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1. INTRODUCTION

1.1 CONVENTIONAL HEAT PIPE

A Feat pipe is a self-contained device which can transport

large quantiV!,7-s of heat at nearly isothermal conditions. Conven-

tionally, it consists of three main parts; a container, a wopking

fluid, and a capillary wicking structure which is saturated with

the working fluid.

When heat is gadded to one end of the container, some of the

working fluid evaporates. The resulting vapor flows to the opposite

end of the container, transporting heat as latent heat of vaporiza-

tion. Here the vapor condenses on the cooler surface and releases

the heat to be removed from the structure. The condensate is pumped

back to the evaporator section by capillary action within the wick-

ing structure, thus completing the cycle. The heat pipe is unique

x	 in that it operates with no moving parts, maintains nearly isothermal

conditions, and removes the dependency on gravity through the use

of capillary pumping.

Limits on the heat transfer capabilities of conventional heat

pipes are imposed by a number of fluid -dynami c mechanisms,
A} +

including a wick resistance limit, a sonic vapor velocity

limit, a vapor velocity entrainment limit, and also

a wick boiling limit [1,2,3,].* In each case, the heat transfer

1

S Y	*Numbers in brackets indicate references listed in the Bibliography.
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limit is defined to occur when the wick begins to dry out in the

evaporator, causing excessive operating temperatures there. These

limits have been considered in a number of studies [4,5,6] with the

conclusion that, in general, a conventional heat pipe using an or-

dinary working fluid is limited by the rate that the condensate can

be returned to the evaporator due to wick resistance. Under certain

circumstances, nucleate boiling in the wick structure may also limit.

operation.

1.2 THE ROTATING, NON-CAPILLARY HEAT PIPE

The wick-resistance and boiling limitations of conventional

heat pipes can be overcome by removing the wick and by utilizing

centrifcgal acceleration to return the condensate to the evaporator (71.

The rotating, non-capillary heat pipe is shown schematically in

FIGURE 1. It consists of a sealed, hollow shaft, having a slight

internal taper from one end to the other, and containing a fixed

amount of working fluid. When the shaft is rotated at high speed

.. 5 about its longitudinal axis, the working fluid collects as an annulus

at the large end. Heat added to this end of the shaft (evaporator)

evaporates the working fluid, generating vapor wkvch then flows

axially toward the other end. Heat removed from this end of the

shaft (condenser) condenses the vapor. The centrifugal forces accel-

erate the liquid condensate back to the evaporator to complete the

cycle.
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By removing the wick structure, its limitations on heat transfer

capability are also removed. The rotating, non-capillary heat pipe

can therefore operate at much higher heat fluxes than conventional

heat pipes and has many potential applications [7].

1.3 OBJECTIVE

The overall objective of this research program is to analytically

study the operation of rotating, non-capillary heat pipes and to

experimentally test the performance of these devices.

This annual report describes the work performed through 30 June

1970 under NASA Defense Purchase Request W-13,007 for the Lewis

Research Center, Cleveland, Ohio.
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26 STATUS OF ANALYTICAL PROGRNI

2.1 LIMITS Or OP JERA TION,

In a preliminary analysis of the operation of a rotating, non-

capillary heat pipe, Ballback C 8 ] studied the limitations of var-

ious fluid-dynamic mechanisms which may be imposed on the rotating

pipe. Using existing theoretical equations and experimental corre-

lations, he estimated the limitations imposed by (a) the critical

nucleate boiling heat flux ("burnout"), (b) the entrainment of the

condensate ("flooding"), and (c) the sonic vapor velocity. In

a'dditon, he estimated a condensing l imitation by performing a

simplified Nusselt film condensation analysis. He modeled the

condenser section of the heat pipe as a rotating, truncated cone

which had no external thermal resistance. His approximate analyt -

ical expression is appiicable to ordinary fluids and can be used

to study the influence of rotational speed, condenser internal

geometi,^y and fluid properties upon rotating heat pipe performance.

