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TRAN IV computer program has been written to calculate blade coordinates 
with respect to the true blade chord. The required input is the axial blade chord, blade 
stagger, leading- and trailing-edge radii, angles of tangency on leading- and trailing- 
edge radii, and a few intermediate spline points. This input is identical to the geomet- 
rical input required for blade-to-blade aerodynamic analysis programs previously pub- 
lished by NASA (TN D-5427, TM X-1764, and TN D-5044). 

There a r e  several NASA computer programs for calculating velocities on a blade-to- 
blade surface between blades (refs. 1 to 3). These programs are  easy to use because the 
blades can be described very simply. The required geometrical input consists of the 
axial blade chord and stagger, leading- and trailing-edge radii, angles of tangency on the 
leading- and trailing-edge radii, and a few intermediate points which are  fitted with a 
spline curve. This required geometrical input results in a precisely defined blade sur- 
face. After a satisfactory blade surface velocity distribution is obtained, it is often de- 
sired to calculate a large number of offset coordinates with respect to the true blade 
chord. The true blade chord is tangent to the lower surface of the blade. Since the blade 
shape is specified by mathematical equations, these coordinates may be calculated in a 
straightforward manner. However, this is a tedious and time consuming hand calcula- 
tion. It is the purpose of the program TFORM to perform these calculations. 

of the input required and the output obtained. The input and output for an example case 
a re  also given. The geometrical input is just a part of that required for the programs 
TSONIC, TTJRBLE, or TA 

The FORTRAN XV program TFORM is presented herein with a complete description 

EM (refs. 1 to 3). 



SYMBOLS 

r 

W 

Wb 

wO 

w1 

xi 

X 

Y 

Y i  

Yt ,  i 
Yu, i 
Z 

'b 

zO 

z1 
6 

cp 

radius from axis of rotation 

linear coordinate in tangential direction 

w-coordinate of blade surface 

w-coordinate of (x, y) origin 

w-coordinate of (xi, 0) 

coordinate tangent to blaqe lower surface 

x-coordinate at ith increment from blade leading edge 

coordinate normal to x-axis 

y-coordinate at ith increment from blade leading edge 

y for lower blade surface 

y for upper blade surface 

axial distance from blade leading edge 

z-coordinate of blade surface 

z-coordinate of (x, y) origin 

z-coordinate of (xi, 0) 

angular coordinate about axis of rotation, radians 

blade angle from axial direction, deg 

T R ~ N S F O R M ~ T ~ O N  PROCEDURE 

The basic transformation consists of a rotation and translation. The input coordi- 
nates are given as (z, 6) coordinates where z is the axial direction and 0 is the angular 
coordinate in radians about the axis of rotation. The linear coordinate in the 0-direction 
is equal to r 6 = w. The origin in the w-z plane is at the leading edge of the blade, as 
shown in figure 1. The entire curve for each surface is specified mathematically by the 
leading- and trailing-edge radii and by a spline curve in between. The output coordinates 
are given as (x, y) coordinates with the x-axis tangent to the blade lower surface and the 
y-axis tangent to the blade leading edge, as shown in figure 2. 

The first step in the program is to determine the angle 9, the true chord, and (zo,wo): 
which are the (z,w) coordinates of the (x,y) origin. These constants specify the amount of 
translation and rotation and are calculated by equations (Al) to (A18) in the appendix. 
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- 2  

,-Blade surface 1 

Blade surface 2 

Figure 1. -Typical blade geometry. 

Y 

f 

Figure 2. - Transformed coordinates and transformation constants. 

