General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

ACILITY FORM 602

MANUAL BOOSTER CONTROL DISPERSION ANALYSIS

Internal Note MSC-CF-P-69-22

Prepared by:

4

Dickie K. Warren Chief, Launch and Entry Procedures Section

Approved by:

Paul C. Kramer

Chief, Flight Procedures Branch

Paul C. Kram James W. Bilodeau

Assistant Chief, Flight Crew Support Division

Warren J. North Chief, Flight Crew Support Division

1.0 SUMMARY AND INTRODUCTION

The purpose of this document is to define the rationale required to develop and document manual Saturn control contingency procedures and to summarize the data which demonstrates that crew control is feasible within acceptable limits.

The manual control procedures were verified utilizing the Dynamic Crew Procedures Simulator (DCPS). Validations were conducted in two phases, launch (liftoff to earth parking orbit) and TLI. The launch vehicle math model simulation has been verified by numerous data point comparisons with current MSFC simulation for both nominal and off-nominal conditions. Six test subjects were used to establish a cross section of pilot performance and to aid in the accumulation of data. Two of the subjects have current mission assignments.

2.0 LAUNCH PHASE

The simulation employed the current Mission F launch vehicle timeline and sequence of events, based on the AS-505 Launch Vehicle Operational Trajectory, published April 17, 1969. Spacecraft displays and modes of operation were to the CSM 106 configuration. Manual takeover during first stage flight and second stage flight to tower jettison was accomplished by placing the CMC-IU switch to CMC and allowing the stored polynominal to steer the launch vehicle. Manual crew control was accomplished during second stage and third stage by the Commander activating the spacecraft rotational hand controller and commanding attitude corrections based upon the difference between actual and onboard cue card values of attitude, inertial velocity, altitude rate and altitude. The onboard cue card (Figure 1) was based on the May 18 Operational Trajectory. The end conditions were read from onboard DSKY displays and are summarized in Table I.

3.0 TLI PHASE

The TLI procedures are divided into two phases, the pre-TLI ignition platform failures which occur up to six minutes prior to ignition and post-TLI ignition platform failures which occur at or after TLI ignition. Platform failures that occur between these periods do not allow sufficient time to reorient the spacecraft configuration. For these failure cases, the first opportunity should be aborted and TLI accomplished at the second opportunity.

3.1 Platform Failure Prior to TLI

A technique using the ORDEAL drive was selected over a time attitude profile method because of the precise alignment target provided by one degree markings on the FDAI ball at the zero-zero position and because it was consistently easier to fly the profile. The rationale for the basic procedure is contained in Reference 1. Briefly, the procedure employs ORDEAL's ability to drive the FDAI at a rate closely approximating the time history of the nominal inertial pitch profile. Selecting the appropriate ORDEAL start time and torquing rate permits the flight crew to average the steering errors over the TLI burn, effectively eliminating them. Manual yaw steering is less demanding because the required launch vehicle yaw profile lends itself to one attitude setting for the entire TLI burn. Roll is always 180 degrees. The manual maneuver in preparation for TLI ignition is begun at approximately 30 minutes prior to ignition. The procedure, Figure 2, is to first align the space vehicle to the inertial burn attitude, select the ORDEAL configuration, then slew the FDAI ball to zero-zero and repeat the process until a precise space vehicle/ORDEAL alignment is obtained. At 2 minutes 20 seconds prior to ignition ORDEAL torquing is started and the space vehicle is maneuvered to the desired yaw setting. The crewman commands attitude changes to the launch vehicle with the spacecraft rotational hand controller to maintain the FDAI pitch, yaw and roll attitudes and commands launch vehicle cutoff at the desired velocity as read from the DSKY. The THC rotated counter clockwise and reset after one second is used for engine cutoff.

3.2 Platform Failure After TLI Ignition

The technique for failures after TLI ignition is identical to that described in Section 3.1 except for the initialization of ORDEAL, accomplished prior to ignition. In this case the launch vehicle is still under IU control and is maneuvering at a precise orbital rate, until guidance release. Therefore, the Commander initializes the ORDEAL with a constantly moving vehicle. The procedure, Figure 3, developed for this case is accurate and simple. The ORDEAL is slewed to 25 degrees at 5 minutes prior to ignition and is checked at 3 minutes and 1 minute, and should read 17 and 9 degrees respectively. The crewman "fine tunes" as required to correct the alignment. The ORDEAL torquing is started at ignition with a 5 degree bias which the launch vehicle will steer until the FDAI reads zero, approximately 20 seconds after ignition.

