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TECHNICAL MEMORANDUM X-64503 

GRAVITY GRADIENT MEASUREMENTS WlTH A LASER 
ABSOLUTE GRAVIMETER 

SUMMARY 

This study presents the derivation of a technique for measuring gravity gradient, as well as 
absolute gravity, by modification of an existing laser absolute gravimeter. The technique has the addi- 
tional advantage of identifying a point in space corresponding to the obtained value of g. 

The method of error analysis used to predict the effect on performance resulting from known sources 
of measurement error is outlined. This analysis, as employed by the authors, indicates that expected 
accuracy is equal to that obtainable with the present state of the art. 

Brief consideration is given to the modifications which would be necessary to make the existing 
gravimeter compatible with the proposed technique. 

INTRODUCTION 

This study proposes an experiment designed to measure the rate of change of the acceleration 
caused by gravity (hereafter called “gradient” or “K”) through the employment of a laser interferometry 
technique. Such a technique is presently being utilized in a device for the measurement of the absolute 
acceleration caused by gravity. In essence, extensions of the theory employed in such a gravimeter are 
put forth, and modifications to its configuration which would render it amenable to gradient measure- 
ment are suggested. 

BACKGROUND MATERIAL 

Subsequent discussion relies heavily upon an article concerning laser absolute gravimetry 
which appeared in Laser Focus [ 1 ] . 

A laser system for measuring absolute gravity is shown in Figure 1.  The instrument is 
in the form of a Michelson interferometer in which mirror M 1 is fixed and mirror 
M2 is a freely-falling body in the gravitational field g. Interference fringes are 
detected by the photodetector. Let x be the distance fallen along the gravitational 
field vector by the mirror M2 . . . ; then, at the photodetector, interference maxima 
are observed for: 

2x = O,h,2h,3h,. . .,NX 



Figure 1. Basic relationship of primary components in laser interferometry 
system for measuring absolute gravity. 

The number of maxima, N, observed in a distance x is: 

2x = Nh 

2 
A 

N = - x  

Lambda is the wavelength of the illumination in a hard vacuum. If the light falling on 
M2 happens to make a small angle 6 with the gravity vector (remember that M2 
always falls parallel with the gravity vector), then the component of displacement 
parallel to g is x cos 8, and the expression becomes: 

Differentiating thisexpression twice with respect to time, we obtain a relation for g: 

[Note here that displacements downward along the gravity vector are considered 
positive and that the quantity g is inherently negative.] Subject to the initial con- 
ditions: N = 0, N = No at t = 0 and integrating, one finds: 
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In the author’s experiment, time is determined by counting the number of oscillations 
of a standard oscillator of frequency f (hereafter called “the clock”). If n 
clock pulse number, then time is determined from: 

the 

t 
n = $ fdt 

0 

Two electronic counters are used, one to record waves fiom the standard frequency 
oscillator and the other to record interference maxima from the photodetector. In 
this article, only integral values of n are considered. I t  should be noted that the 
higher the clock frequency f, the less time is associated’with the integer n (see 
Equation 1). In an actual experiment, n is not really an integer, so the less time an 
integer represents, the less error it can introduce. The equation may now be written: 

In Equation 2, the unknowns which must be experimentally computed are g and No* 
To compute g, the quantity of interest, two equations are required to permit a simul- 
taneous solution. Hence, two measurements must be made for each experiment. Let 
us designate these measurements as A and B. Then, eliminating No we find: 

DISCUSSION OF INITIAL PROBLEM OF INTEREST 

This study was initiated by the problem of determining the point along the path of M2 at 
which the computed g value is applicable. This question arises from the fact that g is in reality not 
constant over the interval of the drop path. Its value is continuously increasing as M2 approaches the 
end of the drop. This can be seen from the Universal Law of Gravitation: 
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where m is the mass of the earth; m' is the mass of M2; G is the gravitational constant; r is the 
distance from earth's center of mass; and g is the acceleration due to the earth. Thus, as M2 falls, 
it decreases the value of r which in turn causes an increase in the value of g. Differentiating the last 
expression above with respect to distance yields: 

This quantity * is the gravity gradient, K. It constitutes the basis for the free-air correction 

utilized in geodesy to reduce gravity measurements to the surface of the accepted reference ellipsoid 
or spheroid. The universally accepted normal value of K utilized for this purpose is 3.08 X 

dr 

gal/cm.l 

It can be seen that g is assumed to be coqstant throughout the drop path of M2 111. From 
the preceding discussion, it is evident that the value. obtained is merely representative of those values 
existing along the path. Then, to what point along the path does this representative value correspond? 

