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APPROXIMATION FOR DISTRIBUTION OF FLOW 

PROPERTIES I N  THE AlVGLI3-OF-ATTACK 

PLANE OF CONICAL FLOWS 

Joseph W. Cleary 

Ames Research Center 

SUMMARY 

An approximation i s  made f o r  t h e  hodographs of stagnation-line 
streamlines i n  the  angle-of-attack plane of conical  flows that y i e lds  e x p l i c i t  
equations f o r  d i s t r ibu t ions  of ve loc i ty  and flow angle.  It i s  assumed t h a t  
shock angle and surface inc l ina t ion  a r e  known and the  flow i s  inv isc id  and 
isentropic .  In  essence, the  approximation replaces streamline hodographs 
of conical  flows by c i r c u l a r  a r c s .  Streamline hodographs of wedge and swept- 
cyl inder  flows a r e  obtained from the  so lu t ion  as spec ia l  l imi t ing  cases of 
conica l  flow. The approximation introduces no l imi ta t ion  on angle of a t t ack  
o r  body shape as long as shocks a r e  s t r a i g h t  and flows a r e  conical.  

Comparisons of the  approximation with exact numerical solut ions f o r  the  
flow over r i g h t  -c i rcu lar  cones demonstrate agreement f o r  Mach numbers from 
one t o  i n f i n i t y  over a wide range of cone angles and angles of a t tack .  
Comparisons with experimental r e s u l t s  show a p p l i c a b i l i t y  of t he  approximation 
t o  conical  flows other  than those f o r  r igh t - c i r cu la r  cones. 

INTRODUCTION 

Theoret ical  aspects  of  conical  flows a r e  of  fundamental i n t e r e s t  t o  
aerodynamic research and t o  the  more p r a c t i c a l  problems of vehicle design. 
The d i r e c t  appl ica t ion  t o  l i f t i n g  en t ry  configurations has enlivened i n t e r e s t  
i n  conical-flow theory f o r  a wide range of angles of a t t ack  and body shapes. 
The flow i n  the  angle-of-attack plane i s  of unique i n t e r e s t  i n  conical  flow 
appl icat ions s ince f lap- type cont ro ls  may be placed on the windward stagna- 
t i o n  l i n e  i n  order t o  achieve grea te r  effect iveness  from compression of the  
flow. 
l i n e .  

Moreover, heating i s  a p t  t o  be most severe on the  windward s tagnat ion 

Knowledge of t he  compression process i n  the  angle-of -attack plane i s  
required t o  adequately estimate con t ro l  effect iveness  and heating. Although 
invisc id  axisymmetric so lu t ions  by numerical methods a r e  ava i lab le  (e .g . , 
refs. 1 t o  3) for estimating the  compression process a t  Oo angle of a t tack ,  
only l imited solut ions have been published f o r  estimating the  compression of 
the  flow at  angle of a t t a c k  ( r e f s .  4 and 5 ) .  
so lu t ions  of t h e  flow general ly  requi re  that three-dimensional bodies be 
smooth without sharp edges. Since conical-type bodies with sharp edges on 
the  windward surface may prove use fu l  for achieving high drag a t  high angles 

MDreover, a t  present,  numerical 



of a t t ack  during entry,  some method i s  needed f o r  ca lcu la t ing  the  compression 
process of conical  flows i n  general .  

The purpose of the  present study i s  t o  present an approximate so lu t ion  
f o r  t he  compression process of t he  flow i n  the  angle-of-attack plane. 
semiempirical approach i s  used t o  develop closed-form equations f o r  t he  
d i s t r ibu t ion  of flow proper t ies  between the  shock and t h e  body i n  t h i s  plane. 
While it i s  assumed that surface inc l ina t ion  and shock angle a r e  known, no 
l imi t a t ion  i s  made on angle of a t t a c k  or body shape t o  the  extent  t h a t  shock- 
wave elements a re  s t r a i g h t  and the  flow i s  conical.  Comparisons a r e  made 
with numerical solut ions and with experiment t o  demonstrate accuracy and 
general  a p p l i c a b i l i t y  . 

A 

ANALYSIS 

Description of t he  Approximation 
and Presentat ion of Equations 

The i n t e n t  of the  present ana lys i s  i s  t o  develop an approximation f o r  
the  d i s t r i b u t i o n  of proper t ies  of  t he  flow i n  the  angle-of-attack plane of 
conical  flows. It i s  assumed a t  t he  ou t se t  t h a t  the shock angle and 
surface inc l ina t ion  wc a r e  known and t h a t ,  as depicted i n  f igu re  1, the  
flow between the  shock and the  body i n  the  angle-of-attack plane i s  inv i sc id  
and i sen t ropic .  Before the  approximation i s  described, the  t r u e  re la t ionship  
between ve loc i ty  vectors and angles per t inent  t o  conica l  flows w i l l  be exam- 
ined. This r e l a t ionsh ip  can be shown most c l e a r l y  by a p l o t  of t he  veloci ty  
component v as a funct ion of u (hodograph coordinates).  Such a p l o t  can 
a l so  be considered a polar  diagram with radius  vector V given as a funct ion 
of the  turning angle of t he  flow w. It i s  expedient t o  consider the  hodo- 
graphs of axisymmetric flows f i rs t  and then consideration will be given t o  
other  conical  flows. 

