NASA TM X-2061

NASA TM X-2061

 MEMORANDUM

FORTRAN PROGRAM FOR CALCULATING AXIAL TURBOMACHINERY BLADE COORDINATES
by Theodore Katsanis
Lewis Research Center
Cleveland, Obio 44135

| 1. Report No.
 NASA TM X-2061 | 2. Government Accession No. | 3. Recipient's Catalog No. |
| :--- | :--- | :--- | :--- |
| 4. Title and Subtitle | | |
| FORTRAN PROGRAM FOR CALCULATING AXIAL | | |
| TURBOMACHINERY BLADE COORDINATES | 5. Report Date | |
| August 1970 | | |

*For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151

FORTRAN PROGRAM FOR CALCULATING AXIAL TURBOMACHINERY
 BLADE COORDINATES
 by Theodore Katsanis
 Lewis Research Center

SUMMARY

A FORTRAN IV computer program has been written to calculate blade coordinates with respect to the true blade chord. The required input is the axial blade chord, blade stagger, leading- and trailing-edge radii, angles of tangency on leading- and trailingedge radii, and a few intermediate spline points. This input is identical to the geometrical input required for blade-to-blade aerodynamic analysis programs previously published by NASA (TN D-5427, TM X-1764, and TN D-5044).

INTRODUCTION

There are several NASA computer programs for calculating velocities on a blade-toblade surface between blades (refs. 1 to 3). These programs are easy to use because the blades can be described very simply. The required geometrical input consists of the axial blade chord and stagger, leading- and trailing-edge radii, angles of tangency on the leading- and trailing-edge radii, and a few intermediate points which are fitted with a spline curve. This required geometrical input results in a precisely defined blade surface. After a satisfactory blade surface velocity distribution is obtained, it is often desired to calculate a large number of offset coordinates with respect to the true blade chord. The true blade chord is tangent to the lower surface of the blade. Since the blade shape is specified by mathematical equations, these coordinates may be calculated in a straightforward manner. However, this is a tedious and time consuming hand calculation. It is the purpose of the program TFORM to perform these calculations.

The FORTRAN IV program TFORM is presented herein with a complete description of the input required and the output obtained. The input and output for an example case are also given. The geometrical input is just a part of that required for the programs TSONIC, TURBLE, or TANDEM (refs. 1 to 3).

SYMBOLS

r radius from axis of rotation
w linear coordinate in tangential direction
$\mathrm{w}_{\mathrm{b}} \quad \mathrm{w}$-coordinate of blade surface
$w_{0} \quad w$-coordinate of (x, y) origin
$w_{1} \quad w$-coordinate of $\left(x_{i}, 0\right)$
$x \quad$ coordinate tangent to blade lower surface
$x_{i} \quad x$-coordinate at $i^{\text {th }}$ increment from blade leading edge
$\mathrm{y} \quad$ coordinate normal to x -axis
$y_{i} \quad y$-coordinate at $i^{\text {th }}$ increment from blade leading edge
$y_{l, i} \quad y$ for lower blade surface
$y_{u, i} \quad y$ for upper blade surface
z axial distance from blade leading edge
$z_{b} \quad z$-coordinate of blade surface
$z_{0} \quad z$-coordinate of (x, y) origin
$\mathrm{z}_{1} \quad \mathrm{z}$-coordinate of ($\mathrm{x}_{\mathrm{i}}, 0$)
θ angular coordinate about axis of rotation, radians
$\varphi \quad$ blade angle from axial direction, deg

TRANSFORMATION PROCEDURE

The basic transformation consists of a rotation and translation. The input coordinates are given as (z, θ) coordinates where z is the axial direction and θ is the angular coordinate in radians about the axis of rotation. The linear coordinate in the θ-direction is equal to $\mathrm{r} \theta=\mathrm{w}$. The origin in the $\mathrm{w}-\mathrm{z}$ plane is at the leading edge of the blade, as shown in figure 1. The entire curve for each surface is specified mathematically by the leading- and trailing-edge radii and by a spline curve in between. The output coordinates are given as (x, y) coordinates with the x -axis tangent to the blade lower surface and the y-axis tangent to the blade leading edge, as shown in figure 2.

The first step in the program is to determine the angle φ, the true chord, and ($\mathrm{z}_{0}, \mathrm{w}_{0}$), which are the (z, w) coordinates of the (x, y) origin. These constants specify the amount of translation and rotation and are calculated by equations (A1) to (A18) in the appendix.

Figure 1. - Typical blade geometry.

Figure 2. - Transformed coordinates and transformation constants.

