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Division, U. S. Army Engineer Waterways Experiment Station (WES).
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under NASA - Defense Purchase Request No. ..
HU-8504A, dated 30
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supervision of Dr. D. R. Freitag, Chief, Office of Technical
 

Programs and Plans, WES, Mr. A. J. Green, Chief, Vehicle Dynamics
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Section, MRB. This report was prepared by Drs. Freitag and Melzer
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The Bendix, Boeing-GM, and SLRV wheels used in the study were
 

furnished by MSFC, and the Grumman wheel by Grumman Aircraft Engineering
 

Corp., Bethpage, N. Y. The Jet Propulsion Laboratory, Pasadena,
 

Calif., furnished the Surveyor Lunar Rover Vehicle, and representatives
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modified by WES for this test program.
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NOTATION
 

2 
(in. )
A Hard-surface contact area, cm
 
c
 

b Width of wheel; width of grouser, cm (in.)
 
c Cohesion of the soil, kN/m2 (Psi)
 
c Apparent cohesion of the soil, kN/m 2 (psi)
 

a2
 

cb Cohesion determined from bevameter tests, kN/m (psi)
 

c Cohesion determined from sheargraph tests, kN/m (psi)

C 2 

c Cohdsion determined from plate in situ shear tests, kN/m 2 (psi)pt 2 
Ctr Cohesion determined from trenching tests, kN/m (psi) 

C Coefficient of uniformity of the soil = d60/d 

d Wheel diameter, cm (in.) 

dm Mean diameter of soil grains, mm (in.) 

d Grain-size diameter at 10 peIcent finer by weight, mm (in.)
10
 

d60 Grain-size diameter at 50 percent finer by weight, mm (in.)
 

60 Gran-size diameter at 60 percent finer by weight, mm(i.
 

D' Compactibility, %= 

Dr Relative density, %Dr 

e 

e 
max 
e . 

Initial void ratio 

Maximum void ratio 

Minimum void ratio 

100 max ei 

e 

= 100 (axmax 


m i n 

e
 

)
mi n 

G Penetration resistance gradient, MN/rm 

kc,k ,n Bekker soil values 

M Torque, m-N (ft-lb) 

M20 Torque at 20 percent slip, m-N (ft-lb) 

M/Wre Torque coefficient 

M2 0 /Wre Torque coefficient at 20 percent slip: 

N I Sand mobility number 
= G b d

2 (i - 8 

N2 Sand mobility number = G/W - A 3/2 

(pci*)
 

3
 
*pci = lb/in.
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PC 
2

Contact pressures, kN/m (psi) 

P Pull, N (ib) 

P20 Pull at 20 percent slip, N (ib) 

P/W Pull coefficient 

P2 0/W Pull coefficient at 20 percent slip 

PCR Power consumption rate = PN x W x 1/3.6 

PN Power number, M/Wr (1 - s) 

PN Power number for self-propelled condition 
sp 

PN15 Power number for 15-deg slope 

PNmax" Power number for maximum possible slope 

r 
e 

Effective wheel radius, cm (in.) 

s Slip, % , 1 - r 
e 

v Translational speed of a wheel, m/sec (fps) 

w Moisture content, % (percent of dry density) 

W Load; weight, N (lb) 

a Slope angle, deg 

Yd Dry density, (dry unit weight) g/cm
3 (pci) 

Ys Specific gravity 

6 Wheel deflection, cm 

E Axial strain, % 

n' Efficiency 
Pv 

input M 

= ratio of recoverable energy to 

"20 
Efficiency at 20 percent slip 

4 Angle of internal friction, deg 

total energy
 

b 	 Angle of internal friction determined from bevameter tests, deg
 

Angle of internal friction determined from sheargraph tests, deg
c 


4ds Angle of internal friction determined from direct shear tests, 
deg
 

4p Peak angle of internal friction determined from plane strain
 
tests, deg
 

pq' 	 Angle of internal friction determined from plate in situ
 
shear tests, deg
 

4s 	 Secant angle of internal friction determined from triaxial
 
tests, deg
 

4t 	 Tangent angle of internal friction determined from triaxial
 

tests, deg
 

Rotational velocity of the wheel, rpm
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SUMMARY
 

One pneumatic and four metal-elastic wheels were laboratory
 

tested in a fine sand to determine their relative performance
 

and to establish a better understanding of the basic principles
 

of the interaction of lightly loaded wheels with a frictional
 

soil containing a small amount of cohesion. Five levels of sand
 

strength were used. The cohesional and frictional properties
 

spanned a range that included the probable range of lunar soil
 

properties. The following tabulation shows average properties
 

(angle of internal friction t I cohesion ctr , dry unit weight
 

w) for.the five
Yd , relative density D. , and moisture content 

strength levels. 

Soil t Ctr 2 Td3 Drr w 

Condition deg kN/m2(psi) g/cm 3(pcf) % % 

S1 37.1 0.0(0.0) 1.47(91.7) 32 0.5 

S2 43.5 0.39(0.06) 1.62(101.1) 87 0.5 

C1 37.9 0.39(0.06) 1.50(93.6) 46 1.1 

C2 38.5 1.08(0.16) 1.52(94.9) 54 1.4 

C3 38.1 1.75(0.25) 1.51(94.3) 48 1.8 

Pull-slip tests, in which the slip of the wheel was varied
 

from negative to high positive values, were conducted with a single

wheel dynamometer system. The translational speed of the dynamometer
 

system was approximately 0.5 m/sec ( 1.5 fps). Wheel loads were
 

varied from 67 to 670 N (15 to 150 lb).
 

Pull-slip tests and slope-climbing tests were conducted with
 

a 4x4 vehicle and a 6x6 vehicle on soils prepared to the same
 

consistency as that used in the single-wheel tests.
 

For a given soil condition, the pull coefficient did not vary
 

with load for wheel loads less than about 220 N (50 lb); for greater
 

loads the pull coefficient decreased with increasing loads. In addition,
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the pull coefficient appeared to be independent of the average
 

to 3.5 kN/m2
 

wheel contact pressure for pressures ranging from 0.7 


(0.1 to 0.5 psi) for a given soil condition. These results are
 

consistent with the general shear behavior of the soil.
 

Contrary to expectations, increases in cohesion did not
 

result in a marked improvement in performance over the range of
 

loads and soil conditions used in this study.
 

Average values of pull coefficient at 20 percent slip (P2 0 /W)
 

and power number at the self propelled point (PNsp) and on a 15-deg
 

slope (PN ) in a soil with zero cohesion (S1) and one with a 
15 2 

cohesion'of 1.08 kN/m 2 = 0.16 psi (C2) are given in the following
 

tabulation: 
Soil Condition, SI Soil Condition, C2 

Wheel201205 
P 2/W*p PN * PN * P20/W* PNsp* PN * 

Pneumatic 0.448 0.150 0.422 0.548 0.040 0.372
 
Bendix I 0.452 0.067 0.425 0.505 0.080 0.370
 
Boeing-GM I 0.274 0.098 0.515 0.343 0.067 0.382
 
Grumman I 0.281 0.162 0.522 0.272 Q.127 0.478
 
SLRV 0.426 0.080 0.386 0.602 0.165 0.482
 

*These data are averages for the range of loads used.
 

The data indicate that power requirements for the'Bendix
 

wheel are lower than for the BoeingZGM and Grumman wheels with
 

one exception, the Boeing-GM wheel at PNsp on the C2 soil condition.
 

For a single wheel operating in loose air-dry sand on a level
 

surface under an assumed 220-N (50-1b) load, the power consumption
 

rates for the Bendix, Boeing-GM, and Grumman wheels were 4, 6,
 

and 10 whr/km, respectively.
 

The results of tests with the original wheels showed-that
 

none could be relied on to propel a vehicle up a 35-deg slope.
 

There was indication that the original Bendix wheel might negotiate
 

slopes up to about 28 to 30 deg, and the original Boeing-GM and
 

Grumman wheels might negotiate slopes on the order of 15 to 20 deg.
 

The addition of angle iron grousers 30.5 cm (12 in.) wide and
 

3.2 cm (1-1/4 in.) deep to the Grumman and the Bendix wheels
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resulted in a substantial increase in the respective pull coefficients
 

(slope-climbing abilities) with corresponding increases in the power
 

demands for both wheels. Reducing the stiffness and adding a cover to
 

the Boeing-GM wheel increased its pulling (slope-climbing) capability.
 

It was demonstrated that pull data from tests on level soils with
 

the pneumatic and SLRV wheels can be used to predict the slope-climbing
 

ability of a vehicle. Data trends indicate that such predictions
 

tend to be conservative by about 1 to 2 deg. Torque or power requirements
 

for the 4x4 and 6x6 vehicle were slightly higher than predictions based
 

on corresponding single-wheel test results would be.
 

Results of tests with both the 4x4 and 6x6 vehicles indicate
 

that the torque coefficient at a given slip was not significantly
 

affected by variations in surface slope and soil strength.
 

Generally, when the vehicles were completely immobilized on a slope,
 

they could not continue climbing by backing down and starting up again as
 

they became immobilized again upon reaching the point where they had
 

previously spun out. When the vehicles were stopped prior to an imminent
 

immobilization, they could retrace their tracks and continue to climb.
 

Any effort to steer the vehicles while they were negotiating a slope
 

tended to degrade their performance. On the basis of observations during
 

these tests, it is estimated that the maximum slope climbable was reduced
 

by 1 to 2 deg when an effort was made to steer the vehicles.
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PERFORMANCE EVALUATION OF WHEELS FOR LUNAR VEHICLES
 
(SUMMARY REPORT)
 

PART I: INTRODUCTION
 

Background
 

1. Mobility on the lunar surface is a fundamental requirement
 

for lunar exploration extended beyond the initial Apollo landings.
 

The upper few centimeters of the lunar surface is considered to be composed
 

of a loose, particulate material with an average bulk density of about
 

1.6 g/cm3 (99.8 pef), an angle of internal friction of about 37 deg
 

in the normal stress range of a few kN/m2 (psi), and a small, but noticeable,
 

amount of cohesion ranging between 0.34 kN/m
2 (0.05 psi) and 1.38 kN/m

2
 

(0.20 psi) (Costes, et al, 1969). In planned surface traverses on
 

the moon, a lunar roving vehicle will be required to travel on soft
 

deformable soils, in craters, on level ground, and on slopes ranging
 

up to 35 deg. Therefore, a method is needed for predicting the mobility
 

performance capabilities and associated energy requirements related
 

to various proposed lunar roving vehicle concepts.
 

2. The available methods for predicting the performance of wheeled
 

vehicles on terrestrial soils are inadequate for predicting that of lunar
 

roving vehicles. Thus, carefully controlled tests are necessary to
 

establish maximum performance of vehicles operating on level surfaces
 

and on slopes of loose, slightly cohesive, particulate materials; to
 

quantify the amount of power consumed during these operations; and to
 

relate these parameters to wheel characteristics and soil conditions.
 

Purpose
 

3. The general purpose of this study was to investigate principles
 

that would lead to a better understanding of the soil-wheel interaction
 

in the lunar environment and to evaluate the relative effectiveness
 

of various proposed types of lunar roving vehicle wheels as traction
 

and transport devices.
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Scope 

4. Tests were conducted on a-sand from the desert near Yuma,
 

Arizona. The sand was prepared to relative densities varying from
 

loose to very dense, and was mixed with controlled amounts of water
 

so as 
to exhibit an apparent cohesion ranging from 0 to 1.8 kN/m
2
 

(0 to 0.26 psi).
 

5. Single-wheel and vehicle tests were performed in test bins
 

in the humidity-controlled laboratories of the Mobility Research Branch
 

(MRB) of the U. S. Army Engineer Waterways Experiment Station (WES)
 

as follows:
 

a. 	Single-wheel tests on level air-dry and wet sand with
 
a pneumatic wheel and four basic types of metal-elastic
 
wheels and variations thereof.
 

b. 	Tests with a 4x4 vehicle and a 6x6 vehicle on level
 
and sloping air-dry and wet sand surfaces.
 

The wheel loads were varied from 67 to 670 N (15 to 150 lb). Depending
 

on the flexibility characteristics of each wheel, the corresponding
 

contact pressures ranged from 1.2 to 16.3 kN/m2- (0.2-to 2.4 psi), and
 

the slope angles used for slope-climbing tests ranged from 0 to 35 deg.
 

Extensive soil testing complemented the single-wheel and vehicle tests.
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PART II: TEST PROGRAM
 

Soil
 

Description
 

6. Gradation, classification, and other soil data for the material
 

selected for this study are given in fig. 1.
 

Preparation
 

7. 	Level surfaces. The desired soil condition in dry sand was
 

obtained in the following manner: One or more test bins (fig. 2) were
 

filled and the soil was plowed with a seed fork to a depth of 30.5 cm
 

(12 	in.). For loose conditions, no compaction effort was necessary,
 

so the surface of the plowed section was screeded level. To achieve
 

denser conditions, the material was compacted at the surface with a
 

vibrator before screeding. The required compacti6n effort varied, depending
 

on the relative density desired. To process the wet sand, the desired
 

volume of water was added to the soil, and the material was thoroughly
 

mixed and then placed in the soil bins. Further preparation (i.e. compacting
 

and leveling) was the same as for the dry sand.
 

8. Sloping surfaces. The preparation of sloping test surfaces
 

required no special technique. The test bins were prepared in the
 

manner previously described and then lifted to the desired angle with
 

an overhead crane. A soil bin in position for a slope-climbing test is shown
 

in fig. 3.
 

Soil Tests
 

9. The soil tests conducted during this study can be divided
 

into three categories according to their purpose, as follows:
 

a. 	Tests conducted to investigate the general shear behavior
 
of the test soil. These tests consisted of conventional
 
and vacuum triaxial compression tests, plate in situ shear
 
tests, and trenching tests.
 

b. 	Routine tests normally conducted in all WES mobility research
 
programs. These included cone penetration resistance
 
tests, water content, and density determinations.
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Fig. 2. Soil bin used for single-wheel tests
 



Fig. 3. Soil bin in position for vehicle slope-climbing test
 

6
 



c. 	 Special tests were conducted at the request of the sponsor.

These tests were Cohron sheargraph, vane shear, and bevameter
 
plate penetration and ring shear tests. A complete descrip
tion of each of the tests mentioned is given in Freitag, Green,
 
and Melzer (1970).
 

Soil test results
 

10. One basic objective of the soil tests was to identify the
 
soil conditions under which the single-wheel and vehicle tests were
 
performed in terms that would permit an evaluation of the test data
 
by researchers subscribing to one of the several techniques for analyzing
 
and predicting vehicle performance. A second, equally important objective
 
was to determine such basic engineering properties of the material as
 
angle of internal friction, cohesion, density, moisture content, and
 
penetration resistance for maintaining a close control on the soil conditions
 
for this test program. The maximum, minimum, and average measured values
 
that can be associated with soil conditions (e.g. Sl' C2) used throughout 

the tests are presented in table 1. The table shows that parameters 
normally considered basic soil properties, e.g. c and * , vary 
with the type of test being conducted. The relation between friztion 

angle 0 and relative density Dr , as determined from several types 
of triaxial compression tests, direct shear tests, and plate in situ 
shear tests, is shown in fig. 4. The relation among cohesion ctr determined
 
from trenching tests, moisture content 
w , and relative density D
 r 
is shown in fig. 5, and that among Dr , penetration resistance gradient 

G , and w is shown in fig. 6. Both relations were established from
 
the results of very carefully conducted tests. The relative densities
 
evaluated from routine tests during the single-wheel test program follow
 
the same trend as the data in fig. 6 but show more dispersion. A more
 
detailed analysis is given by Freitag, Green, and Melzer (1970).
 

Application to mobility
 

11. The angle of internal friction 4 of the sand employed
 
in these tests, as determined from triaxial compression tests, was
 
larger for low normal stresses than for relatively higher normal stresses,
 
at least when the relative density was greater than 50 percent. These
 
trends were qualitatively confirmed by plate in situ shear tests, but
 
the specific values of 4 depended on the test method used. 
Also,
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the sand was found to have a small amount of apparent cohesion, depending
 

on the relative density and the moisture content. Here also the test
 

method appeared to influence the experimental results. This gave rise to
 

the question as to what numerical values for the friction angle and
 

cohesion should be used in connection with data analysis. This problem
 

is discussed in detail by Freitag, Green, and Melzer (1970).
 

Wheel and Vehicle Test Equipment
 

Test dynamometers
 

12. The single-wheel test dynamometer shown in fig. 7 was one
 

of three of the same type used in this test program. Instrumentation
 

provided for continuous recording of wheel load, drawbar pull, torque,
 

sinkage, slip, and speed. The accuracy of pull and torque measurements
 

is estimated to be ±3 percent. This deviation included variations
 

due to electronics, random wheel vibrations, nonuniformity in elastic
 

deformations of the wheels, etc. The wheel test speed was no greater
 

than 0.5 m/sec (1.5 fps) (for further details see Freitag, Green, and
 

Melzer, 1970).
 

Test wheels
 

13. The original test wheels were: the pneumatic, the Bendix I,
 

the Boeing-General Motors I, the Grumman I, and the SLRV wheels shown
 

in fig. 8. Modifications during the program included the addition of
 

grousers to the Bendix and the Grumman wheels, and roughening the surface,
 

reducing the stiffness, and adding several different types of fabric
 

covers to the General Motors wheel. Characteristics of these wheels
 

are listed in table 2.
 

Vehicles
 

14. An engineering model of the 6x6 Surveyor Lunar Rover Vehicle
 

(SLRV) and a 4x4 vehicle were used in the test program (figs. 9 and 10).
 

Vehicle performance test data included torque at each wheel (or axle),
 

drawbar pull, wheel speed, vehicle speed, wheel slip, slope, rut depth,
 

and soil properties.
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Fig. 9. 6x6 Surveyor Lunar Rover Vehicle (SLRV)
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Test Procedures and Interpretation of Data
 

for Single-Wheel and Vehicle Tests
 

Single-wheel tests
 

15. Tests were started in the negative slip range and progressed
 

uniformly to 100 percent slip. The relation of the dimensionless pull
 

and torque coefficients to wheel slip can be shown by two curves, such
 

as those in fig. 11 which are representative of data obtained with the
 

pneumatic, Bendix, Boeing-GM, and SLRV wheels, and in fig. 12, represent

ative of data obtained with the Grurman wheel. Pull and torque coefficients
 

reach a point at about 15 percent slip beyond which the rate of change
 

in these parameters rapidly decreases. For this reason, data for comparing
 

performance of all the wheels were read at the 20 percent slip point.
 

A representative curve of efficiency versus slip, which was similar
 

for all of the wheels, is shown in fig. 13. For consistency and ease
 

of comparison, the efficiency at 20 percent slip n'2 was recorded
 

for all the tests and is listed in table 3.
 

