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ABSTRACT

A statistical analysis of space guidance systems, based on the
properties of multivariate Gaussian distributions and linear perturba-

tion theory, is discussed.	 The results of this analysis can be applied A
.4 to any mission regardless of the nature or complexity of the trajectory

a > or the guidance system, as .long as the linear perturbation theory is
valid.	 The theory needed to statistically describe the injection errors,
trajectory dispersions at the target due to the injection errors, and the
calculation of the average midcourse maneuver of a guided spacecraft are

reviewed.
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The application of statistics to guidance analysis has received
K, considerable attention during the past few years. 	 Noton [ 1] has pointed

out that the treatment of injection errors as independent random vari-
ables may sometimes be a poor approximation, and cross-correlations
between injection errors must be taken into account.	 This paper reviews
the theory (taking into account the cross-correlations between injection
errors) needed to statistically describe the dispersions at the target
and to determine the magnitude of the average midcourse maneuver for a
typical interplanetary flight. 	 To accomplish this, a statistical know-
ledge of the system errors, e. g., gyro drift, accelerometer errors,
engine shut-down errors, etc., is used to statistically describe the

•i
injection errors.- This representation of the injection errors, along
with a state transition matrix, is used to describe the' dispersion at
the target planet. 	 Such information is directly related to the proba-
bility of mission success.

The analysis used is credited to Noton [l] and is based on the pro-
perties of multivariate Gaussian distributions and linear perturbation

V theory.	 The results of this analysis can be applied to any mission
regardless of the nature or complexity of the trajectory or the guidance
system,as long as linear perturbation theory is valid.
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SUMMARY

A statistical analysis of space guidance systems, based on the pro-
perties of multivariate Gaussian distributions and Linear perturbation
theory, is discussed. The results of this analysis can be applied to
any mission regardless of the nature or complexity of the trajectory or
the guidance system, as long as the linear perturbation theory is valid.
The theory needed to statistically describe the injection errors, tra-
jectory dispersions at the target due to the injection errors, and the
calculation of the average midcourse maneuver of a guided spacecraft are
reviewed.

SECTION I. INTRODUCTION
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SECTION 11. JUSTIFICATION FOR USING LINZAR COMBINATIONS OF SOURCE ERRORS
TO APPROXIMATE TRAJECTORY ERRORS

Injection error analysis is often based on the method of linearized
perturbations. The approach taken is to represent the injection errors
as linear functions of the source errors. A statistical description of
the source errors will then yield a statistical representation of the
injection errors.

It is assumed that the info etion coordinates (x, y, z, x, y, z)
are functions of the source; errors e i ( 1 s 1 s n) and assume nominal
values when e i = 0(1 s i	 n). That is,

x = x(ei , e2 , . .. , en)

Y	 Y( e, , e2, • • » en)
^1)

Z = i (ei , e2 , .. ,)en

x
rt

as
and

x = x(0, 0 ) ..., 0)

Y = y(0, 0, ...) 0)

z - z(0, O p ..., 0)

are nominal values of the injection coordinates.

Consider a Taylor series expansion of the first of equations (1)
about the point (0, 0, ...y 0). Then,

x( er , ep,	 e)	 x (0, 0, ... , 0) + ae	 el + ... + )e	 e + R,n
a L	 n	

n

0	 0



A

0

Wherc

cx
6-0 110

donot(-,,s Oic partial derivative of x with respect to e i evaluated at
(0,	 0) , and R is the remainder term in the Taylor sera as expan-
sio'n.