The next step after the translation and rotation constants have been calculated is to calculate the y-coordinates for each blade surface corresponding to each increment in the x-direction. This is done by finding the intersection of the line $x=x_{i}$ and the curve $w=w(z)$ (see fig. 2). In $w-z$ coordinates, the line $x=x_{i}$ is

$$
\begin{equation*}
\mathrm{w}=\mathrm{w}_{1}-\frac{\mathrm{z}-\mathrm{z}_{\mathrm{i}}}{\tan \varphi} \tag{1}
\end{equation*}
$$

where

$$
\left.\begin{array}{r}
z_{1}=z_{0}+x_{i} \cos \varphi \tag{2}\\
w_{1}=w_{0}+x_{i} \sin \varphi
\end{array}\right\}
$$

The blade surfaces are described mathematically by piecewise functions; that is, the leading- and trailing-edge segments are given by the equation of a circle and the rest of the blade by a spline curve which is a piecewise cubic polynomial (ref. 4). We can denote this by

$$
\begin{equation*}
w=w_{b}(z) \tag{3}
\end{equation*}
$$

For any z then, w is determined as indicated by equation (3). Equations (1) and (3) can be solved simultaneously to determine $\left(z_{b}, w_{b}\right)$ where the line intersects the blade. The numerical procedure for solving equations (1) and (3) is described in the appendix. Then y_{i} is calculated by

$$
\begin{equation*}
y_{i}=\sqrt{\left(z_{1}-z_{b}\right)^{2}+\left(w_{1}-w_{b}\right)^{2}} \tag{4}
\end{equation*}
$$

DESCRIPTION OF INPUT AND OUTPUT

The computer program requires as input a geometrical description in (z, θ) coordinates of the two blade surfaces, the radius r, a scale factor if desired, and the desired x -increment for the output coordinates. Output from the program includes x - and y-coordinates for the upper and lower surfaces (see fig. 2).

Input

Figure 3 shows the input variables as they are punched on the data cards. The first input card is for a title, which will serve for problem identification. The remaining cards are for input variables. All variables are real (decimal point must be punched) in a 10 -column field. It should be noted that the input corresponds very closely to the blade geometry input for the NASA blade-to-blade analysis programs of references 1 to 3 . Further explanation of the input variables is given in the Instructions for Preparing Input section.

Figure 3. - Input form.

The input variables are as follows:
CHORD Overall length of blade in the z-direction, see fig. 4
STGR Angular θ-coordinate for center of trailing-edge circle of blade with respect to center of leading-edge circle, radians, see fig. 4

RMI Radius of blade section from the axis of rotation (If RMI $=1$, then all θ-coordinates are the actual linear dimension w.)

SCALE Ratio of output dimensions to input dimensions (For example, if input is in feet and output is desired in inches, SCALE $=12$ should be used.)

DELX Spacing of output coordinates in the x-direction, see fig. 5 (DELX should be chosen to be at least CHORD*SCALE/100. DELX must be given in the output units; i.e., if input is in feet and output is in inches (SCALE = 12), then DELX is in inches.)

RI1, RI2 Leading-edge radii of the two blade surfaces, see fig. 4
RO1, RO2 Trailing-edge radii of the two blade surfaces, see fig. 4
BETII, Angles (with respect to z-direction) at tangent points of leading-edge radii BETI2

BETO1, BETO2
with the two blade surfaces, deg, see fig. 4 (These must be true angles in degrees.)

Angles (with respect to z -direction) at tangent points of trailing-edge radii with the two blade surfaces

SPLNO1, Number of blade spline points given for each surface as input, maximum SPLNO2 of 50 (These include the first and last points (dummies) that are tangent to the leading- and trailing-edge radii (fig. 4).)

MSP1, MSP2

THSP1, THSP2

Arrays of z-coordinates of spline points on the two blade surfaces, measured from blade leading edges, see fig. 4 (The first and last points in each of these arrays must be left blank, since these values are calculated by the program. If the last point is on a new card, a blank card must be used.)

Arrays of θ-coordinates of spline points corresponding to MSP1 and MSP2, radians, see fig. 4 (Blanks must be used in positions corresponding to those in MSP1 and MSP2.)

Instructions for Preparing Input

Units of measurement. - Two units are used: one for linear measurements and one for angles. Any unit may be used for linear measurement. If a different unit is desired for output, this may be accomplished by the use of a scale factor in SCALE. If SCALE $=1$, the output units are the same as the input units. The angular measurement θ must be given in radians. However, if $\mathrm{RMI}=1$ is specified, the θ-coordinate can be given as a true linear measurement.

Blade geometry. - The upper and lower surfaces of the blade are each defined by specifying three things: leading- and trailing-edge radii, angles at which these radii are tangent to the blade surfaces, and z - and θ-coordinates of several points along each surface. These angles and coordinates are used to define a cubic spline curve fit (ref. 4) to the surface. The standard sign convention is used for angles, as indicated in figure 4. The blade must be oriented with a concave lower surface.

A cubic spline curve is a piecewise cubic polynomial which expresses mathematically the shape taken by an idealized spline passing through the given points. Reference 4 describes a method for determining the equation of the spline curve. When this method is used, only a few points are required to specify most blade shapes accurately, usually no more than five or six, in addition to the two end points. As a guide, enough points should be specified so that a physical spline passing through these points would accurately follow the blade shape. This means that the spline points should be closer where there is large curvature and farther apart where there is small curvature.

The coordinates for either surface of the blade are given with respect to the leading edge, with the leading edge of the blade being defined as the furthest point upstream.

