 90°. No fur-
ther calculations are made and the program will proceed to the next case,

(3) LOWER BLADE SURFACE IS NOT ENTIRELY CONCAVE

This message is printed if some part of the blade lies below the x-axis. Normal
calculations will still be made, including negative values for Y UPPER or Y LOWER.

(4) Z COORDINATE IS NOT WITHIN BLADE

This message is printed by subroutine BL.CD if the z-coordinate given this sub-
routine as input is not within the bounds of blade surface. The value of z and the blade
surface number are also printed when this happens. This message should only occur if
there is an error in the input data,



(5) ROOT HAS FAILED TO OBTAIN A VALID ROOT
This message is printed by subroutine ROOT if a root cannot be located, or if the
accuracy of the root is not satisfactory. The user should thoroughly check the input data.

PROGRAM PROCEDURE

The main program is TFORM. There are 4 subroutines; FUNCT, ROOT, BLCD,
and SPLN22. The calling relation of all the subroutines is shown in figure 6.

TFORM

FUNCT
BLCD

SPLN22

Figure 6, - Calling relation
of subroutines,

TFORM reads and prints out all the input data. Then the transformation constants
®5 Zg, and LA are calculated as described in the appendix, Next the x and y arrays
are calculated. The method for calculating y for a given x value is described in the
appendix, The root finding procedure required by this method is accomplished by sub-
routine ROOT,

Subroutine FUNCT calculates f(z) in equation (A19) for either the upper or lower
surface.

Subroutines ROOT, BLCD, and SPLN22 are the same as described in references 1
to 3. Subroutine ROOT was changed in reference 1 from the coding used in references 2
and 3. This was to adopt the more foolproof method of locating roots by the bisection
method. Subroutine BLCD calculates the 6 blade coordinates when given a z-coordi-
nate. Subroutine SPLN22 calculates the spline curve fop the blade surfaces.
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FORTRAN Variabies in TFORM and FUNCT

A a, fig. 7
B b, fig. 7
BETI array, BETIl or BETI2, see input

BETO array, BETOl or BETO2, see input

C c, fig. 7

CHORD  see input

CNVX if CNVX > 1, either the lower or the upper surface has negative y-coordinates
CPHI cos @

D d, fig. 7

DELX see input

E e, fig. 8

F f, figs. 8and 9
FZ i(z), eq. (A19)
G g, figs. 8and 9
H 'h, figs. 8 and 9
1 temporary index

INDEX used as both a switch and subscript in calculating y blade coordinates

ISURF index indicating blade surface number

J index for DO loop

MSP input arrays MSP1 or MSP2

NOPT number of points in x and y output arrays
NSP number of spline points

NSPI array of number of spline points

P p, figs. 8and 9

PHI o, fig. 7

PHICC Voo 8. T
PHICOR ¢, .., fig. 7
PHIDEG ¢, deg

11



P1 T

RI array, RIl or RI2, see input
RMI see input
RO array, ROl or RO2, see input

"

SCALE see input
SPHI sin ¢
SPLNO either SPLNOI1 or SPLNO2, see input

SRW integer code variable that causes either ROOT (if SRW = 21) or SPLN22 (if
SRW = 18) to write out data useful for debugging

STGR see input
TCHORD true chord, fig. 2

THETA 2
THSP input arrays THSP1 or THSP2
TOLERW permissible tolerance in value of w for a given value of x, TOLERW
- CHORD x 107% |
TPHI tan ¢
WO W5 fig. 2
WB W, fig. 2
w1 wy, fig. 2
array of output values of x
Y array of output values of y; and Yy
Z0 2 tig. 2
Z1 zy, fig. 2
ZB Zps fig. 2
ZERO zero value variable

ZL,7ZT if Z1 is less than ZL or greater than ZT, the blade surface in the x, y-
coordinates is the opposite of the one in the w, z-coordinates