For sufficiently small source errors, denoted by be i, one can write
since R approaches zero,

Ox	 X (C	 en	 en)	 X(0 ) 0 )	 0)

a ,be ,, + a a.!-,se" +	 + a 3.n 5en.%

Where

6x
a 
Ij	 3e j 0

Thus, for sufficiently small e i ( l -5 j	 n), the injection error, bx, isx.
accurately approximated . by . a linear combination of the ei. Similar results
can be shown for y, z, X, Y)

Then

5x	 a j.13e I + a 125e 2 + + a in 3e n

by a 13 1 4, a,-_23e2 + + a 2n be n

a6lbea. + a L5 ,n3e 2 + + a6n be n

or in matrix notation

M	 Abe (2)
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Micro

bx

bX	
by
	

A. = [a
	

be
	 e

A

0Z
	

be
n

The terms in the A matrix would be computed on a digital computer in a
comprehensive trajectory program. For n error sources the calculation
of the A mats: would require n + I machine runs. On the first of these
Mins, all source errors are zero and, of course, X, Y, z, X, y, z are
nominal. on the second and subsequent runs, each independent error
Source is perturbed, one at a time, and perturbed values of x, y, Z ' :k.,
9, ^ are found. Each such run yields a column of A. For instance,

x(O, O p .... be,, 0, . .. 0) - X (o p 0 )	 0)

a 
j	 6e 

i

5e j, 0) @ .. 0) - z(0, 0 0 ... ^ 0)
a0i 

be 
i

Thus, under the assumption that linear perturbation theory is valid, tra-
jectory errors can be accurately approximated by linear cembinations of
source errors.

S13CTION III. DERIVATION OF THE PROBABILITY DENSITY
'DUNCTION INJECTION ERRORS

The injection errors are described statistically by their joint
probability density function, f(aX) (see Appendix A). The derivation of
f(t)X) is based on the properties of multivariate normal distribution

' 
s

(Appendix B ) and the results of the linearization procedure of section II.

The hardware errors o i (l	 ai :i n) are assumed to be independent rndom
varizibles, each normally distributed with mean µi = 0, and variance, cyÎ.
The zero moan assumption is valid, since if the -random hardware errors 

4
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fiavc lloll-zvro 11)( 140M, divy could bo corrected before Ic., uncli. In practice,
-0,.-WaLfc:i or Lho indINIdual errors can be satisfactorily approxi-

maLocl by normal dJSL?;LbLILi0II$. VoIltbarmore, sinC0 the number OE System,
errors is large and the errors zare often independent of one another, the
ec,, It t-ra] limit thoorem asserts that the sum of these errors approaches a
normal distribution in the limit regardless of the clistribution of the
individual system errors.

Usina the fact that linear combinations of independent normally d^. 's-
tributed random 'variables are normally distributed (see Appendix (".), and
the resul ts of Section 11, it follows that, the Joint distribution of the
injectioll errors is six-dimensional normal. That is,

f (k5x) *_I - — - I
	 t! -l/2(fDX-B)

T 
M- 1 (U- B)

(2 g)

W11 e r e

H 00	 0

B (by )	 0

0

I

and M, the covariance matrix of injection errors, is given by

M = E[ Gall) (C)X) Ir ] = AAAxe,  (Appendix 1),

Where

0	 0

A = E [ (be) (be) TI	 0	 as

0	 0
n

A-may be determined from pre-flight laboratory tests, Once A is found,
the probability density function of injection errors can be readily
ob to ined

5
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SP,-GTION IV. DISPERSIONS AT THE TARGET

In the absence of post injection guidance, the dispersion at the
ta, rgc-t is a function of the errors at injection. The statistical des-
cription of injection errors, therefore, can be employed to obtain a
convenient pro-flight description of trajectory dispersion at the target.

The dispersion at the target may be measured 4 n terms of miss coor-
(I tna L L, s . The miss coordinates, M, and M, 2 ,,are measured in a plane per-
pendicular to the approach velocity vector.

From perturbations on the standard trajectory a matrix, U, may be
formod sucb that

rMa,	
UbX = Maep

LMT

where A and c)a are obt.-ned from Section H.

