
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



(ACC[IcSiCJN,^

or
0

tin

" (NASA CR 0R'T M,, OR AD-NU —<	 NU MBER)

(THRU)

(COD E)

(CAiE ORY)

I ,.

rr

iL

-r)



A COMPUTER PiiOGJ 1A1-i FOF DD,' MI XYD ANALYSI: OF VARIANCE.

MODEL RASF'D OId MAXIM04 hIKELIHOOD

by

H. 0. Hartley and W. K. Vaughn

Institute of Statistics
Texas AM University

Technical Report #3
National Aeronautics and Space Administration

Research Grant EGR 44-001-O95

August, 1970

^y s^



I

A COMPUTER PROGRAM FOR THE MIXED ANALYSIS OF VARIANCE

MODEL BASED ON MAXIMUM LIKELIHOOD

by
.

H. 0. Hartley and W. K. Vaughn
Institute of Statistic s, Texas A&M University

College Station, Texas 77843 U.S.A.

CHAPTER I

INTRODUCTION

In this paper we present a computer program for an analysis ^,f

variance of unbalanced data assumed to arise from a "mixed model".

The analysis is based upon the principle of maximum likelihood estimation

developed. by Hartley and Rao (1967). In order to fix the ideas it will

be necessary to summarize the specification of the model and the estimation

theory by maximum likelihood given by these authors. This is done in

Sections 1 1 2 and 3. Section 4 then spells out in some detail the computational

procedure developed. In Section 5, we then proceed to apply the numerical

procedure to obtain point estimates of the components of variance involved

in the mixed model. 'The-examples chosen comprise both situations for

balanced data (when comparison will be made with conventional analysis of

variance estimates) as well as unbalanced data. The comparisons.for

balanced data show excellent agreements for all those situations in which
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maximum likelihood estimation agrees with the analysis of variance estimates

on theoretical grounds .. In the remai •,Ing situations good agreement is

maintained. Whilst we clearly do not aftocate the use of maximum likelihood

for balanced data the comparisons should inspire confidence for use with

unbalanced data. We should also state here that the doctoral dissertation

of one of us (W. K. Vaughn) also contains details of the computer code as

well as formulas for the asymptotic variances and covariances of the

estimates of the ratios of the components of variance. These are of

considerable importance in the estimation of measures of heritability and

related studies. It is anticipated that these will be published elsewhere.

40
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CHAPTER II

TECKNIQUES FOR POINT ESTIMATION

2.1 The General Mixed Model

The specification of the general mixed analysis of variance

model will be sufficiently general to cover most of the problems

arising from unbalanced data. The linear model discussed herein

is given by

Y=Xa+U1b1+U2b2+... +•Ucbc+e
	 (2.1)

where

X is an n x k matrix of known fixed numbers, k < n;

U  is an n x mi matrix of known fixed numbers, m  < n;

a is a k x 1 vector of unknown constants;

b is an mi x 1 vector of independent variables from N(0, a );

e is an n x . vector of independent variables from N(0, a2).

The random vectors t l , b2 ,..., bc , and a are mutually independent.

Further it is assumed that the design matrices X and U 

i 1 0 2,..., c are all of full rank. In the model giver by (2.1)

the fixed effects and random effects are separated so that a contains

all levels of all fixed effects and the c random factors are

separated so that all elements of b  have the same variance ai.
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An additional important assumption about the design matrices

is made which assures that the likelihood will tend to zero as any

of the ratios Yi c c2i/c2 tends to infinity. gee HaY*tley and Rao

[19671. This is the following assumption of estimsbility:

Denote by

c
Ma E m 

in

the total number of levels in all c random components... Then the

adJoined n x (k + m) matrix

X = [X I Ul I U2 I ... 
IUe I

is assumed to have as a base an n x r matrix W of the fors

W = [XIU*]

where the n x (r k) matrix U* must contain at least one column

from each Ui so that

k+e<r<k +m..w

2.2 The Likelihood Equations

From the definition of y in (2.1) it is clear that y follows

a mua.tivariate normal distribution with mean Xa and variance- 	 .