Bal lback compared his four proposed limitations  for ii

14.0-inch long rotating heat pipe with .a minimum inside diameter

of 2.0-inches and a half-Gone angle of l degree. His estimated

results are re-plotted in, FIGURE 2 for a 1/8- i nch thick stainl ess

s teel heat pipe operati ng, wi th water at 2700 RPM. From these

results, two conclusions were drawr:. Fi rst of all, the rotating,

non-capillary heat pipe will transfer significantly more heat than
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a conventional heat pipe. Secondly, even with the associated un-

certainties in each of the four above-mentioned limitations, the

rotating, non-capillary heat pipe will be condensation l imited.

Thus, its performance will be controlled by the ai),rount of heat

that can be removed from the condenser section,

It was therefore concluded that 'it would be! important to more

thoroughly study and understand the condensation mechanism within

rotating, non-capillary heat pi pes in an effort ( a) to re li ably

predict their behavior, and (b) to improve upon their performance,

4

' 262	 FILM CO	 ENlSATION THEORY
r

In analyzing the condensation mechanism within t he rotating

heat pipe, it was assumed that film condensation and not dropwise

condensation occurs.	 Thus, the working fl uid was assumed to

completely wet the inside surface of the condenser and spread out	 '#

into a thin condensate film.,

The film conhdansati on mechani sra within th€t rotating heat pipe

i s compl i c4ted 'bey the dynamical flow i nteractions  between the	 s

^- li qui d and t^,e vapor during rotation, 	 Such effects as swirl of

}.' the condensate, interfacial shear between the condensate and the

vaporo axial pressure drop of the vapor, and formation of waves or

ripples in the condensate may be important.	 It was reasoned that

in l tusion of these oechanisms into an initial analytical program

would serve td cdmpl if rM;,4te the	 nals i s without Improving. open the

^` rstanding of rotaIng .heat pips operation.	 On the other hand,unde
,

Jr
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a fundamental laminar film condensation analysis (similar to

Nusselt's clasJical analysis [ 9 ];)would establish an analyti9:al

reference solution which would be applicable: to ordinary fluids.

This solution could be verified experimentally and could be

modified during the latter portion of this research project to

include the above-mentioned mechanisms, In so doing, the relative

importance of each of these mechanisms could be evaluated indiv-

idually, leading perhaps to important design changes and to im-

proved heat pipe performance,

Prior to this i nvesti gati on o there was no complete solution

for laminar  film condensation on the inside of a rotating, trun-

cated cone, In searching the literature, however, it was di s.

covered that in 1961, Sparrow and Hartnett [ lA 1 carried out a

solution for laminar film condensation on the .,Aside of a

rotating cone. 7hey used a boundary layer approach and pointed

out that their similarity solution applies only to cones that are

not too slender. They obtained a condensate film thickness which

remains uniform along the condenser surface, but which depends on

liquid Prandtl Number, Pr, and on the parameter Cp(Ts-Tw)/hfg.

For ordinary fluids with Prandtl Numbers near unity, and for

Cp(Ts-Tw)/h fg<0.1, they found that the film thickness could be

predicted by;

C C Ts Tw)	 v
b	 1.107 t _	 (1 )

R

F

I
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In the above equati on,

Cp specific heat of the condensate

Ts saturation temperature of the vapor

Tw condenser wall surface temperature

h fgw latent heat of vaporization

V a kinematic viscosity of the condensate

w = angular veloci ty of the condenser, and

0 = one half the i'nternal' cone angle (half-cone angle).

