IN BOLTED JOINTS
H.H. Gould

B.B. Mikic

Final Technical Report
Prepared for

George C. Marshall Space Flight Center Marshall Space F1ight Center Alabama 35812

under

Contract NAS 8-24867

June 1970

DSR Project 71821-68

Engineering Projects Laboratory
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

When two plates are bolted (or riveted) together these will be in contact in the immediate vicinity of the bolt heads and separated beyond it. The pressure distribution and size of the contact zone is of considerable interest in the study of heat transfer across bolted joints.

The pressure distributions in the contact zones and the radii at which flat and smooth axisymmetric, linear elastic plates will separate were computed for several thicknesses as a function of the configuration of the bolt load by the finite element method. The radii of separation were also measured by two experimental methods. One method employed autoradiographic techniques. The other method measured the polished area around the bolt hole of the plates caused by sliding under load in the contact zone. The sliding was produced by rotating one plate of a mated pair relative to the other plate with the bolt force acting.

The computational and experimental results are in agreement and these yield smaller zones of contact than indicated by the literature. It is shown that the discrepancy is due to an assumption made in the previous analyses.

In addition to the above results this report contains the finite element and heat transfer computer programs used in this study. Instructions for the use of these programs are also included.

ACKNOWLEDGMENTS

This report was supported by the NASA Marshall Space Flight Center under contract NAS $8-24867$ and sponsored by the Division of Sponsored Research at M.I.T.

TABLE OF CONTENTS

Page
Title Page 1
Abstract 2
Acknowledgments 3
Table of Contents 4
List of Tables and Figures 6
Nomenclature 8
Chapter I: Introduction 10
Chapter II: Analysis 15
A. Problem Statement 15
B. Method of Analysis 18
Chapter III: Experimental Method 23
Chapter IV: Results 28
A. Pressure Distribution and Radii of Separation from 28 Single Plate and Two Plate Finite Element Models
B. Radii of Separation from Experiment and Their Pre- 29 dicted Values from the Two Plate Finite Element Computation
Chapter V: Application 32
Chapter VI: Conclusions 35
References 37
AppendicesA. Finite Element Analysis of Axisymmetric Solids39

Page

B. Finite Element Program for the Analysis of 44 Isotropic Elastic Axisymmetric Plates
C. Finite Element Program for the Analysis of 68 Isotropic Elastic Axisymmetric Plates Thermal Strains Included
D. Steady State Heat Transfer Program for Bolted Joint

LIST OF TABLES AND FIGURES
Table
1 Separation Radius Comparison - Single and Two Plate Models
2 Test and Analytical Results for Radii of Separation
101
of Bolted Plates
Figure
1 Bolted Joint 102
2 Roetscher's Rule of Thumb for Pressure Distribution in 102
a Bolted Joint
3 Furnlund's Sequence of Superposition 103
4 Finite Element Idealization of Two Plates in Contact 107
5 Finite Element Models108
6 Examples of Unacceptable Solutions 109
7 Plate Specimen, Bolt and Nuts, Fixture and Tools 110
8 Footprints on the Mating Surface of $1 / 16-1 / 16$, 111$1 / 8-1 / 8,3 / 16-3 / 16,1 / 4-1 / 4$, and $1 / 8-1 / 4$ Pairs9 Footprint of Nut on Plate116
10 X-Ray Photographs of Contamination Transferred fromRadioactive Plate to Mated Plate. $1 / 16,1 / 4,3 / 16$,1/4 Inch Pairs
11 Free Body Diagram for Two Plates in Contact 119
12 Single Plate Analysis-Midplane σ_{z} Stress Distribution 12013
Single Plate Analysis-Midplane σ_{z} Stress Distribution 121
Single Plate Analysis-Midplane σ_{z} Stress Distribution 122

Figure

Page

15
16 Interface Pressure Distribution in a Bolted Joint

17 Interface Pressure Distribution in a Bolted Joint

Pressure in Joint, Triangular Loading

Pressure in Joint, Uniform Displacement Under Nut 129

27 Finite Element Analysis Results for $1 / 8$ Inch Plate

28 Comparison Between Tested and Measured Separation Radii
29 Location of Nodes - Steady State Heat Transfer Analysis
Deflection of Plate Under Nut 130
Finite Element Analysis Results for $3 / 16$ Inch Plate Pair 131
Finite Element Analysis Results for $1 / 8$ Inch Plate Pair 132
Gap Deformation for Free and Fixed Edges - Finite 133Element Analysis, $1 / 8$ inch Plate Pair.

Finite Element Analysis Result for $1 / 16$ Inch Plate Pair 134 136
Interface Pressure Distribution in a Bolted Joint124125

Finite Element Analysis Results for $1 / 4$ Inch Plate Pair127

Variations of Loading and Boundary Conditions
128 20Pressure in Joint, Uniform Displacement Under Nut129134

Mated With $1 / 4$ Inch Plate
Mated With 1/4 Inch Plate 135136137

NOMENCLATURE

A, B, C	radii
D	thickness
E	modulus of elasticity
G	shear modulus
h_{c}, h_{f}	heat transfer coefficients
H	hardness
$\mathrm{k}, \mathrm{k}_{1}, \mathrm{k}_{2}$	thermal conductivities
P, p	pressure
\mathbf{r}	coordinate
R_{0}	radius of separation
u, w	displacement in r and z directions
x	coordinate
X_{c}	length of contact
y	coordinate
y^{\prime}	slope
2	coordinate
δ	deflection
ε	dilation
$\varepsilon_{r}, \varepsilon_{t}, \varepsilon_{r z}$	strains
$\sigma, \sigma_{1}, \sigma_{2}$	standard deviations
$\sigma_{r}, \sigma_{t}, \sigma_{z}$	stresses

$\lambda, \mu \quad$ Lame's constants
v
τ
θ

Subscripts
r
t
z
radial direction
tangential direction
z-direction

Chapter I

INTRODUCTION

When two plates are bolted (or riveted) together, these will be in contact in the immediate vicinity of the bolt heads and separated beyond it. The pressure distribution in the contact area and the separation of the plates is of considerable interest in the study of heat transfer across joints. Cooper, Mikic and Yovanovich [1] show that with assumed Gaussian distribution of surface heights, the microscopic contact conductance is related to the interface pressure, surface characteristics and the hardness of the softer material in

$$
\begin{equation*}
h_{c}=1.45 \frac{\tan \theta}{\sigma} k\left(\frac{\mathrm{P}}{\mathrm{H}}\right)^{0.985} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
k \equiv \frac{2 k_{1} k_{2}}{k_{1}+k_{2}} \tag{1.2}
\end{equation*}
$$

and k_{1} and k_{2} represent the thermal conductivities of two bodies in contact; σ is the combined standard deviation for the two surfaces which can be expressed as

$$
\begin{equation*}
\sigma=\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{1 / 2} \tag{1.3}
\end{equation*}
$$

where σ_{1} and σ_{2} are the individual standard deviation of height for the respective surfaces; $\tan \theta$ is the mean of the absolute value of slope for the combined profile and it is related, for normal distribution of slope, to the individual mean of absolute values of slopes as

$$
\begin{equation*}
\tan \theta=\left(\tan \theta_{1}^{2}+\tan \theta_{2}^{2}\right)^{1 / 2} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\tan \theta_{i}=\lim _{L \rightarrow \infty} \frac{1}{L} \int_{0}^{L}\left|y_{i}^{\prime}\right| \quad d x ; \quad i=1,2 \tag{1.5}
\end{equation*}
$$

and y^{\prime} is the slope of the respective surface profiles; P represents the local interface pressure; and H is the hardness of the softer material.

Relation (1.1), as written above, is applicable for contact in a vacuum. One can modify the expression by simply adding to it

$$
\begin{equation*}
h_{f} \equiv \frac{\text { conductivity of interstitial fluid }}{\text { average distance between the surfaces }} \tag{1.6}
\end{equation*}
$$

in order to account approximately for the presence of the interstitial f1uid.

All parameters in relation (1.1), except for the pressure, are functions of the material and geometry and can be easily obtained. The determination of the pressure distribution and the extent of the contact area between two plates present both mathematical and experimental
difficulties. From the mathematical point of view, the difficulty stems from the fact that the theory of elasticity will yield a three dimensional (axisymmetric) problem with mixed boundary conditions. Experimentally, the discrimination between contact and gaps of the order of millionths of an inch is required.

Roetscher [2] proposed in 1927, a rule of thumb that the pressure distribution of two bolted plates, Fig.l, is limited to the two frustums of the cones with a half cone angle of 45 degrees as shown in Fig. 2 and that at any level within the cone the pressure is constant. Also, for symmetric plates, according to Roetscher, separation will occur at the circle which is defined by the contact plane and the 45 degree truncated cone emanating from the outer radius of the bolt head.

Since 1961 Fernlund [3], Greenwood [4] and Lardner [5] among others reported solutions based upon the theory of elasticity. Although their solutions also yield separation radii at approximately 45 degrees as in Roetscher's rule, their solutions yield a much more reasonable pressure distribution as compared to Roetscher's constant pressure at each level of the frustrum. These investigators have made use of the Hankel transform method demonstrated by Sneddon [6] in his solution for the elastic stresses produced in a thick plate of infinite radius by the application of pressure to its free surfaces. The basic assumption in their approach is that two bolted plates can be represented by a single plate of the same thickness as the combined thickness of the two plates under the same external loading. It then follows that the z-stress distribution at the parting plane can be approximated by the z-stress distribution in the same plane of the single plate. It also follows that separation will occur at the smallest radius in that plane for which
the z-stress is tensile. In the case of two plates of equal thickness the σ_{z} stress at the midplane of the equivalent single plate is the stress of interest.

Fernlund [3], for example, used the method of superposition in the sequence shown in Figs. 3(a) to 3(c) to obtain annular loading. Then by superposition of shear and radial stresses at radius A, Figs. 3(d) and 3 (e), opposite in sign of those due to the annular loading at the free surfaces, Fernlund obtained the solution for a single plate with a hole under annular loading (Fig. 3(f)).

Experimental work in this area included Bradley's [7] measurements of the stress field by tiree dimensional photoelasticity techniques, and the use of introducing pressurized oil at various radii in the contact zone and measuring the pressure at which oil leaks out from the joint $[3,8]$. Both of these experimental methods have uncertainties as indicated by the authors.

Because of the cumbersomess of the Hankel transform solution and experimental difficulties, the body of work in this area has been very limited and definite verification of analytical results by experiment is not cited in the literature.

The research described in the succeeding chapters was undertaken with the following primary objectives:
a) To provide a method of solution for the case of two bolted plates without the simplifying assumption of the single plate substitution.
b) To devise a test to validate the two plate analysis.
c) To test the validity of the single plate substitution.

A finite element computer program has been assembled for the analytical solution of two-plate problems. Experiments have been performed to verify the analytical results. Since in heat transfer calculations the extent of the radius of contact is of primary importance, and since by restricting the experimental effort to the verification of only this parameter, (rather than the verification of the entire pressure distribution,) many experimental uncertainties should be eliminated, the experiments were designed only for the determination of the contact area.

Agreement between analysis and experiment was obtained and the results show that the single plate substitution is not justified and the 45 degree rule is not valid for the flat and smooth surfaces studied.

Chapter II

ANALYSIS
A. Problem Statement

The objective of the anlaysis was to solve the linear elasticity problem of two plates in contact defined mathematically by the following equations for each plate:

The equations of equilibrium

$$
\begin{align*}
& \frac{\partial}{\partial r}\left(r \sigma_{r}\right)-\sigma_{t}+r \frac{\partial \tau}{\partial z}=0 \\
& \frac{\partial}{\partial r}(r \tau)+\frac{\partial}{\partial z}\left(r \sigma_{z}\right)=0 \tag{2.1}
\end{align*}
$$

where $\tau_{r z}=\tau_{z r}=\tau \quad$ and $\quad \tau_{r t}=\tau_{t r}=\tau_{z t}=\tau_{t z}=0$.
The stress - strain relations, using standard notation for stress and strain,

$$
\begin{align*}
& \sigma_{r}=\lambda \varepsilon+2 \mu \varepsilon_{r} \\
& \sigma_{t}=\lambda \varepsilon+2 \mu \varepsilon_{t} \tag{2.2}\\
& \sigma_{z}=\lambda \varepsilon+2 \mu \varepsilon_{z} \\
& \tau=2 \mu \varepsilon_{r z}
\end{align*}
$$

where λ and μ are Lame's constants and

$$
\begin{align*}
& \lambda=\frac{2 G \nu}{1-2 \nu} \tag{2.3}\\
& \mu=G
\end{align*}
$$

if G is the modulus of elasticity in shear and V is Poisson's ratio; and ε the volume expansion is defined by

$$
\begin{equation*}
\varepsilon=\frac{\partial u}{\partial r}+\frac{u}{r}+\frac{\partial w}{\partial z} \tag{2.4}
\end{equation*}
$$

where u is the displacement in the radial direction and w is the displacement in the axial direction.

