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APPROXIMATION FOR DISTRIBUTION OF FLOW
PROPERTIES IN THE ANGLE-OF-ATTACK

PIANE COF CONICAL FLOWS

Joseph W. Cleary

Ames Research Center
SUMMARY

An gpproximation is made for the hodographs of stagnation-line
streamlines in the angle-of-attack plane of conical flows that yields explicit
equations for distributions of velocity and flow angle. It is assumed that
shock angle and surface inclination are known and the flow is inviscid and
isentropic. 1In essence, the approximation replaces streamline hodographs
of conical flows by circular arcs, Streamline hodographs of wedge and swept-
cylinder flows are obtained from the solution as special limiting cases of
conical flow, The approximation introduces no limitation on angle of attack
or body shape as long as shocks are straight and flows are conical,

Comparisons of the approximation with exact numerical solutions for the
flow over right-circular cones demonstrate agreement for Mach numbers from
one to infinity over a wide range of cone angles and angles of attack.
Comparisons with experimental results show applicability of the approximation
to conical flows other than those for right-circular cones.

INTRODUCTION

Theoretical aspects of conical flows are of fundamental interest to
aerodynamic research and to the more practical problems of wvehicle design.
The direct application to lifting entry configurations has enlivened interest
in conical-flow theory for a wide range of angles of attack and body shapes.
The flow in the angle-of-attack plane is of unique interest in conical flow
applications since flap-type controls may be placed on the windward stagna-
tion line in order to achieve greater effectiveness from compression of the
flow. Moreover, heating is apt to be most severe on the windward stagnation
line.

Knowledge of the compression process in the angle-of-attack plane is
reguired to adequately estimate control effectiveness and heating. Although
inviscid axisymmetric solutions by numerical methods are available (e.g.,
refs, 1 to 3) for estimating the compression process at 0° angle of attack,
only limited solutions have been published for estimating the compression of
the flow at angle of attack (refs. L and 5). Moreover, at present, numerical
solutions of the flow generally require that three-dimensional bodies be
smooth without sharp edges. Since conical-type bodies with sharp edges on
the windward surface may prove useful for achieving high drag at high angles



of attack during entry, some method is needed for calculating the compression
process of conical flows in general.

The purpose of the present study is to present an approximate solution
for the compression process of the flow in the angle-of-attack plane. A
semiempirical approach is used to develop closed-~form equations for the
distribution of flow properties between the shock and the body in this plane.
While it is assumed that surface inclination and shock angle are known, no
limitation is made on angle of attack or body shape to the extent that shock-
wave elements are straight and the flow is conical. Comparisons are made
with numerical solutions and with experiment to demonstrate accuracy and
general applicability.

ANALYSIS

Description of the Approximation
and Presentation of Equations

The intent of the present analysis is to develop an approximation for
the distribution of properties of the flow in the angle-of-attack plane of
conical flows. It is assumed at the outset that the shock angle 6 and
surface inclination we are known and that, as depicted in figure 1, the
flow between the shock and the body in the angle-of-attack plane is inviscid
and isentropic. Before the approximation is described, the true relationship
between veloclity vectors and angles pertinent to conical flows will be exam-
ined. This relationship can be shown most clearly by a plot of the velocity
component v as a function of u (hodograph coordinates). Such a plot can
also be considered a polar diagram with radius vector V given as a function
of the turning angle of the flow w. It is expedient to consider the hodo-
graphs of axisymmetric flows first and then consideration will be given to
other conical flows.

Axisymmetric conical flows- Figure 2 shows the hodograph of a streamline
of a typical axisymmetric conical flow. In figure 2, R is the local radius
of curvature of the streamline hodograph at an arbitrary point p in the
conical field. Note that since R 1is normal to the streamline hodograph,
an extension of R makes the conical coordinate angle € with the free-
stream direction. Furthermore, points 2 and ¢ correspond to conditions at
the shock and cone surface, respectively; points 2', p', and c¢' represent
end points of R +that correspond with points 2, p, and ¢, respectively.

In the present case the magnitude of R was evaluated by an exact equation
given by Busemann (refs. 6 and 7). Busemann's equation was used to determine
R and the locus of end points of R from an exact numerical solution of

the flow. While the differential eguation of the streamline hodograph is
known (ref. 7), no general solutions are known. Therefore, an approximation

is considered approprilate.

