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FOREWORD

NASA experience has indicated a need for uniform design cri-

teria for space vehicles. Accordingly, criteria are being developed

in five areas of technology, outlined as follows:

Volume I -- Environment

Volume II -- Material Properties and Processes

Volume III -- Structures

Volume IV -- Stability, Guidance, and Control

Volume V -- Chemical Propulsion

The individual components of this work are regarded as being

sufficiently useful to justify publication separately in the form of

monographs as completed. This document, Section I of Volume III,

Part B, Chapter 2, is one such monograph. The planned general

outline of Volume III is set forth on page ii.

These monographs are to be regarded as guides to design and

not as design requirements, except as may be specified by NASA

project managers or engineers in formal project specifications.

It is expected, however, that these documents, revised as experi-

ence may indicate to be desirable, will eventually become uniform

design requirements for NASA space vehicles.

Comments from addressees concerning the technical content

of the monographs are solicited. Please address such comments
to the National Aeronautics and Space Administration, Office of Ad-

vanced Research and Technology (Code RVA), Washington, D. C.

20546.

November 1965
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Volume II1:

Part B:

Chapter 2:

Structures

Loads and
Prelaunch

Structural Dynamics

SECTION1: GROUNDWINDLOADS

1.1 INTRODUCTION

Space vehicles, while free-standing prior to launch, are exposed to steady

winds and gusts and to the turbulent wake from umbilical mast, gantry, or other

nearby structures. The response of a vehicle to winds and turbulence produces

oscillatory loads which must be accounted for in the design of the vehicle.

The magnitudes of the steady winds and gusts to be considered in the de-

sign of a particular vehicle will depend on such factors as the atmospheric en-

vironment at the launch site and the length of free -standing time anticipated. The

response of the space vehicle and the loads on the structure depend on the winds

and gusts to which it is exposed, the frequency and damping of the combined ve-

hicle and support-system vibration modes, the vehicle shape, the number and

location of external protuberances, the nearness and type of umbilical mast and

other structures, and the propellant loading condition.

Related problems, such as transient loads associated with ground handling

operations, thrust buildup and release, and guidance alinement problems caused

by wind-induced oscillations, are treated in other monographs.

1.2 STATE OF THE ART

The problem of ground wind loads on space vehicles is related to the prob-
lem of wind loads on slender structures such as towers, masts, and smoke

stacks. Significant material relating towind loads on structures, including space

vehicles, may be found in references 1, 2, and 3.



It is convenient to consider the total load due to winds as being composed
of steady loads, vortex-shedding loads, and gust loads. Of these, the steady
loads are the most readily evaluated. On simple clean bodies of revolution the
steadydrag loads canbe calculated by strip analysis, using drag coefficients for
two-dimensional cylinders or cone-cylinder combinationsobtained at appropriate
Reynoldsnumbers. For more complex configurations, such as clustered cylin-
ders, cylinders with external conduits and protuberances, or those influenced by
the presence of adjacent tower structures, steady loads may be estimated from
wind-tunnel tests of rigid models. In most instances, however, the estimates of
steady loads are determined in conjunction with the unsteady vortex-shedding
loads on aeroelastically scaled models as discussed in the following paragraphs.

The unsteady aerodynamic forces associated with vortex shedding are not
well understood. Studiesconductedby Fung (ref. 4), Humphreys (ref. 5), Roshko
(ref. 6), and Scruton (ref. 7)on two-dimensional cylinders have contributed to
an understandingof themechanismof vortex shedding, but havenot produced data
applicable to actual space vehicles. Wind-tunnel investigations of dynami-
cally scaled models have therefore been resorted to for quantitative estimates
of the effects of ground winds. References 8 to 18 are examples of investi-
gations wherein response measurements (such as bending moments or accel-
erations) on a model in a wind tunnel are related through scaling factors to
corresponding responses on the full-scale vehicle in a steadywind. References
19 to 22 are examples of an alternate method of load prediction, wherein the
aerodynamic forces associated with vortex shedding are obtained from high-
frequency pressure measurements.

