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SOME OBSERVATIONS OF EFFECTS OF POROUS CASINGS ON OPERATING

RANGE OF A SINGLE AXIAL-FLOW COMPRESSOR ROTOR

by EverettE. Baileyand CharlesH. Voit

LewisResearch Center

SUMMARY

A single axial-flow compressor rotor was tested with a solid wall casing and with

several porous casings over the rotor tip. This report presents experimental compari-

sons of the effectiveness of the porous casings to permit operation of the rotor to lower

flows before rotating stall was observed (i. e., to improve the stall limit). Basic po-

rous casing configurations included tapered holes set at a compound angle, honeycomb

with passages inclined at a 70 ° angle to the radial direction, and radial drilled holes.

These porous casings were surrounded by a plenum. The recirculatory flows between

the plenum and the main airstream through the passages were varied by means of

bands and baffles. The comparative tests were made with tip radial inlet flow distortion.

Results indicate that both tapered holes and honeycomb can be instrumental in ob-

taining a substantial stall limit improvement. The amount of the improvement was ap-

proximately the same for these two basically different porous casing configurations.

Some observations related to the particular basic configurations are

(1) For the tapered-hole configuration, recirculation appeared to be a necessity for

stall limit improvement, and the amount of the improvement was directly related to the

recirculation.

(2) With the honeycomb configuration, it appeared that the stall limit improvement

was derived from different mechanisms than that for the tapered holes.

(3) With the honeycomb configuration and uniform inlet flow, a loss in rotor pres-

sure ratio and efficiency occurred in the tip region.

(4) The plenum volume around the honeycomb could be made quite small with no

change in the stall limit improvement. However, when the plenum volume was zero, no

improvement was obtained.



INTRODUCTION

Present and future applications of jet engines for aircraft propulsion have indicated

a need for increased stable operating flow range of the axial-flow compressors and fans

used. This is particularly significant for those engines which utilize advanced compres-

sor and fan design concepts such as increased stage loading and/or high-aspect-ratio

blading. In order to realize the maximum benefit, the increase in flow range should be

in the operating region between maximum compressor or fan efficiency and the low flow

stability limit. For many fans and compressors, this low flow stability limit is the on-

set of rotating stall. Thus some means of delaying rotating stall and allowing the fan or

compressor to operate to lower flows would be desirable.

During an evaluation of the effects of blowing or bleeding through the outer casing in

the vicinity of the rotor tip, it was noted that the presence of the porous casing yielded a

significant improvement in the rotor stall limit when no blowing or bleeding flow was

used. This improvement was with respect to the stall limit noted for the rotor with a

solid wall casing built under NASA contract, the results of which are reported in refer-

ence 1. The improvement was most pronounced when either a tip radial or a 90 ° cir-

cumferential inlet flow distortion was present. This was attributed to the fact that the

tip was critical (i. e., rotating stall was first noted in the tip region) with these flow con-

ditions. With uniform inlet flow, the rotating stall for this particular rotor appeared to

initiate in the midspan region rather than at the blade tip. Thus, for those conditions

where the blade was tip critical, the porous casing over the rotor tip permitted operation

at lower overall weight flows for a given speed than were possible with a solid wall cas-

ing.

The aerodynamic phenomena, or flow mechanisms, associated with the presence of

the porous casing were not readily identifiable or detectable. The phenomena discussed

in this report are recirculation, circumferential variation in static pressure, and a-

coustical tuning. The porous casing surrounded by a plenum presents paths for recir-

culation over the rotor blade tip. If a stall cell forms in a rotor, a circumferential

variation in static pressure must exist around the rotor. The porous casing plus plenum

may permit the equalization of this static pressure and therefore delay the formation of

a rotating stall cell. Also, for any one point on the outer wall, the static pressure is

pulsating with respect to time at the blade passing frequency. Thus, there may be some

acoustical relation associated with the interchange of pressure and flows between the

main air-stream and the plenum.

Additional tests were conducted by the General Electric Company under a second

NASA contract utilizing the hardware from reference 1 with some modifications. This

second program was for the purpose of obtaining additional information regarding the

potential gain in stall margin which might be obtained from porous casings. Compara-



tive tests of various configurations were made with tip radial inlet flow distortion. From

these, one configuration was selected and tested with uniform inlet flow and with a 90 °

circumferential inlet flow distortion.