16. The plot of the power number PN versus the pull coefficient
 

P/W (fig. 14) is especially important, since it expresses the energy
 

consumed per unit of distance per unit of wheel or vehicle weight in
 

relation to drawbar pull/slope-climbing ability. For example, to obtain
 

the power consumption rate PCR in whr/km on a slope of 10 percent, read
 

the value of PN at P/W = 0.10. Multiply this value by the wheel load
 

or vehicle weight, expressed in newtons, and the fraction 1/3.6. Expressed
 

in equation form:
 

FN
 
PCR = -- x W
3.6
 

PCR = PN x 1000 h x N 
km 3600 sec 

1000 m-N hr 
PCR PNx 3 x600sec km 

Since PN is dimensionless and a
 
watt is torque per unit time, i.e.
 

1 m-N
 
1 watt e , then sec
 

PCR = x W = whr/km
3.6
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Vehicle tests
 
17. Representative pull-slip and torque-slip relations from the
 

programmed-slip vehicle tests are shown in fig. 15. Although the average
 

rate of slip change was slightly higher for the vehicle tests (i.e. the
 

vehicle deceleration was slightly greater), the shape of the pull-slip
 

and torque-slip curves was not significantly different from those for
 

the single-wheel tests.
 

Torque
 

0.8O 

l Pull 

0.6
 

A 0.6 
0 

o 0.4 

0 

20 40 60 80 100 
Slip, Z 

Fig. 15. Representative relations of pull and torque coefficients
 
to slip for the hx4 vehicle on wet sand; soil condition C2
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PART III: ANALYSIS OF SINGLE-WHEEL AND
 
VEHICLE PERFORMANCE
 

Effects of Light Loads
 

Pull
 

18. The results obtained from tests in this study with the pneumatic
 

and Bendix I wheels show that the pull versus load relation for air

dry sand is a straight line through the origin for loads between 0 and
 

at least 220 N (50 ib) (fig. 16). The largest P/W ratios were obtained
 

within this load range. For higher loads, the pull versus load relation
 

starts to curve downward, showing a tendency to follow the general trend
 

of the pull versus load relation for a more heavily loaded pneumatic
 

wheel (fig. 17). It is pointed out that the deflection of both wheels
 

changed as load changed, but this apparently did not influence the linearity
 

between P and W within the light load range. The pull versus load
 
hII
 

relation for the wet sand (cohesion levels Cl , C2 , and C3 ) is practically 

linear for the entire load range tested. Furthermore, there is no distinct 

difference in the results for the two wheels, when the tests were conducted 

on the same soil condition. [For more information see Freitag, Green, and 

Melzer (1970)]. 

Torque 

19. The relation between torque at 20 percent slip (M20 ) and
 

W is practically linear for the pneumatic and the Bendix I wheels (fig. 18).
 

The torque requirements for the pneumatic and Bendix I wheels are practically
 

equal in the range of light loads [less than 220 N (50 lb)] on the
 

same soil condition. [For more information see Freitag, Green, and
 

Melzer (1970).]
 

Efficiency
 

20., In the case of all the wheels, except the Grumman, pull and
 

torque are constant for slips higher than 10-20 percent (fig. 11); thus
 

efficiency in the high slip range is a linear function of slip. Based
 

on these data, the efficiency at 20 percent slip is given for a certain
 

test, and the efficiency for every slip higher than 20 percent can be
 

calculated.
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Power requirement
 

21. For the lightly loaded wheels, except for the Grumman, the
 

pull/load ratio P/W was constant with increasing power number PN
 

[M/Wre(l-s)] after P/W reached its maximum (fig. 14).
 

Sinkage
 

22. The sinkages measured during tests at a 310-N (70-1b) load
 

with each of the original metal-elastic wheels on the softest soil
 

condition (S ) are plotted in fig. 19. The sinkages for most other
 

soil-load combinations are smaller. Because the sinkage values obtained
 

in this study were relatively small, they were not evaluated quantitatively.
 

Effect of Soil Strength (Cohesion)
 

23. Two soil parameters, relative density and cohesion, are
 

used herein to represent soil strength. Relative density is a measure
 

of the frictional component of soil strength while cohesion is a direct
 

measure of the cohesive component. Relative density is used instead
 

of angle of internal friction, because the numerical values of the
 

range of relative density are greater than the corresponding numerical
 

values of the range of angle of internal friction. The two may.be
 

correlated, however. Pull at 20 percent slip, representing performance,
 

for the test series with the pneumatic wheel was plotted versus relative
 

density (fig. 20). The data are distinguishable by load. The following
 

relations can be shown, based on an evaluation of these and similar
 

data for other wheels (Freitag, Green, and Melzer, 1970):
 

a. 	Pull and P/W ratio increase with relative density,
 
but the rate of increase of P/W decreases with increasing
 
relative density.
 

b. 	There seems to be no influence of cohesion at light loads
 
[lighter than 130 N (30 lb)], but at heavier loads its
 
influence can be seen.
 

Effect of Deflection
 

24. Since the static deflection of a given metal-elastic wheel
 

can be changed only by changing the load, but that of a pneumatic
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wheel can be changed by changing the inflation pressure, a special
 

series of- tests was run with the pneumatic wheel on soil condition
 

S1 and under a load of 310 N (70 lb), but with deflections ranging
 

from 0.100 to 0.225 (10.0 to 22.5 percent). For the entire deflection
 

range tested, pull or P201W was constant. This is confirmed quali

tatively by the fact that for the same soil condition S1 , the pull
 

versus load relation was linear for loads lighter than or equal to
 

310 N (70 lb), regardless of the deflection and the wheel type (see
 

fig. 16).
 

Effect of Contact Pressure
 

25. Contact pressure is more or less closely related to the
 

wheel load/deflection characteristics, wheel slip, speed, wheel geometry,
 

and soil conditions. To illustrate its influence on performance,
 

results of tests with all the original wheels plus the two modified
 

Boeing-GM versions on soil condition S1 were plotted versus contact
 

pressure in fig. 21. The following general trends can be observed:
 

a. 	Performance of the pneumatic and the Bendix I wheels was
 

independent of contact pressure pc when pc was low.
 

For pc > 4.0 k/m 2 (0.57 psi), the P2 0/W ratio started
 

to decrease. Both wheels showed practically the same
 

performance for pressures up to 4.0 kN/m2 (0.57 psi).
 

b. 	The data from tests with the Grumman I wheel showed a
 
decrease in P20/W with increasing contact pressure,
 

but the contact pressures were not as low as those reached
 
by the pneumatic and Bendix I wheels. A similar trend
 
can be seen from the results with the GM I, GM IV, and
 

GM VI wheels.
 

Generally, it must be concluded, from the trends observed, that the
 

P20/W ratio is influenced not only by load, contact pressure, deflection,
 

and the shear behavior of the soil, but also by the construction of
 

the 	wheel, which influences contact pressure distribution. To examine
 

this distribution, a test series was conducted in which the Bendix I,
 

GM I, and Grumman I wheels were towed over a very loose sand in
 

which colored chalk layers were built, a trench was dug into the sand,
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and the deformation patterns were recorded. From these patterns,
 

it was concluded qualitatively that the pressure distribution under
 

the Bendix I wheel was more uniform than under the GM I and Grumman
 

I wheels (figs. 22 and 23).
 

Effect of Repetitive Traffic
 

26. In the construction industry, the wheel is well recognized
 

as a soil compaction device. It follows then that the passing of
 

several wheels in the same path can be expected to alter soil conditions.
 

Because of the light loads involved in this test program, the only
 

condition in which considerable alteration was noted was the condition
S1 


(loose, air-dry sand). For this case, it was generally observed that
 

the soil strength increased with the number of passes, and the pull
 

showed a corresponding increase of some 10-20 percent following the'
 

second pass.
 

Relative Performance of Pneumatic and Metal-Elastic Wheels
 

27. The relative performance of pneumatic and metal-elastic wheels
 

is discussed in terms of drawbar pull/slope-climbing ability, total
 

efficiency, and power number.
 

Comparative performance of original wheels
 

28. A summary of the performance of all the original wheels on
 

two soil conditions is presented in the following tabulation, which
 

lists the average values for tests at various loads. The tabulation
 

indicates the relative pull/slope-climbing ability P2 0 /W ; torque
 

requirements-M20/Wre ; and power consumption at the self-propelled 

point PN ,- in operating on a 15-deg slope PN1 5 , and at a point 

where the slope of the power number versus P/W ratio curve changed 

abruptly and rapidly approached infinity PNmax . This change in slope 

usually occurred in the 15-20 percent slip range. 
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a. BENDIX I
 

W = 377 N (85 ib) 
Very loose sand 

3
w = 1.5%; G = 0.3 MN/m (1.1 pci)
 
Contact width = 25.4 cm (10 in.) 
Contact length 31.2 cm (12.25 in.) 
Layer thickness: 2.5 cm (1 in.) 

SC~.-------W-
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b. BOEING-GM I
 

W = 341 N (77 ib)
 
Very loose sand
 

3
w = 1.3%; G = 0.4 MN/m (1.5 pci)
 
Contact width: 20.3 cm (8.0 in.)
 
Contact length: 32.0 cm (12.6 in.)
 
Layer thickness: z2.5 cm (1 in.)
 

Fig. 22. Deformation patterns beneath Rendix I and
 

Boeing-GM I wheels
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7'' 

I 

b. CROSS SECTION BETWEEN TWO GROUSERS
 

W = 335 N (80 lb)
 

Very loose sand
 
w = 1.4%; G 0.4 MN/m3 (1.5 pci)
 

Layer thickness: 2.5 cm (1 in.)
 
Contact width: 26.0 cm (10.3 in.)
 
Total contact length:* 31.6 cm (12.5 in.)
 

* Only the grousers were in contact with 

the soil, not the wheel itself. Actual
 
contact length: 13.6 cm (5.4 in.)
 

Fig.-23. Deformation patterns beneath Grumman I wheel
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Dry Sand, Soil Condition S1
 

Load Range W = 67-670 N (15-150 ib)
 

Wheel T1T'20 P20 W M20/Wre PNslN1 5 PNmax 

Pneumatic 0.612 0.448 0.585 0.150 0.422 0.722 
Bendix I 0.632 0.452 0.568 0.067 0.425 0.620 
Boeing-GM I 0.452 0.274 0.485 0.098 0.515 0.535 
Grumman I 0.448 0.281 0.547 0.162 0.522 0.508 
SLRV 0.590 0.426 0.581 0.080 0.386 0.643 

Wet Sand, Soil Condition C2
 

Load Range W = 67-670 N (15-150 1b
 

Wheel '20 P20/W M20/Wre PN PN15 PNmax
 

Pneumatic 0.684 0.548 0.613 0.040 0.372 0.725
 
Bendix T 0.602 0.505 0.609 0.080 0.370 0.643
 
Boeing-GM I 0.650 0.343 0.472 0.067 0.382 0.503
 
Grumman I 0.455 0.272 0.507 0.127 0.478* 0.500
 
SLRV 0.602 0.602 0.613 0.165 Q.482 0.700
 

* 	 One-test showed infinity; this value was not considered in computing the 

arithmetic average. 

In general,-these data indicate that none of the three original 40-in.-diam
 

wheels could be relied on to propel a vehicle up a 35-deg slope and that
 

the Bendix design gave the best overall traction performance. The close
 

agreement between the performance of the pneumatic and Bendix wheels gave
 

credence to the use of data collected in earlier studies with standard
 

tires to develop a performance number (Freitag, 1965 and Green, 1967)
 

suitable for metal-elastic wheels. This development is given by Freitag,
 

Green, and Melzer (1970). This close agreement also gave assurance to
 

plans to use pneumatic wheels for the slope-climbing tests.
 

29.' For an assumed wheel load of 222 N (50 lb), the power consumption
 

rate (PCR) for each of the three original metal-elastid wheels operating
 

on a level surface of dry, loose sand (S 1 is given in the following
 

tabulation:
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N PCR 
Wheel p whr/km 

Bendix I 0.067 4 
Boeing-GM T 0.098 6 
Grumman I 0.162 10 

Computation of the PCR on a slope less than the critical one can b6
 

accomplished as shown in the following 
example:
 

a. 	Assume a linear relation between the power number and
 

the pull ,coefficient (gradeability) between P/W equals
 
zero and P20/W (which is a reasonably good approximation;
 

see 	fig. 14).
 

b-	 Base computations on an average slope of 25 percent and
 
a vehicle equipped with Bendix wheels carrying an average
 

load of 222 N (50 Ib).
 

c. 	Use the following data from the preceding paragraph:
 

PN = 0.067 at P/W = 0 
sp 

PN = 0.620, roughly corresponds to P2 0/W = 0.452 
max
 

d. 	Solve for PN at P/W = 0.25:
 

PN = (m) (P/W) + b 

PN = 0.620 - 0.067 (0.25) + 0.067 
0.452
 

PN = 0.306 + 0.067
 

PN = 0.373
 

e. 	Compute PCR by the equation:
 

PCR = PN x W x 1/3.6 
= 0.373 x 222 x 1/3.6 
= 23 whr/km/wheel 

'Power number versus pull coefficient curves for the original Bendix, 

Grumman, and Boeing-GM wheels performing in air-dry (S1) and wet (C2 )
 

sands are shown in figs. 24 and 25, respectively.
 

Performance of the m6dified wheels
 

30. The rather large variations in the performance of the'three
 

original metal-elastic wheels made obvious a need for modifications
 

of these wheels in order to increase the soft-soil performance of
 

each, if possible.
 

35 



Slope Angle a , deg 

10 15 20 25 30 

1.4 1/ -Bni 

/ -- Bendix 

Boeing-GM - f-Grumman 

1.2 

S1.0 

0.6 
0.4 I 

0.2 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Pull Coefficient P/W 

Fig. 24. Relation of power number to pull coefficient for 

three lunar rover wheels in air-dry sand (SI) 

310-N (70 Ib) wheel load 
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31. Boeing-CM. Observers of the tests at WES, including WES,
 

NASA, Boeing, and General Motors representatives, agreed that the
 

Boeing-GM I wheel was far too stiff (unfavorable pressure distribution),
 

and that it should be covered to minimize energy losses due to sand
 

transport. Modifidations were made, including roughening the surface
 

of the original wheel, covering it with several types of fabric covers,
 

and removing part of the wire structure to reduce stiffness. The
 

fabric-covered, reduced-stiffness version produced the most substantial
 

increase in performance over that of the original version (Boeing-


GM I). Comparisons of tests in wet and dry sands show increases in
 

pull/slope-climbing ability of 35 and 50 percent, respectively (see
 

tests 27, 60, 72, and 74-76 in table 3).
 

32. Grumman. Angle-iron grousers 30.5 cm (12 in.) wide and 3.2 cm
 

(1-1/4 in.) deep were added to the original Grumman wheel. At a wheel
 

loadof 310 N (70 lb), the modified wheel (Grumman II) developed 60
 

to 100 percent greater pull than the Grumman I, was slightly more efficient,'
 

and had slightly higher power consumption rates at the self-propelled
 

point, and this latter difference increased as the pull coefficient
 

P/W increased, as shown in the following tabulation:
 

Soil IT P2/W M /Wr P /W M6/Wr PN PN PN
 
Wheel Symbol 20 20 20 e 60 60 e 15sp max
 

Grumman I S1 0.430 0.260 0.530 0.315 0.580 0.16 0.35 0.34
 

Grumman II S1 0.480 0.529 0.889 0.650 1.010 0.18 1.10 0.61
 

Grumman I C2 0.360 0.200 0.460 0.220 0.540 0.15 0.50
 

Grumman II C2 0.460 0.565 0.473 0.633 1.015 0.20 0.93 0.54
 

33. Bendix. While the Bendix I wheel had a favorable overall
 

contact pressure distribution, it was felt that this wheel might perform
 

somewhat better in soft soil with the addition of an aggressive grouser
 

(Bendix III). Several types were tried, and the grouser that resulted
 

in the greatest improvement in performance was identical to that added
 

to the Grumman wheel. These grousers substantially increased the
 

performance of the Bendix wheel, as shown,in the following tabulation:
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Wheel
 
Test Soil Load P /W M /Wr. PN PN PN 
No. Wheel Symbol N(lb) 20 20 20 e p 15 max 

11 I S1 310(70) 0.645 0.465 0.576 0.10 0.38 0.52 

89 III S1 310(70) 0.560 0.512 0.734 0.10 0.50 0.86. 

80 I S1 67(15) 0.610 0.425 0.553 0.04 0.38 0.58
 

90 III S1 67(15) 0.530 0.697 1.052 0.10 0.43 0.97
 

24 I C2 310(70) 0.675 0.514 0.609 0.08 0.36 0.65
 

88 11 C2 310(70) 0.540 0.571 0.848 0.05 0.50 1.01
 

34. The increase in wheel pulling performance and power demands
 

resulting from the addition of agressive grousers such as those described
 

above may be tentatively explained by considering mobilization of
 

pasisive earth pressures at the vertical face of the grousers (Freitag,
 

Green, and Melzer, 1970).
 

Relation of Pull Coefficient to Slope-Climbing Ability
 
and Prediction of Vehicle Performance from
 

Single-Wheel Tests
 

35. There are many differences in the operations of a single wheel
 

on a level soil surface and a vehicle on level or sloping surfaces: The
 

soil conditions are different for successive wheels; the slip rate at
 

which a wheel of a vehicle passes a given point is different from that of
 

each other wheel; wheels may not track properly; the Vehicle transfers load
 

from one axle to another during ascent and descent of slope, acceleration,.
 

and deceleration; and the failure patterns in the soil may be different for
 

level and sloping surfaces. The complexities involved preclude any rational
 

attempt to determine which factors are additive and which are not in assess

ing the difference in performance of a single wheel and a vehicle on level
 

and sloping surfaces.
 

36. For this reason, comparable single-wheel and vehicle tests have
 

been conducted and the results are shown in tables 3 and 4, respectively.
 

To compare these data two assumptions are made:
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a. 	The performances of a single wheel on the first, second,
 
third, and successive passes in the same rut are averaged
 
for comparison with vehicle performance, with the number
 
of passes used corresponding to the number of axles on
 
the vehicle used in the comparison.
 

b. 	The pull coefficient is algebraically equivalent to
 
the tangent of the angle of the slope that a vehicle
 
is climbing, and therefore on slopes less than critical,
 
the pull coefficient plus the tangent of the angle of
 
the slope being climbed approximately equals the tangent
 
of the angle of the critical slope (Rush, 1963).
 

P/W + tan a (4x4 vehicle)
 

37.. The performance data of the 4x4 vehicle with a wheel load
 

of 310 N (70 ib) on level surfaces and on slopes of wet sand (C2 condition)
 

are 	shown together with corresponding single-wheel data in fig. 26.
 

These and similar data indicate that the tangent of the maximum slope
 

that the vehicle climbed is slightly less than might be indicated by
 

ithe'summatiqn of the pull coefficient and the tangent of the slope climbed. -!
 

