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SUMMARY

The main results obtained during the period of the grant deal with
low Reynolds number flow past small solid particles. This work was
initiated under grant NsG-705 at the University of California (Davis).
Consequently the report entitled "The Effect of Finite Boundaries on
the Motion of Particles in non-Newtonian Fluids," which was submitted
as part of the final report for grant NsG-705 also acknowledges the
support of NGL 40-002-053. Because of its length, and at the suggestion
of a referee, the above report is being published in two parts in
Chemical Engineering Science. The first part retains the title above
and is now in the press. The second part is entitled "The Stability of
Particle Motion Near a Wall in Newtonian and non-Newtonian Fluids'" and
should be in print in a few months. These two manuscripts have not been
forwarded to NASA since together they do not differ in any way from the
original report previously submitted.

Two additional manuscripts are being submitted as part of the
final report. These are: '"Precision Falling.Sphere Viscometry" (with
D. A. Cygan, Ph.D. candidate, NASA Trainee), submitted to the Transactions
of the Society of Rheology; "Measurement of the Rotational Drag on a
Sphere at Low, Finite Reynolds Number'" (with B. Mena, Ph.D. candidate),
submitted to the Journal of Fluid Mechanics. The results reported in
these papers are summarized below,

I. Experiments with Translating Spheres

D. A. Cygan has developed techniques for measuring terminal
velocities which are highly accurate and reproducible. These are discussed
in the paper above. Terminal velocities of spheres falling in tubes filled
with a polyisobutylene solution have been interpreted in terms of the
analysis derived by the principal investigator in "The Effect of Finite

Boundaries on the Motion of Particles in non-Newtonian Fluids." The
pertinent equations are:
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where U_ is the terminal velocity of a sphere moving in an unbounded
Rivlin-Ericksen fluid under the influence of a force F . The characteristic
time A 1is a linear combination of constants of the third order fluid. This
formula is valid in the limit of slow flow, and suggests a method for extra-
polating data to obtain the zero-shear viscosity u_ . Values of U_ are
computed from measured velocities U according to ®he formula

F 3
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where R is the tube radius, and W(a/R) is a function derived from
Faxin's formula for the Newtonian case (equation (9) of Cygan's paper).

It is important to note that each of these formulae was derived
under the assumption that the stress is given by the Rivlin-Ericksen theory
in the limit of slow flow. When the Rivlin-Ericksen theory is taken as
the slow flow asymptote of the general theory of simple fluids it is
tantamount to imposing smoothness on the constitutive functional in the
neighborhood of the rest state. In particular, it implies that the
viscosity function departs from M, as the square of the shear rate.

It is worth noting that all theories based on molecular concepts also
predict similar behavior. The above formula (1) for the departure from
Stokes law is of a similar type.

Cygan's experiments suggest that formula (1) does not hold or
that the range of its validity is well below that of the data. His results
suggest tBat the departure from Stokes law is not only linear but exponential
in F/6wa” . These findings are not entirely new, but are a much more
accurate verification of the results of Turian (see Reference 6 in Cygan's
paper). Turian's data are sufficiently inaccurate that one cannot
distinguish whether the departure is linear or quadratic. Linear departure
from constant viscosity has been reported by many authors who have measured
~the viscosity function in a shear flow. Unfortunately viscometric data
tend to be inaccurate at the low shear rates needed to verify the law of
departure. There is no corresponding loss of accuracy in Cygan's falling
sphere data.

The interpretation of data to find a law of departure is always
difficult, and ideally one would determine all fluid parameters from
independent experiments. Unfortunately the practical limitations on
carrying out viscometric experiments of comparable accuracy are formidable,
However, here the falling sphere experiment has a consistency check in the
form of equation (2). For a given sphere values of U are measured in
several cylinders, and plotted against W(a/R)/R . Linearity indicates
the error terms in equation (2) are negligible. From the slope u_ can
be calculated independently of the value obtained via equation (1)°
Cygan has shown that even though the plots are linear the values of u
become smaller as the size and density of the sphere increase. This
indicates that the non-Newtonian terms play a much stronger role than
the error term in equation (2) suggests.

It is this inconsistency, together with the viscosity measurements
of other workers, which leads one to believe that the Rivlin-Ericksen theory
is not adequate for the description of the departure from Newtonian
behavior. As a result I am now investigating new theories which can correct
this inconsistency. The calculations which are required for the reinter-

pretation of Cygan's data are complicated, and will not be completed for
a long time.



NGL 40-002-053 -3- June 2, 1970
Final Report

II. Rotating Spheres

An experimental study of the rotational drag on a sphere was
initiated by B. Mena, and his results are given in the second paper
referred to above. In Mena's work a sphere was held stationary at the
center of cylindrical container of fluid which rotated about its axis.

The torque was measured by the angular deflection of the trifilar suspension
which supported the sphere. The paper deals only with experiments on
Newtonian fluids which were used to test the capabilities of the apparatus.
In particular, Collins formula for the torque at low rotational Reynolds
number is in good agreement with the data up to about R = 25 . This
formula is

2 242
pL  _ R R

5— = R {1 * Top5 - 1-086 {IEBB} + ...} > (3)
8ty a

where L is the torque, p and u the fluid density and viscosity, and
a 1is the sphere radius. An "improved" version of Collins formula is

2
°g - R {1 + —RK /1220 } \ ()
8np“a 1+1.086R" /1200

which was found to give a good account of the data at Reynolds numbers in
excess of 100. The improved formula (4) is derived by standard methods
for accelerating the convergence of an alternating series.

Mena also carried out a few measurements with a polymer solution.
However, the apparatus needs some improvements before consistently
reproducible data can be obtained.
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1. Introduction

The torque on a sphere rotating in an unbounded fluid was first
calculated by Stokes [1851] for the inertialess case. Several authors
(Bickley [1938], DiFrancia [1950], Khamrui [1956], Ovseenko [139601])
have carried out expansions in powers of the Reynolds number which in
the third term result in a correction to the Stogques torque. Recently,
Collins [1956] has extended the calculation to the fifth term, and has

obtained the torque L as

2 242
pL _ R R 6
5 = R{l + 1200 1.086 &Eﬂﬁ% + O(R )} . (1.1a)
8ty a

The regularity of this series permits its inversion which can be written

as
0a20 R2 g2 2
22 RA41 - =5 4+ 4,086 |—>] + o(r®) (1.1b)
u s 1200 1200 s’ ® :

where up 1is the viscosity, p the density and a the s@here radius. The
rotational Reynolds numbers R and Rs are paQQw/u and pL/8nu2a
respectively, and Q_ is the angular velocity when the sphere spins in an
unbounded fluid. Collins proved that the series within the braces contains
only even powers of the Reynolds number. The alternating signs in (1.1b)
suggest the use of Shanks [1955] transformation for accelerating the
convergence of a slowly convergent series. Hence an "improved" Vefsion

of (1.1a) is found to be

.
pg « jl1 + R7/1200

: 5 (1.2)
8mu“a 1+1.086R" /1200

In order to compare these formulae with experimental torque-angular

velocity data it is necessary to correct for the effects of container



boundaries. It will be shown later that for any configuration of rotating

body and container with axial and fore-and-aft symmetry Q_ is given by
Q =0+ K _L/8m 2> + 0(r2 " Loga) (1.2)
o 127/ °TH, ) gl *

where & is the container dimension, and K is a parameter which

12
depends only on the container geometry. For the closed, finite cylinder
of the experiments described below & is the radius, and Kl2 has been
calculated by Mena [1969] as a function of ro/h » the radius to height
ratio. In the limit of zero Reynolds number Q_ is linearly related to

L by Stokes law‘(the first term of (1.1)). It is then a simple matter

to invert (1.3) and recover a formula due to Brenner [1962] which expresses
the container effect as a correction to the torque. However, it should be
carefully noted that at finite Reynolds number Q_ is a nonlinear function
of L , and hence no easy inversion of (1.3) can be obtained to give a
torque correction formula.

