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AERO-ASTRODYNAMICS INTERNAL NOTE 68-2

THE USE OF STATISTICS IN GULDANCE ANALYSIS
by

ABSTRACT

A statistical amalysis of space guidance systems, based on the
properties of multivariate Gaussian distributions and linear perturba-
tion theory, is discussed. The results of this analysis can be applied
to any mission regardless of the nature or complexity of the trajectory
or the gnidance system, as .long as the linear perturbation theory is
valid. The theory needed to statistically describe the injection errors,
trajectory dispersions at the target due to the injection errors, and the
calculation of the average midcourse maneuver of a guided spacecraft are

reviewed.
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AERO-ASTRCDYNAMICS INTERNAL NOTE 68-2

THE USE OF STATISTICS IN GUIDANCE ANALYSIS

SUMMARY

A statistical analysis of space guidance systems, based on the pro-
perties of multivariate Gaussian distributions and linear perturbation
theory, is discussed. The results of this analysis can be applied to
any mission regardless of the nature or complexity of the trajectory or
the guidance system, as long as the linear perturbation theory is valid.
The theory needed to statistically describe the injection errors, tra-
jectory dispersions at the target due to the injection errors, and the
calculation of the average midcourse maneuver of a guided spacecraft are
reviewed.

SECTION I. INTRODUCTION

The application of statistics to guidance analysis has received
considerable attention during the past few years. Noton [1l] has pointed
out that the treatment of injection errors as independent random vari-
ables may sometimes be a poor approximation, and cross-correlations
between injection errors must be taken into account. This paper reviews
the theory (taking into account the cross-correlations between injection
errors) needed to statistically describe the dispersions at the target
and to determine the magnitude of the average midcourse maneuver for a
typical interplanetary flight. To accomplish this, a statistical know-

- ledge of the system errors, e.g., gyro drift, accelerometer errors,

engine shut-down errors, etc., is used to statistically describe the
injection errors. This representation of the injection errors, along
with a state transition matrix, is used to describe the dispersion at
the target planet. Such information is directly related to the proba-
bility of mission success. :

The analysis used is credited to Noton [1] and is based on the pro-
perties of multivariate Gaussian distributions and linear perturbation
theory. ‘The results of this analysis can be applied to any mission
regardless of the nature or complexity of the trajectory or the guidance
system,as long as linear perturbation theory is valid.




SECTION II. JUSTIFICATION FOR USING LINEAR COMBINATIONS OF SOURCE ERRORS
TO APPRCXIMATE TRAJECTORY ERRORS

Injection error analysis is often based on the method of linearized ‘
perturbations. The approach taken is to represent the injection errors
as linear functions of the source errors. A statistical description of
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the source errors will then yield a statistical representation of the
injection errors.

It is assumed that the injuction coordinates (x, ¥, 2, X, ¥V, 2)
are functions of the source errors ei(l £ i 5 n) and assume nominal
values when e, = 0(1L s i 2 n). That is,
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x = x(0, 0, ..., 0)

y =y(0, 0, ..., O)

£(0, 0, ..., 0)
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are nominal values of the injection coordinates.

Consider a Taylor series expansion of the first of equations (1)
about the point (0, O, ..., 0). Then,

= ox Ox ;
X(el, e2’ e 0y en) = X(O, O, “ e O) + ael el + o0 @ + aen en + R’
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denotes the partial derivative of x with respect to e; evaluated at
(0, 0, ..., 0), and R is the remainder term in the Taylor series expan~

s ion.

For sufficiently small source errors, denoted by Sey, one can write
since R approaches zero,

where

i

b
i

X(Gl, Gg, vy Cn) - X(O, 0, »eoey 0)

|

15 Qe,| -
o
Thus, for sufficiently small e;(1 & j s n), the injection error, dx, is
accurately approximated by a linear combination of the ej. Similar results
Z

can be shown for y, z, X, Y,

Then

.

