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SUMMARY 

The main r e s u l t s  obtained during the  per iod of  t h e  gran t  d e a l  with 
low Reynolds number flow p a s t  small s o l i d  p a r t i c l e s .  
i n i t i a t e d  under gran t  NsG-705 a t  the  University of Cal i forn ia  (Davis). 
Consequently t h e  r e p o r t  e n t i t l e d  "The Effect of  F i n i t e  Boundaries on 
t h e  Motion of P a r t i c l e s  i n  non-Newtonian Fluids," which was submitted 
as p a r t  o f  t h e  f i n a l  r epor t  f o r  gran t  NsG-705 a l s o  acknowledges t h e  
support of NGL 40-002-053. 
of a referee, t h e  above r e p o r t  is being published i n  two p a r t s  i n  
Chemical Engineering Science. 
and is now i n  t h e  press .  
Particle Motion Near a Wall i n  Newtonian and non-Newtonian Fluids" and 
should be i n  p r i n t  i n  a f e w  months. 
forwarded t o  NASA s ince  toge ther  they do not  d i f f e r  i n  any way from t h e  
o r i g i n a l  r epor t  previously submitted. 

This work was 

Because of i t s  length ,  and a t  t h e  suggestion 

The first p a r t  r e t a i n s  t h e  t i t l e  above 
The second p a r t  i s  e n t i t l e d  "The S t a b i l i t y  of 

These t w o  manuscripts have not  been 

Two add i t iona l  manuscripts are being submitted as p a r t  o f  t h e  
f i n a l  r e p o r t .  These are: "Precision Fal l ing.Sphere Viscometry" (with 
D. A. Cygan, Ph.D. candidate ,  NASA Trainee) ,  submitted t o  t h e  Transactions 
of t h e  Society of Rheology; "Measurement of t h e  Rota t iona l  Drag on a 
Sphere a t  Low, F i n i t e  Reynolds Number" (with B.  Mena, Ph.D. candidate) ,  
submitted t o  t h e  Journal  of Fluid Mechanics. 
these  papers are summarized below, 

The r e s u l t s  repor ted  i n  

I. Experiments with Trans la t ing  Spheres 

D. A. Cygan has developed techniques for measuring terminal  
v e l o c i t i e s  which are highly accurate  and reproducible.  
i n  t h e  paper above. 
with a polyisobutylene so lu t ion  have been in t e rp re t ed  i n  terms of t h e  
ana lys i s  derived by t h e  p r i n c i p a l  i nves t iga to r  i n  "The Effect of F i n i t e  
Boundaries on t h e  Motion of  Particles i n  non-Newtonian Fluids." The 
pe r t inen t  equat ions are: 

These a r e  discussed 
Terminal v e l o c i t i e s  of spheres f a l l i n g  i n  tubes f i l l e d  

where U 
Rivlin-EGicksen f l u i d  under t h e  inf luence  of a force  The c h a r a c t e r i s t i c  
t i m e  X is  a l i n e a r  combination of constants  of t h e  t h i r d  order  f l u i d .  This 
formula is v a l i d  i n  t h e  l i m i t  of slow flow, and suggests  a method f o r  ex t ra -  
po la t ing  d a t a  t o  obta in  t h e  zero-shear v i s c o s i t y  p . Values of U, are 
computed from measured v e l o c i t i e s  U according t o  ?he formula 

is  t h e  te rmina l  ve loc i ty  of a sphere moving i n  an unbounded 
F . 

W(a/R) t O(F/RI3 , F u=u,-- 
6WoR 
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where R i s  t h e  tube r a d i u s ,  and W(a/R) is a funct ion derived from 
Faxin's  formula f o r  t h e  Newtonian case (equation (9) of Cygan's paper).  

It is important t o  note  t h a t  each of these  formulae was derived 
under t h e  assumption t h a t  t h e  stress is given by t h e  Rivlin-Ericksen theory 
i n  t h e  l i m i t  of slow flow. When t h e  Rivlin-Ericksen theory is taken as 
t h e  slow flow asymptote of t h e  genera l  theory of simple f l u i d s  it is 
tantamount t o  imposing smoothness on t h e  c o n s t i t u t i v e  func t iona l  i n  t h e  
neighborhood of  t h e  r e s t  state. I n  p a r t i c u l a r ,  it implies  t h a t  t h e  
v i s c o s i t y  funct ion depa r t s  from 

1.1, as the  square of t h e  shear  rate. 
It is worth not ing t h a t  a l l  theo r i e s  based on molecular concepts a l s o  
p red ic t  similar behavior. 
Stokes l a w  i s  of a similar type. 

The above formula (1) f o r  t h e  depar ture  from 

Cygan's experiments suggest t h a t  formula (1) does not  hold or 
t h a t  t h e  range of  i t s  v a l i d i t y  i s  w e l l  below t h a t  of t h e  da ta .  
suggest t at  t h e  departure  from Stokes l a w  is  not only l i n e a r  bu t  exponential  
i n  F/6sa . These f ind ings  are not e n t i r e l y  new, but  are a much more 
accurate  v e r i f i c a t i o n  of  t h e  r e s u l t s  of Turian (see Reference 6 i n  Cygan's 
paper).  Tur ian ' s  d a t a  are s u f f i c i e n t l y  inaccura te  t h a t  one cannot 
d i s t ingu i sh  whether t h e  departure  is l i n e a r  or quadrat ic .  Linear departure  
from constant  v i s c o s i t y  has been reported by many authors  who have measured 
the  v i s c o s i t y  funct ion i n  a shear  flow. 
tend t o  be inaccura te  a t  t h e  low shear  rates needed t o  v e r i f y  t h e  l a w  of  
departure .  
sphere da ta .  

H i s  res1 Its 

9 

Unfortunately viscometr ic  d a t a  

There is no corresponding loss of accuracy i n  Cygan's f a l l i n g  

The i n t e r p r e t a t i o n  of  d a t a  t o  f ind  a l a w  of departure  is  always 
d i f f i c u l t ,  and i d e a l l y  one would determine all f l u i d  parameters Erom 
independent experiments. Unfortunately the  p r a c t i c a l  l i m i t a t i o n s  on 
carrying out  viscometr ic  experiments of  comparable accuracy are formidable.  
However, here  t h e  f a l l i n g  sphere experiment has a consistency check i n  t h e  
form of equation ( 2 ) .  For a given sphere values  of  U are measured i n  
seve ra l  cy l inders ,  and p l o t t e d  aga ins t  W(a/R) /R . Linear i ty  i n d i c a t e s  
t h e  e r r o r  terms i n  equation ( 2 )  are neg l ig ib l e .  
be ca lcu la ted  independently of t h e  value obtained v i a  equation (1). 
Cygan has shown t h a t  even though t h e  p l o t s  are l i n e a r  t h e  values  of 
become smaller as t h e  s i z e  and dens i ty  of t h e  sphere increase.  
i nd ica t e s  t h a t  t h e  non-Newtonian terms play a much s t ronger  r o l e  than 
the  e r r o r  term i n  equation ( 2 )  suggests.  

From the  s lope  can 

po This 

It is t h i s  inconsis tency,  toge ther  with t h e  v i s c o s i t y  measurements 
of o the r  workers, which leads  one t o  be l ieve  t h a t  t he  Rivlin-Ericksen theory 
is not  adequate f o r  the desc r ip t ion  of t h e  departure  from Newtonian 
behavior. As a r e s u l t  I a m  now inves t iga t ing  new t h e o r i e s  which can cor rec t  
t h i s  inconsis tency.  
p re t a t ion  of Cygan's d a t a  are complicated, and w i l l  not  be completed f o r  
a long t i m e .  

The ca l cu la t ions  which are requi red  for t h e  r e i n t e r -  
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11. Rotating Spheres 

An experimental study of t h e  r o t a t i o n a l  drag on a sphere was 
i n i t i a t e d  by B. Mena, and h i s  r e s u l t s  are given i n  t h e  second paper 
r e fe r r ed  t o  above. I n  Wena's work a sphere was held s t a t iona ry  a t  t h e  
center  of c y l i n d r i c a l  container  of f l u i d  which r o t a t e d  about i t s  ax i s .  
The torque w a s  measured by t h e  angular de f l ec t ion  of the  t r i f i l a r  suspension 
which supported t h e  sphere.  
Newtonian f l u i d s  which were used t o  t e s t  t h e  c a p a b i l i t i e s  of t he  apparatus.  
I n  p a r t i c u l a r ,  Col l ins  formula f o r  t h e  torque a t  low r o t a t i o n a l  Reynolds 
number is i n  good agreement with t h e  d a t a  up t o  about 
formula i s  

The paper dea ls  only with experiments on 

R = 25 . This 

where L is t h e  torque ,  
a is  t h e  sphere r ad ius .  

2 2  
1.086 [&) t ...} , ( 3 )  

p and 1-1 t h e  f l u i d  dens i ty  and v i s c o s i t y ,  and 
An "improved" vers ion o f  Col l ins  formula is  

- = R { l t  PL 
81rp 2 a 1+1. 08SR2/1200 

R2 / 12 0 0 
(4) 

which was found t o  give a good account of t he  d a t a  a t  Reynolds numbers i n  
excess of 100.  
for acce le ra t ing  t h e  convergence of  an a l t e r n a t i n g  series. 

The improved formula ( 4 )  i s  derived by standard methods 

Mena also ca r r i ed  out  a few measurements with a polymer so lu t ion .  
However, t h e  apparatus  needs some improvements before  cons i s t en t ly  
reproducible  d a t a  can be obtained. 

Prepared by : 
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1. Int roduct ion  

The torque on a sphere r o t a t i n g  i n  an unbounded f l u i d  w a s  first 

ca l cu la t ed  by Stokes C18511 for t h e  i n e r t i a l e s s  case. 

(Bickley C19381, DiFrancia C19501, Khamrui [1956], Ovseenko C19601) 

Severa l  au thors  

have c a r r i e d  out  expansions i n  powers of t h e  Reynolds number which i n  

t h e  t h i r d  term r e s u l t  i n  a co r rec t ion  t o  t h e  Stoques torque. Recently,  

Col l ins  C19561 has extended t h e  ca l cu la t ion  t o  t h e  f i f t h  term, and has  

obtained t h e  torque L as 

-=  PL 2 R{l + - -  1200 R2 1.086 [&I2 + O(R6)} . 
870.1 a 

The r e g u l a r i t y  of t h i s  s e r i e s  permits  i t s  invers ion  which can be w r i t t e n  

as 

where p is  t h e  v i s c o s i t y ,  p t h e  dens i ty  and a t h e  sphere r ad ius .  The 

r o t a t i o n a l  Reynolds numbers R and Rs are p a  Rw/v and pL/81rp a 

r e spec t ive ly ,  and Qm 

unbounded f l u i d .  

only even powers of t h e  Reynolds number. 

suggest t h e  use of Shanks C19551 t ransformation for acce le ra t ing  t h e  

2 2 

is  t h e  angular  v e l o c i t y  when t h e  sphere s p i n s  i n  an 

Col l ins  proved t h a t  t h e  s e r i e s  wi th in  t h e  braces  conta ins  

The a l t e r n a t i n g  s i g n s  i n  ( l . l b )  

convergence of a slowly convergent series. Hence an "improved" vers ion  

of ( l . l a )  is found t o  be 

R2 /12 0 0 
2 8sp a 

(1.2) 

In  o rde r  t o  compare these  formulae with experimental  torque-angular 

ve loc i ty  da t a  it is  necessary t o  c o r r e c t  for t h e  e f f e c t s  of conta iner  
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boundaries. 

body and conta iner  with a x i a l  and fore-and-aft  symmetry 

It w i l l  be shown la ter  t h a t  f o r  any configurat ion of r o t a t i n g  

52- is  given by 

where R is t h e  conta iner  dimension, and K12 i s  a parameter which 

depends only on t h e  conta iner  geometry. For t h e  closed,  f i n i t e  cy l inder  

o f  t h e  experiments descr ibed below R i s  t h e  r a d i u s ,  and K12 has  been 

ca lcu la ted  by Mena [19691 as a func t ion  of ro/h , t h e  r ad ius  t o  he ight  

r a t i o .  I n  t h e  l i m i t  o f  ze r3  Reynolds number Qm is  l i n e a r l y  r e l a t e d  t o  

L 

t o  i n v e r t  (1.3) and recover  a formula due t o  Brenner C19621 which expresses 

t h e  conta iner  e f f e c t  as a cor rec t ion  t o  t h e  torque.  

ca re fu l ly  noted t h a t  a t  f i n i t e  Reynolds number Qm 

of 

torque cor rec t ion  formula. 

by Stokes l a w  ( t h e  first term of (1.1)). It is  then a simple matter 

However, it should be 

is  a nonl inear  func t ion  

L , and hence no easy invers ion  of  (1.3) can be obtained t o  give a 

Mena C19691 has measured R aqd L for a sphere loca ted  i n  t h e  

center  of a f i n i t e ,  c losed cy l inder  i n  t h e  apparatus  shown i n  Figure 3 .  

