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1. OBJECTIVES AND SCOPE

Studies are being conducted to develop analytical meth ,̂ ,u5 for

predicting radiant heat transfer and temperature of engineering sur-

faces in a space environment. These Studies include two major as-

pects. First, by thoi-eughly investigating the influence of direc-

tional and spectral property dependencies of engineering materials

on radiant heat transfer and temperature by means of detailed analy-

sis, the accuracy of present calculation methods may be assessed,

new and improved methods developed, and the surface property data

required to implement the new method '-, delineated. Second, since

the results of analysis are only as valid as the surface property

models employed, a facility is under development to measure bidirEc-

tional reflectance of surfaces with the aim of justifying and refin--

ing a bidirectional reflectance model for metallic engineering sur-

f aces.

In Section 2 the progress made during a fifth six-month period

of the contract is summarized and the current status of the research

program reviewed. The anticipated progress for the next six-month

period is discussed in Section 3.



2. CURRENT STATUS

The progress made and current sCatus of the research program

are reviet,ed under three major categories. Advances in the theoreti-

cal heat transfer effort are reported in Section 2.1. Section 2.2

is devoted to further analytical efforts to establish realistic radia-

tion property models for engineering :surfaces. Measurements of bi-

directional reflectance in the plane of incidence for representative

roughened metal samples are reported. in Section 2.3.

2.1 RADIANT IIEAT TRANSFER ANALYSIS

2.1.1	 Radiant Neat Transfer for .Jon-gray, Pion-d,ffuse Surfaces

in a S pa ce Environment

Calculations which account for real surface property

effects on radiant heat transfer and equilibrium temperature for in-

teracting surfaces in a space environment have been completed. The

results are being compared to calculations employing simple surface

property models for radiative transfer. The comparison is providing

a means for assessing the extent to which present design techniques

account for real surface effects and estima'-es of the magnitude of

the error in heat flux and equilibrium temperature incurred by the

use of simple property models. The real surface calculations also

point out he level of radiation surface property detail required

in radiant heat transfer calculations to assure acceptable design

accuracy and delineate the surface property measurements necessary

to implement improved thermal design methods.

s
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Numerical results for radiant heat transfer in the absence of

a solar flux and for equilibrium temperature of radiatively adiabatic

surfaces it, a solar field were only recei:tly completed. Similar

results have been obtained for simple surface property models and

compromise models which attempt to retain the computational simplicity

of simple models yet partially account for important real surface

characteristics. All results are being studied for significant trends.

The details of the calculations and the resulting conclusions will

be the subject of a forthcoming report. Upon completion, this re-

port will be submitted under separate cover.

2.1.2 Radiant Heat Transfer and Equilibrium Temperature of

k	
S,arfaces with One-di r;lens i onal Roughness

Apparent thermal radiation properties for surfaces with

one-dimensional V-groove roughness elements have been developed [1,2]'.

These properties were derived employing concepts of geometrical op-

tics and apply for optical roughness values in excess of unity.

Analysis is under way to utilize the apparent properties to study

the influence of directional emission and reflection on heat trans-

fer and on equilibrium temperature of surfaces in a space environ-

ment. Studies are in various stages of completion for both isolated

surfaces and systems of radiatively interacting surfaces. These

studies complement those cited in Section 2.1.1 which employ a

?lumbers in brackets refer to entries in REFERENCES.
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bidirectional reflectance model appropriate to surfaces with small

optical roughness.

	

2.1.2.1	 Isolated Surfaces

In an earlier report [21, preliminary results il-

lustrating the influence of surface roughness on heat transfer and

on the temperature acquired by an isolated radiatively adiabatic

surface in a solar flux were presented. Two manuscripts have been

prepared and submitted to technical journals. The first E.ititled

SURFACE ROUGHNESS EFFECTS ON EQUILIBRIUM TEMPERATURE has been accepted

for publication .Dy Journal of Spacecraft and Rockets. Upor receipt,

reprints of the published article will be submitted to JPL. The

second manuscript entitled SURFACE ROUGHNESS EFFECTS ON RADIANT NEAT

TRANSFER is under review.

	

2.1.2.2	 I nteracti r., Surfaces

Analysis and numerical results have been completed

describing the influence of one-dimensional surface roughness on

radiant heat transfer for interacting surfaces in the absence of

external radiation fields. The system selected for study was iden-

tical equal-length adjoint plates of infinite width. Both surfaces

have the same uniform temperature and surface properties were taken

independent of temperature and wavelength. Preliminary heat flux

results were reported earlier [3]. A manuscript has been prepared

describing the details of the analysis, numerical results and conclusions.

t
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The manuscript has been submitted to a technical journal for publi-

cation. Reprints of the article will be submitted to JPL upon re-

ceipt. A s.,ort summary of the important conclusions resulting from

this study is provided in the next paragraph.

