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C I. INIMODUCION_

Under this study program, a millimeter wavelength

interferometer spectrometer for geological measurements has been

designed and theoretically evaluated. The primary motivation

t	 for the development of an optical instrument operating in the

millimeter wa,velengthre ion is to obtain wide spectral coverage!g	 p	 g ,
available microwave receivers limit measurements to narrow spectral

' bands.̂.
The interferometer spectrometer, described in the

I

following, scans the .5mm to 2mm wavelength region at a rate of
2 scans/sec, has a maximum resolution of .05cm 1 , and achieves,

for a 300 0 k blackbody source filling the f.o.v. and an emissivity

of .1,	 a SIN per resolution element of ;z:: 150. 	 The instrument,

called the Bipath Interferometer Spectrometer, has a cryogenic

detector and provisions for cryogenically cooling the optical

system.

'	 Block Engineering	 is confident' that fabrication of

the bipath interferometer spectrometer is feasible and that the

j	 specifications cited on page	 I of this report: can be realized
in an operational instrument. 	 It is felt that the Bipath Interfero-

meter Spectrometer will be a particularly useful instrument for

'	 broadband spectral studies, such as atmospheric absorption measure-

`	 ments, terrestial studies, and extraterrestial emission measure-

ments.	 Equipped with a cold-sample holder, the bipath interfero•-
meter spectrometer would also be useful • for material studies,

" The instrument is compact in size, low in weight, and

r̂ 	 has relatively good tolerance to vibration. 	 These features,.
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together with a conventional data form suitable for telemetry,

will enable the interferometer to be used for airborne, rocket-

borne and satelliteborne applications, in addition to field

measurements.

IT.	 OPTICAL VS. MICROWAVE TECHNIQUES

Themillimeter wave region is the region where optical

techniques from the infrared and microwave techniques extended

from the centimeter wave region meet. For radiometric measurements

in the 0. 5mm to 2mm region a decision should be, made either to use
microwave techniques or to use an infrared approach. In general-

this decision can be made on the basis of the spectral bandwidth.

In the case where the source emits energy over a narrow spectral

region, e.g. resonance lines, a microwave receiver, because of

its higher sensitivity and narrow bandwidth, is to be preferred.

However, when the source emits radiation as a black or grey body,

the narrow-band receiver will-not necessarily give the best

signal-to-noise ratio, SIN. This is shown in the following

example.
Assume a super heterodyne'receiver used as a •"Dicke

Radiometer" operating at lmm. with a bandwidth, BW = 100 Mc;
a noise temperature, T = 100, OOA°K; an output bandwidth, 0 f .1 cps.
This receiver will give a minimum power sensitivity. of 2 x'10 14

watts. A blackbody at 300°K will have a power output over the.
100 Mc bandwidth at lmm of P^f 100 Mc 8.5 x 10-11 watts. Under

•	 8.5 x 10 -11	 .

these conditions, the SIN of the receiver is	 -14 = 42.5
2 x 10

V

For comparison, an interferometer spectrometer with a

resolutiop of .05 cm 1 could accept a maximum power per resolution
element of 1.3 x 104"1 watts. A direct detector having a minimum

2'	
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power sensitivity of 10-13watts at lmm may be used with the

interferometer. The SIN of the interferometer system is then
1.3 x 10-11

1	
_ 130:

0-13 

Since considerations of field-of-view, detector size,

etc., have been ignored in this example, the calculations only

show relative values. However, the calculations do show that

with equivalent collecting systems the SIN is approximately the

same.
The interferometer spectrometer has many features which

will make it a useful alternate instrument to the m.;'crowave

receiver. Among these are the following:

A. Wide S2ectral Coverage - This wide spectral

coverage does not entail a loss in'S/N per spectx^Il

resolution element, as would be the case for a
tunable microwave receiver or a dispersive type

optical instrument. Since the detector noise

is independent of radiation flux, for the same

total observation time the interferometer will have

a gain of vM in SIN, where n is the number of
resolution elements. (Fellgett' s Advantage)

B. Throughput - Unlike dispersive instruments which

employ slits and gratings, the interferometer has
a large entrance aperture which permits much

more energy to be gathered.