12



PROGRAM LISTING

CUMMON SRWe INIT(2) s TPHI ¢wByZ1l 3l qCHCRDySTGRyRMILRI(2),RO{2)s
1 BETE(2),8T0O(2) yNSPI(2) :MSP(50,2) sTHSP(50,2)
DIMENSION X{(101),Y{101,2)
’ REAL MSP

EXTERNAL FUNCTL,FUNCT2

1 CONTINUE
INIT(1)
INIT( 2}

0
0
C
C READ AND PRINT ALL INPUT DATA
C
WRITE{ €,1000)
READ{ 55,1100}
WRITE(6,1100)
WRITE(€,1110)
READ (5;1030) CHORDSTOR yRMI ,SCALE,DELX
WRITE(6,1040) CHORD,STGR yRMI ; SCALEsDELX
DO 10 J=1,2
IF {JaEQel) WRITE(65,1120)
IF {(J.EQ.2) WRITE(6,1130)
WRITE(E91140) Jedsededyd
READ (55;1030) KRI{J)RO{J)SBETI(JY,BETO(J),SPLNO
WRITE{6,1040) RI{J)ROLJ) «BETI(J)+BETO(J),SPLND
NSPI{(J)= SPLNO ‘
NSP = NSPI{J)
WRITE(6451150) J
READ (5:,1030) (MSP{I:J),1=1,NSP)
WRITE(6,1040) (MSP{I,;J4),1=1,NSP}
WRITE(€,1160) J
READ (551030) {THSP{Il »J) +I1=1,NSP)
10 WRITE(691040) (THSPU{I sJ4),1=1,NSP)
C
c CALCULATE TRANSFORMATION CONSTANTS
C
PI = 3.1415927
CNVX = 0.
TOLERW = CHORD/1l.E4

A = CHORD-RI{2)-RO(2)
B = STGR¥RMI
C = SQRT{A*A+B*B)

PHICC = ATAN{(B/A)
PHICOR = ARSIN({RI{2)-RU(2)}/C)
PHI = PHICC+PHICOR
PHIDEG = PHI/PI%*180.
IF(BETI{2) sLT.PHIDEG.OR-BETO{2) . GT.PHIDEG) WRITE {6,1165)
IF{BETI{1)-904sLE-PHIDEG-AND.90.+BETI {2)-GE.PHIDEG) GO TO 15
WRITE(&41167)
60 TO 1
15 CONTINLE
SPHI SIN{PHI)
CPHI COS{PHI}
TPHI TAN{PHI)
D Cx*COS{PHICUR)
E {(RICL)-RI(2))*CPHI
F RI{2)%5PHI

i"wn

non



C

[N gl

& O

14

{RIC1I-EI®LPHI
RI12)%CPHI
{RI{L)-EY*SPHI
ORD = w-E+RI{L)I+RG{2)}
PHl Lt 0.} GO TO 20
{RO{LI-ROL2)1*CPHIE
RI{2)%CPHI
F
TCHORD = D-E+RI1{2}+R0O{1}
20 20 = RI(2)1+F-G
WO = —H-P

VO M = DT
Tt O

L1 I B tis | B | I 1]

CALCULATE X AND Y ARRAYS

X{1) = Q.
Y{ls1) = RI(2)%SCALE
IF(PHILLT.043 Y(Lysl) = Y{1l,1)+SPHI*{RI(2}-RI{1})}*SCALE
Y{ls2) = Y{i,1}
1 =1
35 1 = [+}
X{I) = X(I-1)+DELX
21 = ZC+X{(I)/7SCALE*CPHI
Wl = ACGHXL{I)/SCALE*SPHI
ZERD = Q.
IL = —=wl® TPHI
LT = CHORD—{W1-RAI*STGRY*TPHI
pd L0C ISURF=1ls2
INDEX = I SURF