The next step after the translation and rotation constants have been calculated is to 
calculate the y-coordinates for each blade surface corresponding to each increment in 
the x-direction. This is done by finding the intersection of the line x = xi and the curve 
w = w(z) (see fig. 2). In w-z coordinates, the line x = xi is 

z - zi 

1 - G  
w = w  

3 



where 

= z + x. cos q 0 1  

w1 = wo + x. sin q 
1 

The blade surfaces are described mathematically by piecewise functions; that is, the 
leading- and trailing-edge segments are given by the equation of a circle and the rest of 
the blade by a spline curve which is a piecewise cubic polynomial (ref. 4). We can de- 
note this by 

For any z then, w is determined as indicated by equation (3). Equations (1) and (3) can 
be solved simultaneously to determine (zb, wb) where the line intersects the blade. The 
numerical procedure for solving equations (1) and (3) is described in the appendix. Then 
yi is calculated by 

NPUT AND OUTPUT 

The computer program requires as input a geometrical description in (z, 0) coordi- 
nates of the two blade surfaces, the radius r, a scale factor if desired, and the desired 
x-increment for the output coordinates. Output from the program includes x- and 
y-coordinates for the upper and lower surfaces (see fig. 2). 

nput 

Figure 3 shows the input variables as they a re  punched on the data cards. The first 
input card is for a title, which will serve for problem identification. The remaining 
cards are for input variables. All variables are real (decimal point must be punched) in 
a 10-column field. It should be noted that the input corresponds very closely to the blade 
geometry input for the NASA blade-to-blade analysis programs of references 1 to 3. 
Further explanation of the input variables is given in the Instructions for Preparing Input 
section. 
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1 10) 11 20121 30131 40141 50151 60161 70171 80 
TITLE 

Figure 3. - Input form. 

The input variables are as follows: 

CHORD 

STGR 

RMI 

SCALE 

DELX 

RI1, R E  

R01, R02 

BETI1, 
BETI2 

BET01, 
BET02 

Overall length of blade in the z-direction, see fig. 4 

Angular &coordinate for center of trailing-edge circle of blade with respect 
to center of leading-edge circle, radians, see fig. 4 

Radius of blade section from the axis of rotation (E RMI = 1, then all 
&coordinates are the actual linear dimension w. ) 

Ratio of output dimensions to input dimensions (For example, if input is in 
feet and output is desired in inches, SCALE = 12 should be used.) 

Spacing of output coordinates in the x-direction, see fig. 5 (DELX should 
be chosen to be at least CHORD*SCALE/100. DELX must be given in the 
output units; i. e., if input is in feet a id  output is in inches (SCALE = 12), 
then DELX is in inches. ) 

Leading-edge radii of the two blade surfaces, see fig. 4 

Trailing-edge radii of the two blade surfaces, see fig. 4 

Angles (with respect to z-direction) at tangent points of leading-edge radii 
with the two blade surfaces, deg, see fig. 4 (These must be true angles 
in degrees.) 

Angles (with respect to z-direction) at tangent points of trailing-edge radii 
with the two blade surfaces 
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SPLN01, 
SPLNOB 

MSP 1, 
MSP2 

THSP1, 
THSP2 

Number of blade spline points given for each surface as input, maximum 
of 50 (These include the first and last points (dummies) that are tangent 
to the leading- and trailing-edge radii (fig. 4).) 

Arrays of z-coordinates of spline points on the two blade surfaces, meas- 
ured from blade leading edges, see fig. 4 (The first and last points in 
each of these arrays must be left blank, since these values are calculated 
by the program. If the last point is on a new card, a blank card must be 
used. ) 

Arrays of &coordinates of spline points corresponding to MSPl and MSB2, 
radians, see fig. 4 (Blanks must be used in positions corresponding to 
those in MSPl and MSP2. ) 

nstructions for Preparing 

Units of measurement. - Two units are used: one for linear measurements and one 
for angles. Any unit may be used for linear measurement. If a different unit is desired 
for  output, this may be accomplished by the use of a scale factor in SCALE. If SCALE 
= 1, the output units are the same as the input units. The angular measurement 0 must 
be given in radians. However, if RMI = 1 is specified, the &coordinate can be given 
as a true linear measurement. 