covariaance matrix



c ? H a [ I + Yq up l + y2U2u2 + ... +' Y^Ucucl l
	

(2.2)

where

	

yi	 es /a2 	(2.3)

Then the likelihood of y is
k

L = (2ft)"'` er" x ' a (- -^ -- (y " xa) l x"I (y " xa) } . (2.4)II
2 22a

Writing A In L

X = "finln(21r) - 
n 

In Crt - ^lnIHI -	 (y - 1 ac)'H"l (y- a) (2.5)
2	 2a

and differentiating X with respect to a, a2 and y  yields the

equations

as a - 2 
(-2 x'H"Iy + 2(x'H'"IX)a) = o	 (2.6)	 z

2a
r

^-	 +-? (y - Xa) f x"I(y^-xa) = o	 (2.7)
ac	 2a	 20
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and

-1

	

10 - = -str(H 1 - ^) +	 (y - X(x) 18H (y — Xcc)
i	 i	 2a	 i

	

Jjitr(H-luiuI) ' +	 Hy — Xa)' H luiujH—l (y - Xa,)). (2.8)
2v

0

The maxiimum likelihood estimators for a and a2 in terms of the

unknown y  are obtained from equations (2.6) and (2.7). They are

and

no (yi ) = y'H- y - y'H 1X(X'H 1X)-1X'H- y. (2.10)

However, the solution of equation (2.8), as/ay 	0 cannot be found

explicitly for Yl , Y29' • '9 Yc , thus waking some numerical technique

essential.

2.3 Solution by Steepest Ascent

Substitution of equations (2.9) and (2.10) in (2.8) yields

the simultaneous nonlinear equations
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{ a(yi ) , a ( yi ). yi) a -;j tr (H-lviu^ )

+y2_°.' [y _^(^^), H lUiD''H`1 [y - xa(Yl.) s
2v (yi)

for the c values of the yi.

(2.11)

The solution to this system of equations can be obtained as the

asymptotic limits of a system of c simultaneous differential

equations, the equations of steepest ascent given by

"̀° i ^ "'a  " {a( y ) t Q2 (yi ) t yi }
dt ayi 	3

(2.12)

where the variable of integrations t, is auxillary and the nmerical

integration commences at trial values ©yi 
+asually chosen as

consistent estimators so the yi a Oyi at t = 4. The solution yi(t)

converges to a solution point yi which is a root of

dyi 
a-?̀- 0 o .

dt ayi

See Hartley and Rao [1967) for proof of convergence.

A modification of the steepest ascent will ensure that yi > Q

along the path of integration. Defining

L
ti ' yi
	

(2.13)
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which is symmetrical at Ti M o t  we see that if Ti is used as a

parameter in place of Yi that

aX	 as

aiaaj 
2Ti . (2.14)

Thus, the steepest ascent differential equations can be replaced by

-^-	 a(Y) ^^}2T 	 (2. 15)dt 
BYi	 i	 i	 i

Again,the integration would commence at positive values OTi# but

should the path of integration reach a point where one or more of

the Ti a 0 the integration would continue along the boundary until

the Runge-Kutta procedure would allow the T i to again be come

positive. This procedure ignores and avoids any possible solutions

of the likelihood equations with Yi < 0.

2.4 Application of the Runge-Kutta Procedure

2.4..1 Polynomial approximation

The technique selected for the numerical integration of the

system of c simultaneous differential equations given by equation

(2.12) is a fifth order Runge-Kutt.P4 procedure. Basically, any

Runge-Kutta procedure provides an approximation to a truncated

Taylor's series expansion of the independent variables. For the

fifth order Runge-Kutta method the approximation is carried out in
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such a way that it agrees with the Taylor's series expansion

through terms involving Of To apply a fifth order Runge-Kutta

procedure to the system of steepest ascent equations it is necessary

to evaluate equation (2.11) six times for every iteration. Clearly,

since (2.11) involves H 
1 and since a large number of iterations

may be required for convergence, excessive amounts of computer time

will be necessary to obtain a solution to the system of equations.