This report presents the following results from the second program: (1) overall

performance of the solid wall casing configuration with uniform inlet and tip radial dis-

tortion; (2) comparisons of the stall limit lines obtained for the several porous casing

configurations to that for the solid wall casing when operated with tip radial distortion;

(3) for the one selected porous casing configuration operated with uniform inlet flow, a

comparison of the stability limit to the stall limit obtained with the solid wall casing, and

a comparison of the design speed efficiencies to that for the solid wall casing; (4) for

this same selected porous casing configuration, a comparison of the stall limit line to

that obtained for the solid wall casing when both were operated with circumferential in-

let flow distortion; (5) a tabulation of the overall performance data taken during this

program; and (6) some observations regarding operation of particular configurations,

which should be an aid to further studies regarding the use of porous casings as a means

of obtaining improved stall limits.

APPARATUS

Test Rotor

The rotor aerodynamic and mechanical design is described in detail in reference 2.

Design parameters of this high-aspect-ratio, transonic, compressor rotor are

Rotor tip speed, ft/sec ................................ 1120

Inlet hub-tip radius ratio ............................... 0.50

Total pressure ratio, radially constant ....................... 1.47

Weight flow, lb/sec ................................. 187

Weight flow per unit annulus area, lb/(sec)(ft 2) ................... 39.32

Rotor tip diameter, in ................................ 34

Rotor tip solidity ................................... 1.0

Rotor tip relative Mach number ........................... 1.2

Rotor tip diffusion factor ............................... 0.45

Rotor blade aspect ratio ............................... 4.5

Rotor blade chord, radially constant, in ....................... 1.77

Number of rotor blades ................................ 60

and the rotor blade section is a double circular-arc on cylindrical sections. A segment

of the rotor is shown in figure 1. The outer and inner contours of the flow path in the
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Figure 1. - Segment of test rotor
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vicinity of the rotor are shown in figure 2. Outlet guidevanes for removal of the swirl

were located approximately 13_ inches downstream from the reference location shown

on figure 2. The General Electric Company test facility had an atmospheric inlet and

dis charge.

Porous Casings

The porous casing configurations are separated into three groupings according to

the type of opening through the casing: (1) tapered holes, (2) honeycomb, and (3) straight

radial drilled holes. The basic configurations designed as interchangeable casing inserts

are described below and in figures 3 to 5. Various modifications to the basic configura-

tions are identified and shown by sketches in table I (p. 13). In the figures and sketches,

the relation of the holes, honeycomb, and so forth, to the rotor blade tip shown are

approximately to scale.

Tapered holes. - The insert shown in figures 3(a) and (b) contained three rows of

tapered holes set at a compound angle. One row of holes pierced the inside of the casing

over the rotor blade tip and the other two rows were forward of the rotor blade tip. Each

row contained 116 holes. The centerline of each hole formed a 70 ° angle with the radial

direction and a 30 ° angle with the axial direction. This orientation is such that air

emitting from the small end of the tapered hole into the main stream would be directed

downstream and opposite to rotor rotation. The minimum diameter of the holes was

0.25 inch. This is blowing insert configuration 1 of reference 3. Configurations 2 to 6

utilize this insert.

Honeycomb. - The insert shown in figures 4(a) and (b) contained a stainless-steel

honeycomb segment mounted over and ahead of the rotor blade tip. The centerline of the

honeycomb passages formed a 70 ° angle with the radial direction and a 90 ° angle with the

axial direction. The inclination from the radial is in the direction of rotor rotation (see

section A-A of fig. 4). This is bleed insert configuration 3 of reference 2. The material

which originally filled the honeycomb passages ahead of the rotor blade tip region was

removed for this program. Configurations 7 to 12 utilize this insert.

Radial drilled holes. - This insert was obtained by drilling 0.25-inch diameter holes

in the solid wall casing. Details of the hole locations and pattern are shown in figure 5.

