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STAB IL lTY  OF PLANE  POlSEU  ILLE FLOW WITH HEAT  TRANSFER 

by M e r l e  C. Potter"  and  Edwin J. Graber,  Jr. 

Lewis  Research  Center 

SUMMARY 

The  influence of heat  transfer on the  stability of a plane  Poiseuille flow  in a channel 
is  analytically  investigated.  The  primary  liquid flow is affected  by  the  heat  transfer 
through  the  variation  in  viscosity  with  temperature.  Additional  terms  resulting  from 
the  viscosity  gradient  are  included  in  the  development of a modified  Orr-Sommerfeld 
equation.  It is the  presence of t hese   t e rms  which leads  to a prediction of more  unstable 
flows,  for  without  their  inclusion,  the flow is stabilized.  The  results  show  that a tem- 
perature  difference  between  the walls is always  destabilizing  and  in  particular a temper-  
ature  difference  between  the walls of 100' F (55. 6 K) leads  to a reduction  in  the  critical 
Reynolds  number  from 7800 to  4600. 

INTRODUCTION 

The  l inear  stabil i ty  characterist ics of plane  Poiseuille flow of a liquid  between 
plates of fixed  but  different  temperatures  are  investigated  by  the  method of small   d is-  
turbances.   Particularly  interesting is the  influence of a temperature  gradient on the 
minimum  point  (critical  point) of the  neutral  stability  curve.  Since  the  viscosity of li- 
quids  is  temperature  dependent,  the  imposed  temperature  gradient  creates a viscosity 
variation  in  the  flowing  fluid.  This  gradient  subsequently  causes  additional  terms  to  ap- 
pear  in  the  governing  equation  thereby  altering  the  stability  characteristics of the flow. 
T o  establish  the  importance of these  additional  terms,  the  stability  equation  is  first 
solved  with  their  inclusion  and  then  with  their  omission.  The  primary  velocity  distribu- 
tion  used  in  both  cases  is  the  skew  symmetric  profile  which  results  from  the  inclusion 
of the  viscosity  variation  in  the  solution of the  primary flow  momentum  equation. 
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Thomas  (ref.  l), along  with  many  others (e. g. ,   ref.  2), has  analytically  deter- 
mined  the  critical  Reynolds  number  for  isothermal  Poiseuille flow  in a channel.  Thus 
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in  the  present  study  the  limiting case of equal wall temperatures  (AT = 0) can be com- 
pared with  Thomas'  results. 

Potter  and  Smith  (ref. 3) introduced a skew-symmetric  primary  velocity  profile  into 
the  Orr-Sommerfeld  equation  (stability  equation  neglecting a viscosity  variation)  for  iso- 
thermal  Poiseuille flow  and  established  that a double  critical point exists  for  this  case.  
The  profile  used  in  their  analysis,  however, w a s  taken  from  experimental  results  and 
was not  analytically  shown  to  correspond  to  the  stability  equation  used.  It was also  con- 
cluded  by  Potter  and  Smith that a skew-symmetric  primary  velocity  profile  creates a i 

more  stable flow situation  than  does  the  symmetric  velocity  distribution  (that is, the 
Reynolds  number  increases as the flow deviates  from  the  symmetric  velocity  profile). 

4 

The  present  study w a s  arranged  to  analytically  produce a skew-symmetric  velocity 
profile  in  water  and  then  establish  whether  or not the  corresponding  stability  equation 
yields a double critical  point  and  results  in a stabilizing  effect as  in Potter  and  Smith. 

The  governing  equation  and  corresponding  boundary  conditions  form  an  eigenvalue 
problem,  and  the  eigenvalues  being  the  Reynolds  number,  the  wave  number,  and  the 
wave  speed.  It is the  eigenvalues  forming  the  neutral  stability  curves  that are of pr i -  
mary  interest  in this  study. In particular,  it  investigates  the  influence of heating  or 
cooling  one wal l  on the  minimum  point of the  neutral  stability  curve.  The  range of wall 
temperature  differences  considered is from A T  = 0' F (0 K) to  AT = 200' F (111. 1 K) 
(the  symbols are defined  in  the  appendix). 