:It is of interest to note that these summations for the various slopes
 

are 	uniquely related to slip for the vehicle operating on slopes less
 

than critical. Comparable single-wheel data indicate slightly less
 

slope-climbing ability than does a vehicle test. Thus it may be said
 

that the single-wheel tests may give a conservative estimate of slope

climbing ability. This trend is evident for the entire range of loads
 

and 	soil conditions considered in this program (tables 3 and 4).
 

Torque (4x4)
 

38. The curve in fig. 27 is representative of the coefficient
 

versus slip relation for a given load and soil condition regardless
 

of the slope climbed. In addition, this relation is not significantly
 

affected by soil strength at the light load shown [310 N (70 lb)].
 

Comparable single-wheel data show a similar trend as observed in the
 

'comparison of the P/W 
ratios for the 4x4 vehicle and single-wheel
 

tests, i.e. torque coefficients for the 4x4 are slightly less than those
 

for 	the vehicle at equivalent slips after a slip of approximately
 

20 percent is reached.
 

Load transfer (4x4)
 

39. The total load transfer from the front to the rear axle was
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on wet sand (soil condition C2); 310-N (70-1b) wheel load
 
pneumatic wheels, 3.03-kN/m2 (O.44-psi) inflation pressure
 



0 

00 

Z 0.6}-. 
0. 0 17171 

V 

4j 

0 
0.4[ 

0 0.2

0 20 40 60 

Slip, % 

Legend 

Symbol a, deg 

o 0 
L 15 

o 25 
V Avg of 1st 

and 2d pass, 
single wheel 

80 

Open symbols: SI 

Closed symbols: C
2 

100 

Fig. 27. Relation of torque coefficient to slip for 4x4 vehicle 
on loose, dry sand (soil condition S1), and wet sand (soil 

condition G2); 310-N (70-1b) veel load, pneumatic 
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computed for each of the 4x4 vehicle tests. On a level surface and
 

with the vehicle towing a load, 6 to 8 percent of the load was transferred 

to the rear axle at slips higher than about 20 percent. On a 25

deg slope, approximately 20 percent of the load was transferred to 

the rear axle. 

P/W + tan a (6x6) 

40. Single-wheel performance data are compared to those for the
 

6x6 SLRV in fig. 28 for tests in a wet sand. The maximum slope actually
 

climbed by the vehicle was approximately 3 deg less steep than would
 

have been predicted based on drawbar pull tests with the vehicle. On the
 

other hand estimates of the vehicle's slope-climbing ability based
 

on single-wheel tests would tend to be conservative. This trend is
 

evident for the range of soil conditions considered in this program
 

(see tables 3 and 4).
 

Torque (6x6)
 

41. The curves of torque coefficient versus slip (fig. 29) illustrate
 

that this relation may be unique for a given load and soil condition,
 

regardless of the slope climbed. For this light wheel load [115 N (26,1b)]
 

the torque-slip relation appears to be practically independent of
 

soil strength as well as load. For comparable single-wheel data the
 

same trend as observed in the comparison of P/W for the vehicle and
 

single wheel exists. However, the differences in single-wheel and
 

vehicle data are not as pronounced as for comparable P/W data.
 

Restarting on slopes (4x4 and 6x6)
 

42. Generally, when the vehicles were completely immobilized
 

on a slope, they could not continue climbing by backing down and starting
 

up again because they would become immobilized when they reached the
 

point where they had spun out. On the other hand, when the vehicles'
 

forward motion was stopped prior to immobilization, they could retrace
 

their tracks and continue to climb. On a highly compactible soil, the
 

vehicles could ascend the slopes with greater ease on each successive
 

trial (i.e. less slip).
 

Steering (4x4 and 6x6)
 

43. An effort to steer the vehicles while they were negotiating
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condition C2); 115-N (26-1b) wheel load, 8.80 kN/m2
 

(1.28 psi) inflation pressure
 



a slope tended to degrade their performance. On the basis of observations
 

during these tests, it is estimated that the ultimate slope-climbing
 

ability was reduced by 1 to 2 deg when an effort was made to steer
 

the vehicles.
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PART IV: CONCLUSIONS AND RECOMMENDATIONS
 

Conclusions
 

44. Based on the data and analysis in this report, it is concluded
 

that:
 

a. 	For loads less than about 220 N (50 ib), the pull coeffi
cient (pull/load ratio) was constant for a given soil
 
condition. These results are consistent with the shear
 
strength behavior of the soil (paragraph 18).
 

b. 	An increase in cohesion did not result in a marked increase
 
in the pull coefficient (paragraph 23).
 

c. 	The pull coefficient was independent of the average contact
 
pressure at the soil-wheel interface for pressures ranging
 

from 0.7 to 3.5 kN/m 2 (0.1 to 0.5 psi) for a given soil
 
condition. On the soils with the larger amount of cohe
sion, the pull coefficient was constant for a greater range
 
of loads and contact pressures (paragraph 25).
 

d. 	None of the original wheels could be relied on to propel
 
a vehicle up a 35-deg slope; the Bendix wheel might be
 
used to climb slopes up to about 28 to 30 deg, and the
 
Boeing-GM and Grumman to climb slopes on the order of
 
15 to 20 deg. The power requirements for operating in
 
a loose, dry sand on a level surface under an assumed
 
220-N (50-1b) load were 4, 6, and 10 whr/km for the
 
Bendix, Boeing-GM, and Grumman wheels, respectively
 
(paragraphs 28 and 29).
 

e. 	The performance of the pneumatic wheel approximately
 
parallelled that-of the Bendix wheel, thus offering cre
dence to the use of the data collected in earlier studies
 
with standard tires to develop a performance number suitable
 
for metal-elastic wheels (see Freitag, Green, and Melzer,,
 
1970). This close agreement also gave assurance to
 
the decision to use the pneumatic wheels in the slope
climbing tests (paragraph 28).
 

f. 	Modifications to the Bendix and Grumman wheels in the
 
form of the addition of aggressive grousers enhanced
 
their performance to the point that they might be expected
 
to climb slopes in excess of 30 deg. The modified Boeing-

GM wheel (modifications included reduction of wheel stiffness
 
and addition of a fabric cover) might be used on slopes
 
up to about 25 deg on certain soil conditions (paragraphs
 
31-34).
 

47
 



Z. Data from single-wheel tests with the pneumatic and SLRV
 
wheels can be used to predict the slope-climbing ability
 
of a vehicle. Such predictions tend to be conservative
 
by about 1 to 2 deg of slope (paragraphs 37 and 40).
 

h. 	The torque coefficients for both the 4x4 and 6x6 vehicles
 
at a given slip were not significantly affected by variations
 
in surface slope and soil strength (paragraphs 38 and 41).
 

i. 	Generally, when the vehicles were completely immobilized
 
on a slope they could not continue climbing by backing
 
down and starting up again because they would become
 
immobilized when they reached the point where they had
 
spun out. When the vehicles' forward motion was stopped
 
prior to immobilization, they could retrace their tracks
 
and continue to climb (paragraph 42).
 

j. Any effort to steer the vehicles while they were negotiating
 
a slope tended to degrade their performance. On the basis
 
of observations during these tests, it is estimated that
 
the 	ultimate slope-climbing ability was reduced by 1 to
 

2 deg when an effort was made to steer the vehicle (para
graph 43).
 

Recommendations
 

45. It is -recommended that:
 

a. 	Tests be conducted with single wheels or other traction
 
elements to provide information to optimize the shape,
 
size, deflection, and surface design (roughness; grouser
 
height, spacing, and type; etc.) of wheels or other running
 
gears planned for use as tradtion elements for planetary
 
or lunar rovers. Maximum traction, slope-climbing ability,.
 
and energy (power) consumption rates should be examined.
 

b. 	A limited number of the type of test mentioned in a. above
 
be conducted under l/6-g conditions (aboard KC-135 aircraft)
 
with cone penetrometer and density tests performed simul
taneously to ascertain functional relations between gradient
 
G and wheel-vehicle performance under 1/6-g conditions.
 

c. 	Similitude studies be extended with (1) soils that are
 
better lunar soil simulants than Yuma sand insofar as
 
lunar soil consistency, grain-size distribution, in situ
 
density, etc., and (2) observe the development of air pore
 
pressures in silty lunar soil simulants during triaxial
 
tests and tests with wheels and vehicle models.
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d. 	In situ lunar soil trafficability data be obtained as
 
early as possible and from as many typical morphological
 
physiographic features of lunar surfaces as operationally
 
feasible.
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Table 1 

Soil Properties and Parameters for SingleWheel Tests; Before-Traffic Data
 

Soil Condition S * 

No. 
Tests Maximum Minimum Average 

Penetration Resistance Gradient, MN/m3 (pci**) 170 0.81 (3.0) 0.48 (1.8) 0.54 (2.0) 

Dry Density, g/cm3 (pef) 	 Gravimetric 75 1.527 (95.3) 1.446 (90.3) 1.484 (92.6)

Nuclear 1 	 - 1.500 (93.6) 

Moisture Content, % 	 75 0.6 0.4 0.5
 

Gradient G 34 37 30 32
 
Relative Density, % Gravimetric 25 48 32 39
 

Nuclear 1 - 45
 

t 	 34 37.2 36.9 37.1
 

29.8 	 30.0
Average Friction Angle, deg 	 pk 34 31.0 


c 5 24.0 12.0 .17.1
 

b 	 4 30.0 20.5 27.4
 

Ctr 34 0 0 	 0
 

Average Cohesion; kN/m 2 (psi) 	 Cp 
c 5 2.1 (0.30) 0 0.8 (0.12)
 C 
cb ' 4 0 0 	 0
 

-
kIc, (kN/m)(cm n) 6 0.08 (1.17)" -0.08 (-1.07) -0.01 (-0.15)
 

Bekker Soil Values (lb/in.l+n)
 
k , (kN/m2)(cm-t ) 6 23.27 (8.03) 4.44 (1.65) 11.41 (3.88)
 

(lb/in.2 + n ) 
n, average 6 0.96 0.84 0.91 

Shear Stress Sv' kN/m (psi) 8 0 0 0 
*S1 = air-dry, loose; S2 - air-dry-, very dense; C1, C2 , G3 = wet, medium-dense (US Bur., of Reclamation, 1953) 

**pci = lb/in.3
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Table 1 (Continue)
 

Penetration Resistance Gradien
3 

t, MN/m (pci) 

No. 
Tests 
'65 

D3 
Dry Density, g/cm (pcf) 

Gravimetric 
Nuclear 

21 
2 

Moisture Con tent, % 21 

Relative Density, % 
Gradient G 
Gravimetric 
Nuclear 

13 
7 
2 

13 

Average Friction Angle, deg pk 

4c 

13 

4 

b 2 

Atr 	 13 


Average Cohesion, kN/m2 (psi) 	 cpk 

c 4 


c 	 2 

kc, 	(kN/m)(cm- n) 4 

(lb/in. +n) 
Bekker Soil Values 
 - n
 

- k, (kN/m2 )(cm ) 4 

(lb/in.2+n ) 
n, average 4 

Shear Stress sv, kN/m (psi) 8 

Maximum 

3.567(13.1) 


1.652 (103.1) 

1.653 (103.2) 


0.5 


91 

96 

97 


44.4 


33.8 


32.0 


16.0 


0.46 (0.07) 


-
12.7 (1.84) 


2.4 (1.84) 

0.16 ,(1.46) 


74.631(17.14) 


0.51 


4.9 	(0.71) 


Soil Condition S2
 

Minimum 

2.55 (9.4) 


1.612 (100.6) 

1.640 (102.4) 


0.3 


83 

87 

94 


42.6 


33.2 


14.5 


14.5 


0.30 (0.04) 


4.5 	(0.65) 


2.2 	(0.65) 


0.07 (0.63) 


58.19 (13.61) 


0.49 


3.0 	(0.44) 


Average
 
3.07 (11.3)
 

1.637 (102.2)
 
1.647 (102.8)
 

0.5
 

87
 
92
 
96
 

43.5
 

33.5
 

20.6
 

15.3
 

0.39 (0.06)
 

0.10 (0.015)
 

6.8 	(0.99)
 

2.3 	(0.99)
 

0.10 (0.92)
 

65.07 (15.20)
 

0.51
 

4.0 	(0.58)
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Table 1 (Continued)-


Soil Condition C1 
No.

3 Tests Maximum Minimum Average 
Penetration Resistance Gradient, MN/m (pci) 30 2.27 (8.4) 1.55 (5.7) 1.91 (7.0) 

3 Gravimetric 18 1.491 (93.1) 1.409 (88.0) 1.453 (90.7) 
Dry Density, glcm 3 (pe) Nuclear 3 1.519 (94.8) 1.463 (91.3) 1.494 (93.3) 

Moisture Content, % 18 1.1 0.8 1.1 

Gradient G 6 49 41 46 
Relative Density, % Gravimetric 6 34 20 26 

Nuclear 3 52 33 43 

6 38.0 	 37.6 37.9
 

4pZ 	 6 31.2 30.5 30.9
Average Friction Angle, deg 


c 6 20.5 8.0 13.2
 

b 2 22.5 11.0 16.8
 

Ct 6 0.44 (0.06) 0.36 (0.05) 0.39 (0.06)
 

- 0.05 (0.007)
Average Cohesion, kN/m 2 (psi) 	 C - 

cc 6 5.0 (0.73) 2.7 (0.39) 4.1 (0.59) 

cb 	 2 3.5 (0.51) 1.4 (0.20) 2.5 (0.36) 

ke, (kN/m)(cm-n) 6 0.41 (4.49) 0.16 (1.72) 0.27 (2.73)
 

(lb/in.I+n) 
nBekker Soil Values 	 k , (kN/m2)(cm - ) 6 35.48 (8.98) 19.84 (5.51) 27.75 (7.28)
 

/ (lb/in,2+n)

/ n, average 6 0.70 0.61 0.64
 

/ - "2
 
Shear Stress s v, kN/m2 (psi) 	 8 2.8 (0.41) 0.9 (0.13) 2.1 (0.30)
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Table 1 (Continued)
 

4 Soil.6Cndition C2
 
No. 

Tests Maximum Minimum Average
 
Penetration Resistance Gradient, MN/m3 (jci) 150 4.00 (14.7) 2.54 (9.3) 3.2 (11.8)
 

3 	 Gravimetric. 84 1.511 (94.3) 1.421 (88.7) 1.471 (91.8)
 
Dry Density, g/crn (pef) 	 Nuclear 4 1.495 (93.3) 1.465 (92.4) 1.480 (92.4)
 

Moisture Content, % 	 87 1.9 1.0 1.4
 

Gradient G 30 64 41 54
 
Relative Density, % Gravimetric 28 43 19 34
 

Nuclear 4 43 33 38
 

•t 	 30 39.7 38.0 38.5
 

Average Friction Angle, deg 	 *pZ 30 32.0 30.5 31.3
 

tc 12 20.5 11.5 17.9
 

18.5
11.4
5 26.5
b 

C 30 1.28 (0.19) 0.94 (0.14) 1.08 (0.16) 

- -0.10 (0.015)Average Cohesion, kN/m2 (psi) c 


c 12 4.9 (0.71) 1.8 (0.26) 3.7 (0.54)
 

5 6.0 (0.87) 0.4 (0.06) 2.5 (0.36)
cb 

k ,(kN/m)(cm-n) 12 0.62 (6.02) 0.17 (1.70) 0.36 (3.61) 

(lb/in.l+n ). 
n
Bekker Soil Values 	 k,.(kN/m2)(cm- ) 12 57.73 (19.97) 42.03 (10.80) 50.97 (13.37)
 

n, Average 12 0.79 0.50 0.59
 

Shear Stress S, kN/m (psi) 22 8.5 (1.23) 5.1 (0.74) 7.4 (1.07)
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Table 1 (Concluded)t
 

Penetration Resistance Gradient, MN/m3 

Dry Density, g/am3 (pcf) 

(pci) 

Gravimetric 

Nuclear 

No. 

Tests 
25 

15 

3 

Moisture Content, % 15 

Gradient G 
Relative Density, % Gravimetric 

Nuclear 

5 
5 
3 

t 5 

Average Friction Angle, deg 4pk 

c 

5 

4 

b 4 

Ctr 5 

Average Cohesion, kN/m 2 (psi) Cp9, 
C 4 

cb 4 

kc , (kN/m)(cm-n) 4 

+ n ))(ib/in. 

-
Bekker Soil Values k , (kN/m2)(cm n) 4 


(lb/in. 2+ n ) 
n, Average 4 


2
Shear Stress s, ±d/m (psi) 8 


Maximum 

4.50 (16.6) 


1.465 (91.5) 


1.496 (93.4) 


2.3 


51 

26 

43 


38.3 


31.2 


30.0 


22.0 


1.98 (0.29) 


-


4.0 (0,58) 


2.4 (0,35) 


0.92 (8.33) 


75.94 (16.95) 


0.49 


10.7 (1.55) 


Soil Condition C3
 

Minimum 

3.61 (13.3) 


1.428 (89.2) 


1.446 (90.3) 


1.5 


41 

17 

26 


37.6 


30.5 


21.5 


19.5 


1.58 (0.23) 


2.0 (0.29) 


1.2 (0.17) 


0,51 (4.52) 


52.09 (11,96) 


0.46 


5.8 (0.84) 


Average
 
3.95 (14.5)
 

1.441 (90.0)
 

1.471 (91.8)
 

1.8
 

48
 
21
 
34
 

38.1
 

30.9
 

26.9
 

20.8
 

1.75 (0.25)
 

0.15 (0.022)
 

2.9 (0.42)
 

1.8 (0.26)
 

0.79 (7.08)
 

67.00 (15.21)
 

0.48
 

8.0 (1.16)
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Wheel Characteristics* 

Infltio Preoaure Carcass Section Height SEction Width Tire Print Contact 

Tire 
NO. 

Deflection 
cmin) ,. 

Load 
lb) Md/m

2
(Di) kNM(p.i) 

Diane ter 
.(In.) 

Unloaded 
cm(in.) 

Loaded 
c(in.) 

Unloaded 
cm~in.) 

Loaded 
cm(in.) 

Contact Area 
so c(sq in.) 

Length 
cm(in.) 