Axisymmetric conical  flows- Figure 2 shows the  hodograph of a streamline 
of a t y p i c a l  axisymmetric conical  flow. I n  f igu re  2, R i s  t h e  l o c a l  radius  
of curvaiure of the  streamline hodograph a t  an a r b i t r a r y  point  i n  the 
conical  f i e l d .  Note t h a t  since R i s  normal t o  the  streamline hodograph, 
an extension of R makes the  conica l  coordinate angle 6' with the  f r e e -  
stream di rec t ion .  Furthermore, po in ts  2 and c correspond t o  conditions a t  
the  shock and cone surface,  respect ively;  po in ts  2', p' ,  and cs  represent  
end poin ts  of R t h a t  correspond with poin ts  2, p, and c ,  respect ively.  
I n  the  present case the  magnitude of 
given by Busemann ( r e f s .  6 and 7).  
R and the  locus of end poin ts  of R from an exact numerical so lu t ion  of 
the  flow. While the  d i f f e r e n t i a l  equation of the streamline hodograph i s  
known (ref. 7) ,  no general  solut ions are known. 
i s  considered appropriate.  

p 

R was evaluated by an exact equation 
Busemann's equation was used t o  determine 

Therefore, an approximation 

I n  essence, t he  present approximation replaces  the  exact hodograph by a 
c i r c u l a r  arc .  Details of t he  procedure are shown i n  f igu re  3 where R i s  

2 



Seplaced by a constant e f f e c t i v e  radius  of curvature 
H and I?. 
i n t e r sec t ion  of R2 and Rc (or an extension 0.f V,). Since R and R are 
both normal t o  the  streamline hodograph a t  point  2, t he  exact ve loc i ty  and 
slope dv/du a re  re ta ined  i n  the approximation at t h e  shock wave. While the  
exact value of 
ve loc i ty  i s  i n  e r r o r  by an unknown amount. 

whose center  i s  a t  
The c i r cu la r  a r c  passes through point  2 and has i t s  center  a t  the  

dv/du a t  the  cone surface i s  a l so  re ta ined ,  t he  surface 

The c i rcu lar -a rc  approximation i s  given by equation (1). 

Equations for 
( 3 ) ,  and (4) , respect ively:  

R, e, and I? a r e  derived i n  appendix A and a r e  given by ( 2 ) ,  

sin(wc - w2)c0s e2 

sin(Q2 - w , ) c o s ( ~ ~  - w2) 6 = v, __ 

- tan(e2 - w2) 
K = V, 

sin(e2 - wc) 
cos 02 s i n  wc 

where 02,  w 2 ,  and wc = 6, are known quant i t ies .  Furthermore, it i s  shown 
i n  appendix A t h a t  by subs t i t u t ion  of u = V cos w and v = V s i n  0 and t h e  
known values of i s  given as a funct ion 
of (wc - w) by equation ( 5 ) .  

E, s, and I? i n  equation (l), V/V, 

icos(w, - w) - I( 
sin(e2 - wc) 

I 

I 

Since addi t iona l  per t inent  equations a r e  derived i n  appendix A,  it i s  suffi- 
c i e n t  here t o  summarize the  f i n a l  r e s u l t s .  

3 



Velocity d i s t r ibu t ions  normalized by V, and VC are given as funct ions 
of t he  conica l  coordinate ( 0  - W e )  by equations (6) and (7) ,  respect ively,  

where t h e  parameter B i s  given by equation (8) 

and the  densi ty  r a t i o  across  the  shock p,/p2 by equation (9) (see r e f .  8)  

Propert ies  of t he  flow a t  the  cone surface are of p a r t i c u l a r  i n t e r e s t  and can 
be evaluated from equation (6) by specifying that 
equation (10) 

e = t o  give 

- -  vc t a n  e2 t a n  2 1 (e, - we)  + 1 
vim 

The l o c a l  flow angle (We - W )  i s  given by equation (11) as a function of the  
conical  coordinate ( 0 - W e )  . 

1 B s i n ( 0  - W e )  
1 - B C O S ( @  - Wc) 

- w = tan-' 

An in t e rp re t a t ion  of how t o  apply equations (1) t o  (11) t o  conical  flows i n  
general  w i l l  now be given. 

Other conical  flaws- Since i n  t h e  angle-of-attack plane conical  flow i s  
cha rac t e r i s t i ca l ly  i sen t ropic ,  there  i s  a close re la t ionship  between the  
axisymmetric solut ion and conical  flows i n  general .  Therefore, it i s  assumed 
i n  l i k e  manner that a c i r cu la r  a r c  approximates the  streamline hodograph of 

4 



t he  general  conical  flow. 
applied t o  t h e  general  case a > 0' by assigning Wc = 6, + CL and 
we = 6, - a on t h e  windward and leeward stagnation l i n e s ,  respect ively.  If 
on the  leeward s ide the  s ingular  l i n e ,  fo r  which entropy i s  multivalued, has 
l i f t e d  f r o m t h e  surface,  then We = v - a where v i s  the  angle between the 
cone reference a x i s  and the  s ingular  l i n e .  