C. Adjustable Resolution

D. Compact size and low weight

B. The interferometer may be easily modified to

accomodate different wavelength regions.

3.
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Admittedly, the future availability of microwave local

oscillators, tunable over a wide band, low conversion loss mixers

and I.F. strips equipped with travelling wave tubes could change

the situation. However, this instrumentation would of necessity

be much more complex, larger, heavier, and more expensive than

the interferometer spectrometer,-

III. THE BIPATH INTERFEROMETER SFECTROMBTER

The optical cube of the bipath interferometer is drawn
to full scale in Figure 1. In the drawing, the entrance and

detector legs are metal light pipes which serve to collimate the

radiation; S is a beamsplitter; M l  and M2 are stationary spherical

mirrors, and M 3 is a double surfaced movable mirror.

3.1 Theory of operat ion

The interferometer codes the incident radiation by

means of the constructive and destructive interference of light'

waves,	 •
The function of the optical cube is to heterodyne the

extremely high electromagnetic frequencies of the incident radiation

down to audio frequencies which the detector can follow. The audio

frequencies  on the detector are an exact analog of the original

light frequencies since the frequency tran,eformation which takes`

place in the .interferometer is linear.
'	 Optical ray ;traces of the bipath interferometer are'

shown in Figure 1, The beamsplitter, S, is a semi-reflective
mirror which reflects 50% of the light which strikes it and

permits the` other 50% to pass. The stationary mirrors ' M and M2
as well as the moving mirror M3 reflect all the light which reaches

them. 5

If a light beam enters as shown, 50% of it will pass

„, 
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through the beamsplitter and continue toward M 1 while the other

50% will be reflected toward M 2 . Upon reaching mirrors M 1 and
l

M2, each fractional half of the original energy will be completely

i	 reflected to mirror M , then back again to mirror M (or M )
3	 1	 2

where it is reflected toward the beamsplitter. Upon reaching

the beamsplitter for the second time, light traveling the M1
1

path is reflected whereas that traveling the M 2 path..is transmitted

rr by the beamsplitter to the light pipe leading to the detector.
1.

The portion of light transmitted to the detector and the portion

of light lost from the interferometer depends on the relative

phases of the recombined rays in the detector leg of the inter-

ferometer. Since the sum of the phase shifts caused by reflections

and transmission is the same for both paths, the relative phases

I
of the recombined rays depends only on the path lengths.

For zero retardation (equal optical path lengths), all

of the original light which reaches the detector via path M 1 is in

phase with that arriving via path M I , thus producing a bright

central fringe on the detector. If,

mirror to be displaced an amount Ax,

therefore reach the detector an increment of 7r out of phase,

cancellation will result, and the net signal of wavelength 'X to

the detector will be zero. The detector signal will, in fact,

be zero for all displacements Ax which are odd multiples of T/8

j (+ X/8, + 3 X/8, + 5 T/8, etc.) and will be equal to the total

input energy (minus absorptions) for all even multiples of T/8

beginning with zero (0, ± X/4, + X/2 . + T, etc.!, where the plus

however, we cause the M3

we . find that the phase of

the light arriving at the detector via route M 1 is retarded by an

amount 4ox from that arriving via route M 2 . For monochromatic

light of wavelength ^\, a displacement ox = ^\/8 will cause a retardation

of 4x = 4N/8 = a/2. The two equal amplitude light fractions will

5.
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and minus signs denote displacements on both sides of zero

retardation corresponding to increased or decreased optical path

lengths (retardations) respectively.