= aq110€q + a,pdes + ... + ain 58n

o
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Bz = agq,dey + agpdes + ... + agp Se,

or in matrix notation

85X = Abde, (2
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The terms in the A matrix would be computed on a digital computer in a
comprchensive trajectory program, For n error sources the calculation
of the A matrix would require n 4 1 machine runs. On the first of these
runs, all source errors are zero and, of course, x, y, z, X, ¥, 2 are
nominal. On the second and subsequent runs, each independent error
source is perturbed, one at a time, and perturbed values of x, y, z, X%,
y, % are found. Each such run yiclds a column of A, TFor instance,

X(O, O, sy Seiiro, e O) - X(O, O, e e vy O>

o de
J

Q.4 ~ .
LJ be-

Thus, under the assumpticn that linear perturbation theory is valld, tra-
jectory errors can be accurately approximated by linear ccmbinations of ’
source errors,

SECTION TII. DERIVATION OF THE PROBABILITY DENSITY
YUNCTION INJECTION ERRORS |

The injection errors are described statistically by their joint 0
F probability density function, f(®X) (see Apperdix A). The derivation of
R £(6X) is based on the properties of multivariate normal distributions
) (Appendix B ) and the results of the linearization procedure of Section II.

&5{ The hardware errors e{(l % i = n) are assumed to be independent random
: variables, cach normally distributed with mean p; = 0, and variance, a?,
i The zero mean assumption is valid, since if the random hardware errors
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toe have non=gero means, Lhey could be corrected before launch, In practice,
Lo the statisties ol the individual ecrrors can be satisfactorily approxi-
L mated by normal dIstsibutions, PFurthermore, since the number of system
e ervors is large and the crrors are often independent of one another, the
‘ contral limit theorem asserts that the sum of these errors approaches a
M ' normal distribution in the limit regardless of the distribution of the
K individual system errors.

Using the fact that linear combinations of independsut normally dis-
" tributed random variables are normally distributed (see Appendix ¢), and
the results of Section II, it follows that the joint distribution of the

injection errors is six-dimensional normal, That is,

L _-1/2(5%-B)" M~1(5X-B)

HOR = e

* where

5 . ]
e E(dx)
E(8y)

w
L4

(@I o
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]
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and M, the covariance matrix of injection errors, is given by
. o 3 T T ,
M=FLE[(BX)BX)"] = AAA”, {Appendix I),

where

Q
=

o

o

A=E[(Be)(Be) ] = {0 o5 .

Amay be determined from pre-flight laboratory tests, Once A is found,
the probability density function of injection errors can be readily
obtained. '
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SECTION IV, DISPERSIONS AT THE TARGET

In the absence of post injection guidance, the dispersion at the
target is a function of the errors at injection. The statistical des-
cription of injection errors, therefore, can be employed to obtain a
convenient pre-flight description of trajectory dispersion at the target,

The dispersion at the target may be measured “n terms cf miss coor-
dinates. The miss coordinates, M, and M, are measured in a plane per-
pendicular to the approach velocity vector,

From perturbations on the standard trajectory a matrix, U, may be
formed such that

I
= UtX = UABde,

where A and oe are obt..ned from Section II.

Since linear combinations of independent normally distributed random
wariables are normally distributed, it follows that the joint distribution
of My and Mn» is bivariate normal. That is,

o Mg
-1/2\‘(Ml-«;m, Mamtag )0 (e, J

1 o (3)

25(|c|)L/ 2

H

LMy, Mp)

where My, = MM, = 0, and C, the covariance matrix of the miss components
is given by

Cc = E[(U8X) (be)T] = UMUT,

where M is the covariance matrix of injection errors.
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In order Lo detcrmine a convenivnt description of trajectory disper-
sion, let £(My, M;) = CONSTANT., Then the exponent in (3) is also a con-
gtant, That is, rewriting the exponent of (3) gives

! . 2 #1 2.
, - 1‘) - 90 (?l{) <?2j> " (fau J = k2 4
l - pa« "CO-M l/ 2 % O‘M‘ ; Q'ME‘ ) ( )

where k¥ 1s a constant, p is the coefficient of correlation between M;
and M., and qu, Oy, are the standard deviations of Mj and Mp, respectively,

Equation (4) is the equation of an ellipse (Appendix IV) having semi-
major and semiminor axes kA, and kA,», where

1/2

1

RN
M, T 0N
2

ol 2y _ |72 2 2
NS = 5 (HM:L + GM‘?) L | + (QUI'Il GME) J

llach of thesc ellipses has ite major axis inclined at an angle © to the M;
axis, where

20 0 G
- M
0 =% tan”?t LM for oo #* of
2 . R My Ma
Mo M
[~

i - 2 2 (7)
0= 1/4 for oM. = %

The probability of the miss being within such an ellipse is

-1/2 K%
P=1~c¢ 1/2 k

(whcn I = 1, 2, 3, P = O¢40, 0‘86, 0.99) (A‘Ppendix. IV).
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SECTION V, DETERMINATION OF THE MAGNITUDE OF
THE AVERAGE MIDCOURSE MANEUVER