Within t h i s  assumption equations (1) t o  (11) are 

The usefulness of t he  c i rcu lar -a rc  assumption f o r  a > 0' w i l l  be 
scrut inized later when t h e  approximation i s  compared with exact numerical 
solut ions.  A t  present ,  support for it can be given by examining two l imi t ing  
conical  flows i n  the  hodograph plane; these are' t he  flow over a wedge and the  
flow i n  the  sweep plane of swept cyl inders .  Figvse 4 shows the  hodographs of 
these flows and of t h e i r  streamlines together with that of a t y p i c a l  conical  
flow. The hodograph f o r  wedge flows i s ,  of course, the  shock polar  while 
that f o r  swept cylinder flows i s  t h e  t r a c e  of t he  component of ve loc i ty  
p a r a l l e l  t o  the  wave and i s  given by t h e  semicircle Vs/V, = cos Q2. 

For a specif ied e2, t h e  streamline hodograph for wedge flow i s  poin t  2 
constant)  on t h e  shock polar ;  that f o r  t he  swept cylinder i s  a (u and v 

s t r a igh t - l i ne  extension of t he  change i n  ve loc i ty  through the  shock wave from 
poin t  2 t o  point  s on t h e  swept-cylinder polar  (see f i g .  4 ) .  Resul ts  from 
a l imited number of exact numerical solut ions f o r  conical  flows (refs. 1 t o  5 )  
demonstrate that  Vc must terminate within the region bounded by the  shock 
and swept-cylinder po lars  and therefore ,  t h i s  i s  accepted as a f a c t u a l  con- 
d i t i on .  Moreover, numerical solut ions show that f o r  a specif ied e2 and w, 
. the ve loc i ty  of conical  flow exceeds that f o r  a swept cylinder,  bu t  t h i s  
ve loc i ty  i s ,  of course, l e s s  than t h a t  for a wedge having the  same e2. 
Therefore, it can be shown that t h e  inequal i ty  given by (12) appl ies  (see 
f i g .  4 ) .  

For constant e2 it i s  apparent t h a t  there  i s  a spectrum of conical  
flows whose limits a r e  the  flow over a wedge and a swept cyl inder .  For these 
flows equation (10) p red ic t s  a s ingle  d i s t r ibu t ion  of 

and WC = e2, respect ively,  as can be ver i f ied  by subs t i tu t ion  i n  equation (10) 
t o  y i e ld  the  respect ive exact r e s u l t s  
and Vc/V, = V,/V, = cos €I2. 

be shown t h a t  d i s t r ibu t ions  of V / V ,  
swept-cylinder d i s t r ibu t ions  as spec ia l  cases.  

Vc/V, as a funct ion 
of W e .  Wedge and swept-cylinder flows are l imi t ing  cases f o r  which Wc = w 2  

Vc/V, = V&, = cos €l2/cos(t32 - w2) 
Similarly,  as demonstrated i n  appendix B, it can 

given by equation ( 5 )  contain wedge and 

Final ly ,  consider t he  e f f e c t s  of & and 7 on the  present  approximation. 
A s  I%, increases or 7 decreases, t he  shock polar  grows i n  s i ze  and i n  t h e  
l i m i t  M, = and 7 = 1 coincides with the  swept-cylinder po la r .  It i s  
evident that f o r  t h i s  l i m i t ,  wc = w2 = e2 and V, = Vs = V2 = V, cos e2. 

5 



Furthermore, as the  l i m i t  i s  approached the  length  of t h e  streamline hodograph 
of V i s  shortened and Vc + V2. Consequently, the accuracy of t h e  approxi- 
mation i s  improved, as w i l l  be demonstrated later by comparisons with exact 
numerical so lu t ions .  F i r s t  , however , before demonstrating accuracy, equations 
w i l l  be given f o r  other  flow proper t ies  i n  a form t o  expedite es t imates .  

Equations - of state propert ies-  Since t h e  flow i n  the  angle-of-attack 
plane i s  i sen t ropic ,  other flow proper t ies  can be estimated l o c a l l y  by use of 
equation (6) i n  conjunction with Bernoul l i ' s  equation and equations from 
supersonic flow and oblique-shock theor ies .  Equations f o r  other flow proper- 
t i e s  were derived from equations given i n  reference 8 and a r e  summarized below 
f o r  completeness. 

where 

P 1 a = =  

- 1 

1 - 
Y -  1 

To estimate 
t i o n  (6) or a t  the  cone surface from equation (10). 
t h a t  a t  the  surface 
respect ively,  it i s  evident t h a t  0 < Q < 1 f o r  a l l  conical  flows. 

a note t h a t  [(V/V,)/cos e,] can be obtained d i r e c t l y  from equa- 

= ( P J P ~ ) ~  aGd-0- f o r  wedge and swept-cylinder flows, 
Since it can be shown 

Since real-gas  flows a r e  of p r a c t i c a l  i n t e r e s t ,  t h e  appl ica t ion  of 
equations (13) t o  (16) t o  t h e  spec i f i c  case of a real gas i n  thermodynamic 
equilibrium w i l l  be considered b r i e f l y .  For s implici ty ,  it i s  assumed t h a t  
y i s  constant,  since i n  an a c t u a l  case the  va r i a t ion  of y along a stream- 
l i n e ,  behind t h e  shock, i s  small. An e f fec t ive  value of y can be estimated 
Prom known free-stream conditions and the  densi ty  r a t i o  across  the  shock and 
i s  given by equation (17). 