In essence, the present approximation replaces the exact hodograph by a
circular arc. Details of the procedure are shown in figure 3 where R is
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replaced by a constant effective radius of curvature R whose center is at
H and K. The circular arc passes through point 2 and has its center at the
intersection of Ro and Ra. (or an extension of Vc) Since R and R are
both normal to the streamllne hodograph at point 2, the exact velocity and
slope dv/du are retained in the approximation at the shock wave. While the
exact value of dv/du at the cone surface is also retained, the surface
velocity is in error by an unknown amount.

The circular-arc approximation is given by equation (l).
(u -H)?2+ (v -K)2 =R (1)

Equations for R H and K are derived in appendix A and are given by (2)
(3), and (4), respectlvely

_ sin(we - ws)cos 65
R=1V — - (2)
® sin(6s - wc)cos(eg - ws)

tan(fs - ws) _
H=1V_ cos Oz cos w, (3)
sin(0z - wg)

tan(6s - ws)
K=V, cos Bz sin wg ()
sin(62 - we)

where 0z, wz, and w, = 3, are known guantities. Furthermore, it is shown
in appendix A that by substitution of u =V cos w and v =V sin ® and the
known wvalues of R H and K in equation (l) V/Voo is given as a function
of (we - w) by equatlon (5).

/2
v cos 8 tan(6z - ws) Sinz(wc - ws)
B S — lcos(u)c - w) - cosa(wc -w) -1+ —

sin(6s - we) sin®(6s - ws)

(5)

Since additional pertinent equations are derived in appendix A, it is suffi-
cient here to summarize the final results.



Velocity distributions normalized by Ve and Ve are given as functions
of the conical coordinate (6 - W.) by equations (6) and (T), respectively,

P 1l/2
v cos 6o [—@ tan 6 tan % (ez-wc)+-%]{1 +‘——§E—§ [1 - cos(o - wc)]}

Voo Py (1-B)
(6)
S BRI L GRS )

where the parameter B 1is given by equation (8)

B = cos(0z - v - ?22522);:320;2 (8)

and the density ratio across the shock poo/p2 by equation (9) (see ref. 8)

Po 2 1 y -1
E"7+1<1\4§n+ 2) (9)

Properties of the flow at the cone surface are of particular interest and can
be evaluated from equation (6) by specifying that 6 = W, to give
equation (lO)

g e~

P
= cos G5 [52 tan 65 tan % (62 - w.) + 1] (10)
2

The local flow angle (wc - w) is given by equation (11) as a function of the
conical coordinate (6 - Wa

B sin(6 - W)

We - W = tan” [l =B cos(6 - W ] (11)

An interpretation of how to apply equations (1) to (11) to conical flows in
general will now be given.

Other conical flows- Since in the angle-of-attack plane conical flow is
characteristically isentropic, there 1s a close relationship between the
axisymmetric solution and conical flows in general. Therefore, it is assumed
in like manner that a circular arc gpproximates the streamline hodograph of
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the general conical flow. Within this assumption equations (1) to (11) are
applied to the general case o > 0° by assigning W, = 8 + @ and

We = Bc - & on the windward and leeward stagnation lines, respectively. If
on the leeward side the singular line, for which entropy is multivalued, has
lifted from the surface, then W = v - oo where Vv 1is the angle between the
cone reference axis and the singular line.

The usefulness of the circular-arc assumption for o > 0° will be
scrutinized later when the approximation is compared with exact numerical
solutions. At present, support for it can be given by examining two limiting
conical flows in the hodograph plane; these are the flow over a wedge and the
flow in the sweep plane of swept cylinders. Figure 4 shows the hodographs of
these flows and of their streamlines together with that of a typical conical
flow. The hodograph for wedge flows is, of course, the shock polar while
that for swept cylinder flows is the trace of the component of velocity
parallel to the wave and is given by the semicircle VS/V¢ = cos Bo.

Por a specified 65, the streamline hodograph for wedge flow is point 2
(u and v constant) on the shock polar; that for the swept cylinder is a
straight-line extension of the change in velocity through the shock wave from
point 2 to point s on the swept-eylinder polar (see fig. L4). Results from
a limited number of exact numerical solutions for conical flows (refs. 1 to 5)
demonstrate that V. must terminate within the region bounded by the shock
and swept-cylinder polars and therefore, this is accepted as a factual con-
dition. Moreover, numerical solutions show that for a specified 65 and W,
+the velocity of conical flow exceeds that for a swept cylinder, but this
velocity is, of course, less than that for a wedge having the same 05.
There£§re, it can be shown that the inequality given by (12) applies (see
fig. .