Surface roughness effects ;ire for the most part unimportant

for high emittance materials (E > 0.9). The influence of surface

roughness on radiant heat transfer steadily ir.^reases as material

emittance values diminish. Surface roughness slope is more impor-

tant than roughness element specularity in influencing radiant trans-

fer for low emittance materials and can cause changes in local flux

and total heat transfer rates as large as a factor of two. Of the

simple diffuse and specular surface property models, rough surface

local flux and total heat transfer is generally approximated most

accurately by the diffuse emission-diffuse reflection model employ-

ing rough surface apparent emittance for hemispherical emittance.

The error incurred in using this model to evaluate local flux for

low to intermediate values of emittencF, however. can be as large

as 50 percent.

The analysis briefly described above has been extended to a sec-

and system of surfaces consisting of finite widtY. parallel plates.

This system may be varied between situations in which interrefl.ec-

tions are negligible to those where radiant interaction is dominant.

The analysis has also been extended to include not only the eval.ua ­

tion of local radiant flux, but net radiant exchange between the

surfaces. The latter quantity is important in situations where the

5



net transfer of radiant energy from a source to a sink is of prime

interest. A computer code has been written and verified. Numeri-

cal result. are beginning to he realized, but are not yet sufficient

in quantity to merit reporting.

Analysis has been completed extending that developed for the

adjoint plate system to include solar flux and, hence, evaluation

of surface roughness effects on equilibrium temperature of radiatively

adiabatic. surfaces. A code is under development to implement the

acquisition of quantitative result::.

2.1.3 Spectral Surface Property Effects on Radiant Transfer

An analysis has been completed which provides a mecha-

nism for study of spectral surface property effects on radiant heat

transfer between radiatively interacting surfaces. The system of

surfaces initially chosen for study is the adjoint plate system in

the absence of external thermal radiation fields. One of the pur-

poses of this analysis is to provide information which can be ,.ti-

lized to delineate the relative importance of spectral and directional

real sileface property dependencies. Furthermore, additional infor-

mation is required to ascertain the magnitude of the error incurred

in gray and sem.igray me',hods of analysis. Initially, available spec-

tral property measurements for selected materials will be employed

in the calculations. Later the code capability is expected to he

extendod to include more genera l spectral property models. These

models characterize the spectral dependence of classes of materials

6



in teams of a limited number, of characteristic parameters. Results

are not yet available.

2.2 RMIATION PROPERTY ANALYSIS

The study of the e.pparent radiation properties of surfaces with

one-dimensional roughness elements in the s'zape of a V-groove was

recently presentee at the AIAA Fourth Thermophysics Conference at

San Francisco, Cal.iforn ,ia. The paper is under review for publica-

tion in the conference proceedings. Reprints of the paper presented

at the conference have been submitted to Jf L and reprints of the

pul-lished article will be seat upon receipt.

2.3 BIDIRFCTIONAL REFLECTANCE MEASUREMENTS

In this section, plane of incidence BDP- urea-irements are pre-

sented for selected metal samples. Althcugh the sLrfa:e ct,aracter-

istics are not well-documented and the measurements are limited in

quantity and scope, the measurements furnish information which is

necessary to carry out the detailed study. First, techniques avail-

able to the investigators for surface preparation and specification

were investigated. Second, signal levels of solid angle-slit width

combinations for minimum detectable energy were determin•2d. Third,

techniques for efficient data acquisition and reduction were devel-

oped. Finally, the BDR measurements were compared with a BDR mo_'.el

*1 hroughout Section 2.3, BDR is used as an abbreviation for bidirec-

tional reflectance.
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to develop techniques for such comparisons. In addition, the mea-

surements helped define the capabilities and limitations of the re-

flectomete-. The coordinate system to which all measurements are

referred is shown in Fiy. 1.