Configuration 13 contained two rows of holes over the rotor tip. Configuration 14 con-

tained two additional rows ahead of the rotor tip. Each row contained 200 holes equally

spaced on approximately 0.5-inch centers.
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Figure 3. - Tapered-hole porous casing. (Dimensions are in inches.)
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Instrumentation

The axial locations of the instrumentation pertinent to this report are shown on fig-

ure 2. These are dimensioned from a reference plane which intersects the leading edge

of the rotor blade at the hub. Inlet total pressure was obtained from four multiple-tube

rakes 3.85 inches ahead of the reference plane at circumferential locations of 16°, 106 °,

196 °, and 286 ° (increasing in the direction of rotor rotation). Measurements were ob-

tained at radii corresponding to I0, 30, 50, 70, and 90 percent of span. Outlet total

pressure was obtained from similar-type rakes 7.87 inches downstream from the refer-

ence plane (see fig. 2). Measurements were obtained at I0, 30, 50, 70, and 90 percent

of span. The circumferential locations of the rakes were 17°, I07 °, 185 °, and 275 °.

Inlet temperature was measured in a low-velocity region ahead of the compressor.

Outlet total temperature was obtained from four multiple-clement rakes at the same

axial location and percent of span as the outlet total pressure. The circumferential lo-

cations of the rakes were 5° , 95°, 197 °, and 287 ° . Wall static pressures were meas-

ured at the outer casing I.0 inch ahead of the reference plane and 2.2 inches down-
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stream from the reference plane. Airflow was measured by means of a calibrated ven-

turi flowmeter located in each of the three exhaust pipes. Weight flow at the stall limit

was measured in the bellmouth ahead of the rotor. These measurements were correlated

with the metered flow values at the steady-state points. Rotor speed was measured by

an electronic counter. Rotating stall was detected by hot-wire probes located at the

axial station 2.2 inches downstream from the reference plane. Photographs of the instru-

ment rakes and the hot-wire probes are presented in references 3 and 4.

Distortion Screens

The screens for both radial and circumferential distortion were mounted about

9 inches upstream of the rotor (fig. 2). The radial distortion screen covered the outer

40 percent of the inlet annulus area and the circumferential screen covered the lower

90 ° arc of the annulus, as shown in figure 6. Both screens were supported by a coarse

Rotation

la) Radial. (All dimensions in inches at plane of screen. )

Top

Ib) Circumferential.

Figure 5. - Extent and location of distortion screens Ilooking forward).



screen having a 0. 092-inch wire diameter with 0.75-inch spacing. The radial distortion

screen was 16 mesh and 0. 018-inch wire diameter. This gave a measured value of max-

imum total pressure minus minimum total pressure divided by maximum total pressure

(Pmax - Pmin)/Pmax of approximately 0.16 at the measuring station 3.85 inches ahead

of the rotor when operating with a flow of 184 pounds per second. The circumferential

screen was the same as that described in references 3 and 4 with 20 mesh and 0. 016-

P . )/P of approximately O. 20 atinch wire diameter. This screen gave a (Pmax mm max
a flow of 174 pounds per second.

RESULTSAND DISCUSSION

The results presented herein are based primarily on the overall performance ob-

tained from the fixed rake instrumentation described in the section APPARATUS. A tab-

ulation of the overall performance data for each combination of configuration and inlet

flow condition tested is given in table II (see appendix). Further information concerning

these data is given in the appendix. Information will be drawn from table II for discussion

in the following order: First, the overall performance with the solid wall casing is

shown for both uniform inlet flow and tip radial inlet flow distortion. These establish a

base line or reference for comparison of the effects of porous casings. Secondly, the

stall limit line obtained with each porous casing configuration operated with tip radial

distortion is compared to that of the base line. Similar comparisons between certain

porous casing configurations are also made. Finally, from these comparisons, one

porous casing configuration was selected and tested with uniform inlet flow and circum-

ferential inlet flow distortion. These results are compared to the base line in terms of

(1) the location of the stall or stability limit line; and (2) for the uniform inlet condition,

the design speed efficiencies.

Solid Wall Casing

Uniform inlet flow. - The overall performance for the subject rotor with a solid wall

casing is shown in figure 7. At design speed, this rotor had a stable operating flow range

of approximately 20 pounds per second and a peak efficiency of 0.89. At lower speeds,

the peak efficiency was 0.92 to 0.93. Considering the high-aspect-ratio blading and the

level of blade loading, the flow range and efficiencies are good. During the original test-

ing (reported in ref. 1), it was noted that this rotor appeared not to be tip critical with

uniform inlet flow; that is, the rotating stall was observed first in the midspan region

rather than at the rotor tip. The vibration dampers are located in the midspan region.
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Radial inlet flow distortion. - The results of testing this rotor with a tip radial inlet

flow distortion are shown in figure 8 with a comparison to uniform inlet flow. There was

a large deterioration of stable flow range with distortion. The stall limit line for distor-

tion is to the right and below that for uniform inlet flow. There was also a loss in over-

all efficiency of about 7 to 8 points at design speed. With this inlet flow condition, the

rotor was definitely tip critical with the rotating stalls initiating at the tip.