From these  d a t a  values  of were ca l cu la t ed  with (1.3) and were then 0- 

p lo t t ed  i n  Figure 1 as pL/8sap2 aga ins t  R . The curves were ca lcu la ted  

from (1. la)and (1.2). 

used i n  t h e  experiments were determined independently; hence Figure 1 is 

free from any f i t t e d  parameters. The d a t a  confirm t h e  r u l e  t h a t  t h e  first 

cor rec t ion  t o  Srokes l a w  is  v a l i d  f o r  R up to about 15. The addi t ion  01 

Col l ins '  R5 term extends t h e  range t o  a t  most 25. Despite t h e  Pauci ty  Of 

d a t a  i n  t h e  high range it appears t h a t  t h e  "improved" formula ( 1 . 2 )  g ives  

a ra ther  good account even a t  R about 100. 

The d e n s i t i e s  and v i s c o s i t i e s  of  t h e  s i l i c o n e  f l u i d s  
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2. The Effect of  Walls a t  F i n i t e  Reynolds Number 

The ana lys i s  for  t h e  w a l l  effect is  r e s t r i c t e d  t o  conf igura t ions  i n  

which both t h e  r o t a t i n g  body and t h e  conta iner  a r e  concent r ic ,  coax ia l  

surfaces of r evo lu t ion  wi th  fore-and-aft  symmetry. Such symmetry guarantees  

t h a t  t h e  body w i l l  experience no net f o r c e  and t h a t  no n e t  flow w i l l  r e s u l t .  

A s  i n  t h e  unbounded case V , p , t h e  v e l o c i t y  and pressure  f i e l d s ,  a r e  

expanded as 

- 

v = v  t v  t i i g + . . . ,  1 2  

p = p1 t p2 + p3 + ... . (2 . lb)  

In  dimensionless form t h e  Ti , pi f i e l d s  would be 0(Ri-l) , and i n  

dimensional form they  s a t i s f y  inhomogeneous Stokes equat ions 

- - 
where t h e  inhomogeneous " s t r e s s  tensors"  r are obtained by s u b s t i t u t i o n  i 
of (2.1) i n t o  t h e  Navier-Stokes equat ion.  

r egu la r  pe r tu rba t ions  are followed t h e  first f e w  

When t h e  usua l  procedures for  
- - 
T~ 

are found t o  be 

- - - - - 
T i = o ,  r2  = -pV 1 V 1 Y T 3  = -2PctrlV2ls , etc. 

The bracke ts  [ 1 denote t h e  symmetric p a r t  of  a dyadic. 
S - 

It  is  evident  from t h e  s t r u c t u r e  of t h e  t h a t  t h e  Navier-Stokes i 

equation has  been w r i t t e n  r e l a t i v e  t o  an o r i g i n  f ixed  at t h e  geometric 

center .  Hence t h e  boundary condi t ions  on t h e  v e l o c i t y  pe r tu rba t ions  are 

- -  Vi = R i X r  on 6 , Vi = o on C , (2.4) 
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where €3 denotes t h e  sur face  of  t h e  r o t a t i n g  body and C t h a t  of t h e  

container .  The Ei are d i r ec t ed  along t h e  symmetry ax i s ,  and are 

determined by t h e  i n t e g r a l s  

where 

- 
are ca lcu la ted  from ti The stress vec tor  per turba t ions  

i n  which t h e  u n i t  normal vec tor  n is  d i r ec t ed  out  of t h e  f l u i d  surface. 

The equa l i ty  of t h e  i n t e g r a l s  over both 8 and C i n  ( 2 . 5 )  fol lows from 

(2.21, t h e  divergence theorem and t h e  ax ia l  symmetry which ensures  t h a t  
- - -  
n*Qxr i s  zero on B . The fore-and-aft  symmetry ensures  t h a t  t h e  sur face  

- 
vanish f o r  a l l  i on both B and C . The genera l  ti i n t e g r a l s  o f  t h e  

- 
can a l s o  be deduced from t h e  'i pa t t e rn  of  t h e  motions represented by t h e  

symmetry. It can be shown i n  a manner similar t o  t h a t  used by Col l ins  

C19561 t h a t  f o r  i odd t h e  f l u i d  p a r t i c l e s  move i n  circles about t h e  sp in  

a x i s  and f o r  i even t h e  s t reamlines  are d i s t r i b u t e d  i n  t h e  meridional  

planes i n  such a way t h a t  no n e t  flow occurs. 

The per turba t ion  scheme ou t l ined  above i s  unusual i n  one important 

respec t .  Instpad of t h e  torque funct ion LfQ) , f o r  example ( l a l a ) ,  it 

y i e l d s  t h e  inverse  torque funct ion Q(L) . Thus it is  usua l  t o  s a t i s f y  

t h e  boundary condi t ions (2 .4 )  with 5 set equal  t o  6 and a l l  higher  1 

order  6, then vanish.  The torque i n t e g r a l s  ( 2 . 5 )  a r e  then used t o  
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c a l c u l a t e  L(Q) . In  t h e  inverse  scheme t h e  torque  i n t e g r a l  for  i = 1 

is set equal  t o  t h e  t o t a l  torque L , and by (2.6) t h e  higher  o rde r  

i n t e g r a l s  are forced t o  be zero. 

has s p e c i a l  advantages for  t h e  ca l cu la t ion  of wall effects because of t h e  

A s  w i l l  be seen below t h e  inve r se  method 

l. - 
far f i e l d  p r o p e r t i e s  of t h e  Vmi , pmi f i e l d s .  It  should be noted t h a t  

i f  dimensionless va r i ab le s  are employed the  appropr ia te  Reynolds number i n  

(2.1) w i l l  be one based on t h e  Stokes sp in  Qml r a t h e r  than t h e  t o t a l  sp in  

Qm . 
number is pL/8np a . 

For t h e  sphere it can be seen from ( l . l b )  t h a t  t h i s  i nve r se  Reynolds 

2 

Since (1.3) can be w r i t t e n  as a formula which g ives  Q as a co r rec t ion  
- 

t o  Roo it i s  u s e f u l  a t  t h i s  po in t  t o  examine t h e  na tu re  of t h e  Vmi 

f i e l d s .  From t h e  fundamental so lu t ion  of t h e  l i n e a r  Stokes equat ion and 

t h e  symmetry of  8 it can be shown t h a t  

If 

o t h e r  terms of O ( r - 2 )  must be added (Brenner C1964al). For t h e  sphere 

t h e  lead ing  term i n  (2.81, c a l l e d  a " r o t a t i o n a l  S tokes l e t  ,I1 i s  

exac t ly .  For i > 1 t h e  first few Vmi are known only for  t h e  sphere.  

However, it i s  poss ib l e  t o  deduce from t h e  s t r u c t u r e  of (2.3) t h a t  

t h e  lead ing  term i n  (2.8) w i l l  g ive a p a r t i c u l a r  i n t e g r a l  t o  (2.2) of 

8 l a c k s  fore-and-aft  symmetry or does not  s p i n  about i t s  own a x i s  

vm, - 
- - 
T~~ 

; hence any terms of O(r-2) i n  vm2 must s a t i s f y  t h e  homogeneous 
- 

and l i e  i n  t h e  
Ii2ml 

Stokes equation. Since v must be b i l i n e a r  i n  032 

1 I A l l  q u a n t i t i e s  with t h e  subsc r ip t  
unbounded f l u i d .  

are a s soc ia t ed  with t h e  case of an 
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meridional planes it must have t h e  form 

From Collins'C19561 work it can be shown t h a t  for t h e  sphere t h e  

p ropor t iona l i t y  can be replaced by an equa l i ty .  For i e v e q t h e  asymptotic 

form of t h e  remaining G 

mult ip l ied  by Qal . For i odd, i t  can be shown from (2.21, (2.81, and 

(2,9) t h a t  

w i l l  be similar t o  (2.9) with t h e  lead ing  term 
m i  

i -2  

(2.10) 

where g i s  a scalar funct ion of  and r which is O(Q:j-1r-4) . 
The advantage of t h e  inveme  pet-turbation scheme now becomes apparent.  

It w i l l .  be seen below t h a t  t h e  lowest order term which i n t e r a c t s  w i t h  t h e  

conta iner  i s  t h e  r o t a t i o n a l  S tokes le t  of (2.8).  That none of  t h e  V 

for i > 1 

(2.5) when C recedes t o  i n f i n i t y .  Hence t h e  bookkeeping is g r e a t l y  

s impl i f i ed  i n  t h e  double expansion t o  be used for t h e  wall effect 

ca lcu la t ion .  

a1 

- 
a i  

can contain such a term fol lows from t h e  i n t e g r a l  condi t ions 

Each of  t h e  f i e l d s  Vi , pi i n  (2.1) i s  expanded as 

( 2 .  l l b )  

The boundary condi t ions (2.4)  are s a t i s f i e d  by a s l i g h t  modif icat ion of 

t h e  method of  r e f l e c t i o n s  (Brenner C19621) as 

- = s Z  x r  on B ,  v i l + 0  as r - t m  'il a1 
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- - 
on C vi2 - - -vil 

Vi2 t Vi3 - - 6ni2xr  on 8 , - - - -  

- vi4 = -v on C , i 3  

- - vi4 t vis - - 6Qi4xr on 8 , 

etc. Expansions similar 

- - 
T. 
1 

- 
The ?. . are i d e n t i f i e d  

11 

, 

- 
+ O  as r + = ,  'i 3 

- 
+ O  as r + m ,  'i 5 

- - 
t o  (2 .11 )  are also wr i t t en  for t h e  T as i 

(2.12b) 

(2.12c) 

(2.12d) 

(2.12e) 

(2.13) 

by s u b s t i t u t i o n  of (2.11a) i n t o  (2.3).  Super- 

f i c i a l l y  t h e  process  of  i d e n t i f i c a t i o n  appears t o  be somewhat a r b i t r a r y .  

However, an inspec t ion  of  t h e  boundary condi t ions  (2.12) r evea l s  c e r t a i n  

p rope r t i e s  of t h e  V . .  which suggest  a r a t i o n a l  c h o k e  for t h e  T 

For j 

everywhere within C inc luding  t h e  i n t e r i o r  of 8 . Thus t h e  i d e n t i f i c a -  

t i o n  of t h e  ;. . 
13 

g for  j even and ou t s ide  8 for  j odd. For example, f o r  i = 2 

- - - 
1 3  i j  

even it is  clear €Tom (2.12byd) t h a t  t h e  Vij  f i e l d s  are def ined 

- 
is made by s e l e c t i n g  products  which are def ined within 

- 
The t o r q u e . i n t e g r a 1  (2 .5)  for Vll , pll is set  equal  t o  , and 

I t  is  obvious froin (2.12a) and equal  t o  zero for t h e  remaining f i e l d s .  