ANALYSIS 

Primary Flow 

For  steady  two-dimensional flow of a viscous  liquid  flowing  between  heated  parallel 
plates  (see  fig. l), the  x-component of the  momentum  equation  reduces  to 

V 

Neglecting  viscous  dissipation  (see  ref. 4), the  energy  equation  yields  the  linear  temper- 
ature  profile I 

T = (T2 - T1) - + T I  Y 
d 

where  T2  and T1 a r e  the  upper  and  lower  plate  temperatures,  respectively,  and d is 
the  distance  between  the  plates. 
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The  viscosity  relation  used  in  this  study is the  conventional  one  for  liquids,  namely, 

where  c2  and  c1  are  constants  determined  from  viscosity-temperature  curves  and 
p o  is the  viscosity at the  cool wall. 

The  equations are nondimensionalized  by  using 
* 

where Urn is  the  average  velocity.  Equation (1) is, in  dimensionless  form, 

The  solution of this  equation,  which  satisfies  the  no-slip  boundary  conditions  at  the 
plates, is 

R -  dP 
u(y) = 2 ((ay + b)(ay - b + A - 1)exp - ~ + b(b + 1 - A)exp 1 

2a 2 c2 ( ay + b) 

+ (A - 1 - 2b) [.(:) - E ( L ) ] ]  ay + b (5) 

Y 

where 

T2 - T1 a =  

3 

I! 
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(a + b)(b + 1 - a)exp - - ( a:b) 
+ (2b + 1) E - - E - 

A =  ._ . . _ _  "" 1 __ (a b)] 
(a + b)exp - - ( a:b) - - '(a%) 
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and  E(x) = e-t(dt/t).  In  equation (5) R(dp/dx) can  be  eliminated by the  continuity 

relation 4' u(y)dy = 1. As T2 - TI,  R(dp/dx) - -12  and u - -6(y - y). Several 2 

of the  velocity  profiles are plotted  in  figure 1. The  values  used  for  the  constants  c1 
and  c2  were 3233' R (1796. 1 K) and  1/445.9,  respectively. 

Stability Equation 

Let  the  stream  function  for  an  infinitesimal  disturbance  (a  Tollmein-Schlichting 
wave) be  given by 

lC/ = d Y > e  
i @(x-ct) 

where cu is the  wave  number  and c = cr + ici,  the  complex  wave  speed.  It  can  be 
shown  that  Squire's  Theorem is applicable;  hence  the  use of only  two-dimensional  dis- 
turbances.  Using u = u(y) + (alC//ay) and 7 = -alC//ax as the  perturbed  velocity  field  in 
the  Navier-Stokes  equations  results  in,  after  nonlinear  terms  in  aQ/ax  and alC//ay a r e  
neglected  and  the  pressure is eliminated  by  cross-differentiation,  the  modified Orr- 
Sommerfeld  equation (ref. 5) 

2 
N 

(u - c)(cp" - Q cp) - u"cp = - il.l ( c p  - 2cu cp" + Q cp) iv  2 4 
(YR 

'c 

in  which R = Umpd/po. This  equation  differs  from  the  usual  Orr-Sommerfeld  equations 
in  that  it  contains  the  viscosity  derivative  terms.  These  terms  are  very  significant  for 
the  study of liquids  and  must  be  retained. 
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The  boundary  conditions  representing  the  no-slip  conditions  at  the walls are 

q ( 0 )  = q ' ( 0 )  = q(1) = q'(1) = 0 (8) 

The  eigenvalue  problem  thus  formed  requires  that 

ci(cr, (Y, R) = 0 

U i f  no growth  or  decay of the  disturbance is allowed.  The  minimum  Reynolds  number 
from  the  neutral-stability  curve  representing  the  previous  relation is the  critical  Rey- 

6 nolds  number  sought  in  this  study.  It w i l l  be a function of the  AT  chosen  between  the 
two  plates.  The  eigenfunction is not symmetric  because of the  skew-symmetric  tem- 
perature  imposed,  hence one must  use  the whole  channel  in  the  analysis.  Equation (7) 
with  boundary  conditions (8), the  eigenvalue  problem,  must now be solved  to  yield  the 
desired  eigenvalues. A numerical  technique,  outlined  in  the  following  section, was 
chosen  to  solve  the  problem. 