Width 
cn(in,) 

2 
Idf/m

2
(psi) 

Pneuattic; Size, 27.94-50.8; Rim Diem, 54.6 cm (21.50 in.); Rolling Circvnference, 2.89 a (9.48 ft) 

4.74(1.87) 9.72 133(30) 2.28(0.33) 2.62(0.38) 97.41(38.35) 21.o(843) 16.66(6.56) 22.01(8.67) 24.08(9.48) 508.26(78.78) 37.34(14.70) 16.89(6.65) 2.62(0.38) 

8.00(.15) 16,41 311(70) 2.52(0.37) 2.96(0.43) 97.44(38.36) 21.42(8.43) 13.41(5.28) 21,97(8.65) 26.36(io.46) 803.45(125.31) 48.26(19.00) 20.45(8.05) 3.86(0.6) 

10.24(4.03) 21.04 489(11O) 2.76(0.40) 3.45(0.50) 97.27(38.30) 21.33(8.40) ii.09(4.37) 21.89(8.62) 28.14(11.8) 1057.48(163.91) 54.33(21.41) 23.39(9.21) 4.64(0.67) 
12.oW(4,73) 24.56 667(150) 3.45(0.50) 4.62(0.67) 97.74(38.48) 21.57(8.47) 9.51(3.75) 21.97(8.65) 29.28(11.53) 1237.22(191.77) 59.44(23.40) 25.24(9.94) 5.42(0.79) 

4.42(1.74) 9.10 67(15) M 0.07(0.10) 97.23(38.28) 21.31(8.39) 16.89(6.65) 20.70(8.15) 23.19(9.13) 498.71(77.30) 36.14(14.23) 17.50(6.89) 1.30(0.19) 

10.59(4.17) 21.8o 310(70) # 2.07(0.30) 97.23(38.28) 21.31(8.39) 10.72(4.92) 20.70(8.15) 28.19(11.10) 1222.51(189.49) 56.08(22.o8) 26.42(i.4O) e.55(0.37) 

Bendix size 101.6-25.4 Petal Elastic; Width 25.4 cm (10.0 in.) 

i.65(o.65) 3.25 67(15) .. .. 101.60(40.oo) 17.59(6.93) 15.88(6.25) 25.4o(io.00) 25.40(10.00) 243.54(37.75) 9.52(3.75) 25.40(10.00) 2.76(0.40) 

2.73(1.07) 5.38 133(30) .. .. 101.60(40.00) 17.59(6.93) 14.86(5.85) 25.40(10.00) 25.40(10.00) 5i9.35(80.58) 2O.45(8.05) 25.4O(i0.00) 2.58(0.37) 
5.27(2.07) 10.38 311(70) -.. .. 101.60(4,00) 17.59(6.93) 12.32(4.85) 25.40(10.00) 25.4o(1o.00) 722.58(112.00) 28.45(11.20) 25.40(10.00) 3.93(0.57) 

7.50(2.95) 14-75 489(110) .. .. 101.60(40.00) 17.59(6.93) 10.10(3.97) 25.40(io.00) 25.4o(io.00) o41.90(161,5o) 41.o2(16.15) 25.40(10.00) 4.72(0.68) 
9.27(3.65) 18.25 667(150) .... gi01.6o(4o.oo) 17.59(6.93) 8.32(3.28) 25.4o(1o.00) 25.40(10.0o0) 1287.09(199,50) 50.68(19.95) 25.40(10.00) 5.17(0.75) 

Boeirg-M I (Original Wheel): Size. ip.8-26.67 wire Mesh: Rim Diam, 59.69 an (23.50 in.) 

1.98(0.76) 3.88 133(30) .. .. 102.87(40.50) 21.59(8.50) 19.60(7.72) 26.65(10.49) 27.72(10.91) 312.71(48.57) 28.37(11,17) 14.05(5.53) 4.24(o.62) 
4.27(1.68) 8.27 311(70) .... 102.87(40.50) 21.59(8.50) 17.33(6.83) 26.01(10.24) 29.36(11.56) 629.29(97.54) 41.02(16,15) 19.54(7.69) 4.93(0.72) 

5.87(2.31) 11.41 489(110) .. .. 102.87(40,50) 21.59(8.50) 15.73(6.19) 26.65(iO.49) 30.56(12.03) 826.97(128.18) 47.70(18.78) 22.08(8.69) 5.90(0.86) 
7.11(2.80) 13.81 667(150) .. .. 10e.87(40,50) 21.59(8.50) 14.49(5.71) 26.65(10.49) 31.68(12.47) 965.07(149.64) 52.05(20,49) 23.57(9.28) 6.93(1.01) 

1.23(0.-48) 2.37 67(15) ...- 102.87(4o.50) 21.59(8.50) 20.36(8.02) 26.65(iO.49) 27.0c4(10.65) 197.32(30.58) 22.40(8.82) 11.22(4.42) 3.38(o.49) 

Boefrg-GM 11 

(GMI covered with polyethylene; data some as GM1.) 

BoeiA-OM III 

(GM II coated with sand; data same as GM i.) 

Boeing-GM IV (GMI Covered with Gray Tape and Coated with Sand); Size, 102.87-26.67 Wire Mesh; Rim Diam. 59.69 on (23.50 in.) 

-- 0.64(O.25) 
1.50(0.59). 

1.24 
2.93 

67(15) 
222(50) 

-. 

.. 
.-
.. 

i2.29(4o.27) 
12.29(O.27) 

21.30(8.39) 
21.30(8.39) 

20.67(8.14) 
19.80(7.80) 

27.12(io.68) 27.4o(1O.78) 
27.12(IO.68) 27.88(10.98) 

41.16(6.38) 
155.39(24.08) 

8.25(3.24) 
17.07(6.72) 

6.05(2.38) 
31.14(4.38) 

16.27(2.36) 
14.41(2.09) 

2.51(0.99) 4,92 311(70) . .. 102.29(40.27) 21.30(0.39) 18.80(7.-40) 27.12(10:68) 28.36(11.16) 234.1o(36.28) 2o.81(8.19) 14.20(5.59) 13.31(1.93) 

(Continue a) 

* Averaged from a inimmn of to points on tire. .... 
** Remove valve core: 0-load; replace and load. (Pa 1 of 3) 



Table 2 (Continned) 

Inflation Pressure Carcass Section HeiLht Section Width Tire Print Contact 
loaded Contact Area Length Width Pressure

Tire Deflection Load L2 
2 

i ter Unloaded loaded Unloaded 

lb0. cm=n. % 1(m) k/m (,si) la/On(psi) cm(in.) ain.) cn(in.) =(in.) cm~in.) so c(so in) cm(in.) cm~in.) klf/m2(psi) 

floeingq.OMV 

(GM I coated with sand; data same as GM i.) 

oeing.M VI (straps end 	 , of Wire ash Removed; Wheel Covered with Gray Tape end Coated With Sand; 
Size, 10.57-26.67; Ri, Diem, 59.69 ma (23.50 in.) 

5.59(2.20) 11.20 311(70) .. .. 99.83(39.30) 20.07(7.90) 14.48(5.70) 28.55(11.24)32.41(12.76) 710.19(109.76) 35.03(13.79) 23.88(9.40) 4.42(0.64) 

6.30(2.48) 12.57 311(70) .. .. 100.28(39.48) 20.30(7.99) 14.oo(5.51) 28.44(3a.20) 32.45(12.78) 778.77(120.71) 37.73(14.86) 24.28(9.56) 4.04(0.58) 

Orvmman I (Wheel Mounted at 15-deg Off the Vertical for Tests ai Static Wheel Data) 

3.30(1.30) 6.io 67(15) .... 107.95(42.50) 55.75(21.95) 52.45(20.65) .... 983.22(152.40) 38.71(15.24) 25.40(10.00) 0.69(0.10) 

4.32(1.70) 8.00 133(30) .. .. 107.95(42.50) 55.75(21.95)51.44(20-.5) .... 1C46.45(162.20) 42.21(16.62) 25.40(10.00) 1.24(0.18) 

5.79(2.28) 10.70 311(70) .. .. 107.95(42.5o) 55.75(21.95) 49.86(19.63) ... 1225.80(190.00) 50.55(19.90) 25.40(10.00) 2.55(0.37) 

7.49(2.95) 13.90 489(310) .. .. 107.95(42.50) 55.75(21.95) 48.26(19.00) .... 1374.19(213.00) 54.10(21.30) 25.40(10.00) 3.59(0.52) 
8.64(3.40) 16.00 667(150) .. .. 107.95(42.50) 55.75(21.95) 47.12(18.55) .... 1465.80(227.-20) 57.66(22.70) 25.40(10.00) 4.55(0.66) 

Gruntran II 

(Gromaan I with angle-iron grousers added.) 

slov; Size, 45.72-w.32: Rim DIem 7.u. cm (2.8o in.) 

5.85(2.29) 24.42 130(30) -- O.oot(0.00) 47.75(18.80) 20.32(8.00) 14.49(5.70) 21.47(8.45) 23.47(9.24) 495.16(76.75) 27.25(10.73) 21.84(8.60) 2.73(0.39) 

2.54(1.00) 10.61 267(60) 11.72(1.70) 12.07(1.7) 47.88(18.85) 20.37(8.02) 17.84(7.02) 21.80(8.58) 22.0(8.86) 196.97(30.53) 17.92(7.05) 13.28(5.23) 13.69(1.98) 

6.96(2.74) 29.13 311(70) 1.72(0.25) 1.72(0,25) 47.88(18.85) 20.39(8.03) 13.4t2(5.28) 21.43(8.43) 24.59(9.68) 537.90(86.37) 27.56(10.85) 23.50(9.25) 5.79(0.84) 

6.60(2.60) 27.54 311(70) 2.76(O.40) 3.45(0.50) 47.85(18.84) 20.39(8.03) 13.76(5.43) 21.45(8.44) 24.ii(9.49) 502.07(77.82) 27.40(10.78) 22.63(8.91) 6.21(o.90) 

4.72(1.86) 19.71 311(70) 6.21(0.90) 6.89(1.00) 47.83(18.83) 20.37(8.02) 15.66(6.16) 21.62(8.51) 22.99(9.05) 351.52(54.48) 21.31(8.39) 19.69(7.75) 8.86(1.28) 
9.47(3.73) 39.60 489(no) 2.41(O.35) 3.45(0.5o) 47.85(18.84) 2O.37(8.o2) 10.90(4.59) 21.48(8.45) 26.88(10.58) 629.68(97.60) 30.48(12.00) 25.04(9.86) 7.76(1.13) 

6.O5(2.38) 25.24 489(110) 5.86(0.85) 6.89(1.00) 47.91(18.86) 20.40(8.03) 14.35(5.65) 21.67(8.53) 23.82(9.37) 433.74(67.23) 25.02(9.85) 21.34(8.40) 11.27(1.63) 

3.79(1.49) 18.60 67(15) -- O 00 ( 0 .OO)t 47.75(18.80) 20.32(8.00) 16.54(6.51) 21.47(8.45) 22.20(8.74) 283.78(43.99) 21.38(8.42) 16.04(6.32) 2.35(0.34) 
3.62(1.43) 15.10 116(26) 6.21(O.90) 6.89(1.OO) 47.88(18.85) 20.39(8.03) 16.77(6.60) 21.6e(8.51) 21.99(8.66) 247.75(38.40) 19.42(7.65) 15.56(6.12) 4.66(o.68) 

4.20(1.65) 17.6o 222(50) 5.86(0.85) 6.89(1,00) 47.85(18.84) 20.37(8.02) 16.70(6.58) 21.62(8.51) 23.98(9.17) 420.81(65.-23) 25.11(9.89) 20.51(8.08) 5.28(0.77) 

4x4 Vehicle Wheels; Size, 27.94- 0.80; Rim Diam. 54.61 ea (21.5O in.) 

5.14(2.03) 10.59 133(30) 2.18(0.32) 2.55(0.37) 97.13(38.24) 21.26(8.37) 16.12(6.35) 21.41(8.43) 23.92(9.42) 525.71(81.48) 38.08(14.99) 17.54(6.91) 2.55(0.37) 

7.96(3.13) 16.42 311(70) 2.44(0.35) 3.03(0.44) 97.00(38.22) 21.22(8.36) 13.26(5.22) .i64(8.52) 25.32(10.36) 802.68(024.41) 47.12(18.55) 21.03(8.28) 3.90(0.56) 
9.90(3.90) 20.41 489(10) 2.80(0.40) 3.45(0.50) 97.08(38.22) 21.24(8.36) 11.32(4.46) 21.61(8.53) 28.09(11.06) 1005.35(155.83) 53.94(21.23) 23.44(9.22) 4.86(o.7o) 

11.60(4.57) 23.88 667(150) 3.45(0.50) 4.62(0.67) 97.21(38.27) 21.30(8.38) 9.69(3.81) 21.69(8.54) 29.24(11.51) 1173.29(181.86) 57.47(22.62) 24.80(9.76) . 5.69(0.82) 

(Continued) 

t Valve core removed. 	 (Page 2 of 3) 
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Table 2 (Concluded)
 

Inflation Presses Carcass Section Height Section Width Tire Print Contact
 

Tire 
No. 

Deflection 
j 

Lo2 
Nmin)lb) 

Uloided 
kNm2(psi) 

Laded 
ld$/m (psi) 

Diaeter 
cm(in.) 

Unloaded 
cm(in.) 

Maded 
cem(in.) 

Unloaded 
om(in,.) 

Loaded 
cm(in.) 

Contact Area 
so cm(sg in.) 

Length 

cm(in.) 

Width 

cm(in.) 

Prea Ouf 

k-N/m2(psi) 

4x4 Vehicle Wheels: Size, 27.94-50.80: Rim Dim, 5
4 

. 
6 

1 m (21.5o0 in.) (Contirned) 

2 4.88(1.92) 10.10 133(30) 2.07(0.3o) 2.41(0.35) 96.60(38.03) 21.00(8.26) 16.32(6.34) 21.54(8.48) 23.67(9.32) 493.03(76.42) 36.44(14.35) 16.82(6.62) 2.72(o.39) 

3 

4 

7.94(3.12) 

1O.66(4.19) 
11.66(4.59) 
4.83(1.90) 
7.86(3.09) 

10.18(4.00) 
11.51(4.53) 
5.11(2.01) 

8.03(3.16) 
10.06(3.96) 
11.53(4.54) 

j6.49 

22.1o 
24.20 

9.92 
16.21 

20.96 
23.80 
10.50 

16.50 
20.70 

23.80 

311(7o) 

489(1no) 
667(150) 
133(30) 
311(70) 

489(110) 
667(150) 
133(30) 

311(70) 
489(11o) 

667(150) 

2.48(0.36) 

2.69(0.39) 
3.48(0.50) 
2.21(0.32) 
2.62(0.38) 

2.76(0.40) 
3.45(0.50) 
2.18(0.31) 

2,48(0,36) 
2.76(0.40) 

3.45(0.50) 

2.96(0.43) 

3.45(0.50) 
4.62(o.67) 
2.48(0.36) 
3.06(0.44) 

3.45(0.50) 
4.62(0.67) 
2.48(0.36) 

3.03(0,44) 
3.45(0.50) 

4.62(0.67) 

96.32(37.92) 20.85(8.21) 
96.37(37.94) 20.88(8,22) 
96.40(37.95) 20.89(8.22) 
97.28(38.30) 21.34(8.40) 
97.13(38.24) 21.26(8.37) 

97.08(38.22) 21.23(8.36) 
96.72(38.08) 21.06(8.29) 
97.28(38.30) 21.44(8.44) 

97.16(38.25) 21.28(8.37) 
97.13(38.24) 21.26(8.37) 

96.93(38.16) 21.16(8.33) 

12.92(5.08) 
10.22(4.02) 
9.24(3.63) 

16.46(6.48) 
13.40(5.27) 

11.29(4.44) 
9.50(3.74) 

16.23(6.39) 

13.24(5.21) 
11.20(4.41) 

9.62(3.78) 

21.68(8.53) 

21.63(8.52) 
22.08(8.69) 
21.72(8.55) 
21.77(8.57) 

21.80(8.58) 
22.10(8.7o) 
21.52(8.47) 

21.59(8.50) 
21.80(8.58) 

21.84(8.60) 

26.69(10.50) 823.61(127.66) 
28.20(11.10) i085.oo(i68.17) 
29.10(11.46) 1193.22(184.95) 
23.88(9.40) 457.52(70.91) 
26.59(10.47) 770.06(119.36) 

28.22(11.11) 1058.00(164.01) 
29.18(11.49) 1183.36(183.42) 
23.,71(9.33) 524.8a4(81.35) 

26.48(i0.40) 837.10(129.75) 
28.18(11.09) 1023.55(158.65) 
28.90(11.38) 1197.39(185.59) 

47 .6 5 (18. 7 6) 
53.84(21.2o) 
57.22(22.52) 
35.41(13.94) 
46.48(18.30) 

53.72(21.15) 
57.60(22.68) 
37.28(14.67) 

47.65(18.76) 
53.58(21.09) 

57.05(22.46) 

21.14(8.32) 

24.04(9.46) 
25.30(9.96) 
15.74(6.20) 
19.96(7.86) 

23.50(9.25) 
24.51(9.65) 
17.13(6.74) 

a1.54(8.48) 
23.44(9.23) 

25.15(9.90) 

3.76(0.54) 

4.52(o.65) 
5.58(0.81) 
2.90(0.42) 
4.o4(o.58) 

4.62(0.67) 
5.65(0.82) 
2.55(0.37) 

3.76(0.54) 
4.80(0.69) 

5.58(o.81) 

SIRV 6x6 Vehicle Wheels; Size, 45.72-20.32; Rim Dim. 7.11 c (2.80 in.) 

1 

2 

3 

2.54(i00) 

2.69(l.06) 

2.74(1.08) 

10.70 

11.20 

11.50 

129(29) 

98(22) 

116(26) 

--

--

-

8.89(1.29) 

7.58(1.10) 

8.76(1.27) 

47.55(18.72) 

47.96(18.88) 

47.85(18.84) 

20.22(7.-96) 

20.42(8.04) 

20.37(8.02) 

17.68(6.96) 

17.73(6.98) 

17.63(6.94) 

21.59(8.50) 

21.59(8.50) 

21.72(8.55) 

21.84(8.60) 

21.84(8.60) 

22.10(8.70) 

280.00(43.40) 

201.68(31.26) 

218.19(33.82) 

20.19(7.95) 

17.91(7.05) 

18.54(7.30) 

£6.76(6.6o) 

13.72(5.40) 

13.97(5.5) 

4.62(0.67) 

4.83(0.70) 

5.31(0.77) 
4 

5 
6 

2.57(1.01) 

2.64(1.04) 

2.54(1.00) 

10.70 

11.20 

10.70 

142(32) 

89(20) 

116(26) 

--

--

--

8.76(1.27) 

7.58(1.10) 

8.83(1.28) 

47.96(18.88) 

47.14(18.56) 

47.65(18.76) 

20.42(8.04) 

20.02(7.88) 

20.27(7.98) 

17.86(7.03) 

17.37(6.84) 

17.73(6.98) 

21.72(8.55) 

21.54(8.48) 

21.54(8.48) 

22.05(8.68) 

21.72(8.55) 
21.84(8.60) 

184.32(28.57) 

206.39(31.99) 

172.00(26.66) 

17.53(6.90) 

18.24(7.18) 

i6.5i(6.5o) 

12.70(5.00) 

14.02(5.52) 

12.90(5.08) 

7.72(l.12) 

4.34(0.63). 