Blade geometry. - The upper and lower surfaces of the blade are each defined by 
specifying three things: leading- and trailing-edge radii, angles at which these radii are 
tangent to  the blade surfaces, and z- and &coordinates of several points along each sur- 
face. These angles and coordinates are used to define a cubic spline curve f i t  (ref. 4) to 
the surface. The standard sign convention is used for angles, as indicated in figure 4. 
The blade must be oriented with a concave lower surface. 

A cubic spline curve is a piecewise cubic polynomial which expresses mathematic- 
ally the shape taken by an idealized spline passing through the given points. Reference 4 
describes a method for determining the equation of the spline curve. When this method 
is used, only a few points are required to specify most blade shapes accurately, usually 
no more than five or six, in addition to the two end points. As a guide, enough points 
should be specified so that a physical spline passing through these points would accurately 
follow the blade shape. This means that the spline points should be closer where there is 
large curvature and farther apart where there is small curvature. 

edge, with the leading edge of the blade being defined as the furthest point upstream. 

in a 10-column field. 
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The coordinates for either surface of the blade are given with respect to the leading 

Format for input data. - All input variables are real numbers (punch decimal point) 



Figure 4. - Geometric input variables. Angles BETII, BETIZ, BETOI, and BET02 must be given as true angle 
in degrees, not angle as measured i n  z-6 plane. 

TABLE I. - INPUT FOR SAMPLE PROBLEM 

2NU RO TOR Hut) SEC T i O N  
C H O R D  S f G R  RM1 S C A L E  DEL X 

O e 7 9 6 6 7 0 0 E - O l  -0*3615000E-01 Oe2593300 12*000000 0 o 5000000E-01 

B L A O t  S U R F A C E  1 -- UPPER S U R F A C E  
SPLYO 1 R I 1  RO 1 B E T I  1 B E T O l  

Y S P 1  P R i A Y  

T H S P l  A R R A Y  - 

0.3125000E-02 O a 8 3 3 0 0 0 0 E - 0 3  41eOOOOOO -46 e33000O 3=0000000 

-0 0,5883000E-01 -0  

-0  0- 3454000E-01 -0 

B L A D E  S U R F A C E  2 -- LOWER SURF ACE 
R 1 2  ROZ 8ET12  BET02 S P l U 0 2  

0~3125000E-02 Oe833O000E-03 29e000000 -35.500000 3-0000000 
M S P Z  A R 3 A Y  

THSP2 A X R A Y  
-0 015883000E-01 -0 

-0 0.4820000E-02 -0 
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TABLE TI. - OUTPUT FOR SAMPLE PROBLEM 

BLADE D A T A  A T  I N P U T  SPLINE POINTS 

YLADE SURFACE 1 
L THETA D E R I V A T I V E  

0,1074a~- cz 0,90945~-02 3.35205 
0 e 5883 OE- 0 1 0.34540~- 01 -2.45348 
0-79436E-Cl -0.3393 1E-01 -4,035 17 

BLADE SURFALE 2 
Z THE TA D E R I V d T 1  VE 

0,46400t-02 -0e10539E-01 2,13747 
0 *58830€-01 0,4a200~-02 -1.62164 
0 ,78350~-c i  -0,3a765~-01 -2,75052 

2ND UERIVe 
-13 1 .a 424 
-Y3.6146 
-53 e 9 0  14 

2ND U E i i I V *  
-56,5432 
-72 e 1948 
-43 e 4 6 a2 

NO- OF POINTS = 2 1  PHI = -5,3371 DEGREES 

X 
0 
0-  50000E- 
0.10000 
0 15000 
0.20000 
0.2500 0 
0*30000  
0,35000 
0,40000 
0,45000 
0 e 5000 0 
0 5500 0 
Oe60000 
0,65000 
Oe70000 
Oe75000 
0 e 8000 0 
0-85000 
0.90000 
Om95000 
0 96253 

