

NASA PROGRAM APOLLO WORKING PAPER NO. 1211

WARNING TIME REQUIRED BY THE APOLLO SPACECRAFT TO SUCCESSFULLY ABORT IN THE EVENT OF A LAUNCH VEHICLE EXPLOSION

ŧ

PREPARED BY:

has allera Charles Teixeira

AST, Mission Feasibility Branch

AUTHORIZED FOR DISTRIBUTION:

Maxime A. Faget

Director of Engineering and Development

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS September 14, 1966

PRECEDING PAGE BLANK NOT FILMED.

To B that all edd and a work to

ž

いちから たいない

i

CONTENTS

Section Page	:
SUMMARY	
INTRODUCTION	
SYMBOLS	
GROUNDRULES	
Abort Trajectories	
CM Pressure Limits	
Aerodynamic Loads	
Overpressure Loads	
PROCEDURE	
RESULTS AND DISCUSSION	
CONCLUSIONS	
REFERENCES	
APPENDIX	

TABLES

Table		Page
I	MAXIMUM ALLOWABLE LIMIT DIFFERENTIAL PRESSURES	14
II	SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL: PAD - 60 000 FT; S-IB STAGE EXPLOSION (SATURN IB)	15
III	SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL: PAD - 60 000 FT; S-IVB STAGE EXPLOSION (SATURN IB)	19
IV	SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL: PAD - 60 000 FT; S-IC STAGE EXPLOSION (SATURN V)	23
V	SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL: PAD - 60 000 FT, S-II STAGE EXPLOSION (SATURN V)	27
VI	SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL: PAD - 60 000 FT; S-IVB STAGE EXPLOSIONS (SAT RN V)	31
VII	LOAD SUMMARY - S-IB EXPLOSION (SATURN IB)	35
VIII	LOAD SUMMARY - S-IVB EXPLOSION (SATURN 13)	38
IX	LOAD SUMMARY - S-IC EXPLOSION (SATURN V)	42
х	LOAD SUMMARY - S-II EXPLOSION (SATURN V)	45
XI	LOAD SUMMARY - S-IVE EXPLOSION (SATURN V)	49
XII	REQUIRED WARNING TIMES - PAD TO 60 000 FT - SATURN IB AND V	53

....

-

iv

;

ł

1

FIGURES

Ą

A second second

Figure					Page
1	Forward heat shield deployment	•		•	54
2	Total pressure distribution	•	•	•	55
3	Total pressure loads - explosion of S-IB stage (Saturn IB)	•	•	•	56
4	Total pressure loads - explosion of S-IVB stage (Saturn IB)	•	•	•	57
5	Total pressure loads - explosion of S-IC stage (Saturn V)	•	•	•	58
6	Total pressure loads - explosion of C-II stage (Saturn V)	•	•	•	59
7	Total pressure loads - explosion of S-IVB stage (Saturn V)	•	•	•	60
8	Required warning time - explosion of Saturn IB stages	•	•	•	61
9	Required warning time - explosion of Saturn V stages	•	•	•	62
A-l	Required warning times - various CM pressure limits	•	•	•	65
A-2	Required warning times - various LES thrust levels	•	•	•	66
A-3	Required warning times - various TNT vields				67

WARNING TIME REQUIRED BY THE APOLLO SPACECRAFT

TO SUCCESSFULLY ABORT IN THE EVENT OF A LAUNCH

VEHICLE FXPLOSION

By Charles Teixeira

SUMMARY

Explosion of a Saturn Launch Vehicle stage will result in pressures which exceed the Apollo Command Module's pressure limits if a sufficient separation does not exist between the command module and the explosion. The objective of the study was to determine the separation (in terms of time from abort initiation to the time of explosion) required in order that the command module pressure limits are not exceeded. This time is referred to as the required warning time. The study considered the individual explosion of the three Saturn V stages and the two Saturn IB stages from the pad to an altitude of 60 000 feet.

The required warning times are the longest on the pad and in the 25 000 to 30 000 foot regime. The maximum warning time required for the S-IB, S-IVB (Saturn IB), S-IC, S-II and S-IVB (Saturn V) are 2.68, 3.31, 3.30, 5.88, and 3.50 seconds, respectively.

うち、いいたがいないで見たないのであるというないので、

Sensitivity of the required warning times to changes in such parameters as launch escape motor thrust, command module pressure limit, and the TNT equivalent yield, were also considered.

INTRODUCTION

The "safe" separation is defined as the separation required by the Apollo Command Module (CM) from the exploding launch vehicle (LV) in order that the total external pressures do not exceed the CM's pressure limits. These pressures include the overpressure produced by the assumed explosion of the LV's propellants (specifically of a single stage) and the aerodynamic pressures associated with the abort. The safe separation, given more conveniently in terms of time, plus the 0.20-seconds Launch Escape System (LES) reaction time, establishes the required warning times as illustrated on page 2.

ί,

S/C at "Safe" Distance REQUIRED WARNING TIME (T, sec) Safe Separation (t_{ss}, sec) Time Physical Separation LES Reaction Time ≈.20 Sec. Automatic Abort Initiation Display in Manual Abort S/C Initiation 2 of 3 Voting . 4U50 Venirew . Component(Sys) Sensor Reaches Failure Abort Limit

,

Ì

، ب^و

The required warning times were determined on the basis of pressure hazards only. Fireball hazards were not considered during the early phase of the abort studied (first 10 seconds) due to the short exposure time anticipated and the temperature capability of the CM. The fragmentation hazards are considered to be highly problematical. However, the overpressure hazard is real and definable and consequently was used as the explosive hazard criteria for the purposes of this study.

3

Knowledge of the required warning times is necessary in order to:

1. Aid in the ϵ stablishment of the Emergency Detection System (EDS) abort limits.

2. Enable evaluation of the overall abort system including the EDS and the Launch Escape System (LES).

3. Define critical abort regimes in terms of the warning time available and the warning time required in order that the criticalities of LV failure modes may be viewed in their proper perspective.

SYMBOLS

pressure coefficient

C_m escape motor thrust coefficient

M# Mach number

1

ないたとうないというというできたのできょうできょうできょう

Cp

PA

Pc

ΔP

aerodynamic pressure, psi $\left(= C_{p}q - (P_{c}) \right)$

cavity pressure from ambient, psi

 P_{TOT} sum of aerodynamic pressure (P_A) and static equivalent of pressure associated with shock front (2 ΔP), psi

 \overline{P}_{TOT} average of above, psi

P ambient pressure, psi

peak pressure associated with the shock front (above ambient), psi

4

q

dynamic	pressure,	psi
---------	-----------	-----

q CM pitch rate at separation, deg/sec

- R separation between command module and center of detonation at time of shock front passage, ft
- T required warning time, sec
- t time of detonation in seconds after command module launch vehicle separation
- t sa time shock wave reaches command module in seconds after command module launch vehicle separation
- tss time to achieve safe separation, seconds after spacecraft/ launch vehicle separation
- α command module angle of attack during abort, deg
- α_{-} initial command module angle of attack at separation, deg
 - circumferential position on command module, deg

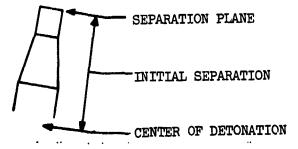
.

GROUNDRULES

Abort Trajectories

CM abort trajectories were obtained through use of a G. E. Mass computer program. The attitude at the time of abort was assumed to be a pitch-up condition of -15° angle of attack $\begin{pmatrix} \alpha \\ 0 \end{pmatrix}$ and $-5^{\circ/\text{sec}}$ pitch rate q_0 for each of the altitude cases. The pitch-up abort condition was assumed (with exception of pad abort) as a result of a previous study (ref. 9) which indicated that a pitch-up abort condition generally requires slightly longer warning times than for a nominal or pitch-down abort condition. An abort at $\alpha_0 = 0^\circ$, $q_0 = 0^{\circ/\text{sec}}$ was assumed for the pad case as it is a more reasonable assumption.

The configuration assumed consists of a launch escape vehicle (LEV) (LEV = LES + CM) with an ll 000-pound CM and utilizing a pitch control motor. Nominal escape motor thrust (\pm 155 000 lb) and thrust


alinement (1.80°) were assumed in all cases with the exception of the data presented in the appendix for various LES thrust levels.

In computing the CM-LV stage separation-time histories the assumption was made that the LV maintained a constant velocity and flight path angle after CM-LV separation. This assumption was made in order to obtain general results which are independent of LV failure modes and the resulting off-nominal LV trajectories. The assumption is reasonable for the several seconds after abort under consideration.

The CM-LV separation-time histories are generally relative to the CM-LV separation plane. As a result, the separation-time histories were modified by allowing for the inherent separation between the CM-LV separation plane and the assumed center of explosion for each stage. The separations used are given below:

Stage	Initial Separation, ft
S-I	140
S-IVB	57
S-IC	230
S-II	140

CM Pressure Limits

The load limits assumed for this study were predicated on the following objectives:

1. Maintain capability to deploy recovery gear.

2. Maintai pressure integrity of the crew compartment.

The capability to deploy the recovery gear requires that the forward heat shield be successfully jettisoned. In order to insure that the forward heat shield can be jettisoned, the assumption was made that no deformation would be allowed in the external heat shield, particularly in the region of the forward heat shield separation plane. The crew compartment heat shield (which terminates at the separation plane) has the lowest pressure capability (table I) according to available data and conseque the the corresponding pressure limits were used as the limiting criteria. By insuring that the integrity of the external heat shield be maintained, the second objective, namely, integrity of the internal crew compartment, will in general be satisfied.

Figure 1 illustrates the CM-LES combination and the required deployment of the forward heat shield. The boost protective cover which will be put over the CM (as defined at the time of the study) will not improve the load-carrying ability of the CM's heat shield significantly. The integrity of the aft heat shield, which is also of importance because of its energy absorption function at landing, did not pose any problems since the load limits of the aft heat shield are considerably higher than the crew compartment heat shield limits.

The influence of the CM pressure limit on the required warning times is shown in the appendix.

Aerodynamic Loads

The aerodynamic pressure loads on the CM during an abort are functions of the Mach number (M#), dynamic pressure (q), angle of attack (α), and escape motor thrust level (C_T). These loads generally reach a maximum at around 3.5 seconds after abort and vary considerably from station to station. Since the area around the forward heat shield

6

AND A SAME PUT

separation plane was considered to be critical, the loads were computed for this region using the pressure coefficients given in references 1 through 3.

During an abort the CM will normally oscillate in angle of attack. For the abort cases studied, the maximum angle of attack $\begin{pmatrix} \alpha \\ max \end{pmatrix}$

generally reached but did not exceed 20° for aborts from the pad to 10 000 feet. Above 15 000 feet the maximum angle of attack reached but did not exceed 25°. Since the aerodynamic pressures at a given station generally increase with an increasing angle of attack, the CM was assumed to be at the maximum angle associated with that particular abort at the time $\binom{t}{sa}$ the shock front passed over the CM. Consequently, the aerodynamic loads were computed for $\alpha = 20^{\circ}$ from the pad to 10 000 feet and $\alpha = 25^{\circ}$ above 15 000 feet.

.....

Chiral Marthew Sciences

「「ない」では、「ない」」というというできたので、「ない」」というできたので、

The pressure limits given in table I are for differential pressures across the external heat shield. Consequently, the pressure in the cavity between the external heat shield and the crew compartment must be considered. The pressure in the cavity is maintained at ambient ± 1 psi. In each case studied shock-front passage occurred when the pressure in the cavity was below ambient due to the passive venting which occurs. This below ambient cavity pressure acts essentially as a static external (positive) pressure and is consequently added to the aerodynamic pressures. The cavity pressures were obtained from reference $\frac{1}{2}$.

Overpressure Loads

The methods of H. L. Brode (ref. 5) were used to calculate the overpressures and the shock wave velocities. The following assumptions were made:

1. Individual detonation of each stage of the Saturn IB (S-IB, S-IVB) and the Saturn V (S-IC, S-II, S-IVB) launch vehicles.

2. Single propellant source at the stages approximate geometric center.

- l0 percent TNT equivalent yield LOX/RP-1 (S-IB, S-IC).
 60 percent TNT equivalent yield LOX/H₂ (S-II, S-IVB).
- 4. Reflection factor = 2.0 for the pad case.

In the altitude regime considered, the S-IC and the S-IB are believed to be the most likely \supset malfunction since they are the

thrusting stages and are subject to propulsion system failures. However, all LV stages were considered in order to illustrate the relative explosive hazard of each.

The equivalent TNT yields of 10 percent and 60 percent are the commonly used equivalencies for LOX/RP-1 and LOX/H_2 , respectively.

These yields are generally believed to be concervative (high), however, the degree of conservatism could not be adequately established. The influence of the TNT yields on the warning times is shown in the appendix.

The reflection factor of 2.0 is used for the pad case to account for the explosive energy being expended in a hemispherical shock wave rather than in a spherical shock as assumed in reference 5. Actually the shock will be spherical during the early stages of the expansion. The portion of the shock wave (lower hemisphere) that is reflected from the earth's surface will catch up to the upper half of the shock wave rather quickly due to the higher speed of the reflected shock. This higher speed is due to the higher air temperature caused by the original expansion and to a larger extent by the very high temperature that will exist due to the fireball that will occur. Merging of the reflected shock and the shock consisting of the upper half of the initial sphere will result in one reinforced shock wave. The reflection factor of 2.0 which accounts for the merging of the two shocks has the effect of doubling the yield and was used for the pad case only.

The propellant quantity available for each altitude case was determined by considering the propellant depletion that would occur during a nominal boost trajectory.

The CM pressure limits given previously (table I) are static pressure limits. The shock wave induces a dynamic load on the CM and consequently the overpressure load must be equated to an equivalent static load. Studies by North American Aviation and MSC have indicated a load factor of 2.0 is applicable, that is, the pressure associated with the shock wave is twice as severe as the pressure associated with a static load. Consequently a given overpressure is doubled to obtain an equivalent static pressure.