Ve < V cos 6Oo

© Tos(es —w) < Ve <V <V, (12)

For constant 65 it is apparent that there is a spectrum of conical
flows whose limits are the flow over a wedge and a swept cylinder. For these
flows equation (10) predicts a single distribution of VC/VQ as a function
of W,. Wedge and swept-cylinder flows are limiting cases for which W, = w,
and We = 65, respectively, as can be verified by substitution in equation (10)
to yield the respective exact results VC/V‘Do = Vé/V@ = COS 92/005(92 - Wy)
and Vé/V@ = VS/\LDo = cos Bp. BSimilarly, as demonstrated in appendix B, it can
be shown that distributions of V/V@ given by equation (5) contain wedge and
swept-cylinder distributions as special cases.

Finally, consider the effects of M, and ¥y on the present approximation.
As My increases or ¥ decreases, the shock polar grows in size and in the
limit M = ®and ¥ = 1 coincides with the swept-cylinder polar. It is
evident that for this limit, We = Wy = O3 and Vo = Vg = Vo = V, cos 6.



Furthermore, as the 1imit is approached the length of the streamline hodograph
of V 1is shortened and Vg - Vo. Consequently, the accuracy of the approxi-
mation is improved, as will be demonstrated later by comparisons with exact
numerical solutions. First, however, before demonstrating accuracy, equations
will be given for other flow properties in a form to expedite estimates.

Equations of state properties- Since the flow in the .angle-of-attack
plane is isentropic, other flow properties can be estimated locally by use of
equation (6) in conjunction with Bernoulli's equation and equations from
supersonic flow and oblique-shock theories. Equations for other flow proper-
ties were derived from equations given in reference 8 and are summarized below

for completeness.

241 P 4
E___:L' 1 p2 (13)
To 2 +1Ps _ 1
7y - 1o,
1
y4 lEo_o _ Q 71
_& - 1 Y - 1 pg (l)-l-)
B /P2 1 Py (p_°o>2
y - 1o, o,
»_£ T 1
b, " P T (15)
where
2
Q= tanz 95 [(cos 92> - l] (16)

To estimate @ note that [(V/V,)/cos 62] can be obtained directly from equa-
tion (6) or at the come surface from equation (10). Since it can be shown
that at the surface Q, = (pw/pg)z and_O_ for wedge and swept-cylinder flows,
respectively, it is evident that 0 < Q <1 for all conical flows.

Since real-gas flows are of practical interest, the application of
equations (13) to (16) to the specific case of a real gas in thermodynamic
equilibrium will be considered briefly. For simplicity, it is assumed that
¥ is counstant, since in an actual case the variation of ¥ along a stream-
line, behind the shock, is small. An effective value of 7y can be estimated
from known free-stream conditions and the density ratio across the shock and

is given by equation (17).



(EIE,) - [outee) + 7]

(o, /p,) - 1

7 (17)

With yg known, flow properties are estimated from equations (13) to (16)
by replacing y with its effective value from (7).

RESULTS AND DISCUSSION

To demonstrate accuracy of the present approximation, the predicted
results will be compared with exact numerical solutions for conical flows.
Surface properties will be considered first; then the predicted distributions
of Vand w will be compared. Since all surface properties of the flow may
be of interest, the relative errors between them for a specified error in
velocity may be pertinent and will be considered briefly. Starting with the
isentropic flow relation between pc/p2 and Vo given by equation (18)

2 _ 2\ -7
gg_.: L,.VL 7ot (18)
b, va.-yze2
m 2

it can be shown that the relative error between pc/p2 and V, may be estimated
by means of equation (19).

alp /v,)/(p./p,) (27/7 - 1V /7,2

19)
av_/v, 1 - (v /v )® (

For a specified error in V., equation (19) predicts that the error in pc/p2
will numerically exceed that in V., if Vo/Vy > .J(7-1)/(37-1) whereas if

VC/Vm < J(y—l)/(37-l) the converse is true. Moreover, it can be shown that
errors in p./p, are greater than in pc/pz, Tc/Tz; and cc/c2 in the respec-
tive proportions (2y/y - 1) to (2/y - 1), 2, and 1. Therefore, a comparison
of predicted V., and p, with exact solutions should suffice to give an upper
bound on errors in most flow properties of interest. This comparison will be
made on a limited basis since only solutions for conical flows generated by
right-circular cones are available in a form suitably accurate for comparison.
Iater other conical flows will be compared with experiment.