A = 0.
8 = CHORD
8 = 21

IF(PHIEQ.0.) GU TO {60,80) INDEX
IF(PHI*®{FLOAT{ISURF)-1.5)LE.DQ.) GO TO 40
PHI NEGATIVE AND UPPER SURFACE OR
PHI POSITIVE ANO LOWER SURFACE
A = RI{UINDEX)*{1.~LPHI)
IF(Z1.LE.ZT) GU TO (50.,70) sINDEX
INDEX = 3-INUDEX
A = CHORD-RO{INDEX)*%{1.-CPHI)
GO0 TGO (50;70),INDEX
PHI NEGATIVE AND LUWER SURFACE OR
PHI POSITIVE AND UPPER SURFACE
40 B = CHORD-RUO(UINDEX)¥{L.—-LPHIL) .
IF(Z1.GE-ZL) GO TO (50,70) s INDEX
INDEX = 3-INDEX
B = RIVINDEX}*{1.-CPHI}
GO TO (50,70),INBEX
50 CALL ROOT{(A;B,ZERUFUNCTL s TULERW,Z8)
60 CALL FUNCTLl(Zb,FLZ)
GJ TO <0
T0 CALL RUDT{A.,B,ZERDsFUNLCTZ2 s TOLERWZ3)
80 CALL FUNCT2(IB,F1)
90 Y{I,ISURF} = SQRTI{ZB-Z1)%*2+{WB-W1)*¥2)*SCALE
IFInWB.GE.Wl) GO TOQ 100
CNVX = CNVX+l.
Y{I,ISURF} = -Y{l,ISURF)
100 CONTINUE
IR D) HDELX- LT TCHORD*SCALE-AND.I-LT.100) GO 7O 35
IF(CNVXoGTo0.) WRITE(6,1190)



[2E o X3l

NGPT = I+1

XINOPT) = TCHORD*SCALE

Y{NOPT,1) = RO(2)%SCALE

IF(PHI.GT.0.) Y(NUPT L) = Y{(NOPT,L)+SPHI*(RO(1)-RO(2))}%*SCALE

Y{NUPT,2) = Y{NUPT,1)

PHI = PHI/PI*180.

WRITE(€,1170) NGPT,PHI

WRITE(G,1180}) (XCI)oYLI32) o¥{Is1)5I=1+NGPT]

GU 10O 1
1000 FORMAT (1H1)
1030 FORMAT {(8F10.5)
1040 FORMAT (1X,8G16.7)
1100 FORMAT (80H

1 )
1110 FORMAT (5X,5HCHORD 912Xy 4HSTOGR 13X s3HRMI ;1 2X,5HSCALE s 12X, 4HOELX S
1120 FORMAT (39HL BLADE SURFACE 1 —-- UPPER SURFACE)
1130 FORMAT (39nL SLADE SURFACE 2 -— LOWER SJRFACE)
1140 FORMAT {7X42HRII1412Xs2HRGs11¢12Xs4HBETI 211 411X ,4HBETOy 11 511X, 5HS

1PLNO, I1) .
1150 FORMAT (7Xy3HMSP,11,2X,5HARRAY}
1160 FORMAT (7X;4HTHSP,1142Xs5HARRAY)
1165 FORMAT (111HL BETI2 MUST Bt GREATER THAN PHI, AND BETO2 MJUST BE LE

1SS THAN PHI TO HAVE X AXIS TANGENT TO LOWER BLADE SURFACE/ 1HL)
1167 FORMAT (37HL PART OF BLADE HAS NEGATIVE X VALUES)
1170 FORMAT (18H1 NO. OF POINTS =,14,10X,5HPHI =,G12.4,8H DEGREES)
1180 FORMAT {46HL X Y LOWER Y UPPER/

i {2X+3(G13.5,5X))}
1190 FORMAT (45HL LOWER BLADE SURFACE TS NOT ENTIRELY CONCAVE)

END

SUBROUTINE FUNCT
COMMON SRWeINIT{2) s TPHI sWBoZ1 9Wl sCHORD,STGR,RMI,RI(2),R0O(2),
1 BETI(2),BETO{2)sNSPI{2) ¢MSP(50,2) ,THSP(50,2)
ENTRY FUNCTLI{Z,FZ}
CALL BLI{Z,THETA)
60U TO 10
ENTRY FUNCT2{Z,F1)
CALL BL2(Z,THETA)
10 WB = THETA*RMI
IF{TPHISNE-D-3 FZ = WB-Wi+{Z-21}/TPHI
RETURN
END