(2.14) t h a t  t h e  vil , pil are i d e n t i c a l  t o  t h e  Vmi , pmi . A glance 
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- - at (2.14) shows c l e a r l y  t h e  r a p i d  inc rease  i n  complexity o f  t h e  

-1 j incr%eases. liowever, by order ing  t h e  terms i n  powers of II , t h e  

r e c i p r o c a l  conta iner  dimension, it is  poss ib l e  t o  keep t h e  complexity 

wi th in  bounds. A s  w i l l  som become apparent only a f e w  of  t h e  V . .  need 

t o  be considered t o  obta in  a co r rec t ion  t o  such as t h a t  i n  (1.3). 

T . .  as 
1 3  

- 
1 3  

O ( ! L - ~ )  

- 
As i n  Brenner 's  C1962, 19641 work r e g u l a r i t y  i n  r for t h e  Gij with 

j 

o r i g i n  i n  B . 
a r i g i d  motion and a regular. non-r igid motion. 

r i g i d  motion requirement on 8 

8 cancel  t h e  non-r igid p a r t s .  

j 

Stokes equat ion it was shown by Brenner C19621 t h a t  t h e  f a r  f i e l d  

even i s  invoked t o  e x p a d  these  f i e l d s  i n  a Taylor ' s  series about an 

These Taylor  expansions can be separa ted  i n t o  t h e  sum of 

I n  order  t o  s a t i s f y  t h e  

it is necessary t o  add f i e l d s  which on 

This is  accomplished with t h e  f i e l d s  of 

odd as can be seen by inspec t ion  o f  (2.12c,e).  For t h e  homogeneous 

behavior of c r e q u i r e s  Vl2 t o  be of t h e  form -1 

(2.15) 

where 

The cons tan t  K12 is a pure number dependent only on t h e  shape of C . 
Since 

t h e  G.. , j > 2 , a r e  a t  most 

any f u r t h e r .  

i s  e s s e n t i a l l y  a r i g i d  motion it follows from ( 2 . 1 2 ~ )  t h a t  12 

O ( c 5 )  , and hence need not  be considered 
11 

It is  e a s i l y  shown t h a t  t h e  p a r t i c u l a r  i n t e g r a l  o f  t h e  governing 

equation (2.2) with ? 
pressure .  Hence t o  O(2 ) c22 c o n s i s t s  only o f  a complementary 

funct ion.  From (2.12b) and (2 .9)  it fol lows t h a t  v22 is  a r e g u l a r  f i e l d  

(2.14) evaluated with (2.15) i s  a h y d r o s t a t i c  22 
-5 
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of t h e  form 

V22= p a  5 K ~ ~ G * S = / ~ R  3 + O(R -3 , (2.17) 

where t h e  symmetric shear  f i e l d  grad ien t  is given by 

(2.18) 

and KZ2 is  a number which depends on t h e  geometry of both €3 and C . 
- 

The condi t ion ( 2 . 1 2 ~ )  of r i g i d  motion on €3 r e q u i r e s  V23 t o  s a t i s f y  t h e  

boundary condi t ions 

- 
- 3  V 2 3 + 0  as r + m .  V,, = - p a  K G * 6 / ; l a  on 8 , 5 

22 (2.19) 

- -3  
L V 1 2  The only term of O(R ) i n  ?23 (2.14) comes from t h e  product 

which gives  a p a r t i c u l a r  i n t e g r a l  whose leading term is O(r R ) . 
T h i s  ensures t h a t  v24 and a l l  subsequent terms are a t  most O ( c 5 )  . 

-2 -3  

When t h e  argument is c a r r i e d  forward t o  t h e  T f i e l d s  it can be 
3 j  

'32 shown t h a t  no terms of O ( c 3 )  a r e  cont r ibu ted .  I n  t h e  first p lace  

contains  no such term because of (2.10) and (2.12a). 

-T 

Secondly when t h e  
- - 

ana T12 are worked out  s i m i l a r l y  t o  (2.14) it can be shown t h a t  

can make no cont r ibu t ion  of O ( ! I - ~ )  t o  t h e  . Simi lar  remarks 
3 j  - 

"22 3 j  
apply t o  a l l  t h e  remaining v . .  . Hence when t h e  6 are added up t h e i r  

sum d i f f e r s  from 5- by t h e  co r rec t ion  given i n  (1.3). It remains only t o  

remark on t h e  na tu re  of t h e  e r r o r  terms i n  (1.3). 

be seen from Col l in s '  [1956] work t h a t  

O(R R Lag!?,) . For o t h e r  axisymmetric bodies t h e  V f i e l d s  have not  

been worked ou t ,  and hence t h e  e r r o r  i n  (1.3) should be regarded as 

o(R R ) . While no proof is  of fered  here  it should be noted t h a t  (1.3) 

11 i j  

For t h e  sphere it can 

fm3 w i l l  in t roduce a term of 
3 -5 - 

j 

3 -4 
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holds also f o r  non-Newtonian f l u i d s .  

is similar t o  t h e  one given by Caswell E19701 for  t h e  co r rec t ioa  t o  t h e  

t r a n s l a t i o n a l  ve loc i ty  of a p a r t i c l e  i n  a non-Newtonian f l u i d  i n  t h e  l i m i t  

of zero  Reynolds number. This a n a l y s i s  which is  f a r  more genera l  than 

t h a t  given above also implies  t h e  ex is tence  of h igher  order  terms con- 

t a i n i n g  LUgE . 
it is clear t h a t  t h e  r e g u l a r  expansions employed above must be rep laced  

The proof is  r a t h e r  complicated, and 

Hence if a d d i t i o n a l  terms i n  (1.3) are t o  be ca l cu la t ed  

by appropr ia te  matched asymptotic expansions. 



3. Container Constants 

Values of t h e  wall-effect or con ta ine l  cons tan t  K12 needed i n  (1.3) 

are known for s e v e r a l  geometr ies ,  and a r e  summarized conveniently by 

Happel and Brenner C19651. However, f o r  a cy l inde r  c losed  a t  both ends 

is no t  ava i l ab le  d i r e c t l y .  Brenner f1964bl has  ca l cu la t ed  K for 
K12 12 
a cy l inde r  c losed  at  one end and with a free plane surface (zero  shear  

s t r e s s )  at  t h e  o the r .  

equation t h a t  Brenner 's  s o l u t i o n  also satisfies t h e  problem of t w o  

po in t  torques loca ted  symme2rically i n  a c losed  conta iner  as shown i n  

Figure 2. I n  t h e  l i m i t  of l a r g e  bl and r t h e  s i t u a t i o n  reduces t o  

t h a t  of a composite body made of  t h e  two po in t  to rques  separa ted  by a 

d i s t ance  2b2 loca ted  a t  t h e  cen te r  of a closed cy l inde r  o f  he ight  2h 

and diameter 2 r  . Note t h a t  although b2<< b1 it is a l s o  poss ib l e  t o  

have b2 >> a , where a is t h e  dimension of t h e  p a r t i c l e  appFoximated 

as a po in t  torque. 

cy l inde r  t o  i t s  value i n  an unbounded region depends t o  

K12 . 
has obtained t h i s  r a t io ,  and found K12 as 

It fol.lows f r o m  t h e  l i n e a r i t y  of  t h e  Stokes 

0 

0 

The r a t i o  of t h e  torque on the  composite body i n  t h e  

only on 
-3 

O(ro ) 

By t ak ing  t h e  appropr ia te  l i m i t s  of Brenner 's  s o l u t i o n  Mena [1969] 

where 

and K1( ) and 11( ) are modified Bessel func t ions  of t h e  first kind. 

It should be noted t h a t  (3.1) is w r i t t e n  wi th  Q i n  (1.3) taken t o  be P . 
The fol lowing t a b l e  shows t h a t  t h e  ends have a pronounced e f f e c t  only f o r  

0 



1 2  

TABLE I 

Container Constants f o r  a Closed Cylinder 

ro/h K12 

0 0.79682 

1/2 0.79960 

1 0.81938 

2 1.9516 

4 14.427 

00 306062 15 (ro/h)3 
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4. Toraue Measurements with a Tr i f i la r  SusDension 

Torque measurements were c a r r i e d  out  with t h e  apparatus  of Figure 3 

i n  which t h e  sphere was held s t a t i o n a r y  and t h e  cy l inder  was r o t a t e d .  

l a t te r  was made o f  p rec i s ion  g l a s s  tub ing ,  and t h e  aluminum end p l a t e s  

were held with t i e  rods .  

introduce t h e  spheres  and. t h e  f l u i d .  

a t tached  a t  t h e  cen te r  o f  a s m a l l  ho r i zon ta l  Flatform which was suspended 

from t h r e e  symmetrically placed cords.  These were secured t o  a h o r i z o n t a l  

support  d i s k  loca ted  a t  a l a r g e  d i s t ance  above t h e  cy l inde r  t o p ,  and whose 

cen te r  coincided with t h e  a x i s  of  r o t a t i o n .  

produced an angular displacement of t h e  sphere which w a s  measured o p t i c a l l y .  

Since t h e  d i r e c t i o n  of r o t a t i o n  was r e v e r s i b l e  t h e  angular  displacement of 

t h e  sphere was amplif ied by a f a c t o r  of four. 

The 

A por t ion  of t h e  top  w a s  removable i n  order  t o  

The support  s h a f t  f o r  t h e  sphere was 

The torque induced by r o t a t i o n  

With t h e  support  wires assumed t o  behave as inex tens ib l e ,  p e r f e c t l y  

f l e x i b l e  cords t h e  torque L 

displacement 0 by a s ta t ic  torque balance which g ives  

on t h e  sphere is r e l a t e d  t o  t h e  angular  

where r and r are t h e  r a d i a l  p o s i t i o n s  of t h e  chords on t h e  platform 1 2 

and support  d i sk  r e spec t ive ly ,  

and W is t h e  n e t  v e r t i c a l  force. It  can be shown t h a t  errors which 

z is  t h e  v e r t i c a l  d i s t ance  between them, 

r e s u l t  from t h e  neglec t  o f  t h e  e longat ion  and t w i s t  of t h e  wires were less 

than 0.1 p e r  cent  i n  t h e  worst case. 

As long as t h e  conf igura t ion  of t h e  body and conta iner  t oge the r  has  a 

plane o f  e q u a t o r i a l  symmetry it fol lows from t h e  above a n a l y s i s  for w a l l  

w a l l  effects t h a t  W is  t h e  weight of  t h e  sphere assembly supported by t h e  
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wires  less t h e  bouyancy of t h e  immersed p a r t s .  

an e r r o r  i n  W by d i s tu rb ing  t h e  symmetry, and 

Hence t h e  s h a f t  in t roduces  

an e r r o r  i n  t h e  hydro- 

dynamic torque a s  given by (1.1). 

dynamic force which arises from l ack  of f o r e - a d - a f t  symmetry is  

R * 0 . Further  a n a l y s i s  suggests  t h a t  t h e  force is  also p ropor t iona l  t o  

t h e  r a t i o  of t h e  s h a f t  c ros s  sec t ion  t o  t h e  p ro jec t ed  a r e a  of t h e  sphere.  

The torque produced by t h e  s h a f t  was est imated by mul t ip l i ca t ion  of t h e  

wetted l eng th  by t h e  torque  p e r  u n i t  l ength  f o r  an i n f i n i t e  cy l inder .  

effects of  t hese  e r r o r s  were inves t iga t ed  by car ry ing  out  measurements 

with s h a f t s  o f  1/16 and 1 /32  inch diameter for  each of t h e  spheres  

whose diameters va r i ed  from 1 t o  3/2 inches.  No appreciable  e r r o r  

was observed over most of t h e  Reynoldsnunber range. 

higher  values  a d e f i n i t e  t r end  appemed i n  which t h e  t h i c k e r  s h a f t s  gave 

higher  to rque  readings for a given r o t a t i o n a l  speed. 