6.76(0.98) 
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Table 3 

Single-Wheel Test Results 

Berre-Traffio 
Penetration Perforemnce Parater Dnrnsxonless 

Test 
Wheel 

Lossd 
soil 
Condi-

Resistance 
Gradient G Efficiency Pun/Load To e ad Pcer Nuer Numeric 

No. Symbol N(lb) tion yoi/m3(pci) T12o 20 A N N FR.rPN N1 K2 

Pneumatic, Farst Pass 

7 -- 130(30) sI 0.56(2.1) 0.615 o.44o 0.567 0.09 0.45 0.685 1572 49.5 
8 -- 130(30) S2 2.98(11.2) 0.710 0.553 0.625 o.10 0.37 o.66o 8369 265.4 
9 -- 310(70) s1 0.58(2.2) 0.612 0.470 0.60o 0.12 0.45 0.705 1480 43.0 

10 -- 310(70) S2 3.12(f1.7) o.68o 0.518 0.609 0.08 0.38 o.665 783, 231.5 
16 -- 310(70) C0 1.75(6.4) 0.690 0.524 o.6o6 0.07 0.34 o.600 4296 127.6 
17 -- 130(30) c1 1.89(7.2) 0.675 0.515 o.68 o.04 0.38 0.680 5148 170.7 
18 -- 4bo(11o) o1 1.78(6.5) 0.690 0.536 0.618 0.08 o.4o 0.20 5240 122.5 
19 -- 130(30) c2 3.48(12.3) 0.700 0.521 0.514 o.04 0.38 0.700 9623 291.0 
20 -- 310(70) 02 3.39(12.2) o.665 0.553 0.663 0.05 o.4o o.q8o 8403 241.9 
21 -- 490(110) c2 3.00(10.7) 0.702 0.569 0.643 0.01 0.33 0.700 8885 200.9 
22 -- 130(30) C2 3.36(11.3) 0.700 0.549 0.631 0.06 0.38 0.720 1014 267.2 
56 -- 67(15) SI 0.53(2.0) 0.65o o.488 0.585 0.10 0.38 0.70 15596 89.8 
57 .- 67(15) S2 3.22(12.0) O.640 0.552 0.658 0.60 0.46 0.860 20174 533.5 
58 -- 490(110) SI 0.54(2.0) 0.570 0.395 0.588 o.3o o.41 o.6o 1503 37.8 
59 -- 49o(no) s 2 3.03(n.3) o.63o 0.487 0.619 o.4o 0.42 0.740 8451 212.1 

'84 -- 310(70) 03 4.09(15.3) 0.620 0.517 0.671 o.8o 0.46 0.820 11542 563.4 
85 -- 67(15) 03 3.79(14.2) 0.560 0.554 0.789 0.50 0.36 0.700 23745 627.9 

Pneumatic, Second Pash 

7 -. -- .. 0.700 0.541 . .618 0.09 0.42 0.750 -- -
8 .. .. .... 0.620 0.496 0.640 0.13 o.44 0.695 .. .. 
9 .. .. .... 0.660 0.512 0.618 o.14 0.43 0.0 .. .. 

10 .. .. .... o.69o o.524 0.609 o.oS o.41 0.7po .. .. 
16 .. .. .... 0.770 0.546 0.570 0.01 0.30 0.620 .. .. 

17 .. .. .... o.64o 0.509 0.639 0.04 0.39 0.700 .. .. 
18 -. . . .. o.66o 0.519 0.629 0.13 0.44 o.745 .. .. 
19 .. .. .... 0.690 0.510 0.590 0.04 0.35 0.630 .. .. 
20 .. .... .. 0.680 0.538 0.638 0.03 0.33 0.630 .. .. 
21 .. .. .... o.68o 0.525 0.617 0.08 0.39 0.7O0 .. .. 
22 .. .. .... 0.750 0.590 0.627 0.02 0.29 0.620 .. .. 
56 .. .. .... 0.730 0.521 0.573 0.05 0.36 0.650 .. .. 
57 .. .. .... 0.530 0.456 0.688 0.10 0.50 0.790 .. .. 
58 .. .. .... 0.590 0.430 0.584 o.o6 0.44 0.670 .. .. 
39 .. .. .... 0 600 o.461 o.6i6 o.12 0.45 o.68o .. .. 

Pneumtic. Third Pass 

7 .. .. .... 0.660 0.504 0.614 0.09 0.42 0.715 .. .. 
8 .. .. .... o.64o o.514 o.642 o. o.44 0.74o .. .. 
9 -. .. .... o.670 0.512 0.613 0.09 o.4o 0.670 -- -

10 .. .. .... 0.66o 0.502 o.611 0.12 0.44 0.710 .. .. 
16 .. .. .... 0.740 0.542 0.582 0.01 0.30 0.590 .. .. 
17 --. .. ... . o 0.553 0.647 '0.03 0.30 0.600 . . 

18 .. .. .... 0.68o 0.530 0.607 0.07 o.38 0.69o .. .. 
19 .. .. .... 0.700 0.509 0.579 D.04 0.37 o.68o .. .. 
20 .. .. .... 0.690 0.565 0 658 0.02 0.37 0.760 .. .. 
21 . .. ... 0.700 0.578 0.658 0.02 0.34 0.720 .. .. 
22 .. .. .... 0.700 0.543 0.625 0.05 0.37 0.690 .. .. 
56 .. .. .. -- 0.730 0.512 0.562 0.02 0.34 0.620 .. .. 
57 .. .. .... 0.500 0.398 0.631 0.22 0.60 0.780 .. . 
58 .. .. .... 0.560 0.415 0.596 0.1 048 0.685 .. .. 
59 .. .. .... 0.590 0.470 0.632 0.1 0.45 0.700 .. .. 

(Continued) 
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Table 3 (Continued) 

Before-Traffic 
Wheel Sol!Whe 

PenetrationResxsteeal axa~e Efc PerfoneancePalwdTorVu Parametersoad Power Nuber DimensionlessWtumeric 
Test 

b Sysbol 
load 
N1(1b) 

Condi-
tion 

Gradient G 
igi/3 (Pci) 

Eff, iency 
%0___ 

Pall/Load 
P20 /W 

r 
N2 

W 
.rPS P PR~at 112 

Bendix. First Pass 

3 130(30) S1 0.55(2.1) 0.665 0.458 0.553 0.03 o.44 o.66 1783 49.9 
4 130(30) S2 2.68(1O.1) 0.740 0.568 0.586 0.03 0.38 0.76 8351 24.5 
5 130(30) S4 4.67(17.6) 0.720 0.563 0.589 0.01 0.34 0.79 14552 42.7 

11 310(70) S1 0.53(2.0) 0.645 0.465 0.576 0.10 0.38 0.52 1031 33.2 
-12 310(70) S2 2.73(10.2) 0.725 0.535 0.596 o.o6 0.37 0.69 5262 170.8 
13 310(70) C1 1.79(6.7) 0.682 0.528 0.619 0.05 0.39 0.71 3494 112.0 
14 130(30) Cl 2.12(7.9) o.6g0 0.525 0.60o8 0.02 0.32 o.6o 6710 192.4 
15 490(uo) 01 2.13(7.8) 0.700 0.540 o.618 0.03 0.33 o.64 4107 143.3 
23 130(30) 02 3.28(12.1) 0.650 o.489 0.602 0.06 0.35 o.61 I0303 292.2 
24 310(70) 02 3.04(12.4) 0.675 0.514 o.6o9 o.o8 0.36 0.65 6031 207.8 
25 4911o(o) c2 3.33(12.4) 0.670 0.512 0.615 0.10 o.4o 0.67 6408 227.0 
30 II 130(30) c2 3.09(11.5) o.61o 0.512 0.673 -- -- -- 90o6 278.7 
31 490(110) C2 3.28(12.0) 0.620 0.528 0.685 0.02 0.36 o.68 6389 22.1 
32 670(150) C, 3.26(42.0) 0.620 0.529 0.718 0.02 0.38 0.74 6707 208.4 
33 310(70) 
78a 1 310(70) 
78b 310(70) 

67(15)81 
67(15) 

8 J 310(70)
83 1 310(70) 

02 
$1 
S2 

Si 
03 
03 
03 

2.96(11.0) 
0.65(2,1) 
3.24(12.0) 

0.53(2.0) 

1.27(16.o) 

3.79(14.2)
3.79(ih.2) 

0.6O0 
o,61o 
o.64o 

0.610 

0.610 

0.570 
0.62 

0.516 
o.460 
0.530 

0.42h 

o.496 

o.464 
0.5P3 

0.689 
0.590 
o.66o 

0.553 

0.656 

o.648 
o.678 

0.03 
0.10 
0.08 

0.04 

0.03 

0.07 
0.03 

0.35 
0.50 
--

0.38 

0.4 
0.50 
o.41 

0.65 
0.72 
0.77 

0.58 

0.78 
0.80 
o.78 

.5724 
ii4i 
6150 

2713 

21857 
7448 
7445 

218.17 
34.0 

205.0 
30.0 

242.2 
237.2 
237.2 

86 i1 67(15) 02 3.05(11.4) 0.530 o.664 1.000 0.25 o.46 0.84 15611 173.0 
87 67(15) 02 3.07(11.9) 0.550 0.754 1.092 0.18 0.55 1.21 15816 175.2 

88 310(70) 02 3.44(12.9) 0.s4o 0.571 o.848 0.05 0.50 1.01 7024 215.9 
89 310(70) S1 0.50(1.9) 0.560 0.512 0.734 0.10 0.50 0.86 1025 31.0 
90 67(15) SI 0.49(1.9) 0,530 0.697 1.052 o.10 o.43 0.97 2662 .29. -5 

Bendix. Second Pass 

3 I -.. ... 0.710 0.498 0.560 0.03 0.33 0.58 .. . -
4 .. .... 0.700 0.497 0.567 0.03 0.33 0.66 .. .. 
5 

11 
.. 
.. 

.... 

.... 
0.700 
0.70o 

0.509 
0.519 

0.509 
0.597 

0.02 
0.02 

0.34 
0.33 

0.62 
0.62 

-. 

-. 

.. 

.. 
12 .. .... 0.680 0.497 0.586 0.04 0.37 6.64 .. .. 
13 .. .... 0.7W 0.528 o.60c4 0.03 0.33 0.62 .. .. 
14 .. .... 0.710 0.514 0.581 o.o4 0.32 0.58 .. .. 
15 .. .... 0.710 0.506 0.603 0.06 0.34 0.59 .. .. 
23 . . .... 0.750 0.541 0.577 0.01 0.33 0.66 .. .. 
24 .. .... 0.660 0.521 0.632 0.03 0.38 0.71 -. .. 
25 .. .... o.66o 0.49o 0.595 0.05 O.h1 0.70 .. .. 
31 II -- .... 0.580 o.499 o.686 o.o8 0.40 0.67 .. .. 
32 -y.. .... 0.570 0.485 o.68a 0.05 0.46 o.8o -. .. 
33 .. .... 0.570 o.478 0.700 o.o4 o.4 0.76 . . 
88 i -!.. o.69o 0.548 0.819 0.04 o.44 0.85 

Menaix. Third Pass 

3 I .. .... 0.608 0.431 0.567 0.03 o.4i o.6o .- .. 
4 
5 j 

-. 

. 
... 
.... 

o0.673 
0.728 

0.465 
0.509 

0.553 
0.559 

0.03 
0.02 

0.34 
o.26 

0.57 
0.60 

.. 

.. 
.. 
.. 

u 0.701 o.488 0.559 0.02 0.34 0.60 .. .. 
12 . .0.700 0.519 0.591 0.03 0.36 o.65 .. .. 

(continued) 
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Table 3 (Continued)
 

Before-Traffic 
Penetrationa
 

Wheel Soil Resistance Perforance Paramters e.euilass 

Test load Condi- Gradient G Eficiency P al/TodTorqueLoad Power Iianber NUmerie 
.sy L () on- T4oWa n 1No.. S~boi Gam- (pi) 2 PulP2u W 2 o .2Mil um N2 

Bendix, Third Pass (Cont'd) 

13 .. .... 0.652 o.496 0.609 0.05 0.35 o.61 .. .. 

4 .. .... 0.684 o.467 0.546 o.06 0.38 0.63 .. .. 

15 .. .... 0.658 0.485 0.590 0.08 0.34 0.55 -

23 .. .... 0.665 0.534 0.602 0.07 0.110 0.73 .. .. 

24 .. .... o.688 o-535 o.6p2 0.o0, 0.34 0.65 

25 .. .... 0.665 O.1181 0.579 0.04 0.311 0.59 .. .. 

31 II - . .... 0.580 0.540 0.690 0.05 0.37 0.65 .. .. 

32 .. .. -- 0.580 0.510 0.701 O.04 0.1,30.68 

33 1 .. .... 0.570 0.493' 0.691 0.03 0.43 0.76 .. .. 

88 I -. ..-- 0.510 0.516 O.813 0.10 0.51 0.88 .. .. 

Bfoeinz-GM. First Pass 

26 130(30) C2 3.01(11.1) o.690 0.380 0.180 0.05 0.47 o.65 4498 127.3 

27 310(70) C2 3.09(11.5) 0.480 0.340 0.570 -- 0.32 -- 3939 157.9
 

28 490(110) C, 3.17(11.8) 0.580 0.324 0.443 0.05 o.4o o.45 3830 154.0 

29 670(150) C2 3.12(11.6) 0.670 0.329 0.397 0.01 0.34 O.41 3923 139.2 

60 310(70) S, 0.52(1.9) 0.1470 0.259 0.432 0.08 0.51 0.50 942 26.5 

61 ' 490(110) SI 0.52(1.9) 0.470 0.266 0.456 O.13 0.45 o.2;6 789 25.3 

62 130(30) 81 0.55(2.1) 0.410 0.261 o.5i4 0.13 0.48 0.'17 l626 23.3 
63 67(15) SI 0.57(2.1) 0.460 0.312 0.538 0.03 o.62 0.11 -- -

64 II 310(70) S1 0.52(1.9) 0.520 0.320 0.497 0.08 0.1,2 O.48 942 26.5 

65 III 310(70) 81 0.59(2.2) 0.520 0.332 0.512 0.06 o.4o 0.19 ±o68 30.1 

66 IV 67(15) S1 0.52(1.9) 0.670 0.1.67 0.559 0.o4 0.34 0..7 2427 3.1 

67 220(50) SQ 2.81(10.7) 0.520 0.371 0.70 O.aX 0.113 0-W I014I, 33.6 

68 310(70) S1 0.53(2.0) 0.470 0.280 0.473 0.12 o.1 0o.1 725 8.7 

69 1 310(70) 3.49(13.0 ) 0.590 O.1112 0.5q5 0.03 0.40 0.60 4778 ",.4S2 
70 V 310(70) S1 0.51(1.9) 0.500 0.319 0.511 0.0f, 0.51 0.60 912 26.5 

71 1 310(70) SQ 2.89(11.1) o.6o 0.383 0.513 0.0g. 0.42 0.,6 5234 12-7.3 

72 VI 10(70) SI 0.55(2.1) o.560 0.391 0.556 0.09 o.46 O.69 11489 119.1 

73 310(70) S2 3.53(13.2) 0.640 0.1112 0.53 0.09 0.46 0.75 9554 315.4 

74 310(70) 02 2.711(10.2) 0.625 0.1,51 0.5'r3 0.0M O.45 0.75 7416 24h.8 

75 310(70) 02 3.08(11.5) 0.620 0.453 0.01, 0.12 0.50 0.85 8335 275.2 
76 ,-310(70) r, 0.52(l.9) 0.550 0.377 0.',514 O.12 o.52 o.69 iho07 h 6-5 

Boeing.M. Second Pass 

27 I .. ... 0.61o 0.362 0.472 O.6 0.31 0.39 .. .. 

28 ,- .... 0.510 0.292 o.455 0.09 0.46 0.49 .. .. 

29 I .. .... 0.520 0.277 0.1430 0.07 0.31 0.31 . . 
60 .. .... 0.510 0.285 o.451 0.11 0.33 0.34 .. .. 

62 0.420 0.258 0.488 0.01 0.48 0.46 .. ..
 

6c I . 0.530 0.347 0.524 o.o8 o.43 0.53
 

IV .. ... 0.590 0.387 0.522 0.12 o.3 
1 

o.43 --

Boein-GIA, Third Pass 

27 I -- -- 0.570 0.327 o.4,58 0.09 O.4i 0.48 
28 .. .... 0.520 0.301 0.17 0.06 0.39 o, 
29 .. .... 0.560 0.302 o.429 0.01 0.32 0.;6 

6o .. ... 0.900 o.7 O.l ---- -

61 ,- . .... 0.500 O.PfI O.l.b 0.11 0.34i 0. V, -

62 .... 0.hi(,0 O.PSA 0..98 0.011 o. (1 ( 
63 ... o.,o 0.31' 0."14, 0.01, 0- (I...0 
65 III11 -- 0.520 0.3119 o."J. O.o 0..,11 0.41 

,V "'i% -- 0.520 0.388 0.60! O.o4 0.hi1 0."8 
,(Continued) 
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Table 3 (Continued) 

Before-TraffiC 
Penetration Performnnce Parameters 

Test WheeT Lad SoiCondi-
Resistance
Gradient G 

Elfi-
clney 

Pall/
Loadpo 

Torque/
Load 

Pull/
Loadp0 

Torque/
Load6 r Power Number~ 5Pm x 

Dimensionless 
NumericN 

No. Symbol N(lb) tion MN/rn (Pe1) 12o P20/"' M2 #re %60A l0 A PR. PN1 5 Presrx NJ: N2 

Grumman. First Pass 

34 310(70) c2 3.33(12.5) 0.36 0.200 0.460 0.220 0.54o 0.13 s* 0.50 8oi5 -137.5 

35 130(30) C2 3.25(12.2) 0.57 0.351 0.491 0.390 0.650 0.15 0.43 0.52 14688 307.5 

36 490(110) C2 3.31(12.4) 0.45 0.262 0.469 0.295 0.560 0.08 o.44 o.46 6625 89.2 

37 67o(15o) 02 3.20(12.0) 0.44 0.277 0.507 0.290 0.550 0.13 0.50 0.52 5708 63.0 

38 670(150) S1 0.57(2.1) 0.40 0.264 0.556 0.315 0.620 0.24 0.60 o.6o 1oi6 11.2 

39 49o(11o) S1 0.55(2.1) o.44 0.287 0.542 0.335 0.61o 0.11 0.66 0.70 102 l.8 

4o 310(70) S1 0.53(2.0) 0.43 0.260 0.530 0.315 0.580 o.16 0.35 0.34 1275 21.9 

41 130(30) S1 0.51(1.9) 0.52 - 0.312 0.560 0.410 O685 0.14 0-39 0.43 2304 h8.3 

42 II 310(70) S1 0.54(2.0) 0.48 0.529 0.889 0.650 1.010 0.18 o.61 i.0 1299 22.3 

43' 310(70) S2 3.16(11.6) 0.47 0.529 0.955 0.618 1.005 0.20 0.62 1.20 7464 128.0 

44 310(70) C2 3.52(13.2) 0.46 o.565 0.973 0.633 1.015 0.20 0.54 0.93 8174 145.3 

45 310(70) 04 0.63(2.4) 0.44 0.597 1.097 0.680 1.025 0.20 0.63 1.15 1516 26.0 

Cruiman, Second Pass 

34 .. .... 0.38 0.220 0.468 0.266 0.613 0.14 - 0.36 .. .. 