2.3.1 Test Samples

Test samples selected for study were six 6061-T6 alumi-

num alloy discs of 1/4-inch thickness and one-inch diameter. Samples were

polished to a smooth finish and then finished to various degrees of

roughness by utilizing standard polishing techniques with grits of

different sizes. Sample designations and the grit: sizes used in

finishing of each sample are given in TABLL 1. The columns labeled

a and m are discussed later. Visual inspection reveals that sample

roughness increases with increasing sample number designation. Af-

ter roughening, each sample was cleaned and then coated with a vacuum

deposited layer of pure aluminum to a thickness of approximately

0
1000 A. This layer thickness retains the roughness of the aluminum

alloy base metal while providing samples with the well-documented

optical properties of pure aluminum. An attempt to obtain a quan-

titative measure of surface roughness by microinterferometer photo-

graphs met with only limited success. The photographs indicated

only that samples designated 1 through 3 were nearly optically smooth

whsle the other samples were too rough to obtain a meaningful rough-

nes:; measurement by this technique. Other methods for determining

surface roughness parameters were not available. Sample 1 was retained

_.0	 6

_26-^ -	
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as the smooth sample, and BDk measurements are reported only for

samples 4, 5, and 6.

2.3.2 Measurements

2.3.2.1 Specular Reflectance

Monochromatic specular reflectance measurements

relative to that of the smooth sample were acquired for wavelengths

in the range 1-14 pm for an angle of incidence equal to 10 0 . The

specular reflectance measurements for the samples designated 1, 5,

and 6 are illustrated in Fig. 2b as a function of the wavelength

of the incident ei,ergy. The solid and broken curves are discussed

It
	 in Section 2.3.3. The ordinate represents the ratio of the reflec-

tance of the roughened sample in the specular reflection directicn,

Ps 
(01 I V), to the corresponding value for the smooth sample, p 0 (0'41).

Certain charactaristics of the measurements are apparent from

this figure.

1. As wave l ength increases, specular reflectance of the rough
surface approaches that of the smooth surface. The impli-
cation is that with increasing wavelength, a rough surface
reflects greater portions of the incident energy into the
specular direction and, therefore, approache: a specular
reflector. This behavior is more noticeable for the smocth-
est sample (4) than for the roughest sample (6).

2. At a fixed wavelength, the ,specular reflectance decreases
with increasing rms surface roughness height. Two possible
explanaticns can be given for this beha vior. First, as
roughness increases, the surface tends to scatter larger
amounts of incident energy with a consequent reduction in
specular reflectance. Second, multiple reflections within
and between roughness asperities .which decrease the magnitude

9



of reflected energy become more important as roughness height
increases. A better understanding of this characteristic

may be obtained by observing the variation of directional
hemispherical reflectance with increasing roughness. If
mcnoch romatic directional hemis^herical reflectance remains
essentially invariant with incre,-g ing roughness, then the
first explanation is appropriate. 4owever, if it vari:.;.
both explanations could apply. Unfcrtunately, monochroma-
tic directional hemispherical reflectance measurements of
the samples were not available.

3. For wavelengths less than 4 um, the specular reflectance
for sample 6 is nearly independen, of wavelength. A simi-

ler but not as noticeable trend is evident for sample 5
while this behavior is not apparent for sample 4.

The first two characteristics are similar to those predicted

by BDR models based on physical optics. Thus, it appears that these

models coi-ld be employed to correlate the reflectance measurements

for wavelengths greater than 4 um. The lack of a strong wavelength

dependence of the specular reflectance measurements as illustrated

by the last characteristic suggests that the reflectance measurements

for wavelengths less than 2 
pin
	 be correlated by models based

on the concepts of geometrical optics. However, additional measure-

ments are necessary to verify the third characteristic, particularly

for wavelengths less than 2 um. Trends similar to those observed

have beer, reported in [4,5,6,7].

2.3.2.2 Bidirectional Reflectance

Plane of incidence BDR measurements were acquired

for samples 4, 5, and 6 at an angle of incidence of 10 0 and wavelengths

of 1 .1+ , 2.141) 6.4 , and 10.0 Urn. 	 Results are presented in Figs. 3,

10



4, and 5 for samples 4, 5, and 6, respectively. Results for sample

4 at 10.0 pm are not included since they were essentially identical

to those si.own in Fig. 3c for 6.4 um. Tl^e solid and broken curves

shown in these figures are discussed in Section 2.3.3. The ordinate

R represents the ratio of the product of the BDR and the cosii,a of

the angle of reflection to the corresponding product in the specu-

lar direction. Some trends are evident in these figures. First,

all samples exhibit large reflectance values in a direction at or

near that for specular reflection. Second, with increasing wavelengr.h,

each sample becomes increasingly specular. Third, for a fixed wave-

length and increasing roughness, greater amounts of reflected energy

are observed in directions other than the specular direction. Finally,

the distributions fer sample 5 at wavelengths of 1.4 pm and 2.4 pm

are nearly identical. The first three trends are similar to those

predicted by a physical optics BDR model while the fourth trend is

similar to that predicted by a geometrical optics BDR model. No

explanation is offered at this time for the data exceeding unity

for sample 6 at a wavelength of 1.4 um.