For a given mission, the analysis of the preceding section may indi-
cate a high probability of excessively large trajectory errors at the
target, It may then become necessary to allot propellant for making mid-
course correchions. TLet P be the probability that enough fuel is carried
on the spacccraft to perform the required corrective maneuver. Since the
magnitude of the midcourse maneuver depends on the covariance matrix of
injection errors, preflight knowledge of the probable magnitude of the
midcourse mancuver can be obtained. This makes it possible to allot a
sullicient amount of propellant tc insure a probability, P, of accomplish-
ing the midcourse mancuver without carrving an excessive amount of fuel,

For a midcourse point on a given trajectory, it can be shown that,
to a first order of approximation, the three components of the maneuver
arce given by

V=1|V | =K8sX=KAbe,

where K is a (3 x 6) matrix consisting of elements computed

on a standard
trajectory. Since E(Vy) = E(Vy) = E(V,) = 0, we have

T

it

- - T, . T
E[V V'] = KE[BX &X"] K

= Mk T,

KMKT is the covariance matrix of the three~dimensional necrmal distribution
of the components Vg, Vy, and V,. Although V., Vy, and Vj satisfy a joint

normal distribution, the distribution of (Vi + V§'+ Vz)l/2 = V is not
normal.

Now, there is an orthogonal transformation which diagonalizes the
covariance matrix KMKT so that the elements of the diagonal are the eigen-
values of KMKT [5]. 1In this new coordinate system let Vxl, VYl’ and Vzl'

be the random variables denoting the components of the midcourse maneuver.

The eigenvalues of KMKT are oil, c?l, and dgl, the variances of Vxl’ Vyl,

The following procedure (obtained from ref. 8) may
be used to approximate the AV capability required to insure a probability,
P, of accomplishing the midcourse maneuver.

8

and Vg, respect’ 2ly.




Lot ki denote the largest eigenvalue of KMKT. If VK7 is at least an
order of magnitude larger than both ~k; and Nk, a one-dimensional hormal
distribution of

<

A&
L}

<3

is assumed, We have

tnk _ 1l x®
P = f L , 2k dx,
'\J.'Zﬂtkl
=N kl

where n can be determined from Tables of Normal Distribution. Then,

V=n ‘\)kl.

1f Nk, and Nk are of the same order of magnitude and are at least an
order of magnitude larger than Nk, a two-dimensional normal distribution
of Vi is assumed. Thus, in polar coordinates,

v}

n‘\/kl 211:

N
_ 1 2 k;
P= f f 27, © rdodr
0 0
_e
=l-en/2

and

Nin(l/1-P)2 and V =n Nk,.
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e all of the same order of magnitude,

a three-
ribution of V, is assumed,

Then, in spherical

1Y)

L2

xﬁ

Ll

a3

g - L
0

r? sin ¢ de d¢f dr s

,a;.i‘fx:“““f‘ o
=]
-~
=
i
1Y)

T on?
= y/‘ L e 2k dr - nn2/x ™ /2

WY T

et
i
=
=
}-J

. and
,,;f_”" V = nnwN k’l'

» Thus, a preflight statistical analysis can be used to o

btain a good esti-
sy mate of the magnitude of the midcourse maneuver.
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APPENDIX A
REVIEW OF ELEMENTARY STATISTICAL ‘THEORY

A random variable x is one whose value can be predicted only on a
probabilistic basis. A function £(x),such that

b
P{x is in (a,b)] = L/ £(x) dx,

a

is called the probability density function of the random variable x.
The distribution function, F(x),is then

X

F(x) = Jf f(x) dx.

-

A physical interpretation is given f(x) and F(x) by considering a unit
mass distributed along a straight line such that the fraction of mass
concentrated to the left of X = x is F(x). Then

M = f£(x),

dx

the density of the unit mass at point x.

The mean or expected value of x, E(x), or y, is given by

[o4]

X .
w o= E(x) = L/ xf(x) dx.
-0
E(x), the coordinate of the center of gravity of the mass distribution,
provides a measure of the location of the distribution.

The variance of x, V(x) is given by
(&)

V(x) = L/‘ [x - E(x)P f(x) dx;
~00

and again V(x) is the moment of inertia (or the second moment about the
mean) of the associated mass distribution. V(x) is a measure of
variation of the distribution.