Mena [1969] has measured Q and L for a sphere located in the
center of a finite, closed cylinder in the apparatus shown in Figure 3.
From these data values of Q_ were calculated with (1.3) and were then
plotted in Figure 1 as pL/87rau2 against R . The curves were calculated
from (l.la)and (1.2). The densities and viscosities of the éilicone fluids
used in the experiments were determined independently; hence Figure 1 is
free from any fitted parameters. The data confirm the rule that the first
correction to Stokes law is valid for R wup to about 15. The addition ox
Collins' R5 term extends the range to at most 25. Despite the paucity of
data in the high range it appears that the "improved" formula (1.2) gives

a rather good account even at R about 100,



2. The Effect of Walls at Finite Reynolds Number

The analysis for the wall effect is restricted to configurations in
which both the rotating body and the container are concentric, coaxial
surfaces of revolution with fore-and-aft symmetry. Such symmetry guarantees
that the body will experience no net force and that no net flow will result.
As in the unbounded case V , p , the velocity and pressure fields, are

expanded as
V=V, +V, +V_+ ..., (2.1a)

P=P1+P2+p3+-o- . (2.1]))

1

In dimensionless form the Vi > D fields would be O(R*™™) , and in

dimensional form they satisfy inhomogeneous Stokes equations

0= -Vp; + uVQVi + v-?i , (2.2)

where the inhomogeneous ''stress tensors" ?i are obtained by substitution

of (2.1) into the Navier-Stokes equation. When the usual procedures for

regular perturbations are followed the first few ;i are found to be

, = =0V, V), Ty = -2V V1, ete. (2.3)

RL
n
o
]
AN
1

The brackets [ ]S« denote the symmetric part of a dyadic.

It is evident from the structure of the ii that the Navier-Stokes

equation has been written relative to an origin fixed at the geometric

center. Hence the boundary conditions on the velocity perturbations are

V.=Q.xr on B, V,=0 on C, (2.4)
i i i



where B denotes the surface of the rotating body and C that of the
container. The ﬁi are directed along the symmetry axis, and are

determined by the integrals

Jﬁx%.dA - f PxE,ah = 5, (D) (2.5)
g 1 c 1 i
where
Gl(ﬁ) =L, and for i>1 Gi(ﬁ) =0 . (2.6)
The stress vector perturbations {i are calculated from
_ . av,
ti = -npi + u —a'—n—— s -(207)

in which the unit normal vector n is directed out of the fluid surface.
The equality of the integrals over both B and C in (2.5) follows from
(2.2), the divergence theorem and the axial symmetry which ensures that
n+Qxr is zero on B . The fore-and-aft symmetry ensures that the surface
integrals‘of the %i vanish for all i on both B and C . The general
pattern of the motions represented by the Vi can also be deduced from the
symmetry. It can be shown in a manner similar to that used by Collins
[1956] that for i odd the fluid particles move in circles about the spin
axis and for 1 even the streamlines are distributed in the meridional
planes in such a way that no net flow occurs.

The perturbation scheme outlined above is unusual in one important
respect. Instead of the torque function LfQ) , for example (1l.la), it
yields the inverse torque function Q(L) . Thus it is usual to satisfy
the boundary conditions (2.4) with &. set equal to & and all higher

1

order ﬁi then vanish. The torque integrals (2.5) are then used to



calculate L(R) . In the inverse scheme the torque integral for i =1

is set equal to the total torque L , and by (2.6) the higher order
integrals are forced to be zero. As will be seen below the inverse method
has special advantages for the calculation of wall effects because of the
far field properties of the vwi > Poos fields.l It should be noted that
if dimensionless variables are employed the appropriate Reynolds number in

(2.1) will be one based on the Stokes spin Q_, rather than the total spin

1
©_ . For the sphere it can be seen from (1.1b) that this inverse Reynolds

number is pL/8ﬂu2a .

Since (1.3) can be written as a formula which gives Q as a correction
to @, it is useful at this point to examine the nature of the Vmi
fields. From the fundamental solution of the linear Stokes equation and

the symmetry of B it can be shown that

le = -ﬁx;/swura + O(r—s) . (2.8)

If B lacks fore-and-aft symmetry or does not spin about its own axis

other terms of O(r—z) must be added (Brenner [1964al). TFor the sphere

the leading term in (2.8), called a '"rotational Stokeslet," is le

exactly., For 1 > 1 the first few Vwi are known only for the sphere.

However, it is possible to deduce from the structure of T (2.3) that

®2
the leading term in (2.8) will give a particular integral to (2.2) of

2) in Vw2 must satisfy the.homogeneous

Stokes equation. Since sz must be bilinear in ﬁml and lie in the

O(r_s) ; hence any terms of O0(r

lAll quantities with the subscript « are associated with the case of an
unbounded fluid.



meridional planes it must have the form

V.~ {02

oy v 192, - 3@, D)/ et aur® + o) (2.9)

From Collins'[1956] work it can be shown that for the sphere the
proportionality can be replaced by an equality. For 1 even, the asymptotic

form of the remaining Vwi will be similar to (2.9) with the leading term

multiplied by Qi For i odd,it can be shown from (2.2), (2.8), and

1
(2.9) that
= = - . 1-1 -4 -4
Vooi n lexrg(ﬂml r )+ olr ), (2.10)
. . = = . . 2 i-1 -b
where g 1s a scalar function of le and r which is O(Qool r ).

The advantage of the inverse perturbation scheme now becomes apparent.

It will be seen below that the lowest order term which interacts with the
container is the rotational Stokeslet of (2.8). That none of the Vmi
for i > 1 can contain such a term follows from the integral conditions
(2.5) when C recedes to infinity. Hence the bookkeeping is greafly
simplified in the double expansion to 5e used for the wall effect
calculation. |

Each of the fields Vi > Ps in (2.1) is expanded as

Vi = Vil + V12 + Vi3 T (2.113)

’U.
"

Pip t Pyt Pigt e (2.11b)

The boundary conditions (2.4) are satisfied by a slight modification of

the method of reflections. (Brenner [1962]) as

V.. =0 .xc on B, V.,*0 as row (2.12a)



Vi2 = -V, on c, (2.12b)
ViQ + Vi3 = Gﬁizxf on B, viS >0 as v+ o , (2.12¢)
Voy = -V,, on C, (2.12d)
Viu + viS = GﬁiHXE on B, ViS >0 as 1> o , (2.12e)
etc. Expansions similar to (2.11) are also written for the ii as
Ty S Ty b Ty F Tig b oeee (2.13)

The ;ij are identified by substitution of (2.1la) into (2.3). Super-
ficially the process of identification appears to be somewhat arbitrary.
However, an inspection of the boundary conditions (2.12) reveals certain
properties of the Vij which suggest a rational choice for the iij