PROCEDURE

A total of five explosion cases were studied: explosion of the S-IB S-IVB (Saturn IB), S-IC, S-II and the S-IVB (Saturn V). Each case was studied from the pad to 60 000 feet at 5000 feet increments. In each case, detonation times $\binom{t_d}{}$ were assumed and the resulting

total pressure loads acting on the CM at the time the shock front passed over the CM were calculated and compared to the CM's pressure limits. In order to compute the pressure loads two unknowns had to be determined:

1. Shock arrival time - the time (t_{sa}) at which the shock front reaches the CM had to be determined for each assumed detonation time. This established the flight parameters $(q, M\# \text{ and } C_T)$ which were needed to calculate the aerodynamic pressure distribution acting on the CM at the instant of shock front passage.

2. CM - center of detonation (CD) separation - the distance (R) between the CM and CD at the time of shock arrival had to be established for each detonation time in order to compute the overpressure acting on the CM.

The shock arrival time and the corresponding CM - CD separations, over-pressure, et cetera, were determined for each assumed detonation time with the aid of a computer subroutine which was run in conjunction with the abort trajectory program. The computations were made using a reiteration scheme and the stored abort trajectory data. The reiteration scheme is discussed in more detail in reference 6.

Tables II through VI summarize the shock arrival time t_{sa} , q, M#, C_T , R, and the ΔP experienced by the CM for each assumed detonation time and LV stage. Around 25 000 to 30 000 feet the aborting CM begins to attain sufficient velocity during the abort to remain ahead of the shock front for sufficient time to allow the overpressure to drop to very low values (tenths of a psi). As the abort altitude increases, the CM eventually is able to outrun the shock front during the entire time span under consideration (\approx 10 seconds). The only pressure loads acting on the CM during this time period are the aerodynamic pressure loads which are within the CM's pressure limits.

The aerodynamic pressure distribution present at the time of shock arrival was calulated using the flight conditions listed in tables II through VI, the pressure coefficients from references 1 through 3, and the cavity pressure data from reference 4.* The resulting aerodynamic pressures (P_A) were then totaled with the static equivalent of the

*Aerodynamic pressure distributions were not calculated for the cases where the CM was able to outrun the shock front or when the overpressures had dropped to such a low level that it was obvious the CM's pressure limits were not exceeded.

everyressure (2 ΔP) for each assumed detonation time (t_d) in tables VII through XI. In all cases, the total pressures (P_{TOT}) were relatively evenly distributed and were averaged (\bar{P}_{TOT}) around the entire CM ($\phi = 0 - 360^{\circ}$). The loads that were computed and given in the tables were for $\phi = 0 - 180^{\circ}$ since the loads are symmetrical about the pitch plane.

The average total pressure load was plotted as a function of detonation time in figures 3 through 7. The detonation times which resulted in total pressures which did not exceed the symmetrical limit of 6.1 psi were then determined acceptable (safe) detonation times. The loads at these times were then rechecked to insure that the unsymmetrical pressure limits were not exceeded. In each case if the average pressures did not exceed the symmetrical limit, the unsymmetrical limit was also not exceeded.

The safe separation times are summarized in table XVII and are added to the 0.20 seconds LES reaction time to obtain the required warning time. The resulting required warning times are plotted as functions of the abort altitude in figures 8 and 9.

RESULTS AND DISCUSSION

The warning times required by the Apollo CM are given in figures 8 and 9. The curves show relatively large time requirements on the pad due primarily to the assumed reflection factor and the large quantity of propellant available at this time. However, the longest warning time requirements for the non-thrusting stages are generally in the 20 000- to 30 000-foot regime where the CM - LV separation-time histories are the poorest due to the high drag environment. The thrusting stages (S-IB, S-IC) require the longest times on the pad since propellant depletion results in warning time requirements in the 20 000- to 30 000-foot regime which are not quite as high as those on the pad.

As the abort altitude increases and the CM speed during the abort exceeds sonic speeds, the CM is able to remain ahead of the expanding shock for progressively longer periods of time. Consequently, when shock arrival does occur the overpressures are quite low. As a result, the warning time requirements drop off appreciably after passage through the 30 000-foot regime.

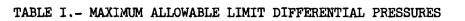
Extrapolation of the data presented in figures 8 and 9 should be avoided due to the highly non-linear nature of the data involved. In rarticular, the curves for the thrusting stages (S-IB, S-IC) appear to

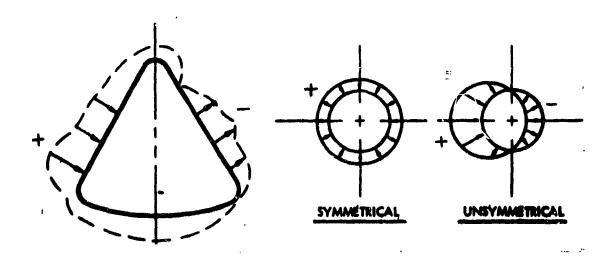
level off in the 50 000- to 60 000-foot regime and extrapolation to higher altitudes may appear reasonable. However, check cases have shown the warning times decrease markedly above 60 000 feet. In the limiting case, the available propellant (thrusting stages) approaches zero at staging and consequently the warning time required would also approach zero. The S-IB curve given in figure 8, for example, does not suggest such a decrease.

CONSTRUCTION OF

The large warning time requirements for the S-II stage (fig. 9) are due to the large propellant loading and the 60-percent equivalency.

Explosion of a given stage can conceivably inititate explosion of an adjoining stage. Consequently, the aborting CM may have to contend with more than one explosion. Obviously, if the secondary explosion(s) occurred after the primary explosion, sufficient separation may exist between the CM and LV. The time that may in reality elapse between explosion of adjoining stages is extremely difficult to estimate at this time. It is possible, however, to estimate the minimum time that should elapse between the primary and the secondary explosions in order that the CM pressure limits will not be exceeded due to the secondary explosion. For example, if the S-IB explodes (10 000 ft, fig. 8) 2.25 seconds after abort initiation, the CM pressure limits will not be exceeded as a result of the S-I explosion since only 2.00 seconds are required for safe separation. However, if the S-IVB (non-thrusting stage) explodes (at the same altitude) before 2.60 seconds after abort initiation, the CM pressure limits will be exceeded due to the S-IVB overpressures. This corresponds to .35 seconds between explosions (2.60 - 2.25). Thus, if the time between explosions is less than .35 seconds, CM pressure limits will be exceeded by the secondary explosion. This procedure can be carried on throughout the altitude regime in question and for various explosion times, abort times, et cetera.


CONCLUSIONS


Explosion of a Saturn LV stage can result in pressures which exceed the CM's pressure limits. Deformation of the CM's external structure can impair or even prevent deployment of the forward heat shield and subsequent deployment of the recovery gear. The time that must elapse between abort initiation and the time of explosion (warning time) in order that CM pressure limits will not be exceeded has been determined for the Saturn IB and V stages from the pad to an altitude of 60 000 feet. The maximum warning times required during the launch phase considered are 2.68, 3.31, 3.30, 5.88, and 3.50 seconds for explosion of the S-IB, S-IVB (Saturn IB). S-IC, S-II, and the S-IVB (Saturn V) stages, respectively.

The effects of increased CM pressure capability, LES thrust and of various TNT yields on the warning times were also studied. Increased pressure capability of the CM by factors of almost 2 and 3 did not show a large decrease in the required warning times. Increasing the LLO thrust did not improve the situation at the lower altitudes but did decrease the required warning times appreciably in the 20 000- to 30 000-foot regime. Reductions by a factor of 2 in the TNT yields did not show major reductions in the required warning times below 30 000 feet. However, considerable reductions in the required warning times can occur above 30 000 feet.

REFERENCES

- NAA Report, SID63-754, Data Report for the Wind Tunnel Test of the Apollo Launch Escape Vehicle Jet Effect Model FSJ-1 in the Langley 16' Transonic Tunnel. July 1963.
- NAA Report, SID63-1460, Vol. 2, Data Report for the Apollo Model FSJ-3 Wind Tunnel Test in Tunnel A of the von Karman Gas Dynamic Facility. AEDC (1st Series), December 1963.
- NAA Report, SID63-1464, Data Report for the Wind Tunnel Test of the Apollo Launch Escape Vehicle Jet Effect Model FSJ-1 in the Langley 16' Transonic Tunnel. December 1963.
- NAA Memo to MSC, CM Cavity Pressure Data During Aborts at Various Altitudes from Saturn IB and V Nominal Boost Trajectory. Reference 65MA15136, December 20, 1965.
- 5. Brode, H. L: A Calculation of the Blast Wave from A Spherical Charge of TNT. Rand Corp. Report No. RM-1965, August 21, 1957.
- 6. Aeronutronic Technical Report No. U-108:98. Explosive Hazards of Rocket Launchings. November 30, 1960.
- MSC Internal Note 64-ET-69: Procedure for Calculating the Overpressure Experienced by a Spacecraft Aborting from a Detonating Launch Vehicle. November 3, 1965.
- NASA Program Apollo Working Paper No. 1161: Apollo Range Safety Destruct Time Delay - Saturn IB and Saturn V. January 26, 1965.
- Addendum NASA Program Apollo Working Paper No. 1161: Apollo Range Safety Destruct Time Delay - Saturn IB and Saturn V (Off-Nominal Initial Attitudes end Thrust Dispersions). August 3, 1965.

	Forward heat shield (stations 81-133)	Crew compartment heat shield (stations 23-81)	Aft heat shield (stations 0-23)								
	Symmetrical	pressure limit, psi									
Crush (+)	+6.1	+6.1	+12.0								
Burst (-)	-10.0	-4.5	-5.7								
Unsymmetrical pressure limit, psi											
Crush (+)	+12.1	+11.1	+16.6								
Burst (-)	-4.7	~5.8	-5.7								

 $P_A = Aerodynamic pressure (psi)$

=
$$P_{External} - P_{Cavity}$$

 $P_{External} = P_{\infty} + C_{p}q$
 $P_{Cavity} = P_{\infty} - (\pm P_{c})$
 $P_{A} = C_{p}q - (\pm P_{c})$

14

ことれできたい

T

and the second states and the second states

•

. ٤,

TABLE II.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IB STAGE EXPLOSION (SATURN IB)

q, psi		82 58	57 98		96 2	01 69	26		92	61	0 0		49 149	201	4.36
4 ,		Ч	ณ ์ ณ์		ŗ.	N M	4.		5	m-	a .a		۰m-	- t	i _i
цт С		49.4 87.6	2.40 0.83		01.4	1.91	1.10	•	2.75	2.17	1.64 0.96		2.31	1.94 1.54	0.85
#W		0.28 0.39	0.51 0.55		0.48 0.1	0.58 0.67	0.73		0.65	0.73	0.80		62.0	0.86	0.92
ΔP, psi	Pad	21.46 6.01	2.31 1.25	5000 ft	14.37	4.47 1.75	0.89	10 000 ft	02°2T	3.79	1.39 0.69	15 000 ft			1.13 0.54
R, ft		286 528	951 1515		546	440 800	1335		246	1446	2442 2441		546 246	432	092 1556
t BB, sec		1.59 2.25	3.09 4.04		1.08	1.72	3.44		1.08	1.73	2.56 3.54		1.08	1.72	2.00 3.65
t _d , sec		1.50 2.00	2.50 3.00		1.00	2.00	2.50		1.00	1.50	2.50 2.50		1.00	1.50 	2•50 5•50

TABLE II.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IB STAGE EXPLOSION (SATURN IB) - Continued

q, psi		3.77 4.06	4.22 4.27		•		3.76			•	4.31 1.94		4.35	4.36	4.30 0.89
ى ^H		2.11 1.95	1.75 1.63				0.64		1.92	1.90	1.77		1.85	1.85	1.85
#W		16.0 0.96	0.99 1.00		1.06	1.08	1.08		1.20	1.22	1.24 0.95		1.38	1.39	1.40 0.78
ΔP, psi	20 ⁰ 000 ft	13.16 4.03	1.57 0.98	25 000 ft	8.81	4.20	1.fo 0.27	30 000 ft	16.27	9.38	4.33 0.01	35 000 ft	12.79	ະ ຈັນ ຈັນ	0.00 0.00
R, ft		221 383	648 897		253	356	2041		186	236	333 5551		198 1	239	268 10830
t sa, sec		1.07 1.68	2.20 2.61		1.58	1.95	Z. 3Z 4.10		1.04	1.57	1.94 6.62		1.05	1.37	1.49 11.07
t _d , sec		1.50 1.50	1.80 2.00		1.50	1.80	2.50		1.00	1.50	1.80 1.90		1.00	1.30	1.40 1.50

.

16

ことのなどのでいたまで、「たちまである」と思いたが、「ないないないない」というないであったい、「ないない」というない、このないない、このないない、このないない、このないない、このないない、このないない、

۰.