Because unsteady vortex-shedding loads are associatedwith flow behavior
in the boundary layer, seemingly small changesin the surface features of the
body can precipitate large effects. For example, a thin strip of tape stretched
axially along the surface of a circular cylinder in a wind tunnel has beenknown
to result in an order-of-magnitude changein the unsteadyloads. Similar effects
have been observed when small changes are made in the nose shape of wind-
tunnel models of launchvehicles. Umbilical towers or other structures near the
vehicle can significantly affect the response. Configuration details which might
otherwisebe considered aerodynamically unimportant becomesignificant factors
with regard to vortex-shedding loads. Unfortunately, only a meager quantity of
suitable full-scale data is available for correlation with wind-tunnel data (see
refs. 23 to 26).

Despite this lack of quantitative full-scale data on which to base compari-
sons, a phenomenonthat can lead to catastrophic structural oscillations hasbeen
observed both in wind tunnels and on large structures in the atmosphere. These
oscillations, which can lead to loads that are an order of magnitudegreater than
those associated with steady drag forces, have all the earmarks of a self-
excited aerodynamic instability. The response is usually periodic at the funda-
mental natural frequencyof the structure andoccurs over a narrow range of wind



velocities. The Strouhal number associated with the oscillation is usually in the
vicinity of 0.2 (fD/U = 0.2, where f is the frequency of response in cps, D is

the maximum diameter of the vehicle, and U the wind velocity). This phenom-

enon has been observed over virtually the entire Reynolds number range of

interest in the present problem, including values above 10 million.

A major objective of wind-tunnel tests of aeroelastic models is, therefore,

to determine whether the configuration under study is susceptible to large-

amplitude self-excited oscillations, and, if so, to find a means of suppressing

these oscillations to an acceptable level. This may involve adding artificial

damping to the structure or attaching aerodynamic spoilers that will break up the

flow features contributing to self-excited response. A paramount consideration

in selecting a mechanical or aerodynamic means of suppressing these oscilla-

tions should be the avoidance of adding weight which will be carried by the vehi-

cle after lift-off.

Dynamic loads due to atmospheric turbulence must be determined analyti-

cally and combined with the steady-drag and vortex-shedding loads. Since little

is known regarding the possible effects that atmospheric turbulence mayhave on

vortex shedding, it is generally assumed that loads resulting from these two

phenomena occur independently. An analysis of response to gustywinds requires

a description of the wind input and a transfer funetionwhich relates this input to

a response. It can be seen that lifting-body payloads tend to increase the sever-

ity of gust loads. Both discrete gusts and continuous random gusts have been

assumed as wind inputs; the latter form is considered to be the more realistic

representation of the atmosphere. Methods for analyzing the response of launch

vehicles to random unsteady winds, together with some mathematical models of

ground wind spectra, are presented in references 12, 27, and 28. Additional in-

formation on the spectra of ground winds can be found in references 29 and 30;

however, these measurements are in general obtained at frequencies below the

fundamental cantilever frequencies of most launch vehicles. Improved fast-

response anemometers are required to extend the frequency range of existing

data. A recently developed fast-response anemometer is described in refer-

ence 31.

1.3 CRITERIA

Space vehicles shall be designed to withstand the structural loads resulting

from exposure to the peak winds expected to be encountered while free-standing

in the prelaunch condition.

The 99.94 probability-of-occurrence 1 peakwinds 2 for the launch site should

be considered as the design winds when space vehicles are expected to remain

iThe probability-of-occurrence values cited here do not establish an operational risk level. Risk

level is a function of exposure time, and the likelihood of encountering a given probability-of-occurrence

wind value will increase as exposure time increases. Reference 32 gives data on risk levels for various

exposure periods at Cape Kennedy.

ZPeak winds are the quasi-steady winds multiplied by 1.4 to account for gusts. Windspeed data for

use in the design of NASA space vehicle systems are available in reference 33.



free-standing and unsheltered for time periods of 1 hour or longer. The 99_

probability-of-occurrence peak winds should be considered as the design winds

when free-standing and when unsheltered time periods are less than 1 hour.

Wind-tunnel tests of models, geometrically and dynamically similar to the

full-scale vehicle, should be made to evaluate the response of the vehicle to

steady winds. Analyses should be made of the effect of wind profile gradient,

gusts, and turbulence on the dynamic response of the vehicle. In evaluating the

vehicle response and structural loads, consideration should be given but not

limited to the following:

a.

system

b.