Since linear combinations of independent normally distributed random
variables are normally distributed, it follows that the joint distribution
of M, and M,-, is bivariate normal. That is,

.0

'I 41-1-IM)

t (MI, M0	

e -1/21 (M.1- 1^1 3, , Mo,- PM 2 )C_ 	
M	

(3)

21c( I C 1 )1/2

where Pm ,.	 0, and C, the covariance matrix of the miss components

IS gLVCLL by

C = E[(Ubx)(Uax) T] = UMUT )

wliere M is the covariance matrix of injection errors.

n
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In ardor Lo determine a convenient description of trajectory disper-
sion, let E(M:L , M.,--,) - CONSTANT. Than the exponent in (3) is also a con-
stant, That is, rewriting the exponent of (3) gives

Y	
M, M11 *\

2p	 +	 k,2	 (4)
\,Icrm,,/ CrM

wllorc^ k"­ is a constant, p is the coefficient of correlation between Ma,
and M:, ) and (YM	 are the standard deviations of M, and Ma, respectively.

Equation (4) is the equation or, an ellipse (Appendix IV) having semi-
major and semitninor axes kAl and kA,,, where

I

	

(Ohl + ama	 2	
+ (Pam CrM

1/2

+

	

crg	
+ ( )2

2	
Por M 1 ors 2	

(6)

JP,ach of these ellipses has ius major axis inclined at an angle 0 to the M2,
axis, where

2p )I	 CY,	
2

0	 tan-1 -(Ml '2	 f or um2	 2 -	
,

P_	 M2

rf	
0	 it/ 4	 for
	 (7)

1,1he probability of the miss being within such an ellipse is

P	 e
	 2 ke

f

tt



r;r^

r

L\

it

t/^/J

t

V

r J

P	
cs

SECTION V. DETERMINATION OF THE MAGNITUDE OF
THE AVERAGE ;MIDCOURSE MANEUVER

For a given mission, the analysis of the preceding section may indi-
craLe a liigh probability of excessively large trajectory errors at the
target. It may then become necess ary to allot propellant for making mid-
course corrections. Let P be the probability that enough fuel is carried
on the spacecraft to perform the required corrective maneuver. Since the
magnitude of the midcourse maneuver depends on the covariance matrix of
Injection errors, preflight knowledge of the probable magnitude of the
midcourse maneuver can be obtained. This makes it possible to allot a
sufficient amount of propellant to insure a probability, P, of accomplish-
ing the midcourse maneuver without carrying an excessive amount of fuel.

For a midcourse point on a given trajectory, i t can be shown that,
to a first order of approximation, the three components of the maneuver
are given by

Vx

V = V 	 = K6X KA 3e,

VL z

where K is a (3 x 6) matrix consisting of elements computed on a standard
trajectory. Since E(Vx) = E(Vy) = E(V z ) = 0, we have

=G

E[V VT] = KE[3X SXT] KT

= KMKT.

KMiC T is the covariance matrix of the three -dimensional normal distribution
of the components Vx, V and V 	 Although Vx , V and Vz satisfy a joint
normal distribution, the distribution 	 of (V, + Vyy+ Vz)i^z = V is not
normal.

Now, there is an orthogonal transformation which diagonalizes the

covariance matrix ITT so that the elements of the diagonal are the a igen-
values of IORT [5] . in this new coordinate system let Vx 1 , Vy l , and Vz1
be the random variables denoting the components of the midcourse maneuver.
The eigenval,ues nf KMKT are a2 , a2 and cr2 the variances of Vx1' VyJ,zi
and VZ1 respect-' aly. The following procedure (obtained from ref. 8) may
be used to approximate the AV capability required to insure a probability,
P, of accomplishing the midcourse maneuver.

8
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Lot lt d denote the largest eigenval.ue of M<T . If N/171 is at least an
order of magnitude larger than both 

NrI72 
and 47;, a one-dimensional normal

y	 . distribution of

is V
X.1

V,	 Vy1
A -

.yr

V z

Al l 	 A

A te.° is assumed.	 We have
.	 .

rt ky	 _ l x^

P-	 1	 1	 0	 2 k ^	 dx,
2nkz

_	 ••
G

-n	 k^

whore n can be determined from Tables of Normal Distribution.	 Then,
V` = n 

4 
k

A

if 471 1 and	 k L̂ are of the same order of magnitude and are at Least an
` order of magnitude larger than 4, a two-dimensional normal. distribution

of V, is assumed.	 Thus, in polar coordinates,

n	 k, 	 21	 1 r2 .