Porous Casings - Comparative Tests

The effects of a porous casing over the rotor tip on stable operating range should be

more easily detected for a rotor which is tip critical. Thus, the comparative tests,

discussed in this section, were run with a tip radial inlet flow distortion. With radial

inlet flow distortion, the overall rotor efficiency values were not used as criteria for

assessing the effectiveness of porous casings. An assumption of linear variation of

static pressure between hub and tip was used in mass weighting the discharge total tern-
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perature and pressure. This assumption, coupled with the increased radial gradients in

discharge total temperature associated with a radial inlet flow distortion, introduces

errors in the computed overall efficiency. Another reason for not comparing efficiencies

is related to evidence of recirculatory flows in the tip re_ion. In the presence of these

recirculatory flows, there was some question of how to interpet efficiency values based

on temperature measurements only.

The effectiveness of each porous casing configuration presented herein is judged

primarily by a qualitative comparison of the stall limit line for the particular config-

uration with that for the reference (solid wall casing) configuration. Thus an improve-

ment in the stall limit is evident when the stall limit line (on the usual pressure-ratio-

against-weight-flow plot) lies to the left of the stall limit line for the reference config-

uration. The stall limit line is defined by the locus of flows at which rotating stall was

first observed at each rotor speed studied.

In order to permit easy comparisons of the various configurations and their effects

on the stall limits, a compendium is presented as table I. Each configuration is identi-

fied and a simple sketch is shown indicating the various modifications to the basic cQn-

12
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figuration. Also included is a brief indication of the effectiveness of each configuration

when tested with radial distortion.

For those configurations which showed a stall limit improvement, stall limit maps

are shown in figures 9 to 13. These maps allow comparisons of the relative amounts of

improvement. FiEmre numbers are given in table I to facilitate quick reference to these

plots for a particular configuration.

Included in table I are some temperature and pressure measurements. Static pres-

sures and temperatures were measured within the plenum when the configuration and in-

strument locations permitted. Also included are wall static pressures just upstream and

downstream of the rotor tip. The pressures indicate the potential for recirculation,

while the temperature indicates if recirculation was present. The temperature listed is

the difference between the plenum temperature and the rotor discharge temperature at

10 percent passage height from the tip.

A positive temperature difference must result from some volume of air flowing for-

ward through the plenum and receiving additional energy as it passes through the blade

row again. Higher values of temperature difference indicate that this cycle is repeated

numerous times. Thus, qualitatively, a higher value of temperature difference indicates

increased recirculation. Negative temperature difference indicates no recirculation.

Recirculatory flow rates were not measured.

No measurements were made which relate directly to the relieving of the circum-

ferential variation in static pressure around the rotor tip. Some assessment of this

possibility may be made by examining the individual sketches of table I.

Since dynamic pressure instrumentation was not used for these tests, no direct

evaluation of any acoustical relations is available. Only a simple calculation of the

fundamental frequency for the different passages throu!gh the casing was made. In these

calculations, each passage was assumed to behave as a simple isolated organ pipe with

an effective length the same as that of the passage. Because of the orientation and shape

of the passages, only an approximate effective length could be determined.

Tapered holes - config_rations 2 to 6. - With all the holes open at the plenum end

(configuration 2), a significant stall limit improvement was obtained. The amount of

the improvement as compared to the solid wall casing with tip radial distortion is shown

in figure 9. The temperature and pressure data shown in table I for this configuration

indicate that recirculation was present. When bands were placed over the various rows

of holes at the plenum end so as to prevent recirculation (configurations 3 to 5), no stall

limit improvement was noted. For configuration 6 the band located over the foreward

row of holes restricted but did not prevent recirculation. With this configuration a stall

limit improvement was observed. However, the amount of the improvement was only

approximately one-half that observed for confi-mration 2 where all the holes were open

at the plenum end (fig. 10). The temperature values from table I indicate a lesser re-

14
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circulation for configuration 6 than for configuration 2. Thus, for the tapered holes,

recirculation appeared to be a necessity for stall limit improvement, and the amount of

the improvement was directly related to the recirculation.