Y LOWER 
0-37500E-01 

c 1  0- 21445E-02 
0.33325E-01 
0.61872k-01 
0,86266E-01 
0,10657 
0,12285 
0,13516 
0.14356 
0.14812 
0.1488 a 
0.14591 
0- 13926 
0- 12899 
0.11513 
Oa97t)OaE-01 
0,772 98E-01 
O m  53936E-01 
O e  2 803 8E-01 
0.32 65 5t - 03 
0.99960E-02 

Output 

Y UPPER 
0 a 3 75 00 E-0 1 
0.10269 
0- 14606 
0.18273 
0,21294 
0,23691 
0125485 
0.26696 
0.27343 
O m  27443 
Om27014 
0,26071 
0.24630 
0.22705 
0.20310 
0.17468 
0.14224 
0-  10626 
0-67177E-01 
0-  25395E-01 
Oe99960E-OL 

Sample output is given in table TI for the example blade given in table I. The first 
output gives additional computed blade data at the input spline points. This includes the 
z- and &coordinates at the points where the spline curves are tangent to the leading- and 
trailing-edge radii. Also, the first and second derivatives are given at each spline point. 
Of particular interest are the second derivatives. Any error in blade geometry input will 
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Figure 5. - Output coordinates. 

usually result in wild values for some of these second derivatives. 
The next output gives the transformed blade coordinates. The first line of output 

gives the number of x-coordinates and the orientation angle cp, as shown in figure 5. 
This is followed by a tabulation of the x- and y-coordinates for the upper and lower sur- 
faces (see f ig .  5). 

Error Conditions 

The er ror  message is given first for each error  condition: 
(1) BET12 MUST BE GREATER THAN PHI  AND 3ET02 MUST BE LESS THAN PHI 

It is assumed in the program that the x-axis is tangent to the leading- and trailing- 
TO HAVE X AXIS TANGENT TO LOWER BLADE SURFACE 

edge radii. Tf either BETT2 is less than cp or BET02 is greater than cp this tangent line 
will not actually be tangent to the lower blade surface, and part of the lower surface will 
be below the x-axis. Normal calculations will still be made, but there will be negative 
values for Y LO-WER. 

(2) PART OF BLADE HAS NEGATIVE X VALUES 
This message is printed if part of the blade would extend to the left of y-axis. This 

can happen if BETII is greater than cp + 90' or if BETB is less than cp - 90'. No fur- 
ther calculations are made and the program will proceed to the next case. 

(3) LOWER BLADE SURFACE IS NOT ENTIRELY CONCAVE 
This message is printed if some part of the blade lies below the x-axis. Normal 

calculations will still be made, including negative values for Y UPPER or Y LOWER. 
(4) Z COORDINATE IS NOT WITHIN BLADE 
This message is printed by subroutine BLCD if the z-coordinate given this sub- 

routine as input is not within the bounds of blade surface. The value of z and the blade 
surface number are also printed when this happens. This message should only occur if 
there is an er ror  in the input data. 
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(5) ROOT HAS FAILED TO OBTAIN A VALID ROOT 
This message is printed by subroutine ROOT if a root cannot be located, or if the 

accuracy of the root is not satisfactory. The user should thoroughly check the input data. 

PROGRAM PROCEDUR 

The main program is TFORM. There are 4 subroutines: FUNCT, R 
and SPLN22. The calling relation of all the subroutines is shown in figure 6. 

FUNCT 

S PLN22 

Figure 6. - Calling relation 
of subroutines. 

TFORM reads and prints out all the input data. Then the transformation constants 
9, zo, and wo ate calculated as described in the appendix. Next the x and y arrays 
are calculated. The method for calculating y for a given x value is described in the 
appendix. The root finding procedure required by this method is accomplished by sub- 
routine ROOT. 

surface. 

to 3. Subroutine ROOT was changed in reference 1 from the coding used in references 2 
and 3. This was to adopt the more foolproof method of locating roots by the bisection 
method. Subroutine BLCD calculates the 8 blade coordinates when given a z-coordi- 
nate. Subroutine SPLN22 calculates the spline curve for the blade surfaces. 