The strain - displacement relations

$$
\begin{align*}
& \varepsilon_{r}=\frac{\partial u}{\partial r} \\
& \varepsilon_{t}=\frac{u}{r} \tag{2.5}\\
& \varepsilon_{z}=\frac{\partial w}{\partial z} \\
& \varepsilon_{r z}=\frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}\right)
\end{align*}
$$

The above equations can be combined to yield the equilibrium equations in terms of displacements

$$
\begin{align*}
& \nabla_{u}^{2}-\frac{u}{r^{2}}+\frac{1}{1-2 \nu} \frac{\partial \varepsilon}{\partial r}=0 \tag{2.6}\\
& \nabla^{2}{ }_{w}+\frac{1}{1-2 v} \frac{\partial \varepsilon}{\partial z}=0
\end{align*}
$$

The applicable boundary conditions are (see Fig. 11)

$$
\begin{align*}
& \sigma_{\mathrm{r}}^{(1)}(\mathrm{A}, \mathrm{z})=\sigma_{\mathrm{r}}^{(2)}(\mathrm{A}, \mathrm{z})=0 \\
& \tau^{(1)}(A, z)=\tau^{(2)}(A, z)=0 \\
& \sigma_{r}^{(1)}(C, z)=\sigma_{r}^{(2)}(C, z)=0 \\
& \tau^{(1)}(C, z)=\tau^{(2)}(C, z)=0 \\
& \tau^{(1)}\left(r, D_{1}\right)=\tau^{(2)}\left(r,-D_{2}\right)=0, \\
& \tau^{(1)}(r, 0)=\tau^{(2)}(r, 0), \quad A \leq r \leq R_{0} \\
& \sigma_{z}^{(1)}\left(r, D_{1}\right)=\sigma_{z}\left(r,-D_{2}\right)=0, \quad B \leq r \leq C \\
& \tau^{(1)}(r, 0)=\tau^{(2)}(r, 0)=0, \quad R_{0} \leq r \leq C \tag{2.7}\\
& \sigma_{z}^{(1)}(r, 0)=\sigma_{z}^{(2)}(r, 0), \quad A \leq r \leq R_{0} \\
& \sigma_{z}^{(1)}(r, 0)=\sigma_{z}^{(2)}(r, 0)=0, \quad R_{o} \leq r \leq R \\
& \sigma_{z}^{(1)}\left(r, D_{1}\right)=\sigma_{z}^{(2)}\left(r,-D_{2}\right)=P(r), A \leq r \leq B \\
& W^{(1)}(r, 0)=W^{(2)}(r, 0), \quad A \leq r \leq R_{o} \\
& 2 \pi \int_{A}^{B} \operatorname{Pr} d r=2 \pi \int_{A}^{R_{0}} \operatorname{pr} d r
\end{align*}
$$

Inspection of the above equations shows that the above constitutes a mixed boundary value problem and the most appropriate technique for solution is the finite element method.

B. Method of Analysis

A finite element computer program was assembled for the analytical solution of bolted plates. Descriptions of the finite element method are given in references $[9,10]$, but for completeness, an outline of the mathematical formulation for this case is presented in Appendix A. A listing of the cumputer program and instructions for its use may be found in Appendix B. Appendix C contains user's instructions and a listing of the finite element program modified to include thermal strains.

As in the previous work axial symmetry and isotropic linear elastic material behavior were assumed. However, the computer programs accommodate plates with different material properties in a bolted pair.

The basic concept of the finite element method is that a body may be considered to be an assemblage of individual elements. The body then consists of a finite number of such elements interconnected at a finite number of nodal points or nodal circles. The finite character of the structural connectivity makes it possible to obtain a solution by means of simultaneous algebraic equations. When the problem, as is the case here, is expressed in a cylindrical coordinate system and in the presence of axial symmetry in geometry and load, tangential displacements do not exist, and the three-dimensional annular ring finite element is then reduced to the characteristics of a two-dimensional finite element.

The analysis consists of (a) structural idealization, (b) evaluation of the element properties, and (c) structural analysis of the assemblage of the elements. Items (b) and (c) are covered in the appendices and in the references quoted. The structural idealization and the criteria for acceptable solutions will be described in this chapter.

Fig. 4(a) shows two circular plates in contact under arbitrary axisymmetric loading. The plates are subdivided into a number of annular ring elements which are defined by the corner nodal circles (or node points when represented in a plane) as shown in Figs. 4(b) and 4(c). Unlike the cases described in Chapter I, which have been solved by the Hankel transform method, all plates solved by the finite element method have finite radii. The cross sections of each annular ring element is either a general quadrilateral or triangle. To improve accuracy smaller elements are used in zones where rapid variations in stress are anticipated than in zones of constant stress; thus the different size elements shown in Fig. 4 (b). (However, the total number of elements allowable are subject to computer capacity.)

Figure 4 (b) shows the two plates in contact for the radial distance X_{c} and separated beyond it. It is to be noted that the nodal points on the parting line and within the length of contact X_{c} are common to elements in both plates. The other elements adjacent to the parting line on each plate are separated from their corresponding elements in the mating plate and these elements have no common nodal points. Physically, it is equivalent to the welding together of the two plates in the contact zone. Mathematically, we are imposing the condition that
in the contact zone the displacements in the z and r directions be identical for both plates. In the case of bolted plates of equal thickness, i.e. in the presence of symmetry about the parting plane, these conditions apply exactly. Furthermore, because of this symmetry, one needs to analyze only one plate, as shown in Fig. 5(b), with the imposed boundary conditions on the contact zone of zero displacement in the z-direction and freedom to displace in the r-direction. It can also be observed that the solution of two plates with symmetry about the parting plane is equivalent to the solution of one of these plates under the same loading conditions, but resting on a frictionless infinitely rigid plane. Also, under the above conditions the shear stress in the contact zone is identically zero.

In the case of bolted plates of unequal thickness the model includes both plates as shown in Fig. 5(c). This model is an approximation because, in general, two plates of unequal thickness do not have the same displacement in the r-direction on the contact surface. The solution yields, therefore, a shearing stress distribution in the contact zone. The solution, however, should be exactly compatible with the physical model if the frictional forces in the joint prevent sliding.

The critical aspect of the approach used herein is the determination of the largest nodal circle on the parting plane which is common to an element on each plate. This nodal circle defines the contact zone and the radius, R_{o}, at which separation occurs.

The output of the finite element computer program includes the displacement of each node in the r and z directions and the average
$\sigma_{z}, \quad \sigma_{r}, \quad \sigma_{t}$ and $\tau_{r z}$ stresses for each element.
The computation is iterative and the objective is to achieve the lowest possible compressive σ_{z} stress in the outermost elements bordering the contact zone. Unacceptable solutions are shown in Fig. 6(a) and 6(b). If R_{o} for a given external load distribution is too small, then the solution will show that the two plates intersect (Fig. 6(a)). On the other hand, if R_{o} is assumed too large, the solution will show that the outer portion of the contact zone sustains a tensile σ_{z} stress (Fig. 6(b)). Neither of these two situations is physically feasible. In general, the procedure employed was to commence the iterations with a value for R_{o} which would yield a tensile σ_{z} stress in the outer elements adjacent to the contact zone and then move R_{o} inward. The iteration ended as soon as no tensile σ_{z} stress was present at the contact zone. For example, for the case shown in Fig. 5(b), if the σ_{z} stress for the element in the last row and to the left of the last roller is tensile, then the following iteration will proceed without the last roller. Thus, the resolution is one nodal interval. Finer resolution can be obtained by reducing the interval between nodal circles by introducing more elements or shifting the grid locally. The same criteria apply to the model shown in Fig. 5(c).

In the finite element analysis of the Fernlund (3) model, i.e. single plate with external loads at the faces $z= \pm D$ no iteration is required and the rollers shown in Fig. 5(c) would extend to the outer radius of the plate. (Although Fernlund's computations are based on infinite plates, computations show that there is no distinction between infinite plates and plates of radius greater than five times of the outer
radius, B, of the load. See Fig. 5(a).
Convergence was tested by subdividing elements further, with nodal points in the coarser grid remaining nodal points in the finer grid. Changing the mesh from 180 elements to 360 elements have shown no improvement in accuracy. Meshes from 180 to 300 elements were used in this analysis. Typical spacings between nodal points were 0.015 inch radially and 0.03 inch in the z-direction.

Chapter III

EXPERIMENTAL METHOD

The objective of the experiment was to determine the extent of contact between two plates when bolted together. Sixteen type 304 stainless steel plates, 4 inches in diameter, were machined to nominal thicknesses of $1 / 16,1 / 8,3 / 16$ and $1 / 4$ inch, 4 plates for each thickness. After rough machining these plates were stress relieved at $1875^{\circ} \mathrm{F}$ and ground flat to 0.0002 inch. One side of each plate was then lapped flat to better than one fringe of sodium light (11 micro-inches) in the case of the $1 / 8,3 / 16$ and $1 / 4$ inch plates, and to better than two fringes in the case of the $1 / 16$ inch plates. Disregarding scratches, the finish of the lapped surfaces was 5 microinches rms. Each plate had a central hole, 0.257 inch in diameter, for a $1 / 4-20$ bolt, and two notches and two holes on the periphery (see Fig. 7). Two techniques were employed in determining the area of contact when two of these plates were bolted together. The first technique entailed the following procedure (see Fig. 7):
(a) The plates were cleaned with alcohol and lens tissue.
(b) One plate was placed on the base of the fixture shown in Fig.7, lapped surface up and the two holes on the periphery of the plates engaged with two pins on the fixture. Spacers between the fixture base and plate prevented the pins from extending beyond the top surface of the plate.
(c) A second plate was placed on top of the first plate, lapped surfaces mating. The notches on the two plates were lined up with each other and with notches in the base of the fixture. Thus, rotation of the plates was prevented.
(d) A standard 1/4-20 hex-nut with its annular bearing surface (0.42 inch 0.D.) lapped flat was engaged on a high strength $1 / 4-20$ bolt. The nut was located about two threads away from the head of the bolt and served in lieu of the bolt head. The lapped surface of the nut faced away from the bolt head and since the nut was not sent home against the bolt head, the looseness of fit between nut and bolt offered a degree of self alignment.
(e) The bolt and nut assembly described in (d) above was then inserted through the $1 / 4$ inch central holes of the two plates and a second 1/4-20 lapped nut was engaged on the bolt. Thus the two plates were captured by the two $1 / 4-20$ nuts with the lapped surfaces of the nuts bearing against the plates.
(f) With the torque wrench shown on the right in Fig. 7, the nuts were torqued down to 70 pound-inches of torque to yield a 1100 pound force in the bolt [11].
(g) The position of the keys was changed to engage with only the lower plate and the fixture and a special spanner wrench, as shown in Fig. 7, was engaged with the top plate. The spanner wrench was restrained to move in the horizontal plane and it was set into motion by the screw pressing against the wrench handle.
(h) With the aid of the spanner wrench the upper plate was rotated relative to the lower plate several times approximately ± 5 degrees.

Thus, the above procedure allowed for the rubbing of one plate relative to its mate while under a bolt force of approximately 1100 lbs. The remaining steps were the disassemb1y and the measurement of the extent of the contact zone which was defined by the shine due to the rubbing in the contact zone. It is to be noted that the boundaries of the contact zone as measured by the naked eye and by searching for marks of "polished" or "damaged" surface under a 10.5 power magnification are essentially the same.

The above test was performed on 5 pairs of specimen. These were

1. One 0.07 in. plate mated to a 0.65 in. plate
2. One 0.126 in. plate mated to a 0.126 in. plate
3. One 0.191 in. plate mated to a 0.192 in. plate
4. One 0.253 in. plate mated to a 0.256 in. plate
5. One 0.124 in. plate mated to a 0.257 in. plate

The identical tests were repeated for

1. One 0.124 in. plate mated to a 0.126 in. plate; and
2. One 0.191 in. plate mated to a 0.192 in. plate, but in lieu of the $1 / 4-20$ nuts in direct contact with the plates special washers, 1.000 in. O.D., 0.257 in. I.D. and 0.620 in. high, were interposed between the bolt head and nut.

The diameters of the contact zones were measured with a machinist ruler with 100 divisions to the inch and with a Jones and Lamston Vertac 14 Optical Comparator.