For j even it is clear from (2.12b,d) that the vij fields are defined
everywhere within C including the interior of B . Thus the identifica-

tion of the ;ij is made by selecting products which are defined within

B for 3j even and outside B for j odd. For example, for i = 2
the first few §2j are:
izl ==V 70) s Ty = eV,
Tpg = ~200(F 47, (T, 47, 01, 224 = -zp[vluwlzwlu‘ns, .
izs = =200V 47, 4V, (T, 40, )1, ete (2.18)
The torque integral (2.5) for vll > Py1 is set equal to\ L , and

equal to zero for the remaining fields. It is obvious from (2.12a) and

are identical to the V . , p . . A glance

(2.14) that the Vig s Py wf wi
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at (2.14) shows clearly the rapid increase in complexity of the ;ij as

j increases. However, by ordering the terms in powers of Q_l , the

reciprocal container dimension, it is possible to keep the complexity

within bounds. As will soon become apparent only a few of the vij need

to be considered to obtain a correction to 0(2_3) such as that in (1.3).
As in Bremner's [1962, 1964] work regularity in r for the vij with

j even is invoked to expand these fields in a Taylor's series about an

origin in B . These Taylor expansions can be separated into the sum of

a rigid motion and a regular non-rigid motion. In order to satisfy the

rigid motion requirement on B it is necessary to add fields which on

B cancel the non-rigid parts. This is accomplished with the fields of

j odd as can be seen by inspection of (2.12c,e). For the homogeneous

Stokes equation it was shown by Bremner [1962] that the far field

behavior of le requires Vlz to be of the form
V.. = 60 %0 + 0(27°) (2.15)

12 12 ? '

where
3

6912 = -KlQL/8nuz . (2.16)
The constant Kl2 is a pure number dependent only on the shape of C .
Since 612 is essentially a rigid motion it follows from (2.12c) that
the vij s J > 2 , are at most 0(2—5)., and hence need not be considered

any further.
It is easily shown that the particular integral of the governing

equation (2.2) with I (2.14) evaluated with (2.15) is a hydrostatic

22

pressure. Hence to 0(2-5) \ consists only of a complementary

22

function. From (2.12b) and (2.9) it follows that V is a regular field

22



of the form

= _ &5 -z, 3 -3
V,,= pa K re8/ue” + o(s %) , (2.17)

where the symmetric shear field gradient is given by

§ = I0°. - a3

N T S (2.18)

and K22 is a number which depends on the geometry of both B and C .

The condition (2.12c) of rigid motion on B requires V23 to satisfy the
boundary conditions
5

V23 = -pa K

5-§/a23 on B, V,_.->0 as r- o, (2.19)

22 23

(2.14) comes from the product V

which gives a particular integral whose leading term is O(r-2£_3)

-3 . = -
The only term of 0(f2 ~) in Tog 11719

% .

This ensures that V2u and all subsequent terms are at most 0(%

When the argument is carried forward to the ij fields it can be

shown that no terms of 0(2°) are contributed. In the first place v32

contains no such term because of (2.10) and (2.12a). Secondly when the

§3j are worked out similarly to (2.14) it can be shown that le and
V22 can make no contribution of 0(2“3) to the Vaj . Similar remarks

apply to all the rgmain%ng ~Vij . Hence when the ﬁij are added up their
sum differs from ﬁw ’by the correction given in (1.3). It remains only to
remark on the nature of the error terms in (1.3). For the sphere it can

3 will introduce a term of
0(R32_5L092) . For other axisymmetric bodies the ¥ 3 fields have not

be seen from Collins' [19561 work that Vm

been worked out, and hence the error in (1.3) should be regarded as

o(Rsl-u) . While no proof is offered here it should be noted that (1.3)
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holds also for non-Newtonian fluids. The proof is rather complicated, and
is similar to the one given by Caswell [1970] for the correction to the
translational velocity of a particle in a non-Newtonian fluid in the limit
of zero Reynolds number. This analysis which is far more general than
that given above also implies the existence of higher order terms con-
taining Log% . Hence if additional terms in (1.3) are to be calculated
it is clear that the regular expansions employed above must be replaced

by appropriate matched asymptotic expansions.



3. Container Constants

Values of the wall-effect or container constant Kl2 needed in (1.3)

are known for several geometries, and are summarized conveniently by
Happel and Brenner [1965]. However, for a cylinder closed at both ends

K12 is not available directly. Brenner [1964b] has calculated K12 for

a cylinder closed at one end and with a free plane surface (zero shear

'

stress) at the other. It follows from the linearity of the Stokes
equation - that Brenner's solution also satisfies the problem of two
point torques located symmetrically in a closed container as shown in

Figure 2. 1In the limit of large b, and Ty the situation reduces to

1

that of a composite body made of the two point torques separated by a

distance 2b2 located at the center of a closed cylinder of height 2h

and diameter 2ro . Note that although b2<< b, it is also possible to

1
have b, >> a , where a is the dimension of the particlg approximated

as a point torque. The ratio of the torque on the composite body in the
cylindér to its value in an unbounded region depends to O(P;S) only on
Kl2 . By taking the appropriate limits of Brenner's solution Mena [1969]

has obtained this ratio, and found Kl2 as

1 rb)s
KlQ(ro/h) =I5 [T{'} {3.6062 + S(ro/h)} s (3.1)
where
v .2
S(x) = 84 nZO gnKl(anx)/Il(anx) s (3.2)
E’n = (21’1‘(‘1)1{/4 N (3_3)

and Kl( )} and Il( ) are modified Bessel functions of the first kind.
It should be noted that (3.1) is written with & in (1.3) taken to be Po .
The following table shows that the ends have a pronounced effect only for

r‘o/h > 1.



12
TABLE I
Container Constants for a Closed Cylinder

rO/h K.,

12
0 - 0.79682
1/2 0.79960
1 0.81938
2 1.9516
i 14,427

3.6062 3
—fé‘—— (I‘o/h)
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4, Torque Measurements with a Trifilar Suspension

Torque measurements were carried out with the apparatus of Figure 3
in which the sphere was held stationary and the cylinder was rotated. The
latter was made of precision glass tubing, and the aluminum end plates
were held with tie rods. A portion of the top was removable in order to
introduce the spheres and the fluid. The support shaft for the sphere was
attached at the center of a small horizontal platform which was suspended
from three symmetrically placed cords. These were secured to a horizontal
support disk located at a large distance above the cylinder top, and whose
center coincided with the axis of rotation. The torque induced by rotation
produced an angular displacement of the sphere which was measured optically.
Since the direction of rotation was reversible the angular displacement of
the sphere was amplified by a factor of four.

With the support wires assumed to behave as inextensible, perfectly
flexible cords the torque L on the sphere is related to the angular

displacement © by a static torque balance which gives

i : 2
L= err2 sin 6///; —2r1r2(l~cos 8) , (4.1)

where ry and r, are the radial positions of the chords on the platform
and support disk respectively, =z is the vertical distance between them,
and W 1is the net vertical force. It can be shown that errors which
result from the neglect of the elongation and twist of the wires wére less
than 0.1 per cent in the worst case.

As long as the configuration of the body and container together has a

plane of equatorial symmetry it follows from the above analysis for wall

wall effects that W 1is the weight of the sphere assembly supported by the



L

wires less the bouyancy of the immersed parts. Hence the shaft introduces
an error in W by disturbing the symmetry, and an error in the hydro-
dynamic torque as given by (1.1). Cox [1965] has shown that the hydro-
dynamic force which arises from lack of fore-and-aft symmetry is O(R2) as
R+ 0 . Further analysis suggests that the force is also proportional to
the ratio of the shaft cross section to the projected area of the sphere.
The torque produced by the shaft was estimated by multiplication of the
wetted length by the torque per unit length for an infinite cylinder. The
effects of these errors were investigated by carrying out measurements

with shafts of 1/16 and 1/32 inch diameter for each of the spheres

whose diameters varied from 1 to 3/2 inches. No appreciable error

g
4

was observed over most of the Reynoldsnumber range.' However, at the
higher values a definite trend appeared in which the thicker shafts gave
higher torque readings for a given rotational speed.