Subroutine FUNCT calculates f(z) in equation (A19) for either the upper or lower 

Subroutines ROOT, BLCD, and SPLN22 are the same as described in references 1 
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RTRAN Variab 

A 

B 

BETI 

BET0 

C 

CHORD 

CNVX 

CPHI 

D 

DELX 

E 

F 

F Z  

G 

H 

I 

INDEX 

ISURF 

J 

MSP 

NOPT 

NSP 

NSPI 

P 

PHI 

PHICC 

PHICOR 

a, fig. 7 

b, fig. 7 

array, BET11 or BETI2, see input 

array, BET01 or BETO2, see input 

c, fig. 7 

see input 

if CNVX > - 1, either the lower or the upper surface has negative y-coordinates 

cos cp 

d, fig. 7 

see input 

e, fig. 8 

f ,  figs. 8 a n d 9  

f(z), eq. (A191 
g, figs. 8 and 9 

h, figs. 8 and 9 

temporary index 

used as both a switch and subscript in calculating y blade coordinates 

index indicating blade surface number 

indexfor DO loop 

input arrays MSP1 or MSP2 

number of points in x and y output arrays 

number of spline points 

a r ray  of number of spline points 

p, figs. 8 and 9 

cp, fig. 7 
vc-c, fig. 7 

qcor r?  fig. 7 

PHIDEG cp, deg 



PI 

RI 

R&I 

RO 

SCALE 

SPHI 

SPENB 

SRW 

STGR 

TCHORD 

THETA 

THSP 

TOLERW 

TP HI 

WO 

WB 

W1 

X 

u 
ZO 

Z 1  

ZB 

ZERO 

ZL, ZT 

7r 

array, RT1 or RI2, see input 

see input 

array, XQ1 or  R02, see input 

see input 

sin cp 

either SPLNQl o r  SPLNO2, see input 

integer code variable that causes either ROOT (if SRW = 21) or SPLN22 (if 
SRW = 18) to write out datauseful for debugging 

see input 

true chord, fig. 2 

e 
input arrays THSPl or THSP2 

permissible tolerance in value of w for a given value of x, TOLERW 
= CHORD x 

tan cp 

wo9 fig. 2 

wb9 fig. 2 

W 1 )  fig. 2 

array of output values of x 

array of output values of yl and yu 

zo, fig. 2 

zl, fig. 2 

Zb9 fig. 2 

zero value variable 

if Z 1  is less than ZL or greater than ZT, the blade surface in the x, y- 
coordinates is the opposite of the one in the w, z-coordinates 
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CUM MON SK k t  I N  1 T ( 2  1 9 TPH I 9 ai3 9 L1, r i l  rCH CRDv STGR 9 K M I  9 RI ( 2 B 9 R O I  2 ) P 
1 i 3 E T f ( 2 ) g d t T O ( L )  ,NSPI  (2.1 pMSP(509.2) , T H S P ( 5 0 9 2 )  
D I M  t N  S 1OV X (  LO 1) 9 Y I 101 9 2 1  