Format for input data. - All input variables are real numbers (punch decimal point) in a 10 -column field.

Figure 4. - Geometric input variables. Angles BETII, BETI2, BETOI, and BETO2 must be given as true angle in degrees, not angle as measured in $z \theta$ plane.

TABLE I. - INPUT FOR SAMPLE PROBLEM

CHORD $0.7966700 \mathrm{E}-01$	HUB SECTION STGR $-0.3615000 \mathrm{~F}-01$	$\begin{gathered} \text { RMI } \\ 0.2593300 \end{gathered}$	scale 12.000000	DELX $0.5000000 \mathrm{E}-01$
BLADE SURFACE 1 -- UPPER SURFACE				
$0.3125000 \mathrm{E}-02$	$0.8330000 E-03$	41.000000	-46.300000	3.0000000
MSP1 ARzar				
-0	$0.5883000 \mathrm{E}-01$	-0		
THSP 1 ARRAY				
-0	$0.3454000 \mathrm{E}-01$	-0		
blade surface $2--\quad$ LOWER SURFACE				
0.3125000E-02	$0.8330000 \mathrm{E}-03$	29.000000	-35.500000	3.0000000
MSP2 ARZAY				
-0	0.5883000E-01	-0		
THSP2 ARRAY				
-0	$0.4820000 \mathrm{E}-02$	-0		

TABLE II. - OUTPUT FOR SAMPLE PROBLEM
blade data at input spline points

	Y LDWER	YUPPER
0	$0.37500 E-01$	$0.37500 E-01$
0.5000 OE-C1	$0.21445 E-02$	0.10269
0.10000	$0.33325 E-01$	0.14606
0.15000	$0.61872 E-01$	0.18273
0.20000	$0.86266 E-01$	0.21294
0.25000	0.10657	0.23691
0.30000	0.12285	0.25485
0.35000	0.13516	0.26696
0.40000	0.14356	0.27343
0.45000	0.14812	0.27443
0.50000	0.14888	0.27014
0.55000	0.14591	0.26071
0.60000	0.13926	0.24630
0.65000	0.12899	0.22705
0.70000	0.11513	0.20310
0.75000	$0.97808 E-01$	0.17468
0.80000	$0.77298 E-01$	0.14224
0.85000	$0.53936 E-01$	0.10626
0.90000	$0.28038 E-01$	$0.67177 E-01$
0.95000	$0.32655 E-03$	$0.25395 E-01$
0.96253	$0.99960 E-02$	$0.99960 E-02$

Output

Sample output is given in table II for the example blade given in table I. The first output gives additional computed blade data at the input spline points. This includes the z - and θ-coordinates at the points where the spline curves are tangent to the leading- and trailing-edge radii. Also, the first and second derivatives are given at each spline point. Of particular interest are the second derivatives. Any error in blade geometry input will

Figure 5. - Output coordinates.
usually result in wild values for some of these second derivatives.
The next output gives the transformed blade coordinates. The first line of output gives the number of x-coordinates and the orientation angle φ, as shown in figure 5 . This is followed by a tabulation of the x - and y-coordinates for the upper and lower surfaces (see fig. 5).

Error Conditions

The error message is given first for each error condition:
(1) BETI2 MUST BE GREATER THAN PHI AND BETO2 MUST BE LESS THAN PHI TO HAVE X AXIS TANGENT TO LOWER BLADE SURFACE

It is assumed in the program that the x -axis is tangent to the leading- and trailingedge radii. If either BETI2 is less than φ or BETO 2 is greater than φ this tangent line will not actually be tangent to the lower blade surface, and part of the lower surface will be below the x-axis. Normal calculations will still be made, but there will be negative values for Y LOWER.
(2) PART OF BLADE HAS NEGATIVE X VALUES

This message is printed if part of the blade would extend to the left of y-axis. This can happen if BETII is greater than $\varphi+90^{\circ}$ or if BETI2 is less than $\varphi-90^{\circ}$. No further calculations are made and the program will proceed to the next case.
(3) LOWER BLADE SURFACE IS NOT ENTIRELY CONCAVE

This message is printed if some part of the blade lies below the x -axis. Normal calculations will still be made, including negative values for Y UPPER or Y LOWER.
(4) Z COORDINATE IS NOT WITHIN BLADE

This message is printed by subroutine BLCD if the z -coordinate given this subroutine as input is not within the bounds of blade surface. The value of z and the blade surface number are also printed when this happens. This message should only occur if there is an error in the input data.

(5) ROOT HAS FAILED TO OBTAIN A VALID ROOT

This message is printed by subroutine ROOT if a root cannot be located, or if the accuracy of the root is not satisfactory. The user should thoroughly check the input data.

PROGRAM PROCEDURE

The main program is TFORM. There are 4 subroutines: FUNCT, ROOT, BLCD, and SPLN22. The calling relation of all the subroutines is shown in figure 6.

Figure 6. - Calling relation of subroutines.