Numerical  Integration of the Modified  Orr-Somrnerfeld  Equation 

The  task of solving  the  modified  Orr-Sommerfeld  equation is made  difficult  by  the 
presence of a very  small  coefficient of the  highest  order  derivative of the  order 
The  asymptotic  method  developed  by  Heisenberg  (ref. 6) and  improved  by  Lin (refs. 
7 to 9) h a s  been  very  popular  but h a s  certain  limitations  in  addition  to  the  difficulty  in- 
volved  by  introducing  the  "critical"  point.  Numerical  methods  used  to  solve  the  Orr- 
Sommerfeld  equation  are  proving  to  be  quite  successful.  These  methods  generally  re- 
quire  multiple  precision as did  that  used  by  Thomas (ref. 1). However,  an  initial  value 
scheme,  requiring only single  precision,  has  been  devised by  Kaplan (ref. 10). This  
scheme,  used by  Reynolds  and  Potter  (ref. ll), wi l l  now be outlined. 

Two  linear  independent  solutions  satisfying  the  lower wall boundary  conditions  must 
be  combined  to  produce a solution  satisfying  the  upper wall boundary  conditions.  One of 
these  solutions  grows  very  rapidly  away  from  the wall, making  it  difficult  to  maintain 
two  independent  solutions  during  the  numerical  integration. To insure  independency, 
Kaplan  suggested  suppressing  the  growing  solution at each  step  in  the  calculations,  that 
is ,   a t   each  s tep a small  multiple of the  growing  solution is subtracted  from  the  behaved 
solution.  The  effect of the  suppressed  par ts  are later  accounted  for  in  the  solutions. 
The  two  solutions  thus  formed are combined  to  satisfy  the  upper wal l  boundary  condi- 
ti  ons. 
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The  algorithm  employed  in  the  numerical  integration is par t  of a predictor- 
corrector  algorithm  for  fourth-order  equations.  However,  the  linearity of the  equations 
eliminates  the  need  for a predictor,  and  hence  only  the  corrector  equations are re- 
quired.  They are obtained  by  passing a third  order  polynomial  through qiv at four 
points,  expressing  the  coefficients  in  terms of the  values of the  fourth  derivative at the 
three  backward  points  and  the  single  forward  point.  This is then  integrated  to  give q1I1 
at the  forward  point  in  terms of the unknown fourth  derivative,  again  to  get cp”, and so 
forth.  The  resulting  expressions  for cp and its derivatives are 

= q b  + cp; A + v i 1  +- A 3  ( l?ql iv + 120,: - 21qr1  + 4&) 
2  720 

24 

where A is the  mesh  size  and cpn = cp(yn). These  expressions  are  substi tuted  into  the 
modified  Orr-Sommerfeld  equation  yielding  an  equation  in  which cpy is the only  un- 
known. A similar  scheme,  based on a two-point  fit, is used  to  start  the  calculation. 

To  use  the  previously  outlined  method,  the  eigenvalues  must  be known. If the  eigen- 
values are known only approximately,  the  upper w a l l  boundary  conditions  cannot  be 
satisfied  exactly.  To  find  the  exact  eigenvalues,  the  following  iterative  scheme is used. 
Let cp”’(1) = 0 and  choose cp( 1) as a test  function E. The  object is to   make E ze ro  
( lo-?  wi l l  suffice).  Fixing the wave  speed  c(ci = 0), choose A a and A R  such  that  the 
positive-definite  quantity EE is minimized (E is the  complex  conjugate of E). 