The second technique used the same parts and fixture, but it involved autoradiographic measurements.

Four plates, $1 / 4,3 / 16,1 / 8$ and $1 / 16$ inch thick were sent to Tracerlab, Inc., Waltham, Mass., for electrolytic plating with radioactive silver $\mathrm{Ag} 110^{\mathrm{M}}$ (half life of 8 months). Each plate was masked except for an area on the lapped face one inch in radius. The plates then received a plating of copper about 5 microinches thick and then approximately a 5 microinch plating of silver containing the radioactive isotope. The resultant activity on each plate was about 2 millicuries.

These plates were then mated to plates of equal thickness (not plated) and assembled in a shielded hood as indicated in steps (a) to (h) above except that in the case of the pair of $1 / 4$ inch plates care was taken not to rotate the plates during and after assembly and in the remaining cases the rotation specified in step (h) was done only once in one direction.

The plates were then disassembled and the radioactive contamination on the plates which were in contact with the radioactive plates measured. The transferred activity was:

$1 / 4$	in. plate approximately	0.05	microcuries
$3 / 16$	in. plate approximately	3.	microcuries
$1 / 8$	in. plate approximately	0.1	microcuries
$1 / 16$	in. plate approximately	0.4	microcuries

It was also observed in handling that the adhesion of the silver on the $3 / 16$ in. plate was poor.

Kodak type R single coated industrial x-ray film was then placed on the contaminated plates under darkroom conditions. The sensitive side of the film was pressed against the radioactive sides of the plates with a uniform load of about five pounds and left for exposure for three days. After three days, the film was removed and developed. The results are shown in Fig. 10.

Chapter IV

RESULTS
A. Pressure Distribution and Radii of Separation from Single Plate and Two Plate Finite Element Models.

Using the finite element procedure described in Chapter II, the midplane stress distribution of single circular plates of thickness 2D, outer radii of 1.54 in., inner radii of 0.1 in., Poisson ratio of 0.3 , and loaded by a constant pressure between radii A and $B, F i g .3(f)$, was computed. Computations were performed for D values of $0.1,0.1333$ and 0.2 in. For each value of D the radius B, which defines the region of the symmetric external load, assumed the values of $0.31,0.22$, 0.16 and 0.13 in. The σ_{z} stress distribution at the midplane, from the inner radius to the radius at which the above stress is no longer compressive, is shown in Figs. 12,13 and 14 as a function of radius.

The identical cases were then recomputed, using again the finite element method, in accordance with the two plate model shown in Figs. 4 (b) and $5(\mathrm{~b})$. These results are given in Figs. 15, 16 and 17.

Inspection of the above figures show that the two plate model yields a somewhat different stress distribution in the contact zone than the stress distribution approximated from the single plate model, and more significantly, from the heat transfer point of view, the two plate model yields a lower value for the radius of separation, R_{o}, which
results in a reduction in area for heat transfer. Table 1 gives a comparison of the values for R_{o} obtained from the two models.

It may be observed that the single plate result of Fernlund (Ref. 3, pp. 56, 124) is in fair agreement with the finite element results obtained for the single plate model.
B. Radii of Separation from Experiment and Their Predicted Values from the Two Plate Finite Element Computation.

As described in Chapter III, stainless steel circular plate specimen (Fig. 7) were bolted together, rotated relative to each other with the bolt force acting, and after disassembly the contact area of the joint was determined by measuring the footprints (the shiny, polished areas) on each plate due to the plates rubbing against each other. Photographs of these footprints are shown in Fig. 8. Fig. 9 also shows a typical footprint of the annular bearing surface of the $1 / 4-20$ nut against a plate. All plates tested were of 304 stainless stee1, 4 inch O.D., . 257 I.D., and the nominal thicknesses of the plates were $1 / 16,1 / 8,3 / 16$ and $1 / 4$ inch. In addition to the plates fastened with standard nuts which gave a loading circle of radius B (Fig. 5) of 0.211 inch, plates fastened by the special nuts described in Chpater III for which B was 0.5 inch were also tested.

Figure 10 shows the results of the autoradiographic tests described in Chapter III. For all plate pairs tested, i.e. $1 / 16,1 / 8,3 / 16$ and $1 / 4$ inch nominal, the value of B was 0.211 inch. The pressure distributions and radii of separation for all the
above test cases were computed independently by the two plate model finite element analysis. Table 2 gives the test and analytical results for all test cases. The test results are an average of all measurements (minimum of six readings). A description of the analyses follows. Figure 18 shows the results of a two plate and a single plate model analysis for the 0.253 inch bolted test specimen. For Figure 19 the external pressure distribution between radii A and B is triangular. (The total force, however, is equal to the force exerted in the case of uniform pressure.) In one case, the peak external pressure is at A, Fig. 20(a), and in the other case at B, Fig. 20(b). Results of another computation which assumed a uniform displacement of 50 microinches under each nut is shown in Fig. 21. It is interesting to note that the point of separation obtained by using the two plate model for all variations of loading given above occurs in the range of r/A values of 2.73 to 2.93 while the two plate model yields separation at a value for r / A of 3.5 . The computed deflections under the nuts are given in Fig. 22.

The finite element analysis results for the 0.191 in. plate pair specimen are given in Fig. 23. Figures 24 and 25 show the computed pressure distribution and deflection patterns in the joint, respectively, for the $1 / 8$ in. plate pair. In order to investigate the possible influence misalignments of the spanner wrench, i.e. vertical forces or restraints exerted at edge of plate, may have on the results of the experiment, the extreme case of fixing the outer edges of the plate as shown in Fig. 20 (c) was considered. As Fig. 24 shows, within the
resolution of the finite element grid size, the effect is negligible. This model, Fig. 20(c), and result also indicate that the influence of additional fasteners 2 inches away would not have an influence on the contact zone for the geometry considered. (However, if the distance between bolts is considerably reduced, then the contact area should increase.) The computed results for the $1 / 16$ inch plate pair is given in Fig. 26.

Figure 27 gives the finite element analysis results for the asymmetric case of a $1 / 8$ in. plate bolted to a $1 / 4 \mathrm{in}$. plate. The model shown in Fig. 5(c) was used and as discussed in Chapter II, this model is strictly valid only if the friction in the joint prevents sliding between the plates. Nevertheless, the percent discrepancy between the computed value and tested value (see Table 2) falls within the range of the symmetric cases analyzed and tested.

In summary, the results obtained from the two plate finite element model and from experiment are in good agreement (Fig. 28).

Chapter V

APPLICATION

An application of the above results for the evaluation of the thermal contact conductance, h_{c}, and the determination of the heat transferred in a specific, but typical, lap joint section is illustrated in this chapter.

An aluminum lap joint in a vacuum environment, the relevant section and boundary conditions as shown in Fig. 29, was analyzed by means of a nodal analysis. The plate thickness was 0.1 in . and the hole diameter, 2 A , was 0.2 in . The bearing surface of the bolt, 2 B , was 0.26 in. in diameter. Because of the high conductivity and small thickness of the plates, no z dependence (see Fig. 29) was assumed for the temperature in the main body of the plate. However, heat flow in the z-direction in the nodes above and below the contact zone is considered. Qualitatively, the heat flow in the joint proceeds in the $x-y$ plane from the left end (Fig. 29) toward the 0.2 in . diameter hole. In the vicinity of the hole, a macroscopic constriction for heat flow is encountered because the flow is being channeled toward the small contact zone. The flow of heat then encounters the microscopic constrictions at the contacting asperities (which determine h_{c}) in the contact zone; spreads out in the $x-y$ directions in the second plate; and continues to the right edge of the lap joint.

The material properties assumed were (refer to equation 1.1):

$$
\begin{array}{ll}
\mathrm{H}=150,000 \mathrm{psi} & \\
\mathrm{k}=100 \mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}-\mathrm{ft} & \left(\mathrm{k}_{1}=\mathrm{k}_{2}=100\right) \\
\sigma=5.9 \times 10^{-6} \mathrm{ft} . & \left(\sigma_{1}=\sigma_{2}=50 \times 10^{-6} \mathrm{in} .\right) \\
\tan \theta=0.1 &
\end{array}
$$

Assuming further, a uniform load of $46,500 \mathrm{psi}$ on the loading surface (\#10 screw; 1000 lb. bolt force) and referring to Fig. 15, curve $\frac{B}{A}=1.3$, the following interface stresses, σ_{z}, contact heat transfer coefficient, h_{c}, and conductance, (area) $\left(h_{c}\right)$, were obtained as a function of inner and outer radii. (These radii define increments of area, the sum of which define one quarter of the contact zone.):

$\frac{r_{\text {outer }}}{\text { inch }}$	${ }^{\text {inner }}$ inch	$\underline{\sigma_{z}}$ psi	$\frac{h_{c}}{\mathrm{Btu} / \mathrm{hr}-^{\circ} \mathrm{F}-\mathrm{ft}}{ }^{2}$	$\begin{gathered} \text { Area } \times h_{c} \\ \text { Btu/hr- }{ }^{\circ} \mathrm{F}-\mathrm{ft}{ }^{2} \end{gathered}$
. 13	. 1	27,900	446,000	16.6
. 16	. 13	14,000	223,000	10.6
. 175	. 16	3,950	63,100	1.7

The conductance between nodal points were then computed and with the aid of the steady state heat transfer program listed in Appendix D, the nodal temperatures for the conditions given in Fig. 29 were computed. The heat transferred from the edge maintained at $20^{\circ} \mathrm{F}$ to the edge at $0^{\circ} \mathrm{F}$ (Fig. 29) for this case was $2.88 \mathrm{Btu} /$ hour. The same computation was repeated for the case of a bearing surface between the plate
and the bolt (2B) of 0.44 in . in diameter, but the bolt force was left unchanged. The heat transferred from the $20^{\circ} \mathrm{F}$ edge to the $0^{\circ} \mathrm{F}$ edge in this case was $3.15 \mathrm{Btu} / \mathrm{hour}$. In the absence of the joint the heat transfer along an equivalent 7 inch length of solid aluminum would have been 3.58 Btu/hour. This data shows that the thermal resistance of the contact zone (not entire 7 inch lap joint) was decreased from 1.52 to $0.92{ }^{\circ} \mathrm{F}-\mathrm{hr} / \mathrm{Btu}$ by the increase of the effective bolt head diameter from .26 to .44 in. It should be observed that the change in thermal resistance of the joint is primarily due to the increase in contact area and the resulting decrease in macroscopic constriction resistance at the hole. Also, the heat flux in this example is mainly controlled by the 7 inch length and 0.1 inch thickness rather than the joint resistance. This emphasizes the importance of a balanced thermal design.

For large heat fluxes where thermal strains may have an influence on the radii of separation, the finite element program given in Appendix C may be used. Also, in a non-vacuum environment the effect of the interstitial fluid is added in two ways. Firstly, equation (1.6) is applied to account for the presence of interstitial fluid in the contact zone, and secondly, conduction across the gaps between the plates and convection from the plates is considered. (Radiation heat transfer, if applicable, should also be included.)

Chapter VI

CONCLUSIONS

The finite element technique used in this work for the analysis of the pressure distribution and deformation of smooth and flat bolted plates under conditions of axial symmetry predicts contact areas in joints considerably lower than reported previously in the literature. These results were verified experimentally. The discrepancy between the previously reported results and the results reported here is due to the simplifying assumption made by earlier researchers that a joint can be modeled as a single plate.

The computer programs listed in the appendices will also accommodate joints made up of plates of dissimilar materials and the presence of thermal gradients.

Of the eleven tests performed, only one (case 3, autoradiographic) yielded inconsistent results. (This data point could probably be ignored because of the poor adhesion of the plating material which manifested itself by the high radioactive contamination count during test.)

The finite element analysis performed for the test specimen show that the gap between the $1 / 4$ inch bolted steel specimen is 98.6 microinches at the outer radius of the plate of 2 inches, and $1 / 32$ of an inch away from the radius of separation (0.35 in.), the gap is
only 3 microinches for the test load. This data indicates the difficulties previous workers have encountered in their experiments. (This also explains the oval shape of several of the footprints.) Furthermore, this data shows that the effects of surface roughness and the lack of flatness could have a significant effect on the size of contour area.

An application of the above work to a heat transfer problem is illustrated in Chapter V.