TFORM reads and prints out all the input data. Then the transformation constants φ, z_{0}, and w_{0} are calculated as described in the appendix. Next the x and y arrays are calculated. The method for calculating y for a given x value is described in the appendix. The root finding procedure required by this method is accomplished by subroutine ROOT.

Subroutine FUNCT calculates $f(z)$ in equation (A19) for either the upper or lower surface.

Subroutines ROOT, BLCD, and SPLN22 are the same as described in references 1 to 3. Subroutine ROOT was changed in reference 1 from the coding used in references 2 and 3. This was to adopt the more foolproof method of locating roots by the bisection method. Subroutine BLCD calculates the θ blade coordinates when given a z-coordinate. Subroutine SPLN22 calculates the spline curve for the blade surfaces.

FORTRAN Variables in TFORM and FUNCT

A a, fig. 7
$B \quad b$, fig. 7
BETI array, BETII or BETL2, see input
BETO array, BETO1 or BETO2, see input
C c, fig. 7
CHORD see input
CNVX if $C N V X \geq 1$, either the lower or the upper surface has negative y-coordinates
CPHI $\quad \cos \varphi$
$D \quad d$, fig. 7
DELX see input
$\mathrm{E} \quad \mathrm{e}$, fig. 8
F f, figs. 8 and 9
FZ $\quad f(z)$, eq. (A19)
G \quad g, figs. 8 and 9
$\mathrm{H} \quad \mathrm{h}$, figs. 8 and 9
I temporary index
INDEX used as both a switch and subscript in calculating y blade coordinates
ISURF index indicating blade surface number
$J \quad$ index for DO loop
MSP input arrays MSP1 or MSP2
NOPT number of points in x and y output arrays
NSP number of spline points
NSPI array of number of spline points
$\mathrm{P} \quad \mathrm{p}$, figs. 8 and 9
PHI $\quad \varphi$, fig. 7
PHICC $\quad \varphi_{\mathrm{C}-\mathrm{c}}$, fig. 7
PHICOR $\varphi_{\text {corr }}$, fig. 7
PHIDEG φ, deg

PI	π
RI	array, RI1 or RI2, see input
RMI	see input
RO	array, RO1 or RO2, see input
SCALE	see input
SPHI	$\sin \varphi$
SPLNO	either SPLNO1 or SPLNO2, see input
SRW	integer code variable that causes either ROOT (if SRW = 21) or SPLN22 (if SRW $=18$) to write out data useful for debugging
STGR	see input
TCHORD	true chord, fig. 2
THETA	θ
THSP	input arrays THSP1 or THSP2
TOLERW	permissible tolerance in value of w for a given value of x, TOLERW $=\text { CHORD } \times 10^{-4}$
TPHI	$\tan \varphi$
W0	w_{0}, fig. 2
WB	w_{b}, fig. 2
W1	w_{1}, fig. 2
X	array of output values of x
Y	array of output values of y_{l} and y_{u}
Z0	z_{0}, fig. 2
Z1	z_{1}, fig. 2
ZB	z_{b}, fig. 2
ZERO	zero value variable
ZL, ZT	if Z 1 is less than ZL or greater than ZT , the blade surface in the x, y coordinates is the opposite of the one in the w, z-coordinates