For this reason, a second degree polynomial of the form

d„ i s b(i)+ E b(i) d + E E b(i) 6. 6	 (2.16)dt	 4 j
ai 3 j J ul kal J k J k

3 jk

is used to approximate the right hand sides of the equatior-s of

steepest ascent. Where b©i) , b(i) and b (i) are coefficients to

be estimated and the 6V j = 1 9 2,..., c, represent a coded point

on a grid in the delta space. The criterion used to fit the poly-

nomial to the equations of steepest ascent is least squares. The

following steps are taken when fitting the polynomial approximation:

(1) since there are (c + 1)(c + 2)/2 coefficients to be

estimated at least this many points on the grid in the 6-space must

be selected. In fact, one more point on the grid than neces:.&ry

is used to obtain an estimate of the residuals. The set of points

selected must be selected so that the matrix A. defined in (3) below

has full column rank, that is so ( 4 0 d)`1 exists.
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(2) Defining

oTi to be the initial trial value of T i for the numerical

integration, and

A 
0 T i to be the grid increment in the T-space

the points in the T-space corresponding to the points in the 6-space

are found from the equation

Ti	 8i©0Ti + 0 T i .	 (2.17)

10

(3) Defining

F'i to be the right hand side of (2.15) @valuated at the grid

points in the T-space,

® to be the matrix of squares and cross products of the

delta's whose ith row is

[1, x182 ... da 1 2 ... de, d1d2, $163 ... a
c-l

ac ] ,and

b(i) to be the vector of estimates of the coefficients for

the ith equation (2.15),  thst is

b(i)' - [bo i) , bi i) b2 i) ...bp i) bii )b22)...beC)b12 )b13)...b^il,c],

the least squares solutions * are found from

*Least squares is used to obtain a mathematical approximation to a
mathematical function. The justification of this procedure must be
sought by monitoring the truncation error .of the approximation
obtained.

a
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b(i}	 (t^'d^"1®'P
i	

i a 1 9 2 9 .. . 9 C
	

(2.18)

Upon obtaining the

of the polynomial appro:

a Runge-Kutta procedure

When attaining, via the

least squares solutions of the coefficients

Kimation for each equation of the system,

is now applied to these approximations.
N

Runge-Kutta procedure, a set of Ti so that

J dTi/dt I < e

for every i the procedure terminates. Then, if the estimates of
M

-T i 
obtained from the present cycle, say ti, are sufficiently close

•	 N

to the initial trial values for the cycle, say	 that is if

` FI

for all values of i, then convergence is established and the

estimates of the variances and covariances can be computed. If

convergence is not established then the current cycle of the

Runge-Kutta procedure is terminated, another polynomial approxima-

tion is obtained and with these right hand sides a new Runge-Kutta

cycle is started using the terminal values T  of the previous

cycle 4s initial trial values for the new cycle.

2.4.2 Selection of optimum step size for Runge-Kutta

The selection of the step size, h, that is the increment in

the variable of integration t, in a Runge-Kutta procedure is

5

R



3.2

important, since it governs the rate of convergence as well as the

accuracy of the final solution. For example, if the step size is

too small convergence may be very slow. To chose a step size the

empirical principle of forcing the second order term in the Taylor's

series expansion to be one-tenth the first term was used. This

gives for the first order tam

h	 a h.
dt	 aT

and for the second order term

2
h 

d T
i h2	a2A	 as

2 
dt2	

2 3Tj 3T aTJ

refining

--_ to be the matrix of second partial derivatives ofa.

r

4ari

the' log likelihood,

F

IIaxto be the vector of first partial derivatives of

the log likelihood, and

aX

Fi

IT to indicate the length of FITa'Xthe principle

described above leads to
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F
	

3 
2 

A	 , X	 .2h , 2A

Solving for h in terms of lengths of the vectors involved yields

h = ,2	
^2A

.