REFERENCES

1. Cooper, M.G., Mikic, B.B., and Yovanovich, M.M., "Thermal Contact Conductance," International Journal of Heat and Mass Transfer, Vol. 12, No. 3 (March 1969), 279-300.
2. Roetscher, F., Die Maschinenelemente, Erster Band. Berlin: Julius Springer, 1927.
3. Ferniund, I., "A Method to Calculate the Pressure Between Bolted or Riveted Plates," Transactions of Chalmers, University of Technology. Gothenburg, Sweden, No. 245, 1961.
4. Greenwood, J.A., "The Elastic Stresses Produced in the Mid-Plane of a Slab by Pressure Applied Symmetrically at its Surface," Proc. Camb. Phil. Soc. Cambridge, England, Vol. 60, 1964, 159-169.
5. Lardner, T.J., "Stresses in a Thick Place with Axially Symmetric Loading," J. of Applied Mechanics, Trans. ASME, Series E, Vol. 32, June 1965 (458-459).
6. Sneddon, I.N., 'The Elastic Stresses Produced in a Thick Plate by the Application of Pressure to its Free Surfaces," Proc. Camb. Phil. Soc. Cambridge, England, Vol. 42, 1946 (260-271).
7. Bradley, T.L., "Stress Analysis for Thermal Contact Resistance Across Bolted Joints," M.S. Thesis, Massachusetts Institute of Technology, Mechanical Engineering Department, Cambridge, Mass. August 1968.
8. Louisiana State University, Division of Engineering Research, The Thermal Conductance of Bolted Joints. NASA Grant No. 19-001-0 $\overline{35}$, C.A. Whitehusrt, Dir. Baton Rouge: LSU Div. of Eng. Res., May 1968.
9. Zienkiewicz, O.C., The Finite Element Method in Structural and Continuum Mechanics. London: McGraw-Hill Publishing Co., Ltd., 1967.
10. Przemieniecki, J.S., Theory of Matrix Structural Analysis. New York: McGraw-Hill Book Co., 1968.
11. Cobb, B.J., "Preloading of Bolts," Product Engineering, August 19, 1963 (62-66).
12. Wilson, E.L., "Structural Analysis of Axisymmetric Solids," AIAA Journal, Vol. 3, No. 12, (Dec. 1965), 2269-2274.
13. Jones, R.M. and Crose, J.G., SAAS II Finite Element Stress Analysis of Axisymmetric Solids. United States Air Force Report No. SAMSO-TR-68-455 (Sept. 1968).
14. Christian, J.T. and others, FEAST-1 and FEAST-3 Programs. Cambridge: Computer Program Library, M.I.T. Department of Civil Engineering, Soil Mechanics Division, 1969.
15. Clough, R.W., "The Finite Element Method in Structural Mechanics," Ch. 7, Stress Analysis, Zienkiewicz, O.C. and Holister, G.S., editors. London: John Wiley and Sons, Ltd., 1965.

APPENDIX A

FINITE ELEMENT ANALYSIS OF AXISYMMETRIC SOLIDS

The finite element method and the equations which govern the stresses and displacements in axisymmetric solids is given in the literature $[9,10,12,13,15]$ and the procedure will be briefly summarized in this appendix.

The procedure for the standard stiffness analysis method is as follows [15]:
(a) The internal displacements, v, are expressed as

$$
\begin{equation*}
\{v(r, z)\}=[M(r, z)]\{\alpha\} \tag{A.1}
\end{equation*}
$$

where M is a displacement function and α are the generalized coordinates representing the amplitudes of the displacement functions.
(b) The nodal displacements v_{i} are expressed in terms of the generalized coordinates

$$
\begin{equation*}
\left\{v_{i}\right\}=[\mathrm{A}]\{\alpha\} \tag{A.2}
\end{equation*}
$$

where A is obtained by substituting the coordinates of the nodal points into M.
(c) The generalized coordinates are expressed in terms of the nodal displacements

$$
\begin{equation*}
\{\alpha\}=[A]^{-1}\left\{v_{i}\right\} \tag{A.3}
\end{equation*}
$$

(d) The element strains, ε, are evaluated

$$
\begin{equation*}
\{\varepsilon\}=[B(r, z)]\{\alpha\} \tag{A.4}
\end{equation*}
$$

where B is obtained from the appropriate differentiation of M.
(e) The element stresses are expressed in terms of the stressstrain relation D

$$
\begin{equation*}
\{\sigma(\mathrm{r}, \mathrm{z})\}=[\mathrm{D}]\{\varepsilon\}=[\mathrm{D}][\mathrm{B}]\{\alpha\} \tag{A.5}
\end{equation*}
$$

(f) Assuming a virtual strain $\bar{\varepsilon}$ and a generalized virtual coordinate displacement $\bar{\alpha}$ the internal virtual work, W_{i}, in the differential volumn, $d V$, is given by

$$
\begin{equation*}
d W_{i}=\{\varepsilon\}^{T}\{\sigma\} d V=\{\alpha\}^{T}[B]^{T}[D][B]\{\alpha\} d V \tag{A.6}
\end{equation*}
$$

and the total internal virtual work is

$$
\begin{equation*}
W_{i}=\{\alpha\}^{T}\left[\int_{\text {Vol }}[B]^{T}[D][B] \text { dV }\right] \alpha \tag{A.7}
\end{equation*}
$$

(g) The external work, W_{e}. associated with the generalized displacement $\bar{\alpha}$ is

$$
\begin{equation*}
\mathrm{W}_{\mathrm{e}}=\{\alpha\}^{T}\{\beta\} \tag{A.8}
\end{equation*}
$$

where β are generalized forces corresponding with the displacements α.
(h) After equating W_{i} and W_{e} and setting the $\bar{\alpha}$ displacement to unity

$$
\begin{align*}
& \qquad\{E\}=\left[\int_{V o 1}[B]^{T}[D][B]\right] \alpha=[\bar{k}]\{\alpha\} \tag{A.9}\\
& \text { where }[\bar{k}]=\int_{V o l}[B]^{T}[D][B] d V \tag{A.10}
\end{align*}
$$

and which transforms to the nodal point surfaces

$$
\begin{equation*}
k=\left[A^{-1}\right][\bar{k}]\left[A^{-1}\right] \tag{A.11}
\end{equation*}
$$

(i) The stiffness matrix for the complete system is then

$$
\begin{equation*}
[\mathrm{K}]=\sum_{\mathrm{m}=1}^{\mathrm{n}}[\mathrm{k}]_{\mathrm{m}} \tag{A.12}
\end{equation*}
$$

where n equals the number of elements and the equilibrium relationship becomes

$$
\begin{equation*}
\{Q\}=[K]\left\{v_{i}\right\} \tag{A.13}
\end{equation*}
$$

where

$$
\begin{align*}
& \{Q\}=\sum_{m=1}^{n}\{R\}_{m} \\
& \{R\}=\int_{\text {Area }}\left[A^{-1}\right]^{T}[M]^{T}\{P\}_{m} d A \tag{A.14}
\end{align*}
$$

and P are the surface forces.
The above procedure applies with minor modification to problems with thermal and body force loading.

The expression

$$
\begin{equation*}
\{Q\}=[K]\left\{v_{i}\right\} \tag{A.16}
\end{equation*}
$$

represents the realtionship between all nodal point forces and all nodal point displacements. Mixed boundary conditions are considered by rewriting this equation in the partitioned form

$$
\left\{\begin{array}{c}
Q_{a} \tag{A.17}\\
\hdashline Q_{b}
\end{array}\right\}=\left[\begin{array}{c:c}
K_{a a} & K_{a b} \\
\hdashline K_{b a} & -K_{b b}
\end{array}\right]\left\{\begin{array}{c}
u_{a} \\
\hdashline u_{b}
\end{array}\right\}
$$

where $v_{i}=u$.
The first part of the partitioned equation can be written as

$$
\begin{equation*}
\left\{Q_{a}\right\}=\left[K_{a a}\right]\left\{u_{a}\right\}+\left[K_{a b}\right]\left\{u_{b}\right\} \tag{A.18}
\end{equation*}
$$

and then expressed in the reduced form

$$
\begin{equation*}
\left\{Q^{*}\right\}=\left[K_{a a}\right] \quad\left\{u_{a}\right\} \tag{A.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{Q^{*}\right\}=\left\{Q_{a}\right\}-\left[K_{a b}\right]\left\{u_{b}\right\} \tag{A.20}
\end{equation*}
$$

The matrix equation (A.19) is solved for the nodal point displacements by standard techniques. Once the displacement are known the strains are evaluated from the strain displacement relationship and the stresses in turn are evaluated from the stress strain relations.

Both triangular and quadrilateral elements are used. The displacements in the $r-z$ plane in the element are assumed to be of the form

$$
\begin{align*}
& v_{r}=\alpha_{1}+\alpha_{2} r+\alpha_{3} z \tag{A.21}\\
& v_{z}=\alpha_{4}+\alpha_{5} r+\alpha_{6} z
\end{align*}
$$

This linear displacement field assures continuity between elements since lines which are initially straight remain straight in their displaced position. Six equilibrium equations are developed for each triangular element.

A quadrilateral element is composed of four triangular elements and ten equilibrium equations correspond to each element.

APPENDIX B

FINITE ELEMENT PROGRAM FOR THE ANALYSIS OF ISOTROPIC ELASTIC AXISYMMETRIC PLATES (ref. 13,14)

Input Instructions:

Card Sequence	Item		Format	Columns
	Title	18 A 4	$1-72$	
2	Total number of nodal points	I5	$1-5$	
	Total number of elements	I5	$6-10$	
	Total number of materials	I5	$11-15$	
	Normalizing stress (NORM)	I5	$16-20$	
	Number of pressure cards	I5	$21-25$	

> (If $N O R M=0$, put in value of E in material card; if $N O R M=1$, put in value $E / \sigma_{\text {vertical; }}$ if $N O R M=-1$, put in value $E / \sigma_{\text {octahedral; }}$ NOTE: Use NORM $=0$ for this application.)

3 (Material property cards - one set of
(a) and (b) for each material)
(a) 1st card

Material	No.	I5	$1-5$	
Initial	σ_{z}	stress	F10.0	$6-15$
Initial	$\sigma_{\mathbf{r}}$	stress	F10.0	$16-25$

(b) Second Card

E	F10.0	$1-10$
ν	F10.0	$11-20$

Card Sequence	Item	Format	Column
4	Nodal point information (One for each node)	2I5,4F10.0	
	Node number		1-5
	CODE		6-10
	r-coordinate		11-20
	z -coordinate		21-30
	XR		31-40
	XZ		41-50
If the number in columm 10 is		Condition	
0	$X R$ is the specified R-load and	free	
	$X Z$ is the specified Z -1oad		
	XR is the specified R -displacement and XZ is the specified Z -load	1	
	XR is the specified R-load and XZ is the specified Z -displacement.	णी	
	XR is the specified R-displacement and XZ is the specified Z-displacement.	fixed	

Remarks

The following restrictions are placed on the size of problems which can be handled by the program.

Item Maximum Number
Nodal Points 450
Elements 450
Materials 25
Boundary Pressure Cards 200

All loads are considered to be total forces acting on a one radian segment. Nodal point cards must be in numerical sequence. If cards are omitted, the omitted nodal points are generated at equal intervals along a straight line between the defined nodal points. The boundary code (column 10), $X R$ and $X Z$ are set equal to zero.

If the number in columns $6 \mathbf{- 1 0}$ of the nodal point cards is other than $0,1,2$ or 3 , it is interpreted as the magnitude of an angle in degrees. The terms in columns $31-50$ of the nodal point card are then interpreted as follows:

XR is the specified load in the s-direction
XZ is the specified displacement in the n -direction
The angle must always be input as a negative angle and may range from -.001 to -180 degrees. Hence, +1.0 degree is the same as -179.0 degrees. The displacements of these nodal points which are printed by the program are
$u_{r}=$ the displacement in the s-direction
$u_{z}=$ the displacement in the n-direction
Element cards must be in element number sequence. If element cards are omitted, the program automatically generates the omitted information by incrementing by one the preceding I, J, K and L. The material identification code for the generated cards is set equal to the value given on the last card. The last element card must always be supplied.

Triangular elements are also permissible; they are identified by repeating the last nodal point number (i.e. I, J, K, K).

One card for each boundary element which is subjected to a normal pressure is required. The boundary element must be on the left as one
progresses from I to J. Surface tensile force is input as a negative pressure.

Printed output includes:

1. Reprint of input data.
2. Nodal point displacement
3. Stresses at the center of each element.

Nodal point numbers must be entered counterclockwise around the element when coding element data.

The maximum difference between the nodal point numbers on an element must be less than 25 . However, on a nodal diagram elements and nodes need not be numbered sequentially.