The effective length of the drop path utilized by the device discussed in Reference 1 is taken to 
be 16.593492 cm. Therefore, the difference between the g values at the beginning and the end of %e 
path is of the order of 5 X lo-' gal. Thus, if g measurements are made to seven figures or less, the 
value obtained is essentially representative of the entire path since the gradient effects do not enter until 
the eighth figure. 

Because advancing the state of the art will necessitate extending the accuracy of g measure- 
ments beyond the seventh figure, the problem of gradient effects is definitely of interest. So the 
problem of determining to what point along the path the measured g value corresporids becomes 
real. 

DERIVING A NE.W EQUATION OF MOTION 

Since the whole problem centers around the assumption that g is constant over intervals of 
vertical displacement, the derivation of a new equation of motion in which g varies with distance is in 
order. In this derivation the gravity gradient, K, will be the constant of motion. First, however, it 
seems advisable to determine whether K can be considered constant over sufficiently large intervals 
that the problem incurred by considering g to be constant does not occur again. If we refer to 
equation (1) and differentiate once with respect to distance, we fmd 

= - 6G = - 1.445 X gal/cm2 
dr r4 

1. 1 gal = 1 cm/sec2. 
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where 

Gm = 3.986032X IO2' cm3/sec2 

and 

r = 6.378165X 10' cm 

Thus, over a 1-m interval, K is seen to change only on the order of about 0.5 ppm. 

Taking K to be constant and displacement downward along the gravity vector to be negative, 
we begin our derivation. 

By definition 

d2 x 
dt2 g(x> = - 

Then 

ddx) - d fi 
dx dx ( dt2) 

... 
- x  

X 
- _  
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We have previously defined as K; thus 
dx 

... 
X 

X 
K =  7 

The solution proposed for equation (2) is 

Differentiating this expression to obtain its first three derivatives yields: 

Substituting the first and third derivatives into equation (2) shows that the solution satisfies the 
differential equation. Subjecting the solution and its derivatives to the initial conditions xo = 0, 
K& = xo, and xo = go at t = 0, the resulting system can be solved for the constants A, B, and C. 
This results in the following equation of motion: 

... 

A similar result was derived by A. H. Cook [ 2 ]  

EXPERIMENTAL SOLUTION FOR QUANTITIES OF INTEREST 

In equation (3), the unknowns to be computed from experimental data are io, go, and K. 
Three equations are needed to afford simultaneous solution. Thus, three measurements must be made 
for each experiment instead of two as employed in the experiment discussed in Reference 1. Designating 
these measurements as A, B, and C, one then arrives at the following system of equations: 
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(The complete mathematical derivation of equations (4) may be found in Appendix A.) As the nature 
of the system makes any explicit solution for the unknowns impossible, one is forced to employ 
iterative techniques for solution. Solving the first equation for xoA and substituting this value into 

the second and third equations results in: 

Solving both expressions for g0A and subtracting one from the other, one obtains 
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where 

Thus, there results a function @(K, tA, tB, tc, xA, xB, v) = 0. This immediately lends itself to an 

iterative solution for K when values for the six measured parameters are substituted. The value of 
goA is readily calculated from the results of that computation. 

Thus, one has obtained the values for two fundamental quantities, the absolute acceleration 
caused by gravity and the gravity gradient. In addition to this multiplicity of function, the value of 
gOA is assigned to a particular point in space, X O ~ ,  the starting point of the first measured iptervd 
of distance. 

PERFORMANCE ANALYSIS 

To predict the performance of this experiment, and thus determine its feasibility, one must 
estimate the effect of measurement errors. This analysis must be performed on equations (4). The 
technique employed, the detailed explanation of which is found in Appendix B, ,was suggested by 
Charles Dalton of Aero-Astrodynamics Laboratory, Marshall Space Flight Center. Equations (4) are 
first put in the following form: 
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where F, G, and H are all functions of K, io& gOA, xA, xB, xc, tA, tB, and tc. One then obtains 

the partial derivatives of the three dependent variables K, xOA, and 

independent variable by setting up a system of linear equations: 

with respect to any particular 

Letting Uc { XA, XB, v, tA, tg, E) , 

- -  aH = a  =+ ?H '%A + aH agOA 
a U  aK au ax,, au ago, an 

(Expressions for the coefficients and constant terms involved may be found in Appendix C.) Thus, in 
matrix notation one has the following equation: 
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Solving one such system for each of the independent variables will yield values for the partials of each 
dependent variable with respect to each independent variable. To obtain the probable error (P.E.) in 
any one of the three dependent variables, one needs only to substitute the values of the partials into the 
following equation: 

The above technique may be used to predict performance, provided one has the values for all 
nine variables involved. As it is not possible to obtain the time values associated with each drop segment 
without constructing an apparatus to do so, solution of equations (4) for the dependent variables 
K, iOA, and g0A was out of the question for generating values to be used in the error analysis. 