More explicitly we obtain for the vectors and matrices involved

a [b (1) 
^ b(2)' 

b( 3) ^..., b(c).3
, 

,
0	 0	 0	 0

i d=0

2

n=0

b (
1
1) 2T b21)2T ... b(l)2T

6©yl d0Y2 60ye

b(2)2T1 b(2)2z2 ... b(2)2-r1 .v......,.... .^......w..
Ael ®0Y2

®OYc

.c(c)2T1 b^c)2t

6OYl

.

d0yc
9

and	 .

2b(i)b (1)
"
	 c 2b(i)b(2)IT	 c 

2b(i)b(c)z
TV 
i i	 i	 i=1 AO.Yi	 i=1 ®Oyi	 s=1 DOYi



1-W

These expressions lead to the following optimum h for the numerical

integration

.2	 ^ (bO(J)

iul
h	 .

r

E	 E 2b Q )b(i)g 2izll 1 - 0
©^

A computer program has been implemented Making use of the

above derivations to solve the likelihood equAtions (2.6), (2.7),

(2.8). Documentation for the computer program is given in Chapter V.
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CHAPTER III

MUMS  FOR POINT ESTIMATION

3.1 Introduction

This section is concerned with applying the techniques

derived in sections 2.1 to 2.4 to specific examples. The majority

of the examples are small, balanced data examples to facilitate

comparisons between maximum likelihood and analysis of variance

estimators. Mile analysis of variance estimators are unbiased,

such is not always the case with maximum likelihood, but agreement

between analysis of variance and maximuz likelihood is obtained,

in the balanced case, when maximum likelihood yields unbiased

estimators.

3.2 The Two-Fold Nested Model

Snedecor and Cochran [1967 p. 2861 cite data on the calcium

concentration in turnip greens. Four plants were taken at random,

then three leaves were randomly selected from each plant. From

each leaf two samples of 100 mg. each were taken and the calcium

content was determined by microchemical methods giving rise to

the data in Table 3.1.
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Table 3.1

Calcium Concentration in Turnip Greens

Plant Leaf Determinations

1 1 3.28 3.09

2 3,52 3.48

3 2.88 2.80

i 2 1 2,46 2.44

2 1.87 1.92

3 2,19 2.19

3 1 2.77 2.66

2 3.74 3.44

3 2.55 2.55
4 1 3.78 3.87

2 4,07 4.12

3 3.31 3.31

The model used for this analysis is

yigk = u + ai + big + eigk

26

(3.1)

where

ai represents the effect of the ith level of plants,

big represents the effect of gth leaf from the ith plant,

eigk is the effect of the kth determination from the gth

leaf from the ith plant, and i = 1 9 2, 3, 49

g = 1, 2, 3, and k .a 1 1, 2.
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The following assumptions are made:

^^ b N(0, ®2 s

b 	 N(01, %) ,

ei^ " ^(0^ a2 s

ai , bi4 , and eijk areall mutually independent.

Table 3.2 gives the analysis of variance for the above data.

Tablo 3.2

Analysis of Variance for Turnip Green Data

Source of Variation	 d.f.	 Mean Square	 EMS

Plants	 3	 2. 52011567
2

	

 b
67	 a2 * 2% + 

602
 a^

Leaves /Plants	 8	 .328775	 0e + 2%

Determinations /Leaves 12	 .006654166T	 0e

The analysis of variance estimates can be obtained from Table 3.2

by equating the mean square column to the expected mean square

column and solving for the unknown parameters. This gives

as  0 (2.520115267 - .328775)/6 = •3652233778

tab = (.328775 — .006654166T)/2 = .161o6o4167, and

aye _ .006654166T.



From these we obtain the estimates of y  and yb as ya a 54.8864

and Ŷb a 24.204.

The two-fold nested model given by (3.1) may be rewritten

using the notation of equation (2.1) as

yaXV+U1b1 +V2+e 	 (3.2)

18

where

n a 24 0 ml a 4.m2 =12, c v 2 0 ka1 0

and where X is the 24 element unitary column vector and Bbl and U2

are the usual 24 x 4 and 24 x 12 design matrices of 1's and O's

representing 'Plants' and 'Leaves within plants' respectively.