Comparison of Predicted Surface Properties
With Inviscid Numerical Solutions

Results from the approximation will be compared initially with
axisymmetric solutions and then comparisons will be made for o > 0°.

Comparisons with axisymmetric solutions- Surface velocity and pressure
will be compared with results from solutions given by references 1, 2, and 9.
References 1 and 2 give tabulated results from numerical solutions of the
Taylor-Maccoll equation for conical flow, while reference 9 provides solutions
by the method of characteristics. The present approximation is compared with
solutions by Sims (ref. 1) for ¥ = 1.4 in figure 5. Here the approximations
for V, and p, are raticed to exact values, and constant values of these
ratios are shown as contours of accuracy for O < 5 < 30° ang 1. 5< M < 20.
In like manner comparlsons are shown in figure 6 w1th solutions by qual
(ref 2) for = 1. 405 and 1.333. These comparisons are made for
59 < 8a < 50° but are limited to 1 < M < 12 because the number of solutions
given was insufficient to define accuracy contours at greater M

Figures 5 and 6 demonstrate that accuracy of the approximation improves
significantly with increasing M . In general for M > 5 and Ba < 50° veloc-
ity is predicted within 0.1 percent and, except for 5 2 59, pressure is
predicted within 1 percent. Whille accuracy is minimum for small cone angles
(BC < 5°) inaccuracies accrue also as ®c approaches shock wave detachment.
Rigorous comparisons at detachment could not be made since available numerical
solutions are given graphically; however, comparison with the method of refer-
ence 10 for M = © and 1.67 < y € 1.2 indicate agreement with present predic-
tions of velocity and pressure to about four significant figures. The present
approximation appears least accurate as M _ — 1. From a comparison with
results from reference 1 for M, = 1 figure 7 shows that predicted velocity
and pressure have minimum accuracy at M = 1.06 where both are in error about

5 percent.

Figure 6 shows that decreasing the specific-heat ratio improves accuracy
significantly except when M~ is small. The effects of specific-heat ratio
were investigated in more detall and are shown in figure 8 where comparisons
are made with solutions by the method of characteristics (ref 9). Figure 8
shows that accuracy of the approximation improves as 7 = 1 for a wide range
of cone angles. The applicability of the approximation to flows of a real gas
in equilibrium for a range of 7E is demonstrated in figure 9. Here the
pressure ratio Pc/P is compared with-exact solutions by the method of
reference 9. For the specified free-stream conditions, figure 9 indicates
that predicted values of pc/p2 agree with exact solutions to within
0.5 percent.

Comparisons with solutions for o > O - A critical assessment of how
well the approx1matlon applles to the more general case o > 0° can be made
by a comparison of predicted distributions of the velocity component €,
with exact numerical solutions of conical flow from reference 4. As shown in




figure 4 €c 1s the incremental value that V, exceeds the local velocity
for swept-cylinder flow having the same 65 and local w = w, and is given
by equation (20).

_ _ cos 6o
€c = Ve =V, [cos(ez - wc)] (20)

Results from cross plotting numerical solutions with 6- constant but
varying 8q and o are compared with the approximation in figure 10. Here
ec/V is presented as a function of tan(92 -wc)/tan(92 ws) as an abscissa.
From figure L4 it can be seen that this abscissa is the fraction of the veloc-
ity component from point s +to 2 to where V. crosses this component.

Figure 10 shows that exact distributions of ec/VQ agree well with
predicted distributions and moreover for specified M, tend to give a single
distribution as predicted by the approximation. The condition for ec/Vw to
be maximum is predictable from the present approximation by equating
dec/d[tan(6s - wy)/tan(62 - we)] to zero and is given by equation (21).

tan(fs - ws) tan(8s - wo)

tan®(8s - wa) [tan(@z - wC)T + 2 [tan(92 ~ wC)J -1=0 (21)

Figure 10 shows good agreement between the predicted maximum and exact
solutions.

The approx1matlons for V., and p, are compared with conical-flow
solutions for o > 0° from reference h in figure 11. Velocity and pressure
are normalized by exact values and are shown as functions of the inclination
of the stagnation line w,. Comparisons are made for both windward and lee-
ward stagnation lines, and since for the windward side wg = de + o while
for the leeward side we = e - a, the demarcation between these two cases is
apparent in figure 11 when we = 8a. Trends of accuracy indicated in figure 11
appear consistent with those previously demonstrated for axisymmetric flow,
and generally good agreement of predicted and exact results is demonstrated.