At platform failure the crewman flys the space vehicle to FDAI pitch zero and resumes yaw steering manually based on a time attitude cue card. The procedure did not compromise the nominal crew monitoring task.

4.0 RESULTS

The timeline and sequence of events used in the simulation was based on the nominal operational trajectory as were the initial conditions of orbital parameters, time base 6 start time, inertial attitude velocity, etc. No failures were programmed for the launch and TLI phase other than IU platform failure. Various thrust misalignments up to 1.2 degrees (3 sigma) in pitch and yaw plus J-2 swirl torque values of varying amounts were included. Slosh and bending mode characteristics were not included in this simulation; however, three of the test subjects compared the flight and handling characteristics of DCPS with the MSFC validation simulation. They found no significant difference.

4.1 Launch Phase

The most sensitive portion of the launch phase manual guidance occurs in the last two to three minutes before insertion cutoff. For best results, the test subjects recommended that major errors from launch vehicle steering should be trimmed out before the time of SII-SIVB staging. Then small attitude adjustments are all that is required to reduce altitude rate to near zero and to hold altitude constant. The data, Table I, indicates that this technique will produce maximum orbital eccentricities of approximately 10 nautical miles.

4.2 TLI

Initial procedures development runs confirmed that the ORDEAL procedure, described above, was superior to the time pitch procedure. Use of the FDAI error needles and platform angle readouts to hundredths of a degree from the DSKY registers further improved the accuracy of the procedures. The test subjects exercised the basic and refined procedure and their results are contained in Table II. The improved procedure was implemented April 4, 1969; therefore, data prior to that time while included for history should be considered preliminary and not representative.

The column in Table II labeled "Velocity Error" contains the velocity vector between the nominal run (first row of Table II) and each simulation run. This is illustrated by the sketch shown in Figure 4. The IU guidance was not operative during the simulation, therefore, insertion errors based on launch vehicle targeting are not available. It is believed the values listed approximate the total insertion error because insertion altitudes were close to nominal and TLI ignition time was correct for all runs. Thus the errors shown are representative of the SPS maneuver that would be required immediately after insertion.

The TLI procedure accuracy is particularly sensitive to vehicle attitude alignment. The pre-TLI and post-TLI failure crew control accuracies compared so closely that no separation of them has been made. A one degree bias maintained over the full burn yields approximately 170 feet per second error. This is demonstrated by the data from the early development runs. For example the average error prior to the incorporation of the CDU-error display procedure was 191.6 feet per second compared to 96.2 feet per second afterwards. The TLI procedure is insensitive to the ORDEAL torquing start time. A 6 second start delay yields only 10 feet per second inaccuracy.

5.0 CONCLUSION

Manual control of the launch vehicle can be accomplished for all phases. Using the techniques and final procedures contained here, launch phase insertions can be accomplished to near nominal orbital conditions and translunar insertion can be accomplished with an average dispersion of 96 feet per second at cutoff.

Figure 1

Launch Phase Cue Card AS 505 LAUNCH

Time	θ	Vi	Ĥ	Н
00:00	90	1,341	0	0
00:30	86	1,391	295	0.7
01:00	69	1,847	825	3.3
01:30	47	3,050	1,485	9.0
02:00	32	5,125	2,198	18.1
02:15 CECO	27	6,559	2,511	24.0
02:30	23	7,915	2,814	30.7
02:40 000	22	9,032	3,009	35.7
03:00	22	9,266	2,632	44.8
03:30	28	9,840	2,161	56.6
04:00	25	10,492	1,809	66.4
04:30	22	11,248	1,482	74.6
05:00	19	12,105	1,185	81.2
05:30	16	13,071	921	86.4
06:00	12	14,157	693	90.4
06:30	9	15,379	506	93.4
07:00	5	16,759	366	95.6
07:30	2	18,327	283	97.2
07:40 CECO	12	18,900	280	97.4
08:00	3	19,567	267	98.4
08:30	1	20,800	248	99.7
09:00	356	22,054	256	100.9
09:13 ECO	354	22,677	280	101.5
09:30	350	22,871	206	102.2
10:00	346	23,425	102	103.0
10:30	344	24,009	28	103.4
11:00	341	24,626	-013	103.4
11:10	340	24,836	-018	103.4
11:20	339	25,049	023	103.4
11:30	338	25,269	-018	103.3
11:43	339	25,561	0	103.3

Figure 2

.