Three different silicone fluids were used and their viscosities (0.498,
1.85, and 0.252 poise) were determined in a Rotovisco viscometer. The
excellent agreement between the data and the analytical curve in the
Stokes regime suggests the use of the configuration of Figure 3 as a
viscometer. The viscosity temperature coefficients of these fluids are
small enough so that a constant temperature bath was not needed. The
experiments were carried out in a room whose temperature was maintained
at 25 + 1°C.

The discrepancy between the experimental points in Figure 3 and the calculated
curve is less than one per cent in the Stokes regime, two per cent in the
regime of Collins' formula (1.1) and about five per cent for the highest

Reynolds numbers. The departure at the highest values may be a reflection

“Mena [1969] carried out flow visualization studies of the secondary flows
which showed no visible disturbance of equatorial symmetry due to the shaft.
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of the approximate nature of (1.2). However, as the Reynolds number was
increased a torsional oscillation of the sphere was observed, and this
ultimately limited the range of observation. This instability was
probably caused by slight misalignment between the sphere and the cylinder
axes. Beyond Reynolds number 30 the data are not sufficiently accurate
to provide a verification of the wall-effect formula (1.3). Clearly at
some point the term of 0(R32-5L092) in (1.3) should become appreciable.
Below R = 30 the uncorrected points (not shown) all lie to the left

of the calculated curves which indicates the validity of {1.3) up to that
point. For the higher Reynolds numbers the curve calculated from (1.2)
lies midway between the corrected and uncorrected points. However, it is
not possible to say whether the discrepancy is due to the failure of the

approximate torque formula (1.2) or the wall correction (1.3).

The support of this work by the National Science and Space Administra-
tion under grame=NER=RQ is gratefully acknowledged. Partial support of
B. M. by the Instituto Nacional de la Investigacion Cientifica (Mexico)

is also acknowledged.
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CAPTIONS FOR FIGURES

Figure 1.

Figure 2.

Figure 3.

Non-dimensional torque vs. Reynolds number. a) Low Reynolds

regime; b) High Reynolds regime. - — - —Stokes ,— - - — Stokes

plus first correction, Collins, ---- Eqn. (1-2). Open _
points are corrected for wall effects. Solid points are

uncorrected.

Definition sketch for the calculation of wall effects in a

closed cylindrical container.

. Schematic view of experimental apparatus using a tri-filar

suspension system for torque measurement.
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Precision Falling Sphere Viscometry
David A. Cygan
and
Bruce Caswell

Brown University, Providence, Rhode Island

VGL-Yo-go>-03"3

SYNOPSIS

Terminal velocity data of spheres falling in a polyisobutylene (PIB)
solution were obtained in sealed tubes; The tubes were easily invertible
so that the fall of a sphere could be repeated as often as desired. The
sealed tubes have the further advantage that degradation of the fluid is
greatly reduced when compared to similar experiments in open tubes.
Precisely reproducible velocities were obtained by careful temperature
control and by measurement of the radial eccentricity. From such data it
is possible to calculate the zero-shear viscosity, L provideduthe
range of effective shear rates is sufficiently small. To acquire data
in this range it is necessary to use spheres with small effective mass
(actual mass less the mass of the displaced fluid). Spheres of various
materials (nylon, ruby, steel, and carbide) were used,band their
properties were checked by dropping them in a Newtonian fluid of known

viscosity. In some cases the sphere properties were found to fall

outside the tolerances specified by the manufacturers. A test of the



absolute accuracy of the félling sphere method was made with a calibrated
o0il supplied by the Cannon Instrument Company. The viscosity measured with
the spheres is within half a percent of the value specified.

The data have been analyzed with formulae derived from perturbation
calculations based on the theory of Rivlin-Ericksen fluids. These
formulae include the effects of walls and fluid inertia. The third
order theory predicts the initial departure from Stokes law. Ideally
M, can be obtained by extrapolation of data in the range of the third
order theory. However, for the PIB solution this range appears not to
exist or else it félls below that of most of the data. Since the above
extrapolation was not feasible, data were taken in tubes of four sizes,
and M, was then deduced from the wall effect formulas. The value so
obtained was found to be in good agreement with the values obtained from
an extrapolation which assumes the apparent viscosity based on Stokes law
varies exponentially with the shear stress. This type of limiting
behavior contradicts the third order theory but describes the data

remarkably well.



1. INTRODUCTION

The perturbation calculations of Leslie,l Giesekus,2 and Caswell and
Schwar23 for the motion of a sphere falling in a third order Rivlin-Erickscn
fluid predict for a non-Newtonian fluid the initial departure from Stokes
law. The recent analyses of Caswell.u’5 take into account the effect of
finite container boundaries on the motion of the sphere. From the falling
sphere data of Turian,BCaswellu was able to calculate the zero shear
viscosity of a polymer solution either by extrapolating the sphere data to
zero shear rate or by computing the effect of the tube walls on the terminal
velocity. These values agreed mutually to within about 1 per cenf, but
differed by about 4 per cent from the value Turian obtained from an
empirical extrapolation. These results suggested that the falling sphere
experiment could be useful in the measurement of the zero-shear viscosity.
While the interpretation of these data according to the third order
theory possesses some self-consistency, it cannot be argued unequivocally
that Turian's empirical extrapolation is without validity. This extrapola-
tion implies a different departure from Stokes law than that predicted
by the third order theory.

In order to further investigate these effects it was decided to
attempt to make highly precise and reproducible terminal velocity measure-~
ments of spheres falling through a solution of polyisobutylene in
cetane. Spheres of nylon, ruby, steel and carbide were used to provide
a wide range of shear stress and to check the boundary conditions at the
sphere's surface from one material to another. The data were taken in
four tubes of different size in order to determine the effect of the walls

upon the motion. Each tube was sealed to protect the fluid from depolymerization



and to facilitate the repetition of data. With a sphere inside the closed
tube, the fall speed could be repeated many times by inverting the tube as
one would turn over an hourglass. Provisions were made to measure the
radial eccentricity of the falling sphere in order to correct the velocity
to the center line value. An average spéed with a\small standard deviation
was calculated from the data for each sphere, and the results were

interpreted according to the available theory.

2. THEORY

For the purpose of the falling sphere experiment it is convenient to
express the resistance of a particle moving through a fluid in terms of a
terminal velocity function Uw(F) » where F 1is the net hydrodynamic force
on the particle. In the inertialess flow regime the third order theory

analyses referred to above yield Uw(F) for the sphere in the form

2 2 13
u (F) = u_ |1 - [L] ( 3 2} + o(—}l—g} , (1)
uo bna 6ra
where
U, = F/61rauo (2)

is the Stokes velocity, a 1is the sphere radius, and Mo is the zero-
shear viscosity. Here A is a characteristic time which depends on the
fluid properties and the geometry of the particle. It was shown by
Caswellu that virtually all the theories of the stress tensor for iso-
tropic fluids which are currently in vogue will yield the same law of
departure from Stokes law as given by eq. (1). Caswell also showed that
once X 1is known in terms of the parameters of the third order fluid it

can be expressed in terms of the parameters of any other theory without



detailed perturbation calculations.

Experimental terminal velocities are expressible in terms of an

apparent viscosity u based on Stokes law; from eq. (1) 1/p is given by

6ral
o«
F

_ (11)2

o 3
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¥ o(ch) (3)

L.
u
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where < = F/61ra2 is a characferistic shear stress (for the Newtonian case
31/2 1is the equatorial or maximum shear stress). Hence a plot of l/ﬁ
against 12 should become linear with intercept l/go in the limit of
zero shear stress.