a	 i
^

_

P_

	 1	
e	

2kr
T(1c	 rd pdrJ	 ^

s	 to 0	 0

}
n2/2

- 1 - e } .

and

n =	 (l/1-P)2	 and	 V = n 4kj.

r

y,
r.
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N

if '417 1 , J 7,, and
	

are all of the same order of magnitude, a three-
`''	 di,mens ional normal distribution 

O f V
coot  ilia tes , 	

.1 is assumed. Then, in spherical

k ,	 j(	 2	 r

P	
e 

2 k, 
r 2 sin ode dOdr

0	 0	 0	 (2 7tk i)

n

e 2 "' 3- dr	 n	 -n2/ 2

-n

and

o

t	

—V = n J3..

Thus, a preflight statistical analysis can Ele used to obtain a good esti-
mate of the magnitude of the midcourse maneuver.

^^f

^f

if
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APPENDIX A

REVIEW OF ELEMENTARY STATISTICAL THEORY

A random variable x is one whose value can be predicted only on a
probabilistic basis. A function 1 (x), such that

b
P[x is in (a ,b)] =	 f(x) dx,

a

is called the probability density function of the random variable x.
The d istribution func tion, F (x) , is then

x

F(x)	 f f(x) dx.
- k^

A physical interpretation is given f(x) and F(x) by considering a unit
mass distributed along a straight line such that the fraction of mass
concentrated to the left of X = x is F(x) . Then

dF x _
dx	 f(x),

the density of the unit mass at point x.

The mean or expected value of x, E(x), or µ, is given by
co

p,	 E (x) =	 xf (x) dx.
_CO

L(x), the coordinate of the center of gravity of the mass distribution,
provides a measure of the location of the distribution.

The variance of x, V(x) is given by

oQ V
V(x) _	 [x	 E (x)l' f(x) dx;

QO

and again V(x) is the moment of inertia (or the second moment about the
mean) of the associated mass distribution. V(x) is a measure of
variation of the distribution.

In many cases, the result of a random process is not expressed by
one observed quantity, but by a certain number of simultaneously observed
quan tities. For example, in a study of guidance errors, the random
experiment involves the simultaneous observation of six random variables
the errors in three components of position and three components of velocity.

11
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The one-dimensional concepts
tgith the probability that th
simultaneously belong to the
ro;pecti,vely. That is,

p (a , ^ x < b, ,..o,

are now ,gcneralized,and we are concerned
La random variables x l , x2 , ... ,x will
intervals (a, ,b1 ), (a;; a,,b ), .. ^n (an ) bn),

an<xn,.=bn)

b	 )b n

... J	 f (xJ , ... 'X n ) dxl , ... ,dxn I
a. an

whore f (xl , x2 , ... , x11 ) is the join` probability density function of x, , . • .
.xn•'

In general , the random variables will. not be independent of one another.

That is, Pl ai < x i G b i ] will depend upon the values assumed by all the other

i-Gandom variables in the ,joint distribution.

The mean or expected values, E(x i ), of the xi are defined by

CO

m i	 E (xi ) =	 ... J x i f (xJ , ... , xn ) dxl ... dxn

- 00	 -CO

If the second order moments are computed about the mean values, then
the covariance cr	 is obtained, that is

xlxj
ar	

(
a

'
o

ox , X.	 EC(xi - mi )(xj 	 mj )j =	 J (Xi - mi )(x^ - mj)
^ a -00	 -00

f (xi , .	 , xn ) dxi 	. dxn

If i = j, this second order moment is called the variance ax 	 The

standard deviation is simply the square root of the variance, and is
used as a measure of the dispersion about the mean.

Correlation coefficients of the variables x i and xj are defined as
follows

PXix	
oxiXJ/ aX. CrX.

^	 ^	 a

The correlation coefficients are bounded between -1 and 1 and are equal
to 1 for i _ j

12
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if xi and x j are independent,	 then pxi xj = p .	 If p +1,	 there is a

^^^ ,	 .• complete linear dependence between the variables xi and x j . Correlation 
coeffic i ents provide a measure of the degree of linear dependence between
the respective variables.