A more practical demonstration of the usefulness of the approximation is
afforded by the direct comparison of predicted pressure ratio pc/p2 with
exact values shown in figure 12. Also shown are pressure ratics for wedge
and swept-cylinder flows which are obtained from the approximation as special
limiting cases. It is evident from figure 12 that for o > 0° the
approximation provides good accuracy for a wide range of conical flows.



Comparisons of Predicted Distributions of Velocity
and Flow Angle With Inviscid Solutions

Axisymmetric distributions of velocity and flow angle given by
equations (7) and (ll), respectively, are compared with exact solutions in
figure 13. Likewise for o > 09, distributions in the angle-of-attack plane
are compared in figure lh. From figure 13 it can be seen that, in accordance
wilth the predictions of surface properties, the predicted distributions of
velocity and flow angle are least accurate at small &,. In general, if sur-
face properties are predicted accurately then distributions will also be
accurate. It should be noted that while figure 13 shows significant differ-
ences between predicted and exact distributions for small Be the actual
differences in flow properties are not large. For example, the greatest
difference in flow angle between predicted and exact values shown by the
distributions of figure 13 is only about 1° for &, = 2.5°.

Comparisons of the Approximation With Experiment

Comparisons with experiment are, of necessity, limited to investigations
from which both 6z and p, (or some other flow property) can be evaluated.
Accordingly, results from references 11 to 14 have been selected for compari-
sons with the approximation. These investigations encompass a range of Mach
numbers from about 5 to 15. It is clear from previous inviscid comparisons
that for circular cones at small o at least, any significant differences
between the approximation and experiment for this range of M, must be
attributed mainly to viscous effects and inaccuracies in the evaluation of
0o and p, rather than to the small errors inherent in the approximation.
Except for results from reference 11, shock angles were measured from shadow-
graphs of the flow; shock angles from reference 11 were estimated from pitot
traverses of shock layers. These traverses also afford an estimate of
boundary~layer thickness; therefore, the effects of boundary-layer displace=-
ment were accounted for approximately by measuring surface inclination wa
to the boundary-layer edge, and to the shear line of the lee separated flow.
On the other hand, results from references 12 to 1L are compared on the basis
of we measured from the cone surface and are denoted inviscid. In addition,
for these cases w, was arbitrarily increased 1° to show the effect of
boundary layer displacement. For all cases, pressure was measured at the cone
surface and the pressure ratio pc/p2 has, therefore, been selected as a
basis for comparison.

In figure 15 pc/p2 predicted by the approximation is compared with
results from references 11 and 12 for a 15° semiapex cone. The agreement
between experiment and the approximation is reasonable for both air and helium
on the windward surface; but on the leeward side, greater differences are indi-
cated for air (fig. 15(a)), probably because of difficulty in accurately mea-
suring pe. A similar comparison is shown in figure 16 with experimental
results from reference 13 for &, = 5°. While the approximation appears to
generally underestimate pc/pg, reasonably good agreement is indicated for

50 < we < 45°.
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Comparisons for an elliptic cone for two different ratios of major-to-
minor axes are shown in figure 17 from results given in reference 1h.
Although the approximation underestimates experimental values slightly, good
agreement is indicated for a wide range of we. The approximation appears
reasonably valid even at large wp where 6z has the strong shock solution
and the flow in the shock layer is subsonic and therefore affected by the
model base. Since the shock waves appear straight in the shadowgraphs of
reference 1L, even when Mo < 1, it is apparent that the flow continues to be
nearly conical even though model length is finite. Moreover, shadowgraphs of
a 15C semiapex cone in helium at M, == 15 shown in figure 18 demonstrate that
the shocks tend to remain essentially straight even though 65 - 90°. It
appears from these results that if the body is sufficiently slender the flow
remaing nearly conlcal near the apex even at large o and the approximation
can be applied.

CONCLUDING REMARKS

An approximation is developed for the distribution of flow properties in
the angle-of-attack plane of conical flows. It is assumed that shock angle
and surface inclination are known and the flow is inviscid and isentropic.
Comparisons of the approximation with exact solutions and experiment demon-
strate applicability for a wide range of conical flows. Equations are
presented from which estimates of flow properties can be nmade.