6 
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With YE 
by replacing y with i t s  e f f ec t ive  value from (17). 

known, flow proper t ies  are estimated from equations (13) t o  (16) 

RESULTS AND DISCUSSION 

To demonstrate accuracy of the present  approxiination, t h e  predicted 
r e s u l t s  w i l l  be compared with exact numerical solut ions f o r  conical  flows. 
Surface proper t ies  w i l l  be considered f i r s t ;  then the  predicted d i s t r ibu t ions  
of V and w w i l l  be compared. Since a l l  surface proper t ies  of the  flow may 
be of i n t e r e s t ,  the  r e l a t i v e  e r r o r s  between them f o r  a specif ied e r ro r  i n  
ve loc i ty  may be per t inent  and w i l l  be considered b r i e f l y .  S ta r t ing  w i t h  the  
i sen t ropic  flow r e l a t i o n  between pc/-p2 and Vc given by equation (18) 

it can be shown t h a t  the  rela . t ive e r r o r  between 
by means of equation (19). 

p,/p, and V, may be estimated 

For a specif ied e r r o r  i n  V,, equation (19) r e d i c t s  t h a t  t he  e r r o r  i n  p,/p, 
w i l l  numerically exceed t h a t  i n  V, i f  V, P Vm >,./(y-l)/(3y-l) whereas if 
Vc/V, < 4 ( ? - 1 ) / ( 3 y - l )  
e r r o r s  i n  pc/p, a r e  grea te r  than i n  pc/p2, Tc/T,, and cc/c2 i n  the  respec- 
t i v e  proportions ( 2 Y / y  - 1) t o  (e/? - l), 2, and 1. 
of predicted 
bound on e r r o r s  i n  most flow proper t ies  of i n t e r e s t .  
made on a l imi ted  b a s i s  s ince only solut ions f o r  conical  flows generated by 
r igh t - c i r cu la r  cones a r e  ava i lab le  i n  a form su i tab ly  accurate  f o r  comparison. 
Later other  conical  flows w i l l  be compared with experiment. 

t h e  converse i s  t r u e .  Moreover, it can be shown that 

Therefore, a comparison 
Vc and pc with exact solut ions should suf f ice  t o  give an upper 

This comparison w i l l  be 

7 



Comparison of Predicted Surface Proper t ies  
With Inviscid Numerical Solutions 

Results from t h e  approximation w i l l  be compared i n i t i a l l y  with 
axisymmetric solut ions and then comparisons w i l l  be made f o r  a > Oo. 

Comparisons with axisymmgtric solut ions-  Surface ve loc i ty  and pressure 
w i l l  be compared with r e s u l t s  from solut ions given by references 1, 2, and 9.  
References 1 and 2 give tabulated r e s u l t s  from numerical solut ions of t he  
Taylor-&ccoll equation f o r  conical  flow, while reference 9 provides so lu t ions  
by the  method of cha rac t e r i s t i c s .  
solut ions by Sims (ref.  1) f o r  
f o r  V, and pc 
r a t i o s  are shown as contours of accuracy f o r  0 < 6, < 30° and 1.5 7 M, 7 20. 
I n  l i k e  manner comparisons a r e  shown i n  f igu re  6 with solut ions by Kopal 
( r e f .  2 )  f o r  
5' ? 6, 7 50' but  a re  l imited t o  17 M, 7 1 2  because the  number of solut ions 
given w a s  i n su f f i c i en t  t o  define accuracy contours a t  grea te r  

The present  approximation i s  compared with 
Here the  approximations = 1.4 i n  f igu re  5 .  

a re  r a t ioed  t o  exact values,  and constant values of these - 

y = 1.405 and 1.333. These comparisons a r e  made f o r  

M,. 

Figures 5 and 6 demonstrate t h a t  accuracy of the  approximation improves 
s ign i f i can t ly  with increasing M,. I n  general  f o r  M, 5 5 and 8, 50' veloc- 
i t y  i s  predicted within 0 .1pe rcen t  and, except f o r  
predicted within 1 percent.  
(6, < 5') inaccuracies accrue a l s o  as 
Rigorous comparisons a t  detachment could not be made s ince ava i lab le  numerical 
solut ions a r e  given graphically;  however, comparison with the  method of r e fe r -  
ence 10 f o r  lv&, = , and 1.67 ? 7 ? 1.2 ind ica te  agreement with present  predic- 
t i o n s  of ve loc i ty  and pressure t o  about four s ign i f i can t  f igures .  The present  
approximation appears l e a s t  accurate as 
r e s u l t s  from reference 1 f o r  & = 1 f igure  7 shows t h a t  predicted ve loc i ty  
and pressure have minimum accuracy a t  
5 percent.  