Listing:

WRITE（6．2051）（E（J．MTYPE）， $\mathrm{J}=1.21$

80

READ AND PRINT NODAL POINT DATA

$$
\begin{aligned}
& \text { URITE }(6.20131 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& I=0 \\
& R F A D(5,1006) N, I C O D E(N), R(N), Z(N), U R(N), U Z(N) \\
& N L=L+1 \\
& I F(L, E Q . O) G O T O 110 \\
& Z X=N-L \\
& D R=(R(N)-R(L)) / Z X \\
& D Z=(Z(N)-Z(L .) \mid / Z X \\
& L=L+1
\end{aligned}
$$

$\begin{array}{ll}0 & 10 \\ 0 & 0 \\ -1 & 0\end{array}$
いじ

$$
\begin{aligned}
& L=L+1 \\
& I F(N-L) 113 \cdot 112 \cdot 111 \\
& I C O D E(L)=0
\end{aligned}
$$

$$
\begin{gathered}
\alpha \\
\frac{\alpha}{2} \\
\frac{1}{1} \\
2 \\
\frac{\alpha}{\alpha} \\
\frac{11}{2} \\
2
\end{gathered}
$$

$$
Z(L)=Z(L-1)+D Z
$$

$$
\begin{array}{ll}
0 & - \\
- & =
\end{array}
$$

 FAD AND PRINT ELEMENT PROPERTIES

$W R I T$
$N=0$
$\operatorname{READ}(5.1007) \mathrm{N},(\mathrm{I} \times(\mathrm{M}, \mathrm{I}), \mathrm{I}=1.5)$
$\mathrm{V}=\mathrm{N}+1$
$\mathrm{IF}(\mathrm{M}-\mathrm{N}) 170.170 .150$

WRITE $(6,2014)(K, \operatorname{ICODE}(K), R(K), Z(K), U R(K), U Z(K), K=N L, N)$ IF（NUMNP－N） 113.120 .105
$\stackrel{m}{\square}$

$\mathrm{I} \times(\mathrm{N}, 1)=\mathrm{I} \times(\mathrm{N}-1,1)+1$
$\mathrm{I} \times(\mathrm{N}, \mathrm{T})=\mathrm{I} \times(\mathrm{N}-1,2)+1$
$\mathrm{I} \times(\mathrm{N}, 3)=\mathrm{I} \times(\mathrm{N}-1,3)+1$

```
        IX(N,4)=I X(N-1,4)+1
        IX(N,5)={X(N-1,5)
    170 WRITE (6.2017) N.(IX(N,I),I=1.5)
    IF (M-N) 180.180.140
    180 IF (NUMEL-N) 300.300.130
```



```
C
C. RFAD AND PRINT THE PRESSURE CARDS
```



```
    300 IF(NUMPC) 290.210.290
    290 WRITE(6.9000)
        DC 200 L=1.NUMPC
        RFAD(5.9001) IRC(L),JBC(L),PR(L)
    200 WRITE(6.9002) IBC(L),JRC(L),PR(L)
    710 CONTINUE
C
O
```



```
    J=0
    DO }340\textrm{N}=1\mathrm{ , NUMEL
    DO 340 I =1.4
    DO 325 L=1.4
    KK=IX(N,I)-IX(N,L)
    IF (KK.LT.O) KK=-KK
    TF (KK.GToJ) J=KK
    325 GONTINUE
    340 CONTINUE
    MRAND=2*, J +?
```



```
C. SOLVE FOR DISPLACEMENTS AND STRESSES
```



```
    KSW=0
    CALL STIFF
    IF (KSW.NE.O) GO TO 900
C
    CALL GANSCL
    WRITE(6,2052)
```

FENTOOT3
FENTOO74
FENTOO75
FENTOO76
FENTOO7?
FENTOC78
FENTO079
FENTO080
FENT0081
FENTOO82
FENTOO83
FENTOO84
FENTOO85
FENT0086
FENT0087
FENTOO88
FENTOC89
FENT0090
FENTOO91
FENTOOG2
FENTOO93
FENTOO94
FENTOO95
FENTOO96
FENTOOG7
FENTOOS8
FENTOC99
FENTOICC
FENTOLO1
FENTO1O2
FENTOIO3
FENTO104
FENTOLC5
FENTOLOG
FFNTO107
FENTOIO8

```
        WRITE (6.2025) (N,B (2*N-1),B (2*N),N=1,NUMNP)
C
    450 CALL STRESS(SPLOT)
C
C PROCESS ALL DFCKS EVEN IF ERROR
```



```
    GO TO 910
    900 WRITE (6,4000)
    C10 WRITE (6.4001) HED
C
    920 READ (5.1000) CHK
        IF (CHK.NE.STRS) GO TO 920
        GO T] 50
    950 CONTINIE
        WRITE (6.4002)
        CALL EXIT
```



```
    1000 FORMAT (18A4)
    1001 FORMAT (1215)
    1002 FORMAT ( I5.2F10.0)
    1003 FORMATI2F10.01
    1004 FORMAT (2F10.0)
    1005 FORMAT (3F10.0)
    lo0S FORMAT 1215.4F10.01
    1007 FORMAT (6I5)
```



```
    2000 FURMAT (1H1.20A4)
    2 0 0 6 ~ F O R M A T ~ ( 2 8 H O N U M B E R ~ O F ~ N O D A L ~ P O I N T S - - - - - ~ I 3 / ' )
    1 2.8H NUMBER OF ELEMENTS-------- I3)
2007 FORMAT (20HOMATERIAL NUMBER---- [3/
    1 25H INITIAL VERTICAL STRESS=F10.3,5X,
    2 26HINITIAL HCRIZONTAL STRESS= FIO.3)
2013 FORMAT (12HINODAL POINT , 4X, 4HTYPE, 4X, IOHR-ORDINATE . 4X.
    1 1OHT-ORCINATE , IOX, 6HR-LOAD . 10X. 6HZ-LOAD I
2014 FORMAT (I12.I8.2F14.3.2E16.5)
```

FENTOIOG
FENTO110
FENTOL11
FENTO112
FENTOL13
FFNTO114
FENTOL15
FENTOL16
FENTO117
FENTO118
FENTOL19
FENTO120
FENTO121
FENTO122
FENTOL23
FENTO124
FENTO125
I
FENTOL2
FENTO127
FENTO128
FENTO129
FENTOL30
FENTO131
FENTOL32
FENTO133
FENTO134
FENTO135
FENTO136
FENTO137
FENTO138
FENTO139
FENTO140
FENTO141
FENTOL4?
FENTO143
FENTO144

```
    2O15 FORMAT (2GHONODAL PCINT CARD ERROR N= [5]
```



```
    2017 FORMAT (1113,416,1112)
    2025 FORMAT (12HONODAL POINT ,6X, 14HR-DISPLACEMENT , 6X, 14HZ-DISPLACEM
        1ENT / (I12.1P2D20.7))
    2O41 FORMAT {7GHOMOCULUS AND YIELD STRESS NORMALIZED WITH RESPECT TO IN
        IITIAL VERTICAL STRESS I
    2C51 FORMAT(1HO.10X."E.,8X.'NU'./.3X,F11.1.F10.4/)
    2052 FORMAT (1H1)
```



```
    3003 FORMAT (1615)
C
```



```
    4000 FORMAT (//// ' ABNORMAL TERMINATION')
    4001 FORMAT (//// END OF PROBLEM ' 20A4)
    4002 FORMAT (////' END OF JOB')
```



```
    9000 FORMAT(29HOPRFSSURE EOUNDARY CONDITIONS/ 24H I I J PRESSU
        IRE )
    9001 FORMAT(215,F10.0)
    9002 FORMAT(2I6,F12.3)
        END
        SURROUTINE STIFF
C
    IMPLICIT REAL*& (A-H,O-Z)
    IMPLICIT INTEGER*?(I-N)
    COMMON STTCP,HED(18).SIGIR(25),SIGIZ(25),GAMMA(25), ZKNOT(25).
    1 DEPTH(25).E(10.25).SIG(7).R(450).2(450).UR(450).
    2 U7(450).STOTAL(450.4).KSW
    COMMON /INTEGR/ NUMNP,NUMEL, NUMMAT,NDEPTH,NORM,MTYPE,ICODE(450)
    COMMON /ARG/ RRR(5),ZZZ(5),S(10,10),P(10),LM(4),DD(3,3),
    1 HH(6,10),RR(4), 22(4),C(4,4),H(6,10),0(6,6),F(6,10),TP(6),XI(6),
    2. EE(10),IX(450,5)
    COMMCN /RANARG/ B(900),A(900.54),MBANO
    COMMON/PRFSS/ [BC(200),JBC(200),PR(200),NUMPC
    DIMENSION CODE(450)
```


FENTO145
FENTO146
FENTO147
FENTO148
FENTO140
FENTO150
FENTO151
FENTO152
FENTO153
FENTO154
FENTO155
FENTO 156
FENTO157
FENTO158
FENTO159
FENTO160
FENTO161
FENTO162
FENTO163
FENTO164
FENTO165
FENTO166
FENTO167
FENTO168
FENTO169
FENTO170
FENTO171
FENTO172
FEATO173
FENTO174
FFNTO175
FENTO176
FENTO177
FENTO178
FENTO179
FENTO180

0
UU
0

 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNÑ

$P P=P R(I) / 6$
$D Z=(7 .(I)-Z(J)) * P P$
$D P=(R(J)-R(I)) * P P$
$R X=7.0 * R(I)+R(J)$
$Z X=R(I)+2.0 * R(J)$
$I I=2 * I$
$J J=? * J$
$S I N A=0.0$
$C O S A=1.0$
$I F(C O D E(I)) 271.272$
$\operatorname{COSA}=\mathrm{DCCS}(\operatorname{CODE}(I))$

t	0	-	N	0	$\xrightarrow{-1}$	N	0
0	im	N	\cdots	(r)	0	0	0
n	N	n	N	N	\cdots	N	\cdots

$\begin{array}{llll}\vec{\sigma} & N \\ \sim & \underset{m}{n} & 0 \\ \cdots\end{array}$

ω

```
    400 CONTINUE
C
    500 RETURN
C
2OG3 FORMAT (26HONEGATIVF AREA ELEMENT NO. [4)
2004 FORMAT (2GHOBAND WIDTH EXCEEOS ALLOWABLE [4)
C
    FN
    SUSROUTINE OUAD(N,VOL)
C
    IMPLICIT REAL*8 (A-H,O-Z)
    IMPLICIT INTEGFR*2(I-N)
    COMMON STTOP,HFD(18),SIGIR(25),SIGIZ(25),GAMMA(25), ZKNOT(25),
    1 DEPTH(25), E(10,25),SIG(7),R(450),Z(450),UR(450),
    ? UZ(450),STOTAL(450.4),KSW
    COHMON/INTEGR/ NUMNP, NUMEL, NUMMAT, NDEPTH,NORM,MTYPE,ICODE(450)
    COMMON /ARG/ RRR(5),ZZZ(5),S(10.10),P(10),LM(4),DD(3,3),
    1 HH(5,10),RR(4),ZZ(4),C(4,4),H(6,10),C(6,6),F(6,10),TP(6),XI(6),
    2 FE(10). {X(450.5)
    COMMON /BANARG/ B(900).A(900.54).MBAND
```



```
    I=IX(N,I)
    J=IX(N,T)
    K=TX(A,3)
    L=IX(N,4)
C
    11=1
    [?=?
    I 3=3
    14=4
    I 5=5
```



```
C. DFTERMINE ELASTIC CONSTANTS AND STRESS-STRAIN RELATICNSHIP
```



```
c
    CALL MPROP(N)
```

FENTO289
FENTO290
FENTO 291
FENTO292
FENTO293
FENTO294
FENTO2.95
FENTO296
FENTO297
FENTO298
FENTO299
FENTO300
FENTO301
FENTO 302
FENTO303
FENTO304
FENTO 305
FENTO306
FENTO 307
FENTO308
FENTO309
FENTO310
FENTO311
FENTO312
FENTO313
FENTO314
FENTO315
FENTO 316
FENTO31?
FENTO318
FENTO319
FFNTO 320
FENTO321
FENTO 322
FENTO323
FENTO324

[^0]

$\ln _{\infty}$	8	8

[^1]> DO(2.3) $=(22(1)-22(2)) / C O M M$
> $\operatorname{DD}(3,1)=(R R(3)-\operatorname{RR}(2)) / \operatorname{COMM}$
$\operatorname{DD}(3,2)=(R R(1)-R R(3)) / \operatorname{COMM}$
$\operatorname{DD}(3,3)=(R R(2)-R R(1)) / C O M M$

[^2]