Cox C19651 has shown t h a t  t h e  hydro- 

O(R2) as 

The 

f: 
However, a t  t h e  

Three d i f f e r e n t  s i l i c o n e  f l u i d s  were used and t h e i r  v i s c o s i t i e s  (0.498 , 
The 1.85, and 0.252 po i se )  were determined i n  a Rotovisco viscometer. 

exce l l en t  agreement between t h e  d a t a  and t h e  a n a l y t i c a l  curve i n  t h e  

Stokes regime suggests  t h e  use of t h e  conf igura t ion  of  Figure 3 as a 

viscometer. 

small enough so t h a t  a cons tan t  temperature ba th  was not  needed. 

experiments were c a r r i e d  out  i n  a room whose temperature was maintained 

a t  25 + 1 O C .  

The v i s c o s i t y  temperature c o e f f i c i e n t s  of  t h e s e  f l u i d s  are 

The 

- 
The discrepancy between t h e  experimental  po in t s  i n  Figure 3 and the  ca l cu la t ed  

curve is  less than one p e r  cent  i n  t h e  Stokes regime, two p e r  cen t  i n  t h e  

regime of Co l l in s '  formula (1.1) and about f i v e  p e r  cent  f o r  t h e  h ighes t  

Reynolds numbers. The departure  a t  t h e  h ighes t  values  may be a r e f l e c t i o n  

Mena C19691 c a r r i e d  out  flow v i s u a l i z a t i o n  s t u d i e s  of t h e  secondary flows 
which showed no v i s i b l e  dis turbance of e q u a t o r i a l  symmetry due t o  t h e  s h a f t .  

3. ,. 
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of t h e  approximate na tu re  of (1.2). 

increased a t o r s i o n a l  o s c i l l a t i o n  of the sphere w a s  obsemed, and t h i s  

u l t imate ly  l imi ted  t h e  range of observation. 

probdbly caused by s l i g h t  misalignment between t h e  sphere and t h e  cy l inder  

axes. 

t o  provide a v e r i f i c a t i o n  of t h e  wal l -effect  formula (1.3). 

3 -5 some poin t  t h e  term of  O(R R LUgt) i n  (1.3) should become appreciable .  

Below R = 30 t h e  uncorrected poin ts  (not shown) a11 l i e  t o  t h e  l e f t  

of t h e  ca lcu la ted  curves which ind ica t e s  t h e  v a l i d i t y  of <1.3) up t o  t h a t  

point .  

l i es  midway between t h e  corrected and uncorrected po in t s .  

not poss ib le  t o  say whether t h e  discrepancy is due t o  t h e  f a i l u r e  of t h e  

approximate torque formula (1.2) or t h e  w a l l  cor rec t ion  (1.3). 

However, as t h e  Reynolds number was 

This i n s t a b i l i t y  w a s  

Beyond Reynolds number 30 t h e  d a t a  are not  s u f f i c i e n t l y  accurate 

Clear ly  a t  

For t h e  higher Reynolds numbers t h e  curve ca lcu la ted  from (1.2) 

However, it is  

The support  of t h i s  work by t h e  National Science and Space Admknistra- 

t i o n  under s g r a t e f u l l y  acknowledged. Partial  support  of 

B. M, by t h e  I n s t i t u t o  Nacional de l a  Invest igacion C i e n t i f i c a  (Mexico) 
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CAPTIONS FOR FIGURES 

Figure 1. 

Figure 2. 

Figure 3 .  

Non-dimensional torque vs. Reynolds number. a )  Low Reynolds 

regiae; 

p lus  first co r rec t ion ,  - Col l ins ,  ---- Eqn. (1-2). Open 

po in t s  are cor rec ted  f o r  wall e f f e c t s .  

uncorrected.  

Def in i t ion  ske tch  f o r  t h e  ca l cu la t ion  of w a l l  effects i n  a 

c losed  c y l i n d r i c a l  conta iner .  

Schematic view of experimental  apparatus  us ing  a t r i - f i l a r  

suspension system for  torque measurement. 

b) High Reynolds regime. - -  - -Stokes ,- - - -Stokes 

So l id  p o i n t s  are 
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Prec is ion  F a l l i n g  Sphere Viscometry 

David A. Cygan 
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Brown Universi ty ,  Providence, Rhode I s l and  

SYNOPSIS 

Terminal v e l o c i t y  d a t a  of spheres  f a l l i n g  i n  a polyisobutylene (P IB)  

so lu t ion  were obtained i n  sealed tubes.  

so t h a t  t h e  f a l l  of a sphere could be repeated as o f t e n  as des.ired. 

The tubes  were e a s i l y  i n v e r t i b l e  

The 

sea led  tubes have t h e  f u r t h e r  advantage t h a t  degradation of t h e  f l u i d  i s  

g r e a t l y  reduced when compared t o  similar experiments i n  open tubes .  

Prec ise ly  reproducible  v e l o c i t i e s  were obtained by c a r e f u l  temperature 

con t ro l  and by measurement of t h e  r a d i a l  e c c e n t r i c i t y .  From such da ta  it 

, provided t h e  is poss ib l e  t o  c a l c u l a t e  t h e  zero-shear v i s c o s i t y ,  

range of e f f e c t i v e  shear  rates i s  s u f f i c i e n t l y  small. To acqui re  da t a  

i n  t h i s  range it i s  necessary t o  use spheres  with small e f f e c t i v e  mass 

( a c t u a l  mass l e s s  t h e  mass of t h e  d isp laced  f l u i d ) .  

materials (nylon, ruby, s t e e l ,  and carb ide)  were used,  and t h e i r  

p rope r t i e s  were checked by dropping them i n  a Newtonian f l u i d  of known 

v i scos i ty .  

ou ts ide  t h e  to l e rances  spec i f i ed  by t h e  manufacturers. 

1-’0 

Spheres of var ious  

In  some cases  t h e  sphere p r o p e r t i e s  were found t o  f a l l  

A tes t  of t h e  
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absolu te  accuracy of  t h e  f a l l i n g  sphere method was made with a c a l i b r a t e d  

o i l  suppl ied  by t h e  Cannon Instrument Company. 

t h e  spheres  i s  withi; h a l f  a percent  of t h e  value spec i f i ed .  

The v i s c o s i t y  measured with 

The d a t a  have been analyzed with formulae der ived from per tu rba t ion  

ca l cu la t ions  based on t h e  theory of Rivlin-Ericksen f l u i d s .  

formulae include t h e  effects of walls and f l u i d  i n e r t i a .  

o rder  theory p r e d i c t s  t h e  i n i t i a l  depar ture  from Stokes l a w .  

These 

The t h i r d  

I d e a l l y  

can be obtained by ex t r apo la t ion  of da t a  i n  t h e  range of t h e  t h i r d  

However, fo r  t h e  PIB so lu t ion  t h i s  range appears no t  t o  order  theory.  

e x i s t  or e l s e  it fa l l s  below t h a t  of most of t h e  d a t a .  Since t h e  above 

ex t r apo la t ion  w a s  no t  f e a s i b l e ,  d a t a  were taken i n  tubes  of four s i zes ,  

and was then deduced from t h e  w a l l  e f f e c t  formulas. The value so 

obtained was found t o  be i n  good agreement with t h e  values  obtained from 

an ex t r apo la t ion  which assumes t h e  apparent v i s c o s i t y  based on Stokes l a w  

varies exponent ia l ly  with t h e  shea r  stress. This type  of l i m i t i n g  

behavior c o n t r a d i c t s  t h e  t h i r d  o rde r  theory  but  descr ibes  t h e  d a t a  

remarkably w e l l .  

0 
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1. INTRODUCTION 

The pe r tu rba t ion  ca l cu la t ions  of  Leslie ,l Giesekus ,2 and C a s w e l l  and 

3 Schwarz 

f l u i d  p r e d i c t  f o r  a non-Newtonian f l u i d  t h e  i n i t i a l  depar ture  from Stokes 

l a w .  

f i n i t e  conta iner  boundaries on t h e  motion of t h e  sphere.  

sphere d a t a  of Turian:Caswell 

v i scos i ty  of a polymer so lu t ion  e i t h e r  by ex t r apo la t ing  t h e  sphere d a t a  t o  

zero shear  rate or by computing t h e  effect of t h e  tube  walls on t h e  te rmina l  

ve loc i ty .  

d i f f e r e d  by about 4 p e r  cent  from t h e  value Turian obtained from an 

empir ica l  ex t r apo la t ion .  

experiment could be u s e f u l  i n  t h e  measurement of t h e  zero-shear v i s c o s i t y .  

While t h e  i n t e r p r e t a t i o n  of these  da t a  according t o  t h e  t h i r d  order  

theory possesses  some se l f -cons is tency ,  it cannot be argued unequivocally 

t h a t  Tur ian’s  empir ica l  ex t r apo la t ion  is without v a l i d i t y .  

t i o n  implies  a d i f f e r e n t  depar ture  from Stokes l a w  than t h a t  pred ic ted  

by t h e  t h i r d  order  theory.  

fo r  t k  motion o f  a sphere f a l l i n g  I n  a t h i r d  order  Rivlin-EricksLn 

The r ecen t  ana lyses  of  C a s ~ e l l ~ ’ ~  t a k e  i n t o  account t h e  effect of 

From t h e  f a l l i n g  

4 was a b l e  t o  c a l c u l a t e  t h e  zero  shear  

These va lues  agreed mutually t o  within about 1 p e r  c e n t ,  but  

These r e s u l t s  suggested t h a t  t h e  f a l l i n g  sphere 

This ex t rapola-  

In  o r d e r  t o  f u r t h e r  i n v e s t i g a t e  t h e s e  effects it was decided t o  

attempt t o  make h ighly  p r e c i s e  and reproducible  te rmina l  v e l o c i t y  measure- 

ments of spheres  f a l l i n g  through a s o l u t i o n  of polyisobutylene i n  

cetane.  

a wide range of shea r  stress and t o  check the  boundary condi t ions  a t  t h e  

sphere’s  su r face  from one material t o  another .  

four  tubes of d i f f e r e n t  s i z e  i n  order  t o  determine t h e  effect of t h e  walls 

upon t h e  motion. 

Spheres of nylon, ruby, s teel  and carbide were used t o  provide 

The da ta  were taken i n  

Each tube  was sea l ed  t o  p r o t e c t  t h e  f l u i d  from depolymerization 
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and t o  faci l i ta te  t h e  r e p e t i t i o n  of da ta .  With a sphere i n s i d e  t h e  closed 

tube, t h e  f a l l  speed could be repeated many t imes by inve r t ing  t h e  tube as 

one would t u r n  over an hourglass.  

r a d i a l  e c c e n t r i c i t y  o f  t h e  f a l l i n g  sphere i n  order  t o  co r rec t  t h e  ve loc i ty  

Provis ions were made. t o  measure t h e  

t o  t h e  cen te r  l i n e  value.  

was ca l cu la t ed  from t h e  d a t a  f o r  each sphere,  and t h e  r e s u l t s  were 

in t e rp re t ed  according t o  t h e  ava i l ab le  theory.  