6, 7 5 O ,  pressure i s  
While accuracy i s  minimum f o r  small cone angles 

8, approaches shock wave detachment. 

M,+ 1. From a comparison with 

M, = 1.06 where both are i n  e r ro r  about 

Figure 6 shows t h a t  decreasing the  specif ic-heat  r a t i o  improves accuracy 
s ign i f i can t ly  except when M, i s  small. The e f f e c t s  of specif ic-heat  r a t i o  
were invest igated i n  more de ta i l  and are shown i n  f igu re  8 where comparisons 
are made with so lu t ions  by the  method of c h a r a c t e r i s t i c s  ( r e f .  9). Figure 8 
shows that accuracy of the  approximation improves as 
of cone angles.  The app l i cab i l i t y  of the  approximation t o  flows of a real gas 
i n  equilibrium f o r  a range of YE i s  demonstrated i n  f igu re  9. Here t h e  
pressure r a t i o  pc/p2 
reference 9. For t he  specif ied free-stream conditions,  f i gu re  9 ind ica tes  
t h a t  predicted values of pc/p2 
0.5 percent .  

7 -, 1 f o r  a wide range 

i s  compared wi th-exac t  so lu t ions  by the  method of 

agree with exact solut ions t o  within 

Comparisons w i t h  -solut&on-g f o r  a > Oo- A c r i t i c a l  assessment of how 
we11 the  approximation appl ies  t o  the  more general  case 
by a comparison of predicted d i s t r ibu t ions  of t he  ve loc i ty  component 
with exact numerical solut ions of conical  flow from reference 4. A s  shown i n  

a > Oo can be made 
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f igure  4 cC i s  the  incremental value that Vc exceeds the  l o c a l  ve loc i ty  
f o r  swept-cylinder flow having the  same 02 and l o c a l  w = wc and i s  given 
by equation (20). 

Results from cross  p lo t t i ng  numerical solut ions with 8 ,  constant but 
varying 6c and a. a r e  compared with the  approximation i n  f igu re  10. Here 
E ~ / V ,  tan(02 - wc)/tan(B2 - w2) as an abscissa .  
From f igure  4 it can be seen t h a t  t h i s  abscissa  i s  t h e  f r a c t i o n  of the veloc- 
i t y  component from point  s t o  2 t o  where Vc crosses  t h i s  component. 

i s  presented as a funct ion of 

Figure 10 shows t h a t  exact d i s t r ibu t ions  of cC/V, agree w e l l  with 
predicted d i s t r ibu t ions  and moreover f o r  spec i f ied  & tend t o  give a s ing le  
d i s t r ibu t ion  as predicted by the  approximation. The condition f o r  E ~ / V ~  t o  
be maximum i s  predictable  from the  present approximation by equating 
d+/d[tan(BZ - wC)/tan(Q2 - +)I t o  zero and i s  given by equation (21) .  

- 1 = o  1 - w C ) l 4  + P(e2 - wc> 
tan(e2 - %) tan(e2 - w2) tan2(e2 - w2) 

Figure 10 shows good agreement between the  predicted maximum and exact 
solut ions . 

The approximations f o r  V, and pc a r e  compared with conical-flow 
solut ions f o r  a 7 0' from reference 4 i n  f igure  11. Velocity and pressure 
a r e  normalized by exact values and a r e  shown as functions of the  inc l ina t ion  
of t he  stagnation l i n e  wc. Comparisons are made f o r  both windward and lee- 
ward s tagnat ion l i n e s ,  and s ince f o r  t h e  windward s ide  wc = 6, + a while 
f o r  t he  leeward s ide  wc = 6c - a, t h e  demarcation between these  two cases i s  
apparent i n  f igu re  11 when wc = 6,. Trends of accuracy indicated i n  f i g u r e 1 1  
appear consis tent  d t h  those previously demnst ra ted  f o r  axisymnetric flow, 
and generally good agreement of predicted and exact results i s  demnst ra ted ,  

A more p r a c t i c a l  demns t r a t ion  of t he  usefulness of t h e  approximation i s  
afforded by t h e  d i r e c t  comparison of predicted pressure r a t i o  pc/p2 with 
exact values shown i n  f igu re  12. Also shown are pressure r a t i o s  f o r  wedge 
and swept-cylinder flows which are obtained from the  approximation as spec ia l  
l imi t ing  cases. 
approximation provides good accuracy f o r  a wide range of conical  flows. 