35 .. .... o.4o 0.280 0-559 o.381 0.678 0.19 o.52 0.53 .. .. 

361, . .... o.41 0.221 0.511 0.299 ,0.575 o.11 0.54 0.56 . .-

37 .. .... o.42 0.258 0.493 0.315 0.585 0.11 o.54 0.57 .. .. 

38 .. .... o.42 0.289 0.552 0.281 o.6n 0.o7 0.67 0.71 

39 .. .... 0.47 0.305 0.524 0.314 o.617 0.18 0.56 0.60 .- .. 

4o .. -- 4..o.45 0.269 0.477 0.325 0.581 0.08 o.61 0.67 .. .. 

41 .. .... 0.38 0.283 0.600 0.238 0.584 0.12 0.46 0.48 

42 II .. .... 0.38 05o4 0.895 .. .. 0.21 0.49 0.74 .. .. 

43 . .... 0.47 0.510 o.864 0.788 1.256 *0.12 0.59 1.01 .. .. 

h4 .. .... o.45 0.586 1.050 .. .. 0.16 0.60 i.a4 
45 .. ... . o.44 0.596 1.o74 . . .. 0.26 0.56 1.36 .. .. 

Grmmsn. Third Pass 

34 .. ... 0.37 0.191 0.413 .. .. 0.ii -- o.41 

35 .. .... 0.36 0.292 0.6h7 0.338 0.658 0.17 0.48 0.29 

36 o...O..5 0.298 0.535 0.360 0.628 0.15 0.66 0.73 

37 .. .... 0.38 0.237 0.502 0.299 0.588 0.17 o.46 o.46 
38 .. .... 0.47 0.293 0.503 0.287 0.605 0.37 0.40 O.4o 

39 .. .... o.4o 0.208 o.416 0.289 0.627 0.08 0.55 0.50 

4o .. .... 0.42 0.298 0.572 0.345 0.580 0.15 0.54 0.65 

41 .. .... 0.39 0.317 0.651 .. .. 0.25 0.67 0.82 

'42 II .. ... o.41 0.543 0.877 .. .. 0.20 0.50 0.81 
43 . o-4o.16 0.526 0.915 .. .. 0.17 o.60 l.0 -

44. o.46 0.592 1.028 .. .. *0.23 0.53 1.23 
15 0.44 0.605 1.o94 .- .. o.16 o.61 1.10 

(Continued)
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Table 3 (Concluded) 

Before-Traffic 

Test 
Wheel 

Load 
S 
Condi-

Penetration 
Renistace Efficiency 

Performance Parameters 
Pu/oad Power 

Dimensionless 
Nuerc 

SLRV, First Pass 

46 -- u5(26) c2 3.31(12.4) 0-53 0.392 0.588 o.18 0.50 0.66 5295 111.3 

47 -- 67(15) C2 3-05(11.9) 0.70 0.538 c.650 0.20 o.48 0.75 8819 218.5 
48 -- 220(50) C2 3.24(12.1) 0.58 0.446 0.619 0.22 0.53 0.74 5790 125.5 

49 -- 310(70) c2 3.42(12.8) o.6o 0.435 0.576 o.o6 0.42 o.64 3154 72.8 

50 -- 310(70) s 0.57(2.1) 0.61, 0.439 0.546 0.08 0.36 0.54 920 12.1 

51 -- 220(50) s 1 0.55(2.1) o.68 0.501 0.586 o.o6 0.33 0.55 986 21.3 

52 -- 115(26) S1 0.57(2.1) 0.43 0.303 0.567 00.6 0.44 0.49 910 19.2 

53 -- 67(15) S1 0.51(1.9) o.48 0.412 0.693 0.10 0.35 0.49 -- -

54 -- 67(15) S1 0.56(2.1) 0.76 0.537 0.564 .o6 0.34 o.61 1620 40.1 
55 - 115(26) S1 0.53(2.0) 0.55 0.364 0.530 0.12 o,46 0.58 846 17:8 

SI1V, Second Pass 

46 -- .... 0.53 o.4o4 o.613 o.18 0.45 0.58 -- -

47 .. .. ... 0.71 0.551 o.618 0.22 0.45 0.70 

48 .. .. .. -- 0.53 0.405 0.613 0.20 0.5h 0.72 

49 .- .. .... 0.61 0.458 0.597 0.07 0.38 o.6o 
50 .. .. ... . 0.65 0.459 0.567 0.07 0-37 0.57 

511 ,.. . ... o.6oo.445 0.597 0.08 o.43 0.65 
52 .. .. .... o.6o o.441 0.589 0.10 0.40 0.59 

53 .- .. .... 0.64 o.541 0.675 o.i0 o.4o 0.70 
54 -. .. .. 0.75 0.576 0.615 o.0, 0.30 o.6i 

55 0-.-.0 0.329 0.529 0.12 0.43 0.5t 

SLRV. Third Pass 

46 .. .. .... 0.55 0.1,82 0.691 0.03 0.40 0.70 

47 . .. ... 0.66 0.452 0.552 O.O 0.23 0.36 

11-3 .... 0.51. O.4h42 o.656 O.18 0.50 0.72 
1,9 .. .. .... 0.67 0.466 0.557 0.10 0.37 0.57 

.50 . .. ... 0.49 0.339 0.553 0.20 0.55 0.64 

51 .... 0.53 0.386 0.578 o.14 o.41 &.54 
-52 .... 0.64 0.468 0.581 0.03 0.30 0.51 

53 -- -- -- -- -- -

54 - - -- 0.74 0.574 0.624 0.20 O.44 0.72 
55 -- 5--o.6 0.378 0.544 0.20 0.49 0.61 
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Table 

Vehicle Tet Results 

Test Con-

Soll 

leit 

Sit 

2d 3 

ci 

Transfer 
A~g 

Wheel Load Total, Ise Toe... 
. .. 

I m-N(ft.lb) Ve. ct 
i s 

' 
ps

P e 

4A Test Vehicle 

, 0i7
S1 06.(9.53817)-545 0.630
109 .6(2.0) 6.3 7:0 - 6 7 52lM 310(70) 1240(80) 40:7(30.0) 37.8(9 3) .. 68.5(12t.3) 1J 1(l0) 	 o.474 0.524 0.2 
0 0.59512.0 m08 -- 11.4 6 1589 	 5(66.0) 177.4 130 8) 

13i.4 157.4) 196(44;) 0. 0 	 0.243 0.099 0.375 0.264
44(10) 490(Mi) 1960(440) 85.6(63.1) 127.804-3B) --	 o.3no0 SI 0.5(l.8) 7.8 7.8 --

4:
78 

8225.2 	 L660) 248.8(163.5) -- 447 595) 783 176 -- 4 .w 01 5 
1 2. 0.543 0.409 o 627 o.6382.R60 219155 7 7315 0 8 .16.4 143 -- 15.4 

D9)1.3 4'-" (3 -7)55.i 745230%	 o-.. o . 00.175080"951.3 __0o.45960o.3510.614002
1' --. 4go(Il0) 1960 44O) 203.19O"(1498)8229 231.870(14")70. 50384hO7 (16 7 )  Ill SI 0.5(1.8) 17.2 51622 .16.7OC85(19)74 	 90 

2.48

74.8125 28) 29 ,216.8) 295.2(217:7) . 549,1(405.0) M275(287) -- 0.671 0.651 0.262 

2 

112 Sl 0.5(2.0) 11.7 li.7 -- 1i.7 36(8) 310(70) l240(260) 922(68.0) - .0(i88.5 ) .. 12.015 6.5) 2535) . 0 0 0 377 0.189 o.44 0.42780.5 69,2 --

mo 	 185.2 136.6 . 351 1 259.o) 59--)0.2 	 .7 o6 .814165.9(122.4 
-- 0.86170.744 0.121 5.67oV85.0 2820 26B.7(19.2 -- 484'15' M92) 	 .61716 0(159.3) 	 485.6 84. . 86.7---- 87.2 86 1)a1. 	 5.) 260.M92 .4 -- 476.8(351.7) 891(=) -- 08471 0715 0.i12 

90.6 89.5 90.1 9421) 	 21.5(163.2) 81.7( MO78) -- 50.(371.0 96( V) 0-- 0.29 o .800 0 , 90 9.22 
157 0113 s1 0.5(l.7) 5:3 3.8 -- .5 258) 310(70) 120(28) 65.9(8.6) 91.1(67.2) .(11.8 87 W0 ~o . o. 0o6013. 13: -.5o1 0.370 o.5413~~8 4 1, 427:11 419.52 

2 .) 691 - 0.661 0 500 o.605 o82 
I 5559 l18 13414 91 . .?h, - 372. 	 6 0. 0.35515. 13. 9111) 	 18.91 -- 27 341.)795 -- 0 40o.h .83e. . 918) 	 21.7 x5.4) 2.o 

-- 489 :6360O.8) 857 193 -- 0.89 0:740 0.07 io.61-- 8:' 83(19) m26.5167.1) 262.7(1938) 	 ,9 .h .7 0679.6 78.2 	 £29.1 69. 0 ) 273,5(W01.7) 502 30.(70,7) 927(205) 
9)., 9 91.3 91 88(w ) 	 0.280 0.093 0,314 0.2960.15.g 	 11:2--162) 

0 15 O 59 0 i
ni4 SI 0.5(1.7) 4,7 6 1 5.4276 310070) 1240(280) 5694.)IC.6(74,2 

24.:19. 21.8 7 1 178, 9 1 31 . 9  223:8O(1& 5 . .) 6 156) --	 .55 1.4685 754. 513 	 9 5 4.72 8 )7 14 -- o.41 o.2 2.785726-o 	 0.657 
69.7 70.0-- 69. So,8 M 50o 69.3.8 6 -- 47 867 1M	 0-- .69 15 .2 

a820Boo 	 266.436.5) -":s98o 38 	 0.932 0.770 0.055 14.12182. .0 	 524.1 .6) 961216)82097-- 8. 39 	 802.o0, i - 2 
6 6 6 -- 27,(315( 5.9 0.13 0 O.213 o.639•93.8 93.0 -- 93.4 91(2o) 	 , 3266.2 3O1,8(22 .6) . 

1 5 S l .5 ( . 7 ) 1 7 .1 1 -2 1 5 .6' 1 4 8 3) 3 1 0 ( 7 0 ) U 4 0 ( 2 0 ) 13 6 .9(1 0 1 .0 ) 1 6 6. ( i 2 ) n-3 0 3 .1 ( 2 2 3 . 6) 15 7 3 51 -a 1 5 0 15 . 1 . 3 

18.4 176 18.o 15 3)032-.6	 296 I6) - 0,"_.531 0 21B ,6 .9.8 70.0) W03.8(150.3)n . .4 M05 157 35)18.7 
-- 54.2 170(38) 173.8(l28.2) 273.5(2 1.7) 447:3(02,) 455(im2) 	 0.796 0.3,67 0.211 1.738 

62.2 461 47 25 0.65 0O.M O 0.M 0.905 
116 81 0.5(l.8) 32.3 25.1 -- ,2 3,6(53) Wi(70) 1240(280) (110.7) (156.1) -- 362,7(267.5) 26(6) 

1.0520.724 0.28 0..7 ..
541.6 w.. .... 31.2 237 53) i16 3) (174.o -- :2MW 3)1. 35M 	 I.2.8 	
251M)~4R16: (234011 0 l6.65 0,79 0,o-

.3
11 53 62 M 3(3 	 I05l8 M.6(16.2) -- 370,1(273.0) 26(6) 47 25068 .1 OCQ107)14(8)17 5(108.8) 

746 0o97 0:095 3.13t 4
79.976. 72.23 59D,2--	 2 1 .) ,9194.8) 390 1 303 . . 8) --. 

7 ..1 S ) B )" 
.. .. .. .. 26209 ) 	 155.4(125.3) 26.(218 5) l 5 

50 27 o.649 0 .000 0.0M 0.973 _
33,3 250(54) 310(70) 16%(280) 133:019.11 231.9(171.0) -- 64.9 269,1) 0(0) .i

119 Sl 0.5(1.8) 4. 12. 4 	 -- o.66800ow 0.016 1.064133.0 98.1 242.7(179 0) -- 375.277.1) 22(5)47.7 26.6 5772 252(57 	 0-121 0.01 6.833151(04) -- 0697
90.3 89.3 -- 89:8 261(513.700i 256.1(1]W.9) o- 391 2(89.0) 	 .2 .0 
9.9 81M.9-- 8.9 2659) 147.5208.8) 89.6(13 6) -- 471( 2 .) 18 )-	 .7 .4 

0.412 0.014 0.02 6.438
12C. 4 91,,:9,9 93,6B8(.) 	 i8.3(iW,0) 176.1(130.0) 31.M219)-0sl 94. 86528(528965) 

O.43o 0.O14 O.OWl i4.333 
96.4 97.6 . 97, 0 29(65), 	 i3 .3(Im02) 189-1.10) - 327 4(241.5) 18(4$) -

o 0 0.165 0.013 0.073 o.178 
12 ,: 05l8: . 3m 7(5) 28(c) 84,3(62.2) 111.7(82.4) . 196 oi4.6) 34(8) 

"-o.269 o.136 0.438 o.3103 2o. 2i36.236(82)
05 1 47.1.2 -- .3 68(1o) 67(5o 68(oo H.5(IO8.El) 172.7(127.4) 	 )121 	 56 3.2 15.4) 893 2V1 0.473 0.333 0.577 0 0 -- i . 2 . 0 14 	 1. 263.(194.3) 299.B121 1 0.616 0,470 0.500 09%331 9(244.8) 401.3M96.0 733.2 51*O.8)12M282 
31.1 38,0 34.5 134 30) 
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Table 4 (oCotina) 

soil slia A g Tnt 

Test 
Ni.-

Ct 
ot Wii.Ad 

6 
xeMl 

3 
Avg 

ranser 
Si~ib) 

Wdeal Loa 
V(ib) 

Total Load 
Nilb) st2AxeSum 

Torova. a-N(ft-Ib) -
________ 

e secy 4! r2b .No. 
JIL *oe_ 

4x Test Vehicle (Continued) 

123 

129 

130 

Si 

s1 

81 

.U. 

0.5(2.0) 

0.6(2.2) 

17.0 17.0 
18.6 24.. 
19. 48.8 
41.7 72 4 
58.2 34.7 
70.4 50.1 
83.8 70.0. 

55.9 32.3 

70.8 46.8 
87.2 73.4 

--

-. 
--

--

--

17.0 296(66) 
21.5 308(69) 

.340333(75 
57.0 33M7 
416.4 502(113) 
60.2 5071114) 
76.9 513115) 

4.1 500(112) 

5-:.8 512 115) 
80.3 514(116) 

670(150) 

670(150) 

670(150) 

2680(600) 

2620(6C) 

268o(600) 

233.7(172 4) 
275.2(M3.0) 
296.1(218 4 
301.3(2M 2) 
236.0(174.0) 
225.0(16.0) 
246.0(181.4 

230.0(169.6)
237-
241.0(177.8 
236.0(174.1 

253.9(187.3) 
301 5(222.4) 
44 .3(327.7) 
534.2(394.0) 
371.0(273.61 

145.0(328.) 

380.0(2 .3) 

0 
42(326.0 

--

--
.. 
--

-

487.7(359.7) 
576.8(425.4) 
70.4546.1) 
835.416. 2) 
607.0ih47.7 
M26.0(31.2)651.0 .80.2 
691.0(509.7) 

611.0(50.7) 
607.0(47.7 
6.0 (.2 
678. 

53(12) 
265(60) 
599(135) 
652(147) 
88(20) 

154(35) 
229(51) 

52(12)
140(31) 
2 50) 
249(56) 

--
--
-

--
-

. 

--
--

27 

47 

47 

15 

25 

25 

0.410 
0 485 
0 622 
0.72 
0.510 

.547 
0.581 

0.513 
0.510 
0 550 
0.570 

0 020 
0.099 
0225 
0.244 
0.033 
0.058 
o.o86 

0.019 
0.052 
0.083 
0.093 

00.00 
o.i60 
0.239 
0.149 
0.035 
0.042 
0.034 

0.021 
0.050 
0.063 
0.032 

o.494 
0.618 

94 
1 633 
0 951 
1.374 
2.515 

0.917 
i.o45 
1.325 
2.893 

131 
132 

s1 
C2 

0.5(2.0) 

3.(11.-4) 

-----
26.7 
28.2 
32.7 
46.3 
65.7 

-
19.6 
23.7 
28.5 
37.7 
53.8 

--
--
--

23.1 112(25) 
25.9 9() 
30.6 131(30) 
42.0 154(35) 
59.7 167(30)

1 0O0.0 17(38) 

670(150) 

670(150) 

2680(600) 
2680(600) 

The -ls1oeoclitbed was 

269.8(199.0) 238.6(176.o 
232.8(171.7) 17.0(29 1 
370.3(273.1) 296.9(219.0) 
359.7(265.3) 365.9(269.9) 
380.8(280.9) 434.8320.7)
107.3(3Wo.4) 45. .328.5) 

27.5 deg 
--
-
--

--

....-

508.4(375.0 
07.8 300.8) 

767.2 565.9) 
725.6(535.2) 
815.6(601.6)
852.7(628.9 

951(214) 
669 150) 

115(273) 
1515(4) 
1691(380) 
1726(388) 

--
--
--

-0 

52 

0 

28 ... 

o 0.427 0.356 
0.343 0.251 
0.645 0.455 
M06 0.567 

0.685 0.634 
0.717 0.67 

... 

0.641 
0.542 
0 .89 
0.539 
0.373 
o.ooo 

0.552 
0.563 
0.929 
1.052 
1.70W 

133 

1i 

135 

C2 

C 

c2 

3.1(11.4) 

3.0(11.0) 

2.8(10.3) 

14.9 
18.9 
31.3 
54.9 
86.5 

7.212.9 
18.6 
74.5 
91.4 

17.2 
25.1 
34.8 
67.9 
82.2 

13.3 
13.3 
19.7 
46.3 
82.6 

9.07.2 
12.9 
68.9 
89.3 

11.5 
20.3 
29.7 
65.3 
79.3 

--
-

--
-

----
--
-
--

-
--

-
-

--
.. 