Ames Research Center
National Aerconautics and Space Administration
Moffett Field, Calif., 94035, April 23, 1970
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APPENDIX A

DERIVATION OF EQUATIONS FOR DISTRIBUTIONS
OF VELOCITY AND FLOW ANGLE

PROPERTIES OF THE CIRCULAR ARC APPROXIMATION

The purpose of this appendix is to derive explicit equations for
distributions of wvelocity and flow angle by approximating the streamline hodo-
graphs of axisymmetric conical flows by circular arcs. Pertinent velocity vec-
tors and angles are shown in sketch (a). The center_of the circular arc_with

radius R is at the point (H, K)

which is the intersection of an
(k) extension of V. and a normal to

the component 2-s at point 2. By
constructing a normal to V. that
passes through point 2 and by
resolving components it is evident
that

R sin(6z -~ w.) = Vo sin{uwe - we)

(A1)
and since
Sketeh (a) B cos 0o
Vo = Vy P Cp—— (A2)
it follows that
= cos 02 sin(we - wo)
R = Ve cos(6s - wa)sin(bs - wp) (43)
In addition
H= Vs cos wo + R cos 62 (AL)
K = Vo sin ws + R sin 6z (A5)
Substituting (A2) and (A3) in both (AL) and (AS5) and employing known
trigonometric identities yields (A6) and (A7), respectively.
H=V, tan(0p - up) cos 8o cos g (A6)

sin(6s - we)

12



g = tan(6s - ws)
T o 5in(0s - we)

cos Op sin W, (A7)

Velocity as a Function of (we - w)

The equation of the circular arc is given by (A8).
(u - B2 + (v - K)® = R® (a8)

Substitution of u =V cos wand v=7V sin w in equation (A8) yields the
quadratic equation in V given by (A9)

V2 - 2(H cos w + K sin w)V + B2 + K2 - R® = 0 (A9)

Substituting equations (A3), (A6), and (A7) for R, H, and K, respectively, in
equation (A9), solving the quadratic, and employing trigonometric ldentities
yields V/V, as a function of (w, - w) and this is given by equation (AlO).

1/2
YV _ cos 6 tan(6p - ws) 2 _ _ sin®(we - wp)
Voo sin(6s - we) cos(we - 0) - feos™(we - w) -1 + sin®(6s - ws)

(A10)

It is apparent that the minus sign before the radical is the appropriate
choice here since the plus sign yilelds velocity to the opposite side of the
circle.

Flow Angle as a Function of (6 - wa)

By erecting normals through the point H and K to extensions of V and
Vo, and resolving components it can be shown that equation (A1l) applies

sin(0z2 - wo)sin(w, - w) = sin(w, - wo)sin(6 - w) (A11)

Equation (All) can be recast® as (Al2) where (w, - w) is an explicit function
of the conical coordinate (6 - wg)

1 - B cos(6 - we)
[BZ + 1 - 2B cos(0 - we)]

cos(w, - w) = (A12)

/2

INote thé£ :éiﬁ(éA;-Q) =-siﬁ[(é - Qc) +‘(wé —‘w)].-
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and where

_ sin(we - ws)
" 5in(6s - ws) (a13)

A simpler alternate for (Al2) is given by (A1lL)

_ B sin(6 - we)
We - W= tan_ [l =3 cos (0 - wc)] (A1)

Velocity as a Function of (8 - w,)

Substitution of (Al2) in (A10) yields V/\ZDo as a function of the conical
coordinate (6 - wc) and this is given by equation (A15)

1/2

= cos 62[%an(92 - wo)tan % (62 - we)+ l]{lnkzifgégjg-[l - cos(6 - wa)]

&<

(A15)

Using oblique-shock theory in conjunction with an alternate equation for B,
equation (A15) can be recast independent of wz. From obligue-shock equatlons
given in reference 8 it can be shown that equation (Al6) applies®

o)
ta.n(62 - (A)g) = a;g tan 92 (Al6)
where
@ 2 1 y -1
-2
b, "y % 1 (Mgn T (217)

A combination of equation (Al6) with an expansion of (Al3) yields equa-
tion (A18) which is independent of ws.

sin(0p - we)
B = cos(fs - w.) - Al18
(62 - w) (po,/0s)tan 62 (828)
Substitution of (Al6) in (A15) with B given by equation (A18) yields equa-
tion (A19) which is independent of Wo . 3

“From equation (Al6) and figure 4 it is evident that p_/ps Aééﬁais the
ratlio of the velocity component s - 2 to the free-stream component normal to

the shock wave.
SEquation (AlL) is made independent of ws by using (A18) for B.