It i s  evident from figure 12 that for a >  Oo t he  

9 



Comparisons of Predicted Dis t r ibu t ions  of Velocity 
and Flow Angle With Invisc id  Solutions 

Axisymmetric d i s t r ibu t ions  of ve loc i ty  and flow angle given by 
equations (7) and (11) , respect ively,  are compared with exact so lu t ions  i n  
figure 13. 
a r e  compared i n  f igure  14. From figure 13 it can be seen t h a t ,  i n  accordance 
with the  predict ions of surface proper t ies ,  t he  predicted d i s t r ibu t ions  of 
ve loc i ty  and flow angle are least accurate  a t  small 6,. I n  general, i f  sur-  
face  proper t ies  a re  predicted accurately then d i s t r ibu t ions  w i l l  a l so  be 
accurate.  It should be noted t h a t  while f i g u r e  13 shows s ign i f i can t  d i f f e r -  
ences between predicted and exact d i s t r ibu t ions  f o r  s m a l l  
d i f ferences i n  flow proper t ies  are not large.  For example, the  g rea t e s t  
difference i n  flow angle between predicted and exact values sbwn by t h e  
d i s t r ibu t ions  of figure 13 i s  only about 1' f o r  6, = 2.5O.  

Likewise f o r  a > Oo, d i s t r ibu t ions  i n  t h e  angle-of-attack plane 

6, t h e  a c t u a l  

Comparisons of the Approximation With Ekperiment 

Comparisons with experiment are, of necessi ty ,  l imi ted  t o  inves t iga t ions  
from which both 
Accordingly, r e s u l t s  from references 11 t o  1 4  have been selected f o r  compari- 
sons with t h e  approximation. 
numbers from about 5 t o  15. It i s  c l e a r  from previous inv isc id  comparisons 
that f o r  c i r c u l a r  cones a t  small a a t  l e a s t ,  any s ign i f i can t  differences 
between the  approximation and experiment f o r  t h i s  range of 
a t t r i b u t e d  mainly t o  viscous e f f e c t s  and inaccuracies i n  the  evaluation of 
8 ,  and pc 
Except f o r  r e s u l t s  from reference 11, shock angles were measured from shadow- 
graphs of t h e  flow; shock angles from reference 11 were estimated from p i t o t  
t raverses  o f  shock layers .  These t r ave r ses  a l so  a f fo rd  an  estimate of 
boundary-layer thickness;  therefore ,  t h e  e f f e c t s  of boundary-layer displace-  
ment were accounted f o r  approximately by measuring surface inc l ina t ion  
t o  t h e  boundary-layer edge, and t o  the  shear l i n e  of t h e  lee separated flow. 
On the  o ther  hand, r e s u l t s  from references 12 t o  14  are compared on t h e  bas i s  
of wc measured from t h e  cone surface and a r e  denoted inviscid.  I n  addi t ion,  
f o r  these cases 
boundary layer  displacement. For a l l  cases,  pressure was measured a t  the  cone 
surface and the  pressure r a t i o  
bas i s  for comparison. 

82 and pc (or some o the r  flow property) can be evaluated. 

These inves t iga t ions  encompass a range of Mach 

& must be 

r a the r  than t o  t h e  s m a l l  e r r o r s  inherent  i n  t h e  approximation. 

we 

wc was a r b i t r a r i l y  increased 1" t o  show t h e  e f f e c t  of 

pc/p2 has, therefore ,  been se lec ted  as a 

I n  f igu re  15 pc/p2 predicted by t h e  approximation i s  compared with 
r e s u l t s  from references 11 and 12 f o r  a 1.5' semiapex cone. The agreement 
between experiment and t h e  approximation i s  reasonable f o r  both a i r  and helium 
on the  windward surface; but  on the  leeward s ide,  g rea t e r  differences are indi -  
cated f o r  air  ( f i g .  l 5 (a ) ) ,  probably because of d i f f i c u l t y  i n  accurately mea- 
sur ing pc. A similar comparison i s  shown i n  f igu re  16 with experimental 
r e s u l t s  from reference 13 f o r  
general ly  underestimate 

6, = 5O. While the  approximation appears t o  
pc/p2, reasonably good agreement i s  indicated f o r  

50 7 we z 450. 
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Comparisons f o r  an e l l i p t i c  cone f o r  two d i f f e ren t  r a t i o s  of major-to- 
minor axes are shown i n  figure 17 from r e s u l t s  given i n  reference 14. 
Although t h e  approximation underestimates experimental values s l i gh t ly ,  good 
agreement i s  indicated f o r  a wide range of wc. The approximation appears 
reasonably va l id  even at  la rge  wc where 02 has the  s t rong shock so lu t ion  
and the  flow i n  t h e  shock l aye r  i s  subsonic and therefore  a f fec ted  by the  
model base. Since the  shock waves appear s t r a i g h t  i n  t h e  shadowgraphs of 
reference 14, even when & < 1, it i s  apparent t h a t  t h e  flow continues t o  be 
near ly  conical  even though m d e l  length  i s  f i n i t e .  Moreover, shadowgraphs of 
a l5O semiapex cone i n  helium a t  & % 15 shown i n  f igu re  18 demonstrate t h a t  
t he  shocks tend t o  remain e s s e n t i a l l y  s t r a i g h t  even though 02 + 90'. 
appears from these r e s u l t s  t h a t  if t h e  body i s  s u f f i c i e n t l y  slender the  flow 
remains near ly  conical  near t h e  apex even at  la rge  a and the  approximation 
can be applied.  