An average speed with a small s tandard devia t ion  

2. THEORY 

For t h e  purpose of t h e  f a l l i n g  sphere experiment it is  convenient t o  

express t h e  r e s i s t a n c e  o f  a p a r t i c l e  moving through a f l u i d  i n  terms of  a 

te rmina l  ve loc i ty  func t ion  U (F) , where F i s  t h e  n e t  hydrodynamic fo rce  

on t h e  p a r t i c l e .  

analyses  r e f e r r e d  t o  above y i e l d  

00 

In  t h e  i n e r t i a l e s s  flow regime t h e  t h i r d  order  theory 

U (F)  f o r  t h e  sphere i n  t h e  form 
0) 

where 

U = F/6nap0 
S 

i s  t h e  Stokes ve loc i ty ,  a i s  t h e  sphere r ad ius ,  and p is  t h e  zero- 

shear  v i scos i ty .  Here X is a c h a r a c t e r i s t i c  t i m e  which depends on t h e  

f l u i d  p r o p e r t i e s  and t h e  geometry of t h e  p a r t i c l e .  

Caswell 

t r o p i c  f l u i d s  which are cu r ren t ly  i n  vogue w i l l  y i e l d  t h e  same law of 

departure  from Stokes l a w  as given by eq. (1). 

once 

can be expressed i n  terms of t h e  parameters of any o the r  theory without 

0 

It was shorn by 

4 t h a t  v i r t u a l l y  a l l  t h e  t h e o r i e s  of t h e  s t r e s s  t enso r  for i so -  

Caswell a l s o  showed t h a t  

is known i n  terms of t h e  parameters of the t h i r d  order f l u i d  it h 
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d e t a i l e d  per turba t ion  c a l c u l a t i m s .  

Experimental t e rmina l  v e l o c i t i e s  are expres s ib l e  i n  terms of  an 

apparent v i s c o s i t y  li based on Stokes l a w ;  from eq. (1) 1 / p  is given by 

2 where T = F/Gaa is a c h a r a c t e r i s t i c  shear  stress ( f o r  t h e  Newtonian case 

3 ~ / 2  is  t h e  e q u a t o r i a l  or maximum shear  s t r e s s ) .  Hence a p l o t  of l/p 

agains t  r2 should become l i n e a r  with i n t e r c e p t  l / p o  i n  t h e  l i m i t  o f  

zero shear  stress. 

The effect of conta iner  boundaries upon t h e  motion of a p a r t i c l e  moving 

4 i n  a v i s c o e l a s t i c  f l u i d  is  given by Caswell as a cor rec t ion  t o  , t h e  

terminal  ve loc i ty  i n  an unbounded f l u i d ,  by 

For t h e  purposes of t h i s  paper a p a r t i c l e  i s  a body whose s i z e  is  small 

enough t o  s a t i s f y  t h e  i n e r t i a l e s s  flow requirement of Reynolds number << 1 . 
The experiments presented here  cover a Reynolds number range of 

-2 
1 0  

The p a r t i c l e  is 

t o  

which is w e l l  wi thin t h e  i n e r t i a l e s s  domain. 
- 

located a t  a d is tance  R from t h e  wal l ,  and E i s  t h e  wall-effect t enso r  

of  B r e n n e ~ ? . ~  

of both t h e  shape of  t h e  p a r t i c l e  and t h e  ve loc i ty  boundary condi t ion on i ts  

surface.  

s l i p  and a l s o  f o r  a f l u i d  sphere w i t h  i n t e r n a l  c i r c u l a t i o n .  

This first order  w a l l  cor rec t ion  cm be shown t o  be independent 

For ins tance ,  it holds f o r  a s o l i d  sphere both with and without 

The r e s u l t  expressed by eq. ( 4 )  was derived from a genera l  per turba t ion  

ana lys i s .  Higher order  terms i n  l / k  can be obtained only with ca l cu la t ions  

of considerable  complexity. When these  terms are already known i n  t h e  
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Newtonian theory  they  can be e a s i l y  included. 

along t h e  axis of a c i r c u l a r  tube  of r ad ius  

a x i a l  force F i ts  v e l o c i t y  U is  given by 

Thus when a sphere t r a n s l a t e s  

R under t h e  inf luence  of an 

where t h e  func t ion  W(a/R) i s  obtained from Faxen's s e r i e s  as worked out  

by Bohlin* and i s  given by 

2 4 + 0.9481(a/R) W(a/R) = 2.1044 - 2.0888(a/R) 

7 9 + 1 . 3 7 2 ( a / ~ ) ~  - 3.87(a/R) + 4.19(a/R) + ... . 
When Um(F) is rep laced  by t h e  Stokes ve loc i ty ,eq .  (2),Faxen's w a l l  

cor rec t ion  eq. (10) f o r  a Newtonian f l u i d  is  recovered. 

l i n e a r i t y  of Stokes l a w  t h e  Newtonian formula i s  e a s i l y  inve r t ed  and 

expressed as a co r rec t ion  t o  t h e  force, and it i s  i n  t h e  form o f  a force 

co r rec t ion  t h a t  Faxen's formula is usua l ly  presented.  For non-Newtonian 

f l u i d s ,  only t h e  v e l o c i t y  co r rec t ion  form eq. (5 )  is  va l id .  

evident  from t h e  work of Tanner' who showed t h a t  t h e  Faxen fo rce  formula 

d id  not  adequately correct terminal ve loc i ty  d a t a  taken i n  polymer so lu t ions .  

Turian6 assumed t h e  form of eq.  (5 )  without ident j - fying t h e  v i s c o s i t y  i n  

H i s  f a l l  tubes  and spheres  were s e l e c t e d  so t h a t  t h e  denominator as 

W(a/R) w a s  determined e s s e n t i a l l y  by t h e  first term i n  eq. (6 ) .  Tur ian ' s  

assumed w a l l  co r r ec t ion  toge the r  with h i s  logar i thmic  p l o t  of 

aga ins t  T 

( see  for i n s t ance  Ashare'') have used t h e  f a l l i n g  sphere experiment t o  

obta in  t h e  zero-shear v i s c o s i t y .  It should be emphasized t h a t  t h e  w a l l -  

e f f e c t  formula, eq. (5 ) ,  is  der ivable  from t h e o r i e s  of t h e  stress t e n s o r  

Because of t h e  

This  is  

Po * 

1/11 

(Figure 5)  form t h e  b a s i s  upon which Bird and h i s  coworkers 
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which i n  t h e  l i m i t  o f  slow flow a r e  equivalent  t o  t h e  theory of Rivlin- 

Ericksen f l u i d s  (Caswell 1. 

implies a l i n e a r  depar ture  from 

departure  expressed by eq. ( 3 ) .  

4 On t h e  o the r  hand t h e  logari thmic p l o t  

i n  con t r a s t  t o  t h e  quadra t ic  l / p o  

It is clear from t h e  error t e r m  t h a t  eq. ( 5 )  is not  uniformly v a l i d  i n  

powers of R-’ e 

t h a t  t h e  next  term of  

t h a t  it w i l l  be replaced by 

It can be shown from dimensional and symmetry arguments 

O(R-3) w i l l  modify t h e  second term i n  eq.  (6)  so 

2 
(7) 

where C is  a numerical cons tan t ,  K i s  a c h a r a c t e r i s t i c  t ime,  Ap is  t h e  

sphere-f luid dens i ty  d i f f e rence  and g i s  t h e  g r a v i t a t i o n a l  acce le ra t ion .  

Hence i n  t h e  f a l l i n g  sphere experiment where F i s  t h e  d i f f e rence  between 

t h e  g r a v i t y  and buoyancy fo rces  t h e  e r r o r  i n  eq. ( 5 )  can be suppressed by 

s u i t a b l e  choice of spheres.  Under t h e s e  circumstances can be 

determined from t h e  s lope  of  eq. (5)  by measurement of t h e  te rmina l  

ve loc i ty  of  a given sphere i n  tubes  of seve ra l  s i z e s .  

f l u i d  Um(F) 

t hus  a p l o t  of U aga ins t  W(a/R)/R for seve ra l  tubes  w i l l  have s lope  

-F/6npo and i n t e r c e p t  Um(F) . The values  of  t h e  l a t t e r  for s e v e r a l  

spheres can then be used t o  determine 

For a p a r t i c u l a r  

has  a c h a r a c t e r i s t i c  value f o r  each sphere (a t  constant  F);  

from t h e  i n t e r c e p t  of Eq. ( 3 ) .  
uO 

In high p rec i s ion  work it is  important t o  accura te ly  con t ro l  t h e  

center  l i n e  motion; o r  if it cannot be con t ro i l ed ,  t h e  e c c e n t r i c i t y  

from t h e  cen te r  l i n e  should be measured. 

moving under t h e  inf luence  of an a x i a l  force can be obtained from eq. (4)  

8 and t h e  work of Happel and Brenner 

b 

The a x i a l  speed f o r  a p a r t i c l e  

as 
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where U is t h e  center l i n e  ve loc i ty  given by eq. ( 5 )  for t h e  sphere,  and 

f is a functior t abu la t ed  i n  Happel and B r e n t e r .  

2 t s  argument f(b/R) is  given by 

For small va lues  of  

2 4 f(b/R) = 2.1044 - 0.6977(b/R) + O(b/R) 

The e c c e n t r i c  pos i t i on  causes a sphere t o  r o t a t e ,  and it was shown by 

Brenner and Happel” for Newtonian f l u i d s  t h a t  t h e  axial v e l o c i t y  is 

unaffected by t h i s  r o t a t i o n .  

by Caswell 

produce a r a d i a l  migrat ion.  

observed such a r a d i a l  motion away from t h e  cen te r  l i n e ,  

migration i s  not  t o o  l a r g e  t h e  mean va lue  of b can be used i n  eq. ( 8 ) .  

When eq. (9 )  is  a good approximation t o  f(b/R) t h e  e r r o r  i n  t ak ing  t h e  

mean value is  small ( s e e  Caswell 1. 

For non-Newtonian f l u i d s  it has been shown 

5 t h a t  i n  add i t ion  t o  t h e  r o t a t i o n  t h e  normal s t r e s s e s  can 

Working with a polymer so lu t ion  Tanner’ had 

If t h e  r a d i a l  

5 

3. EXPERIMENTAL APPARATUS 

3.1 Tube Design 

Four tube  diameters were s e l e c t e d  i n  order  t o  inves  i g a t e  t h e  w a l l  

effect upon t h e  t e rmina l  v e l o c i t y  of t h e  spheres.  

3.050, 4.445, and 7.617 ern - + 0.0005 c m  tubes  #1, #2, # 3 ,  and #4 r e s p e c t i v e l y )  

were chosen so t h a t  t h e  inf luence  of t h e  walls would change by uniform 

increments from one s i z e  t o  t h e  next .  Each fall tube was closed with end 

plates which had 0.635 c m  loading holes  through t h e i r  c e n t e r s  ( see  Figure 1). 

These holes  were used t o  f i l l  t h e  tube and t o  change spheres .  

The diameters (2.223, 

End caps,  



at tached by screws t o  t h e  end p l a t e ,  covered t h e  loading holes  and sea led  

t h e  f l u i d  f r o m  contac t  with t h e  atmosphere. 

f l u i d  was thus  achieved by i s o l a t i n g  it from oxygen i n  t h e  air .  

t h e  inves t iga t ion  t h e  tubes  were sea led ,  and t h e  f r e s h  f l u i d  w a s  kept i n  a 

Sxce l len t  s t a b i l i t y  of t h e  

Throughout 

closed b o t t l e  away f r o m  t h e  l i g h t .  

with t h e  polymer so lu t ion ,  and sphere speeds were recorded. 

i n t e r v a l  of  n ine  months, t h e  tube was r e f i l l e d  with a f r e s h  sample, and 

t h e  v e l o c i t i e s  of t h e  same spheres  were remeasured. 

s l i g h t  speed increase  on t h e  order  of  0.1%. 

t h a t  depolymerization w a s  reduced t o  neg l ig ib l e  l e v e l s .  