Let
A [mxn ] _	 [a	 ] ... i j

. 4 The expected value of the matrix A, E [A] , is defined by

Let

x y

X -

r xn

Then,

^ E(xj)
E (x) -

is E (xn)

° The covariance matrix, C, of the random vector x is defined by

•..'
C	 E[(x - E(x))	 (x - E(x))T].

Then•i. 

...
[nxn ]

C	 _ E[xl - E{xi))	 (x.	 - E(x,))]{nxn]

13
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a.

or

	

U'X	 symme t.r is

	

pxixo X1. ^X4	 ^X`

C -

2
^xJ.xn Cr
	 exn 	 pX^Xn 

ox^ 
oxn ... oxnfi

It is also necessary to consider linear combinations of the random
vector x and to determine the new covariance matrix. For simplicity, let

P`

E (x)	 0, then C	 E [xxT ] . Suppose

I
y [mxl = Ii [mxn l x [nxl ] .

The covariance matrix of y is

M [mxm ] = E (YYT )

_ E (11xxTHT }

Let xxT D; then

M [mxm a E {HDHT

3	 n	 n

a

	

E	 hi j d jk hik

j=1 k=l

ere

H = [hi la	 D = [d ij ^,	 ]3T = [hjil.



a

Since

E (ax I + bx2 ) = aE (x) + bE (x2) a

n	 n

r2	 hi j L (' jk ) hik
j=1 k =1

=HE(D )HT

= H E (xxT ) tj

-- HC HT.

A X	 '^
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APPENDIX D

NODIAL DISTRIBUTION

A fundamental 'role in probability theory is played by the function
(x), defined as follows 	 For any real number x,

1 (x-11) 2
Ax) 

_ I	 e' 2 0	
(8)

Q,

A random variable x is said to be normally distributed if its probability
y	 density O, (x) is given b	 1 for an real number x. That is they ( )	 y	 probabil-

ity that- a	 x '.5 b,

b

.,,	 P[a	 x 6 b1 - J	
(x) dx..,.

a

The parameters µ and o are the mean and standard deviation of x,_	 respectively.

The probability that x will fall in the interval 	 ka is givenb
y

p+ko	 1(x^ti) 2
P	

J
' 	 _ e	 dx.

µL kcr

Let

t = 
ko'

Then

k	 - 1 t2
* 	 P	 e 

2	
dt.

-k

17
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Whoa k = 1, 2, 3, it is found from tables of the normal density function
that P - .68, .95, and .99, respectively.

rl
We now consider 

the 
normal distribution of two random variables.

The two-dimensional random variable (x, y) is said to have a bivariate
normal distribution if its joint density function, E(x, y), is given by

X.- IIX	x

1	 2 (1 -	
x

(X ) Y)	 e	 ax	 y	 Cly

2
X"Y

(9)

That is,

Pf(x,y)c-Al	 f(x,y) dy dx,

A

where A C--	 IAX) [1y, ax) a are the mean and variance of x and y,
respectively, and p is the coefficient of correlation between x and y.
Notice that :C(x,v,) may be written in the form

X- 
µx-1Y-PY]M Y-µy

f(X,Y)	 e
4(2g)2(JMJ )1/2

where

2	 Por 	 CY CY
x	 x y

M =	 I
2

P ox oy 	oy

M is the covariance or moment matrix of x and y. Again the probability

that 1,tx 	ax 	x	 I-Lx + a. and ,y 	 ay :-5 y	 µY + ay is given by

+a	 +CT
x x y Y

N =	 r	 f(x,y) dy dx.

I L
x

-U	
x

a
I-ly y

18
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can be shown that

x,	 1 K{

P WX " Kex
 :' x L] µx + Kax , µy  Kcry y :5 µy + Ko`y	 2 e	 ,

when K = 1, 2, 3, P = •40, .86, and .99, respectively (Reference 4).