It 

CONCLUDING REMARKS 

An approximation i s  developed f o r  the  d i s t r i b u t i o n  of flow proper t ies  i n  
the  angle-of-attack plane of conical  flows. It i s  assumed that shock angle 
and surface inc l ina t ion  a r e  known and t h e  flow i s  inv isc id  and isentropic .  
Comparisons of t he  approximation with exact solut ions and experiment demon- 
s t r a t e  app l i cab i l i t y  f o r  a wide range of conical  flows. 
presented from which estimates of flow proper t ies  can be made. 

Equations a r e  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f . ,  94035, Apr i l  23, 1970 



APPENDIX A 

DERIVATION OF EQUATIONS FOR DISTRIBUTIONS 

OF VELOCITY AND FLOW ANGLE 

PROPERTIES OF THE CIRCULAR ARC APPROXIMATION 

The purpose of t h i s  appendix i s  t o  derive e x p l i c i t  equations f o r  
d i s t r ibu t ions  of ve loc i ty  and flow angle by approximating t h e  s t r ean l ine  hod0 - 
graphs of axisymmetric conical  flows by c i r c u l a r  a rcs .  
t o r s  and angles a r e  shown i n  sketch (a). 

Per t inent  ve loc i ty  vec- 
The center-of the  c i r cu la r  arc-with 

radius  R i s  a t  the  point  (H, K) 
which i s  the  in te rsec t ion  of an 
extension of Vc and a normal to 
t h e  component 2-s a t  point  2. By 
construct ing a normal t o  Vc t h a t  
passes through point  2 and by 
resolving components it i s  evident 
t h a t  

ii sin(e2 - w,) = ~2 sin(wc - 9) 
( A l )  

and s ince 

Sketch (a) 

it follows t h a t  

I n  addi t ion 

ii = ~2 s i n  w 2  + E s i n  02 

Subs t i tu t ing  (A2) and (A3) i n  both (A4)  and (A5)  and employing known 
trigonometric i d e n t i t i e s  y i e lds  (AS) and (A7) ,  respect ively.  

12 



- 
K = v, - +) cos 02 s i n  wc s in(02 - wc) (A7 1 

Velocity as a Function of (wc - w) 

The equation of the c i r c u l a r  a r c  i s  given by (A8) .  

Subs t i tu t ion  of 
quadratic equation i n  V given by (Ag) 

u = V cos w and v = V s i n  w i n  equation (A8)  y i e lds  the 

v2 - 2(ii cos w + 2 s i n  W ) V  + fi2 + E2 - ii2 = o (A9)  

Subs t i tu t ing  equations ( A 3 ) ,  ( A 6 ) ,  and (AT) f o r  
equation (Ag)  , solving the  quadratic,  and employing trigonometric i d e n t i t i e s  
y ie lds  as a funct ion of (wc - a) and t h i s  i s  given by equation (A10). 

R, g, and E, respect ively,  i n  

V/V, 

1 /2 

( A l O )  

- _  V - g0-s e, tan(@, - q,) 
VCO s in(e2  - wC) 

It i s  apparent that the minus s ign  before the r a d i c a l  i s  the appropriate 
choice here since the plus  s ign y i e lds  ve loc i ty  t o  the opposite s ide of  the  
c i r c l e .  

Flow Angle as a Function of ( e  - wc)  

By erec t ing  normals through the  point  fi and t o  extensions of V and 
V 2 ,  and resolving components it can be shown that equation (All) appl ies  

s in(e2  - w2)sin(wc - w) = sin(wc - %)s in (@ - w) ( A l l )  

Equation (All) can be recast’  as (Al2) where (we - w) i s  an e x p l i c i t  funct ion 
of t h e  conical  coordinate ( e  - wc) 

_ _ _ _  - 

‘Note that s in(0  - w) = s in[  (0 - wc) + (wC - w)]. 
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and where 

sin(wc - wp)  
s in(e2  - w2) B =  

A simpler a l t e r n a t e  f o r  (A12) i s  given by (A14) 

Velocity as a Function of ( e  - we) 

Subs t i tu t ion  of (A12) i n  (A10) yie lds  V/V, as a funct ion of the conical 
coordinate ( 0  - we) and t h i s  i s  given by equation ( A l 5 )  

Using oblique-shock theory i n  conjunction with an a l t e r n a t e  equation f o r  
equation ( A l 5 )  can be recas t  independent of w2 .  From oblique-shock equations 
given i n  reference 8 it can be shown t h a t  equation (~16) appl ies2 

B, 

where 

A combination of 
t i o n  (~18) which 

equation (A16)  
i s  independent 

with an expansion of (A13)  y ie lds  equa- 
of 

B = cos(B2 - 

Subs t i tu t ion  of (A16) i n  ( A l 5 )  with 
t i o n  ( A l g )  which i s  independent of  

B 
* *  

given by equation (~18) yie lds  equa- 
3 

~ 

2From equation (A16)  and f igure  4 it i s  evident t h a t  p,/p2 equals the  
r a t i o  of the  ve loc i ty  component s - 2 t o  the  free-stream component normal t o  
the shock wave. 