Therefore, the values for xA, XB, v, K, xOA, and g0A were substituted into equations (4) and solved 
for times tA, tB, and tC. The displacements xA, xB, and were each taken to be -10 cm (roughly 

the length of segments used in the apparatus discussed in Reference 1). The value of g0A was taken 

as -979.6395 gal, the value on a base plate in a nearby laboratory. The normal value 3.086 X gal/cm 
was used for K; and for purposes of simplification, xOA was taken to be zero. Substituting these 

values into equations (4) and solving for the time values, one then has values for all nine variables suitable 
for purposes of error analysis. 

For the probable errors associated with the measured parameters xA, xB, xc, tA, tg,  and tC, 

we suppose the errors imposed by the limitations of the measuring devices employed in the apparatus 
discussed in Reference 1. For the distance measurements, one is, therefore, dependent upon the output 
of a gas laser of wavelength 6329.9147 A, which has a long-term stability of and upon a fringe 
counter which is accurate to one-hundredth of a fringe. The time measurements will be derived from 
electronic counting of wave numbers (accurate to within one count) from a 100-Mc oscillator having a 
stability of 

With values for all nine variables and the necessary information concerning probable errors in 
the measured parameters, one has the data for computing the partials and P.E.'s contained on the right 
side of equation (5). The accuracy of these computations is admittedly limited by that of the extended 
precision mode of the IBM 1130 computer that was employed., The data obtained from the analysis 
indicate that the performance will be well within required limits. 

RESULTS OF PERFORMANCE ANALYSIS 

It appears that a six-figure repeatability can be expected in the g0A values obtained, which is 

the state of the art as attained by H. Preston-Thomas [3] and D. R. Tate 141 . In addition, five-figure 
repeatability in gradient values can be expected. (Sources known to the writers indicate that this would 
constitute a one-figure advance over present state of the art.) 
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To check the effect of varying values of K, gOA, and x (x = xA = xA = +) in generating 

time values and the resulting effect on the performance analysis, trials were made for every possible 
combination of the following terms: 

K = 2.8 X gal/cm , 2.9 X gal/cm , 3.0 X gal/cm , 3.1 X gal/cm 

gOA = -977 gal , -978 gal , -979 gal , -980 gal 

x = -5 cm, -10 cm, -15 cm, -20 cm 

The results for the probable error inherent to g0A values remained the same as in the first analysis. 

However, it was found that in some worst case conditions, the probable error inherent to K reduced 
the number of repeatable figures in gradient by one, to four repeatable figures. 

CONCLUSIONS 

This study indicates that the apparatus discussed in Reference 1 can be modified to make both 
gravity and gravity gradient measurements to state-of-the-art accuracies. The modification entailed 
would consist of little more than the incorporation of an additional segment of drop path and an 
additional counter, It would, however, also be of concern to determine the point at which the effective 
drop path begins, as the g0A value measured would correspond to that point in space. Location of this 
point within a millimeter seems to be possible by mechanical means. 
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APPENDIX A 

DERIVATION OF EQUATIONS (4) 

By definition 

d2 x 
dt2 

g(x) = - 

then 

The proposed solution of the above differential equation is 

Differentiating, 

12 



Initiai conditions at t = 0 are xo = 0, Io;o = xo , and xo = go. Imposing them on equations (A-1) and 
(A-2), one has 

0 = A + B + C  

h0 = Aly3'2 - BK3'2 

go = A K + B K  

Setting up the augmented matrix for this system and reducing, one finds: 

1 

I 
I 
I 

I 1 0 1 0  

K3" -K3" 0 K& 
I 
I 
I 

K K O '  
1 go 
1 

I 
I 

I 
I 

1 1 1  I 0 

I 
I 
I go 

- : K 
0 0 -1 

I 

1 1 1  

o - 2 ~ ~ "  o 

K K  

1 1 1  

0 1 0  

0 0 1  

0 

I 
I 
I 

I 

1 

I 0 
I 
I I K&-K1"g( 

I 
I 

I go 
I 

0 

I 
I K1"& -go  

1 2K 
I 
I 
I go 

; -7 

1 1 1 '  0 
I 
I 
I K1"& - g o  

0 1 0  I -  
I 2 K  
I ' go 

1 1 0  I K 
I 

I 
I K'"& +go 

2K 1 0 0  I 
I 

I 
I K'"& - go 

I 
0 1 0 1 -  2 K  

I 

which yields: 