Vibration modes and damping of the combined space vehicle and launcher

1.4

Vehicle nose shape, protuberances, and surface roughness

c. Proximity and shape of umbilical masts and other large structures

d. Vehicle propellant loading and tank pressurization condition

RECOMMENDED PRACTICES

1.4.1 PRELIMINARY DESIGN

In the early stages of design the mass and stiffness properties and the

geometric shape of the vehicle, including protuberances, will not be accurately

known. As a consequence, only rough estimates of ground wind loads should be

attempted. For this purpose it is recommended that the loads be estimated by

multiplying the steady drag loads computed by using the peak windspeed profile

by the factor 1.5. This factor represents an allowance for the dynamic response

associated with vortex shedding and gusts. If steady-state drag coefficients for

the particular configuration under consideration are not available in such docu-

ments as references 8 to 18, the following values are suggested: C D = 0.6 for

smooth circular-cylinder sections; CD = 0.8 when the surface has corrugations

or conduits exposed to the wind; and CD = 1.2 for clustered-cylinder-type bodies.

1.4.2 REFINED DESIGN

Once the geometric and structural dynamic characteristics of the

vehicle and its mounting system are defined, refined analytical procedures and

wind-tunnel tests should be employed to predict vehicle response to steady winds

and gusts.

1.4.2.1 Calculation of Response to Vortex Shedding

As a refinement over the factor 1.5 used in preliminary design

(section 1.4.1), the aerodynamic forcing function due to vortex shedding in a

steady wind should be estimated from wind-tunnel data obtained on configurations

most like the one in question. Such data, in the form of nondimensional dynamic

bending-moment coefficients or power spectra of integrated pressures, are
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presented in references 16and 18. Calculations suchas described in references
16and 18should be performed for the fundamental bending mode of the vehicle
for appropriate values of structural damping, fuel weight, andtank pressuriza-
tion. The possible contribution of fuel slosh to response shouldalso be consid-
ered analytically. In order to account approximately for the designground wind
profile shape,it is recommendedthat the wind-tunnel data be scaled to an equiv-
alent uniform wind speedchosen so as to produce the same steady-state base
bending moment as does the designwind profile.

1.4.2.2 Wind-Tunnel Tests

Wind-tunnel tests should in general be conductedonly after the
final design, including location andconfiguration of protuberances, is established.
Experience indicates that the wind-tunnel modelshould, insofar as possible, have
the following parameters scaled:

Reynolds number, pVD/_

Reduced frequency, fnD/V

Outside geometry, including surface roughness and shape of

conduits or other external appendages

Ratio of air density to structural density, pD3/M n

Structural damping, Cn

Mode shape, _bn

Umbilical tower; general shape, porosity, and location relative
to the vehicle

Definition of the symbols is as follows:

p air density

V equivalent speed (see section 1.4.1)

D maximum diameter of vehicle

air viscosity

fn cantilever frequency for the nth mode

M n generalized mass in the nth mode

Cn ratio of damping in nth mode to critical damping

Cn ratio of local deflection to deflection at specified sta-
tion in nth mode

n modal number



With regard to the number of vibration modes that should be
simulated by the model, it is usually necessary to consider only the fundamental
mode (n = D.

It may not be possible, with large vehicles, to match in exist-

ing wind-tunnel facilities the Reynolds number corresponding to strong wind con-

ditions. It is usually possible, however, to test a wind-tunnel model in the same

Reynolds number regime as its full-scale counterpart- that is, subcritical, su-

percritical, and transcritical (see Roshko, ref. 6) -- and this should be done

when the Reynolds number corresponding to the design wind condition cannot be
achieved in the wind tunnel.

In most instances the structural damping of the full-scale vehi-

cle will not be known at the time of the wind-tunnel tests. A range of damping

values should therefore be investigated. (A damper device for varying the damp-

ing of a structure is described in ref. 12 .) Sufficient wind azimuth angles should
be covered to establish critical load conditions. The Mach number in the wind

tunnel should not exceed 0.4 to avoid compressible-flow effects not found on the

full-scale vehicle.

1.4.2.3 Gust Loads

Recommended methods of gust-load analysis, based on power-

spectra techniques, are presented in references 12 and 27. In the case of very

tall vehicles, consideration should be given to the correlation of gust velocities

along the length of the vehicle as illustrated in reference 12. Also, horizontal

wind components perpendicular to the direction of the mean wind should be in-

cluded in the response calculations. A procedure for obtaining the combined

response due to steady drag, vortex shedding, and turbulence is discussed in
reference 34.