The effect of container boundaries upon the motion of a particle moving
in a viscoelastic fluid is given by Caswellq as a correction to ﬁw , the

terminal velocity in an unbounded fluid, by
U= ﬁm(f') + i . f/B’n’uoﬁ, + 0(2’.2) . (4)

For the purposes of this paper a particle is a body whose size is small
enough to satisfy the inertialess flow requirement of Reynolds number << 1 ,
The experiments presented here cover a Reynolds number range of lO—2 to
107® which is well within the inertialess domain. The particle is
located at a distance £ from the wall, and kK is the wall-effect tensor
of Brenner.7 This first order wall correction can be shown to be independent
of both the shape of the particle and the velocity boundary condition on its
surface. For instance, it holds for a solid sphere both with and without
slip and also for a fluid sphere with internal circulation.

The result expressed by eq. (4) was derived from a general perturbation

analysis. Higher order terms in 1/% can be obtained only with calculations

of considerable complexity. When these terms are already known in the



Newtonian theory they can be easily included. Thus when a sphere translates
along the axis of a circular tube of radius R under the influence of an
axial force F 1its velocity U is given by

3
F F
iR e/ o) (5)

3] f U _(F) - e

where the function W(a/R) is obtained from Faxen's series as worked out

by Bohlin8 and is given by
2 iy
W(a/R) = 2.1044 - 2,0888(a/R)° + 0.9u81(a/R)
5 7 9
+ 1,372(a/R)" - 3.87(a/R) + 4.19¢a/R)™ + ... . (5)

When U (F) is veplaced by the Stokes velocity,eq. (2), Faxen's wall
correction eq. (10) for a Newtonian fluid is recovered. Because of the
linearity of Stokes law the Newtonian formula is easily inverted and
expressed as a correction to the force, and it is in the form of a force
correction that Faxen's formula is usually presented. For non-Newtonian
fluids, only the velocity correction form eq. (5) is valid. This is
evident from the work of_Tannerg who showed that the Faxen force formula
did not adequately correct terminal velocity data taken in polymer solutions.
Turian6 assumed the form of eq. (5) without identifying the viscosity in
the denominator as My . His fall tubes and sphéres were selected so that
W(a/R) was determined essentially by the first term in eq. (6). Turian's
assumed wall correction together with his logarithmic plot of 1/u

against 1 (Figure 5) form the basis upon which Bird and his coworkers
(see for instance Asharelo) have used the falling sphere experiment to
obtain the zero-shear viscosity. It should be emphasized that the wall-

effect formula, eq. (5), is derivable from theories of the stress tensor



which in the limit of slow flow are equivalent to the theory of Rivlin-
Ericksen fluids (Caswellq). On the other hand the logarithmic plot
implies a linear departure from l/uo in contrast to the quadratic
departure expressed by eg. (3).

It is clear from the error term that eq. (5) is not uniformly valid in
powers of R-l . It can be shown from dimensional and symmetry arguments

that the next term of 0(R-3) will modify the second term in eq. (6) so

that it will be replaced by

2] 2
- |2.0888 + c? [2Beg2] | & (7)
9].10 R2

where C is a numerical constant, k is a characteristic time, Ap is the
sphere-fluid density difference and g \is the gravitational acceleration.
Hence in the falling sphere experiment where F 1is the difference between
the gravity and buoyancy forces the error in eq. (5) can be suppressed by
suitable choice of spheres. Under these circumstances u, can be
determined from the slope of eq. (5) by measurement of the terminal
velocity of a given sphere in tubes of several sizes. For a particular
fluid Uw(F) has a characteristic value for each sphere (at constant F);
thus a plot of U against W(a/R)/R for several tubes will have slope
—F/Sﬂpo and intercept U _(F) . The values of the latter for several
spheres can then be used to determine My from the intercept of Eq. (3).
In high precision work it is important to accurately control the
center line motion; or if it cannot be controsiled, the eccentricity b
from the center line should be measured. The axial speed for a particle
moving under the influence of an axial force can be obtained from eq. (4)

and the work of Happel and Brenner8 as
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U(b/R) = U + (2.104u4-F(b/R)) + o(a3b2R'5) s (8)

where U is the center line velocity given by eq. (5) for the sphere, and

f 1is a functior tabulated in Happel and Brerier. For small values of

its argument £(b/R) 1is given by
£(b/R) = 2.1044 - 0.6977(b/R) + O(b/R)" . (9)

The eccentric position causes a sphere to rotate, and it was shown by
Brenner and Happelll for Newtonian fluids that the axial velocity is
unaffected by this rotation. For non-Newtonian fluids it has been shown
by Caswell5 that in additiqn to the rotation the normal stresses can
produce a radial migration. Working with a polymer solution Tannerg had
observed such a radial motion away from the center line, If the radial
migration is not too large the mean value of b can be used in eq. (8).
When eg. (9) is a good approximation to £(b/R) the error in taking the

mean value is small (see Caswells).

3. EXPERIMENTAL APPARATUS
3.1 Tube Design

Four tube diameters were selected in order to investigate the wall
effect upon the terminal velocity of the spheres. The diameters (2.223,
3.050, 4.u45, and 7.617 cm + 0.0005 cm tubes #1, #2, #3, and #4 respectively)
were chosen so that the influence of the walls would change by uniform
increments from one size to the next. Each fall tube was closed with end
plates which had 0.635 cm loading holes through their centers (see Figure 1).

These holes were used to fill the tube and to change spheres. End caps,



attached by screws to the end plate, covered the loading holes and sealed
the fluid from contact with the atmosphere. Excellent stability of the
fluid was thus achieved by isolating it from oxygen in the air. Throughout
the investigation the tubes were séaled, and the fresh fluid was kept in a
closed bottle away from the light. As a check, the 4.445 cm tube was filled
with the polymer solution, and sphere speeds were recorded. After an
interval of nine months, the tube was refilled with a fresh sample, and

the velocities of the same spheres were remeasured. The results showed a
slight speed increase on the order of 0.1%. Therefore, it was concluded
that depolymerization was reduced to negligible levels.

A fixed frame was used to hold each tube in a vertical position. The
frame had a lower shaft with a conical tip and an upper support arm with a
V-notch cut into it. The supports were aligned properly so that the end
caps would fit into the supports. Each cap had a conical hole to rest on
the lower shaft, and the outside diameter of the upper cap was held into the
V-notch for positive alignment. With a sphere sealed in the viscometer, data
was easily taken by removing the tube from the frame, inverting it, replacing
it in the supports, and measuring the time as the sphere fell to the bottom.
It should be kept in mind that the viscometer was designed for viscosities
of 10 poises or more so that the particle motion would be slow enough to
allow the tube to be inverted by hand.

Temperature control for the viscometer was provided by circulation of
water through a plexiglass jacket surrounding the fall tube. The water was
supplied from a constant temperature bath which maintained set values to

within a tolerance of + 0.01°C.
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3.2 Velocity Measurements

The fall velocity was measured by timing fhe particle between two
fixed points. A vertical cathetometer was used to sight on the sphere and
measure the fall distance. The fall time was measured with an electronic
counter equipped with a start-stop trigger. In order to insure that the
terminal velocity was measured, data were gathered in the middle of the
tube away from the ends. Tanner12 has shown that end effects start to
become negligible at a distance of one tube radius from the end; thus all
measurements were made in zones at least one tube diameter from the end
plates. Since the tubes were easily invertible the fall time of any
sphere could be repeated as often as desired. Thus the terminal velocities
were cobtained as averages of many trials. Only average velocities whose
standard deviation was less than 0.1 per cent of the mean were regarded as
acceptable.