;

1

i,

• • • • •

* * * TABLE II.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IB STAGE EXPLOSION (SATURN IB) - Continued

ŀ						
	t sa, sec	R, ft	ΔP, psi	#W	с _т	q, psi
1			10 000 Ft			
	0.04 0.54	< 180 188	> 13.00 13.01	1.50 1.49	0.00 0.69	4.29 4.24
_	0.85	200	11.24	1.40 1.40	1.00	4.21
	1.19	280 	5.21 	1.56	1.88 	4.29
1			45 000 ft			
	0.04 21-0	< 190	> 12.00	1.61 1.61	0.00	3.91 3.88
	0.64	199 199	10.44	1.60	0.75	3.87
	0.86	234	7.12	1.60	1.00	3.85
		1	1	•	1	1
			50 000 ft			
	0.04	< 195	> 10.00	1.76	0.00	3.65
	0.34	194	9°-94	1.75 1.75	0.50	3.63
	00.0		20.1		0.1	
1			55 000 ft			
Γ	0.04	< 195	• 00.0	16.1	0.00	3.41
	0.34	196	8.90	1.90	0.55	3.39
	0.65	232	5.99	1.90	0.90	3.38
	1	1	•		1	-

TABLE IL - SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IB STAGE EXPLOSION (SATURN IB) - Concluded

t _d , sec	t sec	R, ft	ΔP, psi	#W	с <mark>т</mark>	q, psi
			60 000 ft			
0.00 0.30 0.70 0.70	0.04 0.34 0.65 	< 195 197 239 	 8.00 7.89 5.06 	2.05 2.06 2.06	0.00 0.65 1.20 	3.14 3.12 3.11

- それ、このないときのないのないのである

TABLE III. - SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IVB STAGE EXPLOSION (SATURN IB)

t, sec	t sec	R, ft	ΔP, psi	##	ະ ບ	q, psi
	22					
			۲ađ			
8	2.19	1466	10.04	0.37	5.25	1.42
õ	2.65	680	4.86	0.45	3.34	2.06
ġ.	3.00	861	3.29	0.50	2.64	2.48
3.00	3.93	7777	1.63	0.55	0.94	2.99
1			5000 £t			
50	1.58	269	19.02	0.56	3.06	2.42
2	2.28	552	4.35	0.65	2.12	3.43
30	2.80	822	2.27	0.70	1.72	3.93
50	3.18	IU41	1.63	0.73	1.38	4.20
			10 000 ft			
50	1.56	234		17.0	2.34	3.44
8	2.22	483		0.78	1.81	4.03
50	3.16	9101	1.53	0.84	1.31	4.53
8	4.15	1617		0.81	0.57	4.09
			15 000 ft			
2.00	2.15	381	8.01	0.88	1.75	4.24
20	2.45	525	4.15	0.90	1.62	4.37
50	3.08	917	1.60	0.93	1.37	4.53
8	4.11	1551	0.79	0.89	0.60	4.01

сэ. Т TABLE III.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

•

.

PAD - 60 000 FT; S-IVB STAGE EXPLOSION (SATURN IB) - Continued

q, psi		4.19 4.25	4.27 4.15		4.21	4.21 4.15	3.67		4.36	4.31 4.31	2.50		61.4	4.46 1.06
ບ້	4	1.78 1.71	1.58 1.13		1.65	1.55 1.26	0.67		1.60 1.50	1.26 1.26	0.25		1.55	1.52 0.00
#W		0.98 0.99	1.00		1.11	1.12	1.07		1.27	1.29	1.03		J.46	1.47 0.84
ΔP, psi	20 000 ft	17.31 8.78	3.28 1.25	25 000 ft	12.21	5.17 2.54	0.93	30 000 ft	16.39 0.1.1	3.36	0.19	35 000 ft	6.50	0.00
R, ft		264 356	572 1016		TOE	443 629	1153		260 230	527	3206		322	392 8318
t sec		2.07 2.32	2.78 3.46		2.59	3.32	4.08		2.56 2.80	3.23	5.69		2.59	9.93
t _d , sec		2.20	2.80 2.80		2.50	3.00	3.30		2.50 2.70	3.00 	3.10		2.50 2.50	2.70

したいに、このではないなどをあるとないないのであるとないであるとないであるとものであるとものであるという

のないないという

TABLE 111.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IVB STAGE EXPLOSION (SATURN IB) - Continued

q, psi		91°1 71°1 71°:	1	4.11 4.12	 4		3.84 3.95	3.88		3.57 3.59	3.61
с ^ц		1.68 1.64 1.61	1	1.89 1.85	 		2.08 2.04	1.99 		2.26 2.22	2.17
#W		1.63 1.64 1.64	1	1.75 1.77	 		1.90 1.92	1.93 		2.07 2.09	2.10
ΔP, psi	40 000 ft	11.14 11.33 6.55	45 000 ft	25.92 16.28		50 000 ft	28.31 21.93	13.28	55 000 ft	25.48 19.73	76.11
R, ft		244 291 369	1	198 243	298 		184 207	259		186 210	263
t sec		2.15 2.27 2.41	1	1.83 1.94	2.07		1.62 1.73	1.85		1.52 1.63	1.74
t _d , sec		2.10 2.20 2.30	2.40	1.80 1.90	2.00 2.10		1.60 1.70	1.80 1.90		1.50 1.60	1.70 1.80

TABLE III. - SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IVB STAGE EXPLOSION (SATURN IB) - Concluded

q, psi		3.28 3.29 1	
с ^н			2,46 2.41 2.37
#W		2.25 2.26 2.27	
ΔP, psi	60 000 rt	19.66 12.33 7.44	
d, ft		203 253 316	
t _{sa} , sec		1.52 1.64 1.76	
t _d , sec		1.50 1.60 1.70 1.80	

いた、こうしていた、こうしたいというなるまたというないないないないないないないないないないですで、

• • • • • •

ŧ,

TABLE IV. - SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IC STAGE EXPLOSION (SATURN V)

·····								
q, psi		0.78 1.51 2.99 2.23		1.99 2.78 3.60 4.07		2.85 2.53 4.16 4.46		ы 198 198 198 198 193 193 193 193 193 193 193 193 193 193
$c_{\rm T}$		10.38 4.90 1.02 0.26		4.05 2.84 1.94 1.72		2.82 2.22 1.69 1.00		2.28 1.98 1.61 0.96
#W		0.28 0.38 0.55 0.43		0.49 0.58 0.67 0.70		0.64 0.72 0.83		0.79 0.85 0.90 0.93
∆P, psi	Pad	47.72 16.67 2.67 1.28) ft	92°1 72°5 01°22	000 ft	96.1 795.7 77.7	000 ft	17.56 8.03 2.92 1.12
R, ft	I	2551 545 245 245	5000	344 518 855 1752	10 000	347 522 1475 1475	J5 (349 495 843 1533
t _{sa} , sec		1.58 2.19 3.89 5.74		1.10 1.71 2.45 5.99		1.10 1.72 2.49 3.49		1.10 1.69 2.44 3.55
t _d , ser		1.50 2.00 3.00		1.00 2.00 2.80		1.30 2.50 2.50		1.00 1.50 2.50

23

TABLE IV. - SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

and the second in

PAD - 60 000 FT: S-IC STAGE EXPLOSION (SATURN V) - Continued

	t	r	r1		·			
q, psi		4.16 4.33 4.26 3.53		4.10 22.1 3.55 44		4.50 4.56 2.00		4.70 4.71 4.76 0.92
ц.		1.90 1.68 1.19 0.54		1.95 1.89 1.71 c.49	-	1.78 1.62 1.55 0.09		1.71 1.70 1.63 0.00
#W		1.00 1.00 1.00 1.00		1.06 1.08 1.1.1		1.26 1.28 1.29 0.94		1.43 1.46 1.47 0.78
ΔP, psi	000 ft	9.68 3.83 1.23 0.76	000 ft	21.21 14.40 7.56 0.61	000 ft	13.56 7.45 3.97 0.09	35 000 ft	14.60 9.96 6.71 0.00
R, ft	50	437 674 1334 1793	52	297 349 466 1976	30 (337 ^{1,5} 0 595 5338		323 382 454 > 11000
t sa, sec	•	1.65 2.32 4.34		1.07 1.59 2.16 4.44		1.59 2.15 2.45 6.71		1.07 1.60 1.85 1.45
t _đ , sec		1.50 2.50 3.00		1.00 1.50 3.00		1.50 2.00 2.30 2.30		1.00 1.70 1.80

بد که

and the second states of the s

第二日前

. .

TABLE IV. - SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IC STAGE EXPLOSION (SATURN V) - Continued

ſ							·		
	q, psi		4.66 4.70 4.71		4.70 4.70		4.48 4.50 4.51		4.20 4.21
	c _T		1.67 1.71 1.71 1.71		1.24 1.68 1.70 		1.67 1.73 1.74 		1.79 1.85
	M#		1.59 1.62 1.64 		1.77 1.80 1.82 1.82		1.97 1.99 2.00		2.16 2.17
	∆P, psi	000 ft	13.32 10.09 5.49	000 ft	> 9.60 9.62 7.42 	000 ft	9.70 9.22 7.02	000 ft	8.06 5.99
	R, ft	70	325 365 477	45	 350 358 401 	50	. 197 201 226 	55	205 233
	t _{sa} , sec		 1.09 1.45		0.09 0.58 0.91		0.44 0.54 0.66		0.54 0.65
	t _d , sec		0.50 1.00 1.30		0.00 0.80 0.90		04°0 09°0 04°0		0.50 0.60 0.70

25

· ţ

26

TABLE IV .- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IC STAGE EXPLOSION (SATURN V) - Concluded

				
q, psi		3.59 3.60 		
$c_{\mathbf{T}}$				2.18 2.18
#W		2-27 2-25 25-2		
∆P, psi	60 000 ft	7.04 5.06		
R, ft	60	 207 202		
t _{sa} , sec		0.54 0.65 		
t _d , sec		0.50 0.60 0.70		

A DESCRIPTION OF A DESC

·,

e. . .

'TABLE V.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT, S-II STAGE EXPLOSION (SATURN V)

						•		
q, psi		1.44 2.28 2.97 2.75		2.78 3.40 4.15 4.06		3.50 3.95 4.45 4.15		4.26 4.52 4.20 3.45
c ¹		4.94 2.87 1.16 0.48		2.84 2.15 1.47 0.65		2.25 1.87 1.47 0.61		1.75 1.48 0.71 0.39
#W		0.58 0.48 0.55 0.53		0.58 0.64 0.72 0.72		0.72 0.77 0.85 0.81		0.89 0.92 0.91 5.04
∆P, psi	Pad	27.18 8.39 5.41 2.04	5000 ft	23.70 9.21 3.23 1.65	10 000 ft	27.71 10.85 3.444 1.55	000 ft	16.04 50.1 1.16
R, ft		477 822 1358 1932		395 607 1061 1666	10	362 548 976 1622	15	450 792 1465 1882
t _{sa} , sec		2.13 2.86 3.78 4.73		1.71 2.24 3.09 4.08		1.69 2.19 3.02 4.05		2.13 2.86 3.92 4.77
t _d , sec		2.50 3.50 3.50		1.60 2.50 3.00		1.60 2.00 3.00		2.00 3.50 3.50 3.50

-

TABLE V.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT, S-II STAGE EXPLOSION (SATURN V) - Continued

q, psi		4.34 4.25 3.62 3.07		3.99 3.41 2.51 2.57		4.42 4.11 3.58 1.63		4.03 3.57 3.13 2.43
с _т		1.43 1.15 0.58 0.38		0.84 0.47 0.36 0.28		1.37 0.90 0.53 0.03		0.65 0.49 0.34 0.19
M#		1.01 1.01 0.95 0.88		1.11 1.04 0.97 0.92		1.22 1.19 1.12 0.80		1.26 1.20 1.14 1.02
ΔP, psi	20 000 ft	6.19 4.10 1.83 1.47	25 000 ft	4.61 2.76 2.31 2.27	27 500 ft	14.43 6.76 3.97 2.54	30 000 ft	4.25 2.87 2.53 2.63
 R, ft	Q	677 825 1282 1471		755 973 1071 1079		448 625 997	κ γ	763 921 1008 960
t _{sa} , sec		3.07 3.38 4.26 4.92		3.82 4.49 5.07 5.57		3.12 3.72 4.34 7.50		۰ .00 10°4 10°5 10°5 10°5 10°5 10°5 10°5 10°5 10°5
t _d , sec		2.80 3.50 4.00 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7		3.50 4.00 5.00 5.00		3.00 3.50 7.00		3.70 4.60 5.50

S.,

TABLE V.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

いないなちょういいろいろのちちょうとうないなないいとうちゃ

2

いたので、「ないないないないないないない」

に見たたちない

にはないないである

PAD - 60 000 FT, S-II STACE EXPLOSION (SATURN V) - Continued

			_			
. µ. 74 µ. 70 µ. µС 1. 82		4.75 4.64 1.14		4.81 4.81 4.80 4.80 4.80		4.32 4.83 4.84 4.83 4.83
1.47 1.28 0.85 0.05		1.40 1.09 0.00		1.49 1.47 1.45 1.42		1.56 1.54 1.51 1.48
1,00 1,1,1 1,42 1,12 1,12 1,12 1,12 1,12 1,1		1.52 1.52 0.87		 22.1 1772 1771 1771		1.92 1.92 1.95 1.95
27.51 11.40 4.35 0.23	55 000 ft	13.68 5.84 0.07	0 000 ft	21.35 16.09 12.25 9.12 	15 000 ft	24.31 19.95 14.32 9.18
332 1486 1414 14624		2627 643 7795	-7	358 405 455 517	7	329 359 415 503
2.56 3.13 3.69 7.22		2.90 3.32 9.79		2.36 2.48 2.60 2.73		2.05 2.16 2.42 2.42
2.50 3.40 3.50		2.80 3.10 3.20		2.50 2.40 2.50 2.50 2.50		2.00 2.10 2.30 2.40
	2.56 332 27.51 1.41 1.47 3.13 4.86 11.40 1.42 1.28 3.13 744 4.35 1.40 0.85 3.69 744 4.35 1.40 0.85 7.22 4624 0.23 0.97 0.05	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

29

ungelaggin elegter hat the

100 C

TABLE V.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT, S-II STAGE EXPLOSION (SATURN V) - Concluded

q, psi		99°1 19°1	4.67		4.32 4.35	4.37 		3.73 3.75
$c_{\rm T}$		23.62 2.11 1.67 19.33 2.12 1.64 13.49 2.13 1.63 		1.81 1.78	1.7 ⁴ 		2.10 2,05	
W# 1				2.30 2.31	2.33 		2.43 2.43 	
∆P, psi	50 000 ft		55 000 ft	21.29 17.32	%.11	60 000 ft	14.92 10.32 	
R, ft	Ĩ	323 354	415 	ις.	328 360	426 	Q	374 442
t _{sa} , sec		1.84 1.95 2.08		1.74 1.85	1.97		1.75 1.87 	
t _d , sec		1.80 1.90	2.10		1.70 1.80	1.90 2.00		1.70 1.80 09.1

2

30

***:

TABLE VI.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

and a second state of the second s

.