The BDR measurements shown in Figs. 3, 4, and 5 indicate that

the samples are nearly specular reflectors, particularly for longer

wavelengths. However, the difficulty in ascertaining if a surface

is a specular reflector frorn these measurements can be illustrated

by an example. Consider a surface with 10 percent of the reflected

energy contained in the specular direction and the remaining 90 per-

cent distributed diffusely over hemispherical space. The value of

11



R for directions other than near the specular direction is approxi-

mately 0.005 which if plotted to the scale shown in Fig. 3 would

indicate that the surface is a specular --eflec:tor. Thus, normaliz-

ing the measurements with respect to that obtained in the specular

d.irecticn gives only limited information concerning the spatial dis-

tribution of a large portion of the reflected energy. This situa-

tion could be rectified to a large degree by presenting the measure-

ments on a semi-log scale.

The absolute value of the spectral BDR can be calculated from

the Following expression:

P (©' W )

Pbd ( 0 ' ^^' , 0 ,$) = Po ( 0 ' ,^' )	 '

Pbd (Of w o ,o cos e	 1
•	 — 	 (2.3.1)

pbd 
(e' ,^' ;0' ,^' + T) cos 0' cos 0 Lbw

where the ratio in the first bracket is obtained from Fig. 2b and

the second bracket from either Fig. 3, 4, or 5. The specular reflec-

tance of the smooth sample, p  W ,V ) was not measured but an indi-

cation of its magnitude can be found in [8] for pure aluminum.

2.3.3 Comparison with a Bidirectional Reflectance Model

Since the measurements reported in Figs. 2b, 3, 4, and

5 exhibit characteristics similar to those predicted by a BDR model

based on physical optics, a comparison between the measurements and

a physical optics model was made. The BDR model selected is attributed

12



to Beckmann [9]. Houchens and Hering [10.j exarni-ied this model in

view of certain theoretical criteria and available cxperimertal data

and have shown that it has a wide- , range of application than some

other physical optics models. The PDR expression for the Beckmann

model can be written in the following general Form:

0

Q+ f
I 	( 0	 ;0	 m) (2.3.2)

where p
0 

is the specular reflectance of an optically smooth surface

and accounts for absorption. f
P 

is the specular BDR component with
=

F designating that this component has only a non-zero value in the

specular direction. f	 is the scattered BDR component, and Q and
sc

m are the rrits surface roughness height and slope, respectively.

Specific expressions for f P , F, and f & C are available in [10].

Iii order to compare this model with the measurements, the sur-

face roughness parameters a and m which according to the model char-

acterize the surface contour must be determined. Since mechanical

methods were not available, an optical method based on the measure-

merit of monochromatic :pecular reflectance was employed [10]. Ac-

cording to Eq. (2.3.2), the monochromatic reflectance in the specu-

lar direction may be written as

p ( 01 ' V )	 r	 2 1
p` (©, _) = exr , I - ^ L+7r ^ cos 0'^ J
o	 '	 L

+ f
sc	

0' ,^' ;E^' ,	 + Tt; ) , m)cos 0' Aw (2.;x.3)
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For , this comparison, p  was taken as the specular reflectance of

sample 1. For sufficiently long wavelengths, the scattered compo-

ner ►t is negligible and Eq. (2.3.3) reduc3s to

P IV )
)	

,	 exp [
2

-	 I+n	 cos	 ©'	 ]
pj
o

(0'

where the right-hand side of Eq. (2.3.4) is just the specular com-

ponent. Thus, a plot of p
a o
/p versus 1/X2 on a semi-log scale is

a straight line with slope proportional to Q 2 . Measured values of

PS/Po for samples 4, 5, and 6 are plotted on a semi-log scale in

Fig. 2a as a function of 1/X2 for an angle of incidence equal to

101 . Data for long wavelengths was weighted more heavily in locating

the straight lines since the assumption of negligible scattered en-

ergy is most applicable at these wavelengths. The values of a ob-

tained from the slopes of the lines are given in TABLE 1. f1sing

these Q values, P./Po was calculated from Eq. ( 2.3.4) for each sample

and the results are presented as solid curves with the ;.)ecular re-

flectance data in Figs. 2b and 2c. The deviation of data and theory

at short wavelengths is attributed to the scattered energy effects

which become increasingly important at short wavelengths. The broken

curves are discussed below.