3Equation ( A 1 4 )  i s  made independent of w 2  by using (~18) f o r  B. 

14 



(A1.9) 

A t  the  cone surface 8 = wc and equation ( A l g )  reduces t o  (A2O). 

Equation ( A l g )  when divided by equation (A20)  y i e lds  ve loc i ty  d i s t r i b u t i o n  
normalized by V, and t h i s  i s  given by equation (A21)  

1.5 



APPENDIX B 

COMPATIBILITY OF TKE A.Pl3OXIMATION WITH 

WEDGE AND SWEPT-CYLINDER FLOWS 

Equation (Bl) ( i d e n t i c a l l y  eq. ( 5 ) )  will be examined t o  ve r i fy  t h a t  
d i s t r ibu t ions  of 
spec ia l  cases. 

V/V, f o r  wedge and swept-cylinder flows a r e  contained as 

1 l',] sin2(w, - 9) [ sin2(e2 - w2) cos(wc - w) - cos2(wc- w) - 1 + - -  v cos tan(+  - 9) 
v, sin(@, - wc) 

- 

For wedge flow w = w2 = w and subs t i t u t ion  i n  equation (Bl) gives 
V/V, = cos 82/cosfe2 - b&) = V2/Vw which i s  the exact r e s u l t  (see f i g .  4 ) .  

For swept cyl inders  wc = 82 and subs t i t u t ion  i n  equation (Bl) gives an 
indeterminate form since the  outer  bracketed quant i ty  and the  denominator a r e  
both zero. An evaluat ion can be made by allowing 

and 

cos(wc - w) - [cos2(wc - w) - 1 + -1 s in2  e ,  
w2) (B3 1 

and evaluating 

Performing the  indicated operation gives 



Equation (€36) can be reduced t o  

which can be recognized as the  exact expression f o r  swept-cylinder flow from 
f igu re  4. 

T .  . . -  . . . - . .. . ... .... ... . .. .. .. . __ 
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C 

Figure 1.- Example of inv isc id  conical  flow. 

Locus of centers of R 

Figure 2.,- Streamline hodograph of a t y p i c a l  axisymmetric conical  flow. 



Figure 3.- Approximation for t h e  streamline hodograph. 

Swept-cylinder polar / / Conical-flow domain 

Figure 4. - Hodographs of  t y p i c a l  conical  flows. 
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(a) Velocity r a t io .  

24 

16 

0 4 8 I2  16 20 
Ma, 

(b) Pressure r a t io .  

I 

Figure 5. - Accuracy contours of the  approximation from comparisons with exact 
solut ions of reference 1; a = oO. 
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(a) Velocity r a t i o .  

S C ,  deg 

(b) Pressure r a t i o .  

Figure 6.- Accuracy contours of t he  approximation from comparisons with exact 
solut ions of reference 2; a = oO. 
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Figure 7. - Comparison of t he  approximation with exact solut ions from 
reference 1 with Mc = 1; a = Oo. 
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(b) Pressure r a t i o .  

Figure 8,- Comparison of the  approximation with exact solutions from reference 9; a, = 0'. 
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Figure 9.- Comparison of t he  approximation with real gas solut ions for air i n  
~~ 

thermodynamic equilibrium; M, = 20, V, = 23,414 f t / s ec ,  P, = 1 lb/sq f t ,  
a = 00. 

... 



Approximation 
Eq  (20) 
Eq (21) 

Exact solutions, flagged symbols 

---- 

denote extrapolations 
0 Axisymmetric 
Q > O  deg 

s,, deg 
n IO 0 30 
0 15 A 35 
n 20 0 40 
V 25 0 45 

0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0 
Tan ( 8 2 - w c )  /Tan ( 8 2 - ~ 2 )  

(a) 02 = 22.5' (b) 02 = 4 8 O  

Figure 10.- Comparison of approximate incremental velocity with exact 
solutions from reference 4. 
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Figure 11.- Comparison of the approximation with exact 
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solutions from reference 4; cr, 5 oO. 



Approxi motion 
Exact oxisymmetric solutions ---- 

1 

1.2 

Wedge 

1 . 1  

1.0 

Pc’P2 

I I I Exact, a?O0 I 

A 15 
0 20 
0 25 
V 30 
0 35 
0 40 

(a) M, = 2 (c )  M, = 5 

(b) M, = 3 (d)  M, = 7 

Figure 12.- Comparison of the approximate pressure r a t i o  with exact solutions from reference 4 
for r i g h t  c i rcu lar  cones; a 7 Oo. 
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v2 - vc 
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I I R 
Eq.(7)  Exact solutions 

(a)  Velocity. 

I I 

(b) Flow angle. 

Figure 13.- Comparison of dis t r ibut ions with exact solutions from reference 1; y = 1.4, a = 0'. 
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Figure 1,3.- Shadowgraphs of the f l o w  over a 15' semiapex cone; M, = 14.9, 
y = 1.67. 
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