If the displacement of mirror P13 is slowly changed,

we find that the energy at the detector goes through a series

of maxima and minima (light and dark "fringes") as the retardation
of the optical path lengths of the two lego differs, by integral

numbers of wavelengths, according to the expression

0. 5 
1  

(1 + cos 2r v	 13t/T)	 (1)
where vis the wavenumber of the incident radiation in cm 1 , and

Bt/4T is the instantaneous displacement, x, of the mirror moving
a distance B/4 in time T. In rather words, the frequency of the

energy transmitted to the detector is , a joint function of -the'
wavenumber of the input radiation and the mii.ror velocity B/4T.

Since the optical retardation, B,.is four times the

mirror displacement, then,
B _	 B	 (2)

	

v^ 4. v. 
4T ^ v f T	 2

nrA^

Increasrad mirror velocity yields higher , output frequencies

The detector signal for incident radiation of only one

wavelength is a simple cosine wave. For incident radiation

composed of many wavelengths, the signal is a .complex one called

an "interferogram"; since all of the wavelengths are processed

simultaneously, an interferogram is the superposition of 311 of

the cosine waves that would have been generated had each of the

incident wavelengths been processed separately. The interferogram

is, in fact, the Fourier transform of the incident radiation

into the time-amplitude domain. The-interferogram is then converted

to the amplitude-frequency domain, or spectrum, b y means of an

inverse Fourier transform. Data processing of interferograms is

I -, -

C
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discussed in Section VII of this report.

3.2 COLLECTED SPECIFICATIONS

Bip ath Interferometer

Spectral Range:

Resolution:

Scan Rate:

Detector:

 Detector N.E.P. :
a Throughput 0a

Collecting
5

Efficiency:

Modulation
Efficiency:

N. E. S. R,

SIN per resolution
element:

Cooling:

Observation Time:

Output:

Weight:

Dimensions!

Power Requirements:

Field-of-view:

Data-Reduction:  

0. 5mm to 2mm ( 20 cm-1 to 5 cm- 1;
600Gc to 150Gc)

Adjustable to a maximum of .05 cm-1
T - 400; 1.5Gc)

2,scans/sec.

InSb ("Rollin" detector)
cooled to 4.3 0 K

6 x 10-13 watts

0.2 ster - cm 

30%

30%

3 x 10-10 watts/stet-cm2 f r
a 3, sec, observation time.

X150 for a 3000 K blackbody, filling
the field-of-view-

Detector - liquid helium
Optics - liquid nitrogen

Depends on source stability

Analog signal and Moire signal

Approximately 30 lbs.

Cylindrical; diameter 8", height 3211

Approximately 30 watts

+ 
50

Analog or'digital

i
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3.3 The Optical System

Transmitting Com2onents	 t

As a minimum, one transmission component is required -'

the beam.splitter. Although beamsplitters made of polyethylene,

wi i,h or without a germanium coati. '-Iy, are more commonly used in

the long wavelength region, we have chosen to use crystal quartz

because this material permits greater accuracy of manufacture.

The beamsplitter, being oJEE small dix,iensions compared with the

other interferometer components, is easily replaced for such

modifications as may be dictated by experiment. Likewise, if

experiments should reveal the need for optical elements in the

input optics, these would also be made of crystal quartz.

Throughput

Throughput is a description of the capacity of an

optical system to transmit power. Throughput, 6 , is given by:

6	 ( 12' r D sin a.) 2
where D is the diameter of an aperture in the system where the

convergence half-angle a is the same at all points. In the bipath
interferometer, the half-angle at the light pipe entry toward the
beamspli ter lies between 23 and 33 angular degrees;-resulting
in a solid angle of 0.5 steradian. The diameter of the light

pipe entry is 0.20 inches, corresponding to an' area of d.20 cm2.
The resulting throughput, to be conserved by suitable matching

optics is 0.2 ster-cm2.
Resolution
The capability of the instrument to resolve two

neighboring frequencies is specified in terms of the ;smallest

increment of wavelength, AA, which can be distinguished at the
output (or alternatively, in terms of wavenumbe+r,*Av)	 The limit

8.
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of spectral. resolution is a constant dependent only on the ma7rimum
internal retardation, B, according to A v = k/B where k is Bete litined

r
by the amount of refraction at the entrance aperture. 	 For the

proposed .instrument, k = 1, approximately. 	 Thus, for a maximum

resolution Avof .05 cm	 a peak retardation, B, of 20 cm is required.