Their similarity solution was applied during thi s project to

the inside of a rotating o truncated cone with a geometry defined

in FIGURE '3, This analysis led to the same expression for the

film thickness as predicted by eq' n. (1)	 When the thermal 'resis-

tance across the condensate film was included with the condenser

wall resistance and the outside cooling thermal resistance, a

simple expression for the overall heat removal rate from the con-

denser (which in steady state must he the heat transport rate of

the heat pipe) was derivedd

.^	 ?.'R Lcf1s -Too ) C RO ,-^ 	 31 !'1 S
+ t ,+

kf	 k^	 h

Eq ti:on (2) is vali d for thi n condensate films and condenser
wall s e

7
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where

T^ = outside ambient fluid temperature

h = outside heat transfer coefficient (which depends on

the exterior cooling mechanism)

t * condenser wall thickness

kw a thermal conductivity of the condenser wall

k  • thermal conductivity of the condensate

and where Ro o Lc and p are defined in FIGURE 3. Note that in eq'n
(1) the inside wall surface temperature Tw is not generally known,

but depends on qt and a from the heat transfer rate across the

condensate film:

,ckf(Rp + 2` s i n $) (T's-Tw) 	 (3)
4	 s

Equations (1), (2) and (3) were solved simultaneously for water

condensing on the inside of a stainless steel condenser surface

for which

Ro = 0.730 inches

Lc = 94 inches

t n 0.0625 inches, and

pa 1 9 2 and 3 degrees

The outside great trans f°r,coefficient was a ►ssomed to be

h = 500 BTU/hr ft2 O F and h _ •. The results at atmospheric pressure
.4

for various rotational speeds are plotted as Oashed curves in

FIGURES 4p 5 and 6. Note that the heat removal rate, Q't, increases

8
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with rotational speed and half-cone angle, W. 	 Note also that Qt

depends strongly on the selection of the outside heat transfer

coefficient, h.

This similarity solution, as pointed out earlier, pertains

only to large cone angles and must therefore be approximate for

small half-cone angles	 0 = 1, 2 and 3 degrees. 	 In addition, it

leads to a condensate velocity distribution given by

U(x,y) _	 ._._ (Sy 4.	 (Ro + xsmn0) sin 	 (4)

l

where

ea Pf = demA ty of the condensate, and
41

'; of n dynamic viscosity of the condensate. 	 }'

This velocity does not satisfy the boundary condition that along the

condenser end wall at x = U(y>o), the velocity must be zero.

In an effort to overcome these restrictions, Ballback per-

formed a Nusselt-type analysis for film condensation on the inside

of a rotating, truncated cone [8]. 	 Using the coordinate system

shown in FIGURE 3 and following the classical assumptions used by

..
{

Nusselt, he found that the condensate velocity could be expressed by

_ P wz	 yt	
dbuCx,9) -	 (ty" Z )CRo + xasnyb-bcos	 (san	 -cuss	 ){5)

p _	
L

Strictly speaking, because of the teat pipe geometry and-coordinate
system chosen in FIGURE 3 	 the condensate velocity is very small
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Equation ( 5) reduces to eq'n ( 4) if the condensate film is very

thin (i.e., a cos p << Ro + x sin p ) and if the slope of the con-

densate film,	 is much less than tan p. The first of these

assumptions will be tvue under most circumstances. However, the

second assumption will only be satisfied for cones which are not

too slender,

Ballback made both of these assumptions in his analysis in

order to analytically solve for the film thickness. He used the

boundary condition, however, that a must be zero at x = 0 to

satisfy the initial condition on the velocity, and arrived at

the following solution for the film thickness

114CPC; — Two	 Ro	 e^^	 6
Pr hf9 

/Wj910 F	 Re+X sing

s
Th _rs equation differs from eq' n (1) because of its explicit

dependence on x, and predicts an average film thickness which

is less than that predicted by Sparrow and Hartnett [10].

Daley [11] modified Ballback ' s work to include the thermal

resistances in the condenser wall and in the outside surface cooling

mechanism. Daley numerically integrated for the heat removal rate

Qt using the same boundary condition at Ballback. that at x _ 0,

a 0. ibis results are plotted as the solid curves in FIGURES 49

5 and 6 for the same heat pipe geometry and operating conditions

10
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as the Sparrow and Hartnett results. Notice that Daley's results

are substantially higher than those predicted by the Sparrow and

Hartnett similarity solution, This is due presumably to the thinner

film thickness which results in Daley's analysis from the boundary

condition that at x 0, b = 0. Since both results, however, are

limited to large half-cone angles, the curves shown in FIGURES 4,

5 and 6 remain approximate for cones represented by p = 1, 2 and

3 degrees.