500 RETURN

	END
	SUBROUTINE STRESS(SPLOT)
	IMPLICIT REAL*8 (A-H. ${ }^{(1)}$ Z $)$
	IMPLICIT INTEGER*2(I-N)
	COMMON STTOP, HED(18), SIGIR(25),SIGIZ(25),GAMMA(25), ZKNOT (25),
	1 DEPTH(25), E(1C.25),SIG(7),R(450). $2(450)$, UR(450).
	? UZ 450$),$ STOTAL $(450,4)$, KSW
	COMMON /INTEGR/ NUMNP, NUMEL, NUMMAT, NOEPTH, NORM, MTYPE, ICDDE 44501
	COMMON /ARG/ RRR(5), ZZZ 5), S(10,10), P(10),LM(4), DD: 3, 3),
	$1 \mathrm{HH}(6,10), \mathrm{RR}(4), Z Z(4), C(4,4), H(6,10), \mathrm{C}(6,6), F(6,10), \mathrm{TP}(6), X 1(6)$,
	2. EE(10), IX 4 (40,5)
	COMMCN /BANARG/ E(900), A 900,54$)$, MBAND
0	
C	COMPUTE ELEMENT STRESSES AND STRAINS
c	
	DO $300 \mathrm{~N}=1$. NUMEL
	CALL QUAD(A,VOL)
C	
C	FIND ELFMENT COORDINATES
C	
	$I 1=I \times(N, 1)$
	$\mathrm{J}=1 \times(\mathrm{N}, 2)$
	$\mathrm{K} 1=1 \times(N, 3)$
	$L 1=I \times(N, 4)$
0	
	IF (K1-L1.EQ.O) GO TO 50
	$\operatorname{RRP}(5)=(R(11)+P(J 1)+P(K 1)+R(L 1)) / 4.0$
	Z77(5) $=(2(11)+7(J))+7(K 1)+Z(L 1) / / 4.0$
	GOTO 100
50	$\operatorname{RRR}(5)=(R(I 1)+R(J 1)+R(K 1)) / 3.0$
	$777(5)=(7(11)+7(J))+7(\mathrm{~K} 1)) / 3.0$
0	
C	COMPUTE STRAINS
r	
100	Dก $120 \quad \mathrm{I}=1.4$

[^3] ，

\[

$$
\begin{aligned}
& x \times(3)=x \times(1) \\
& x \times(4)=.1323941527884 \\
& x \times(5)=x \times(4) \\
& x \times(6)=x \times(4) \\
& x \times(7)=.225 \\
& x \times(8)=.696140478028 \\
& x \times(9)=.410426152314 \\
& R(7)=(R R(1)+R R(2)+R R(3)) / 3 . \\
& 7(7)=(22(1)+7 Z(2)+22(3)) / 3 .
\end{aligned}
$$
\]

[^4]RETURN
END

```
APPENDIX C
FINITE ELEMENT PROGRAM FOR THE ANALYSIS OF ISOTROPIC
ELASTIC AXISYMMETRIC PLATES - THERMAL STRAINS INCLUDED (Ref. 13, 14)
```


Program Capabilities:

The following restrictions are placed on the size of problems which can be handled by the program.

Item
 Maximum Number

Nodal Points 450
Elements 450
Materials 25

Boundary Pressure Cards 200

Printed output includes:

1. Reprint of Input Data
2. Nodal Point Displacements
3. Stresses at the center of each element.

Input Data Format:

A. Identification card - (18A4)

Colums 1 to 72 of this card contain information to be printed with results.
B. Control card - (5I5,F10.0)

Columns $\quad 1-5$ Number of nodal points
6-10 Number of elements
11 - 15 Number of different materials

```
16-20 Normalizing stress (see NORM, Appendix B)
21-25 Number of boundary pressure cards
26-35 Reference temperature (stress free
    temperature)
```

C. Material Property information

The following group of cards must be supplied for each different material:

First Card - (2I5, 2F10.0)
Columns 1-5 Materials identification - any number from 1 to 12.
6-10 Number of different temperatures for which properties are given $=8$ maximum.

11-20 Initial Z stress.
21-30 Initial R stress.
Following Cards - (4F10.0) One card. for each temperature
Columns $\quad 1$ - 10 Temperature
11 - 20 Modulus of elasticity - E
21 - 30 Poisson's ratio - v
31-40 Coefficient of thermal expansion
D. Nodal Point Cards - (2I5, 5F10.0)

One card for each nodal point with the following information:
Columns 1-5 Nodal point number
10 Number which indicates if displacements or forces are to be specified.
11-20 R - ordinate
21-30 Z - ordinate
$31-40$ XR
41-50. XZ
51-60 Temperature

If the number in column 10 is

Condition

$0 \quad \mathrm{XR}$ is the specified R -load and $X Z$ is the specified Z - load
$1 \quad \mathrm{XR}$ is the specified R-displacement and $X Z$ is the specified Z-load.

free

2. $X R$ is the specified R-load and $X Z$ is the specified Z-displacement.
$3 X R$ is the specifiea R-displacement and $X Z$ is the specified $Z-$ displacement.

ण

fixed

All loads are considered to be total forces acting on a one radian segment. Nodal point cards must be in numerical sequence. If cards are omitted, the omitted nodal points are generated at equal intervals along a straight line between the defined nodal points. The necessary temperatures are determined by linear interpolation. The boundary code (column 10), $X R$ and $X Z$ are set equal to zero.

Skew Boundaries:
If the number in columns $5-10$ of the nodal point cards is other than $0,1,2$ or 3 , it is interpreted as the magnitude of an angle in degrees. The terms in columns 31-50 of the nodal point card are then interpreted as follows:

XR is the specified load in the s-direction
$X Z$ is the specified displacement in the n-direction
The angle must always be input as a negative angle and may range from -.001 to -180 degrees. Hence, +1.0 degree is the same as -179.0 degrees. The displacements of these nodal points which are printed by the program are
$u_{r}=$ the displacement in the s-direction
$u_{z}=$ the displacement in the n-direction
E. Element Cards - (6I5)

One card for each element

Columns	$\begin{aligned} 1 & -5 \\ 6 & -10 \\ 11 & -15 \end{aligned}$	Element number Nodal Point I Nodal Point J	1. Order nodal points counter-clockwise around element.
	16-20	Nodal Point K	2. Maximum difference between nodal point
	21-25	Nodal Point L	I. D. must be less
	26-30	Material Identification	than 25.

Element cards must be in element number sequence. If element cards are omitted, the program automatically generates the omitted information by incrementing by one the preceding I, J, K and L. The material identification code for the generated cards is set equal to the value given on the last card. The last element card must always be supplied.

Triangular elements are also permissible; they are identified by repeating the last nodal point number (i.e., I, J, K, K).
F. Pressure Cards - (2I5, 1F10.0)

One card for each boundary element which is subjected to a normal pressure.

Columns | 1 | -5 | | Nodal Point I |
| ---: | :--- | ---: | :--- |
| 6 | -10 | | Nodal Point J |
| | 11 | -20 | |
| Normal Pressure | | | |

The boundary element must be on the left as one progresses from I to J . Surface tensile force is input as a negative pressure.

FINTTE FLEMENT PROGRAM FOR THE ANALYSIS OF ISCTROPIC ELASTIC AXYSYMAETRIC PLATES REF FEAST 1.3 SAAS 2

IMPLICIT REAL*8 (A-H.O-Z)
IMPLICIT INTEGER*2(I-N)
COMMON STTOP,HED(18),SIGIR(25),SIGIZ(25),GAMMA(25),ZKNOT(25),
1DEPTH (25),F(8.4.25),SIG(7),R(450), 2(450), UR(450), TT(3),
? U7(450). STOTAL(450.4),
3 T(450), TFMP, O, KSW
COMMIN /INTEGR/ NUMNP, NUMEL, NUMMAT, NDEPTH,NORM,MTYPE,ICODE(450)
COMMON /ARGI RRR(5), ZZZ(5), S(10.10), P(10), LM(4), DO(3.3),
$1 \mathrm{HH}(6,10), R \mathrm{R}(4), 72(4), \mathrm{C}(4,4), H(6,10), \mathrm{D}(6,6), F(6,10), T P(6), X 1(6)$,
2 EE(10). [$\times(450.5)$
COMMON /BANARG/ R(900), A(900.54), MBAND
COMMON/PRESS/ IBC(200),JBC(200),PR(200). NUMPC

RFAD AND PRINT CONTROL INFORMATION

$50 \operatorname{READ}(5,1000, E N D=950) \mathrm{HED}$
WRITE (6.2000) HED
READ(5.1001) NUMNP. NUMEL. NUMMAT. NORM, NUMPC, Q
WRITE(6.2006) NUMNP, NUMEL, NUMMAT, NUNPC, 0
IF (NORM) 65.65 .66
66 WRITE (6.2041)
 READ AND PRINT MATERIAL PROPERTIES

65 CONTINUF
DO $80 \quad M=1$. NUMMAT
READ(5.1017) MTYPE,NUMTC,SIGIZ(MTYPE), SIGIR(MTYPE)
WRITE(6.2011)MTYPF,NUMTC.SIGIZ(MTYPE),SIGIR(MTYPE)

FEWTOOC1
FEWTOOO2
FEWTOOO3
FEWTOOO4
FEWTOOO5
FEWTOOO6
FEWTOOO7
FEWTOOO8
FEWTOOOG
FEWTOOIO
FEWTOOL1
FEWTOO12
FEWTOO13
FEWTOO14
FEWTOO15
FEWTOO16
FEWTOO17
FEWTOO18
FEWTOO19
FEWTOO2C
FEWTOO21
FEWTOO22
FEWTOO23
FEWTOO24
FEWTOO25
FEWTOO26
FEWTOO27
FEWTOC28
FEWTOO29
FEWTOO30
FEWTOO 31
FEWTOO32
FEWTOO 33
FEWTOO34
FEWTOO35
FEWTOO36

[^5]```
 130 READ (5,1CC7) M,(IX(M,I),I=1,5)
 140 N=N+1
 IF (M-N) 170.170.150
 150 1 X(N,1)=1\times(N-1,1)+1
 IX(N,2)=IX(N-1,2)+1
 IX(N,3)=I X(N-1,3)+1
 I X(N.4)=IX(N-1,4)+1
 IX(N,5)=IX(N-1.5)
 170 WRITE (6.2C17) N,(IX(N,I),I=1,5)
 IF (M-N) 180,180,140
 180 IF (NUNEL-N) 300.300.130
```



```
READ AND PRINT THE PRESSURE CARDS
 300 IF(NUMPC) 290.210.290
 290 WRITE(6.9000)
 DO 200 L=1, NUMPC
 READ(5,9001) IBC(L),JBC(L),PR(L)
 200 WRITE(6.9002) IPC(LI,JBC(1),PR(I)
 210 CONTINUE
```



```
 DETERMINE BAND WIOTH
C
```



```
 J=0
 DO 340 N=1. NUMEL
 DO 340 I=1.4
 DO 325 L=1.4
 KK=IX(N,I)-TX(N,L)
 IF (KK.LT.O) KK=-KK
 IF (KK.GT.J) J=KK
 325 CONTINUE
 340 CONTINUE
 MRANO=2% J+2
```



```
C. SULVE FOR DISPLACEMENTS AND STRESSES
```



FEWT0073
FEWTOO74
FEWTOOT5
FEWTOO76
FEWT0077
FEWTOOT8
FEWTOC79
FEWTOO80
FEWTOO81
FEWTOO82
FEWTOO83
FEWTOOR4
FEWTOO85
FEWTOO86
FEWTOC87
FEWTOO88
FEWTOO89
FEWTOOOO
FEWT0091
FEWTOO92
FEWTOOS3
FEWTOOS4
FEWTOOS5
FEWTOO96
FEWTOCS7
FEWTOO98
FEWTCOG9
FEWTOLOO
FEWTOIO1
FEWTOLC2
FEWTOLC3
FEWTO104
FEWTO105
FEWTO106
FEWTO107
FEWTO108


```
 CALL STIFF
 IF (KSW.NE,O) GO TO 900
C
 CALL BANSOL
 WRITE(6.2052)
 WRITE (6.2025)(N,B (2*N-1),B (2*N),N=1, NUMNP)
C
 450 CALL STRESSISPLOT)
```



```
r. PROCFSS ALL DECKS EVEN IF FRROR
```



```
 GO TO 910
 900 WRITF (6.4000)
 Cl0 WRTTE (6.4001) HED
C
 970 READ (5.1000) CHK
 IF (CHK.NE.STRS) GO TO 920
 GO TO 50
 950 CONTINUE
 WRITE (6,4002)
 CALL EXIT
```