Since the speed of the particle depends upon the radial eccentricity
within the tube, eq. (8), provision was made to measure the radial position
at the midpoint of the trajectory. A cathetometer placed in a horizontal
position was used to obtain the distance, b , from the center of the sphere
to the axis of the tube. The data were corrected for the optical distortion
of the viscometer walls with the result that the true radial position was

measured to within 0.01 cm.
3.3 Spheres

Spheres of nylon, aluminum oxide, stainless steel and carbide were
selected to provide as wide a range of effective shear stress, T , as

practicable. Through this selection of material densities and by variation
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of the diameter it was possible to obtain an experimental range of 1 from
9 to 735 dynes/ch.

The properties of the spheres were determined by both direct and
indirect methods. The carbide, steel and large ruby spheres had accurate
size tolerances, and their masses were measured individually. The
manufacturer's tolerances for the small ruby spheres were as large as
1.0 per cent, so their properties were checked by dropping them in two
Newtonian fluids of known viscosity: Silicone 0il and a Cannon Instrument
Company (CIC) standard oil.

The use of plastic spheres has been avoided by other investigators on
the grounds that their sphericity is poor. However, it can be shown from
Brenner's13 drag formulae for rough spheres and from the manufacturer's
tolerances that the error in Stokes law is only 0.1 per éent in the worst
case. The major problem encountered with the nylon spheres was their
density variation due to water absorption from the atmosphere. Special
treatment was adopted to maintain these spheres in a usable condition.
They were dried in a dessicator and then stored in it throughout the
experimental period. In their dry state the size of each sphere was
measured optically, and their properties were checked from fall data in
the silicone oil. After the tests with the PIB solution were completed

the properties ofthe nylon spheres were checked and found to be unchanged.
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L, NEWTONIAN TESTS
4.1 Silicone 0il

The silicone oil was used to check the properties of the nylon and
small ruby spheres. Its viscosity was determined by dropping three ruby
spheres of known properties in the oil and compﬁting the average value
according to Faxen's wall correction formula eq. (10). The results gave a
mean value for n of 48.56 poises +0.2%. Then the fall velocities of the
small ruby spheres were measured, and the viscosity was computed using the
nominal size of each sphere. Figure 2 shows an extreme deviation of 2.5
per cent from the 48.56 poises value indicating a significant source of

error in the computational quantities. The viscosity was computed as

_2 2 by . (2 §a  Shp -
n—gagUK(R)E+2aiAp+ (10)

C.‘{Ov
S

where X(a/R) is the Faxen wall correction
K(a/R) = 1 - %w(a/R) ,

and the terms in the brackets represent the first order error contributions.
The quantities &8Ap/Ap and 68U/U are small compared to the manufacturer's
tolerances on da/a . Therefore the value of n was fixed at 48.56 poises
and eq. (10) was solved for the radius of the sphere. The results differed
significantly from the nominal sizes and in some cases were cutside the
sﬁecified toleraunces.
In the case of the nylon spheres the radii were well known from

optical measurements:; however the density difference Ap = Pg = Pg Was

poorly known. Here Py is the sphere density and is the fluid

Pe
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density which was accurately measured. Thus with n known, eq. (10) was
solved for the sphere density Py which would be needed in future computa-
tions of the non-Newtonian data. Superficially it would appear that the
use of the Newtonian test for the measurement of sphere properties rests on
the asignment of an absolute value for the viscosity of the test fluid.
However, it is easily shown from eq. (10) that the computation of the radius
for the spheres with large Ap or the density for the spheres with small
Ap is independent of the value of n . In effect the test measures the
radius of a small sphere relative to that of a large one whose radius can
be accurately measured with a micrometer. Likewise for spheres whose Ap
is small the test measures this quantity relative to that of a sphere whose
Ap is large and accurately measurable with a balance and micrometer. It
should be noted that the test cannot be used to accurately measure the
radius of a sphere with small Ap . This statement is easily proved by
examination of the error terms in eq. (10). The justification for the
characterization of spheres by this method can be seen in Figures 4 and 5
where excellent continuity and overlap is obtained between data for nylon

spheres (Ap small) and ruby spheres (Ap large).
4.2 Cannon Instrument Company 0il

The CIC standard viscosity oil had a nominal viscosity of 26.36 poises
+0.5% at 25°C. This oil was used to check the absolute accuracy of the
system and to verify the calibration of the small ruby spheres from the
silicone oil tests. During the velocity measurements it was found that
temperature fluctuations were the main®sources of error because of the

strong sensitivity of the viscosity to temperature. The change in fall
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speed was measured to be 9.0 per cent per degree centigrade which when combined
with the temperature controller's own fluctuations yields an extreme control
error of 0.2 per cent. The results of the viscosity calculations are shown

in Figure 2 where the average computed value is ;6.27.poises. This differs

by only 0.34 per cent from the nominal CIC viscosity and therefore indicates
that the absolute accuracy of the measurements is very good.

In the computations for the CIC oil's viscosity, the sphere radii
determined from the silicone o0il tests were used. This is equivalent to
writing eq. (10) once for the silicone oil and once for the CIC oil (R
constant) and then eliminating the common factor 2a2gK(a/R)/9 between
them. The expression for the viscosity then becomes

- Yy PsPy bny 00, 80, L PP Ses —]
20 X Uyegmey Ty TU Uy = logmey) (ogey)

(1)

where subscripts 1 and 2 refer to the silicone o0il and CIC oil
respectively. The brackets enclose the first order estimates of the

error contributions of which ny s Ul and U2 comprise the significant
sources of error for the case of the ruby spheres. The error from P has
been reduced to negligible levels in this case because the fluid densities
are close in value to each other (pl = 0.,9677, 0y = 0.7762 and g = 3.994 gm/cc)
causing the coefficient (pl—QQ)/(ps—pl) to be small. The overall effect
of eq. (11) is to greatly reduce the scatter in the viscosity as is seen by
a comparison of the two sets of data in Figure 2. The silicone oil
viscosity was computed without correction for the sphere sizes; whereas

the CIC oil viscosity was calculated according to eq. (11) and shows
significantly smaller scatter. Much of the scatter which does appear in

the CIC oil data may be attributed to temperature fluctuations during the

measurements.
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5. NON NEWTONIAN TESTS
5.1 Fall Data

All the non-Newtonian studies were made in a solution consisting of
5 per cent PIB and 95 per cent cetane by weight. The PIB (Vistanex
MM L-140) had a viscosity average molecular weight of 117,000 to 135,000.
During the investigation a trend was noticed whereby the velocity of small
ruby and steel spheres drifted by measurable amounts while they‘became
acclimated to the fluid. The trend was small and could not always be
detected, but the speed always decreased from the initial value taken
immediately after putting the clean dry sphere into the viscometer. If a
few hours were allowed to pass or the particle was left in the tube over
night, a steady speed would be reached which ranged (in fhe most obvious
cases) from 0.4 to 1.0 per cent below the initial value. In practice it
was not possible to wait for the sphere to reach equilibrium within the
tube before recording data. Thus the spheres were stored in a small sample
of the PIB solution so as to be in equilibrium before being placed in the
viscometer. No drifting was observed after this procedure was adopted.
It is not possible to give a precise explanation of the drift in the fall
times, but it appears to be an effect associated with exposure of fluid
surfaces to evaporation and possibly degradation. In some earlier experi-~
ments Wilsonlur had observed the fall of spheres which were introduced through
a free surface. The velocities he measured vuried greatly with the age of
the fluid surface. In the extreme case of a PIB solution exposed to the
atmosphere for a few days Wilson noticed that the sphere dragged a "skin"

from the free surface into the bulk of the solution. The skin was
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observable because its refractive index differed slightly from the bulk
value. Even after his fall tubes were covered and surface exposure times
were minimized it was not possible to obtain fall data free from drift.