`

t

The resolution may be adjusted. to any desired lower value by simply

decreasing the retardation.

^• Mirror Drive Mechanism

The movable mirror of the interferometer is mounted on

• the armature of an electromagnet and is displaced by

changing the d.c. current through the armature. 	 Requirements

I V for parallelism of the mirror motion are not severe in the lone

wave-length region.	 Therefore, conventional	 off the shelf
bearings will be used for parallel motion rather than spring strip

assemblies or special bearings. 	 Since the position of the

.x
component which introduces retardation must be known within a

fraction of a wavelength, a Moire fringe counter is employed to

keep track of the location of the moving mirror. 	 The Moire fringe

counter is described in the following subsection.
r^

Figure 2 is a plot of the mirror motion in time.showing

the linear mirror displacement.	 The mirror will be driven

through two complete excursions a second.	 Because inertial

effects vary as the square of the throw, the interferometer is
y

designed to produce a retardation of 20 cm with a minimum mirror

throw; the throw required is 5 cm peak to peak. 	 This amounts to

a mirror velocity which is high compared to that of the - interfero-

meters operating at shorter wavelengths.	 To achieve high velocities

'	 CY easily, the drive mechanism should be maintained at room temperature,

and may have a Moire counter in addition to the one on the interferometer.

9.
c .
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The Moire Frinqe Counter

The Moire fringe counter consists of two matched

gratings placed very close together with a large number of lines

per inch, with the width of the lines equal to the spacing between

them. As one grating is moved slowly across the other with the

direction of motion perpendicular to the grating lines, the two

sets of .lines first coincide perfectly, then less and less until

.the lines of one grating fill the spaces of the other. The light

transmitted through the pair correspondingly,varies from a maximum

value of half of the incident light less transmission losses to

a minimum value of zero. If the motion is uniform the transmission

function will be a triangle wave with equal periods. If the

motion is not uniform the transmission function will be a triangle

wave with varying periods.'

In the bipath interferometer, one grating is'rigidly

fixed.to the mounting of the movable mirror. ' The other grating

is placed between a light source and the-first grating. on the

other side of the first grating is a detector. As the mirror and

fixed grating move, the variation of the light intensity is^picked

up and amplified by the detector. The position of the mirror at

any time can thus be known to an accuracy of 'at least 1/Nth of

an inch, where the grating has N lines per inch, by observing

the Moire fringe pattern.

In this way the precise position of the mirror can be

monitored during the time of its scan. By simultaneously

monitoring the fringe pattern and the interferogram, distortions

in tha interferograms caused by non-uniformities of the mirror

motion can be corrected.

10.
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IV. Detector

4.1 Selection

it

Por the spectral region from .5 mm to 2 mm, the follow-

ing detectors are available; The Golay cell, the Putley detector;

the germanium bolometer; and the "Rollirl'detector. The last

-three require cooling to liquid helium temperature. Considering

factors like sensitivity, time constant, and detectivity, the

"Rollin" detector appears to be the best choice in this spectral

region.1

The "Rollin" detector has the highest reported detecti-

vity in the mm wave region. The short time constant of the "Rollin"

detector ( — 10-7 sec.) allows for a rapiC scan rate, which in turn

results in high operating frequences (hundreds of cycles/sec,)

with a consequent reduction in the 1/f noise of the amplifiers.

This also results in a low SIN per interferogram, which facilitates

digitization. Since the "Rollin",detector is'essentially a photo-

conductor, it can be ruggedly mounted.