SUBROUTINE BLCD
BLLCD CALCULATES BLADE THETA COUORDINATE AS A FUNCTION OF M (=1 FUR AXIAL)
COMMON SRWeINIT(2),TPHI 9 wWB »Z1 swl »CHORD,STGR, RMILRI{2),R0O{2),

1 BETI(2),BETO(2),NSPE{2) yMSP(50,2) ,THSP{50,2)
DIMENSION EM(5042) sAAA(50)
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C
C
C

OOy

[aN oS

GO O

16

10

IN

INTEGER SRujy; SURF
ENTRY B8LL1(MsTHETA)
REAL MyMSP,MSPMM,MMMSP

SURF= 1
SIGN= .
GO 10 10
ENTRY dLZ2(M,THETA)
SURF= 2
SIGN=-1.
CONTINUE

NSP= NSPI{SURF)
IF (INITUSURF).EQ.13) GO TG 30
INIT{SURF )= 13

ITIAL CALCULATION OF FIRST AND LAST SPLINE POINTS ON BLADE

AA = BETI(SURF)/57,295779
AA = SIN{AA)
MSP{1lsSURF) = RI{SURF)®*{1l.—-SIGN*AA)

BB = SURT{l.—AA%*%x2)

THSP U 1,SURF) = SIGN*¥BB%RI{SURF)/RMI

BETI{SURF) = AA/BB/RMI

AA = BETO{SURF)}/57.295779

AA = SIN{AA)

MSPINSP,SURF) = CHORD-RO(SURF)#*{(1.+SIGN*AA)

BB = SQRT{1l.-AA%¥2)

THSP{NSP,y SURF) = STGR+SIGN*¥BB*RUI(SURF) /RMI

BETOLSURF) = AA/3B/RMI1

CALL SPLN22{MSP{1,SURF},THSPIL,SURF),BETI(SURF),BETO(SURF) ,NSP,
1 AAA, EM(L1,SURF))

If (SURF.EQ.1) WRITE(6,1000)

WRITE(6,1010) SURF

WRITE (691020) (MSP{IA,SURF) ,THSP{IA,SURF) AAA{IA},EM(IA,SURF),
1 IA=1,NSP)

BLADE COJORDINATE CALCULATION

30

AT

40

KK = 2
IF {M.GT.MSP{1,SURF)) GO TO 590

LEADING EDGE RADIUS

IF(M.LT.0.) GU TO 90

THETA = SQRT(M*{2.%RI {SURF)}~-M)}*SIGN
IF (THETA .EQ.0.) GO TO 40

RMM = RI{ SURF}—-M.

THETA = THETA/RMI

RETURN

THETA = 0.

RETURN

ALONG SPL INE CURVE

50 IF (M.LE.MSP(KK,SURF}) GO TO &0

IF {KK.GE «NSP) GU TO 70
KK = KK+}
GO T0 =0

60 5= MSP{KK s SURF)—-MSP{KK~1,SURF)

EMKM1= EM{KK-1sSURF)



EMK = EM(KKjySUKRF}

MSPMM= MSP{KK,; SURF)I-M

MMM SP= M~MSP{KK-1, SURF)

THK= THSP (KK, SURF1/S

THKMLl= THSP(KK-1,SURF)}/S

THETA= EMKMIXMSPMM*#3/6./S + EMKXMMMSP*%3/6,/S + {THK—EMK%S5/6, )%
1 MMMSP + { THKMI-EMKML*5/6,.) #MSPMM

RETURN

AT TRAIL ING EDGE RADIUS

[aReXe

70 CMM = CHORD-M
IF{CMM.LT.—CHORD/1.E5) GO TO 90
CMM= AMAXL1(0.,CMM)
THETA= SQRT(CMM*{2.%RO(SURFI-CMM)}*SIGN
IF {THETALEQ.0.) GO TU 80
RMM= RO(SURF)}-CMM
THETA = STGR+THETA/RMI
RETURN
80 THETA = STGR
RETURN