In many cases, the result of a random process is not expressed by
one observed quantity, but by a certain number of simultaneously observed
quantities. For example, in a study of guidance errors, the random
experiment involves the simultaneous observation of six random variables -
the errors in three components of position and three components of velocity.
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The one-dimensional concepts are now generalized, and we are concerned
o with the probability that the random variables x, , Xppeee Xy Wil)

v simul taneously belong to the intervals (a,,b, ), (an,bp),,,,, (a, 5 bp)
b rospectively. That is, ’

] Pla, ~. x < by ,.. a <x b
i (4 2 x g by, n="n-= n>

Ra Rn
} \/ o-.J f(x1,ov.,xn) dxl,oo-,dxn H

al an ‘.

i

where f(x, , xz,...,xn) is the join% probability density function of x,,...,x
: n
L In general, the random variables will not be independent of one another.

That is, Pla,

;=% < b4] will depend upon the values assumed by all the other L2

random variables in the joint distribution,

8
. *
The mean or expected values, E(xi), of the xi are defined by “&?
0 o
“
]ni = = f e e / xif (x-l LI ’Xn) dx1 LI ] dxn . ay ":
-0 -0 v
; If the second order moments are computed about the mean values, then
: the covariance ¢ is obtained, that is
g i¥j
1 ! 0 00
, O =E X. —'m. x. = o = LI I ) x- - . x- - [}
gl ey = Bt = m ey < )] [ [y -y =)
-0 -0

f(xl,...,xn) dx, ...dx_ .

A If i = j, this second order moment is called the variance oj .  The
» . ) ] i ¢

i standard deviation is simply the square root of the variance, and is

used as a measure of the dispersion about the mean.

Correlation coefficients of the variables xi and x, are defined as
follows: J

] P =0_ L .
; XXy xlxj/ Oy Oxj
‘ L

4 The correlation coefficients are bounded between -1 and 1 and are equal
to 1 for i = j.

12
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If X4 and X; are independent, then px1 X3 = 0. If p=:kl, there is a

complete linear dependence between the variables xj and x;, Correlation
cocfficients provide a measure of the degree of linear dependence between
the respective variables.,

Let
[mxn] _

The expected value of the matrix A, E[A], is defined by

B[A] = [E(ag;)].

Let
X1
X = . .
_*n
Then,
E(x1)
E(x) = |. .
E(xp)

The covariance matrix, C, of the random vector x is defined by
— N T
C=E[(x - E(x)) (x - E(x))"].

Then

C[nxn] ][nxn] ,

= Blx; - E(x;)) (x; - E(x,))

13
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1
2
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Prixp “x1 “xp Xn
: C = . B
M £
0 Oy Oy 0 O, 0. ... 02
? Xlxn 1 n XpXn Xz Xn Xn s
H e -J

It is also necessary to consider linear combinations
p vector x and to determine the new covariance matrix.
E(x) = 0, then C = E[xxT]. Suppose

of the random
For simplicity, let

i y[mxl] - @men] x[nxl]’

The covariance matrix of y is

.\ mx T
el E{yy" )}
= E{mxxH )
2 Let xxI = D; then
u™) g e’ )
l; n n
{1 Yy el }
j=1 k=1
: where
é :

14




Since

E{axl + bxal = aB(x) + bE(xz),

>

j=1

n
M Z hij E{djk} hik:}
k=1

HE({D) n

1}

H E{xxr} Hf

=HCHT.
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APPENDIX B
NORMAL DISTRIBUTION

A fundamental role in probability theory is played by the function
J(x), defined as follows: For any real number x,

1 x-1
izl

1
I@'( = : . 8
*) N2t do ®

A random variable x is said to be nommally distributed if its probability

density #(x) is given by (1) for any real number x. That is the probabil-
ity that a 2 x 2 b,

b P

o - Pla s x = b] = f #(x) dx.
. a

? The parameters |1 and ¢ are the mean and standard deviation of x, -
Py respectively. .
S .
ﬁli? The probability that x will fall in the interval u % ko is given b
N by .
ptko _ _]_,_(x- )2
A _ 1 5 -8& y

< P - - e dx.
ui{ u-ka 250 ii
3{ Let 1
';.‘.,"! t _ X - ; .

= ko 3
& Then
£ £ L le

i P = \]ﬁ — e dt

o -k

:

£
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When k = 1, 2, 3, it is found from tables of the normal density function
that P = ,68, ,95, and .99, respectively,

We now consider the normal distribution of two random variables,
The two-dimensional random variable (x, y) is said to have a bivariate
normal distribution if its joint density function, £(x, y), is given by

£(x,y) = . e 2P 7T o

-2
2:wxuy 1 -5

X'HX
Ox

) ~2p(

Y=l J=H
) (GO 5]

9)

That is,

PL(x,y)eA] = ff(x,y) dy dx,
A

o
where A C:R("), Ng> My, Ox, Oy are the mean and variance of x and vy,
respectively, and p is the coefficient of correlation between x and y.