'J;he preceding discussion  may be generalized to n-d icuens fans 	 Let

be a random vector. We shall say, that x is normally distributed in n
dimensions  if its probability density function is

1	 _ 1(x-B)TM-I(x_B)

	

Y;	 x

t(x)	 e	 (10)
^k (2n)n/^	 ?

where

	

•t	 x

x

	

i 	 xn

i B 	 !-

xn

t	 <`	 and MI., is the covariance matrix of x y, x2 ,	 , xn.

Equation (10) is completely determined once Mn and B are known. Also,

	

f	
P[xe A]	 t(x) dx i	dxn,

x

Axt;

where A C R,(n)

19
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APPENDIX C

LINEAR COMBINATIONS OF NORMAL RANDOM VARIABLES

This appendix shows that a linear combination of independent
normally distributed random variables is normally distributed, The proof
is based on the proper-ties of characteristic functions.

Lot x 3. , x,o '* I xn be independent normally distributed var4.ables,$­ 	
*tba parameters of xj being µj and aj . The characteristic function of xj

is given by

itx	 it- 2E (e	 J	 "

	

) = e j	 3

Lot

4

x = X, + X;2 + ... + Xn'

The characteristic function of x is the product of the charactoristic
functions of all the x	 Thus,

itx	 itx 
I	

itx a	
itx n

E(e	 E(e•e	 e

n	 itx
H E(e

"=1

4
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This is the characteristic function of a normal distribution with
j pay: ame ters
t

n	 n
and	 a =	 cr2µj	 j

j=l	 j=l

Thus, the sum of independent normally distributed variables is itself
normally distributed.

fj

Si.nc, any linear function of a normal variable is itself normal,
follows,by the preceding paragraph, that a linear function

4i

alxj+aIx2+ ... + a n x n + b

'i	 of independent normal variables is itself normal with paranxeters
;E

µ a I. tI +a2µ2 + ^ an^n +b

anj

L
a	 a 1 (Y., +	 + an Cr

22



I

r

I

.
APPENDIX D

f

DISPERSION ELLIPSES
yr.

In this section it is shown that the probability that the miss coor-
dinates	 (Ml , M) are contained in the ellipse

..
22 p M	 M,,	 M,,

p _ r
M:L	 M 1 M` 	M2

4

k2.is given by l	
e -1/2

.fin.

`	
r Equation (11) represents an ellipse in the (M 1 , M2) plane with center

at the origin, or aim point, and axes that are not parallel to the coor-
d ina tes axes as Long as p A 0.

h"he coordinate system may be rotated so that the axes of the ellipse
are parallel to the new coordinate axes. 	 The linear transformation required
is dof ined by

v

r y 1 = M, cos 0+ M:, s in 0
V (Reference 4)

. y` -- -M 1 sin 0 + M` cos 0, .

3A.
Where

 1

2 P 6M	 aM

tan 20 -	 2	 for QM	 oM

<
I'm

-	
"I'M1	 2

k	 4
b.
7	 Y ^

t

,. and

^	 .

t 0 -	 for eM
	

- QM^^.

ti.
Carrying out this rotation gives 1

s 2	 2

a T1	 T2

cohere T1 and T2 are as defined in section III.
.#µ

\
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Now the quantity
.^	 y^	 y^

is distributed as an A2 variable with two degrees of freedom. Thus, the
probability, P, that (M 3.1 M`) lies in the ellipse defined by (1) is givenby

k2

	

2i"' II"1	
(xP12)µ-' e -1/2 x2 d(x^),

	

?	 (r /	 5^
t	 0

where µ 1. Thus,

k2

P =	
l e-1/2 x2 dX
2

0

	

ry	 -1/2 k`'-
e

	

`	 For k	 1, 2, 3, P = .40, .86, and .99, respectively.

of

0

. J

	

r	 ^>:

{

1

i
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APPENDIX E

EWIPLE PROBLEM

In order to illustrate the use of the material presented in the body
of this report, the following example problem is presented. The hardware
error sources, and the matrices A, U, and K represent realistic but not
necessarily exact values.