EVENT

TLI BACKUP GUIDANCE PROCEDURES

TB5	KEY V46E
	GUIDANCE - CMC
	ORDEAL ALT = 200 NM
	EARTH/LUNAR = LUNAR
	V25 N22E
	LOAD R = 180° . F = 116° . Y = 0° (1st OPP)
	$LOAD R = 180^{\circ}$, $P = 115^{\circ}$, $Y = 0^{\circ}$ (2nd OPP)
	V62E
	MANEUVER LV TO NULL ATT ERROR NEEDLES
	KEY V16 N20E (DSKY R2 = 116.00°)
	NULL LV RATES
	ORDEAL FDAI #1 - ORB RATE
	ORDEAL MODE - FAST/HOLD
	SLEW FDAT #1 TO $P = 0^{\circ}$
	INSURE $R2 = 116.00^{\circ}$
TB6	S-II SEP LT - ON
51:00	S-II SEP LT - OFF
	START DET COUNTING UP FROM 51:00
57:00	INSURE FDAI #1 $P = 0^{\circ} \& R2 = 116.00^{\circ}$
57:40	ORDEAL MODE - OPERATE/SLOW
	(STARTS ORDEAL TORQUING)
	MANEUVER LV TO
	$P = 0^{\circ}$, $Y = +3.5^{\circ}$ AND MAINTAIN UNTIL BURN COMPLETE
58:00	KEY V37E 47E
	N2OE
58:36	S-II SFP LT - ON
58:38	LV ULLAGE START
59:42	S-II SEP LT - OFF (IGN - 18 SEC)
59:50	N62E
59:59	ENG #1 LT - ON
00:00	IGNITION (::) GETI
00:02	ENG #1 LT - OFF
	FLY P = OO
	$Y = 3.5^{\circ}$
05:44	CUTOFF ON VI = 35.600 THC - CCW FOR 1 SEC & RESET

Figure 3

Nominal Procedures

28	CDR	EMS MODE - NORMAL
		SCS TVC SERVO PWR 1 AC1/MNA
		SCS TVC SERVO PWR 2 - OFF
	IMP	START DSE
	CMF	FLT RECDR - RECORD
57:00		START 3 MIN COUNT
1.00		ORDEAL FDAT #1 - ORDEAL
		SLEW FDAT #1 TO PITCH 70
58.26		S-IT SEP LT - ON
58.28		S TVB ITLACE BECING
20:30		S-IVB OLLAGE BEGINS
		A MAT THUT DID DOV 0
		X THI INHIBIT, EIC. X
59:00		SLEW FDAI #1 TO PITCH = 9.00
59:42		S-II SEP LT - OFF (TIG - 18 SEC)
59:52		FUEL LEAD
59:55		ULLAGE STOP
		INSURE FDAI #1 PITCH = 5.0°
59:59		START ORDEAL TORQUING
/////		ENG #1 LT - ON
(02:31	:24)	
00.00		TENTTION (_:_:_) GETI
00.00		TOUTITOU

.

TABLE I

٠

MANUAL GUIDANCE

LAUNCH PHASE END CONDITIONS

	FPS	NM	Apogee
ominal	25,561 25,578 25,5581 25,596 25,596 25,590	103.3 102.2 98.2 95.0 103.0	103.3 114.7 101.1 101.8 113.6 103.0