ERROR RETURN

GO0

90 WRITELE,1030) MySURF

THETA = 0.
RETURN

1000 FORMAT {(1H1713Xs33HBLADE DATA AT 'INPUT SPLINE POINTS)

1010 FORMAT(LHL »17Xs16HBLADE SURFACE,14)

1020 FORMAT {7X ,1HZ,10Xs5HTHETA,10X, LOHDERIVATIVE,5X,10H2ND DERIV. /
1 (4G15.5) }

1030 FORMAT (33H Z COORDINATE IS NOT WITHIN BLADE/4H L =3G14.69 10X,
1 O6HSUWRF =;0614.6)
END

SUBROUTINE ROOT{AB,Y FUNCT,TOLERY,X)
C
C ROOT FINDS A RUDUT FOR (FUNCT MINUS Y) IN THE INTERVAL (A,B)
C
COMMON SR
INTEGER SRW
IF (SRh.EQs21) WRITE(6,1000) A,B.Y,TOLERY
X1 = A
CALL FUNCT{X1,FXL)
IF{SRW.EQa2L) WRITE(651010) X1.,FX1
X2 =8
10 DO 30 I=1,20
X = {X1+4X2}/2.
CALL FINCT{X,FX}
IF{SRW-EQ-21) WRITE{6,1010) X,FX
IFC(FX1-Y)*{FX-Y}.6T.0.) GO TO 20

X2 = X
GO 10 20
20 X1 = X

FX1 = FX



30 CONTINUE

[FLABS(Y~-FX).LT.TOLERY) RETURN
WRITE{&,1020) AyB,3YsXsFX
RETURN

1C00 FORMAT (32HLINPUT ARGUMENTS FOR ROOT =— A =G13.5+3Xs3HB =3 G135,
1 3Xe 3HY =4613.543X, BHTOLERY =,613.5/16X,1HX17Xy 2HFX)

1010 FORMAT{8X;Gl6.59618.5)

1020 FORMAT(37HLROOT HAS FAILED TO OBTAIN VALID ROOT/4H A =,Gl4.64
1 LOX3HB =96l4.5510Xs3HY =9Gl4.653HX =3614.6,4HFX =, G14,6)
END

SUBRUUTINE SPLN22 (X,Y,YLP,YNP,N,SLOPE,EM)

SPINZ22 CALCULATES FIRST AND SECOND DERIVATIVES AT SPLINE POINTS
END CONDITION —~ DERIVATIVES SPECIFIED AT END PUINTS

oo oO

COMMON SR w

DIMENSION X({N)s Y{N) sEMIN} s SLOPE(N)
DIMENSION SB{10G),6{(100}

INTEGER SKw

SBli1l}) = .5

F o= AY{2)-Y(L) ) /1X{2)-X{1))-YLP
G(1) = Fe3,/7(X{(2)-X{1))

NO=N-1

IFING .LT.2) GO TU 20

DO 10 1=24Nu

A = (X{I)=-X{(I-1))/6.
C = (X (I+L}=-X{1)} /6.
W = 2.%{A+L)-A*S58({1~1)