A s  a check, t h e  4.445 c m  tube was f i l l e d  

After an 

The r e s u l t s  showed a 

Therefore,  i t  was concluded 

A f ixed  frame w a s  used t o  hold each tube i n  a v e r t i c a l  pos i t i on .  The 

frame had a lower s h a f t  with a con ica l  t i p  and an upper support  a r m  with a 

V-notch c u t  i n t o  it. 

caps would f i t  i n t o  t h e  supports .  

t h e  lower s h a f t ,  and t h e  outs ide  diameter of  t h e  upper cap was he ld  i n t o  t h e  

The supports  were al igned properly so t h a t  t h e  end 

Each cap had a conica l  hole t o  rest on 

V-notch for p o s i t i v e  alignment. With a sphere sealed i n  t h e  viscometer, da t a  

was e a s i l y  taken by removing t h e  tube from t h e  frame, inver t ing  it, replac ing  

it i n  t h e  supports ,  and measuring t h e  time as t h e  sphere f e l l  t o  t h e  bottom. 

It should be kept i n  mind t h a t  t h e  viscometer was designed f o r  v i s c o s i t i e s  

of 1 0  poises  or more so t h a t  t h e  p a r t i c l e  not ion would be slow enough t o  

a l l o w  t h e  tube t o  be inver ted  by hand. 

Temperature con t ro l  for t h e  viscometer was provided by c i r c u l a t i o n  of 

water through a p i e x i g l a s s  j acke t  surrounding t h e  f a l l  tube.  

supplied from a constant  temperature bath which maintained set  values t o  

within a to le rance  of i- O.0loC. 

The water w a s  

- 
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3.2 Velocity Measurements 

The € a l l  ve loc i ty  was measured by t iming t h e  p a r t i c l e  between two 

f ixed  po in t s .  

measure t h e  f a l l  d i s tance .  The f a l l  time w a s  measured with an e l e c t r o n i c  

counter  equipped with a s t a r t - s t o p  t r i g g e r .  

terminal  ve loc i ty  was measured, da t a  were gathered i n  t h e  middle of t h e  

tube away from t h e  ends. 

become n e g l i g i b l e  a t  a d i s t ance  of one tube r a d i u s  from t h e  end; thus  a11 

measurements were made i n  zones at least one tube diameter from t h e  end 

p l a t e s .  

sphere could be repeated as o f t e n  as des i red .  

were obtained as averages of many t r ia l s .  

s tandard devia t ion  was l e s s  than 0 . 1  pes? cent  of t h e  mean were regarded as 

acceptable .  

A v e r t i c a l  cathetometer was used t o  s i g h t  on t h e  sphere and 

In  o rde r  t o  in su re  t h a t  t h e  

Tanner1* has  shown t h a t  end e f f e c t s  s tar t  t o  

Since t h e  tubes  were e a s i l y  i n v e r t i b l e  t h e  f a l l  time of any 

Thus t h e  terminal v e l o c i t i e s  

Only avepage v e l o c i t i e s  whose 

Since t h e  speed of t h e  p a r t i c l e  depends upon t h e  r a d i a l  e c c e n t r i c i t y  

withir, t h e  tube ,  eq.  (81, pi-ovision w a s  made t o  measure t h e  r a d i a l  p o s i t i o n  

a t  t h e  midpoint of  t h e  t r a j e c t o r y .  

pos i t i on  was used -to ob ta in  t h e  d i s t ance ,  

t o  t h e  a x i s  of t h e  tube.  

of t h e  viscometer walls with t h e  r e s u l t  t h a t  t h e  t r u e  r a d i a l  p o s i t i o n  was 

measured t o  within 0 .01  cm. 

A cathetometer placed i n  a ho r i zon ta l  

b , from t h e  cen te r  of t h e  sphere 

The d a t a  were comected  for t h e  o p t i c a l  d i s t o r t i o n  

3 . 3  Spheres 

Spheres of nylon, aluminum oxide,  s t a i n l e s s  s t e e l  and carbide were 

se l ec t ed  t o  provide as wide a range of e f f e c t i v e  sheai- s t r e s s ,  

p rac t i cab le .  

T as 

Through t h i s  s e l e c t i o n  of ma te r i a l  d e n s i t i e s  and by v a r i a t i o n  
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of t h e  diameter it was poss ib l e  t o  obta in  ar. experimental  range of 

9 t o  735 dynes/cm . 
T from 

2 

The p r o p e r t i e s  of  t h e  spheres  were determined by both d i r e c t  and 

i n d i r e c t  methods. 

s i z e  to l e rances ,  and t h e i r  masses were measured ind iv idua l ly .  The 

manufacturer 's  t o l e rances  €or t h e  small ruby spheres  were as l a r g e  as 

1 .0  p e r  cen t ,  so  t h e i r  p r o p e r t i e s  were checked by dropping them i n  two 

Newtonian f l u i d s  of known v i s c o s i t y :  

Company (CIC) s tandard  o i l .  

The carb ide ,  s t e e l  and l a r g e  ruby spheres  had accura te  

S i l i cone  O i l  and a Cannon Instrument 

The use  of p l a s t i c  spheres  has been avoided by o the r  i n v e s t i g a t o r s  on 

t h e  grounds t h a t  t h e i r  s p h e r i c i t y  i s  poor. 

Brenner 's  

t o l e r m c e s  t h a t  t h e  e r r o r  i n  Stokes l a w  is only 0 . 1  p e r  cent  i n  t h e  worst 

case.  

dens i ty  v a r i a t i o n  due t o  water absopption from t h e  atmosphere. 

t reatment  was adopted t o  maintain t h e s e  spheres i n  a usable  condi t ion.  

They were d r i e d  i n  a d e s s i c a t o r  and then  s t o r e d  i n  it throughout t h e  

experimental  per iod .  In  t h e i r  drqy s t a t e  t h e  s i z e  of each sphem was 

measured o p t i c a i i y ,  and t h e i r  p r o p e r t i e s  were checked from f a l l  d a t a  i n  

t h e  s i l i c o n e  o i l .  Af te r  t h e  t e s t s  with t h e  PIB so lu t ion  were completed 

t h e  p r o p e r t i e s  o f t h e  nylon spheres were checked and found t o  be unchanged. 

However, it can be shown f r o m  

13 drag formulae for rough spheres  and from t h e  manufacturer ' s  

The major problem encountered with t h e  nylon spheres  was t h e i r  

Spec ia l  
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4. NEWTONIAH TESTS 

4.1 S i l i cone  O i l  

The s i l i c o n e  o i l  was used t o  check t h e  p r o p e r t i e s  of t h e  nylon and 

small ruby spheres .  

spheres  of  known p r o p e r t i e s  i n  t h e  o i l  and computing t h e  average value 

according t o  Faxen's wall  co r rec t ion  formula eq.  (10). The r e s u l t s  gave a 

mean value f o r  I-I of 48.56 poises  +0.2%. Then t h e  f a l l  v e l o c i t i e s  of t h e  

small ruby spheres  were measilred, and t h e  v i s c o s i t y  was computed using t h e  

nominal s i z e  of each sphere.  

per  cent  from t h e  48.56 po i ses  value ind ica t ing  a s i g n i f i c a n t  source of 

error i n  t h e  computational q u a n t i t i e s .  

Its v i s c o s i t y  was determined by dropping t h r e e  ruby 

- 

Figure 2 shows an extreme devia t ion  of 2.5 

The v i s c o s i t y  was computed as 

where K(a/R) i s  t h e  Faxen wall cor rec t ion  

a 
R K(a/R) = 1 - - F?(a/R) , 

and t h e  terms i n  t h e  bracke ts  represent  t h e  first order  e m o r  con t r ibu t ions .  

The q u a n t i t i e s  GAp/Ap and 6 U / U  are small  coinpared t o  t h e  manufacturer ' s  

t o l e rances  on 6a/a . Therefore t h e  value of I-I was f ixed  a t  48.56 poises 

and eq. (LO) was solved for  t h e  r a d i u s  of t h e  sphere.  The r e s u l t s  d i f fe r -ed  

s i g n i f i c a n t l y  f ron  t h e  nominal s i z e s  and i n  some cases were ou t s ide  t h e  

spec i f i ed  t o l e r a w e s .  

I n  t h e  case of t h e  nylon spheres  t h e  r a d i i  were we l l  known from 

opt ical  measurements; however t h e  dens i ty  d i f f e rence  

poorly known. Here 

hp = p, - p f  was 

is  t h e  sphere dens i ty  and p i s  t h e  f l u i d  
ps f 



13 

dens i ty  which was accurz te ly  measured. Thus with rl known, eq. (10) was 

solved for  t h e  sphere dens i ty  p 

t i o n s  of t h e  non-Newtonian da ta .  

use of  t h e  Newtonian tes t  f o r  t h e  measurement of sphere p r o p e r t i e s  rests on 

t h e  asignment of an absolu te  value f o r  t h e  v i s c o s i t y  of t h e  t es t  f l u i d .  

However, it is e a s i l y  shown from eq. (10) t h a t  t h e  computation of t h e  r a d i u s  

for t h e  spheres  with l a r g e  

Ap is independent of t h e  value of rl . I n  e f f e c t  t h e  tes t  measures t h e  

r a d i u s  of  a small sphere r e l a t i v e  t o  t h a t  of a l a r g e  one xhose r a d i u s  can 

be accumte ly  measwed with a micrometer. Likewise for spheres  whose Ap 

is  small t h e  t e s t  measures t h i s  quan t i ty  r e l a t i v e  t o  t h a t  of a sphere whose 

Ap 

should be noted t h a t  t h e  t e s t  cannot be used t o  accu ra t e ly  measme t h e  

r ad ius  of a sphere with small Ap . This  s ta tement  i s  e a s i l y  proved by 

examination of t h e  emor terms i n  eq.  (10). 

cha rac t e r i za t ion  of spheres  by t h i s  method cSn be seen i n  Figures 4 and 5 

where exce l l en t  con t inu i ty  and overlap i s  obtained between d a t a  f o r  nylon 

spheres (Ap small)  and ruby spheres  (Ap l a r g e  1. 

which would be needed i n  f u t u r e  computa- 
S 

S u p e r f i c i a l l y  it would appear t h a t  t h e  

Ap or t h e  dens i ty  for t h e  spheres  with small 

i s  l a r g e  and accu ra t e ly  measurable with a balance and micrometer. It 

The j u s t i f i c a t i o n  for t h e  

4.2 Cannon Instrument Company O i l  

The C I C  s tandard  v i s c o s i t y  o i l  had a nominal v i s c o s i t y  o f  26.36 po i ses  

- +0.5% a t  25OC. This  o i l  was used t o  check t h e  absolu te  accuracy of t h e  

system and t o  v e r i f y  t h e  c a l i b r a t i o n  of t h e  small ruby spheres  fi-om t h e  

s i l i c o n e  o i l  t e s t s .  Duri.ng t h e  v e l o c i t y  measurements it was found t h a t  

temperature f l u c t u a t i o n s  were t h e  main'sources of e r r o r  because of t h e  

s t rong  s e n s i t i v i t y  of t h e  v i s c o s i t y  t o  temperature.  The change i n  f a l l  
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speed was measured t o  be 9,O p e r  cent p e r  degree cent igrade which when combined 

with t h e  temperature c o n t r o l l e r ' s  own f l u c t u a t i o n s  y i e l d s  an extreme con t ro l  

error of 0.2 pe r  cent .  

i n  Figure 2 where t h e  average computed value is  26.27 poises .  

The r e s u l t s  of t h e  v i s c o s i t y  ca l cu la t ions  are shown 

This  d i f f e r s  
, 

by only 0.34 pea? cent  from t h e  nominal C I C  v i s c o s i t y  and t h e r e f o r e  i n d i c a t e s  

t h a t  t h e  absolu te  accuracy of t h e  measurements i s  very good. 