N 

E = Eo + (E)o ACX + (z) A R  

0 

where ? E / ~ ( Y  and aE/?R are found  by using 0 .01  percent  changes  in (Y and R. Con- 
vergence  to  the  exact  values is quite  rapid  requiring  only  three o r  four  passes.  If a 
Control  Data 3600 computer  were  used  where  each  pass  required 8 seconds, a neutral  
stability  curve  could  be found in approximately 10 minutes if  initial  guesses  were  made 
carefully. 
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RESULTS AND CONCLUSIONS 

The  primary  velocity  profiles  corresponding  to  an  imposed wall temperature  differ- 
ence of from A T  = 0' F (0 K) to  AT = 200' F (111. 1 K) are given  in  dimensionless 
form in figure 1. Since  the  viscosity of l iquids  decreases with increasing  temperature,  
the  resultant  velocity  profiles  became  skewed as I A T  I increases;  the  maximum  veloc- 
ity is shifted  towards  the  hotter wall. 

Figure 2 shows  that, if the  viscosity  gradient  terms are neglected  in  the  stability 
analysis,  the  resultant  neutral  stability  curve is shifted  to  the  right as I A T  [ increases ,  
thus  indicating a more  stable flow  situation.  This  agrees  with  the  results of Potter  and 
Smith (ref. 3) .  In contrast, when the   t e rms  are accounted for, the flow becomes  de- 
stabilized as IAT I increases.  It  should  also  be  noted  that a double cr i t ical  point  did 
not appear in the  neutral  stability  curve when the  viscosity  gradient  terms  were  included 
in  the  equation.  However,  neglecting  the  viscous  terms  led  to  the  appearance of an  in- 
flection  point (or possibly a double  critical  point  for  other  AT'S)  at a Reynolds  number 
of approximately 32 000 for  A T  = 100' F (55.6 K) (fig. 2). Hence,  even  though  the  vis- 
cosity  gradient  terms are  small,  their  inclusion is extremely  important. 

Figure 3 plots  the  variation of the  critical  Reynolds  number  with wall temperature 
difference  AT.  It  can be seen  that  the  temperature  difference  between  the  plates  has a 
definite  destabilizing  effect;  there is a 50 percent  reduction  in  critical  Reynolds  number 
resulting  from a 140' F (77.8 K) temperature  difference. 

The  curves  for A T  = 0' F (0 K) (figs. 2 and 4) represent  isothermal  Poiseuille flow 
and  agree with  the  accepted  results of Thomas  (ref. 1). Eigenfunctions are  also  plotted 
in figure 5 for AT = 0' F (0 K) and  for AT = 200' F (111. 1 K). 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  July  3,  1970, 
720-03. 
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APPENDIX - SYMBOLS 

A 

a 

b 

C 

cl’ c2  
d 

P 

P 

R 

Rc r 
T 

A T  

T1 

T2 
t 

U 

constant 

constant, (Tz - T1)/cl 

constant, T l/c 

complex  wave  speed,  cr + ici  

constants 

distance  between  plates 

s ta t ic   pressure of liquid 

dimensionless  static  pressure,  

WPU, 
2 

Reynolds  number,  Umpd/yo 

critical  Reynolds  number 

liquid  temperature 

wall temperature  difference, 

T 2  - T1 
lower wall temperature 

upper wall temperature 

t ime 

axial  velocity of liquid 

U 

- 
U 
- 
V 

X 

X 

Y 

Y 

CY 

A 

IJ. 

IJ. 
N 

IJ.0 

P 

cp 

Q 

average axial liquid  velocity 

dimensionless  axial  velocity, U/Um 

perturbed  axial  velocity 

perturbed  transverse  velocity 

axial  coordinate 

dimensionless  axial  coordinate, 

X/d 

transverse  coordinate 

dimensionless  transverse  coordi-  
nate, Y/d 

wave  number 

mesh  s ize  

viscosity 

dimensionless  viscosity, p/yo 

viscosity  at  T1 

density 

eigenfunction 

stream  function 
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