.

. •.

-

こう こう いんに思い ないないない

PAD - 60 000 FT; S-IVB STAGE EXPLOSIONS (SATURN V)

Ì

q, psi	4	1.89 2.48 2.77 2.99		3.77 3.44 5.77 4.20		3.60 7.95 4.23 4.50		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c ^r		ર્યું લુક્		2.25 2.10 1.83 1.38		2.16 1.85 1.64 1.27		1.74 1.60 1.47
W#		0.43 0.50 0.53 0.53		- 0.63 0.65 0.68 0.73		0.73 0.77 0.80 0.83		0.89 0.93 0.93 0.93
∆P, psi	Pad	6.12 3.29 2.38 1.63	5000 ft	5.68 ₽.75 2.75 1.63	10 000 ft	12.53 4.99 2.77 1.48	15 000 ft	7.87 3.89 2.00 1.09
R, ft		599 561 1070 1414		476 552 729 1042		318 494 685 1038		384 543 795 795
t. sec		2.49 3.00 3.36 93	~	2.13 2.28 3.18		1.6. 2.23 3.18		2.15 2.47 2.88 3.52
t _d , sec		2.20 2.70 7.00 7.70		2.20 2.20 2.50 2.50		1.70 2.00 2.50 2.50		2.70 2.40 2.40 2.40 2.40
		<u> </u>						

مينو. فيدي: 31

.,

ŗ,

TABLE VI.- SEOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

PAD - 60 000 FT; S-IVB STAGE EXPLOSIONS (SATURN V) - Continued

.		<u> </u>			j	·		
q, psi		+++ +.33 03 24 03		4.35 4.35 4.21 2.71		4.58 4.55 4.46 2.47		4.77 4.76 4.76 1.06
с ^н		1.68 1.59 1.41 0.88		1.61 1.51 1.11 .623		1.47 1.26 1.09 0.20		1.46 1.44.1 0.00
#W		1.00 1.02 1.02		1.12 1.13 1.13 1.13		1.3 1.3 1.03		1.50 1.51 1.51 0.83
∆P, psi	20 000 ft	11.35 5.96 2.22 1.08	25 000 ft	14.46 5.73 2.32 0.98	30 000 ft	10.18 4.38 2.79 0.19	35 000 ft	11.8 8.9 8.9 8.0
R, ft		318 426 708 1124		280 1114 280	-	319 466 577 3194		298 330 397 8,78
t _{sa} , sec		2.30 2.57 3.09 3.75		2.57 2.45 4.114 4.14		2.79 3.19 5.88		2.58 2.69 2.83 10.44
t _d , sec		2.20 2.40 3.00		2.50 3.10 3.40		2.70 3.00 3.30		2.50 2.60 2.80 2.80

TABLE VI.- SHOCK ARRIVAL TIMES, OVERPRESSURES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL:

- Compared and the second and the se

「ころう」「ころ」「「「「「」」」」」

PAD - 60 000 FT; S-IVB STAGE EXPLOSIONS (SATURN V) - Continued

	q, psi		4.81 4.81 		4.80 18.4 	-			4.32 4.33 4.35
	c_{T}		1.49 24,1 		1.59 1.58 1.54		1.69 1.67 1.64 		1.85 1.82 1.77
-	#W		12.1 07.1		1.91 1.91 1.92 1.92		2.10 2.11 2.12		2.29 2.30
•	∆P, psi	40 000 ft	10.46 5.08 	45 000 ft	26.26 16.44 10.24	50 000 ft	28.51 17.67 10.80 	55 000 ft	25.87 19.85 11.59
1	R, ft		302 413 		 242 96T		- 183 228 283 		185 209 267
•	t _{sa} , sec		5.3 5.5		2.04 2.16 -16		1.72 1.84 1.96		1.62 1.73 1.85
	t _d , sec	,	2.30 [.] 2.50 2.50		1.90 2.00 2.20		1.70 1.80 2.00		1.60 1.70 1.80 1.90

33

and the state of the second of the second

TABLE VI.- SHOCK ARRIVAL TIMES, OVERPRESSIJRES AND FLIGHT PARAMETERS AT TIME OF SHOCK ARRIVAL: PAD - 60 000 FT; S-IVB STAGE EXPLOSIONS (SATURN V) - Concluded

F			
	q, psi		3.73 3.73
	сT		2.14 2.09
	WH.		2.39 2.41
•	∆P, psi	60 000 At	16.71 9.80
	R, ft		520
	t sec		1.63
	t _d , sec		1.60 1.70 1.80
	L		<u> </u>

TABLE VII.- LOAD SUMMARY - S-IB EXPLOSION (SATURN IB)

. . .

どうないとないいと言語のないでもないとないです

÷.,

÷

.

:

ć

「日本のなるないとなったいないないないない」

ւ.

÷

psi **p**81 = 2.50 4.45 3.73 889338888 3.00 PIOI 4.65.84 7.65.84 7.65.84 7.65.84 7.65 Pror Ħ . ي. FIOT Pror (ta 2.50 3.44 1.78 4 3 = 4.03 N C) **و** د 4⁴ B L 4 4 **p**81 psi 2.00) - 2.50 101 ° 5.87 PIOT 5.27 . a Å. B ع PloT Pror 3.50 4.62 4 V 2.52 \$ **=** 3.09 ¢, N . 8 8 4 **ور** د 0.18 0.23 0.20 1.16 1.80 2.68 2.35 ٩, A,K Ľ Pad 2000 psi Pa1 PTOT 8 1.50 8.83 8.43 8.47 8.47 8.47 11.22 11.22 11.37 11.28 11.38 10.00 TOT 6 e, ਖ਼ N . t. P ۳ ت n Ħ PIOT Ъ Б 8 **9.**8 2.25 1.72 đ 4 ઞં N N) H Ħ с 88 С 8**8** 4 4 V **4** 18 rsi = 1.00 29.40 TOT 28.65 28.41 28.23 28.25 F.50 **06.1**5 TOT e Ħ N 1.59(t_d P_TOT ц. 3. 7 7.08 7 4 A <u>ფ</u> ສ N 3 ii H **و**ر ್ಷ 0.03 0.13 0.67 0.67 0.67 0.67 A**ح** 4 0.0 61.5 91.5 112.5 157.5 157.5 0.0 61.5 82.5 91.5 157.5 157.5 157.5 ٠ ٠

35

「おいな」である

- ---

	-					10 000 1	r L					
		= 1.08 (t _d	a = 1.00)	t 89	. 1.73	$= 1.73 (t_d = 1.50)$	t B B B	2.56 (1	2.56 (t _d = 2.00)	t 3ª =	= 3.54 (t	3.5^{4} (t _d = 2.50)
•	PP	2 AP	PTOT	PA	2 ÅP	Pror	PA	2 åp	PTOT	PA	2 åp	PTOT
0.0 67.5 82.5 97.5 112.5	-0.28 -1.10 -1.00 1.13 2.58	25.40	25.12 24.10 26.53 26.53 21.98	-0.20 -0.52 -0.54 -0.54 3.19	7.58	7.38 7.06 9.34 10.77	-0.33 -0.11 -0.14 -0.14 -0.14	2.78		0.03 2.88 3.888 3.888 2.888 2.888 2.888 2.888 2.888 2.888 2.888 2.888 2.888 2.888 2.917 2.	1.38	н. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
157.5 180.0	3.04 2.59		28.44 27.99	3.81 3.03		11.39 10.61	4.38 3.21		66. <u>5</u>	2.27		
		Pror	= 26.37 psi		PTOT	or = 9.11 psi		PTOT	r = 4.98 psi	I	PTOT	= 3.60 psi
, ,						12 000 X	20					
	t 88	= 1.08 (t _d	(00.1 = P	t Ba	= 1.72 (= 1.72 $(t_d = 1.50)$	t sa	. 2.60 (= 2.60 (t _d = 2.00)	t 8 8	* 3.65 ($(t_d = 2.50)$
•	P A	2 åp	PTOT	PA	2 AP	PTOT	PA	2 ÅP	Pror	PA A	2 åP	PTOT
0.0 67.5 82.5 97.5 112.5 157.5 180.0	-0.46 -0.68 -0.68 3.41 3.41 3.17 3.17	32. §5	8.28 4.15 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.2	-0.56 -0.69 -0.15 2.16 3.28 3.28 3.28	21.7	6.56 6.43 6.97 9.28 10.80 10.40 10.26	-0.58 -0.35 -0.35 -0.35 -0.35 29	2.26		-0.15 1.11 1.26 1.76 1.77 1.77 1.77	1.08	2.3.5.4.2.93 2.3.5.8.2.93 8.2.98.2.93 8.2.98.2.93
		Fror	= 24.3 psi		ц Ц	F _{ror} = 8.72 psi		PTOT	r = 4.66 psi		PTOL	= 3.45 ps1

TABLE VII.- LOAD SUMMARY - S-IB EXPLOSION (SATURN IB) - Continued

447

36

and the second second

	= 2.61 (t _d = 2.00)	PTOT	1.91 2.15 2.86	5.27	5.68	T = 4.48 psi		$(t_d = 2.50)$	PTOT	1.00 2.53 3.87 3.87 3.15 3.15 3.15	T = 3.07 ps1
	- 5.61 (2 AP		1.96		PTOT		= 4.10	2 AP	0.5 ¹ 4	Fror
	t BB	PA	-0.05 0.19 0.00		3.72			ب هه ۵	P P	0.16 1.99 3.33 2.61 2.52	
	2.20 (t _d = 1.80)	TOT	3.02 3.17 3.80	80.35 07.05	7.13	T = 5.61 ps1		$(t_d = 2.00)$	PIOT	5.46 3.47 4.55 4.55 7.11 7.86 7.63 7.63	r = 6.23 psi
	= 2.20 (2 AP		3.14		TOL		= 2.32 (2 AP	3.56.	PTOT
20 000 ft	ب 8	PA	-0.12 0.03 75	5 6.4 10.5	~~~ 84		25 000 ft	t 88	PA	-0.10 -0.13 0.99 4.03 4.03	
. 20 (1.68 (t _d = 1.50)	PTOT	7.79	28.11 8.51	12.19 12.14	= 10.63 psi	52 (1.95 $(t_d = 1.80)$	PTOT	8.17 8.81 8.87 11.48 13.25 13.25 13.25 12.58	. = 10.79 psi
	= 1.68 (1	2 AP		8.06		PIOL		4) 56.1 =	2 ÅP	8.40	PIOT
	د 1953 - ۲	PA	-0.24 -0.27	- 07 - 07	4.08 4.08			t Ba	PA	-0.73 -0.26 0.47 3.08 4.85 4.18 4.18	
	(00.1 = 1	PIOT	25.72 25.61 26.20	28.69 30.33	29.90	= 28.08 psi		1 = 1.50)	PTOT .	11.41 11.38 19.55 20.63 22.36 22.15 21.11	= 20.21 pst
	t _{sa} = 1.07(t _d =	2 AP		26.32		Lor Id		= 1.58(t _d	2 AP	17.62	PIOT =
	t 85 =	A	0.0- 0- 1-0- 1-0-	2-31 10-1	3.58 3.43			t 89 *	PA.	-0.21 -0.24 1.93 1.93 4.74 4.13 4.13 4.13	
		•	0.0 67.5 82.5	91.5	157.5]	:		•	0.0 67.5 82.5 97.5 112.5 112.5 112.5 112.5 112.5	

TABLE VII.- LOAD SUMMARY - S-IB EXPLOSION (SATURN IB) - Concluded

......

. . .

37

3

上にあっ

1. A. A. A.

	6			Li I	T	_	6			17
	$(t_d = 3.00)$	PTOT	3.65 5.45 5.45 6.69 5.45 6.37 6.34	= 5.20 psi			$\left(t_{d} = 2.50\right)$	P_TOT	3.21 3.28 4.41 5.55 6.59 6.42	
	≖ 3.93 (2 ÅP	3.26	P. TOT			= 3.18	2 ÅF	3.26] «
	t sa	PA	0.39 1.11 2.19 3.43 3.08				t Sg	PA	-0.05 1.15 2.29 3.33 3.16	
	$(t_d = 2.50)$	PIOT	6.75 6.77 6.77 7.64 8.31 8.84 8.84	= 7.77 psi			$(t_d = 2.30)$	Pror	4.51 4.54 4.66 6.84 8.05 8.80 8.80 7.66	
	= 3.00 (t	2 AP	6.58	P. TOL			= 2.80 (t	2 AP	42.4	11
Pad	t sa	PA	0.17 0.22 0.19 1.06 1.73 2.26			5000 ft	t. Sa	PA	-0.03 0.10 2.30 3.51 4.26 3.12	
Pe	$(t_d = 2.30)$	Pror	9.82 9.75 9.75 9.75 10.56 11.46 11.48	= 10.68 psi		200	$(t_d = 2.00)$	PTOT	8.66 8.66 8.58 10.18 11.25 11.25 11.74	- 10 87
	= 2.65	2 AP	9.72	PIOL			= 2.28	2 AP	8.70	IP
	t sa	$\mathbf{P}_{\mathbf{A}}$	0.10 0.03 0.087 0.87 0.87 1.74 1.76				t sa	PA	-0.04 -0.12 -0.12 1.48 3.75 3.04	
	$(t_d = 2.00)$	PTOT	20.12 20.06 20.06 20.69 21.55 21.55 21.23	= 20.75 psi		•	$\left(t_{d} = 1.50\right)$	PTOT	38.02 38.02 37.95 38.97 38.97 19.85 40.19	= 30,11 nei
	= 2.19 (2 AP	20.08	PTOT			1.58	2 Δ Ρ	38.04	iĐ
	t 8a =	PÅ	-0.02 -0.02 -0.15 0.61 1.44 1.15				t 88 =	PA	-0.02 -0.03	
		•	0.0 67.5 82.5 97.5 120.0 157.5 157.5					٠	0.0 67.5 87.5 97.5 120.0 157.5 180.0	

TABLE VIII.- LOAD SUMMARY - S-IVB EXPLOSION (SATURN IB)

| 1

h

1.