X- I,
- %{[x-ux Y=y M2 [y_“x} }
1 y

f(X,}’) = € ’

Jem2(|u|)i/2

where

2

g o o0
X

M= | zy
o

p 0,0y 5

M is the covariance or moment matrix of x and y. Again the.probability
that = Oy 8 X 2 juy + 0x and by = cyféyépy+cry is given by

px-*-dx py+cry
P = f £(x,y) dy dx.
™ Oy “y'dy
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1t can be shown that

l 2
'EK

’

P[Hx~1{ox:‘§xt;px+l(dx, py~1<cy=;.y4“y+1<gy]u1-e

B

when K =1, 2, 3, P = ,40, .86, and ,99, respectively (Reference 4),

The preceding discussion may be generalized to n~dimensions, Let
X = (x:l', XQ, o5 0y Xn] A

be a random vector. We shall say that x is normally distributed in n
dimensions if its probability density function is

. - 2(x=B) 473 (x-B)
f(x> = (2¢c)“/2\/]_m-|_ e ’ (10)
n
where
— —
X1
X2
B=E .
x
n

and M, is the covariance matrix of X7, Xpg, +.e, X,

Equation (10)is completely determined once M, and B are known. Also,

Pixg A] = f f(x) dx; ... dx,,
A
(n)

where Ac R .

19
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APPENDIX C
LINEAR COMBINATIONS OF NORMAL RANDOM VARIABLES

This appendix shows that a linear combination of independent
normally distributed random variables is normally distributed, The proof
is based on the properties of characteristic functions,

Let x1, X ..., X, be independent normally distributed vartiables,
the parameters of xj being g and o:, The characteristic function of x
e ot ] N
is given by
e 1l 2.2
itx, palt= 5 oft”
Be y=ed 271,

Let
X=X1+Xa+..‘ +Xn.

The c¢haracteristic function of x is the product of the charactaristic
functions of all the xj. Thus,

itx itx itx itx
E(e > bnd E( ¢ e = e e )

I itxj

=]I E(e )
p=1
n p.it- = o2t?2

=1 e J
3=1
n n
Ej n,it = L o2te

i 2

J=]_ j-..-.']_

=e

7
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This is the characteristic function of a normal distribution with
parameters

n1 n
L = . nd O‘ = ?l
3 E; “J 2 E: GJ
i 31

Tius, the sum of independent normally distributed variables is itself
normally distributed.

Since any linear function of a normal variable is itself normal,
follows, by the preceding paragraph, that a linear function

axy +agxpg+ ... + a X, + b
of independent normal variables is itself normal with parameters

H al“l ' aa“‘D l L ‘ a }-w l b

& o= ) - a g,
g a7 Oy, + n %n
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APPENDIX D
; DISPERSION ELLIPSES
In this section it is shown that the probability that the miss coor-
dinates (M, Mp) are contained in the ellipse
. - 2 .
R 0 1 My szl M, M ¢
L k= = 772 ZF | T oo = (11)
M, My Mo Mo
5
A - 2
1R is given by 1 - e /2 k .
3., .
I8 Equation (l1) represents an ellipse in the (M,, M,) plane with center
_ at the origin, or aim point, and axes that are not parallel to the coor- -
dinates axes as long as p # 0. y
The coordinate system may be rotated so that the axes of the ellipse .
arc parallel to the new coordinate axes. The linear transformation required ‘
is defined by
Y1 = M; cos 0 + My sin 9
5 (Reference 4) |
. Yo = =M, sin 0 + M, cos 0, gg
- where
%;f' 2p crMl UME 4
;%%:? tan 20 = == for qni# quz ;
% My 2 ;%
& =3
. and s,é
0=y foro T

Carrying out this rotation gives

.2 2
12_?_.:.".+ZE
¢ AN A’

where Ay and A are as defined in section III.
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Now the quantity

o~ bl
O
7\1 7\"3

is distributed as an X® variable with two degrees of freedom. Thus, the

probability, P, that (M;, Mp) lies in the ellipse defined by (1) is given
by

k2

L
2r'(u)

0

- - 2
o)t T2 XE gy

where = 1., Thus,

ke .
pe [ L2 g

0

1.2
-1 - e-l/2 k .