From an examination of the sketches in table I, it is noted that configurations 2, 4,

and 6 offer a path for the equalization of a circumferential static pressure distribution

over the rotor tip. Stall limit improvements were observed for configurations 2 and 6,

but not for configuration 4. From these comparisons, it appears that this mechanism

was not a contributing factor for the stall limit improvement obtained with the tapered

holes.

Regarding any acoustical relations, only the aft row of tapered holes, which was over

the blade tip, probably needs to be considered. The fundamental frequency calculated for
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the open tapered holes (configmrations 2, 4, and 6) was approximately one-half the blade

passing frequency at design speed. For the holes closed at the plenum end (configura-

tions 3 and 5), a value equal to approximately 1/'4 the blade passing frequency at design

speed was computed. From this it appears that acoustical tuning was not a major con-

tributing- factor with the tapered holes.

Honeycomb - config_arations 7 to 12. - With the honeyc,gmb fully open over and ahead

of the rotor tip (configuration 7), a significant stall limit improvement over the solid

wall casing was observed (fig. 11). The amount of the improvement was approximately

the same as that observed for the fully open tapered holes (configuration 2). The high

temperature in the plenum indicates that recirculation is present. With a band over the

forward portion of the honeycomb (configuration 8), the io_er temperature shown in

table I indicated less recirculation than for configuration 7. However, the stall limit

improvement for config_aration 8 was approximately the same as that observed for con-

figuration 7 (fig. 11). A similar stall limit improvement with honeycomb was reported

.o

-&

5

Stall limits

1.5--- __
Solid wall casing

----- Configuration /

...... Configuration 8

1.4 -_ S,tmt_ls indicate intersection oi _"

sta,, hmit and speed lines ,N..L@ /

12_,Y_T>

Percent

design! speed[._...... J 1 I L_ __J___l
1_1 130 140 !50 160 ]iO 180 190

Equivalent ¢:.ight fie'< Ih/se_

_-igure 11. gom,oarison ol stall limiis with tip radi,A diq,_ti:q_ for honeycomb

c.orfliqurdions ? and 8 and solid wall casing

in reference 1, with no evidence of recirculation (i. e. , plenum temperature less than the

discharge at 10 percent of span). From these observations, it would appear that the

stall limit improvement with honeycomb was derived from different mechanisms than

that for tapered holes. Some obvious differences between honeycomb and tapered holes

are as follows:

(1) Directivity of recirculatory flow entering the main flow in the blade leading edge

reg4on: The compound angle of the tapered holes imparts an axial component to the re-

turning flow. The honeycomb passages do not.
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(2) Amount of open area over the blade tip: The honeycomb configuration (fig. 3)

has greater open area over the blade tip than the tapered-hole configuration (fig. 4).

This would allow a greater potential for equalizing the pressure field in adjacent blade

passages.

(3) Recirculation: Recirculation is limited to just over the blade tip for honeyeomb

(confi_maration 8). It should be noted, however, that with a band fully covering the honey-

comb (configuration 9) recirculation was zero and no improvement in stall limit was ob-

served.

Any assessment of the honeycomb configurations with respect to equalization of static

pressure around the periphery of the rotor is rather inconclusive. Confignarations 7, 8,

10, and 12 offer open paths for this equalization. Config-aration 9 would prevent any

equalization of static pressure, and no improvement was noted.

The fundamental frequency computed for the open honeycomb passages was approxi-

mately 1{ to 1_ times the blade passing frequency at design speed; when the honeycomb

passages were closed, the frequency was approximately one-half of this value. For those

configurations showing an improvement, the amount was about the same for a range of

speeds from 70 to 100 percent. If acoustical tuning is a key phenomenon, the honeycomb

is not sharply tuned. However, with the honeycomb fully banded (configuration 9), a-

coustical tuning is the only one of the three proposed phenomena which could give an

improvement and no improvement was observed.

Configurations 2 and 4 to 8 were tested with the rather large plenum which had been

used for bleeding and blowing investigation as discussed in reference 1. A greatly re-

duced plenum volume would be desirable. Thus, configuration 8 was modified to include

a band over the end flanges of the honeycomb insert. Configuration 10 represents this

modification with a plenum volume less than 5 percent of the original. This configuration

gave a stall limit improvement essentially equal to that for configuration 8 (see fig. 12).