’ REAL MSP 

1 CDNTIi\JUE 
EXTERcVAL F U N C T f r F U N C T 2  

1 N i T 4 1 1  = 0 
I N I T ( 2 )  = 0 

C 
C READ AND P K i N T  A L L  I N P U T  DATA 
C 

W R I T E 4 t r 1 0 0 0 )  
READ( l i r1100)  
H R I T E (  6 r 1 1 0 0 )  
W R I T E (  t r l L 1 0 )  
R E A D  i 5 , 1 0 3 0 1  CHOKD,STGK,RMl VSGALErDELX 
HK I TE 6,1040) CHi lRO, STGR ,RMI  9 SCALE9 DELX 
DO 10 J-192 
I F  I J  a E Q *  1 )  WRITE ( 6 ~ 1 1 2 0 J  
I F  t J e E Q *  2)  hRI TE (Srll3O) 
kR I TE ( tt 1 140) J 9 J, Je J s J 
READ i 5 9 1 0 3 0 )  K I t J I r R O I J )  , B E T I ( J ) r S E f O ( J ) r S P L N O  
W R I T E 1  6 ,1040)  K I (  J) rROLJ) 9 8 E T I (  J )  r B E T O 4 J )  r S P L N O  
NSP I (  J 1= SPLNO 
NSP = N S P I i J )  
W R I T E ( 6 r 1 1 5 0 )  J 
READ ( 5 r 1 0 3 0 )  IMSP4I r J )  r I = l  pNSP) 
W R I T E (  6,1040) ( M S P I I  9J )  p I = 1  vNSP) 
WRI TE I 6 r  1160) J 
READ (5910301 i T H S P ( 1  ,J) r I = l r N S P )  

10 W R I T E (  691040) ( T H S P I I  ,J)  , I = l r N S P )  
C 
C CALCULATE TRANSFORMATION CONSTANTS 
C 

P I  = 3 . 1 4 1 5 9 2 7  
CNVX = 0- 
TOLEKd = CHORD/l .E4 
A = Ci-lORD-RI121-R0123 
8 = STGR*RMI 
C = SaRT(A*A+B*B)  
P H I C C  = A T A N ( B / A )  
PHICOR = A R S I N 4  L R f [ 2 J - R 0 1 2 ) ) / C )  
P H I  = PHICC+PHICOK 
P H I U E G  = ? H I / P I * l S O e  
I F (  i3ET1i .2  1 ,LT,PHIDEG,OR,a~TOI2) ,GT* P H I D E G )  # R I T E  (6111651 
IF4 B E T I l l ) - 9 0 . ~ L E ~ ? H I D E G . A N D ~ 9 0 , + 8 E T I  ( 2 ) o G E s P H I D t G 1  GO TO 15  
rJRi  TE L 6r 1 1 6 7 )  
GO TU 1 

S P H I  = S I N i P H I l  
CPHI = C O S ( P H L 1  
TPHd = T A N ( P r l I 1  
U = C*COS(PHICLlR)  
E = ( R I (  L)-RI ( 2 )  ) * C P t l I  
F = K I i 2 ) * S P H f  

15  C U N T I N L E  
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N O P T  = I + I  
X (NDP T ) = TCHORW SCALE 
Y ( N O P T o h 1  = i i O ( 2 $ * S L A L E  
I F  t P H  I aGT -0, t Y t I ~ U P  T 0 1 1 
Y ( N U P T p 2 1  = Y ( N 3 P T s l )  
P H I  = PHI / P I *  180, 
W R I T t f  69l170l N G P I t P - 1 1  
k'R I TE4 6 ,11801  

= Y 4NUP T p 1 1 +SPHI * ( RD ( 1 1-RO( 2 1 1 *SCALE 

X (  11 t Y  i I $2) S Y  I I P 1 f p 1 = 1  oNOPV1 
GU TU 1 

1000 FORMAT I L H 1 )  
1030 FORMAT L8F 10-5) 
1040 FORMAT f X , 8 G 1 6 0 7 )  
1100 FORMAT (BOH 

1 1 
11 10 F O R M A T  ( 5 X  0 5HCHOKU 9 12 Xp4H STGK 913 X 9 3 H R M I  F 12x9 5 HSCAL E 0 1 2 X  e4HDELX J 
1120 FORMAT i 39HL &LADE SURFAGt 1 -- UPPER S J  Rf ACE 1 
1130 FORMAT ( 3 W L  SLADE SURFACE 2 -- LOWER S J  RFACE J 
i 140 FGRrtlA T 