1.4.3 FULL-SCALE MEASUREMENTS

In view of the uncertainties that exist in the estimation of ground

wind loads by presently available techniques, it is recommended that full-scale

measurements be made on new vehicle configurations to establish the validity of

wind-tunnel tests and analysis. These measurements should include vehicle re-

sponse, such as bending moment or accelerations, and simultaneous measure-

ments of the wind velocity at various elevations near the vehicle. In addition,

the frequency and damping of the relevant vibration modes of the vehicle on its

launch pad should be measured.



REFERENCES

1. Hoerner, S. F.: Fluid Dynamic Drag. Published by author (148 Busteed
Dr., Midland Park, N. J.}, 1965.

2. Somerville, D. E., andKobett, D. R.: Research and DevelopmentServices
Covering Wind-Induced Oscillations of Vertical Cylinders. PhaseRept. No.
1 (Contract No. DA-23-072-ORD-1264}, Midwest Res. Inst., Dec. 12, 1958.

3. Graziano, EugeneE .: Wind-Induced Oscillations and Other Loads on Space
Vehicles Fastened Vertically to Launch Pads: An Annotated Bibliography.
Special Bibliography SB-61-61 (ASTIA 275767), Lockheed Missiles and
SpaceCo., Feb. 1962.

o Fung, Y. C. : Fluctuating Lift and Drag Acting on a Cylinder in a Flow at

Supercritical Reynolds Numbers. J. Aerospace Sci., vol. 27, no. 11, Nov.

1960, pp. 801-804.

5. Humphreys, J. S.: On a Circular Cylinder in a Steady Wind. J. Fluid

Mech., vol. 9, pt. 4, Dec. 1960, p. 603.

g Roshko, Anatol: Experiments on the Flow Past Circular Cylinders at Very

High Reynolds Number. J. Fluid Mech., vol. 10, pt. 3, May 1961, pp.

345-356.

7. Scruton, C.: On the Excited Oscillations of Stacks, Towers, and Masts.

Paper No. 16, Natl. Physical Lab., Teddington, Middlesex, England, June

1963.

8. Ezra, A. A.: Wind-Induced Oscillations of the Titan Missile. Rept. No.

WDD-M-MI-59-7, The Martin Co., Mar. 1959.

9. Buell, Donald A., and Kenyon, George C.: The Wind-Induced Loads on a

Dynamically Scaled Model of a Large Missile in Launching Position. NASA

TM X-109, 1959.

10. Young, J. P .: Wind-InducedOscillation Tests of 1/6-ScalePershing Model.

Engineering Rept. No. 11461, The Martin Co., Aug. 1960.

11. Rich, Roy L. : Preliminary Ground Wind-Induced Oscillation Test. Dyna

Soar, Step I. Doc. No. D2-8147, Boeing Airplane Co., Aug. 1961.

12. Reed, Wilmer H. III: Models for Obtaining Effects of Ground Winds on

Space Vehicles Erected on the Launch Pad. Paper XVIII, Engineering Ex-

tension Ser. Cir. No. 4, pt. C. Virginia Polytechnic Inst., July 1965.

7



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

McCullough, George B., andBuell, DonaldA. : The Wind-Induced Loads on
a Dynamically ScaledModel of the DynaSoarGlider With Titan II Booster in
LaunchPosition. NASA TM X-659, 1962.

Killough, T. L.: Wind-Induced Loads on a Dynamic 1/5-Scale Unfueled
SM-78Jupiter in the LaunchPosition. Rept. No. RG-TM-62-65, U.S. Army
OrdnanceMissile Command, July 10, 1962.

Cincotta, J. J., and Lambert, W. H.: Investigation of Wind-Induced Oscil-
lations and SteadyGroundWind Forces on a 7.5% Dynamically ScaledModel
of the 624AVehicle. SSD-CR-63-118(Contract No. AF-04(695)-150), Martin
Co.-Denver, Aug. 1963.

Buell, Donald A. ; McCullough, George B. ;and Steinmetz, William J.: A
Wind-Tunnel Investigation of Ground-Wind Loads on Axisymmetric Launch
Vehicles. NASA TN D-1893, 1963.