The closed fall tubes used in the experiments of “this paper were designed
to overcome these difficulties. It is noteworthy that the drift in fall
times was not observed for the dessicated nylon spheres. In view of the
precautions taken to minimize the exposure of the fluid surface to evapora-
tion this suggests that the effect depends also on the nature of the solid
surface.

In all there were twenty-four different spheres to be used in the
viscometer. Eleven of them, from the smallest nylon to the largest carbide,
were selected to be dropped in all four tubes. These data, Table I,
comprise the information for the wall effect study. The remainder of the
spheres were tested in the 4.445 cm tube in order to cover the entire
shear stress range with a maximum number of points, Table II. All of the
data in Tables I and II are given as center line velocities whereas the
actual measurements were made with some radial eccentricity. The velocities
were corrected to the axial values, U , according to eq. (8). This
correction was checked experimentally and was found to be highly accurate
for slow spheres in the neighborhood of the lower Newtonian regime. The
errors in the predicted values of U were less than 0.1 per cent in all
cases where b/R was small (b/R < 0.1). For b/R between 0.1 and 0.5
the error in U had an upper limit of about 0.2 per cent for the large
steel and carbide spheres. These heavier spheres lie outside the limits
of the theory so that the center line correction terms themselves may be

as much as 100 per cent in error; but since the correction is a small
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portion of the total velocity, the accuracy of U is not diminished

significantly.
5.2 Comparison with Th ory

The wall effect data, Table I, provides the center line velocities for
eleven spheres in four tubes. According to the third order theory,
eq. (5), a plot of U versus W(a/R)/R provides U _(F) as the intercept,

and My is found from the slope according to the relation
b, = -a’t/(av/de) + ol /R%) (12)

where G(a,R) = W(a/R)/R (see Figure 3). These results should be valid
only when Tt 1is small and/or R 1is large. An inspection shows that
deviations exist between the theory and experiment. The first three
spheres in Table I have small effective shear stresses so that their
predictions for R via eq. (12) are in good agreement; keep in mind
here the fact that the slope is a second order quantity which cannot be
measured as accurately as the velocity. Their values of 115.6 + 1.9%,
114.8 + 0.4% and 117.2 i_3’8% have overlapping error bounds based upon

a 98 per cent confidence limit and yield an average zero shear viscosity
of 115.9 poises. Deviations in the prediction of My begin to appear
as one proceeds down the table in the direction of increasing shear
stress 1 . Here Ho decreases monotonically from 115.9 poises with
increasing 1 . From these results it may be concluded that eq. (5),
based upon Hy is strictly valid only over a small range of T near
T=20.

A second point of interest is the accuracy of the Newtonian geometry
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factor 6(a,R) . As long as the U versus G(a,R) curve remains a
straight line, this factor may be considered an accurate functional
representation of the wall's geometrical influence. The data in Table I
show a straight line relationship for the first six spheres of which the
0.47625 cm nylon and 0.15875 cm steel spheres are plotted in Figure 3.
The last five spheres cover increasiﬁg shear stress and being to demonstrate
a departure from the linear relationship. The 0.47625 cm carbide sphere,
which has the greatest curvature, is shown in Figure 3. Although the first
six spheres follow the straight line relation suggested by eq. (5) values
of Mo calculated from the slope are in agreement with the intercept of
Figure 5 only for the smaliest.values of T .

Two methods are now available which predict the velocity U _(F)
which the sphere would exhibit in an infinite body of fluid. Either eq. (5)
may be applied directly using the best estimate for u, or the wall effect
data, U versus G(a,R) , can be extrapolated to the infinite tube limit.
At large shear rates it is already known that eq. (5) will underestimate
U8 since uo overestimates the effect of viscosity. On the other hand,
a linear extrapclation of U versus G(a,R) will overestimate U_ due
to the curvature of the data. But one important feature is how well these
two techniques compare to each other. Table I lists the results for U_
by both methods, and it is apparent that agreement is very good over the
entire experimental range. At small 1 there is virtually no difference
between the two values while the worst case, the 0.47625 cm carbide sphere,
shows a discrepancy of only 0.8 per cent. Thus there is little practical
difference in the results although the method of extrapolation requires the

tedious gathering of data in multiple tube sizes.



19

Once the value of U_  is known for each sphere the apparent viscosity

p  can be computed from

= F/B'n'aUoo . (13)

AN

Tables I and II list values of p and 1 for each sphere tested. According
to the third order theory, eq. (3), 1/p , the épparent fluidity, should be
linear in 12 for small shear stress; however Figure 4, which gives both
1/u versus 1t and 1l/p versus 12 , shows that it is proportional to T
near zero. Although this result disagrees with the theory, it does agree
with Turian6 who also found logpy to be linear in 1t and with Péterlinls
who quotes many experimentalists as finding viscosity proportional to shear
rate at low shear rates. A plot of logp versus 1 , similar to Turian's,
is given in Figure 5. This curve is remarkably linear for 1T up to about
240 dynes/ch. A least square fit of a straight line through this region
predicts a zero shear viscosity (or intercept) of 116.2 poises + 0.1%
(based on a 98 per cent confidence limit), and a check of the maximum
deviation from the straight line yields a value of 0.03%. This prediction
for By is in very good agréement with the value obtained from the wall

effect data for the spheres with the smallest values of 71 .
CONCLUSION

The terminal velocity experiments described in this paper were
carried out to verify the predictions of the theory of Rivlin-Ericksen
fluids for both wall-effects as expressed by eq. (5) and for the asymptotic
approach to zero-shear rate conditions as expressed by eq. (3). The study

of these effects demands measurements whose precision is high compared to



that attainable in most viscometers based on viscometric flows. For this
reason the sealed fall tubes described above were employed to obtain a high
degree of stability of the fluid properties over long periods of time. In
addition, the invertibility of these tubes permitted the repetition of any
fall so that the reproducibility of a terminal velocity could be conveniently
checked. The spheres themselves had to be given special treatment to insure
reproducible fall speeds. The nylon spheres were dessicated to maintain
constant density and size, and the ruby, steel, and carbide spheres were
stored in the PIB solution before use in order to avoid the drift in fall
velocity observed when a dry sphere is first introduced into the solution.
Finally, in order to calculate apparent viscosities of accuracy comparable
to that of the terminal velocities it was necessary to determine the
properties of some of the spheres in tests with fluids wﬁich are known
to be Newtonian. This was necessary because their sizes and weights could
not be determined with sufficient accugacy with conventional methods. The
justification of this sphere calibration can be seen in Figure 4 which
shows the excellent overlap and continuity between the nylon and ruby points.
Wall effects for data taken in tubes can be computed very well with
eq. (5) provided the limitations suggested by the error term are recognized.
Thus relatively large spheres can be used if their densities are close to
the fluid density so that the net force is small. As the solid-fluid
density difference increases it is necessary to reduce the sphere size or
increase the tube diameter until the wall co.rection is a small part (about
10 per cent) of the total velocity. In most experimental designs it is
desirable to minimize the volume of fluid required, and this inevitably

means the wall correction tends to become large. Until the non-Newtonian
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terms in eq. (5) have been calculated from an adequate theory it is
recommended that terminal velocities should be measured in tubes of at
least two different diameters. The degree of agreement between the %
values calculated from eq. €5) is then a measure of the importance of
the missing terms.