PROGRAM LISTING

```
            CUMMON SRW,INIT(2),TPHI,WB,Z1,W1,CHORD,STGR,RMI,RI(2),RO(2),
        1 BETI(2),8LTU(2),NSPI(2),MSP(50,2),THSP(50,2)
        DIMENSION X(101),Y(101,2)
        REAL MSP
        EXTERNAL FUNCTL,FUNCT2
        1 CONTINUE
        INIT(1)=0
        INIT(2)=0
C
C READ ANO PRINT ALL INPUT DATA
C
    WRITE(E,1000)
    READ(5,1100)
    WRITE(6,1100)
    WRITE( }\epsilon,1110
    READ (5,1030) CHORD,STGR,RMI,SCALE,DELX
    WRITE(6,1040) CHORD,STGR,RMI,SCALE,DELX
    DO 10 J=1,2
    IF (J.EQ.1) WRITE(6,1120)
    IF (J.EQ.2) WRITE (6,11 30)
    WRITE(E,1140) J,J,J,J,J
    READ (5,1030) RI(J),RO(J), BETI(J),BETO(J),SPLNQ
    WRITE(6,1040) RI(J),RO(J),BETI(J),BETO(J),SPLNO
    NSP[(J)= SPLNO
    NSP = NSPI(J)
    WRITE(6,1150) J
    READ (5,1030) (MSP(I;J),I=1,NSP)
    WRITE(6,1040) (MSP(I,J),I=1,NSP)
    WRITE(6,1160) J
    READ (5,1030) (THSP(I,J),I=1,NSP)
    10 WRITE (6,1040) (THSP(I,J),I=1,NSP)
C
C
    CALCULATE TRANSFORMATION CONSTANTS
    PI = 3.1415927
    CNVX = 0.
    TOLERW = CHORD/1.E4
    A = CHORD-RI(2)-RO(2)
    B = STGR*RMI
    C=SQRT(A*A*B*B)
    PHICC = ATAN(B/A)
    PHICOR = ARSIN((RI(2)-RO(2))/C)
    PHI = PHICC+PHICOR
    PHIDEG = PHI/PI*180.
    IF(BETI(2).LT.PHIUEG.OR.BETO(2).GT.PHIDEG) WRITE (6,1165)
    IF(BETI(1)-90..LE.PHIDEG.AND.90.+BEII(2).GE.PHIDEG) GO TO 15
    WRITE(6,1167)
    GO TO 1
15 CONTINLE
    SPHI = SIN(PHI)
    CPHI = COS(PHI)
    TPHI = TAN(PHI)
    D=C*COS(PHICOR)
    E=(RI(1)-RI(2))*CPHI
    F=RI(2)*SPHI
```

```
        G=(R|(1)-E)*CPHI
        H=RI(2)*CPHI
        P = (RI| 1)-E)*SPHI
        TCHORO = U-E+RI(1)+RO(2)
        IF(PHI*LE.O.) GO TO 20
        E={RU(1)-RU(2))*CPHI
        G=RI(2)*CPHI
        P}=
        TCHORD = D-E+RI(2)+RO(1)
    20Z0=RI(2)+F-G
    WO = -H-P
C
C CALCULATE X AND Y ARRAYS
C
    X(1)=0.
    Y(1,1)=RI(2)*SCALE
    IF(PHI&LT,0.) Y(1,1)=Y(1,1)*SPHI*(RI(2)-RI(1))*SCALE
    Y(1,2)= Y(1,1)
    I=1
    35I= I +1
    X(I) = X([-1)+DELX
    Z1 = ZC+X(I)/SCALE*CPHI
    W1 = WO+X(I)/SCALE*SPHI
    ZERO = O.
    ZL = -WI*TPHI
    ZT = CHORO-(WI-RII|STGR)*TPHI
    DU 100 ISURF=1:2
    INDEX = I SURF
    A = 0.
    B = CHORD
    ZB = Z1
    IF(PHI.EQ.0.) GU TO (60,80), I NDEX
    IF(PHI*(FLOAT(ISURF)-1.5).LE.O.) GO T0 40
C PHI NEGATIVE AND UPPER SURFACE OR
C PHI POSITIVE ANO LOWER SURFACE
    A = RI(INOEX)* (1.-CPHI)
    IF(Z1,LE.ZT) GO TO (50,70) INDEX
    INOEX = 3-INUEX
        A = CHORD-RO(INDEX)*(1,-CPHI)
        GO TO (50,70), INDEX
    PHI NEGATIVE AND LUWER SURFACE OR
C PHI POSITIVE AND UPPER SURFACE
    40 B = CHORD-RO(INDEX)*(1.-LPHI)
    IF(Z1.GE.ZL) GO TO (50,70), INDEX
    INDEX = 3-INOEX
    B = RI(INDEX)*(1,-CPHI)
    GO TO (50,70), INOEX
    50 CALL ROOT(A,B,ZERO,FUNCTL,TULERW,ZB)
    60 CALL FLNCT1(Zb,FL)
    Gu TO çO
    70 CALL RUOT (A,B,ZERO,FUNCTZ,TOLERW,ZG)
    80 CALL FUNC T2(ZB,FZ)
    90 Y(I,ISURF)= SQRT((ZB-Z1)**2+(WB-W1)**2)*SCALE
    IF(wB.GE.W1) GO TO 100
    CNVX = CNVX+1.
    Y(I,I SURF)=-Y(I,ISURF)
    100 CONTINUE
    IF(X(I)+DELX.LT.TCHORD*SCALE*ANO.I.LT.100) GO TO 35
    IF(CNVX.GT,0.1 WRITE (6,1190)
```

```
    NOPT = I +1
    X(NOPT) = TCHORL*SCALE
    Y(NOPT,1)= RO(2)*SCALE
    IF(PHI.GT.0.) Y(NOPT.1) = Y(NOPT.1)*SPHI*(RO(1)-RO(2))*SCALE
    Y(NUPT,2) = Y(NOPT,1)
    PHI = PHI/PI*180.
    WRITE(E,1170) NOPT,P4I
    WRITE(6,1180) {X(I),Y(I,2),Y(I,1)&I=1,NOPT)
    GU TO 1
1000 FORMAT (1H1)
1030 FDRMAT (8F10.5)
1040 FOKMAT (1X,8G16.7)
1100 FORMAT (80H
    1 1
1110 FORMAT {5X,5HCHORO, 12X,4HSTGR,13X,3HRMI, 12X,5HSCALE, 12X,4HDELX)
1120 FORMAT (39HL BLADE SURFACE 1 -- UPPER SURFACE)
1130 FORMAT (39HL BLADE SURFACE 2 -- LOWER SJRFACEI
1140 FORMAT (7X,2HRI,I 1, 12X,2HRO,I1,12X,4HBETI,IL, 11X,4HBETO,I1, 11X,5HS
1PLNO, I1)