M

<u>3</u>8

べいて

4.,

TABLE VIII.- LOAD SUMMARY - S-IVB EXPLOSION (SATURN IB) - Continued

いたいちゃう あだい

÷

ういい してんたいがく ため からのない ない

						10 000	0 ft					
	t Ba	= 1.56	$\left(t_{d} = 1.50\right)$	t 88	= 2.22 ($(t_d = 2.00)$	- 88 £) 91°£ =	$(t_d = 2.50)$	t se :	= 4.15 ($(t_d = 3.00)$
•	PA	2 AP	Pror	PA	2 AP	PTOT	PA	2 AP	PIOT	₽ <mark>4</mark>	2 AP	PIOT
0.0 67.5 82.5 97.5 120.0 157.5 180.0	-0.19 -0.52 -0.61 4.1 4.0 8.8 8.75 9.08	49.96	49.77 49.44 49.35 51.66 53.55 53.55	72.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	10.42	10.09 10.09 10.39 14.81 14.48 13.74	-0.15 0.51 0.82 2.89 4.15 4.15 2.88	3.06	8.8.8.9.7.7.7.9 8.6.9.9.9 9.9.9.9	0.19 1.13 1.31 1.31 2.21 2.21 2.79 2.41	1.66	2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49
		F TOT	= 51.39 psi		PTOL	= 12.33 psi		PTOT "	= 5.38 psi		PTOT	= 3.71 psi
							ł					
			ſ			α G	11 0					
	t sa	= 2.15	$(t_d = 2.00)$	t sa	= 2.45	$(t_d = 2.20)$	t sa =	= 3.08 ($(t_{d} = 2.50)$	t sa	11.4 =	$(t_d = 3.00)$
•	PA	2 CP	Pror	PA	2 🕸	Pror	PA	2 🖉	Pror	PA	2 AP	PIOT
0.0 67.5 82.5 97.5 120.0	94.4 19.0 19.0	20°91	15.38 15.41 16.09 16.51 20.48	-0-58 -0-36 2-91	8.30	7.72 7.94 8.66 11.21 12.21	0-0-1. 54.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51	3.20	2.72 3.63 4.32 7.18 9.04	0.16 1.28 1.45 2.10 2.43	1.58	1.74 2.86 3.03 5.68 7.01
157.5 180.0	14°C		20.09 19.43	4.31 3.37		12.61 11.67	4.90 3.42		8.10 6.62	3.75 3.49		5.33 5.07
		PTOT	= 17.66 psi		PIOL	= 10.50 psi		PTOT	= 6.16 psi		PT0T	= 3.72 psi

39

C. State

10 A A A

	$(t_d = 2.80)$	PTOT	84 66 76 76 76 76 76 76 76 76 76 76 76 76	= 5.14 psi	•		$\left(t_{d}=3.30\right)$	PTOT	- 22 - 23 - 24 - 24 - 24 - 24 - 24 - 24	= 4.22 psi
	3.46	5 7 7	2.50	Pror -			= 4.08	₽ N	1.86	Pror
	t sa	PA	21-1-2-4 21-1-2-2-4 21-1-2-2-4 21-1-2-2-4 21-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-				t 88	PA A	9.1.1.6.4.9.9 9.2.9.9.9 9.6.9.9.9 9.6.9.9 9.6.9 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9	
	d = 2.50)	Pror	6.51 6.75 7.46 7.87 9.87 11.52 10.46 10.28	isg 80.9 =			$(t_d = 3.00)$	PTOT	5.18 6.25 8.37 8.37 8.57 8.57	r = 7.57 psi
	2.78 (t _d :	2 AP	6.56	Pror "			3.32	2 CP	5.08	Fror -
) ft	t 88 =	PA	-0.05 0.19 0.20 0.19 0.52 7.50 7.72			o ft	t 88	Å	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
20,000	$(t_d = 2.20)$	Pror	17.44 17.66 18.56 22.50 22.50 21.55 21.55	= 20.05 ps1		52 000	$(t_d = 2.80)$	^P TOT	10.22 10.19 11.31 13.91 14.66 14.46	= 13.02 psi
	= 2.32 (2 2 8	17.56	Pror			= 2.98	2 2 2	10.34	Pror
	t Ba	PA	00000440 9959999999999999999999999999999				t 88	PA	0-0- 21-0- 72:0- 72:0-4 72:0-4 72:0-4 10-4 10-4 10-4 10-4 10-4 10-4 10-4 1	
	$(t_d = 2.00)$	Pror	¥¥ ¥¥82288 44365666	= 37.08 psi	X		$\left(t_{d}=2.50\right)$	PTOT	⁴ 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	2.07	2 20	34.62	Pror -			= 2.59 (2 26	54.54	PIC PIC
	۳ د ل	PA	81.0 21.0 21.0 21.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2				t t	₽d T	900 m m 4 4 1 12 8 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	-
		•	0.0 67.5 82.5 97.5 120.0					•		

TABLE VIII.- LOAD SUMMARY - S-IVB EXFLOSION (SATURN IB) - Continued

40

...

						30 000 Ft	o ft					
	t 88.	= 2.56	$t_d = 2.50$	t 88	= 2.80	$t_{sa} = 2.80 (t_d = 2.70)$	t 88	: 3.23 (t	$t_{sa} = 3.23 (t_d = 3.00)$	t sp	5.69 ($t_{g_{B}} = 5.69 (t_{A} = 3.10)$
•	PA A	2 78	Pror	PA	2 AP	Pror	Å	2 12	PIOT	PA	2 AP	P TOT
0.0 67.5 82.5 37.5 120.0 157.5	0014044 1885858	32.78	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		18.88	88.8 88.8 88.8 88.8 8.8 8 8 8 8 8 8 8 8	0,0,0,4,0,4,0,4,0,4,0,4,0,4,0,4,0,4,0,4	6.72	6.68 7.66 7.96 10.76 10.88 10.48	900000000 94888838	0.38	2.24 2.44 2.44 2.44 2.44 2.44 2.44 2.44
		PTOT	= 3 5.75 psi		PIOT	= 22.02 psi		PTOT	$\mathbf{\tilde{P}}_{\mathbf{TOT}} = 9.66 \text{ psi}$		LOL L	P _{TOT} = 1.69 psi

TABLE VIII. - LOAD SUMMARY - S-IVE EXPLOSION (SATURN IB) - Concluded

•, `

部に行

L. ALLAN

41

	$\left(t_{d} = 4.00\right)$	PTOT	2.51 2.96 3.25 3.14		Fror = 3.43			$t_d = 2.8c$	Prot	2.59 2.13 2.14 2.24 2.24 2.25 2.25 2.25 2.25 2.25 2.2	7.03 5.86	$\tilde{F}_{TOT} = 4.67$
	- 5.74	2 AP	2.56		164			$t_{BA} = 3.99$	2 dP	2.52		<u>1</u> д
	t B B B	FA	0.00 0.00 0.69 0.69 0.69 0.69	5.35 5.03				т с т	PA	0.01		
ľ	3.00)	PTOT	5.69 6.26 7.15 7.15	8.79	= 7.18	-			PTOL	7.18	11.33 10.38	F _{10T} = 9.05
	3.89 (t _d =	2 ÅP	5.34		PTOT			2.45 (t _d =	2 AP	7.48		₽ ¹ 101
Pad	с 88 89 89	PA	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	0.4°€ (1,4°€)) ft	t	$\mathbf{P}_{\mathbf{A}}$		5.8. 6.8. 6.8.	
P	= 2.00)	PTOT	8.8.8.8.8 8.8.8.8 8.8.8.8	34.51 35.02 34.67	= 33.96		5000	= 1.50	PTOT	18.34 17.95 17.98 19.51	8.12 8.13 9.03	= 19.51
	2.19 (t _d	2 A P	33. 34		Pror			1.71 (t _d	2 AP	18.58		P. TOT
	t 88	A	0.0 -0.25 0.49	1.23 1.68 1.33				t sa =	PA	-0.24 -0.53 -0.66	2988 N N N N N N	
	= 1.50	Pror	95.47 95.40 95.70 95.70	888 887 987 198	11. fr =			00'T = 1	PTOT	4774 4866	42.00 45.15 72.75	
	1.58 (t _d	2 AP	95 "H		Fror			1.10 (t _d =	2 AP	44.20		LCL 4
	t 88 1	A1	5,5,7,% 0,0,0,0	4899 000				t Br I	P A	9.9.9 2.2 2.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 8 8 1 1 1 1 1 1 1	
		•	0.0 61.5 82.5 91.5	112.5 157.5 180.0					•	0.0 61.5 82.5 91.5	157.5 157.5 180.0	

TABLE IX.- LOAD SUMMARY - S-IC EVPLOSION (SATURN V)

42

} _ د رو

•

ی ب م A URLE IX. - LOAD SIPMARY - .- IC EXCLOSION (SATURN V) - Cont'nued

			,				·	· · · · · ·	_						
	= 2.50 <mark>)</mark>	Pror	2.66 2.66		25 F	еч 8.8	r = 4.76			= 2.50)	- TOT-	2.19 3.19 4_00	20°2	18.	r = 4.52
	3.49 ft.	2 AP		2.72				-		3.55 (t _d •	2 AP	R			P
	t sa =	PA	90°00	1.10	2.8.v 2.8.v	3.19 2.18				د 88 =	PA A	999 888	3.58	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
	= 2.00)	Prvr	5.52	10	2.6. 2.6.	ਸ. 2 6	= 7.90			= 2.00)	Pror	5.45 24.5	6.72	51.01 91.6	= 7.91
	2 (t _d	2 AP	 	- <u>-</u> ส. 			strating the second sec		: :	• 2.44 (td -	2 AP	ц С		•	Lot
t o	له ۳	ď	-0.42	191		ч. ч.			Ł	t sp	ค์	୍ଷ ଦୁ ଜୁ ଜୁ ଦୁ ଦୁ ଦୁ ଦୁ ଦୁ	2.88	2.]
10 000	= 1.50)	PTOT	14.87 14.55	12	19.17	18.78 18.01	= 16.54		15 000	= 1.50	TCT	15.36 15.21 15.83	18.46	19.74 19.58	= 17.82
	1.72 (t.d	2 AP		15.14						1.69 (t.	2 AP	16.06			PIOT
	ا تە در	PA	-0.27	(G		5.6 ~~~				t S B B	PA A	040 040 040 040 040 040 040 040 040 040	2.40	3.58	
	- 1.00	PTOT	59.95 59.95	28	87 5	42.45. 41.91	= 40.53			(00.1 = 1	Pror	なれる	57 58	38.69 38.29	- 36.62
	1.10 (3 _d	2 AP		39.58						1.10 (t _d	2 ÅP	35.12			101 121
	دد مع 1	d, V	5.5) (6,8 0, 0,	2.87 2.33]			t	₽ <mark>4</mark>	-0-50 -0-75 84-0-			ĺ
		•	0 4 0 5	5.00	2.27	10.001					•	0.0 67.5 68.5	34.5	157.5	

43

ź

•

ZAMER IX.- LOAD STREAMER - S-IC EXPLOSION (SATURN V) - Concluded

Г	Т	1		<u></u>			<u>م</u>		<u>。</u>		T		e l	Q. IC.	Q -4				2
	3.00		5. 4	1.29		4 4 0 0) -	~. 	= 3.8 6		ĺ	<u>. 3.0</u>	TOL	5.52 5.62 5.62	0				T = 3.55
	4. 74 ft		2 AP		1.52				TOT.			- 4.44 (td	2 åP		1.22				P10L
	+	~	PA A	10 0 0	58. 58.	้มู่เ	26.3	2.82				t 8m	۷ _ط	0.30 1.43	8.8	3.52	5.75 5.75	70.2	
	102 0 -	. 1	PIOT	8°.2		ਸ <u>਼</u>		5.45	r = 5.18			a - 2.00)	PTOT	01.21 14.94	14.41	20.10	11.61	11.61	= 17.36
	1 72 2	P.) ~··	2 JP		2.46				TOT."			- 2.16 (t _d	2 ÅP		15.12				PTOT
*			PA	8	 	3.65	* °	2 . 99	-		ಭ 8	t 83 t	PA	-0.18 -0.09	12.0	ດ. ຮ ∽.≁	5	5.99	
8		(m.> =	PTY	55.1	1.7 9.4	10.92	12.21	22.11	= 10.20		25 000	= 1.50	Pror	28.51 28.47	8.0	8.9 2 2	33.65	х. <u></u> 3	= J1.16
		5.2× (4d	2 AP		7.66				PTOT		•	1.59 (t _d	2 ÅP		28.80				TOL
		28 = 88 =	₩ A	1.0	0 0 0 0 0	5.26	5°	¥0				t St St	4 ^r	-0-29	0.42	58	1	71.4	
		66.1 =	PIOL	19-53	19.49 20.25	8.83 6.93	56 7. %	おい	= 22.15	-		= 1.00)	LOL AT	42.24	12.83	54 1 2 2	46.53	46.48	22.44 =
		1.65 (t _d '	2 ÅP		10.76	21.64			FIOF			1.07 (t _d	2 åP		42.42				
		tst =]	PA	-0.23	0.21	5	- - -	91.4				ي لا لا	d.	0.28 0.28	X 7	5.0	21	8	
			•	0.0	67.5	36	S.a.	1000					•	0.0	6	5.5	12.12	180.0	

TABLE X .- LOAD SUMMARY - S-II EXPLOSION (SATURE V)