Note: All runs included thrust misalignments

TABLE II

MANUAL GUIDANCE

TLI PHASE END CONDITIONS FOR RUNS

Remarks			Simulator Problem Invalid Run	Inertial Cue Card	Inertial Cue Card	Ordeal Inoperative Invalid Run	Inertial	5º Yaw Attempt Invalid Run	Inertial	Inertial	Inertial	Reset Point At Ign -1 Minute	Reset Point At Ign -1 Minute	Reset Point At Ign -1 Minute	Full Alignment Procedure - Fam.			Poor Alignment	Reset Point At Ign -1 Minute				Full Alignment Procedure	Full Alignment Procedure	Reset Point At Ign -1 Minute	
	Altitude NM		170.2	245.62	171.9	175.5	180.2	174.5	174.3	173.5	176.6	173.85	169.1	171.2	167.9	175.9	166.4	171.4	182.3	166.3	165.8	173.4	166.2	167.1	168.3	165.2
onditions	Altitude Rate	FPS	0CT++	-7893	+4213	4257	4377	4258	4290	4199	4339	14215	4089	4189	4079	4473	3955	4231	14681	3940	3945	4243	3929	3988	3978	3906
Cutoff Co	Velocity Error	FPS	0		125.1	165.7		253.8		180.5	173.3	165.7	36.1	4.311	68.0	296.1	185.7	91.5	494.9	128.4	159.3	106.4	162.2	387.0	159.0	163.5
	Inertial Velocity	FPS	35,598	34,428	35,681	35,638	35,722	35,648	35,702	35,570	35,663	35,701	35,607	35,687	35,597	35,683	35,598	35,658	35,637	35,588	35,613	35,640	35,594	35,638	35,596	35,574
	Date		March 31										April 1													
	Subject		Nominal	A	A	A	A	A	A	A	A	A	В	B	A	B	В	B	æ	υ	v	U	C	Ð	U	ы

TABLE II (CONT)

Begin Error Needle Procedures - Fam Familiarization Nominal Procedures Used 40 Yaw Should Be 3.50 Procedure Familiarization Remarks Nominal Procedure Nominal Procedure Nominal Procedure Familiarization Poor Alignment Altitude 177.2 174.5 174.7 173.0 169.6 174.9 175.3 173.5 175.6 173.3 168.9 170.5 170.7 171.9 164.6 173.1 166.3 167.9 164.4 168.0 169.3 175.6 171.9 167.3 170.2 171.1 164.7 172.1 171.7 MM Altitude Cutoff Conditions Rate FPS Velocity Error 200.4 80.8 80.8 80.8 80.8 305.0 79.3 77.3 86.3 86.5 86.3 88.6 86.3 88.6 86.3 88.6 86.3 88.6 86.3 137.3 127.5 86.3 88.6 86.3 127.5 86.3 127.5 86.3 127.5 86.3 127.5 86.3 127.5 86.3 127.5 86.3 127.5 86.3 127.5 127.5 127.5 127.5 86.3 127.5 127. FPS 176.5 105.1 247 207.2 Velocity Inertial FPS April 5 & 7 8 2 4 Date April April April Subject **м м ы ы ы ы ы**

TABLE II (CONT)

	Remarks			Fam. Nominal Procedure With Plat-	form Failure at Ignition	Contingency Procedure			Poor Alignment						
	Altitude NM	172.8	172.4	167.6	174.7	171.4	173.2	No Data	No Data	172.0	168.1	170.2	169.3	172.9	171.7
onditions	Altitude Rate FPS	4232	4219	3976	4287	6414	14246	No Data	No Data	9014	4012	4103	14013	4062	4103
Cutoff C	Velocity Error FPS	96.2	83.7	139.1	174.4	56.2	113.9	74.2	221.8	0.111	83	37	56.8	87.8	107.2
	Inertial Velocity FPS	35,593	35,649	35,562	35,614	35,624	35,636	35,574	35,600	35,665	35,583	35,580	35,592	35,585	35,632
	Date	April 9		April 11,	12, 19 &	S6		4-19-69		4-26-69	69-11-4				
	Subject	U	υ	A	A	A	A	A	A	A	υ	υ	U	U	υ

REFERENCES

- 1. Kramer, Paul C.: TLI Attitude Monitoring and I. V. Platform Backup, April 21, 1969.
- 2. Kearfolt: Orbital Rate Drive Electronics for Apollo and LEM, Technical Proposal No. D-1108501-E, November 10, 1966.
- 3. Saturn V AS 505 Operational Trajectory, April 17, 1969.

.