14.1 
16.1 
25.5 
50.6 
8.5 

10.O 

8.110.0 
15.7 
71.7 
90.3 

14.3 
22.7 
32.2 
66.6 
80.7 

10..I0.0 

43(10) 
62(14) 

103(23)
114(26) 
133(30) 
143(32) 

20(5)
51(11) 
73(16) 
89(20)
95 21) 

58(13)
72(16) 
85(19) 
89(W) 
91(20)
96(22) 

490(110) 

310(70) 

'310(70) 

1960(440) 

1240(280) 

2o(280) 

85.7(63.2)
155.4(114.6) 
257.1(189.6) 
299.9(221.2) 
305.3(225 2) 
321.3(237.0) 

60.1(44.3)
117.5(86.7) 
182.9(134.9) 
190.8(140.7) 
190.8(140.7) 

158.6(117.0) 
195.6(14.3)
22.2(163.9) 

216 9(160.0) 
224.8(165.8) 
238.1(175.6) 

90 2(66.5)
153.7(113.4) 
275.7(203.3) 
291.6(215.1) 
376.5(277.7) 
381.8(281.6) 

65.6(48.4)
152.1(112.2) 
196.7(145.1) 
275.4(203.1) 
280 5(206.9) 

145.9(107.6) 
185.6(136.9) 
M5.3(166.2) 

243.9(179.9) 
241.3(178.0)
251.9(185.8) 

--

--
--

.. 
--

--
--
--
--
--

--
--
--
--
-

--

175.9(129.7)
309.1(228.0) 
532.8(393.0) 
591.5(436.3) 
681 8(502.9) 
703.1(518.6) 

125.7(19.0)
269.6(198.8) 
379.6(235.6) 
466 2(123.8) 
471.3 347.6) 

304 5(224.6) 
301.2(281.2)
447.5330.1) 
460.8(339.9)
466.1(343.8)
490.0(361.4) 

176(40)
428(96) 
987(221) 

1128(253) 
1374(309-
1515(341) 

17(4)
428(96) 
727(163) 
941(212) 

109(229) 

525(118) 
703(158) 
801(198) 
934(210)
960(216) 

1032(232) 

-
--
--
--

--
-
-

-
--

--
.-
--
-
-
"-

o 0 0.200 
0.352 
0.607 
0.674 
0.777 
0.801 

0 0 0.m24 
0.480 
0.675 
0.829 
0.838 

0 0 0.542 
o.678 
0.796 
0.80 
O.8 
0.872 

0.090 
0.218 
0.504 
0.576 
0.702 
0.774 

0 o14 
0.343 
0.564 
0.755 
0.818 

0.421 
0.565 
0.705 
0.750 
0.771 
0.828 

0.387 
0 520 
o.618 
0.422 
0 140 
0.00 

0.057 
0.603 
0.729 
0.258 
0.10M 
0.665 
0 644 
0.600 
0.305 
0.179 
0.000 

0.233 
o 420 
0.815 
1.364 
5.013 

-

0.244 
0.503 
0.801 
2.929 
8.639 

0.632 
0.877 
1.174 
2.455 
4.295 

138 c0 2.9(10 8) 22.420.0 
27.0 
21.4 

15.813.1 
14.5 
14.5 

--
--

--

19 1
16.5 

M .7 
17.9 

237(53)
237(53) 
216(55) 
236(53) 

310(70) 1240(280) 127.0(93.7)
127.0(93.7) 
124.6(91.9) 
127.03.7) 

187.2(i3.1)
188.2(13 8) 
233.3(172.1) 
182.9(134.9 

--
--

. 
-

315.2(232.5)
315.2(232.5) 
357.9(264.0) 
3o9.9(228.6) 

36(8)
44 iO) 

156 35) 
36(8) 

--
--
--

47 25 0.557 0.028 
0.557 0.035 
0 633 0.126 
0.58 0.028 

0.041 
0.052 
0.158 
0.042 

0.689 
0.668 
0.798 
0.666 

139 c2 3.1(11.6) 32.7 
32.5 
39 8 
83.0 
91.0 

11.7 
:8.0 
27.9 
78.7 
88.7 

--
--
-
--
--

22 2 
25.3 
33.8 
60.8 
89.8 

237(53) 
244(55) 
252(57)
257(58) 
256(58) 

310(70) 1240(280) 148.0 109.2) 
1.2.8 105.3) 
145 5(107.3)
156 o115.1) 
142.8 105.3 

12.9(134.9) 
230.6(170.1) 
257.:2(189.7) 
281.1(207.3) 
288.9(213.1) 

--
--
-

--
-7 

330.9(244.1) 
373.4(275.1) 
402.7(297.0) 
437.1(322.4) 
431.7(318.4) 

44(10) 
138(31) 
214(53) 
307(69) 
298(67) 

-
-

--
--

47 25 0.585 
0.660 
0.712 
0 733 
0.763 

0.035 
0.12 
0.189 
0.245 
0 238 

0.047 
0.117 
0.176 
0.061 
0.032 

0.752 
0.883 
1.076 
4.026 
7.485 

141 

142 

C2 

C2 

3.0(U1.2) 

3.1(11.6) 

--------

.. .. ..-

310(70) 

310(70) 

1240(280) 

1240(280) 

The vehicle was able to negotiate . 33-dog elope while operating at abo t 60% slip. 

nis test was a repeat of the previous one. 'It was deemd nedeeal3 in view 6f the 
the sae. Te chincle was oarely propelling itaelf on a 34-dekg slop 

It finlly sp 
un 

out on 

steep lopo angle. The 

a 34.5-deg slope 

sults were about 

143 02 
2 

3.2(U8) 29.237.4
39.4 

17.7 --- 23.4 (71)28.4 316(75)
3.2 B407) 

670(150) 260(600) 281.2(207.4)315 9(233 0)
54.11251.7(165.6) 

259.8(191.6)
334.1(246.4)
220.0(162.3 

--
--

541.0(399.0)
650.0(479.4)471. 7347.9) 

3 (83)
616 138)176W4) 

--
--

27 15 0.455 
0.5460.396 

0.138 
0.2310.066 

0.232 
0.3030.115 

0.594 
0.7630.576 

66.1 
81.7 

. 

46.4 
B!8 

. 

- 56.2 
61.7 

10 0 

301(79) 
354 79) 
356(8o) 

318.6(235 0) 
334.7(246.9) 
361.6(266.7) 

4o.4(2095.3) 
448 1(330.5) 
445.4(328.5) 

--
--

719.0 530.3) 
782.8(577.4) 
807.0(595.2) 

872(196) 
863194) 
9o7(204) 

-04. 
--
--

0.658 
0 678 

0.327 
0.323 
0.3 

0.237 
O.188 
0.00 

1 379 
3.718 
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Table 4. (Continued) 

Test 

Soil 

Con. W 
NO.____ l/~oi 

1st 
Axloe 

.oSlip. * 2d 34 
Acle Axle Avg 

LoadTransfer 
N(Ib) 

AvgWheel load 
N(lb) 

Total toed 
N(1b) 1st Axe 

Torque,
1d2le 

m.Nrt.b)
3. xe u Pul".S a) 

Velocty
Vecitys 

Test 
Bin 

Slop "'a 
Power 
power1.As. 

144 

146 

147 

148 

150 

151 

152 

C2 

C2 

C2 

C2 

C2 

c2 

C2 

3.1(41.4) 

3.2(12.0) 

3.1(11.4) 

3.0(11.2) 

3.1(11.4) 

3.1(11.4) 

3.1(11.6) 

39.9 20.7 
56 3 29.1 
35.9 51.0 
62.8 37.7 
66.5 34.9 
74.7 51.9 
--- -

4.8 0.1 
3.5 2.6 
8.7 2.0 

17.7 14.9 
30.2 25.4 
60.5 58.6 
81.6 79.4 
-. . 

- ---

2.8 0.9 
7.2 4.o 

55.3 51.3 
91.6 90.8 
2.6 2.6 
8.7 7.0 
8.8 3.8 

17.9 12.1 
76.4 73.1 
85.8838 
96.2 95.7 
2.6 0.7 
6.6 3.0 
7.1 2.0 

39.0 33.0 
76.6 73.3
85.3 83.2 

-0.3 
-- 2.7 
- 3,4 
-- 50.2 

50.7 
63.3 

-

-- 2.4 
3.1 
5.3 

16.3 
27.8 

-- 59.6 
-- 80.5 

. 0o 

-- 1.8 
-- 5.6 
-- 53.3 
-- 91.2 

-- 2.6 
-- 7.8 
-- 6.3 
-- 15.0 
-- 74 7 
-- 8.8 
-- 95.9 
-- 1.6 
- Ls.8 
-- 4,5 
-- 36.0 
-- 7.9 
- 84.2 

1M0.0 

500(112) 
511(115) 
522(117) 
512 115) 
519(117) 
523(118) 

22(5) 
18(4) 
36(8) 
54M12) 
73(17) 
81(18) 
62(14) 
68(15) 

--

21(0)
41(9) 
68(15) 
71(16) 

16(1) 
25(6)
J.(1o)
58(13) 
70(16) 
71(16) 
74(17) 
17(4) 
24(6)
44(10)
65(15) 
66(15)
68(15)
73(16) 

670(150) 

65W(150) 

250(56) 

250(57) 

250(57) 

250(57) 

250(57) 

2680(600) 

2680(600) 

1000(225) 

100(P28) 

1000(228) 

1000(228) 

100(228) 

4x4 Test Vehicle (Continued) 

241.1(177.8) 328 8(242.5) -- 569.9(420.3) 53(12) -- 1725 0.479 0.020 0.029 0.687 
246.3J181.7) 387.1(285.5) -- 633.4(467.2) 202(45) -- 0.532 0.075 0.081 0.928
251.6 185.6) 302.2222.9) - 553.8(48.5) 351 79) -- O.650.0 0.161 0.822
251.8(185.7) 413.5(305.0) -- 665.3(43.7) 22049) -- 0.559 0.082 0.073 1.122 
26.3(181.7) 387.1 285.5) -- 633.4(467 2) 317(71) - 0.532 0.119 0.110 1.079 
262.5(193.6) 424.1312.9) -- 686 7(506.5) 370(83) -0 0 577 0.138 0.088 1.572 
The vehicle cliabed a 2

8 
.5.deg slope and finsly stalled a a 30,dg slop, due to lack of power at rear wheels as evidnced 

by the very lOw slip On the rear wheels and high slip on the front wheels. Dynadic load transfer to the rar wheels contri
beted to this pwer stall 

To'que not recoded 92(21) -- 0 0 0-091 .. 
35(8) - - 0.035 ... 

273(61) ... 0.269 .... 
516(116) .0. 
7(173) ... 0.760 -" 
873(196) .... 0.860 -- -" 
630(1i42) .-.. 0.621 .. 
710(160) ...- 0.7w .... 

The vehicle succssftlly climbed a 3 
4 

-deg slope but could not climb a 35-deg slope 
Torque not recorded 71(16) 0 0 -- 0 069 .... 

339(76) ...- 0.334 ... 
697(157) .... 0.687 -... 
745(168) .... 0.735 .... 

Torque not recorded 31(7) .. 0 0 .. 0.031 .... 
129(29) .... 0.127 ....
387(87) . ..- 0.381 ....
666(129) .... 0.566 .... 
697(164) .... O.719 .... 
706(166) .... 0.728 .... 
769(177) .... 0.774 .... 

Torque not recored 27(6) -- 0 0 -- 0.026 .... 
116(26) - O.Iu- ..
384(86) - 0.379 .. .. 
666(150) - o 656 .... 
697(157) o.-- 0,687 ....
706(159) -- 0.696 ....
719(173) -- 0.758 -. .. 

SuOrveyr Lunear Rover Vehicle (6x6) 

2 

3 

C, 

C2 

C 

3.0(11.0) 

3 0(11.0) 

3.1(11.3) 

5.7-. 8 .5 .. 
5.7 8.8 4.5 o.4 
5.2 15.9 4 7 8.6 

54.5 60.5 49 7 54.9 
74.6 78 1 72.4 75.0 

-1.9 5.6 -0.4 1.1 
2.3 3.7 3.1 3.0 
6.4 10 1 6.6 7.7 

io.620.2 .i 13 9 
75.4 78.4 72 2 75.3 
10.6 19.2 9.5 13.1 
6.i 12.4 4.3 7.6 

10.1 20 5 10 1 13.6 
46.9 53.1 40.1 26.7 
9e.6 93.4 91.4 92.5 

. 
--
--
--
-4 

--

--
--
--

--
-
--

.. 
--

116(26) 

16(26) 

116(26) 

9§(155) 

696(153) 

696(155) 

lioperative circuits 

6.49(4.78) 9.17(6.76 
9.54(7.04) 12. 4 

23.60(17.40) 22.67(16.72)
29.64(21.86 24.04(17.73) 

.16(25.19 26.52(19.56) 
17.27(iM.74) 19.93(14.70) 
19.1414.n2 B0.13 14.85) 
26.89(19.83 22.6616.71) 
29.65(21.87) 23.63(17.43)
30.51(22.50) 24 53(18.10) 

3.15(2.32) 
7.43(5.8) 

26 119.31)
34.06(25.12) 
46.21(34.08) 
20.95(15.45) 
25.60(18 88 
33.57(24.76 
44.48(32.81) 
44.07(32.50) 

. 

18.80(13 87) 
29.91(22.06i 
72.4553.) 
87.74(64.71) 

106.89(78 .83) 
58.15(42.89) 
64.8727,85) 
83.11(6i.0) 
97.77(72.11) 
99.11(73 10) 

22(5) 
156(35) 
20(72) 
46(100) 

207(92) 

9(2) 
39(9) 

26960)
351(79) 
420(95 
13(3) 
30(7) 

160833 
234(53) 
221(50) 

0.30(1.00) 
(0-85) 

0.21(0.69) 
(0.31) 
(0.14) 

0.33(1-.6) 
0.30(0.98) 
0.2 0.80 
0.21(0.70) 
0.05(O.18) 
0.23(0.76) 
0.25(0.82) 

o.21068) 
0.08(0.26) 
0.03(O 10) 

0 

0 

27 

0 

0 

15 

-- 0.030 
-- 0.230 
-- o.46 
-- 0.65o 
-- 0550 

0 1D3 0.010 
0.2 o.0o6 
o.4so 0.390 
0.590 0.510 
o.720 o.61o 
0.390 0.020 
o.44o o.o4o 
0.5 0 0.230 
O.660 O.310 
0.670 0.320 

... 

.... 

.... 

.... 

.-

0.10 
0.27 
0.74 
0.74 
0.21 
O.04 
0,09 
0.36 
0.28 
0.04 

-

0.110 
0.210 
0.530 
0,680 
2.910 
0.450 
0.47 
0.650 
1.230 

.880 
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Mbl 4 (Contined) 

Sail . Glier % load AVgTest Con-' 0 ist Sd 34 Transfer WeloA ~ alLa TetBinTeee toad T loa Torue. awNeft.lb)3	 Velocity s oneeNO. dition WOV'm(pci) Wxe AWe Axe AV, N(M)L N(1lb) Slb) alet E=x M ! 9dAl-3e S.m poll. Nlab) 28secHft/sec) 

Surveyor lnar Rover Vehicle (6x6) (Continued)

4 C, 3.1(11.4) 15.6 26.4 10.0 17.3 
 -- 116(26) 696(155) 27"64i4 '39 20"44(15"O7 36.04(26.58)

17.2 	
84.16'2 .0) 9 2 0.21(0.69) 47 25 0.570 0.0 0 0.02 0.68027.2 10.1 12.4 -34.2 42.6 	 24.93 18.39~ 19.61(1447~ 37.51(27.66)27.5 314.8 	 28.62(21.1n 1.06(15.53) 33.58(21.77 82.O 6O.SS) 22 5 02(.7)050 .30 .583.26 61.41 57(13) 0.16(0. 0.560 0.080 0.0 0600.86030.5 36.2 21.5 29.4 -. 29.3(21.48) 20.8(15.33 12.12(31.07 92.09 67.92 61(1 0.17(0,540 0.620 0 .1 0.860
56.0 63.6 51.0 56.9 	 2.28.38(20.93) 20.68(15.25 43.71(3.4 92 .77 68.42 74(17 0.09(0.30)5 C 2.9(20.8) Vehicle unableto negotiate thisslope 	 0.6a0 0.110 0.07 1.450 

62 326 02 2.9(10.7) Vehicle was able to negotiate a 23.deg slope, but could not develop sasy pull capability. Slip at 0 pull was moderate (40 to 60%). Mhe 53 28
addition of 3 to 5 lb of drawbor load caused the vehicle to spin out, i.e. 100% slip7 S1 0.5(1.8) Vehicle unable to negotiate this slope 


8 S1 0.5(1.9) 0.4 4.1-3.4 
 47 	 250.4 116(26) 696(155) 8.13(5.99) .75(8.67) 7.18(5.301 27.6(19.96) 8(2 030(1.o4o 0.0102.2 5.4 2.9 3.5 --	 0 O.180 0.07 0.1809.40(6.93) 12.188.98) 8.96(6.61, 30.54(0-.5331().2)0.2 4.4 0.2 1.6 --	 0210 0.030 0.15 0.210.96(9.56 3:(1.241 2.03(8.87) 38.'j 8.967 70 167.5 7.6 3.8 6.3 --	 0.90 O.2o 0.10 0.38 0.27018,71(3.) 1 9 .66(15 9 50 ' 9 'A O5 
M02.61.18.6 	 .630.,5,,5 5
5 

5.0259.6312.11.6. 	 .08(23.66 34.55(2518 0.6 0.42025.6918.95) I.2.437(18.25 826 9(6 0.21(0.70) 0.550 0.62 0.63041.61 30.69 98.3(72.) 336(76 0.10(0.32 0.660 0.490 0.32 1.500 
9 0.6(2.2)S1 7.9 19.7 4.7 10.8 -- 116(26) 696(155) 25.819.051 0.27(14.95) 30.1 2.26 76.28(6.2 108 ) 0.23(0.75) 27 15 0.510 0.160 0.27 0.57026.5 34. 3 187 26.5 --	 s6. 19.76 O.27(14.95)3671 26.90 83.5 61.61 10 24 0.16(0.5) 0.560 0.160 0.21 0.760 

400 41:3 42.5 	 263
71.6 75.0 66.9 71.2 --	 2 :7.27(20.11 2.69(15.26) 38.16(28.15 86.22(63.52 104 39.9(21.61 2.815.4o 142.99(31.71 93.U6(68.71 0.13(0.2 0.580 0.150 0.15 1.01077.3 79.9 73.7 76.9 	 313(25) 0.05(0.18) 0.630 O.16o 0 08 2.170--	 28. 21.3) 219 15.85) 43.71(32.21 94.14(69.3 113(25 0.05(0.18) 0.630 0.160 o060 4 4.5(16.4e) 1.1 3.3 -1.9 0.8 	 2.7o40116(26) 696(155) 6.87(5.06 30.79(7.96) 6,93 5.3U 24.59(18.13 17(14) 0.32(1.04) 0 0 0.170 0.030 0.151.8 5.9 1.1 2.9 -1 	 0.1701 0 0 52( 	 0.230 0.(73 0.
3.7 7.5 1.8 4.3 --9.0 13.8 	 10.27.51 18. (10.67 18,4.3 5o 152.3 0 903 249.6 57.7 3.6 5.6 ---- 27.3(2.18326577:75116 	
36 0.2 .92 0.360 0.230 0.61 0.38043(23.92) 23.91(17.68) 80.5 9.39) 1671 0.10(0.24) 0.5so 0.14o 1.3702.97(1.9) 12.08(31.04)30.19(2.7) 98.48(72.63) 377(85) 0.22(0.74) 0.66o0.5-0 0.460 0.77 0.59011 84 4.4(16.3) The chicle was uable to negotiate this slope

4 58 30
 
12 C3 .4(16.1) 8.3 16.3 4.4 9.7 -- 116(26) 696(155) W0.68(15.25) Z0.16(14.87) 27.31(20.1s 68.1(50.26 26(6) 0.21(0.80) 36 20 .16o 0.040 0.07 0.510
17.9 20.5 10.1 16.2 	 2.47(15.10) 19.96(14.72 26.3 7.6149. 0.2(074) o.4o 003 .411.2 18.1 4.2 31.2 2.85(26.85) 20.77(15.32 33.61(24.79 77.23(6.96 56(13)14.5 25.4 0.1 	 0.23(0.76) 0.520 0.08016.7 	 O.14 0.580 

9.5 17.9 1.2 9.5 --	
28.20(20.80) 20.78(15.33) 35.5(6.00) 8.23(62.13103(23 0.21(0.70) 0.570 0.150 0.2 0.68030.02(22.15) 22.77(16.80 42 .69(31.49) 95.148(70.4367.5 71.7 3.4 67.5 	 10(7) 0.19(0.6?) 0.64o 0.170 0 25 0.710-.