「日本にたるの目的」

「ないないないない」

いうこう こう とうというでもないないないない

·				.						·
	(p5.5 = 1	PIOT .	๛๛๛๛๛๛๛๛ 8861ชาวีชีวี	= 5.73			(00.6 - 1	TOT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	= 5.66
	4.73 (t _d	2 A P	90. 4	Б. Ц			4.08 (t _d	8 N	κ. Έ	EOI -
	4 4 1 1 1 1	٩	00111200 8985838				ی هو د	₽. A	4.09.09.09.09 4.09.09.09 7.20.09	
	(<u></u>	PIOT	4.7 4.7 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	8.44			- 2.50)	TOT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	= 8.55
	3.78 (t _d -	2 ÅP	6.82	E LOL LOL			3.09 (t _d	2 &P	6.46	FIOL
	t _e = 3	P.	84.0- 6.7-0-1-1-4 8.7-1-1-4 8.2-1-1-1-4 8.2-1-1-1-4 8.2-1-1-1-4 8.2-1-1-1-4 8.2-1-1-1-4 8.2-1-1-1-4 8.2-1-1-1-4 8.2-1-1-1-4 8.2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				te = 3	₽,¥	0,0,0,0,4,4, 19,0,0,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	
Pre	(05.5 .	PIOT	897971998 89797998 897867389	17-87	-	5000 ft	= 2.00)	PTOT	ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼	- 19.86
Ì	2.86 (t _d :	2 AP	16.78	101 101			2.24 (td :	2 AP	18.42	F TOT
	t 88 = 0	۲ <mark>۹</mark>	2000 1 2 8 2 2 8 6 7 4 8 2 7 8 8		/		t sa = 2	PA	6664.9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	2.00)	Pror	¥¥¥¥¥¥¥ ¥¥is	5.5-			1.60)	Pror	4.99 4.99 19 19 19 19 19 19 19 19 19 19 19 19 1	= 48.40
	2.23 (t _d =	2 8 P	×.42	E E E			-71 (t _d =	2 &P	4°-14	P_TOT
	t 11 12	۹ . ۲	0000 0003 0003 000 000 000 000 000 000				t _{se} = 1.71	4 4	3001288 88901888	
		•	0.288 2.282 2.252			-	-	•	0.0 67.5 88.5 97.5 122.5 127.5 127.5	

45

ちょうしょう しょうかんかい しょうかんかい かいまちまん ちょうちょう しょうかんしょう いちょうしょう

ションディー

ar 40-1 - 1 - 1 -

and the set of the set of the

TABLE 1.- LOAD STREARY - S-II ECTLOSION (SATURE V) - Continued

									_
	(00.6 =	PTOT	5.19 5.19 5.48 5.48 5.79 5.79	= 5 . 08		1 = 3.50)	Pror	8.4.4 4.4.4 7.4.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	= 4.04
	4.05 (t _d	2 AP	3.10	Pror -		4.77 (t _d	2 a p	2.28	P. TOT
	B D C t	PA	0.09 1.23 2.14 2.74 2.69 2.69			t sa E	, PA	0.18 1.15 2.37 2.37 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53	
	- 2.50)	Pror	6.57 6.97 7.59 7.59 7.59 7.59 11.04	п. е =		= 3.00)	PIOT	3.68 4.55 6.39 6.32 6.13 5.75 5.15	= 5.66
	3.00 (t _d '	2 åP	6.88	PIOT		2.90 (t _d	2 AP	3.26	ц. Б.
2	t54 = 3,	d. V	16.0 64.0 74.2 74.4 74.4 74.4 74.4 74.4 74.4 74.4		z	t _{se} = 7	₽ , ≺	0.41 2.59 5.53 5.53 5.53 5.53 5.53 5.53 5.53 5	
90 QT	= 2.00)	PIOT	<mark>សុទុ</mark> នុន្ទភ្នេទ តតតនិសិសិសិសិ	= 2 3. 26	55 000	= 2.50)	TOT	200 200 200 200 200 200 200 200 200 200	- 11-80
	2.19 (t _d 1	2 AP	21.70	EOE IAT		2.86 (t _d	2 MP	9-52	E
	2 8 8 8	م ۲				پر ۳	₽, ₽	14.0 0.19 0.19 0.19 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	
	1.60)	LOL LOL	ਲ਼¥¥₽₿%& ₽₫₿₿₿₿₿₽	- 5 6.81		[m.2]	TOT	ччхүххү Хоёасэх	9 1. ¥ =
	1.69 (t _d =	28 N	55.42 [°]	р IPI		2.13 (t _d =	2 P b	80.95	Jog Log
	н н ц	4	4 4 4 4 4 W W W			t 1	4. V	6,00 % 4 4 W	
		•	0.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5		-		÷	0.0 2.28 2.28 0.05 2.05 0.05 2.05 0.05 2.05 0.05 0.05	

PARLE X.- LOAD SUBBRY - S-II ECTLOSION (SATURE V) - Continued

ならったちちょうであるとなっています。

- デオレビー せんだ

		_				 r	<u> </u>	T	T	
	= 4.00)	Pror	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.28 5.28	= 4.67		q = 5.00)	Pror	* * * * * * * * * * * * * * * * * * *	r = 5.81
	r 4.92 (t _d	2 AP	2°5		51 61	ŀ	5.57 (t _d	2 A P	4.5.4	PIOL
	t 58.7 Å	Å	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2-19			t B B B B B B B B B B B B B B B B B B B	۹ ۲		
	(05.6 -	Pror	។ ១.១.៩.៩	6.18 6.18	= 6.18		= 4.50)	Pror	4.65 5.78 6.95 7.17 1.17 1.11 6.97	T = 6.45
	r L G	2 AP	3.66		LOI LOI		5.07 (t _d ·	2 ÅP	4.62	PTUT
	t = 4.26	P.	29-1-2 29	2.52 5.52 5.52		บ	tss = 5	PA	9.0 8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	
\$000 ¥	(av.E .	101 101	64.6 64.8 8.9 8.8 8.8 8.8	4.51 1.13 1.13	16.01 =	25 000 ft	(00.4. =	Pror	9.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	7.81
	= P3) 85	2 AP	8.20		Parts 101		= 4.49 (t _d	2 ÅP	5.52	L. L
	t = 3.38	AV	0.1 1.18 3.64 3.64	558 - n N			t 5 6 1 1 1 1	Å	0.1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	= 2.80)	P.10T	4.8.8.6 4.8.8.6 4.8.8.6	90.91 90.91 10.91	= 14.73		(t _d = 3.50)	Lon Lon	२. २. २. २. २. २. २. २. २. २. २. २. २. २	1 #
	= 3.07 (t _d =	2 42	12.38		Pror.		3.82 (t _d -	2 A P	8	
	t # -	ď	0°00 45°0 94°0 94°0 94°0	885 888 8			1 1 1 1 1 1 1	ď	0.42 7.47 7.47 2.47 2.49	
		•	0.0 61.5 81.5	120.0 0.0 0.0 0.0 0.0 0.0 0				•	0.0 61.5 81.5 158.0 151.5 151.	

47

 $\mathbf{F}_{\mathbf{TOT}} = 7.81$

F_{TOT} = 11.67

ž 1 TABLE X .- LOAD STREARY - S-II TYPLOSION (SATURN V) - CONCLUDED

1

					27 500 ft	2					
t	= $3.12 (t_d =$	= 3.00)	t 88 =]	<u>.</u> ~2 (t _d	= 3.50)	t = 4	4.34 (t _d = 1	= 4.00)	t Se =	7.50 (t	$7.50 (t_d = 7.00)$
ď	2 AP	PTOT	۷ _ď	2 A P	PTOT	PA A	2 a p	PTOT	PA	2 A P	PTOT
9-1-1- 9-6-5-8-	28.86	4.4.5.8 4.4.5.8 7.4.5.8	0.02 2.03 2.03 2.03 2.03 2.03 2.03 2.03	13.52	13.67 14.45 15.65 17.41	0.24 1.42 1.81	16- 7	81.8 85.6 7.601	0.05 0.46 0.51 0.51	5.08	ኯኯኯ ኯ፟ጜ፞ፘ፟፼፞
185		¥ 7,8,8 7,8,6	2.55 2.62 2.41		18.07 14.71 15.93	<u></u>		1.01 1.01 1.01 1.01	0.9 1.51 1.21		6.00 6.79 6.29
		= 31.95		LOL LA	= 16.09		TOT	= 9.45		Fror	= 5.88
					30 000 12	ع ا					
۳ هر	(07.č = b ³) 10. ⁴ =	(01.č =	-7 	P (t ^q	(ov•† '=	t sa = 5	= 5.00 (t _d = 4.50)	= 4.50)	ب ه ه	2.96 (t	5.96 (t _d = 5.50)
4	2 AP	a tor	P.	2 AP	Pror	ď	2 AP	PIOT	₽ d	2 AP	PTOT
0 1 0 X 4 1 0 8 8 X 8 X 6 6	8.50	8.58 8.10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.0 7.7 7.7 7.7 7.6 7 7 6 1.0 2 1.0 2 1.0 2 1.0 2 1.0 2 1.0 2 1.0 2 1.0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 0 0 0 0	5-74	5.83 7.19 9.07 9.09 9.09 9.09 1.99 1.99 1.99 1.99 1.99	2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	h78	4.86 6.08 6.08 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7 7.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-0.14 -0.14 0.68 0.93 0.93 2.19 2.19	5.26	~~~~~ 1894 01-252

48

Fror = 6.44

 $\mathbf{\bar{F}}_{\mathbf{TOT}} = 6.80$

Pror = 8.13

Pror = 11.12

۲.

いいたいで、ないまたので、「「「「「「「「」」」」

TABLE XI.- LOAD SUMMARY - S-IVB EXPLOSION (SATURN V)

									Vor o	_ I 1	4 x x 4	- 4 m
÷,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.49 (t _d	= 2.20)	tse = 3	3.00 (t _d =	106.5 = 1	1 88 1	۹ ۹ ۹	(rd = 2.10)	, es		
	PA	2 b P	PTOT	P.	2 &P	Pror	Å	2 &P	PTOT	ď	2 AP	Pror
000	કંક્રંક્	40° 01	भूदः संदृत्त	0.17 25.0 91.0	6.58	6.75 6.80 6.77	0.22 0.32 0.43	4.76	88.5 91.6 91.6	8 8 8	3.26	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 1 0	2888 0 - 1 0		58, <u>8</u> ,	8.1.1.8		9.5.0 9.5.6	198.8.X		2-30-1 2-1-0-1 2-1-0-1			ッッ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
-	1				<u> </u>	н		P TOT	1		P	= 5.20 psi
						5000 ft	£					
*		2.13 (t _d	(06-1 = 1	t 8 1	2.20 (td =	d = 2.00	t 88 = 2	= 2.63 (t _d :	d = 2.20	t 88 =	3.18 (t _d	d = 2.50)
	A A	2 AP	Pror	ď	2 AP	PTOL	A A	2 AP	Pror	PA A	2 AP	PTOT
9994000	99978978	ш.%		6001900 80033800	9.70	9.6 7.6 4.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	6.00 % ۲ ۲ % 8.4 % ۲ ۲ % 9 4 %	5.46	5.38 5.50 7.51 8.77 8.40 8.40 8.40	૦૦૦ ૧૭.૨.૨.૨.૨ ૧૭.૨.૨	3.26	222222 222222 2222222

49

Fror = 5.24 psi

Pror = 7.30 2st

Pror = 11.16 pst

P_107 = 12.75 pst

- Continued
5
(SATURN)
EXPLOSICE
- S-IVB
OAD SUMMARY
Ă
E XI
TABLE

			·	<u> </u>		<u> </u>			
	1 = 2.5d	PTOT	ዾ ጜቔኇ፞ጜፙ፞፞፞ፙ፞፞፞፞፞፞፞	= 4.78 psi		$(\mathbf{t}_{d} = 2.79)$	PTOT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	, = 4.37psi
	3.16 (t _d	2 P B	2.56	TOL		3.52	2 <u>1</u> 2	2.18	ιοι Id
	t 88	4 V	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13			ی کو در	PA A	-0.18 9.60 7.60 1.41 1.69	
		Pror	6.49 6.46 6.46 6.46 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13	= 7.42 psi		1 = 2.40)	PTOT	3.55 4.19 7.19 7.19 8.80 8.40 8.40	= 6.45 psi
	2.59 (t _d	2 7 6	5.5	PTOT		2.88 (t _d	2 AP	00.4	IN.
t	t 89 =	Å	2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		ع	به هر ا	PA	-0-41 0.19 0.77 0.77 7.19 7.19 4.40 4.40 7.15	
10 000 11	[= 2.00)	PTOT		= 11.72 pst	15 000	d = 2.20)	PTOT	71.11 54,51 67,51 77,51 77,51 71,51,	= 10.14 psi
	2.23 (t _d	2 C B	9.98	TOT		2.47 (t _d =	2 A P	7.78	Id Id
	₽ Ba	P F	¥4,69,99,60,000			يد يع ا	₽ <mark>4</mark>	666 464 29.0- 29.0- 29.0-	
	= 1.70)	Pror	5458888 54558888 59558888	= 26.49 psi		= 2.00)	PTOT	80.21 21.21 21.21 24.81 24.81 81.91 81.91	= 17.63 psi
	1.81 (t _d	2 2 8	S	P. 101		2.15 (t _đ	2 A P	15.74	Id.
	ي ت ا	4	99997555 299759	1		а В Ц	PA	9 9 9 9 4 4 K	
		•	0.0 6.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72			·	•	0.0 67.5 97.5 120.0 157.5 180.0	

50

- State - Contraction - Contractio - Contraction - Contraction - Contraction - Contraction - Contrac