Finally the vectors of effect variables b1 and b2 are defined '©y

bt a [al , a2 , a3 , a4), and

b2 - [b llb12b13b21b22b23b31b32b33b41b42b43) '

To obtain the maximum likelihood estimates for the parameters

of the mixed model several complete Runge-Kutta cycles, that is

refitting of the polynomial approximation, were necessary to

achieve convergence for this example. The first complete cycle

will be discussed in detail. The steps of this cycle are:

(1) All necessary constants and design matrices as well

as the a-grid are input to the computer program.

rltw ..
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From the 6-grid the T-grid is obtained using the initial

trial values 0T1 (39)h o T 2 (24)19 and the grid

increments ®oTl = 5 6 and AoT2 y.

(2) From oTl and o T 2 initial values of a( oTi ) and 2(oTi)

are obtained. For this example they are a( 0T1 ) 3.0121

and ( o T i ) s .0066612.

(3) Using the estimates of a and c 2 together with the grid

obtained from the initial trial values of the Ti and the

grid increments the polynomial approximations are

obtained as described above. For the first cycle for

this example they are:.

d- 1 .000157 - x474a + .02176 + xo616a2dt	 1	 2	 1

oo619a2 + .00089581 60	(3.3)

d-_ ?= .00793 + .o1686 - .2146 r . 000losa2dt	 l	 2	 1

+ -MUM. 00826162	(3.4)

(4) The Runge-Kutta procedure is now appIIAed to this system

of differential equations yielding, at the end of the

First cycle, lyl = 39.093, 1Y2 = 24.190 lce .00666 and
,.

lu = 3.01210
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( 5)	 Since convergence has not been established another

cycle is started with the initial trial values obtained

from (4) above.

For this example a total of three complete cycles were

necessary to establish convergence.	 The number of cycles required

for convergence may vary and will always depend on the initial

i ' trial values for the first cycle.	 For this example the final
ft

values were Y.'s 39. 095 * Yb a 24.19999 ae	 oo66549 and
3.0121.

It is well known that the analysis of variance procedure

produces estimates that are unbiased.	 While in some cases
 i;r

maximum likelihood also provides unbiased estimates there is no

guarantee that this is the case.	 In this example it is obvious
ft

that Ya is biased while Yb as well as cue ar e unbiased.	 Hartley

and Rao (1967 3 show that their procedure gives the following

maximum likelihood estimates for the balanced twofold nested

` model of example one:

(tie + 2% + 602a )	 E (71 .. - 7... }` ,	 (3.5)
ijk

	

(a W. + 20")	 E c7
1j

. - 71 ..) 2A	 (3.6)ijk

	

aye	 (y1jk   y1j .) 2/12.	 (3-7)
ijk
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^j	 Y

tw

Table 3.3

Qomparison of Maximum Likelihood and Analysis of Variance

Estimators for Turnip Green Data

r ya
y
i b

2
^e

A.O.V. 54.4864 24.204 .0066542
M.L.E. FROM
Computer program 39.095 24.1999 .0066549
M.L.E. FROM
Table (3.2) 39.106 24.204 .0066542

We see from Table 3.3 that the analysis of variance estimate

of Y  and the maximum likelihood estimate of Y  are not the same.

As was indicated in equation (3.5) this happens because the

maximum likelihood estimate is biased. However, if the aum of

squares for plants in line one of Table 3.2 is divided by 4 instead

of 3, thus making the analysis of variance estimate comparable

to maximum likelihood, we see from lines 2 and 3 of Table 3.3 that
ft

there is very close agreement between y  obtained from the two

different methods. Since maximum likelihood gives unbiased

estimates of yb and are there is no need for this adjustment for

comparison. In all cases where the maximum likelihood estimate

should agree with the analysis of variance estimate the two agree

to at least two decimal places and the estimates of the error

mean square agree to five places. Indeed, if a more stringent

criterion for convergence is imposed in the com,,̂ uter program better
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agreement; can be attained. Although this technique of maXiMum

likelihood does not guarantee a global maximum of the likelihood

function for this example it was in fact obtained.