1150 FORMAT (7X ,3HHSPr  I l p l X 7 5 H A R R A Y l  
1150 FUtXIMAT ( 7 X 9 4 H  THSP 9 I 1  j 2 X s  SHARKAY 1 

7 X ,  2HK I 9 I 1 0 12 X 2H RO t I 1.9 1 2 X  9 4HBE J I e I 1  1) 1 1 X ( 4  HBET Op I1  P 1 1 X  p 5HS 
lPLI\LLJe I 1  1 

1165 FORMAT ( L ~ M L  f i t r i 2  MUST BE GREATER THAN  PHI^ AND BE TO^ MJST BE L E  
1SS THAN P H I  T O  HAVE X A X 1  S TANGENT T O  LDMER B L A D L  SURFACE/ 1I-L) 

1167 FORMAT (37HL P A K T  C)F BLADE H A S  N E G A T I V E  X V A L U E S )  

1180 FORMAT (46HL X Y COMER Y UPPER/ 

1190 F O R M A T  (45HL L O W E R  BLADE SURFACE I'S NOT E N T I R E L Y  CONCAVE) 

1170 F O R M A T  U 8 H 1  NU- OF P O I N T S  = r I 4 r l O X v S H P H I  =rGfZe4,8H DEG2EES)  

1 4 2 X  0 3 L  G L3*5 9 5 x 1  1 3 

END 

SU8ROUTINE BLCD 
c 
G BLCD C A L C L L A T E S  BLADE THETA CUORDINATE A S  A F U N C T I O N  OF M I=Z FUR A X I A L )  
C 

COMMGN SR W g  I N 1  T I 2 1  9 T P H I  9 WB r Z 1  r d l  vCHEjRDrSTGRp K M I  g R I  42) 9 KO42 j q  

I B t T I ( L l p 3 E T O ( 2 )  r N S P I  12)  rMSP(50p2) pTHSPi53r2) 
0 IMEN 5 IUId EM (50921 r A A A  (501 
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c 
C 
c 

C 
C 
C 

C 
c 
G 

INTEGEH SRW, SURF 
EM TRY 
REAL M ,MSP pMSPNMp MMMSP 
SURF= 1 
SIGN= 1 ,  
GO TO 10 
EN TRY 
SU2F= i 
SIGIV=-l- 

10 CONTINUk  
NSP= N 5P I ( SURF I 

I N I T I  SLRF 1 =  1 3  

dL 1 ( M o T H t  TA 1 

d L  2 i M 9 TrlE TA 1 

I F  I N I T l  S U K F ) e E Q * l 3 I  GO TO 30 

I N I T I A L  C A L C U L A T I O N  OF F I R S T  AND LAST S P L I N t  POINTS ON BLADE 

BLADE C i l3RDINATE CALCULATION 

AT L E A D l N G  EDGE R A D I U S  

I F ( M , L T , O * )  G U  Ti) 90 
THETA = SQKT(M+12.*RI ( S U K F ) - M ) ) * S I G N  
I F  (THETA.EU.0-1 G O  T O  4 U  
KMM = K I I  SURF)-M 
T H t T A  = THETA/KMI  
R E T  URN 

RETURN 
40 THETA = 0 ,  

c 
C ALONG S P L i N E  Lc lRVk 
c 

50 I F  ( M o L k * M S P ( K K g S U K f ) )  GO TO 60  
I f  ( K K - t t  ,NSPl Gd TO 70 
k& = KK+k 
GO TO 50 

6 0 S =  
EMKM l=  

H S? i KK 1) SUR F 1 -iY SP t K I(-1 9 SURF 1 
EM ( KK- 1 9  SJRF) 
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c 
C A T  
C 