SB(I}) = C/W
F o= (Y(Ie)-YUI N ZIXCI#) =X =YL D) =y {I-1 1) 7 IX (D) =XUI-1} )
10 6G(1) = (+—A%G(I-1)} /¥
20 F = YNP={Y(NI=-Y(N=L1)} Z7(X{N)—X{N—-1}}
W= (X{NI=X{N-1})/6.%(2.-5BIN-L})
EMIN) = (F=(XIN)=X{N-1))*GI(N-1) /6.) /W
DO 30 I=2,4N
K = N+}-1
30 EMIK) = G(K)-SBIKIXEM(K+]L)
SLOPE( 1) = (X{1)=X{2)) /6 %{2. *EM(L) +EMI2)I+IY{2)-Y (1) I/ (XL 2)-X (1)}
DO 40 [=2,N
40 SLIPE(IL) = (X(I)=X{I-1))} /6. (2. %EM{II+EM(I-1) b (Y (L)Y I-1})/
1 (X{1D)-X{i-1))
IF(SRWEQa18) WRITE (651000) Ne(X{(L)sY{I)SLOPE{T)+EMIT),I=1,N)
RETURN
1000 FURMAT (2X,15HNO. OF PUINTS =,13/10X,1HXs19Xy1HY19Xs5HSLOPE, 15X,
12HEM/ 1 4G20.8))
END

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 20, 1970,
720-03.
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APPENDIX - EQUATIONS FOR CALCULATING TRANSLATION
AND ROTATION CONSTANTS

The following equations can be obtained by referring to figure 7:

a = CHORD - r;(2) - r(2) (A1)
c =‘/a2 + b2 (A2)

b
tan @ _. = - (A3)

. r (@) - rq(2)
sin @0 = — (Ad)

¢ =%Pc-ct Pcorr (A3)
~The angle ¢ is the desired angle between the x-axis and the z-axis (fig. 2). The amount

of translation (z0 and WO) is obtained next, There are two sets of equations, depending
on whether ¢ is positive or negative.

Peorr

Figure 7. - Quantities required to compute ¢.

19



%) rl -2

ri(l)\v———‘
T
wol-) : rim/b/"
h
p(i') \

ri{l) -e

!
9(-)
g f(-)—»\&

Figure 8. - Quantities required fo compute true chord for negative ¢.

When ¢ is negative or zero, the following equations hold (see figs. 7 and 8):

d=c cos Poorr (AB)

e= [ri(l) - ri(Z)] cos ¢ (A7)
f=r 2 sing (A8)

g = [ri(l) - e] cos (A9)

h = r(2) cos ¢ (A10)

p= [ri(l) - e] sin ¢ (A11)

zy=1,@) +f-g (A12)

Wy =-h-Dp (A13)

True chord=d - e + ri(l) + r0(2) (A14)



l’i(l) - ri(Z)

ri(l) ‘ !

r;(Z)
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ot f —m

-1-—ZO g

Figure 9. - Quantities required to compute true chord for positive ¢ (e is
at trailing edge).

On the other hand, when ¢ is positive, the equations for e, g, p, and the true
chord change as follows (see fig. 9):

e= [rO(l) - rO(Z)] cos ¢ (A15)

g = r(2) cos ¢ (A16)

p =1,(2) sin ¢ (A17)

True chord = d - e + (2) + r,(1) (A18)

This completes the determination of the transformation constants.

CALCULATION OF y-COORDINATE OF BLADE SURFACE

The problem here is to find the y-coordinate for a given blade surface corresponding
to a given x-coordinate. This can be done by the simultaneous solution of equations (1)
and (3). ¥ w is eliminated, z can be obtained by finding a root for the function

Z-Z

i(z) = wy,(2) - Wy o+ (A19)

tan ¢
21



There are two problems that arise. First, the function Wb(Z) must be the correct blade
surface. This is not straightforward, since y,  could be on the lower surface in the
w-2z plane near the leading edge. The second problem is that for certain values of =z
and w near the leading or trailing edge there may be two solutions to equation (A19).
Both of these problems are overcome by restricting the interval for z for which the so-
lution is found. After the proper interval for z has been determined, the proper sur-
face can be ascertained so that equation (A19) must have a unique root. '

With the proper interval for z and the correct blade surface the unique root for
equation (A19) is found by the bisection method. That is, the interval is bisected to
determine z , then f(zn) is calculated to determine whether the root is in the right or
the left interval. This gives a reduced interval. The procedure is repeated until the
root has been located within the desired accuracy.
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