For short wavelengths, both the specular and scattered energy

components in Eq. (2.3.3) are signific^rit. Thus, with a determined

and 0' and Aw specified, the rms slope can be calculated using the

measured values of ps /p0 in Eq. (2.3.3). Results of these calculations

14
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are given in TABLE 2 for selected wavelengths. If the model were

exact and there were no uncertainties in the measurements, the values

for the rm.- roughness slope m calculated at different wavelengths

would be identical. In order to compare the Beckmann model to the

data, an average value of m was determined for each sample from those

listed in TABLE 2, and these are given in TABLE 1. It is interesting

to note that although sample 6 has a rms roughness height lore than

twice that of sample 5, the rms roughness slope is almost identical

to that of sample 5. Verification of the optically determined sur-

face roughness parameters could be obtained from a profilomet o trace

of the samples; however, this instrument was not available.

Using the a and average m values giver in TABLE 1 1 PS /p o was

calculated from Eq. (2.3.3) for each sample at selected wavelengths.

The results are shown in Figs. 2b and 2c as broken curves. For a/X

< 0.1, the contribution of scattered energy is small, but it increases

rapidly until for Q/X > 0.2, it is nearly the sole contributor to

the reflected energy. The limiting value for the scattered energy is

determined by rms roughness slope and increases with decreasing m.

For Q/X < 0.2, the agreement between the model and the data is good.

For larger values of a/X, the model deviates from the data but it

has trends similar to the measurements. Some explanation can be

given for the discrepancy between the model and data. First, the

method used to calculate a unique m value for each sample contributes

to the disagreement between the model and the data for large a/a.

By appropriate selection of m, the model and data could be forced

15



to coincide at a large Q/a value. However, for large a/X, shadowing

effects and multiple reflections which are rot accounted for by the

morel become increasingly important. Thus, it is more appropriate

to select m from data for Q/A < 0.2 where the validity of the model

is open to less criticism. Second, the measurement uncertainties

are larger at short wavelengths due to lowsignal to noise ratio.

A lead sulfide detector and tungsten source would significantly re-

duce these uncertainties at wavelengths in the range 0.7-2.8 pm while

a photomultiplier detector would accomplish the same for 0.22 um < a

< 0.7 um.

Comparison of the spatial distribution of reflected energy

calculated from the Beckmann model and the BDR data is shown in

Figs. 3, 4, and 5. The solid curves were calculated from Eq. (2.3.2)

using the c and m values given in TABLE 1. The broken curves rep-

resent the scattered component. Considering its limitations, the

model exhibits characteristics similar to the data for .illumination

at near normal incidence.

Of particular interest is that although samples 4 and 6 have

identical values of Q/X at wavelengths of 2.4 um and 6.4 um, respec-

tively, the distributions shown in Figs. 3b and 5c indicate that

sample 4 is smoother than sample 6. Furthermore, sample 6 has an

optical roughness of approximately twice that of sample 5 for a wave-

length of 1. 4 um. According to [11], sample 6 would be expected to

scatter a larger amount of the incident energy than sample 5. How-

ever, the distributions for the two samples shown in Figs. 4a and

1.6



5a at a wavelength of 1.4 rpm are nearly identical. Hence, it appears

that optical roughness alone is insufficient to characterize the

BUR of a re • igh surface. This is contrary to the findings of some

investigators [11]. According to the Beckmann model, the rms slope

must also be specified in order to obtain an indication of the BUR.

Further experimental verification of the importance of the rms rough-

ness slope is needed.

2.3.4 Conclusions

The BDR measurements reported have demonstrated that the

reflecto-neter has the desired capabilities. Signal levels obtained

for the wavelength range 2-14 um and for the slit width-solid angle

combinations employed were sufficiently far removed from system noise

to enable meaningful measurements to be made. For wavelengths greater

than 14 Um, it is necessary to use larger solid angles and/oi , oper-

ate the monochromator in the single pass mode with an external chop-

per to avoid noise problems. For wavelengths less than 2 Um, it is

necessary to employ other detectors and sources.