70 

80 

C 

T R A I L  I N G  kUGk RAOI US 

CMM = CHOKD-M 
I F {  CMM .LT . -CHORD/ leE5)  GO TO 90 
CMM= AMAX 1 ( 0 ,  ,CPIM) 
T H t  TA= SdMT( C MM+ ( 2, *RO f SURF 1 -GMM 1 1 *SI G N  
I F  ITdETA.Ea,O. )  GO TO 80 
RMM= i?U( SURF)-CMM 
Tt iETA = STGK+THETA/RMI 
K E T URN 
THkTA = STGR 
RETURN 

C ERROR R E T U R N  
C 

90 W R I T E I  t9LO3Ob M9SURF 
THETA = 0. 
RETURN 

1000 FORMAT l H 1 , 1 3 X , 3 3 H B L A D €  D A T A  A T  ' I N P U T  SPLINE P O I N T S )  
1010 FOKMAT(LdLrl7X,lOHijlAOE S U W  ACE I 141 
1020 FORMAT 17X ~ f H Z ~ l O X ~ 5 H T H E T A ~ L O X ~ l O H ~ E ~ I V A T I V E ~ 5 X ~ l O H Z N ~  D E R I V ,  / 

1 (464.535) 

1 6HSURF- = r G 1 4 , 0 )  
1030 FORMAT ( 3 3 H  Z. COORDINATE I S NOT LtiITHIN B L A D E / 4 H  L =9GL4-69 10x9 

END 

c 
C ROOT F I N D 5  A R O i f T  FOR LFUNCT M I N U S  Y l  I N  THE INTERVAL ( A t 6 1  
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APPENDIX - EQUATIONS FOR CALCULATING TRANSLATION 

AND ROTATION CONSTANTS 

The following equations can be obtained by referring to figure 7: 

a = CHORD - ri(2) - r0(2) (Al) 

c =  a c b  d2  

The angle cp is the desired angle between the x-axis and the z-axis (fig. 2). The amount 
of translation (zo and wo) is obtained next. There a re  two sets of equations, depending 
on whether cp is positive or negative. 

Figure 7. -Quantities required to compute p. 

19 



Figure 8. -Quantities required to compute true chord for negative p. 

When cp is negative or zero, the following equations hold (see figs. 7 and 8): 

d = c COS cp corr (4 

- ri(2) cos cp (A7) 1 
f = ri(2) sin cp (A8) 

g = IIi r (1) - 1  e cos cp (A91 

zo = ri(2) + f - g (A12) 

True chord = d - e + ri(l) + r0(2) (A141 
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Figure 9. -Quantities required to compute t rue  chord for positive cp (e i s  
at t ra i l ing edge). 

On the other hand, when q is positive, the equations for e, g, p, and the true 
chord change as follows (see fig. 9): 

e = rO(l) - r0(2) cos cp c 1 
g = r.(2) COS q 

I 

p = r.(2) sin q 
1 

True chord = d - e + ri(2) + rO(l) 

This completes the determination of the transformation constants. 

CALCULATION OF Y-COORDINATE OF BLADE SURFACE 

The problem here is to find the y-coordinate for a given blade surface corresponding 
to a given x-coordinate. This can be done by the simultaneous solution of equations (1) 
and (3). If w is eliminated, z can be obtained by finding a root for the function 

z - Z f  
f(z) = Wb(Z) - w1 + - 

tan q 



There are two problems that arise. 
surface. This is not straightforward, since yu could be on the lower surface in the 
w-z plank near the leading edge. The second problem is that for certain values of z 

and w near the leading or trailing edge there may be two solutions to equation (A19). 
Both of these problems are overcome by restricting the interval for z for which the so- 
lution is found. After the proper interval for z has been determined, the proper sur- 
face can be ascertained so that equation (A19) must have a unique root. 

equation (A19) is found by the bisection method. That is, the interval is bisected to 
determine zn, then f(zn) is calculated to determine whether the root is in the right or 
the left interval. This gives a reduced interval. The procedure is repeated until the 
root has been located within the desired accuracy. 

First, the function wb(z) must be the correct blade 

With the proper interval for z and the correct blade surface the unique root for 
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