The 10 values of six significant error sources (three each of con-
stant gyro drift rate, and accelerometer constant bias error), and the
matrices A, U, and K are given. From these the covariance matrix of
injection errors, trajectory dispersion at the target in the absence of
post injection guidance, and the probable magnitude of a midcourse
maneuver for a typical interplanetary flight are determined.

The platform hardware error sources are

Constant Gyro Dritt Rate

Cr

GX	 0.025 deg/hr

GY	 0.025 deg/hr

GZ	 0,333 deg/hr

Accelerometer Bias

or

BX	 0,1 x 10-6 	km/sect
BY	 0.1 x 10-6 	 km/sect

BZ	 0,1 x 10- 6 	km/sect

r

Then, in the notation of Section II,

1 .000625	 0	 0
0	 000625-	 0
0	 0	 .001089A=	 0	 0	 0
0	 0	 0
0	 0	 0

NEWS

0 0 0
0 0 0
0 0 0

10-14 0 0
0 10-14 0
0 0 10-14
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mt, hardware errors are I inearly related to the injection errors by the
matrix A, where

- 4.609 -66.994 3.662 -.48066 x 10 E1 -.27300 -19.123

-	 5.785 -	 1.122 -30.257 .96666 x 10 4 -.45600 -	 .24966

-	 4.104 -17.717 0.365 .35666 x 10`' -.11933 -	 9.3346

A 2.306 -16.240 28.133 .11833 x 10' .12666 8.46000

33.186 -	 0.133 -195.173 .66666 x 10 4 .57000 -	 .40660

-26.826 81.386 0.520 -.42333 x 10 1' -.30333 -20.623

A may be found by the method described in Section II.

1'lic covariance matrix of injection  errors is given by 1`i = A 11 AT.
Thus,

16.493 Symmutric

-0.008 1.021

2.538 0.039 1.079M _

-0.838 -0.945 -0.600 1.759

i	 -0.792 6.309 -0.124 -5.964	 42.176

0.618 0.075 1.091 -2.598	 -0.591	 8.845

The matrix U, relating injection errors to trajectory errors at the

target, is taken to be

	

-90.744	 -50.985	 - 1.314	 -1746.410	 - 99.936	 -.733
U=

	

-17.058	 28.050	 -92.698	 - 37.376	 -575.802	 -1873.930

Thu covariance matrix of the miss components M l and M2 is given by

C = LIMUT

3,370,249	 -11,1881,598

-11,:88,598	 38,535,805



t

ye. fly `^

q& 	 ♦ 
A

.. Us i ng	 ( 3 ) ,	 ^4 ) ,	 (5) of- Section ^V gives

i ti}*^'r't{LL^

iiiTTTj

	

:. A, - 6464. 81. km

335.00 kmh

a
p	 - 16.23 deg.

Thus, the probability of the miss being within an ellipse, centered at
the aim point, having semimajor axis T,, inclined at an angle 0 to the

M 3, axis, and s emiminor axis T2 is 0.40.

The matrix K, relating injection errors to the components of the
mid Course maneuver, IS

-.216	 .0216	 -.0096	 -12736.55 1196.78	 -537.22

K = 10
-a

.0202	 .0560	 -,0030	 1150.61 3317.27	 -179.25

` -.00916	 -,0029	 .1784	 -537.94 -178.28	 10587.67

The covariance matrix of the components of the midcourse maneuver is

.495 x 10-05	 Symmetric

MCT = .383 x 10-5	 .422 x 10-5. 

.285 x 10-	-.836 x 10- 6 .102 x 1.0- 4

Y .
k

The eigenvalues of KMK	 are

x

k, = .11.593 x 10-4

r<<
x k2 - .90764 ^C 10 7

« ; y lc	 _ .77415 x 10-5.#

z

`
27
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Since	 , -Ik: are of the same order of magnitude and are at least an
order ox magnitude larger thanc;Z , a two-dimensional normal distribution
of Vy is assumed. Then, to approximate the INV capability required to

LA	 insure a probability of .99 of accomplishing the midcourse maneuver, let
kP-.99inA:

and

AV n ky.

r	 The reglli,red ©V capability is 10.33 m/sec.
r

•_ r

,

f

1A
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