3.3 Unbalanced One-Way Classification

Ostia [1963 p. 2873 cites data on the moisture content of

pine boards. Five storage conditions are studied to determine

the effect on the moisture content of white pine lumber. Table 3.4

gives the data arising from this example.

Table 3.4

Moisture Content of Fourteen Pine Boards

Storage Conditions

1 2	 3	 4	 S

7.3 5.4	 8.1	 7.9	 7.1

8.3 7.4	 6.4	 7.5

7.6 7.1	 10.0

8.4

8.3

The model used to analyze this data is

yij = u + a  + eij	 (3.8)
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vhere

ai represents the effect of the ith level of storage conditions,

ei, represents the effect of the ,th board subjected to the

ith storage condition, i = 1,,.:, 5 6 j s 1, 2 9 ..., ni,

ai " N(®, a&)

ei, 	 N(a, a2 ), and

a  and ei, are all mutually independent.

6

The analysis of variance for this data is given in Table 3.5.

Table 3.5

Analysis of Variance for Pine Board Data

Source of Variation	 d.f.	 Mean Shares	 ENS

Storage Conditions 	 4	 2.67	 02 + 2.64a2

Experimental Error 	 9	 .84	 a2

Tue analysis of variance estimates for era, ere and y  are era = .70,

ae	 .80 and ya = .87.

Writing the model. (3.1) using the notation of (2.1) we have

Y s XP + U1b1 + e

where n = 14, ml a 5 9 a = 1 9 k = 1, and X is the 14 element



unitary vector and U1 the 14 x 5 de$i&n matrix representing

storage conditions whilst

b  a Cal , a2 , a
31 

0,40 65 1 .

For the initial cycle For this example the trial value chosen

was 0Irl	 ( oyl )
^ ° ^•9)` and the grid increment was Q orl s .85.

Table 3.6 gives a concise presentation of what happens during each

cycle For this example.

'Fable 3.6

Runge-Kutta Cycles for Pine Board Data

Cycle
N

Yl Polynomial Approximation*

0 .9 -.4518 - 1.52061 + .714561

1 .675 r.154 " .62261 - .44461

2 . 402 .852 - .97161 + .11561

3 .669 .008o4 - .7©361 + .15661

4 .672 .000316 - .69961 + .15561

5 .673 .000077 - .69961 + .15561

*These approximations change From cycle to cycle because
J

of the changes in origin and width of the grid in the

T-space resulting in different'T - 6 relations.

24
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Table 3.7 gives a comparison of the analysis of variance

and maximum likelihood estimates for this example.

Table 3.7

maximum	 .673	 •TT3
Likelihood

Comparisons between maximum likelihood and analysis of

variance is difficult for unbalanced data. Even for this simplest

ease of the one-way classification the likelihood equations

cannot be solved explicitly for the estimates of a2 and a2 and

hence, ya . However, for this example maximum likelihood does not

give answers too different from those from the customary analysis

of variance.

3.4 Two-Fold Nested Model When One Variance Ratio is Zero

Snedecor and

Five sires are to

to a random group

Table 3.8 gives t]

litter.

CochriLn [1967 p. 289] cites data on pig breeding.

be evaluated in pig raising. Each sire is mated

of dams, each mating producing a litter of pigs.

ae average daily gain of two pigs from each
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Table 3.8

Average Daily Gain of Two Pigs

Fire Dam Pig Gains

1 1 2.77 2. 38

2 2.53 2.94

2 1 2.28 2.22

2 3.01 2.61

3 1 2.36 2.71

2 2.72 2 .74

4 1 2.87 2.46

2 2.31 2.24

5 1 2.74 2.56

2 2.50 2.48

In this example Snedecor regarded 'sires' as a fixed effect.