TABLE XI.- LOAD SUMMARY - S-IVB ECHLOSION (SATURE V) - Continued

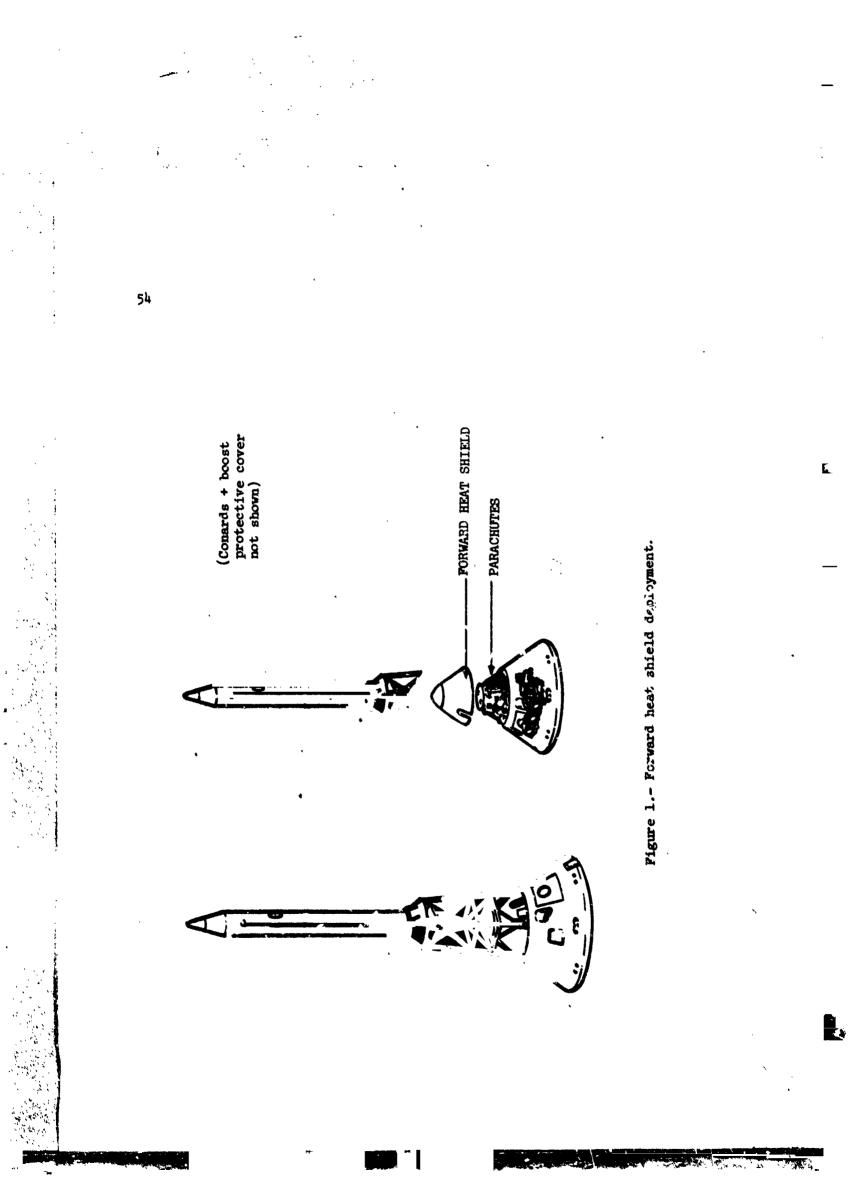
:,

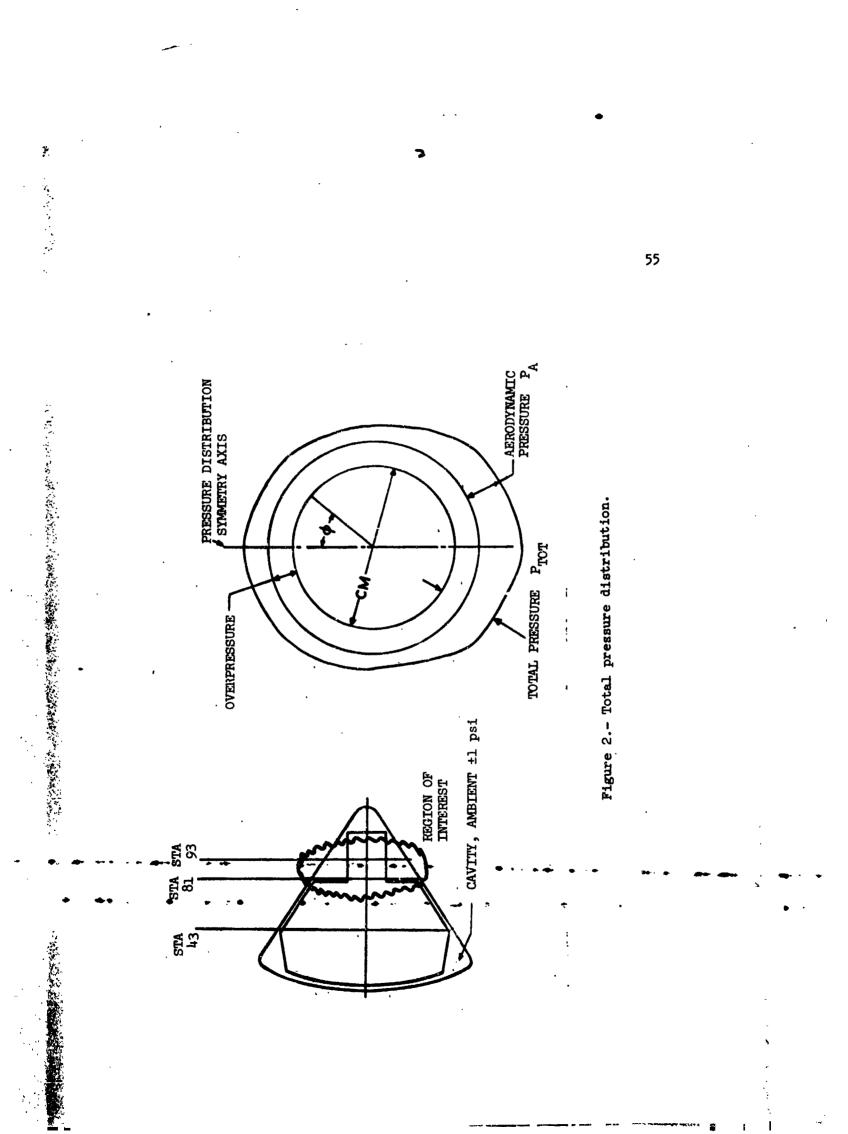
_							·		
	(00.č = 1	Pror	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	= 4.76 ps1		(04.6 = 1	P IIOT	2.30 2.42 2.41 2.66 5.66 5.66 5.79	= 3.79 psi
	3.75 (t _d	2 AP	2.16	PIOT		4.14 (t _d	2 AP	1.96	P. TOT
	t se =	PA A	0.36 7.113 7.48 2.94 2.94 2.94			t 89 11	PA PA	0.34 1.06 2.41 3.10 1.89	
	d = 2.70)	PTOT	4.53 7.98 7.98 9.12 9.12 8.14 8.07	= 6.96 ps î		d1 = 3.10)	Pror	4 4 4 5 4 5 7 5 7 6 7 8 7 8 7 8 7 8 7 8	= 7.22 psi
	3.09 (t _d	2 CP	मम" म	P. TOT		3.45 (td	2 AP	49.4	Fror.
	t se =	P.A	0.09 42.0 0.82 9.4.6 9.4.6 3.70 3.70 3.63			t 80 11	PA A		
\$000 \$	= 2.40)	Pror	н 1.2.8 1.2.9 1.7	= 14.50 r st	11 80 82	= 2.80	PITOT	11.28 11.28 11.28 11.29 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 14.27	= 13.98 pst
	2.57 (t _d :	2 (2	п.9	P. TOT		2.96 (t _d	2 AP	31.46	P_TOT =
	t 88 = 2	P.	90000000000	•		t 189 =	PA A	0.0 0.29 0.29 0.29 0.29 0.29 0.20 0.20 0	ч
	= 2.20)	Pror	8 4 5 6 6 7 8 6 8 7 8 7	= 25.23 pst		= 2.50	PTOT	8:55 8:55 8:55 8:55 8:55 8:55 8:55 8:55	Pror = 31.38 per
	2.30 (t _d	2 AP	22.70	PIOT		2.57 (t _d	2 AP	28.92	FIOT
	t 181 = 2	A ."	0-0-1-0-4-4-4 1-0-0-1-0-4-4-4 1-0-0-1-0-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-			t 8	PA	9-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	
		٠	0.0 67.5 97.5 128.0 137.5				•	0.0 67.5 97.5 120.0 137.5	

TABLE XI.- LOAD SHAMKY - S-IVB EXPLOSION (SATURE V) - CONCLUDED

						30 000 ft						
	₽ ₽ ₽	$t_{sa} = 2.79 \left(t_d \right)$	= 2.70	ل ا 19	$t_{sta} = 3.19 (t_d = 3.00)$	= 3.00)	t 58 = 1	5-37 (t _d	$t_{ga} = 3.37 (t_d = 3.10)$	t 88 =	5.88 (t	$t_{sa} = 5.88 (t_{d} = 3.30)$
•	đ	2 45	Pror	PA	2 æ	PTOT	PA	2 AP	Prot	PA.	2 AP	PTOT
0.0			20.62	-0.12		8.64	01.0		5.68	41.0		0.52
61.5	15.0	-	20.87	0.11		8.87	0.95		6.53	3°0		1.0
86.5		20.36	21.68	1.70	8.76	10.46	2,24	5.58	8.7	3.0°	0.38	1.06
5.16		-	11.12	4		16°21	5:1		51-6	まっ		1.22
120.0		*)==	× 14	5.3		14.31	4.87		10.45	1.53		1.91
237.5			- , , ,	3.98		12.74	2.78	-	3.36	2.33		2.71
180.0			2.48	3.62		12.38	2.55		8.13	2.21		2.59
		اھ	= 23.48 psi		10	7 = 11.62 psi		IP.	P = 8.30 psi		10-1	Parm = 3.54 pst
					51	ı		101	1		121	