Tor k =1, 2, 3, P = .40, .86, and .99, respectively.
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APPENDIX 1L
R EXAMPLE PROBLIM

Mo In order to illustrate the use of the material presented in the body
KRR of this report, the following example problem is presented. The hardware

_ error sources, and the matrices A, U, and K represent realistic but not
Do necessarily exact values,
o

S : The 1o values of six significant error sources (three each of con-

o stant gyro drift rate, and accelerometer constant bias error), and the

A matrices A, U, and K are given, From these the covariance matrix of

‘}%,ﬁ‘ injection errors, trajectory dispersion at the target in the absence of
e post injection guidance, and the probable magnitude of a midcourse
ég;ff» mancuver for a typical interplanetary flight are determined.

The platform hardware error sources are

§§i Constant Gyro Driit Rate

7 "

T GX  0.025  deg/hr
A GY  0.025  deg/hr
Lo Gz  0.333  deg/hr
e

Accelerometer Bias

-
BX 0.1 x 1076 km/sec?
BY 0.1 x 10-8 km/sec?
BZ 0.1 x 10-© km/sec?

‘Then, in the notation of Section II,

_ i,
. 000625 0 0 0 0 0
0 .000625 0 0 0 0
B 0 0 .001089 0 0 0
A= 0 0 0 10-14 0 0
0 0 0 0 10°14 0

| o 0 0 0 0 10714

25
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}} The hardwarce errors are linearly related to the injection errors by the

% matrix A, where

-

:} - 4,609 -66,994 3,662 -,48066 x 10° -,27300 -19,123 |

f; - 5,785 - 1,122 -30,257 .96666 x 104 - 45600 - 24966

? - 4,104 -17,717 0.365 .35666 x 10° -,11933 - 9,3346 .
; ol 2,306  -16,240 28,133 .11833 x 107 .12666 8.46000]" '}
| 33,186 - 0,133 -195,173 66666 x 104 57000 - 40666 :
; -26.826 81,386 0.520  -.42333 x 10° -,30333  -20.623 _ 3

S

A may be found by the method described in Section II.

The covariance matrix of injection errors is given by M = A[\AT. ‘ﬁg
Thus , &;
B
6.493 Symmetric =
-0.,008 1,021
. y o | 2.538 0.039 1,079
-0.838 -0.,945 -0.600 1.759
-0.792 6.309 -0.124 -5.964 42,176 5
0.618 0.075 1,091 -2.598 -0.591 8.845 2
The matrix U, relating injection errors to trajectory errors at the ﬁ
target, is taken to be g |
-90,744 -50,985 - 1,314 -1746,.410 - 99.936 -.733
U = .
-17.058 28.050 -92.698 - 37.376 -575.802 -1873.930

The covariance matrix of the miss components M, and M- is given by

¢ =’
3,370, 249 -11,188,598
-11,188,598 38,535,805
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;L Using (3), (4), (5) of Scction IV gives
ot
:3;”:, )\1 = 6464.8[ km
A,
.;:‘ > Ap = 335,00 km
T 0 = 16.23 deg.
' ; Thus, the probability of the miss being within an ellipse, centered at
T the aim point, having semimajor axis A;, inclined at an angle 6 to the
: g‘fﬁ, -‘ M, axis, and semiminor axis A, is 0.40.
o
f';ﬁ . The matrix K, relating injection errors to the components of the
oW midcourse maneuver, is
| % -.216 .0216 -,0096 -12736.55 1196.78 ~537.22
L 4 K = 1078 | ,0202 .0560  -,0030 1150.61  3317.27  -179.25 .
Z - -.00916 ~-.,0029 .1784 -537.94 -178.28 10587.67
P
o &?f ’\ The covariance matrix of the components of the midcourse maneuver is
v e 495 x 1079° Symmetric .
ey :
K’ = |.383 x 1075 422 x 107° . :
.285 x 10° -.836 x 1076 .102 x 107% f
The eigenvalues of KMK™ are :
ky = .11593 x 10-% :
ko = .90764 x 10-7

ks = ,77415 x 1075,

27
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-
,-? since Nk, Nk are of the same order of magnitude and are at least an
;’:; order of magnltude larger than NKn, a two-dimensional normal distribution
¥ of V. is assumed, Then, to approximate the AV capability required to
u insure a probability of ,99 of accomplishing the midcourse maneuver, let
g
1 i
4 n =~Ngn (L/1~-P)%
v and
o AV = n Nk,
y The required AV capability is 10.33 m/sec.
Ty |
i
';i;
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