The restriction of large half-cone angles was later re,;roved

by Daley [11]. Using the condensate velocity profile given by

eq'n (5) and keeping in all the terms, he arrived at a second-

order, non-linear differential equation for the film thickness:

21rpZw; h	 dS 1 3	 4.	 i
^sonO - cosodx ^ C 3 (R.+ Xs1nO) - — b coso)

4

3d bd6cos¢j(A (RO+xs inO) - k b c+ (R.+xs no	 oso)(d 6 costs
3	 Z4	 X Z

1
^^n - -©	 ..	 dS _ Z^ 	 b^	 _ ^dS	 - l	

r
+(Ro x o 5 cos O Xsin^ coso d x KS d XC%+XsinO) + 3 s1 n* b^ cos h

	

J	 ,
^'	

4r

_	 2YT (Re+ xs ng )(Ts -T..)

it
K' +	 h
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where the right-hard side of this expression is just the rate of

dQt
change of the heat transport rate,	 . Equation (7) is valid for

all half-cone angles, and reduces upon simplification to existing

theoretical expressions for both a rotating disc [12] at A = 90°

and for a rotating cylinder [13] at = 0 0 .

Daley numerically integrated this expression using a Runge-

Kutta-Gill numerical integration scheme with an IBM 360 Mod 67

digital computer. To start the integration, the following initial

values were selected at x = 0:

6 = 6 i	(8a) , and

= tan	 (8b)

From eq'n (53, 
ax
 must be equal to tan 0 at x = 0(y>0) in order

to satisfy the initial condition for the condensate velocity. How.-

ever, the initial value of the film thickness ai is unknown and is

believed to depend on the minimum film thickness amin which occurs

at or very near the exit of the condenser. Thus, as stated by

Leppert and Nimmo [131 for condensation on finite surfaces normal to

inertial forces, the starting film thickness at x = 0 is determined

by the minimum film thickness ami n . They postulate that the

minimum thickness depends on the particular overfall condition

which occurs at the surface's edge: This dependence is shown

schematically in FIGURE 7. Daley << osed a free overfall condition

(as derived in open channel flew) to approximate the flow over the

12
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corner at the condenser exit. He arrived at a minimum condensate

thickness given by:

z

nm '"	 z	 ..a--- (9)
( zir P+W) ( Re m L^sin0)

where mf is the mass flow rate of the condensate at the exit of

the condenser. He therefore assumed an initial value for 6 i and

integrated his equations out to x = Lc . Using his integrated film

thickness, he solved for m  at x = Lc and used this result in eq'n

(9) to get 
6min • He then compared 6min to his film thickness at

x = Lc . If the two thicknesses agreed to within .0004 inches, a

solution was obtained. If the two thicknesses did not agree, a new

starting value of a  was assumed and the integration scheme repeated.
y

Daley applied this technique to a rotating cyl inder with a half-	 t

cone angle = 00 . His resul ts for,Ro = 0.730 i nches, Lc  9.0 inches

and t = 0.0625 inches are plotted in FIGURE 8 for two values of the

outside heat transfer coefficient, h = 500 BTU/hr ft2 OF and h = «.

Note that this chosen rotating heat pipe is attractive even without

•+	 aT 	
4

an internal taper. For example, at-an RPM of 2400, with an out -

side heat transfer coefficient of 500 BTU/hr ft2 OF, this rotating

heat pipe can still _ transfer about 3 KW of power. Results for half-

cone angles greater than zero have not yet been obtained. x

13
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3. STATUS OF EXPERIMENTAL PROGRAM

In order to test rotating, non-capillary heat pipe performance,

an experimental apparatus was designed, manufactured, and partially

assembled.