1150 FORMAT (7X,3HMSP,11,2X,5HARRAY)
1160 FURMAT (7X,4HTHSP,I 1,2X,5HARRAY)
1165 FORMAT (111HL BETI2 MUST BE GREATER THAN PHI AND BETO2 MUST BE LE
    ISS THAN PHI TO HAVE X AXIS TANGENT TO LOWER BLADE SURFACE/IHL)
1167 FORMAT (37HL PART OF BLADE HAS NEGATIVE X VALUES)
1170 FORMAT (18H1 NO. OF POINTS =,I4,10X,5HPHI =,G12.4,8H DEGREES)
1180 FORMAT \46HL X Y LOWER Y UPPER/
    1 (2X,3(G13,5,5X)))
1190 FORMAT (45HL LOWER BLADE SURFACE IS NOT ENTIRELY CONCAVE)
END
SUBROUTINE FUNCT
COMMON SRW,INIT(2),TPHI,WB,Z1,W1,CHORD,STGR,RMI,RI(2),RO(2),
    1 BETI(2),BETO(2),NSPI(2),MSP(50,2),THSP(50,2)
    ENTRY FUNCTI(Z,FZ)
    CALL BLI(Z,THETA)
    GO TO 10
    ENTRY FUVCT2(Z,FZ)
    CALL BLZ(Z,THETA)
10WB = THETA*RMI
    IF(TPHI,NE.O.)FZ = WB-WI+(Z-ZI)/TPHI
    RETURN
    END
    SUBROUTINE BLCD
C
C BLCD CALClLATES blade theta cuORDINATE AS a funCTION OF M (=Z FUR aXIALI
C
    COMMON SRW,INIT(2),TPHI,WB,Z1,W1,CHORO,STGR,RMI,RI(2),RO(2),
    1 BETI(2),BETO(2),NSPI(2),MSP(50,2),THSP(50,2)
    DIMENSION EM(50,2),AAA(50)
```

```
    INTEGER SRW,SURF
    ENTRY BLI(M,THETA)
    REAL M,MSP,MSPMM,MMMSP
    SURF=1
    SIGIN=1.
    GO TO 10
    ENTRY BL2(M,THETA)
    SURF=2
    SIGN=-1.
10 GONTINUE
    NSP=NSPI(SURF)
    IF (INIT(SURF).EQ.13) GO TO 30
    INIT(SURF)= 13
C
C
C
C
C blade courdinate calculation
C
    30KK=2
    IF (M.GT.MSP(1,SURF)) GO TO 50
C
C AT LEADING EDGE RADIUS
G
    IF(M.LT.O.) GO TO }9
    THETA = SQRT(M*(2.*RI (SURF) -M))*SIGN
    IF (THETA.EQ.O.) GO TO 40
    RMM = RI(SURF)-M
    THETA = THETA/KMI
    RETURN
    40 THETA = 0.
    RETURN
C
C ALONG SPLINE CURVE
C
50 IF (M.LE.MSP(KK,SURF)) GO TO 60
    IF (KK.GE.NSP) GU TO 70
    KK = KK+1
    GO TO 50
60S=MSP(KK,SURF)-MSP(KK-1,SURF)
    EMKMI=EM(KK-1,SURF)
```

```
            EMK = EM(KK,SUKF)
            MSPMM= MSP(KK,SURF)-M
            MMMSP = M-MSP(KK-1,SURF)
            THK= THSP(KK,SURFI/S
            THKM1 = THSP(KK-1,SURF)/S
            THETA = EMKML*MSPMM**3/6./S + EMK*MMMSP**3/6./S + (THK-EMK*S/6.)*
            1 MMMSP + (THKML-EMKML*S/6.)*MSPMM
            RETURN
C
C AT TRAILING EDGE RADIUS
C
    70 CMM = CHORD-M
                            IF(CMM&LT.-CHORD/L.E5) GO TO 90
            CMM = AMAX1(0.,CMM)
            THETA= SQRT(CMM*(2.*RO(SURF)-CMM))*SIGN
            IF (THETA.EQ.O.) GO TU 80
            RMM= RO(SURF)-CMM
            THETA = STGR +THETA/RMI
            RETURN
        80 THETA = STGR
            RETURN
C
C ERROR RETURN
C
    90 WRITEIE,1030) M,SURF
        THETA = 0.
        RETURN
    1000 FORMAT (IHL,13X,33HBLADE DATA AT INPUT SPLINE POINTS)
    1010 FORMAT(1HL,17X,16HBLADE SURFACE,I4)
    1020 FORMAT (7X, 1HZ,IOX,5HTHETA, 10X, LOHDERIVATIVE,5X,10H2ND DERIV./
        1 (4G15.5))
    1030 FORMAT ( 33H Z COORDINATE IS NOT WITHIN BLADE/4H Z =,G14.6,10X,
        1 6HSURF =,G14.6)
            END
    SUBROUTINE ROOT(A,B,Y,FUNCT,TOLERY,X)
C
C ROOT FINDS A ROOT FOR (FUNCT MINUS Y) IN THE INTERVAL (A,B)
C
    COMMUN SRW
    INTEGER SRW
    IF (SRh.EQ.21) WRITE (6,1000) A,B,Y,TOLERY
    X1=A
    CALL FUNCT(X1,FX1)
    IF(SRW.EQ. 21) WRITE(6,1010) Xl,FXI
    X2 = B
    10 DO 30 I=1,20
    x = (x 1+x 2)/2.
    CALL FUNCT(X;FX)
    IF(SRW.EQ.21) WRITE (G,1010) X,FX
    IF((FX1-Y)*(FX-Y),GT, O.) GO TO 20
    x2 = x
    GO TO 30
    20\times1=x
    FX1=FX
```

```
        30 CONTLIVLE
            IF(ABS(Y-FX).LT. TOLERY) RETURN
            WRITE(E,1020) A,B,Y,X,FX
            RETURN
1000 FORMAT (32HIINPUT ARGUMENTS FOR ROOT -- A =G13.5,3X,3HB =, G13.5%
    1 3X, 3HY =,G13.5,3X,8HTOLERY = G13.5/16X,1HX,17X, 2HFX1
1010 FORMAT(8X,G16.5,G18.5)
1020 FORMATI37HLRDOT HAS FAILED TO DBTAIN VALID ROOT/4H A =,G14.6,
    1 1OX,3HB=,G14.6,10X,3HY =,G14.6,3HX=,G14.6.4HFX=,G14.6)
    END
```