47251.3 30.0 45.8 	 27.50(.28) 2.59(15.9' 38.65(28.0 87.71(6.71 137(31 0.110.87:74(6453
89.5 90.8 8 7.589.3 -- 27.53(20.30 21.21(15.. 91.31(67.35 	 0.590 0.20 0.18 1.090134 C .3.0 	 142.58(31.41 150(3 .00.25) O.610o 0 0.1213 	 31.141(23.17) 146.59(34.36) 101.35(74.75) 163(37 0.02(0.08) 1.89023.35(17.)03 4.3(16.4) 5.-2 3.0 	 0.680 0.O40 0.04 6.360.1 4.2 -- 116(26) . 696(155) 8.49(6.26) 12.69.36) 7.72(5.69) 28.90(21.31) 26(6) 0.31(1.01) 0 0 0.190 0.040 0.18 0.2008.8 0.6 -3. 	 175.9 0-31(l01 0 0.19 0.4 0. 0.2W4.9 	 6.2 4.9 53 -. 10.77(7.94) 13-60(10.03) 8.85(6.53) 33.22 21.0 6(5 031(1.03 0. 0.090 0.4 0.2.88 0.6 .2 -3.7. 3~ 144850334.3 	 18..1 3.8142 '7.48.1 -- 2.7 (18.97 21.17(15.613.8 	 19.76(14.57 202(1%e.8 6.61(19.6 2161(1' 23. 63.01146.5.21 75 6a 0.2(0.89)75(29 4.1 17.03 I 73.50 2 67 0.490 .1400 0.751.6 7.5 1 .8 2.6 -- 2.5~(2.05 Z 10U. 85 51 	 o. 0.30 0.69 0.1600.303.76(17.53 88.8965.56 4 . 0.29(00 (.6 ) 0.600 .5 0 0.75036.59(26.99 357 80 0.330 0.690.210 0.61 0.340.3 	1 . 3.5 41. -. 4
 

7. 76.0 68.6 72.0 --	 33.76(24.90) 23.97(17.68) 143.54(3.31)71.5 6	 101.27(74.69 387(87 O.15(o.48) 0.680 0.560 o.48 1.17014 C3 4.2(15.5) 	 33.04(2,.37) 23.38(17.25) 145.47(33.53)Vehicle wan able to negotiate 2 -27deg 	 101.89(75.15) 307(87 0.05(0.18)slope and restart after the stopping in rats. Or lare geater than 27 4eg the 	 0.680 0.560 0.23 2.44ovehicle could not rstart after stopping in rote. The ltmate.sloPe-cliabing ability for this condition was 31 d, Od 
15 C2 3.2(31.8) Tbe vehicle barely neotiated a 28.5-deg slope while operating at an estimated slip of 80.90%. .

Any effo t to steer the vehicle caused it to spin out, i.e. J0%slip. On a slve of27 deg,16 	 the vehicle could be steered andlcontinued to climb at afi estisated, slip of0O 0.3(1.1) The.ultmate slope.clmbing ability of the vehicle 	 40-70%.was 25.5 deg. It was operating at 90-100% slip. Any effort to steer vehicle resulted in a decrease in ultimate slope.aclishin,ability of 1.5 to 2.5 deg. On a slope of 23 deg , the eehiclecould negotiate the lope after being stopped and restarted in the on-slope position17 S1 0.5(1.8) The ultimte slope.cunblng ability is appro ximtely 21.5 deg. Ona .loe of 20 deg, too vehicle coulA be steered while negotiating the slope
18 S2 3.1(11.4) The ultimate slope.limbin, ability i4estimated at 24 deg 
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Table 4 (oaclued) 

Ton-lSlip, 4 Load Avg 
Test 
Bin 

TeSd Con-
N.. dItio MlWm(ti 

ist Ed 
Md 

3d 
Me &9eve 

Trmsfer 
) 

hfeel Load 
ff(mb) 

Total Load 
H(lb) lot Mxle 

Torcue 
j2d Md 

n-Nft-lb) 
dAxe Se al N(b) 5 

Velocit
~jle 

S 
j 

NM 
,.e.AL B1 ~ 

Poer 

Surveyor lanar Roer Vehicle (6x6) (Continued) 

19 s1 0.5(1.8) 14.4 
15.6 
33.-4 
43.9 
61.0 
78.1 

21.8 
2,. 
36.6 
51.9 
64.3 
80.6 

9.0 15.1 --
9.1 15.172 

25.3 31.8 
39.2 45.0 --
57.8 61.o --
76.1 78.3 --

100.0 

U6(26) 696(155) 22.89(1,89
20.04 

2 
31.16(2.98 
32.09(23.67
32.32(23.)
4o0.M(29.59) 

19.920.71 7.( 20.58) 70.73(52.1783'01'7 
1.15(.6) 35626.15) 83.77(61.79)

37.27.31) 87. )
22.76 16.79) 3.20(20.17) 9.12(67.9) 
23.37 17.24 10.78(30.08) 96.21(70.98
23.56(17.38) 43.35(31.98) 99.23(73.19)
29.06(21.43) 53.57(39.51) 12.75(90.54) 

23653 
271(61) 

284(64) 
297(67)
302(68)
66(15) 

007 n(o5O: 

0.18(
0.13(0.42
0.10(0.32)
O0.5(0.16)
0.00(0.00) 

0 0 0.0.3O 

0.590 0.430 
0.620 O.h0 
0.650 0.430 
0.670 0.44o 
0.a82 0.74o 

05 
9 

0.50 
0.37 
0.26 
0.14 
0.00 

.7 
0.670 
0.860 
1.130 
i.66o 
3.070 
0.000 

20 s1 0.5(1.8) 7.616.3 7.6 5.5 6.9 116(26) 696(155) 1.65(18:11 2185(16,128i. 6:0 33.11(24,4233:63(14 7961(5872 (68 0 .92(0.13 0.30 0,410 0.65 0.43 

39.9 
52.0 
65.1 
85.3 

2.7 21.5 
45.2 35.7 
58.1 19.2 
67.7 62.1 
86.8 83.8--- -

26.4 
40.3 -3 
53.1 
4.9 . 

85.3M 03:8(4912:518"36 
""00 

2(1611 

29.7(2.44)1 
31.08(22.92
31.63(23.33 
311(32.53) 

242(17.91'I(
25.6618.92
25.26( 18.63 

37.1 (27.43 88.56(65.32 
38.9(2a.50 92..6 
37.38(27.57) 9072(66.92)) ' 
40.36(29.77) 97.09(71261

2.81(3158 1413:3 99:70(73 543 
102.81(75.83) 

27(62) 
262(59)
275(62) 

319(72)91 
358(81) 

0.20(0.67) 
0.15(0.508
0.32(0.10)89(71 
0. 0.28
.0(.12).O.140 

0.01(0.1) 

0:90 

0.6100.610 
6o0.6700.60 

0.690 

0.00 
0.38 
0.1400"40 
0.4300.6D 
0.52w 

0.49 
0.37 
0.310".3 
0.230 
0.00 

0.810 
i.0h0 
1.3001830 
1.860 

0.000 

a S2 3.7(13.6) -0.3 9.9 -2.2 
2.1 5.2 -2.2 

24.8 35.1 18.2 
6.7 52.9 41.9 

73.7 74 64.3 
56.5 61.0 51.7 

2.5 
1.8 

26.0 
47.2 
70.8 
53.1 

.. 0.0 

--
-

--

--

116(26) 696(155) 6.45(4.76)
M.50(7.74)
33.2(2.50
3207(1775
30. 
32.40(21.19
34.77(25-64) 

8.70(6.41) 
14.33(10.57)
22.28(16.43 

.73 
2.07(17,75
22.78(16.80) 

5.59(4.12) 20.74(15.30)
11.04(8.15) 35.87(26.16)
10.61(29.95 96.11(70.89)
39.6(9.6 96.34(71.

9. 92.68(68.36)
12.59(31,41 99.45(73.35)
47.86(39.30105.141(77.74) 

0(0) 
8 

355(80)
36(78)
326(73)
357(80)
40391) 

0.32(1.06) 0 
019)30 X00:040 
0.1.64)
0.13(o.44
0. 2.6)
0.10.670 
o.ooo.oo) 

0 o.140 

0.650 

0.710 

0.00 
0. 

.510 
0.500 
o.470 
0.520 
0.580 

0.00 
o0.51 
0.59 
O.41 
0.2 
0.36 
0.00 

0.140 
0.250 
0.870 
1.230 
2.130 
1.2o 
0.000 

22 S2 3.5(12.7) 9.6 8.7 3.7 7.0 
4.6 12.8 0.5 5.9 
4.3 8.8 3.6 5.6 
4.2 10.1 0.6 4.9 

11.6 21.4 4.9 12.6 
2363131.324. 

35.2 27.8 30.14 31.3.1 
114.3 52641.8 16.2 
57.4 63.1 52.9 57.8 
72.3 76.3 9.8 72.8 
89.2 9o.4 87. 89.o 

100.0 

-- nE(26) 
--
-"8.2(13.47) 

--
--
.32.9D(24:26) 

-m 

-. 

696(155) 6.10(6.19) 11 .52) 6.s4(4.82 26.9(19.53)
11.710(8.66)) 1.7 0.87) 9.61(7.9 36.16.61) 

17.66(13.03) 16.91(.48) 52.83(38.97 
23.77(17.5321.95 16.19 26.47(19.52 72.20(53.25) 
28.53(21.04) 21.97(16.20) 34.69(25.58) 85.18(62.83) 

23.37(17.24) 38.67(28.52) 94.94(70.02) 
34.46(2511 23.317.4 90(88~9.87. 

732(30)2.717.9 10.2M9 .66)96(9.? 
32.40(23.90) 2 3.1617.08) 141.0(30.25 96.58(71.23,
33.32(24.57)2338(17.24)142.06(31,0) 98.76(72.8) 
32.64(214.w) 2.19(16.37) 43.69(3.23) 98.52(72.66
35.41(26.12) 25.75(18.99) 6.26(3.12) 107.42(79.23 

O(o)
71(16) 

168(38
256(58)
262(63) 
357(80) 
375(84)
353(79) 
357(80,
34(77) 
357(80)
42896) 

0.30(0.99
0.29(0.95) 

.27(0.89)
0.25(0.81)
0.22(0.71) 
0.80.1 
0.:15(0.:50 
0.1(0.40 
0.09(0.30
0,05(0.18) 
o.oE(0.06)
0.00(0.M) 

0O 0 
0.240 
0.350 
0.490 
0.570 
0.' 
0.50 

650 
0.660 
o.66o 
0.720 

0.000 
0.10o 
0.240 
0.370 
0.410 
0.520 
0.54o 
0.510 
O.5 
0.500 
0.520 
0.62w 

O.00 
o.4o 
0.65 
0.73 
o.62 
0.61 
0.58 
0.113 
0.34 
0.20 
0.09 
0.00 

0.190 
0.260 
0.380 
0.510 
0.650 
0.850 
094 
1.180 
1.540 
2.44o 
6.020 
0.o00 



Unclassified
 
Security Classificaton 

DOCUMENT CONTROL DATA - R& D 
(Security classiticatfon ol title, body of abstract and indexing annotetion must be entered when the overall elport Is cle.tiled) 

I. ORIGINATING ACTIVITY (Coporate author) 2s.REPORT SECURITY CLASSIFICATION 

U. S. Army Engineer Waterways Experiment Station Unclassified
 
Vicksburg, Mississippi GROUP
1b. 

3. REPORT TITLE 

PERFORMANCE EVALUATION OF WHEELS FOR LUNAR VEHICLES (SUMMARY REPORT)
 

4. DESCRIPTIVE NOTES (2 po of reportand Inclusive date) 

Final report
 
AUTHOR(S) (FIrst nAMs , Middle Il. last name) 

Dean R. Freitag
 
Andrew J. Green
 
Klaus-Jurgen Melzer
 

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS 

May 197P 8o l1 
Sa. CONTRACT OR GRANT NO. Sa. ORIGINATOR'S REPORT NUICSER(S) 

b. PROJECT NO. Miscellaneous Paper M-70-4 

Ob. OTHER REPORT NO(S) (Any other numbers tat may be asisignedthis report) 

10. DISTRIBUTION STATEMENT 

This document has been approved for public release and sale; its distribution is
 

unlimited.
 

I. SUPPLEMENTARY NOTES I SPONSORING MILITARY ACTIVITY 

George C. Marshall Space Flight Center
 
National Aeronautics and Space Administra
tion, Huntsville, Alabama
 

IS. ABSTRACT 

One pneumatic wheel, four metal-elastic wheels, and two instrumented vehicles were lab
oratory tested in a fine sand to determine their relative performance and to establish
 
a better understanding of the basic principles of the interaction of very lightly loaded
 
wheels with a soil whose properties were varied to include the probable range of lunar
 
soil properties. Programmed-slip tests were conducted with the single wheels and the
 
vehicles, the latter being tested on both slopes and level surfaces. Data indicate that
 
for loads less than about 220 N (501b), the pull/slope-climbing ability was constant for
 
a given soil condition. At greater loads, the rate of increase in performance decreas'ed
 
The effect of cohesion on performance was negligible at loads less than about 220 N
 
(50 lb), but the effect could be seen at higher loads. The results of tests with the 
metal-elastic wheels showed that none could be relied on to propel a vehicle up a 35
deg slope. Modifications of the Bendix and Grumman wheels enhanced their performance to
 
the point that they might be expected to climb slopes in excess of 30 deg. Tests with
 
modified Boeing-GM wheels indicated that they might be used on slopes up to about 25
 
deg.on certain soil conditions. The power required, in whr/km, for operation of the
 
wheels on level and sloping soil surfaces was determined. It was demonstrated that data
 
from single-wheel tests can be used to predict the slope-climbing ability of a vehicle;
 
such predictions tend to be slightly conservative. Results of tests with the vehicles
 
indicate that the torque coefficient at a given slip was not significantly affected by
 
variations in surface slope and soil strength.
 

fin ~ ~A ~ ~ELC5 ~ SOFRI.. 141..1 JAN ... *NIC. I. 

WIN.D In. 147 ISLTK ,OR ARMY Unclassified 
Security Classiflcation 



I4. 

Unclassified 
Security Classification 

KEY WORDS 
LINK A 

ROLE WT 

LINK aS 

ROLE WT 

LtNK C 

ROLE WT 

Wheels 

Vehicle wheels 

Lunar vehicles 

Unclassified
 
Security Classification 



I STOCK LOCATION 2 DATE RECEIVED 

YR MO DAY 


F 


3RECEIPT TYPE & FC MAT MAGNETIC TAPE 

F7 LOAN X~PC EIS35mm CARDS 
RI 

RETAIN [I MFE16SMM4-cSToCK RE.CEVEOD.,FORSALE ElOTHER; 

1 1 I 1 

5LOAN DOCUMENT RETURNED 


DUE 


OUT-
6 TRANSACTION 

NEW fl DUPE SUPER- PRIOR 
E 

ITEM SEOES NUMBIER. 

2 
8 SERIES NUMBERS (XzREF) 

9 RELATED'DOCUMENT 

10 bONTRACTING OFFICE 11 NOT FULLY 

ELEGIBLEIfi Qs- I/1 COLOR 

FORM NBS 801 
(7169) 

DOCUMENT TRAVELER 

12 SCREEN C 
-

F] OBTAIN BETTER COPY L]OUT CF PRINT SOD 

El OBTAIN AUTHO:3ITY ERRATA 

ISA ANNOU EMENT 13BFA 
VOL UE Eu G

E E 
PRINT 

JUNNNIz)14,TB" I TREPR ODUCTION INSTRUCOTIONS< 

NO 1UP 2up ElYES ElNo 

NO 1 4 7 --ON DEMAND15IETC 

lUP 2 5 8 15PRESTOCK 

U 3 
-COPY
SAM ORDER 


MIX SIZE C

1FRO
M ~ 

/ PC 
DUE IN 

16 REMARKS 


_

* GPO. 1968-315-288 

17 ACCESSION NUMBER 

18 PAGES iD SHEETS 20 LOW LIMIT 21 
PSFA MF E4 . - SUB-

Ii SCIP-P PRICS EXCEPTION PRICES22RF,.[M." 25 CATEGOR.' 

3.00 0.65 
24 DISTR CODE 25 INITIALS

ACC A B C D8I 1 

26 FILL FROM 

PAPER MCRO 
NEGA
 

ETC I TIVE 

RELEAS- I 

ABILITY 
,,
 
> 

U.S. DEPARTMENT OF COMMERCE 

NATIONAL BUREAU OF STANDARDS 
CLEARINGHOUSE FOR FEDERAL SOJENTIFIC 
AND TECHNICAL INFORMATION 