In designing the equipment, the evaporator section was modeled

after the rotating boiler apparatus which has been used at the Lewis

Research Center for the study of boiling heat transfer coefficients

at high gravity levels [14,15];. The condenser geometry was chosen

to conform to the geometry used in the Analytical Program (See

FIG. 3). In addition to safety and flexibility, a strong influence

in the overall design was the desire to visually observe the mechan-

isms that will occur within the heat pipe during operation.

3.1 DESCRIPTION OF EQUIPMENT

The main components of the rotating, non-capillary heat pipe

are grouped into the evaporator, condenser, auxiliary equipment, and

instrumentation. FIGURE 9 is a schematic diagram of the test

apparatus. A cross-sectional drawing of the assembled heat pipe
r

is pictured in FIGURE 10, and FIGURE 11 is a photograph of the

machined pieces of the rotating heat pipe prior to assembly.

Evaporator

The evaporator is a 3.125-inch inside diameter stainless` "steel

x	 cylinder, 5.90-inches long. One end is flanged to an outside 'dia-

meter of 5.906-inches to accommodate the condenser and to support

14
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a large, single row precision ball bearing. The other end is

flanged to an outside diameter of 4.50-inches to accommodate two

pyrex glass end windows. The inner window presses against a teflon-

coated metallic o-ring and is separated from the outer window by a

cdmpressed fiber gasket. Both windows are held in place by a

stainless steel end cap. (See FIG. 10.)

The evaporator is helically wound with an 11-gage Chromed-A

heater wire in a 3/16-inch outside diameter Inconel sheath. The

heater coils are silver soldered in place. They are coated with a

thin layer of Sauereisen cement and are packed with asbestos insula-

tion to reduce radial heat losses. In addition, a 1/16-inch wide

radial groove is machined into the evaporator wall on either end of

the heater element to reduce axial heat losses. Electrical power

to the heater is passed by a graphite brush assembly through bronze

collector rings. The power supply is a DC motor-generator capable

of delivering 150 amperes at 250 volts.

A photograph of the machined evaporator section is shown in

FIGURE 12.

Condenser

The condenser is a 10.0-inch long stainless steel, truncated

cone with a 3 degree half-cone angle and with a 1/16 -inch wall thick-

ness. The large end of the condenser is flanged to bola to the evap-

orator and has an inside diameter of 2.50- inches. The small end is

machined into a cylinder 1.46-inches inside diameter, by 1.50-inches

15
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long. It is flanged to accommodate a cylindrical end plug. Each

flanged joint is sealed with a teflon -coated, metallic o-ring.

'The stainless steel condenser end plug is Hollowed out to

allow the pressure transducer arm to be passed through its inside

face, and to allow the drive shaft to be threaded and keyed in

place. The outer end of the plug is machined down to four flat

sides, each 7 /8-inch wide and 7/8-inch long to accommodate phenolic

thermocouple junction boards.

A photograph showing the condenser and end plug prior to

assembly may be seen in FIGURE 13.

Auxiliary Equipment

The auxiliary equipment are grouped into the drive assembly,

test stand, spray cooling assembly and safety shields.

Drive Assembly. The drive assembly consists of the drive shaft,

support bearing, pulley and variable dri ve motor. The drive shaft

is a 3/4-inch diameter stainless steel cylinder which is hollowed

out to allow the instrumentation leads to be connected to the slip-

ring unit_. The outside diameter of the shaft is stepped in several

places to thread i nto the condenser end plug, to accommodate a 2.65-

inch diameter drive pulley, and to support a double row, angular

contact bearing. Each end of the shaft is internally threaded,. The

pressure transducer arm is screwed into one end and the slip--ring

coupling into the other. The shaft i s screwed securely into thex.
s-

condenser end plug and is keyed in place. Torque is a ppl ied to

..	 ^	 16
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the shaft by a V-belt using a 2 HP, 3 phase variable speed motor.