The most interesting result of these experiments is the linear
departure from My of the apparent viscosity u in terms of 1 as
shown in Figure 4. This is in direct contradiction to the quadratic
departure predicted by the Rivlin-Ericksen theory. These experiments
also confirm to a very high degree of precision Turian's6 earlier finding
of an exponential range which extends well beyond the linear region.
Turian's falling sphere experiments were carried out with several polymers
at several concentrations and temperatures, and in each case an exponential
range was found. The experiments described here while they include data on
only one solution are considerably more precise than those of Turian.

While the apparent viscosity,eq. (13),based on Stokes law is not
directly comparable to the viscosity function of the viscometric flows,
it is worth noting that the latter generally exhibits exponential behavior
at low shear stresses (see Peterlinls). The theories referred to above
are all based upon continuum concepts. However, the theories of the viscosity
function which are based upon molecular ideas also predict a quadratic law
of departure from the zero-shear rate viscqsity (see Peterlinls).

Any new calculations for flow past a sphere must be based on theories
in which the viscosity function can depend on odd powers of the shear rate.
Such calculations should include the effect of boundaries in order that

experimental terminal velocity measurements can be interpreted. The wall
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effect is used not only to calculate U_ values but also provides an
independent although less accurate method for the calculation of H
This self-consistency check of Mo provided by the wall effect makes the
falling sphere experiment particularly well suited to the study of the

approach to the zero-shear rate regime.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of Dr. Robert
Marvin of the National Bureau of Standards in the evaluation of the
properties of the standard viscosity oil which was kindly supplied by
Dr.-Robert Manning of the Cannon Instrument Company. The polyisobutylene
(Vistanex) and its stabilizing agent were supplied by the Enjay Chemical
Company. Financial support was provided by the National Aercnautics and

Space Administration #0 and in the form of a NASA

Traineeship for D.A.C.



23

REFERENCES

e Leslie, Quart. J. Mech. Appl. Math. 14, 36 (1961).

2H. Giesekus, Rheologica Acta 3, 59 (1965).

3B. Caswell and W. H. Schwarz, J. Fluid Mech. 13, 417 (1962).

qB. Caswell, The Effect of Finite Boundaries on the Motion of Particles
in Non-Newtonian Fluids, Chem. Eng. Sci., in press.

5B. Caswell, The Stability of Particle Motion near a Wall in Newtonian
and Non-Newtonian Fluids, Chem. Eng. Sci., under review.

6R. M. Turian, PhD Dissertation, Dept. of Chemical Engineering,
University of Wisconsin, Madison, Wisconsin (1964).
7H. Bremnner, J. Fluid Mech. 18, 1uh (1964).

8J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-

Hall, Englewood Cliffs, N. J., 1965).

9R. I. Tanner, Chem. Eng. Sci. 19, 349 (1964).

Y05 Ashare, Trans. Soc. Rheol. 12, 535 (1958).

llH. Brenner and J. Happel, J. Fluid Mech. 4, 185 (1958).

Y2, 1. Tanner, J. Fluid Mech. 17, Part 2, 161 (1963).

13H. Brenner, Chem. Eng. Sci. 19, 519 (1964).

J'LLD. S. Wilson, M.S. Dissertation, Dept. of Chemical Engineering,

University of California, Davis, California (1965).

15A. Peterlin, Advances in Macromolecular Chemistry, W. M. Pasika, Ed.

(Academic Press, New York, 1968), Vol. 1.



24

feed
.

n Butsn AWﬂV..@m eTA poindwoo nm

“qif @qunl woaF [ pue Jg9TT vo; Y3ta (g) .wm.MH> painduod 83@

“(2T) J@m eTA poindwod ono

*(4°e)D snsasa ) Jo 3deddLIUT SYI SB USRI SDA

*To9ls-g SAqnua-y ¢ uoTAu-y mmﬁﬁgﬁm010m

h°GEL €6°¢9 6eL*C 6°¢0T ZaL ¢ hG*<C 98¢c° ¢ CLT"C €06°T 2 GZ9Lt°0

€°68h 61" 9L L9T0°T T°S0T IXAAVRNY 6L56°0 0216°0 T2¢98 0 TS6L0 2 §LTE"O

9°G6s¢e §L°68 48670 0°L0T £566°0 3T68°0 68T8°0 STA TR BCESTO S SZ9LKR"0

L 9eT 9t "6 8BLBE"O §°80T 666€°0 W69£°0 BLHE"O LSZE"O hl62°0 S SLTE"0

6°99T §°00T LS6E"O T°0TT 086€°0 L0S€"0 9LTIE" O AATAY T6€Z°0 d GZ9Lh°0

T'6TT 8 10T €2060°0 h eTT 0t060°0 119980°0 TTH80"0 TET80°0 ZBLLO"O S GLBST O

9t €8 T°80T §6T60°0 9'€TT 026070 T€980"0 #T280°0 B6LLLO"O AYARN! ¥ €T8EC"0

8G6°S¢g 9°01T €86€0°0 L eTT ©86€0°0 ST8€0°0 069€0°0 C35E0°0 90he0"0 ¥ GLBST"O

98°LC 7 €TT 894600°0 T LTT C9L600°0 8SG600°0 00h600°0 €52600°0 670600°0 d 8€6LO°O

£8°8T € HTT ©06€0°0 8 HTT 806€0°0 TOREO O 9h0€0°0 199200 Thee0 0 N §2¢9.t°0

6hE"S T°STT §66600°0 9°STT 265600°0 £L6800°0 625800°0 L20800°0 T61L00°0 N €18e2°0
NEU\nhv s9s8TOd o9s/wo $9STOJ 09S/Wo i oqny e aqny - Z# aaqny T4 oquy uo

mm:m\m R vBD oo; nsb DoSs /WD MQMWMMMMQ

I £3TOOT9A BUITISIUSY TEUTION

UWOTINTOS gId 942 %oF BIRQ 3I09IFT TTeM

I 31evd



25

TABLE II

Fall Data for the PIB Solution in Tube #3

Nominal
R T
cm cm/sec cm/sec Poises dyn/cm

0.3175 N 0.01466 0.01722 115.1 12.50
0.039688 R 0.002381 0.002426 114.7 13.96
0.39628 N 0.02232 0.02737 114.5 15.78
0.55563 N 0.03984 0.05343 114.2 22.07
0.07 R 0.007396 0.007646 113.5 24,67
0.08 R 0.009523 0.009889 113.2 28.01
0.10 R 0.01481 0.01553 112.7 35.03
0.15 R 0.03318 0.03561 111.1 52.65
0.18 R 0. 04771 0.05191 110.0 63.26
0.3175 R 0. 144k 0.1672 105.7 111.35
0.39688 R 0.2234 0.2679 103.1 139,19
0.23813 S 0.1923 0.2129 99.34 177.61
0.39688 S 0.5541 0.6483 90.34 295,17

aC—carbide; N-nylon; R-ruby; S-steel.

bUoo computed via eq. (5) with Ho = 116P.
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FIGURE CAPTIONS

Viscometer tube.

Newto: ian viscosity measurements: {[0) silicone oil calibration
points Nye = 48-56P; (B) silicone oil test points; (&) CIC
o0il test points.

Terminal center line velocity versus tube influence factor
G(a,R).

Apparent fluidity versus shear stress in the low shear range.
(A) nylon data against 1; (A) ruby data against 13 (O)

nylon data against 12; (0) ruby data against T2. Solid curve
from the straight line fit of logy versus 1 (see Figure 5).

Log of the apparent viscosity versus shear stress: (¥ ) carbide;

(®) nylon; (A) ruby; (1) steel.
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