Hanson, Perry W., and Jones, George W., Jr.: On the Use of Dynamic
Models for StudyingLaunchVehicle Buffet and Ground-Wind Loads. Proe.
of Symposiumon Aeroelastic and DynamicModeling Technology. RTD-TDR-
63-4197,pt. I (AD-434797), Aerospace Industries Assoc. of America, Inc.,
Mar. 1, 1964, pp. 333-387.

McCullough, George B., andSteinmetz, William J. : A Wind-Tunnel Study
of Ground-Wind Loads on Launch Vehicles Including the Effects of Conduits
andAdjacent Structures. NASA TN D-2889, 1965.

Schmidt, L. V." Measurements of Fluctuating Air Load ona Circular Cyl-
inder. J. Aircraft, vol. 2, no. 1, Jan.-Feb. 1965.

Blackiston, Harry Spencer, Jr.: Tip Effects on Fluctuating Air Loads on a
Circular Cylinder. AIAA Fifth Annual Structures and Materials Conference,
AIAA Pub. CP-8, 1964, pp. 146-154.

Bohne, Quentin R. : Ground Wind Induced Loads on Axisymmetric Launch
Vehicles. AIAA Fifth Annual Structures and Materials Conference, AIAA
Pub. CP-8, 1964, pp. 282-293.

Fung, Y. C. : The Analysis of Wind-Induced Oscillations of Large and Tall
Cylindrical Structures. STL/TR-60-000-09134, Space Tech. Labs., Inc.,
June 1960.

Ezra, A. A., and Birnbaum, S.:
sist Wind-Induced Oscillations.
1764-1766.

Design Criteria for SpaceVehicles to Re-
ARSJ., vol. 31, no. 12, Dec. 1961, pp.

8



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Jones, George W., Jr., and Gilman, Jean, Jr.: Measured Response to

Wind-Induced Dynamic Loads of a Full-Scale Scout Vehicle Mounted Verti-

cally on a Launching Tower. NASA TN D-757, 1961.

Runyan, H. L.;Morgan, H. G.; and Mixon, J.S.: The Use of Dynamic

Models in Launch Vehicle Development. AGARD Rept. No. 479, May 1964.

Waggoner, Gerald B.: Wind Test on Standing Redstone Missile. Rept. No.

DS-TN-167, Army Ballistic Missile Agency, Feb. 11, 1958.

Bohne, Q. R.: Power Spectral Considerations on the Launch Pad. Proc. of

National Symposium on Winds for Aerospace Vehicle Design, Vol. I, AFCRL-

62-273(I), AF Surveys in Geophysics No. 140, USAF Geophysics Res. Dir.,

Mar. 1962, pp. 81-108.

Davenport, Alan G.: The Response of Slender Line-Like Structures to a

Gusty Wind. Paper 6611, Proc. Inst. Civil Eng., vol. 23, 1962, pp. 389-408.

Davenport, Alan, G. : The Spectrum of Horizontal Gustiness Near the Ground

in High Winds. Quart. J. Roy. Meteorol. Soc., vol. 87, no. 372, Apr. 1961,

pp. !94-211.

Henry, R. M. : A Study of the Effects of Wind Speed, Lapse Rate, and Alti-

tude on the Spectrum of Atmospheric Turbulence at Low Altitude. Preprint

No. 59-43, IAS, Jan. 1959.

Reed, W. H° III, and Lynch, J. W.: A Simple Fast Response Anemometer.

J. Appl. Meteorology, vol. 2, no. 3, June 1963, pp. 412-416.

Lifsey, David J.: An Empirical Analysis of Daily Peak Surface Wind at C ape

Kennedy, Florida for Project Apollo. NASA TM X-53116, 1964.

Daniels, Glenn E. (ed.): Terrestrial Environment (Climatic} Criteria

Guidelines for Use in Space Vehicle Development, 1964 Revision. NASA TM

X-53023, 1964.

Fontenot, L. L.: The Response of a Flexible Missile to Ground Winds.

Proc. of National Symposium on Winds for Aerospace Vehicle Design, Vol.

I, AFCRL-62-273(I), AF Surveys in Geophysics No. 140, USAF Geophysics

Res. Div., Mar. 1962, pp. 139-161.

NASA-Langley, 1966 9









L

_ _ • I• i _ i! _• _ _ _i _'_ • _ .... _, • _ _ _!_ _!i
_ _ ...... _ _ _ _ i_i_ii,li_ili_i_i'__i_i