The rr.otor is capabl e of speeds from 450 to 4500 RPM and is equipped

with a'magnetic disc brake and an electric remote control unit.

Test Stand.	 The test stand was designed so that the rotating heat..^•Igr..^r.^+,+.fir

pipe	 could be rigidly supported and tested with its longitudinal

axis oriented from 0 to 90 degrees from the horizontal. 	 Both the

heat pipe assembly and the variable drive motor are bolted into

steel support plates which are welded to a 4-inch diameter iron

pipe.	 This support pipe is held in place by three 2-inch thick

` steel clamps which are supported 2 feet off the ground by a 1/4-inch

° steel welded structure. 	 The support pipe (with the heat pipe assem-

bly and drive motor rigidly attached as a unit) can be turned to any

orientation and clamped securely in place prior to heat pipe opera-

tion.	 FIGURE 14 shows a photograph of the heat pipe assembly and

variable drive motor mounted on the test stand.

Spray Cooling - Assembly.— ssembly.	 The rotating heat pipe condenser is cooled

i by spraying a fine mist of tap water onto its outside surface during
7"

rotation.	 The spray cooling assembly is two stationary, 13-inch

• Vq

diameter, stainless steel half-cylinders with welded ends. 	 These

two half-cylinders completely enclose the condenser section of the

heat pipe.	 The 'bottom hat f-cyl i•nder is bolted to the steel support

plate on which the heat pipe is mounted.	 The top half-cylinder is

bol ted to the bottom half after the heat pipe is in place and ready

for operation.	 When mounted, each end of the ha lf-cylinders fits
P

,lk,
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within 1/8-inch deep grooves machined into the condenser end flanges,

and is sealed with a felt gasket.

Each half-cylinder contains four spray nozzles which are mounted

at the same axial position but at different circumferential positions.

Using various nozzles, droplet sizes ranging from 300 to 600 microns

can be obtained. The cooling water is fed from copper lines to a

stainless steel mixing tube soldered onto the top half-cylinder.

The coolant flows from the mixing tube through plastic tubing to

each of the spray nozzles. It drains through the bottom half-cylinder

and is collected by a second mixing tube before being dumped to the

building drain lines.

Safety Shields. To ensure safe operation, the entire heat pipe is

surrounded by 1/8-inch thick stainless steel shielding which easily

bolts to the steel support plate.

Instrumentation

Eight copper-constantan thermocouples were selected to be

used on the rotating heat pipe. These thermocouples are 1/16-inch

in diameter, Inconel sheathed, and magnesium oxide insuiated,'and

were calibrated at 212°F, 500°F and 700°F by the Thermoelectric

Company. Four of the thermocouples will be placed within 1/16-inch

diameter Grilled wells at different radial positions within the

evaporator wall to monitor the radial heat transfer into the

evaporator. One thermocouple will be suspended in the liquid
annulus of the evaporator to measure the bulk liquid temperature,.

l8
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Another thermocouple will be suspended in the vapor space at the

evaporator exit to measure the saturation temperature of the vapor.

Two additional thermocouples will be soldered into the wall of the

condenser at different axial positions to monitor the heat transfer

through the condenser. The leads from these thermocouples will be

brought along t5e sides of the condenser and through the small rear

condenser ,flange to the phenolic Junction boards on the condenser

end plug. From the Junction boards, the leads will go inside the

shaft to the slip-ring unit. The temperature of the spray coolant

f	
r

will be measured in the inlet and exit condenser mixing tubes using

two quartz thermometers.

The saturation pressure of the vapor will be measured by a

1/4-inch diameter semi-conductor pressure transducer mounted in the

vapor space. The transducer is temperature compensated and will be

threaded on a 1/4-inch diameter transducer arm that extends from

the drive shaft through the end plug and into the vapor space. The

r	 transducer leads will pass along the transducer arm, out through the

shaft to the Junction boards, and back into the shaft to the slip-

rings. The pressure of the spray coolant will be indicated by a

pressure tap on the coolant feed line. The spray coolant flow rate

will be measured with a rotameter prior to spraying.