1L
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v o_ P 1 - —2B

v T cos O [pg tan 05 tan 5 (62 - we) + %]‘l + (T - 5)2 [1 - cos(6 - w.)]
(A19)

At the cone surface 6 = W, and equation (A19) reduces to (AEO).

(A20)

0
= cos 65 [52 tan 85 tan % (62 -~ w,) + l]

§)as

Equation (A19) when divided by equation (A20) yields veloecity distribution

normalized by V. and this is given by equation (A21)

1/2
(A21)

\}’_c._-_- {l+zl—?BB)—2-[l - COS(Q - Q’c)],

15



APPENDIX B

COMPATIBILITY OF THE APPROXTMATION WITH
WEDGE AND SWEPT-CYLINDER FLOWS

Equation (Bl) (identically eqg. (5)) will be examined to verify that
distributions of V/V‘Do for wedge and swept-cylinder flows are contained as

special cases.

1/2
V__ cos 6o tan(6p - wo) [ o sin®(wa - wg)]
Voo B sin(6s - wc) cos(wc w) cos™(we - ©) L+ sinZ(6s - wo)
(B1)
For wedge flow w, = we = w and substitution in equation (B1) gives

V/Ve = cos 8p/cos(02 - wp) = Vo/V,, which is the exact result (see fig. 4).

For swept cylinders w, = 62 and substitution in equation (B1) gives an
indeterminate form since the outer bracketed quantity and the denominator are
both zero. An evaluation can be made by allowing

F = sin(65 - we) (B2)

and

sin®(we - wal] 1/2} (83)

= - - 2 - -
£ = {cos(uwe - w) [cos (we - w) -1+ sinZ(6s - ws)

and evaluating

Lin SE/C (BY)
(}.)c—>62 <

Performing the indicated operation gives

-1 [ -cos(6s - ws) ] _ [ cos(8s - ws) ]

Lin cos(fs ~ we) Lecos(Bz - w)sin(Bs - we) cos(fs - w)sin(fs - ws)
we—0 2
(B5)
and
Y~ cos 65 tan(6s - ws) [ cos(6p - up) ] (B6)
Voo 2 2 cos(6s - w)sin(Bs - ws)



Equation (B6) can be reduced to

vV _ __cos b
Vo _ cos(6z - w)

which can be recognized as the exact expression for swept-cylinder flow from
figure 4.

17
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Figure l.- Example of inviscid conical flow.

Locus of centers of R

Streamline

Figure 2.- Streamline hodograph of a typical axisymmetric conical flow.
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Figure 3.- Approximation for the streamline hodograph.
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Figure 4.- Hodographs of typical coniecal flows.
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Figure 8.~ Comparison of the approximation with exact solutions from reference 9; a = 0°



. 1.4
.15 o} ] .
\ - -O- —Exact solutions, ref. 9
ho) —{J— Approximation
Lol 8§
Pc /P2
.05
1.00

3., deg

Figure 9.- Comparison of the approximation with real gas solutions for air in
thermgdynamic equilibrium; M = 20, V_ = 23,41k ft/sec, P,=1 1b/sq ft,
a = 0%,
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Figure 12.- Comparison of the approximate pressure ratio E’i‘th exact solutions from reference L
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(a) M_= 10.6; y = 1.4, reference 11.

.2
0] o o
N~
1.1
d Inviscid
With viscous correction
|'OO 20 40 60

we, deg

(b) M_=14.9; 7 = 1.67, reference 12.

Figure 15.~ Comparison of approximate pressure ratio with experimental values
for a 15° semiapex cone.

31

it

-



i.4
0]
1.3
With viscous correction
Pc /P2
/\$/ Inviscid
A O
-2 _—\ o o]
[=——
Il
— Approximation
O Experiment
90 20 ) 40 60

we = (3, +a), deg

Figure 16.- Comparison of approximate pressure ratio with experimental values
for a 5° semiapex cone; M = 5.03, 7 = l.k, reference 13.
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(a) a = 60°; wy
(M < 1)

Figure 13.- Shadowgraphs of the flow over a 15° semiapex cone; M_ = 1L.9,
v = 1.67.
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