The germanium bolometer is much: more difficult to handle

since it requires very critical thermal mounting. The Golay cell

is much more sensitive to vibration and has lower detectivity than
the "Rollin' detector. The Putley detector also has lower detec-

tivity and the additional complication of requiring a magnetic field,

1. M.A. Kinch and B.V. Rollin; "Detection of Millimeter and Sub-
	 f

Millimeter Wave Radiation, by Free Carrier Absorption in a
Semiconductor"; Brit. J. Appl. Phys., 1963, Vol. 14.

11.
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4.2 Mounting and Throughput

it
1f

II
I[
^C
^C
IC
!1 C

1 f.
^ r
1C
IC

f

Figure 3 is a drawing of the detector assembly. The

detector together with its transformer coupling is carried on a

stalk. The stalk may be thrust in and out of the liquid helium

for convenience in the evaluation of the detector. Cooling of

the detector is discussed in Section IV. 	 .

The "Rollin" detector is relatively transparent at the

.5 mm to 2 mm wavelength range. This, together with the fact that

the wavelengths are comparable to the size of the components and

detector, makes the mtthod of coupling the detector to the preced-

ing optics an important consideration. By carefully matching the

throughput at the detector to 'that of the rest of the interfero-
meter, the energy gathered by the interferometer is conserved. To

accomplish this we will use a multipass device or Spiegel-raum'to

obtain more than one pass through the detector. One possible mul-

tipass device is an integrating sphere.

4.3 Detector Signal-to-Noise

The N.E.P. of the detector will be limited by a number

of noise sources; the following is a , list of the noise sources from
which the N.E.P. is determined by the equality, (N.E.P.) 2 = M (AW) 2.

A.) The Johnson noise of the detector: . This is

given by

4kT R
c(OW) 2 _ __-_2 

S

where k = 1.38 x 10-23 J °K 1

12.
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RC w detector resistance in ohms

s = responsivity in volts/watt

T = temperature in °K

Calculating for R. -_ 109 ; s e 100 v,/watt and
T = 4.3°K, this contribution is

(OW) 2	 5 x 10-26 watts 

B.) The noise resulting from exchange of energy

within the lattice: According to Rollin, this.

is-approxirqately equal to the aohnson noise, or

5 x 10--26 watts  .

C.) The noise due to the random arrival of photons,

at the detector: This minimum (OW) 2 will de-

pend on the temperature of the spectrometer

itself. For a spectrometer temperature of 77°K,

and assuming an emissivity E _ . 1, with a cold

shield at liquid helium temperature and limit-
ing the detector f,o.v, to what-is required,

the photon noise will assume, the limiting

value:

(QW) 2 = (hv) 2 Neff

where Neff is the number of photons over the

spectral region of the detector response, h-is

Planck's constant, and v is frequency.
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Thus	 v2.

eff = E

	 NY d v

`^ 1

h x 1012

for
=	 111.5 x 10 	 cps

r2 = 6 x ].0 11 cps

Thus

(AW) 2 = (h v) 2 Neff i

2.4 x 10 -31 watts 2

L.) The noise resulting from the emission of the

detector: When the detector is much colder

than the source, this noise is negligible.

E.) Amplifiez noise: The optimum noise figure for

state-of-the-art low noise amplifiers can only

be achieved at high source impedances, in the

Megohms. For lower source impedances, a

matching transformer between the detector and

the amplifier is required. By also cooling this

transformer to liquid Fie temperature and operating

it in the hundreds of cycles, its noise contribu-

tion can be kept small. By cooling a field effect

transistor amplifier to liquid nitrogen temperature,

an equivalent input noise voltage of about 10-g

14.
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volt/cps1/2 has been achieved with a negligible

shot noiio component. So for a transformer ratio

of 200/1, an equivalent noise voltage at the de-

tector of ^., 5 x 10 -11 v/cps 1/2 
is possible. (or,-11 2

(AV,) 2 = 
0

104 ) = 2.:^ x 10"
25 ) .

F.) Excess noise Like 1/f noise can be minimized by

opermting at frequencies where this is low.