.2

_- 1.3

o

2
_" 1.2

l. 5 -- Stall limits

-- Sohd wall casing

.... Configuration 8 .J_f I_
----- Configuration 10

I. 4 -- Sym_)ls indicate intersection of 5"j _" _'/"'_00"/"
stall linfil ant! speed lines

Percent

design speed

1.1 I I I I__ A__ 1 __J
] 20 130 140 150 160 110 180 190

Equivalent wel_jhl flow Ih_'sec

Figure 12. - Comparison ot stall limits with tip radial distortion for hone,_confl)
configurations 8 and lO and solid wall casing
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This indicates that the size of the plenum had no effect on improvement. However, con-

sidering configuration 9, which gave no improvement, as the limiting case with zero

plenum volume, then a plenum was necessary in obtaining a stall limit improvement.

The preceding discussions regarding recirculation, equalization of static pressure, and

acoustical tuning for configurations 7 and 8 should also hold true for configuration 10.

However, no temperature or pressure measurements were, made inside the small plen-

um. Further investigation of the effects of recirculation was made with the small plen-

um volume by restricting the flow within the plenum. Configuration 11 had 36 baffles

approximately equally spaced around the honeycomb and oriented radially and axially.

These baffles restricted the circumferential flow within the plenum. Configuration 12

had a single radial baffle around the honeycomb oriented circumferentially and located

about midchord in reference to the blade tip. This baffle, restricted the axial flow within

the plenum. A stall limit improvement was observed for each of these configurations,

but the amount of the improvement was less than that for configuration 10. These results

are compared in figure 13.

Stall limits
1.5--

-- Solid wall casing

-- - -- Configuration 10 /f
Configurations 11 and 12 ./-l-r"

/-
Symbolsindicate intersection of stall .i///

s eed,nes

Percent

design speed

11 1 I I l L _ I I
120 130 ]40 ]50 160 I 7fl ]80 190

Equivalent weight flow Ib/sec

Figure 13. Comparison of stall limits with lip radialdl_tortionlor honeycomb

configurations ]0, ]I, and ]2and solid wall casing.

_o I. 4

co

1.3

o

__ 1.2

In summary, honeycomb was necessary only over the rotor tip region, a small

plenum volume was adequate, and the maximum benefit was obtained when the flow within

the plenum was not restricted.

Radial drilled holes - configurations 13 and 14. - N,_ stall limit improvement was

obtained with the radial drilled holes. The reason is not apparent; however, the poten-

tial for all three flow mechanisms noted with the other configuration was present: Re-

circulation was indicated for both configurations. Both configurations would permit

equalization of the static pressure around the rotor periphery. And the fundamental
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frequency computed for these holes was approximately 1_ to 1_ times the blade passing

frequency at design speed.

Examination of the temperature data in table I indicates that with the four rows of

radial drilled holes (configuration 14) the recirculation is greater than that with the

tapered holes (configuration 2). One obvious difference, as with honeycomb, is that the

recirculatory flow entering the main flow in the blade leading-edge region does not con-

tain an axial component as does that for the tapered holes. The flow paths, both axially

and circumferentially, for recirculation and equalization of static pressure as compared

to the honeycomb configuration are apparently available, but no stall limit improvement

was observed. Other differences, of course, are the amount of open area over the blade

tip and the directivity of the honeycomb passages.

Even though the computed fundamental frequency for the radial drilled holes was

above the blade passing frequency at design speed, none of the other configurations had

indicated any narrow band tuning characteristics. Thus the radially drilled configuration,

which was the most simple and easiest to build, proved to be completely ineffective.

Tests With Uniform Inlet Flow and Circumferential Distortion

The honeycomb configuration with the small plenum (configuration 10) was selected

for additional testing with uniform inlet flow and circumferential inlet flow distortion.

This configuration had indicated a stall limit improvement approximately equal to any

porous casing configuration. The small plenum was desirable, and recirculation was

probably a minimum.

Uniform inlet flow. - With uniform inlet flow, this configuration did not encounter

rotating stall when it was throttled to weight flows lower than the stall limit values with

the solid wall casing. Instead, the lower limit of weight flow for each speed was dictated

by severe test vehicle vibrations rather than rotating stall. This vibration limit line is

shown on figure 14 and compared to the stall limit line for the solid wall casing from

figure 7. At weight flows somewhat higher than the vibratory limits shown on figure 14,

an increase in blade stresses was noted. However, the hot-wire probes gave no indica-

tion of rotating stall.