I n  t h e  computations for  t h e  C I C  o i l ' s  v i s c o s i t y ,  t h e  sphere r a d i i  

determined from t h e  s i l i c o n e  o i l  tests were used. This i s  equivalent  t o  

w r i t i n g  eq. (10) once f o r  t h e  s i l i c o n e  o i l  and once for  t h e  C I C  o i l  ( R  

constant)  and then e l imina t ing  t h e  common factor 2a gK(a/R)/9 between 2 

them. The expression f o r  t h e  v i s c o s i t y  then becomes 

Y P 2  
I- - (Ps-P1) 

where s u b s c r i p t s  1 and 2 refer t o  t h e  s i l i c o n e  o i l  and C I C  o i l  

respec t ive ly .  The bracke ts  enclose t h e  first order  estimates of t h e  

e r r o r  cont r ibu t ions  of which rl , U1 and U2 comprise t h e  s i g n i f i c a n t  

sources  of emop f o r  t h e  case of t h e  ruby spheres.  

been reduced t o  n e g l i g i b l e  l e v e l s  i n  t h i s  case because t h e  f l u i d  d e n s i t i e s  

has 
pS 

The error froin 

(p, = 0.9677, p = 0,7762 and p 2 S 
= 3.994 gm/cc) a r e  c lose  i n  value t o  each o the r  

causing t h e  coe f f i c i en t  ( p  -p )/(p -p t o  be small. The o v e r a l l  e f f e c t  1 2  s 1  

of eq. (11) is  t o  g r e a t l y  reduce t h e  s c a t t e r  i n  t h e  v i s c o s i t y  as is seen by 

a compar4son of the  t w o  sets of d a t a  i n  Figure 2. The s i l i c o n e  o i l  

v i scos i ty  w a s  co,tiputed without co r rec t ion  fox, t h e  sphei-e s i z e s  ; whereas 

t h e  C I C  o i l  v i s c o s i t y  was ca l cu la t ed  according t o  eq. (11) and shows 

s i g n i f i c a n t l y  smaller scatter. 

t h e  C I C  o i l  da t a  may be a t t r i b u t e d  t o  temperature f l u c t u a t i o n s  during t h e  

measurements. 

Much of t h e  scatter which does appear i n  
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5. NON NEWTONIAN TESTS 

5.1 F a l l  Data 

All t h e  non-Newtonian s t u d i e s  were made i n  a so lu t ion  cons i s t ing  of 

5 per  cent  PIB and 95 p e r  cent  cetane by weight. 

MM L-140) had a v i s c o s i t y  average molecular weight of 117,000 t o  135,000. 

During t h e  inves t iga t ion  a t r end  was not iced  whereby t h e  v e l o c i t y  of  small 

ruby and steel spheres  d r i f t e d  by measurable amounts while they became 

acclimated t o  t h e  f l u i d .  The t r end  was small and could not  always be 

de tec ted ,  bu t  t h e  speed always decreased from t h e  i n i t i a l  value taken 

immediately a f t e r  pu t t i ng  t h e  clean dry sphere i n t o  t h e  viscometer.  

f e w  hours were allowed t o  pass  or t h e  p a r t i c l e  tras l e f t  i n  t h e  tube  over 

n igh t ,  a s teady  speed would be reached which ranged ( i n  t h e  most obvious 

cases)  from 0.4  t o  1-0 p e r  cent below t h e  i n i t i a l  value.  I n  p r a c t i c e  it 

was not  poss ib l e  t o  wait for  t h e  sphere t o  reach equi l ibr ium wi th in  t h e  

tube before  record ing  da ta .  

of t h e  PIB so lu t ion  so as t o  be i n  equi l ibr ium before  being placed i n  t h e  

viscometer.  

It is not  poss ib l e  t o  g ive  a p r e c i s e  explanat ion of t h e  d r i f t  i n  t h e  f a l l  

t imes,  bu t  it appears t o  be an effect a s soc ia t ed  wi th  exposum of f l u i d  

surfaces t o  evaporation and poss ib ly  degradation. 

ments Wilson1' had observed t h e  f a l l  of spheres  which wem introduced through 

a f r e e  su r face .  

t h e  f l u i d  sur face .  

atmosphere f o r  a few days Wilson not iced  t h a t  t h e  sphere dragged a "skin" 

from t h e  fpec  su r face  i n t o  t h e  bulk of t h e  so lu t ion .  The sk in  was 

The PIB (Vistanex 

If a 

Thus t h e  spheres  were s to red  in  a s m a l l  sample 

No d r i f t i n g  w a s  observed after t h i s  procedure was adopted, 

I n  some e a r l i e r  exper i -  

The v e l o c i t i e s  he measured t o i e d  g r e a t l y  with t h e  age of 

I n  t h e  extreme case of a PIB  s o l u t i o n  exposed t o  t h e  
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o h e r v a b l e  because 

value.  Even after 

i t s  r e f r a c t i v e  index d i f f e r e d  s l i g h t l y  from t h e  bulk 

h i s  fall tubes  were covered and su r face  exposure t i m e s  

were minimized it was not  poss ib l e  t o  obta in  f a l l  d a t a  free from d r i f t .  

The closed f a l l  tubes  used i n  t h e  experiments of t h i s  paper were designed 

t o  overcome these  d i f f i c u l t i e s .  

times was n o t  observed for  t h e  des s i ca t ed  nylon spheres .  

precaut ions taken t o  minimize t h e  exposure of t h e  f l u i d  sur face  t o  evapora- 

t i o n  t h i s  suggests  t h a t  t h e  effect depends also on t h e  na tu re  o f  t h e  s o l i d  

sur face .  

It is noteworthy t h a t  t h e  d r i f t  i n  fall 

I n  view of t h e  

I n  a l l  t h e r e  were twen-ty-four d i f f e r e n t  spheres  t o  be used i n  t h e  

viscometer. 

were s e l e c t e d  t o  be dropped i n  a l l  fou r  tubes .  

comprise t h e  information f o r  t h e  wall e f f e c t  s tudy.  

spheres were t e s t e d  i n  t h e  4.445 cm tube  i n  order  t o  cover t h e  e n t i r e  

shear  s t r e s s  range with a maximum number of p o i n t s ,  Table 11. 

da ta  i n  Tables I and I1 a r e  given as cen te r  l i n e  v e l o c i t i e s  whereas t h e  

a c t u a l  measurements were made with some r a d i a l  e c c e n t r i c i t y .  

were cor rec ted  t o  t h e  a x i a l  va lues ,  U , according t o  eq. ( 8 ) .  T h i s  

cor rec t ion  was checked experimental ly  and was found t o  be h ighly  accura te  

for slow spheres  i n  t h e  neighborhood of t h e  lower Newtonian regime. The 

e r r o r s  i n  t h e  pred ic ted  va lues  of U were less than  0.1 per  cent  i n  a l l  

cases  where b/R was small (b/R < 0 . 1 ) .  For b/R between 0 . 1  and 0.5 

t h e  e r r o r  i n  

s teel  and carb ide  spheres .  These heavier  spheres  l i e  ou ts ide  t h e  l i m i t s  

of t h e  theory so t h a t  t h e  centel? l i n e  cor rec t ion  terms themselves may be 

as much as 100 p e r  cent  i n  e r r o r ;  but s ince  t h e  co r rec t ion  i s  a small 

Eleven of them, from t h e  smal les t  nylon t o  t h e  l a r g e s t  carb ide ,  

These d a t a ,  Table I ,  

The remainder of  t h e  

All of  t h e  

The v e l o c i t i e s  

- 
U had an upper l i m i t  of about 0.2 p e r  cen t  for t h e  l a r g e  
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por t ion  of t h e  t o t a l  v e l o c i t y ,  t h e  accuracy o f  

s i g n i f i c a n t l y .  

U i s  not  diminished 

5.2 Comparison with Th ory  
I 

The w a l l  e f f e c t  d a t a ,  Table I ,  provides t h e  cen te r  l i n e  v e l o c i t i e s  for 

eleven spheres  i n  fou r  tubes.  

eq. (51, a p l o t  of U versus W(a/R)/R provides Um(F) as t h e  i n t e r c e p t ,  

and p 

According t o  t h e  t h i r d  order  theory ,  

i s  found from t h e  s lope  according t o  t h e  r e l a t i o n  
0 

2 = -a T/ % (12) 

where G(a,R) = W(a/R)/R (see  Figure 3 ) .  These r e s u l t s  should be v a l i d  

only when T is small and/or R i s  l a rge .  An inspec t ion  shows t h a t  

devia t ions  e x i s t  between t h e  theory and experiment. The first t h r e e  

spheres  i n  Table I have small e f f e c t i v e  shear  s t r e s s e s  s o  t h a t  t h e i r  

p red ic t ions  f o r  p v i a  eq.  ( 1 2 )  a r e  i n  good agreement; keep i n  mind 

here  t h e  fact t h a t  t h e  s lope  i s  a second order  quan t i ty  which cannot be 

measured as accura te ly  as t h e  ve loc i ty .  Their  values  of  115.6 I 1. 1.9%, 

114.8 - ?- 0.4% and 117.2 - c 3.8% have overla.pping e r r o r  bounds based upon 

a 98 pe r  cent  confidence l i m i t  and y i e l d  an average zero shea r  v i s c o s i t y  

of 115.9 poises .  Deviations i n  t h e  p red ic t ion  of p begin t o  appear 

0 

0 

as one proceeds down t h e  t a b l e  i n  t h e  direc-tior? of i nc reas ing  shea r  

stress T . Here v0 decreases  monotonically from 115.9 po i ses  with 

increas ing  T . From t h e s e  r e s u l t s  it may be concluded t h a t  eq. (51, 

based upon , i s  s t r i c t l y  v a l i d  only over a small range of T nea r  

T = o .  

A second poin t  of i n t e r e s t  i s  t h e  accuracy of  t h e  Newtonian geometry 



factor G(a,R) . A s  long as t h e  U versus  G(a,R) curve remains a 

s t r a i g h t  l i n e ,  t h i s  f a c t o r  may be considered an accurate  f u n c t i o n a l  

representa t ion  of t h e  w a l l ' s  geometrical  inf luence.  The d a t a  i n  Table I 

show a s t r a i g h t  l i n e  r e l a t i o n s h i p  fo r  t h e  first siX spheres of which t h e  

0.47625 c m  nylon and 0.15875 c m  s teel  spheres are p l o t t e d  i n  Figure 3 .  

The las t  f i v e  spheres cover increasing shea r  stress and being t o  demonstrate 

a departure  from t h e  l i n e a r  r e l a t i o n s h i p .  

which has  t h e  g r e a t e s t  curvature ,  is shom i n  Figure 3 .  

s i x  spheres follow t h e  s t r a i g h t  l i n e  r e l a t i o n  suggested by eq. ( 5 )  values  

of po 

Figure 5 only f o r  t h e  smallest values of T . 

The 0.47625 c m  carbide sphere,  

Although t h e  first 

ca l cu la t ed  from t h e  s lope  are i n  agreement with t h e  i n t e r c e p t  of 

Two methods are now a v a i l a b l e  which p r e d i c t  t h e  v e l o c i t y  Um(F) 

which t h e  sphere would e x h i b i t  i n  an i n f i n i t e  body of f l u i d .  

may be appl ied d i r e c t l y  using t h e  b e s t  estimate for  

da t a ,  U versus  G(a,R) , can be extrapolated t o  t h e  i n f i n i t e  tube l i m i t .  