Available surface preparation and specification techniques were

severely limited. Additional grit sizes and metal samples would be

useful in preparing surface; of different roughnesses. It was con-

eluded that a profilometer measurement of surface topography would

provide the most useful means for evaluaZi.ng surface roughness parame-

ters. However, the feasibility of using a scanning electron micro-

scope for surface contour measurements is being investigated. These

17



parameters could also be used to verify those calculated from opti-

cal measurements and a BDR model.

The methods of accounting for absorption of incident energy

can be investigated by using a roughened sample with coatings of

different materials. A measurement which was not available for this

study and is required to investigate methods of accounting for ab-

sorption is the directional hemispherical reflectance. This measure-

ment is particularly important for substantiating a BDR model b&sed

on physical optics.

18



3. FUTURE RESEARCH

Future efforts in theoretical studies will concentrate first

on intensive analysis of the numerical results obtained from the

real surface radiant transfer study utilizing the detailed bidirec-

tional reflectance models. All details and quantitative results of

this analysis as well as the important conclusions drawn therefrom

will be submitted shortly in a report devoted entirely to this study.

Analytical studies of surface roughness effects on radiant heat

P	
transfer and equilibrium temperature of grooved surfaces will con-

tinue. Computations for both radiant transfer and radiant exchange

for the parallel !late geometry are underway and upon completion will

delineate the influence of surface roughness on radiative transfer

for systems of widely different interaction characteristics. Sub-

sidiary analyses and computa-^ions are also being initiated to investi-

gate the accuracy of simple surface reflection models in predicting

rough surface radiant transfer. This effort is expected to be com-

pleted within the next six-month contract period. The extension

of the adjoint -):ate system code to include sola r, flux, thereby per-

rnitting evaluation of surface roughness effects on equilibrium tem.-

perature, is underway and will be continued.

The bidirectional reflectance measurement facility is presently

being upg.-.ded to autornatically scan ovt, all directions of reflected

energy in the plane of incidence. Turntables, stepping motors, and

a controller have been purchased and delivery is expected shortly.

19
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In addition, a digital data acquisition and recording system has

been selected. finally, problems with erratic : ,otation of the chop-

per motor L. the monochromator are being alleviated by replacing

the original motor with a synchronous motor. Bidirectional reflec-

tance measurements in the plane of incidence for surfaces with well-

defined roughness characteristics, as well as for ether selected

samples will commerce upon completion of the system improvements.
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5. FIGURES AND TABLES

Figure 1.	 Angles of Incidence and Reflection

Figure 2a. Evaluation of rms Surface Roughness Height Q Using Specular
Component of Beckmann Model

Figure 2b. Comparison of Specular Reflectance Data with Beckmann
Model

Figure 2c. Comparison of Specular Reflectance Data with Beckmann
Model

Figure 3a. Comparison of Bidirectional Data with Beckmann Model
at X = 1.4 pm--Sample 4

Figure 3b. Comparison of Bidirectional Data with Beckmann Model
at X = 2.4 Um--Sample 4

Figure 3c. Comparison of Bidirectional Data with Beckmann Model
at A = 6.4 pm--Sample 4

Figure Lia. Comparison of Bidirectional Data with Beckmann Model
at a = 1.4 pm--Sample 5

Figure 4b. Comparison of Bidirectional Data with Beckmann Model
at X = 2.4 Um Sample 5

Figure 4c. Comparison of Bidirectional Data with Beckmann Model
at X = 6.4 Um--Sample 5

Figure 4d. Comparison of Bidirectional Data with Beckmann Model
at a = 10.0 Um--Sample 5

Figure 5a. Comparison of Bidirectional Data with Beckmann Model
at X = 1.4 Um--Sample 6

Figure 5b. Comparison of Bidirectional Data with Beckmann Model
at A = 2.4 um--Sample 6

Figure 5c. Comparison of Bidirectional Data with Beckmann Model
at X = 6. 1 1 um--Sample 6

Figure 5d. Comparison of Bidirectional Data with Beckmann Model
at X = 10.0 pm--Sample 6

Table 1.	 Sample Designation, Mean Grinding Gri.t Sizes and rms
Roughness Parameters

Table 2.	 Values for rms Roughness Slope
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TABLE 1

SAMPLE DESIGNATION, MEAN GRINDING GRIT

SIZES AND rms ROUGHNESS PARM DETERS

Sample
Number

Mean
Grit Sizes

(uml

rms Surface
Roughness Height, a

(0m)

rms surface
Roughness Slope, m

1 0.05 -- --

2 0.3 -- --

3 15.0 -- --

4 19.0 0.316 0.0294

5 30.0 0.392 0.0576

6 54.0 0.845 0.0553

x

w
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