ſ

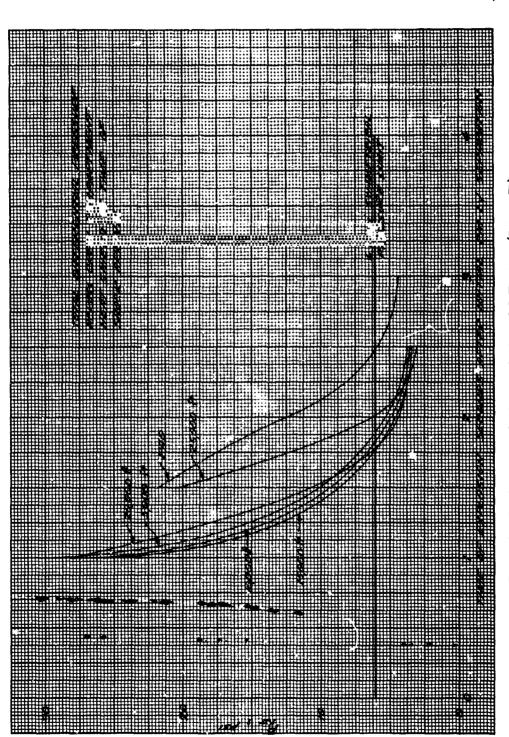

TARLE XII.- REQUERED NAMERIC TIMES - PAD TO 60 000 FT - SATURE IB AND V

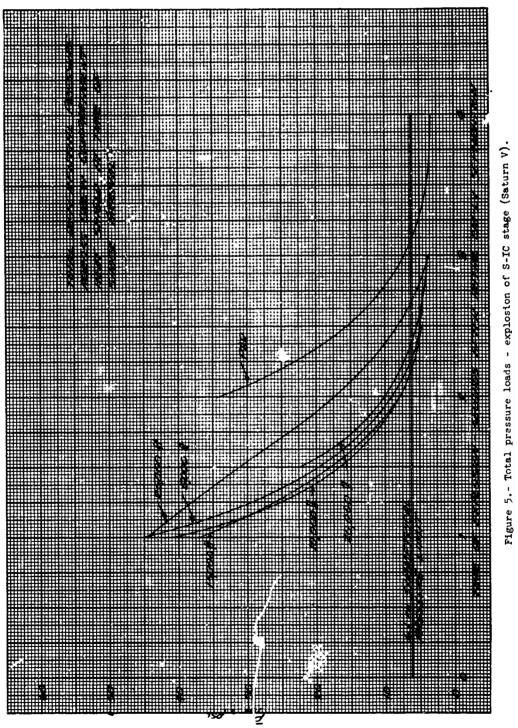

1

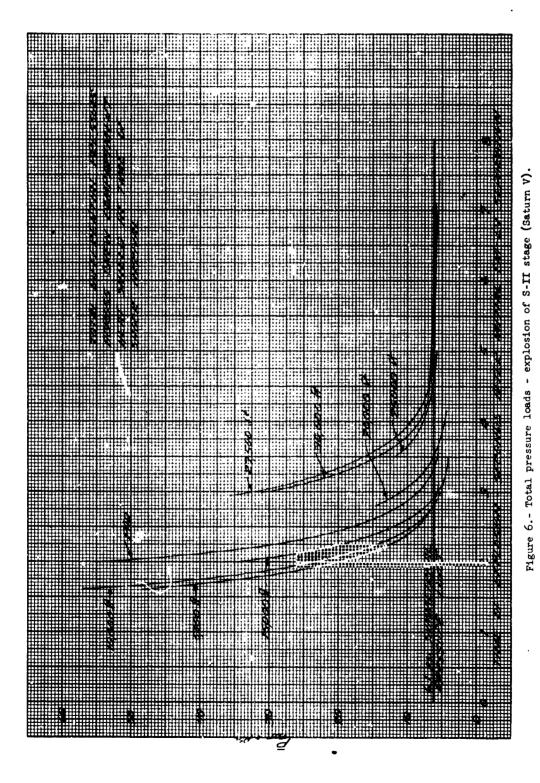
がないたちをいたいないないという

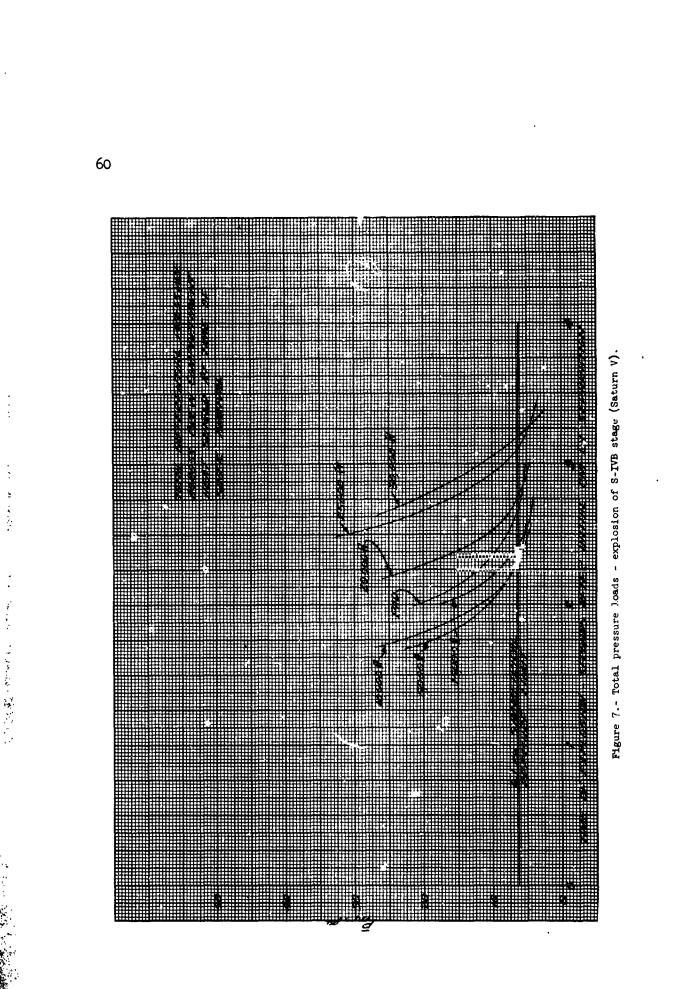
· Lan Section

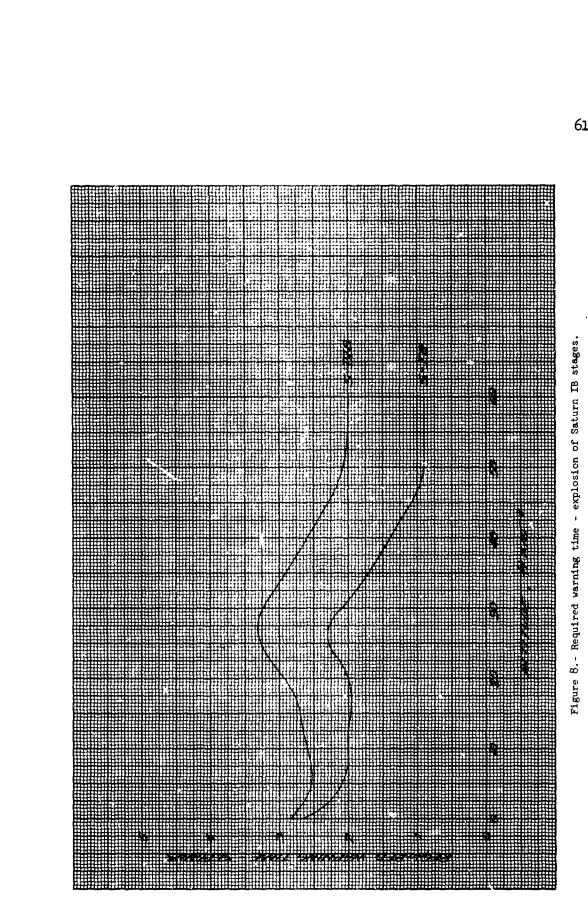
		SATU	SATURN IB				SATURE V	A A		
		8- 1 8		s-IVB		8-IC		8-11	S-IVB	AB
ALTINE It x 10 ⁻³	t 55, seec 7 = 1	T = t = + .20, sec	t _{ss} sec T =	4 8 8 8 8	+ .20, t _{ss} ,sec T	T = t _s + .20, t _{es} ,ecaT sec	t 53-862	= t 55 + 555	.20, t _{ss} ,sec T	T = t _{ss} + .20, sec
0	14-2	2.67	2.65	2.85	3.10	3.30	3.31	3.51	2.68	2.88
<u>``</u>	1-89	2.09	2.35	2.55	2.26	2.46	2.83	3.03	2.33	2.53
9	1.63	2.03	2.40	5.60	2.18	2,38	2.80	3.00	2.30	2.50
15	1.76	1.96	2.50	2.70	2.18	2.38	2.93	3.13	2.43	2.63
କ୍ଷ	1.73	1.98	2.71	2 91	2.38	2.58	3.50	3.70	2.76	2.96
8	2.10	2.30	3.23	3.28	2.67	2.87	h.55	4.75	3.13	3.33
27.5	1	1	l	1	1	ł	5,17	5.37	1	ł
8	1.90	2.10	3.05	3,25	2.30	2.50	5.68	5.88	3.20	3.50
32	7.56	1.70	2.70	5.90	2.00	2.20	3.20	3.40	2.80	3.00
04	1.20	1.40	2.40	2,60	1.40	1.60	2.70	2.90	2.50	2.70
45	0.90	1.10	2.10	2.30	0.00	1.10	2.40	2.60	2.20	2.40
8	u1.0	06 , r	1.90	2.10	07.0	0.00	2.10	2.30	2.00	2.20
55	0.70	06-0	1.80	2,00	0.70	06.0	2.00	2.20	1.90	2.10
60	0.70	0.90	1.80	2.00	0.60	G.80	1.90	2.10	1.80	2.00



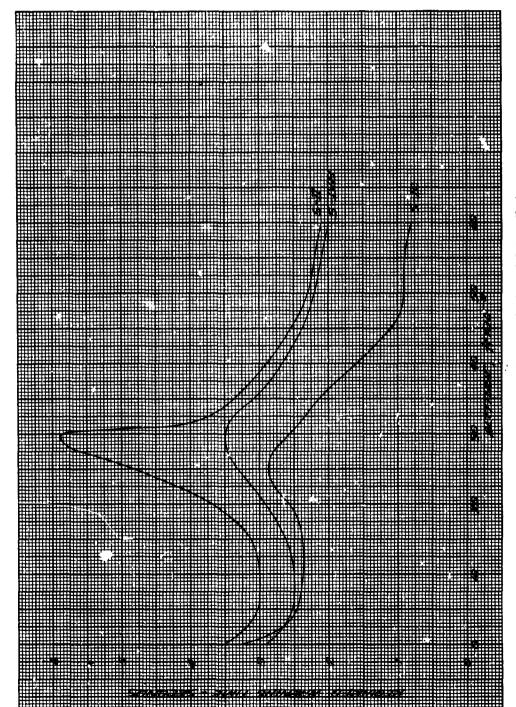



Figure 3.- Total pressure loads - explosion of S-IB stage (Saturn IB).


「 で 、 私主所に当然のの教育にある。


1.11

うち とうないないない



いっ いいいのであったい、小村、小村をもちゃくない

そうでもにたいで、年の、そうの、これに、今日のない。

2 ;

くううまちょう

APFENDIX

The required warning times are dependent to varying degrees on the following factors:

1. CM pressure limit

こう マ かんたん や い

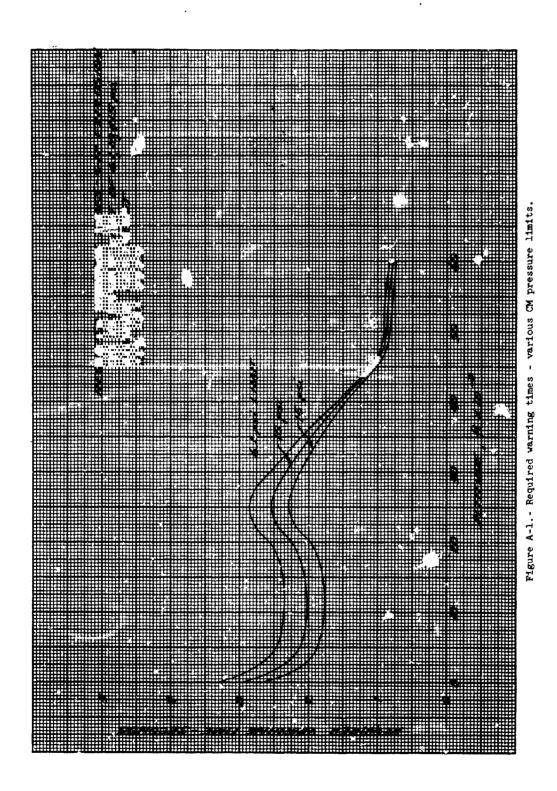
「ないためのないます」

「「ないない」とい

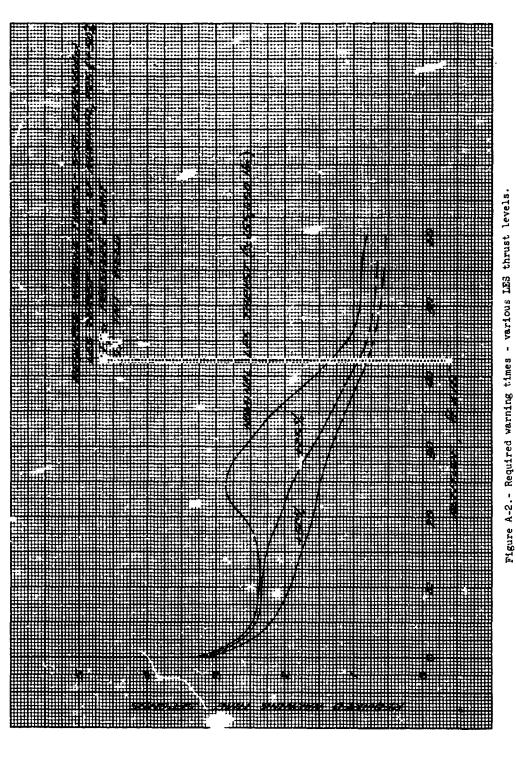
- 2. LES thrust (total impulse)
- 3. TNT explosive yield

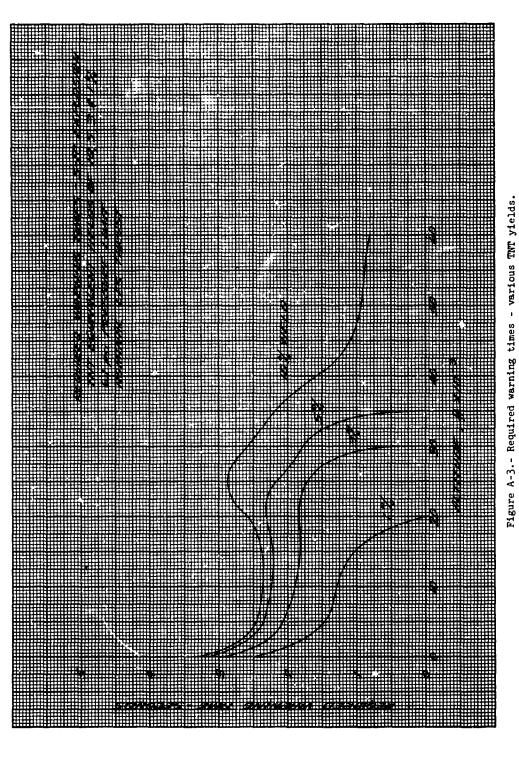
In the main body of the study current values for the CM pressure limit (6.1 psi) and LES thrust (155 000 lb) were used as were the frequently used TNT yields of 10 percent and 60 percent for LOX/RP-1 and LOX/H₂,

respectively. Values for these three parameters were varied in order to illustrate their influence on the required warning times. The case of an S-IC stage explosion was considered. The resulting warning times are given in figures A-1, A-2, and A-3, together with the warning time curves for the nominal conditions considered previously. The increased LES thrust cases required that approximations be made since wind tunnel data was not available at these higher thrust levels. As a result, the pressure distributions obtained from the nominal thrust cases were modified to account for the higher dynamic pressures associated with the increased thrust cases. In addition, the LES thrust cases did not consider the corresponding LEV weight increase that would necessarily have to occur. However, the results, though not exact, do illustrate the relative influence of the thrust on the required warning times.


It is apparent from figures A-1, A-2 and A-3 that drastic improvements in CM and LES capabilities would in most cases not reduce the required warning times significantly. Increasing the CM's pressure limits from 6.1 to 15 psi reduces the required warning time by only .55 seconds (25 000 ft). This is a rather modest return for what would require a major CM modification. Above 30 000 feet the CM pressure limit has a diminishing effect on the required warning times due to the CM's ability to outrun the shock front.

Increasing the LES thrust by 25 percent and 50 percent results in an appreciable reduction in the required warning times in the 20 000to 30 000-foot regime. However, on the pad, the warning times are not reduced significantly.


Reduction of the TNT equivalent yield shows a marked decrease (figure A-3) in the required warning times after approximately 25 000 feet (5 percent and 3 percent cases). An even more drastic


decrease occurs for the 1 percent case. However, the pad and lower altitude regime in general still require considerable warning times.

The above results indicate the rather insensitive nature of the required warning times. Increasing the CM pressure limit and the LES thrust would require major redesign to significantly reduce the required warning times. Above 30 000 feet, lower TNT yields could reduce the required warning times significantly, particularly if the yields are in the order of 3 to 5 percent (LOX/RP-1).

3. t.a. ;

-

5

÷