The rotational speed of the heat pipe will be found using both

a Hewlett-Packard optical tachometer with a frequency counter and an

electronic strobe light.

19
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The electrical power into the evaporator will be measured using

a calibrated voltmeter, ammeter combination. The power level will

be controlled by a field rheostat placed in parallel with the OC

motor-generator.

All the rotating instrumentation leads will be attached to a

22 terminal mercury slip-ring unit which is rated at less than 10

microvolts noise at speeds to 4000 RPM. The slip-ring output will

be fed to a Hewlett -Packard 2010 C Data Acquisition System which

has an accuracy of t 0.5 microvolts.

`^ =

t	

y

,^J..

,20

5

*W,

Y

R



r

4. SUMMARY OF WORK PERFORMED

,y

4.1 ANALYTICAL PROGRAM

A preliminary analysis was performed on the operation of the

rotating, non-capillary heat pipe. Nusselt's film condensation

theory was extended to include centrifugal accelerations on the

Inside of a rotating, truncated cone. An approximate condensation

limit was derived for ordinary fluids and compared to the boiling,

ent,eainment and sonic limits for water using a given heat pipe

geometry. The results indicate the rotating heat pipe to be con-

densation limited.

Approximate film condensation heat transfer results from the

Nusselt-type analysis were substantially higher than those obtained

from the modified similarity solution of Sparrow and Hartnett [10]

for half-cone angles 0 = 1_, 2 and 3 degrees. An improved numerical

solution was established whicWx is valid for all half-cone angles,

and which includes the thermal resistances in the condenser wall

and in the outside cooling mechanism. This solution depends upon

knowledge of the condensate film thickness at the exit of the con-

denser. Results have been obt l,ned for a rotating cylinder with

no internal taper (i.e., p = 0 0 ) and show a strong dependence of

the heat removal rate on the outside heat transfer coefficient.

Results have not yet been obtained for half-cone angles greater than

zero.
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4.2 EXPERIMENTAL PROGRAM

The design and manufacture of a safe, flexible heat pipe

apparatus was completed. A stainless steel, rotating, non-capillary

heat pipe was designed so that the condenser geometry, the test

fluid or the condenser outside cooling method can be varied. It

was also designed for operation in any orientation with respect to

gravity.

The evaporator is a 5.90 -inch long cylinder with a 3.125 -in6

inside diameter. The condenser is a 10.0-inch long truncated cone

with an internal half-cone angle of 3 degrees. The heat pipe is

capable of rotational speeds to 4000 RPM, and contains a 30 KW

DC-heater and a pyrex glass end window.

It is instrumented with eight copper-constantan thermocouples

and a semi-conductor pressure transducer which will be monitored

with a 22-terminal mercury slip-ring unit and a data acquisition

system.
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5. PROPOSED ACTIVITIES

5.1 ANALYTICAL PROGRAM

1. The improved Nusselt film condensation analysis, using a

free overfall boundary condition at the condenser exit,

will be extended to other condenser cone geometries.

2. The importance of the condensate film thickness at the

condenser exit, and the importance of the free overfall

boundary condition upon the condenser heat transfer rate,

will be further studied.

3. An attempt will be made to investigate the effects of

liquid-vapor interfacial shear, and condensate surface

waves or ripples upon rotating heat pipe operation.

5.2 EXPERIMENTAL PROGRAM

}

	

	
1. The assembly of all the heat pipe components will be

completed.

2. The heat pipe will be tested in a horizontal orientation

at different rotational speeds using water ' L alcohol and

freon.

3. Similar tests will be made with a different condenser

half-cone angle.

4. It may become necessary to repbat several water heat pipe

tests using different'condenser exit designs to experimentally 	 {

investigate what influence the condensate overfall condition

may have on heat pipe operation.
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