To evaluate the effects of honeycomb casing on rotor performance, the efficiency

obtained for configuration 10 with uniform inlet flow at design speed was compared to

that for the solid wall casing with uniform inlet flow. Results (shown in fig. 15) indicated

approximately 2 points lower overall efficiency at design speed when honeycomb casing

was used. Examination of the data at the individual radial positions indicated that this

lower overall efficiency was a result of the efficiency being about 8 to 9 points lower

at the radial station 10 percent of span from the tip. The efficiency at the other radial
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Stall bruit, solid wall casing _

FaciLity vibration limit, ,-- /

configuration lO J ./
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"v, ra,,oo,mitaoospeeo,o,jJ .A---__ \

Percent
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L_ i I I l • i _ i I
100 110 120 130 140 150 160 1,,(! 180 190

Equivalent weight 11o_,_ Iblsec

Figure 14. -Comparisonoloperation Ihllitswith uniform inlet flow fu_ hu_ey, , I,,,uli!]uration lO and solid wall

¢asin(],

I
2OO

.80

__ .70

90 --

61

-- _ -- Configuration 10

Solid wall casing

I I I __[ ___J
180 lgO 200 170 180 ]gO 2013

Equivalent weight Ilow, Ib,'sec

ial Overall. ib) [lemFnt l{ i,ur4 nt o{ span

from tip

figure 15. Comparison of adiabatic efliciencies with urdforr, nlet flow for

honeycomb configuralion 10 and solid wall casing. Desiqn speed.

measuring stations was approximately equal for the two configurations. This lower

efficiency in the tip region was associated with a lower pressure ratio in the tip region.

The temperature rise for a given radial position was about the same for both configura-

tions, which indicates that no significant recirculation was occurring with this honey-

comb configuration. However, the presence of honeycomb did change the flow in the

blade tip region in such a way as to increase flow losses and decrease the pressure rise.

With uniform inlet flow, the values of efficiency should be valid for the preceding com-

parisons.

Continuing studies have indicated that porous casing configurations can be derived

which provide stall-limit improvement comparable to that shown in this investigation

with little or no efficiency decrement.

Circumferential inlet flow distortion. - A significant: improvement in the stall limit

line was noted for configuration 10, compared to the solid wall casing, with circumfer-
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Stall limits

1. 5 -- -- Solid wall casing

----- Configuration I0

Symbols indicate intersection of
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Figure ]6. - Comparison of stall limits with circumferential distortion for honeycomb con-

figuration 10 and solid wall casing. (Data for solid wall casing are from ref. 1.}

I
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ential distortion. These results are shown in figure 16. The data for the solid wall

casing with circumferential distortion were taken from reference 1.

CONCLUDING REMARKS

Limited tests have indicated that certain porous casing configurations can provide

an improvement of the stall limit. Unfortunately, all the flow mechanisms and their

interactions which brought about the observed improvement could not be fully identified

or evaluated. Thus, it is difficult to predict how generally the results observed can be

applied. The comparative results shown herein were all obtained with tip radial inlet

flow distortion. Under these conditions, the tip elements of the test rotor blades were

critical and tended to reach a stalling condition before the remaining blade sections. With

uniform inlet flow, this rotor did not appear to be tip critical. However, the results ob-

served are believed to be applicable to any rotor whose tip region is critical.

Two basically different porous casing configurations indicated almost identical stall

limit improvements. One configuration had rows of tapered holes set at a compound

angle: two rows ahead of, and the third row over, the forward part of the rotor blade

tip. The second configuration had honeycomb over the rotor blade tip only and the pas-

sages tangentially inclined from the radial. With the tapered holes, there was evidence

of recirculation and the amount of the improvement was directly related to the recircula-

tion. With honeycomb, recirculation did not seem to be a controlling factor. Because

of the large open area of the honeycomb casing, the stall limit improvement may be re-

21



lated to an ability to equalize the pressures in adjacentbladepassagesand thus to delay
rotating stall.