```
 1000 FORMAT (18A4)
 1001 FORMAT(5I5.F10.0)
 002 FORMAT (I5,2F10.0)
 1003 FORMAT(2F10.01
 1004 FORMAT (2F10.0)
 1005 FORMAT (3F10.0)
 1006 FORMAT(2I5.5F1C.0)
 1007 FORMAT (6I5)
 1011 FORMAT(4F10.0)
 101? FORMAT(2I5.2F1C.O)
```



```
2000 FORMAT (1H1.20A4)
```

FEWTOLO9
FEWTOL10
FEWTOL11
FEWTOL12
FEWTOI13
FEWTO114
FEWTO115
FEWTOL16
FEWTOL17
FEWTO118
FEWTO119
FEWTO120
FEWTO121
FEWTO122
FEWTO123
FEWTO 124
FEWTO125
FEWTOL26
FEWTO127
FEWTO128
FEWTO129
FEWTO130
FEWTO131
FEWTO132
FEWTO133
FEWTO134
FEWTO135
FEWTO136
FEWTO137
FEWTO138
FEWTOL39
FEWTO140
FEWTOL41
FEWTO142
FEWTOl43
FFWTO144

```
2006 FGRMAT (///,
 1 3OHO NUMBER OF NODAL POINTS------ I3 /
 2 3OHO NUMBER OF ELEMENTS--------- 13/
 3 3OHO NUMRFR OF DIFF. MATERIALS--- I3 /
 4 3OHO NUMRFR OF PRESSURE CARDS---- 13/
 5 3OHO REFERENCE TEMPERATURE------- F12.41
OL10 FORMAT 115HO TEMPERATURE 15X 5HE 15X GHNU 15X 6HALPHA 9X
 1/4F20.81
2011 FORMAT 117HOMATERIAL NUMRER=I3, 3OH, NUMBER OF TEMPERATURE CARDS=
 1 13.25H INITIAL VERTICAL STRESS=F10.3.5X,
 2 27H INITIAL HORIZONTAL STRESS=F10.31
2O13 FORMAT (12H1NODAL POINT, 4X, 4HTYPE , 4X, 1OHR-GRDINATE , 4X,
 1 1OHZ-ORDINATE . 10X,6HR-LOAD ,10X, 6HZ-LOAD,10X,4HTEMP I
2014 FORMAT (I12.18.2F14.3.2F16.5.F14.3)
2015 FORMAT (26HONDCAL POINT CARD ERROR N= I5)
2016 FORMAT (49H1ELEMENT NO. I I J L MATERIAL I
2017 FORMAT (1113,416,1112)
2025 FORMAT (12HONODAL POINT , 6X, 14HR-DISPLACEMENT, 6X, 14HZ-DISPLACEM
 IENT / (I12,1P2D20.7))
7041 FORMAT ITGHOMOCULUS AND YIELD STRESS NORMALIZED WITH RESPECT TO IN
 IITIAL VERTICAL STRESS,
2051 FORMAT(1HO.10X, "E, 8X, NU',/,3X,F11.1,F10.4/)
2052 FORMAT (1H1)
```



```
3003 FORMAT (16I5)
```



```
40OO FORMAT (//// ABNORMAL TERMINATION:)
4001 FORMAT (////, END OF PROBLEM ' 20A4)
4007 FORMAT 1////' END CF JCB'1
```




```
 IRE I
9001 FORMAT(2I5,F10.0)
g00? FORMAT(2I6.F12.3)
 FND
 SUBROUTINE STIFF
```

FEWTO145
FEWTO146
FEWTO147
FEWTO148
FEWTO149
FEWTO150
FEWTO151
FEWTOI52
FEWTO153
FEWTOI54
FEWTOL55
FEWTO156
FEWTO157
FEWTO158
FEWTO159
FEWTOL60
FEWTO161
FEWTO162
FEWTO163
FEWTO164
FEWTO165
FEWTO166
FEWTO167
FEWTO168
FEWT0169
FEWTO170
FEWTO171
FEWTO172
FEWTO173
FEWTO174
FEWTOL75
FEWTO176
FEWTO177
FEWTOL78
FEWTOL79
FEWTO180

```
C
 IMPLICIT REAL*B (A-H,C-Z)
 IMPLICIT INTEGER*2(I-N)
 COMMON STTOP,HED(18),SIGIR(25),SIGIZ(25),GAMMA(25),ZKNCT(25),
 IDEPTH(25),E(8,4,25),SIG(7),R(450),Z(450),UR(450),TT(3),
 2 UZ(450), STOTAL(450,4),
 3 T(450),TEMP,0,KSW
 COMMON /INTEGR/ NUMNP,NUMEL,NUMMAT,NDEPTH,NORM,MTYPE,ICODE(450)
 COMMON /ARG/ RRR(5),ZZZ(5),S(10,10),P(10),LM(4),OD(3,3),
 1 HH(6,10),RR(4),72(4),C(4,4),H(6,10),D(6,6),F(6,10),TP(6),XI(6),
 2 EE(10).IX(450,5)
 COMMON /BANARG/ B(900).A(900.54).NBAND
 COMMON/PRESS/ IBC(200).JBC(200),PR(200),NUMPC
 DIMENSION CODE(450)
```



```
C
C INITIALIZATION
```



```
 NB=27
 ND=2*NB
 ND2 = 2*NUMNP
 DO }50\quadN=1,NO
 B(N)=0.0
 DC 50 M=1.ND
 50 A(N,M)=0.0
```



```
 FORM STIFFNESS MATRIX
C
```



```
 BO 210 N=1,NUMFL
C
c
9 0 ~ C A L L ~ Q U A D (N , V D L) ~
 IF (VOL) 142.142.144
 14? WRITE (6.2003) N
 KSW=1
 GO TO 210
C
```

FEWTOL81
FEWTOL82
FEWTO183
FEWTO184
FEWTO185
FEWTOL8t
FEWTO187
FEWTO188
FEWTO189
FEWTO190
FEWTO191
FEWTO192
FEWTO1S3
FEWTO194
FEWTO195
FEWTOI96
FEWTO197
FEWTOL98
FEWTO199
FEWTO200
FEWTO201
FEWTO202
FEWTO203
FEWTO204
FEWTO205
FEWTO206
FEWTO207
FEWTO208
FEWTO209
FEWTO210
FEWTO211
FEWTO212
FEWTO213
FEWTO214
FEWTO215
FEWTO216

[^6]144 IF (IX(N,3)-IX(N,4)) 145.165.145

3
150


$200 \quad I=1.4$
$200 K=1.2$

## 

DO 200 I
DO 200 K
$I I=1.4(I)$
$I I=L M(I)+K$
$K K=2 * I-2+K$
$B(I I)=R(I I)+P(K K)$
$=11$
a
$=0$
$=0$
$\begin{array}{lll}00 & 200 & J= \\ 00 & 200 & L=\end{array}$
$J J=L M(J)+L$
IF (JJ) 200,200,175
175 IF (ND-JJ) $180,195,195$
180 WRITE $(6,2004) \mathrm{N}$
$\mathrm{KSW=1}$
GO TO 210
195 A(II,JJ) $=A(I I, J J)+S(K K, L L)$
200 CONTINUE
210 CONTINUE


[^7]```
        COSA=CCOS(CODE(I))
    292B(JJ-1)=R(JJ-1)+2X*(COSA*DZ+SINA*DR)
        B(JJ)=B(JJ)-ZX*(SINA*DZ-COSA*DR)
    300 CONTINUE
    310 CONTINUE
C DISPLACFMENT B.C.
C
        DO 400 M=1. NUMNP
        U=UR(M)
        N=2*M-1
        KX=ICODE(M)+1
        G0 T0 (400,370,390,380),kX
    3 7 0 ~ C A L L ~ M O D I F Y ( N , U , N D 2 ) ~
        GO TO 400
    380 CALL MOOIFY(N,U,ND2)
    390 U=UZ(M)
        N=N+1
        CALL MODIFY(N,U,ND2)
    400 CONTINUE
C
    500 RETURN
```



```
    2003 FORMAT (26HONEGATIVE AREA ELEMENT NO. I 4)
    2004 FORMAT (29HORAND WIDTH EXCEEOS ALLOWABLE I4)
C
```



```
    END
    SUBROUTINE QUAC(N,VCL)
C
    IMPLICIT REAL*8 (A-H,O-Z)
    IMPLICIT INTEGER*2(I-N)
    COMMON STTOP,HED(18),SIGIR(25),SIGIZ(25),GAMMA(25), ZKNOT(25).
    1DFPTH(25),E(8,4,25),SIG(7),R(450),Z(450),UR(450),TT(3),
    2 UZ(450),STOTAL(450,4).
    3 T(450), TEMP.O.KSW
    COMMON/INTEGR/ NUMNP, NUMEL, NUMMAT,NCEPTH,NORN,MTYPE,ICODE(45O)
    COMMON /ARG/ RRR(5),2Z2(5),S(10,10),P(10),LM(4),00(3,3),
```

 FEWTO289
 FEWTO290
 FEWTO291
 FEWTO292
 FEWTO293
 FEWT0294
 FEWTO295
 FEWTO296
 FEWTO297
 FEWTO298
 FEWTO299
 FEWTO 300
 FEWTO 301
 FEWTO302
 FEWTO 303
 FEWTO304
 FEWTO305
 FEWTO 306
 FEWTO 307
 FEWTO308
 FEWTO309
 FEWTO310
 FEWTO 311
 FEWTO312
 FEWTO313
 FEWTO 314
 FEWTO315
 FEWTO316
 FEWTO317
 FEWTO 318
 FEWTO319
 FEWTO320
 FEWTO321
 FEWTO322
 FEWTO323
 FEWTO 324
    ```
    1 HH(6,10), RR(4),7.Z(4),C(4,4),H(6,10),D(6,6),F(6,10),TP(6),XI(6).
    2 EE(10).IX(450.5)
    COMMON /BANARG/ B(900).A(900.54),NBAND
C
```



```
        I=I \ (N,1)
        I=IX(N,2)
        K}=I\times(N,3
        L=IX(N,4)
C
    I1=1
    12=2
    I 3=3
    14=4
    I 5=5
        THERMAL STRESSES
        TEMP={T(I)+T(J)+T(K)+T(L))/4.0
        DO 103 M=?.8
        IF(E(N.1,NTYPE)-TEMP) 103.104.104
    103 CONTINUF
    104 RATIO=0.0
        DEN=E(M,1,MTYPE)-E(M-1,1,MTYPE)
        IF(DEN) 70.71.70
        70 RATIO=(TFMP-E(M-1.1.MTYPE)//DEN
        71 OO 105 KK=1,3
    105 FF(KK)=E(M-1,KK+1.MTYPE) +RATIO*{E(M,KK+1,MTYPE)-E(M-1,KK+1,MTYPE))
        TEMP=TEMP-Q
```