 SUBRUUTINE SPLN22 (X,Y,YIP,YNP,N,SLOPE,EM)
 C
C SPLN22 GALGULATES FIRST ANO SEGOND DERIVATIVES AT SPLINE POINTS
C END CUNDITION - DERIVAIIVES SPECIFIED AT END POINTS
C
COMMON SRW
DIMENSION X(N), Y(N), IEM(N), SLOPE(N)
DIMENSION SB (100),G(100)
INTEGER SKW
SB(1) =.5
$F=(Y(2)-Y(1)) /(X(2)-X(1))-Y 1 P$
$G(1)=F * 3 . /(X(2)-X(2))$
$\mathrm{NO}=\mathrm{N}-1$
IFINO.LT. 21 GO TO 20
DO $10 \quad I=2, N O$
$A=(X(I)-X(I-1)) / 6$.
$C=(x(I+1)-x(1)) / 6$.
$w=2 \cdot *(A+C)-A * S B(I-1)$
SB(I) $=C / W$
$F=(Y(I+1)-Y(I)) /(X(I+1)-X(I))-(Y(I)-Y(I-1)) /(X(I)-X(I-1))$
10 G(I) $=(r-A * G(I-1)) / W$
$20 F=Y N P-(Y(N)-Y(N-1)) /(X(N)-X(N-1))$
$W=(X(N)-X(N-1)) / 6 . *(2 .-S B(N-1))$
$E M(N)=(F-(X(N)-X(N-1)) * G(N-1) / 6) /$.
OO $30 \quad 1=2, N$
$K=N+1-I$
$30 \operatorname{EM}(K)=G(K)-S B(K) * E M(K+1)$
$\operatorname{SLOPE}(1)=(X(1)-X(2)) / 6 . *(2 . * E M(1)+E M(2))+(Y(2)-Y(1) / /(X(2)-X(1))$
DJ $40 \quad I=2, N$
$40 \operatorname{SLJPE}(I)=(X(I)-X(I-1)) / 6 * *(2 . * E M(I)+E M(I-1))+(Y(I)-Y(I-1)) /$
1 (X(I)-X(I-I))
$\operatorname{IF}(S R W, E Q, 181$ WRITE $(6,1000) N,(X(I), Y(I), S L O P E(I), E M(I), I=1, N)$
RETURN
1000 FURMAT ($2 \mathrm{X}, 15 \mathrm{HNO}$. OF PUINTS $=, 13 / 10 \mathrm{X}, 1 \mathrm{HX}, 19 \mathrm{X}, 1 \mathrm{HY}, 19 \mathrm{X}, 5 \mathrm{HSLOPE}, 15 \mathrm{X}$;
12HEM/(4G20.8))
END