It is seen from these calculations that only the noise

sources A, B, and E are important. Adding these three contribu-

tions we get:

(N.E.P.)   2 = (5 x 10 -26 + 5 x 10 -26 + 2.5 x 10-25) `k

(3.5 x 10
-25 ) 2

or

N.E.P.	 6 x 10 -13 watts.	
R

While the preamplifier is the main noise source, it , is comparable
within a factor 2 - 3 to the detector noise.

Another observation is that the radiation noise (C) is

much less than the other noise sources, so cooling is unnecessary

as far as the noise contribution is concerned. Cooling the optics

is'thus only necessary in cases where dynamic range in recording

is important.

V. Dynamic Range

The following considerations show the influence of the tem-

per ature of the interferometer on the , dynamic range in the output

signal or interferogram.

The energy, P, required at the detector.aperture stop for a

peak signal-to-RMS noise ratio, SIN, of unity is determined as

follows

15.

t

;. T. *W w
...	 . ...-,..-...,^.,...	 ...^-.....	 ^ .«-.^^.,t. r...; ,. ^..^-.»w^..^	 :.*fir+. ,w.... m.......,...^,^..... ^^,.^. ^*....M+.•1}^M,• 	 •.. °e - °

- -



s

'r

i

e

PQ

P = N.E.P.
0

Substituting the values -

throughput, 0 = .2 ster - cm 

N.E.P. = 6 x 10 13 watts

a
a scan of n = 800 resolution elements in time t = 1 sec. and

a 1 cps bandwidth -

P = 8.5 x 10-11 watts/ster. - cm 

I I

.Correcting for the interferometer modulation efficiency, 17 m = .3,
and collector efficiency n c = .3, we find that a source radiance

P :ze 9.5 x 10 -10 watts/ster-cm2 is required to give an interferogram

with a SIN of unity.

When the detector is cooled and the interferometer is at am -
bient temperature, 300°K, the self-emission of the instrument will

-7	 2be 
P .
 5mm-2mm 6.4 x 10 watts/ster - cm. For e = .1, the

SIN would be 6.4 x 10-8resulting /	 9.5 x 10-10

Cooling the interferometer to 77°K'with liquid nitrogen will

.lower its self-emission to P.5mm-2mm = 3 x 10 y8 watts/ster-cm2.

Thus, for ,e _ .1, the signal-to-noise ratio in this case is

. 3x 109SIN 	 N 3
9.5 x 10-10

It should be noted that the signal resulting from the instru-

ment's suit-emission at ambient temperatures is not of sufficient

16.
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-magnitude to warrant cooling the interferometer for laboratory

use; • the recording techniques available in the laboratory are
such that only the detector need be cooled. However, for rocket

and satellite use, where for telemetry, dynamic range presents a

problem, a cooled interferometer may be necessary.

VI. Cr enics

a

Both the opt ical
terferometer are cryo,

with liquid nitrogen,
is a scale drawing of

relative sizes of the

and the liquid helium

system and the detector of the bipath in-

genical.ly cooled. The optical cube is cooled
the detector with liquid helium. Figure 4

the entire system, showing the location and

separate dewars. Both the liquid nitrogen

are unpumped.

Cooling of the Optical. Cube '

The interferometer may be cooled to a temperature of

77 °K with liquid nitrogen. The capacity of the nitrogen dewar is

4+ liters. The materials of the interferometer components are

chosen and designed so as to minimize angular distortions even

though the over-a l l size ay,	 a	 ably w
it

h_.....wa 1W ...lie mur change appreci ably w.i.ch tciitperdture.

The inside of the interferometer is purged with dry

helium so that moving components inside the interferometer are

accessible . to actuation and adjustments , even though the outside
of the interferometer is cooled. The interferometer is shown with

a crystal quartz window which separates the helium purged inter-
ferometer-from the liquid nitrogen. The level of the liquid

nitrogen in the dewar is maintained by drawing upon an external	 `f

storage tank.