E i t h e r  eq. ( 5 )  

or t h e  wall efEect 

A t  l a r g e  shear  rates it i s  already known t h a t  eq. ( 5 )  w i l l  underestimate 

U s i n c e  overestimates t h e  e f f e c t  of v i s c o s i t y .  On t h e  o t h e r  hand, 

a l i n e a r  ex t r apc la t ion  of U versus G(a,R) w i l l  overestimate Um due 

t o  t h e  curvature of t h e  da t a .  

two techniques conpare t o  each o the r .  Um 

by both methods, and it is apparent t h a t  agreement i.s very good over t h e  

e n t i r e  experimental  range. A t  small 'I t h e r e  is v i r t u a l l y  no d i f f e r e n c e  

between t h e  two values while t h e  worst case, t h e  0.47625 c m  carbide sphere,  

shows a discrepancy of only 0.8 p e r  cent .  

dif ference i n  t h e  results although t h e  method of ex t r apo la t ion  r e q u i r e s  t h e  

tedious gather ing of d a t a  i n  mult iple  tube s i z e s .  

m 

But one important feature i s  how w e l l  t h e s e  

Table I l ists  t h e  r e sx l t s  f o r  

Thus t h e r e  i s  l i t t l e  p r a c t i c a l  
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Once t h e  value of U, is  known for each sphere t h e  apparent v i s c o s i t y  

1-1 can be computed from 

l~ = F/6naUm , 

Tables I and I1 l ist  va lues  of p and 'I f o r  each sphere t e s t e d .  According 

t o  t h e  t h i r d  order  theory ,  eq. (3), l / p  , t h e  apparent f l u i d i t y ,  should be 

l i n e a r  i n  

1 / p  versus  T and l/p versus T , shows t h a t  it i s  p ropor t iona l  t o  T 

nea r  zero.  Although t h i s  r e s u l t  d i sagrees  with t h e  theory ,  it does agree  

with Turian' who a l s o  found logu t o  be l i n e a r  i n  T and with P e t e r l i n  

who quotes many exper imenta l i s t s  as f ind ing  v i s c o s i t y  propor t iona l  t o  shear  

ra te  a t  low shear  r a t e s .  A p l o t  of logp versus  T , similar t o  Tur ian ' s ,  

is given i n  Figure 5. This curve is remarkably l i n e a r  f o r  T up to about 

240 dynes/cm . 
p r e d i c t s  a zero  shear  v i s c o s i t y  (or i n t e r c e p t )  of 116.2 po ises  - + 0.1% 

(based on a 98 p e r  cent  confidence l i m i t ) ,  and a check of t h e  maximum 

devia t ion  from t h e  s t r a i g h t  l i n e  y i e l d s  a value of 0.03%. 

f o r  p 

effect d a t a  f o r  t h e  spheres  with t h e  smal les t  va lues  of 

-c2 f o r  small shear  stress; however Figure 4 ,  which g ives  both 

2 

15 

2 A least square f i t  of a s t r a i g h t  l i n e  through t h i s  region 

This p red ic t ion  

is i n  very good agreement with t h e  value obtained from t h e  w a l l  
0 

T . 

CONCLUSION 

The te rmina l  v e l o c i t y  experiments descr ibed i n  t h i s  paper  were 

c a r r i e d  out  t o  v e r i f y  t h e  p e d i c t i o n s  of t h e  theopy of Rivlin-Ericksen 

f l u i d s  for both wall-effects as expressed by eq. ( 5 )  and for  t h e  asymptotic 

approach t o  zero-shear r a t e  condi t ions as expressed by eq. ( 3 ) .  

of these  e f f e c t s  demands measurements whose p rec i s ion  is high compared t o  

The study 
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t h a t  a t t a i n a b l e  i n  most viscometers based on viscometr ic  flows. For t h i s  

reason t h e  sea led  fa l l  tubes  descr ibed above were employed t o  obta in  a high 

degree of s t a b i l i t y  of t h e  f l u i d  p rope r t i e s  over long per iods  o f  t i m e .  I n  

add i t ion ,  t h e  i n v e r t i b i l i t y  of these  tubes  permit ted t h e  r e p e t i t i o n  of any 

f a l l  so t h a t  t h e  r e p r o d u c i b i l i t y  of a te rmina l  v e l o c i t y  could be conveniently 

checked. 

reproducible  f a l l  speeds. The nylon spheres  were dess i ca t ed  t o  maintain 

constant  dens i ty  and s i z e ,  and t h e  ruby, s t e e l ,  and carbide spheres  were 

s tored  i n  t h e  P I B  s o l u t i o n  before  use i n  order  t o  avoid t h e  d r i f t  i n  f a l l  

ve loc i ty  observed when a dry sphere i s  first introduced i n t o  t h e  so lu t ion .  

F ina l ly ,  i n  order  t o  c a l c u l a t e  apparent v i s c o s i t i e s  of accuracy comparable 

t o  t h a t  of t h e  te rmina l  v e l o c i t i e s  it was necessary t o  determine t h e  

The spheres  themselves had t o  be given s p e c i a l  treatment t o  in su re  

p rope r t i e s  of some of t h e  spheres  i n  tests with f l u i d s  which a r e  known 

t o  be Newtonian. 

not  be determined with s u f f i c i e n t  accuracy with conventional methods. 

j u s t i f i c a t i o n  of t h i s  sphere c a l i b r a t i o n  can be seen i n  Figure 4 

shows t h e  exce l l en t  overlap and con t inu i ty  between t h e  nylon and ruby po in t s .  

Wall e f f e c t s  for  d a t a  taken i n  tubes  can be computed very well with 

This w a s  necessary because t h e i r  s i z e s  and weights could 

The 

which 

eq. ( 5 )  provided t h e  l i m i t a t i o n s  suggested by t h e  e r r o r  term are recognized. 

Thus 17elatively l a r g e  spheres  can be used i f  t h e i r  d e n s i t i e s  a r e  c lose  t o  

t h e  f l u i d  dens i ty  so t h a t  t h e  n e t  fo rce  i s  small. 

dens i ty  d i f f e rence  inc reases  it i s  necessary t o  reduce t h e  sphere s i z e  or 

increase  t h e  t u i e  diameter u n t i l  t h e  w a l l  co l r ec t ion  i s  a small p a r t  (abouL 

1 0  p e r  cen t )  of t h e  t o t a l  ve loc i ty .  I n  most experimental  des igns  it i s  

des i r ab le  t o  minimize t h e  volume of f l u i d  requi red ,  and t h i s  i n e v i t a b l y  

means t h e  wall correc t ion  tends t o  become l a r g e .  U n t i l  t h e  non--Newtonian 

As t h e  s o l i d - f l u i d  
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terms i n  eq.  (5 )  have been ca l cu la t ed  from an adequate theory it i s  

recommended t h a t  t e r n i n a l  v e l o c i t i e s  should be measured i n  tubes  of a t  

least two d i f f e r e n t  diameters .  

values  ca l cu la t ed  Erom eq. ( 5 )  is then a measure of t h e  importance of 

t h e  missing terms. 

The degree of agreement between t h e  Urn 

The most i n t e r e s t i n g  r e s u l t  of these  experiments i s  t h e  l i n e a r  

departure  from 1.1 of t h e  apparent v i s c o s i t y  1.1 i n  terms of T as 

shown i n  Figure 4. This is i n  d i r e c t  cont rad ic t ion  t o  t h e  quadra t i c  

departure  pred ic ted  by t h e  RLvlin-Ericksen theory.  

a l s o  confirm t o  a very high degree of  p rec i s ion  Tur ian’s  

0 

These experiments 

6 
earlier f ind ing  

of an exponent ia l  range which extends wel l  beyond t h e  l i n e a r  reg ion .  

Tur ian’s  f a l l i n g  sphere experiments were c a r r i e d  ou t  with s e v e r a l  polymers 

a.t s e v e r a l  concentrat ions and temperatures,  and i n  each case an exponent ia l  

range was found. The experiments described here  while they inc lude  da ta  on 

only one so lu t ion  a r e  considerably more p r e c i s e  than those of Turian.  

While t h e  apparent v i scos i ty , eq .  (131,based on Stokes l a w  is  not  

d i r e c t l y  comparable t o  t h e  v i s c o s i t y  funct ion of t h e  viscometr ic  flows, 

it is worth not ing t h a t  t h e  l a t t e r  gene ra l ly  e x h i b i t s  exponent ia l  behavior 

a t  low shear  s t r e s s e s  ( see  Peterlin’’). The t h e o r i e s  r e f e r r e d  t o  above 

are a l l  based upon continuum concepts. However, t h e  t h e o r i e s  of t h e  v i s c o s i t y  

funct ion which a r e  based upon molecular i deas  also p r e d i c t  a quadra t i c  law 

of depar ture  from t h e  zero-shear r a t e  v i s c o s i t y  ( see  Pe ter l in l ’ )  . 
Any new ca lcu la t ions  f o r  flow pas t  a sphere must be based on t h e o r i e s  

i n  which t h e  v i s c o s i t y  funct ion can depend on odd powers of t h e  shea r  rate. 

Such ca l cu la t ions  should include t h e  e f f e c t  of  boundaries i n  o rde r  t h a t  

experimental  t e rmina l  ve loc i ty  meastirements can be in t e rp re t ed .  The w a l l  
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e f f e c t  i s  used not only t o  c a l c u l a t e  

independent although less accurate method for t h e  c a l c u l a t i o n  of 

T h i s  se l f -cons is tency  check of p 

f a l l i n g  sphere experiment p a r t i c u l a r l y  we l l  s u i t e d  t o  t h e  s tudy of t h e  

Urn va lues  but  a l so  provides  an 

p . 
0 

provided by t h e  wall e f f e c t  makes t h e  
0 

approach t o  t h e  zero-shear rate regime. 
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TABLE I1 

Fall Data f o r  the  P I B  Solution i n  Tube #3 

Nominal 
2 

cm cm/sec cm/sec Poises dyn/cm 

U U b  m IJ F/67ra Sphere 
Diameter a 2 

0.3175 N 

0.039688 R 

0.39628 

0.55563 

0.07 

0.08 

0.10 

0.15 

0.18 

0.3175 

0.39688 

0.23813 

0.39688 

N 

N 

R 

R 

R 

R 

R 

R 

R 

S 

S 

0.01466 

0.002381 

0.02232 

0.03984 

0.007396 

0.009523 

0.01481 

0.03318 

0.04771 

0.1444 

0,2234 

0.1923 

0.5541 

0.01722 

0.002426 

0.02737 

0.05343 

0.007646 

0.009889 

0.01553 

0.0356l- 

0.05191 

0.1672 

0.2679 

0.2129 

0.6483 

115.1 

114.7 

114.5 

114.2 

113.5 

113.2 

11.2.7 

111.1 

i10.0 

105.7 

103.1 

99.34 

90.34 

12.50 

13.96 

15.78 

22.07 

24.67 

28.01 

35.05 

52.65 

63.26 

111.35 

139.19 

177.61 

295.17 

a 

b 

C-carbide; N-nylon; R-mby; S-steel. 

Urn computed v i a  eq.. ( 5 )  with p = 11SP. 
0 
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F I G U R E  CAPTIONS 

Figure 1 : Viscometer tube.  

Figure 2: Newta ian  v i s c o s i t y  measurements: (fl) s i l i c o n e  o i l  c a l i b r a t i o n  

= 48.56P; (a) s i l i c o n e  o i l  t es t  po in t s ;  ( 0 )  C1C p o i n t s  'lave 

o i l  tes t  po in t s .  

Figure 3:  Terminal cen te r  l i n e  v e l o c i t y  versus  tube  inf luence  f a c t o r  

G ( a , R ) .  

Figure 4: Apparent f l u i d i t y  versus  shea r  s t r e s s  i n  t h e  low shear  range. 

(a) nylon d a t a  aga ins t  T ;  ( A )  ruby d a t a  aga ins t  T; ( 0 )  

nylon d a t a  aga ins t  T ; (0 )  ruby da ta  aga ins t  T . Sol id  curve 

from t h e  s t r a i g h t  l i n e  fit of logp versus T ( see  Figure 51, 

2 2 

gb 
4/16 /7 0 
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