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 20, 1970, 720-03.

APPENDIX - EQUATIONS FOR CALCULATING TRANSLATION AND ROTATION CONSTANTS

The following equations can be obtained by referring to figure 7:

$$
\begin{gather*}
a=\text { CHORD }-r_{i}(2)-r_{0}(2) \tag{A1}\\
c=\sqrt{a^{2}+b^{2}} \tag{A2}\\
\tan \varphi_{c-c}=\frac{b}{a} \tag{A3}\\
\sin \varphi_{c o r r}=\frac{r_{i}(2)-r_{0}(2)}{c} \tag{A4}\\
\varphi=\varphi_{c-c}+\varphi_{\operatorname{corr}} \tag{A5}
\end{gather*}
$$

The angle φ is the desired angle between the x-axis and the z-axis (fig. 2). The amount of translation (z_{0} and w_{0}) is obtained next. There are two sets of equations, depending on whether φ is positive or negative.

Figure 7. -Quantities required to compute φ.

Figure 8. - Quantities required to compute true chord for negative φ.

When φ is negative or zero, the following equations hold (see figs. 7 and 8):

$$
\begin{gather*}
d=c \cos \varphi_{\operatorname{corr}} \tag{A6}\\
e=\left[r_{i}(1)-r_{i}(2)\right] \cos \varphi \tag{A7}\\
f=r_{i}(2) \sin \varphi \tag{A8}\\
g=\left[r_{i}(1)-e\right] \cos \varphi \tag{A9}\\
\mathrm{h}=\mathrm{r}_{\mathbf{i}}(2) \cos \varphi \tag{A10}\\
p=\left[r_{i}(1)-e\right] \sin \varphi \tag{A11}\\
z_{0}=r_{i}(2)+f-g \tag{A12}\\
w_{0}=-h-p \tag{A13}\\
\text { True chord }=d-e+r_{i}(1)+r_{0}(2) \tag{A14}
\end{gather*}
$$

Figure 9. - Quantities required to compute true chord for positive φ (e is at trailing edge).

On the other hand, when φ is positive, the equations for e, g, p, and the true chord change as follows (see fig. 9):

$$
\begin{gather*}
e=\left[r_{0}(1)-r_{0}(2)\right] \cos \varphi \tag{A15}\\
g=r_{i}(2) \cos \varphi \tag{A16}\\
p=r_{i}(2) \sin \varphi \tag{A17}
\end{gather*}
$$

$$
\begin{equation*}
\text { True chord }=d-e+r_{i}(2)+r_{0}(1) \tag{A18}
\end{equation*}
$$

This completes the determination of the transformation constants.

CALCULATION OF y-COORDINATE OF BLADE SURFACE

The problem here is to find the y-coordinate for a given blade surface corresponding to a given x -coordinate. This can be done by the simultaneous solution of equations (1) and (3). If w is eliminated, z can be obtained by finding a root for the function

$$
\begin{equation*}
\mathrm{f}(\mathrm{z})=\mathrm{w}_{\mathrm{b}}(\mathrm{z})-\mathrm{w}_{1}+\frac{\mathrm{z}-\mathrm{z}_{1}}{\tan \varphi} \tag{A19}
\end{equation*}
$$

There are two problems that arise. First; the function $w_{b}(z)$ must be the correct blade surface. This is not straightforward, since y_{u} could be on the lower surface in the w-z plane near the leading edge. The second problem is that for certain values of z and w near the leading or trailing edge there may be two solutions to equation (A19). Both of these problems are overcome by restricting the interval for z for which the solution is found. After the proper interval for z has been determined, the proper surface can be ascertained so that equation (A19) must have a unique root.

With the proper interval for z and the correct blade surface the unique root for equation (A19) is found by the bisection method. That is, the interval is bisected to determine z_{n}, then $f\left(z_{n}\right)$ is calculated to determine whether the root is in the right or the left interval. This gives a reduced interval. The procedure is repeated until the root has been located within the desired accuracy.

REFERENCES

1. Katsanis, Theodore: FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5427, 1969.
2. Katsanis, Theodore; and McNally, William D.: Revised FORTRAN Program for Calculating Velocities and Streamlines on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TM X-1764, 1969.
3. Katsanis, Theodore; and McNally, William D.: FORTRAN Program for Calculating Velocities and Streamlines on a Blade-to-Blade Stream Surface of a Tandem Blade Turbomachine. NASA TN D-5044, 1969.
4. Walsh, J. L.; Ahlberg, J. H.; and Nilson, E. N.: Best Approximation Properties of the Spline Fit. J. Math. Mech., vol. 11, no. 2, 1962, pp. 225-234.

bifkith thentums

FIRST CLASS MAIL.

The neromanical anil space activities of the Unied saikes shall be conulicted so ast to conviburce : to the expamion of haman knoul. adge of phenomena in the atmotphere and phice. The Administrution chailt provite for lic uleitest procticable ant appropriare disceminution

- National Ambonattics and Space Actor 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECKNICAL REPORTS Scientific and technical information constdered inporant completenad a hatry contribution to cxisting knowtedge:

TFGHNICAI NOIES Informutiontess brad in scope bit hevertheless of importance it:

HECFAICAL MEMORANDETMS:
Information yeceiving limited distribution
 rime if miner seasons

CONTIKACIOR KEPORUS:Scitrificand techmicil information generwed maderit NASA
 contrimution for existing knowtedget

TECANICAL TRANSLAMONS: IMEOMATION pubishise in aforeign languigeconsidered to meri\} NASA disirlhurtin in English:

SPECIAI DUBLICATIONS: Information decived fronior of value to NASA acriwtices Pilifations include conferente proccodings. monograph; datu compilafions, hanalbook: scrurcharofs and special biblioguaphies:

TECHNDLOGY TIILIZATION MEIIICATIONS: luformation on mellmolog
 interterin commerciallind other nombermpice spplicxtints Publicarinns incuide Tech Bricts:
 and Technology Survefs

Detarts on the avallatity of these pubrications hay: be obtanser kom:
SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