Cooling of the Detector
F

The detector and its transformer:-coupling are cooled

with liquid helium. The capacity of the helium dewar is 1 lit%r.

r	 17. r ;
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The temperature of the unpumped helium is 4.3 °K. As shown in the .

drawing, the helium dewar is centrally located inside the nitrogen

dewar. Thus, the outside of this dewar is immersed in liquid nit-

rogen which enables an increase in hold time. The helium is

transferred using conventional techniques. 	 .

Hold Times
r	 f

The estimated hold time of the liquid nitrogen is 1 hour;

ti	 that of the liquid helium is 2 hours.

VII. Electronics

7.1 Detector Preamplifier

The detector signal is amplified by a low noise preamp-

lifier which is impedance thatched to the detector. Although the

l'	 low resistance, 10 ohms, of the "Rollin" detector makes matching

to the preamplifier d;;.fficult, this is not considered to be a
problem.

7.2 Data Handling System

The amplified detector signal is passed through a proper

band limiting filter and then recorded in Analog form on a tape
recorder.	 A clock signal-derived from the Moire grating attached
to the mirror drive is also , d.ucorded.	 Both these signals are then
played back into a Blcttk CO-ADDER. 	 The system is shown the block

I

 diagram, Figure 5.

The CO-ADDER is a special purpose time averaging computer

which functions to i*iprove the signal-to-noise ratio of spectra.

A Input interferograms are sampled repeatedly, at a frequency, which

., is more than twice the bandwidth of the signal. 	 The samples are

sequentially digitized under control of the clock signal and stored

^.... in the core memory. 	 Samples from successive interfere rams corres *-y	 p	 g

pond precisely in mirror position and their levels are digitally

18.
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	 added in the memory, so that the coherent signal increases linearly

AM 
t

	 in amplitude with the number of interferograms accumulated. On the

other hand, the noise present at the input accumulates, due to its

random character, in such a way that the RMS noise power increases

with the square root of the number of scans. The resultant'gain in

signal to noise is thus Fn, where n is the number of times the same

signal is sampled. For example, if the CO-ADDER accumulates as few

as 16 interferograms, the SIN will be increased by a factor of four.

The CO-ADDER has a memory capacity of 1024 words; so a

maximum of 1024 sample points may be taken on each signal. Each

sample is digitized by an 8 bit A/D converter designed to accept a

maximum signal of 9 volts, peak to peak. Since`the capacity of each

word in the memory is 16 bits, it-is possible, for example, to co-add
up to 256 signals with a 9 volt peak to peak component. Smaller amp-

litude signals would, of course, be co-added many more times.

rams have been addedAfter a sufficient number of interfereg

in the Co-adder memory, the stored signal may either be played back

in Analog form for spectrum analysis,.or recorded in digital form on

{	 paper or magnetic tape for computer reduction. -If the first alter-

native is adopted, the Analog output of the Co-adder is first

processed through a wave analyzer and then recorded on a chart.

recorder.

The wave analyzer is a narrow-band, variable frequency

filter which is slowly tuned over the range of audio frequencies

present in'the interferogram signal.. The wave analyzer accomplishes

the inverse Fourier transform of the interferogram;.it transforms

the interferogram, which is in the time-frequency domain, into the

amplitude-frequency domain of the audio frequency spectrum. This

audio frequency spectrum can be readily transferred to intensity vs

electromagnetic frequency using the calibration information provided

with the instrument.

19.
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Me

d VIII.	 CONCLUSION

The overall design configuration of the Bipath

Interferometer Spectrometer, together with calculations which

^,
theoretically determine the effectiveness of this instrument

for broadband spectral measurements in the .5mm to 2mm wave--

! length region, has been documented in this report. 	 In the light

of these calculations and considerations, Block Engineering

believes that fabrication of an operational model of the Bipath

Interferometer Spectrometer for geological measurements is

cortainly warranted. 	 The anticipated signal-to-noise ratio and

resolution of the Interferometer are more than adequate for

passive measurements of the self-radiation of geological samples.
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