General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
MICROBIAL STERILIZATION IN ULTRA-HIGH VACUUM
AND OUTER SPACE: A KINETIC COMPARISON

J. P. Brannen
Planetary Quarantine Department
Sandia Laboratories
Sandia Base
Albuquerque, New Mexico 87115

This work was conducted under contract No. NASA W-12,853, Bioscience Division,
Office of Space Science and Application, NASA Headquarters, Washington, D.C.
There has been a series of papers [1,2,3] concerned with the survival of microorganisms in ultra-high vacuum and in space. The correlation between microbial die off in ultra-high vacuum and space is not immediately obvious. It is the purpose of this note to call attention to the fact that from a kinetic viewpoint, D values obtained under ultra-high vacuum, 10^-6 torr, are not appreciably different from those obtained under 10^-17 torr, pressure of outer space.

Suppose the microorganisms are being sterilized by a first order chemical reaction, i.e., survival is logarithmic. Then the relationship between the D value and the reaction rate constant, k, is given by

\[D = -\ln(0.1)/k. \]

(1)

Under the absolute reaction rate theory

\[k = \frac{kT}{h} \exp\left(-\frac{\Delta F^\ddagger}{RT}\right) \]

(2)

where \(k \) is Boltzmann's constant, \(h \) is Planck's constant, \(T \) is the temperature in degrees Kelvin, \(R \) is the gas constant and \(\Delta F^\ddagger \) is the free energy of activation. \(\Delta F^\ddagger \) may be broken down further as

\[\Delta F^\ddagger = \Delta H^\ddagger - T\Delta S^\ddagger + p\Delta V^\ddagger \]

(3)

where \(\Delta H^\ddagger, \Delta S^\ddagger, \) and \(\Delta V^\ddagger \) are activation enthalpy, entropy, and volume respectively, and where \(p \) is pressure [4].
One normally associates a positive ΔV^\ddagger with first order reactions. Furthermore, with ΔV^\ddagger positive, as pressure decreases the reaction rate increases so that from equation 1 we see that the D value decreases. The question we address is how much will D decrease for a fixed value of ΔV^\ddagger as p goes from 10^{-6} to 10^{-17} torr.

Combining equations 2 and 3 we get the relationship for pressures p_1 and p_2.

$$\ln\left(\frac{k_{p_1}}{k_{p_2}}\right) = \frac{\Delta V^\ddagger(p_2-p_1)}{RT}.$$ \hspace{1cm} (4)

If we take pressure in atm, the gas constant will be

$$R = 82.06 \text{ cc atm/mole}.$$

From equations 1 and 4 we find

$$\ln\left(\frac{D_{p_2}}{D_{p_1}}\right) = \ln\left(\frac{k_{p_2}}{k_{p_1}}\right).$$ \hspace{1cm} (5)

The largest ΔV^\ddagger value we have seen was recorded for ribonuclease by Kettman et al. [5] as 200 cc/mole. To be safe we will use 10000 cc/mole. Suppose we assume that $T = 333^\circ K = 60^\circ C$. We convert the pressures to atmospheres so that

$$p_1 = 10^{-6} \text{ torr} = \left(\frac{1}{7.6}\right) \times 10^{-8} \text{ atm}$$

and
\(p_2 = 10^{-17} \text{ torr} = (1/7.6) \times 10^{-19} \text{ atm.} \)

Using these values in eq. 4 we find that

\[\ln\left(\frac{k_{p_1}}{k_{p_2}}\right) = \frac{(10^4 \text{ cc/mole})(1/7.6)(10^{-19} - 10^{-9})\text{ atm}}{(333 \text{ deg})(86.0597 \text{ cc atm/deg mole})} \]

Using orders of magnitude we see that

\[\ln\left(\frac{k_{p_1}}{k_{p_2}}\right) = 10^{-10}(10^{-11} - 1). \] \((6) \)

Thus despite the magnitude of the \(\Delta V \) chosen the right side of equation 6 differs from 0 by less than \(10^{-8} \). This of course implies that the ratio \(\frac{k_{p_1}}{k_{p_2}} \) is so near 1 that in view of equation 5 an experimenter could not distinguish between \(D \) values taken at \(10^{-6} \) and \(10^{-17} \) torr if only first order kinetics is involved in the sterilization.
References