The tests indicated that a plenumvolume over the porous casing insert was neces-
sary to obtain a stall limit improvement. However, tests with honeycombindicated that
a small plenum provided a stall limit improvement equa] to that obtainedwith a larger
volume. Tests with honeycombanduniform inlet flow showedthat the presence of honey-
comb resulted in a reduction in rotor performance as comparedwith that measuredwith
a solid wall casing. This was dueprimarily to a large performance loss in the rotor tip
region.

A third porous casing configuration with radial drilled holes showednostall limit
improvement, althoughthere was evidenceof recirculation.

In noneof the configurations tried was there anysubstantial evidencethat acoustical
tuning of the porous casing to the bladepassing frequencywas a significant factor in the
stall limit improvement.

Further studies are required to better identify and understandthe flow phenomena
which are present with a porous casing, and to further explore the potential of the porous
casing conceptas a means of extendingthe operating range of compressor stageswithout
a performance penalty.

Lewis ResearchCenter,
National Aeronautics and SpaceAdministration,

Cleveland, Ohio, July 13, 1970,
720-03.
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APPENDIX -TABULATION OF OVERALL PERFORMANCEDATA

A tabulation of the overall performance data reported herein is given in table II. The

inlet total pressure is an arithmetic average of the inlet total pressure rake measure-

ments. In the case of radial inlet distortion, the screen covered the outer 40 percent of

the annulus area and two of the five elements in each rake were behind the screen. For

circumferential distortion, the screen covered one-fourth of the circumferential inlet

area (90 ° segment) and one of the four rakes was behind the screen. Hence, an arith-

metic average is considered to be adequate. For the discharge total pressures and tem-

peratures, the measurements were arithmetically averaged at each radial measuring

position, and were then mass averaged radially. The measured total pressure, total

temperature, and a linear variation of static pressure from hub to tip were used for the

mass averaging.

The last three values of corrected weight flow and speed listed for each configuration

are the weight flows at the stall points for the three speeds tested.
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I
__ _ !

.....

configur_tiion 8 with t i t) radial dish ,ll i_,n

144. 55_ ....

14.01

13. 89

12.97

13 25

13. 14

12.75

12.97

12.89

confi_¢uration 7 with radial tip dis!mti(m

144• 98 143• 57

121, 04 119.64

131.59 130, 87

176, 95 175.83

166.08 165, 91

167.17 166.55

170, 77 169.69

182.96 182.41 1

176,95 17562 I

177.29 177.41 I

179•09 178.92 ]

120 ......

164 ....

175 ....

eonfigurati_m 10 with tip

183.91 184. 19

178, 19 177 34

180. 80 179 41

180. 47 laO, 47

177. 50 176. 77

168. 53 167 4_;

171. 16 171 12

143.95 143. 55

127.59 126, 93

134. 66 134, 54

125 ....

166 ....

175 ......

115

116

117

118

119

120

121

122

123

124

530 1

!,:{0 1

:,30 5

331 1

_,32 0

D31 4

331 )

F,?i t

!,:_r) 3

I
i00. O

1
911.0

90.0

90.0

70.0

I

t
90 1

j lO0

69.9

70. O

70. O

89.9

90.0

90.0

100.0

100.0

100.1

70

90

100

aTal)ulation ll-()lll COilljRltpl. outpul

70.0

70.0

70.1

90.0

IO0, 0 I

lOO. 0 i

99. 9 :

99.9

70

90

100

-[
13.71 | F2R I

I,t. 07 t :26 6

13.91 ',25 9

12.97 526 3

13.24 _',27 2

13.22 _727 2

13 13 5269

12, 77 -26 8

12 96 7,26 7

12 92 :726 7

12• 86 %!6 8

rltdial (!iSt ;r't it,ll

12.63 _26 2

12.8Lt :24 7

12 75 24 2

12, 74 :,2:_ ;i

12. 85 -,23 6

13 10 23.4

13,111 73 7

13.66 :8'_ 7

1387 :27 9

13. 76 ,24 0

100. 0

I

89.9

90. O

89.9

69.9

69.9

69.9

70

90

100
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183,4_

176, #_3

177 94

, 17_) 58

; 17_ 62

168 19

172 I_

126 72

1_509

12 83

1304

12 99

12 94

1302

13 26

13. 15

13 78

1"t05

I :t 92

aTabula.ti(m [r,m_ c(mq)ut(,r ,)tRimt
b

Facility vi_,tati,)n limit¸ _'_lh t_,J t,,ta_nl_T s_all
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