T h o  + go A =  
2K 
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The original system of equations thus becomes 

They may be simplified to the following equations: 

sinh(flt) + cosh(flt) - E 
K K K 

- <GO -____ 
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2 

= a, sinh(.\rKt) + go cosh(.\rKt) 

x = -  
2 

= Io;, cosh(<Kt) + <Kgo sinh(JKt) 

The equation of motion of an object during the first of three contiguous intervals would thus 
be 

The equation of motion during the second of the three contiguous intervals is 
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Thus, the equation for xB is 

This results in the following equation: 

The equation of motion during the last of the three intervals is 

16 



where 

Reducing, one finds that 

17 



and 

Substituting these values in the original equation for xc, one finds that 

18 



Further simplifying, one finds that 

1 

Thus, the resulting system is 

19 
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APPENDIX 5 

MEMORANDUM CONCERNING ERROR ANALYSIS TECHN 

The following is the text of a memorandum by Charles C. Dalton on the subject “Error 
Propagation in Gravimetry Experiments.” This information was provided in response to a specific 
request by the authors of this paper for technical assistance. 

The mathematical aspects of the problem, as it now is, is that three parameters to be 
calculated, say x, y, and z for initial velocity, gravity value at t = 0 and gravity 
gradient, are related to six measured parameters, say a, b, c, d, e, and f by three 
simultaneous equations of some considerable complication, say 

You want to solve the equations for x, y, and z and to compute the random error 
of each propagated from the measured parameters. 

An explicit solution for x, y, and z might be complicated and difficult to find or 
even not possible. But the given implicit equations can be programmed for a numeri- 
cal solution to whatever accuracy is required; e.g., geometrically each of the equations 
can be considered a surface in the three dimensions x, y,  and z. The solution, which 
for physical reasons is known to exist, must be one of the possibly several points of 
intersection of the three surfaces. Calculating the propagated error does not require 
the solution to be explicit. 

The six measured parameters are three measurements o f  time and three measurements 
of distance in terms of wavelengths of the laser light. So far as I can tell. . . the random 
errors of the six measured parameters can be considered effectively both statistically 
independent and all normally distributed. . . . [Some further thought should be given 
to this point. J 

The formulation for the propagation of error parallels that of the total differential; i.e., 

dx = ax da+ - ax db+-  ax d c + -  ax d d + .  
aa ab ac ad 

21 



where an acceptable approximation is to replace each of the differentials by corre- 
sponding small finite “delta” increments. But this presupposes that both the 
(arithmetic) magnitude and the algebraic sign of the increments of the independent 
parameters are known, whereas the random errors in specific measurements are 
unknown in both aspects. Therefore, with statistical independence, the different 
terms of the total differential are added like orthogonal vector components by 
squaring each component; and the finite “delta” increments can each be expressed as 
the same small fraction A of the corresponding standard deviation u, say Ao,, 
Aub, etc. Then, by multiplying both sides of the equation by A-’ , 

and similarly for y and z. But without statistical independence there would also 
be other terms involving correlation factors. The result, rigorous only for linear 
functions, is an approximation which omits, usually, smaller terms with higher 
derivatives. 

In principle, the six partial derivatives in equation (4) could be evaluated by 
giving small increments alternately to the six independent measured parameters and 
noting the change to the solution for x, y, and z by the given simultaneous 
equations (1) through (3). Undoubtedly this would require special double precision 
programming and more computation than would be required by solving for each of 
the six measured parameters a, b, . . . a set of three linear equations relating the 
partial derivatives of the three dependent variables x, y, and z with respect to the 
particular dependent variable, e.g., a; i.e., by partial differentiation of equation (l), 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

If the correctness of this manner of differentiation of an implicit function is not 
obvious, it may be helpful to rewrite the same result in symmetric form; Le., 

22 



By differentiating equations (2)  and (3) similarly and switching to subscripts to 
denote partial differentiation, say 

aF ax F, for - and xa for - 
ax aa 

one gets three linear equations for the partial derivatives of the three variables x, y, 
and z with respect to the measured parameter a; i.e., in matrix notation 

] = -  

'a 

Ya 

'a 

and similarly for each of the other five measured parameters b, c, etc., by replacing 
a. Note that the coefficient matrix is the same for all of the measured parameters a, 
b, etc. 
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APPENDIX C 

EXPRESSIONS FOR TERMS INVOLVED IN ERROR ANALYSIS 

The terms involved in error analysis are as follows. 
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