```
C. DETERMINE ELASTIC CONSTANTS AND STRESS-STRAIN RELATICNSHIP
C
```



```
    CALL MPROP(N)
C
    88 DO 110 M=1.3
    110TT(M)=(C(M,1)+C(M,2)+C(M,3))*EE(3)*TENP
```



```
C. FORM GUADRILATERAL STIFFNESS MATRIX
```

FEWTO325
FEWTO 326
FEWT0327
FEWTO328
FEWTO329
FEWTO330
FEWTO331
FEWTO 332
FEWTO333
FEWTO334
FEWTO335
FEWTO 336
FEWT0337
FEWTO338
FEWTO339
FEWTO 340
FEWTO341
1
FEWTO 342
FEWTO 343
FEWTO344
FEWTO 345
FEWTO346
FEWTO347
FEWTO 348
FEWTO349
FEWTO 350
FEWTO351
FEWTO 352
FEWTO. 353
FEWTO354
FEWTO355
FEWTO356
FEWTOS 37
FEWTO 358
FEWTO359
FEWTO36C

$\begin{aligned} \mathrm{DO} 140 \mathrm{JJ} & =1.10 \\ 140 \mathrm{HH}([\mathrm{J}, \mathrm{J}) & =\mathrm{HH}(I \mathrm{I}, \mathrm{JJ}) / 4.0\end{aligned}$

110
\qquad

山Ш

> $\operatorname{DD}(3,1)=(\operatorname{RR}(3)-\operatorname{RR}(2)) / \operatorname{COMM}$ WWコク／（ $(\varepsilon) y y-(l) y y)=(て \cdot \varepsilon) 00$ $D D(3.3)=(R R(2)-R R(1)) / C D M M$

$160 P(I)=P(I)+H(K, I) * T P(K)$

| C | |
| :---: | :---: |
| ¢ | FORN STRAIN TRANSFORMATION MATRIX |
| c | |
| | D0 $410 \quad \mathrm{I}=1.6$ |
| | Dก $410 \quad \mathrm{j}=1.10$ |
| 410 | HH(I, J) $=$ HH(1,J) H (1, J) |
| C | |
| | |
| 500 | RETURN |
| | END |
| | SURRDUTINF MPROP(N) |
| | IMPLICIT REAL*8 (A-H.O-T) |
| | IMPLICIT INTEGER*2(I-N) |
| | COMMON STTOP, HED(18),SIGIR(25),SIGIZ(25), GAMMA 25$)$, ZKNOT(25), |
| | 1OFPTH(25), E($8,4,25), S I G(7), R(450), 2(450)$, UR (450), TT(3), |
| | 2 UZ (450), STOTAL (450,4). |
| | 3 T(450), TEMP, 0,KSW |
| | COMMON /INTEGR/ NUMNP.NUMEL, NUMMAT, NDEPTH,NORM, MTYPE, ICODE (450) |
| | COMMON /ARG/ RRR(5), ZZZ(5), S(10,10), P(10), LM (4), OD(3,3), |
| | $1 \mathrm{HH}(6,10), \mathrm{RR}(4), Z Z(4), C(4,4), H(6,10), D(6,6), F(6,10), T P(6), X I(6)$, |
| | 2 EE(10), IX (450.5) |
| | COMMON /BANARG/ B (900), Al 900,54$)$, MBAND |
| c | |
| | $\mathrm{I}=\mathrm{I} \times(\mathrm{N}, 1)$ |
| | $J=I \times(N, 2)$ |
| | $K=I \times(N, 3)$ |
| | $t=I \times(N, 4)$ |
| | MTYPE $=I \times(N, 5)$ |
| c | |
| | D0 5 II $=1,4$ |
| | $005 \mathrm{JJ}=1,4$ |
| 5 | CIII.JJ) $=0.0$ |
| C | |
| 6 | DETERMINF ELASTIC Constants |
| C | |

IF (ND2.LT.I) GD TO 260
$J=0$
$D \cap 250 \mathrm{~K}=\mathrm{L} \cdot \mathrm{MBAND}$

NOILOLILSEOS \times OV
$N=N D 2$
$N=N-1$
IF (N.LE.O) GO TO 500
חO $400 \mathrm{~K}=2$, MBAND

[^8]$77 Z(5)=(Z(11)+Z(J 1)+Z(K 1)+Z(L 1)) / 4.0$

じい

$R R(2)=T P(6)+T P(2) * R R R(5)+T P(3) * Z Z Z(5)) / R R R(5)$ $R R(4)=T P(3)+T P(5)$

0

[^9]

$00 \quad 400 \quad \mathrm{I}=1.7$

$2) *(Z Z(3)-Z Z(1))+R R(3) *(Z Z(1)-Z Z(2$

[^10]
APPENDIX D

STEADY STATE HEAT TRANSFER PROGRAM FOR BOLTED JOINT

Program Capacity: 50 nodal points

Output Data:
(a) Input data
(b) Inverse of matrix
(c) Nodal temperature
(d) Given and calculated augmenting vector and residual error

Input Data Sequence:
A. Case identification (12A4) followed by two blank cards
B. Card (I1) with a 1
C. Card (I7) with dimension of matrix
D. Card (Il) with a 1
E. Cards (I1, 3(2I3, E15.8)) with node indices started in the first I3 field followed by conductance between these nodes. Only input from lower node number to higher node number required (since the conductance from node i to j equals the conductance from j to i.) Each card has three groups of z node numbers followed by a conductance value except the last card. Last card could have 1,2 or 3 groups and has a 1 in column 1.
F. Cards (I1, 3(I6, E15.8) with number of node followed by conductance from the node to ground node which is at specified temperature. Each card has 3 groups of node number followed by conductance. The Il field is skipped except for the last card for ground conductances which can have 1,2 or 3 fields and the first column has a 1 . A
node can be connected to only one ground node.
G. Same as F above, but code temperature specified for ground node instead of the conductance value.
H. Same as F above, but code internal power dissipation for the particular node instead of the conductance value.

10 FCKMAT(1H / (4) 5 H AI(I3,1H,13,2H)=E15.8)) 10 FCRMATE(t,23)

小－

TABLE 1

Separation Radius Comparison - Single and Two Plate Models
(see Figs. 12 - 17)

| $\frac{\mathrm{A}}{\mathrm{B}}$ | $\frac{B}{A}$ | $\mathrm{R}_{\mathrm{o}} / \mathrm{A}$ | | Percent Discrepancy
 Between
 Models |
| :---: | :---: | :---: | :---: | :---: |
| | | Single
 Plate
 Mode1 | Two
 Plate
 Model | |
| 1 | 3.1 | 4.2 | 3.7 | 13.5 |
| | 2.2 | 3.3 | 2.7 | 22.2 |
| | 1.6 | 2.7 | 2.1 | 28.6 |
| | 1.3 | 2.4 | 1.7 | 41.7 |
| . 75 | 3.1 | 4.5 | 3.8 | 18.5 |
| | 2.2 | 3.6 | 2.8 | 28.9 |
| | 1.6 | 3.0 | 2.2 | 36.4 |
| | 1.3 | 2.7 | 2.0 | 35.0 |
| . 5 | 3.1 | 5.1 | 4.1 | 24.4 |
| | 2.2 | 4.2 | 3.2 | 31.3 |
| | 1.6 | 3.6 | 2.8 | 28.6 |
| | 1.3 | 3.3 | 2.5 | 32.0 |

TABLE 2
Test and Analytical Results for Radii of Separation of Bolted Plates (see Fig. 5)

| Case | $\begin{gathered} D \\ \text { in. } \end{gathered}$ | $\begin{aligned} & 2 B \\ & \text { in. } \end{aligned}$ | Separation Diameters, $2 \mathrm{R}_{\mathrm{o}}$-in. | | | | | \% Discrepancy Between Computed Values and Tested Values | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | "Rubbing Test" | | Autoradiographic Test | | Computed | | |
| | | | Range | Average | Range | Average | | Rub. Test | Autorad. Test |
| 1 | . 065 | . 422 | . $42-.48$ | . 45 | . $41-.46$ | . 44 | . 488 | 7.8 | 9.8 |
| 2 | . 124 | . 422 | . $50-.53$ | . 51 | . 4 - . 6 | . 55 | . 554 | 7.9 | . 7 |
| 3 | . 191 | . 422 | . $58-.64$ | . 62 | .76-. 81 | . 78 * | . 620 | 0 | 25.8 |
| 4 | . 253 | . 422 | . $70-.76$ | . 72 | .68-. 73 | $.7^{* *}$ | . 700 | 2.9 | 0 |
| 5. | $\begin{aligned} & \text { Unmatch- } \\ & \text { ed Pair } \\ & .124 / \\ & .257 \end{aligned}$ | | . $54-.58$ | . 56 | - | - | . 588 | 4.8 | - |
| 6. | . 124 | 1.0 | 1.06-1.10 | 1.09 | - | - | 1.104 | 1.3 | - |
| 7. | . 191 | 1.0 | 1.11-1.17 | 1.16 | - | - | 1.210 | 4.1 | - |

*Original x-ray film shows hole in plate and 0.6 inch diameter zone more distinctly than remainder of area sensitized by the radioactive contamination. Loose radiographic contamination observed during test.
$* *$
Assembled and disassembled radioactive and non-radioactive plates without rotating plates relative to each other.

FIG. 1. BOLTED JOINT

FIG. 2. ROETSCHER's RULE OF THUMB FOR PRESSURE DISTRIBUTION IN A BOLTED JOINT

FIG. 3(d)

FIG. $3(\mathrm{e})$

FIG. 3(f)
FIG. 3. FERNLUND'S SEQUENCE OF SUPERPOSITION

FIG. 4. FINITE ELEMENT IDEALIZATION OF TWO PLATES IN CONTACT

(a) Plates of Equal Thickness Under Load

(b) Finite Element Model for Plates of Equal Thickness

(c) Finite Element Model for Plates of Unequal Thickness

FIG. 5. FINITE ELEMENT MODELS

(b) Contact Zone Sustains Tension, R_{0} too large

FIG. 6. EXAMPLES OF UNACCEPTABLE SOLUTIONS

FIG. 7. PLATE SPECIMEN, BOLT AND NUTS, FIXTURE AND TOOLS.

FIG. 8(a). FOOTPRINTS ON MATED PAIR OF $1 / 16$ INCH PLATES.

FIG. 8(b). FOOTPRINTS ON MATED PAIR OF $1 / 8$ INCH PLATES.

FIG. $8(\mathrm{c})$. FOOTPRINTS ON MATED PAIR OF $3 / 16$ INCH PLATES.

FIG. 8(d). FOOTPRINTS ON MATED PAIR OF $1 / 4$ INCH PLATES.

FIG. 8(e). FOOTPRINTS ON MATED PAIR OF $1 / 8$ AND $1 / 4$ INCH PLATES.

FIG. 8. FOOTPRINTS ON THE MATING SURFACES OF $1 / 16-1 / 16$, $1 / 8-1 / 8,3 / 16-3 / 16,1 / 4-1 / 4$, and $1 / 8-1 / 4$ PAIRS. $\quad(A=.128, \quad B=.21)$

FIG. 9. FOOTPRINT OF NUT ON PLATE.

FIG. 10 (a). 1/16 INCH
PAIR

FIG. 10(b). 1/8 INCH PAIR

FIG. 10(c). 3/16 INCH
PAIR

FIG. 10(d). 1/4 INCH
PAIR

FIG. 10. X-RAY PHOTOGRAPHS OF CONTAMINATION TRANSFERRED FROM RADIOACTIVE PLATE TO MATED PLATE. $1 / 16,1 / 4$, $3 / 16,1 / 4$ INCH PAIRS. $(A=.128 \mathrm{in} ., \quad B=.21 \mathrm{in}$.

FIG. 11. FREE BODY DIAGRAM FOR TWO PLATES IN CONTACT.

FIG. 13. SINGLE PLATE ANALYSIS-MIDPLANE σ_{z} STRESS DISTRIBUTION ($D=0.133 \mathrm{in}$.

FIG. 17. INTERFACE PRESSURE DISTRIBUTION IN A BOLTED JOINT

$$
(D=0.2 \mathrm{in} .)
$$

FIG. 18. FINITE ELEMENT ANALYSIS RESULTS FOR $1 / 4$ INCH PLATE PAIR.

FIG. 19. PRESSURE IN JOINT, TRIANGULAR LOADING

(b)

FIG. 20. VARIATIONS OF LOADING AND BOUNDARY CONDITIONS.

FIG. 21. PRESSURE IN JOINT, UNIFORM DISPLACEMENT UNDER NUT.

FIG. 22. DEFLECTION OF PLATE UNDER NUT.

fig. 24. FInite element analysis results for $1 / 8$ inch plate pair.

FIG. 25. GAP DEFORMATION FOR FREE AND FIXED EDGES - FINITE ELEMENT ANALYSIS, $1 / 8$ INCH PLATE PAIR.

fig. 26. Finite element analysis result for $1 / 16$ inch plate pair.

FIG. 27. FINITE ELEMENT ANALYSIS RESULTS FOR $1 / 8$ INCH PLATE MATED WITH $1 / 4$ INCH PLATE.

FIG. 28. COMPARISON BETWEEN TESTED AND MEASURED SEPARATION RADII.

FIG. 29. LOCATION OF NODES - STEADY STATE HEAT TRANSFER ANALYSIS

[^0]:

[^1]:

[^2]:

 fw

[^3]: 6ヶ901Nヨ」
 为 $\begin{array}{r}0 \\ \hline\end{array}$ FENT0671
 FENT0672永 FENTO673
 FENTO 744
 ENTO676
 ENT0677 ENTO677
 ENTO678
 W
 0
 0
 0
 0
 0
 z
 z_{u}
 u
 ∞

[^4]: $\cdots N m$
 NNN
 NN
 ORO
 HER
 $2 \underset{4}{2}$
 山~u

[^5]: $\sum_{-1}^{m} \sum_{-1}^{m} \sum_{-1}^{m}$

[^6]:

[^7]: $\sum_{-1}^{m} \sum_{-1}^{m} \sum_{-1}^{m}$

[^8]:

[^9]:

[^10]: $\sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{-1}^{m} \sum_{i}^{\pi} \sum_{-1}^{m} \sum_{-1}^{m} \sum_{0}^{m}$
 コココーコンココココココーコ áaかaのaのamuun