However, for purposes of illustrating the maximum likelihood

technique when one variance ratio is zero, the same model and

assumptions are used as in section 3.2 equation (3.1).	 Table 3.9

gives the analysis of variance for this data.
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Table 3.9

Analysis of Variance for Pig Data

Source of Variation d.f. Mean Square 6

Sires 4 .0249325 ae + tab + 4ca

Dame-Same Sire 5 .11271 are + 2cs2

Pairs-Same Dam 10 .0387 are

Analysis of, variance estimates of ab , ab and a2 are

obtained as above. Since the mean square for dams within sires

is Larger than the mean square for sires the analysis of variance

method gives a negative estimate for a 2 The estimate generally

used when this happens is as 0. We can then obtain the estimates

Of ab in two ways as follows:

(1) The estimate, ab, can be obtained from

lab = (.11271 - .0387)/2 = •037005

which is the usual analysis of variance estimate.

(2) Since as = 0, and assuming this implies a = 0, the

mean square for sires has the same. expectation as the

mean square for dams - same sire. This suggests a

pooling of the two sums of squares which gives

2ab 0 (•073698 - .0387)/2 = .017499 .
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From these two estimates 1Yb and 2Yb are

A

lYb 
0 .9562

and

A

2Yb 
a .45217 .

Turning naw to the computer program for this example the

initial trial values were 
0 

T 
a a 

( ®Y& )4 a (1)", oTb a (oyb )4 a 
10

®oTb 
a 1 and QoTb 	 From these intial trial values four

complete cycles were required to establish convergence. The final

maximum likelihood estimates are Ya a 09 Yb B . 35696, ^e = . 0387
w

and u a 2.5740. The c=puter program solves the equations (2.7 )

and (2.14) and since Y. a 0 the computer program solves the

equations- O 0,- x - a 0 and Y a 0. Now Hartley and Rao
aar2 	 3Yb	

a

(1967 P. 100-1013 spell out the above likelihood equations for

the special case of a balanced two-fold nested model. For % we

have

	

M	 2 N M

	

Y	 r Y Y
fib o p̂  d2d2 # 1rig02 ----^ l + y a b

1+rYb	 3'+ryb+grya

where
,.

^ a ^2 _ _ _ 2	 .rYb 2
	

,»	 - 2d2,a2	 z (yi	 yi • •) +	 y	 y	 q	 (y • • — y ...)
1+rYb i3	 1+rmvgrya	 i i
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Since Ya ¢ 0 this reduces to

	

oft a	 2

	

ft^ o 
^q 

, 	̂ .; )2
l+ryb 

ij

qu
a 	 2	

qap

	

+ I1 6	 T	 a

dw

	

l+rYb	
i	 l+rYb

which leads to

aye h+ ra =	 1, ^ {yid , ., yi . , }^ + qr ^ {yi..
.	 q 

From these it can be seen that a2 should be estimated by the

'Pairs/same dam' mean square and a  + 2% by the 'pooled mean

square' ' Sires + Dams/Same Sire' using the '-arong' degrees of

freedom 5 + 5 as a divisor. This computation yields exactly

Yb w 0.35695 confirming the computer program solution exactly.

The comparisons are summarized in Table 3.10.

0	 .
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Table 3. 10

Comparisons for pig Data

Ya	 Yb	 oe

A v,	 0	 .9562	 .0387

AOV2	0	 .4521? .0387

AOV3e	0	 .35695 •0387

S.L.E.	 0	 .35696	 .0387

Based on between dams sum of squares/10.

3.5 Two-Way Classification with Interaction

Bowker and Lieberman (1963 p. 3621 cites data on the

variability among ovens used in life testing various electronic

components. Three ovens and two temperatures normally used for

life testing of electronic components are selected. A single

type of component is selected and operated in an oven until it

fails. Table (3.11) gives the data arising from this experiment
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Table 3. 11

Electronic Component Data

Oven .

1 2 3

237 208 192

Temperature	
254 178 186

550°F

246 187 183

178 146 142

boo°r	 179 145 125

183 141 136

The model used for this analysis is

Yijk	
+ ai + b  + cij + eijk

Where i 1,9 9 As j _ 1s 2,... q B, k ffi 1,... s Bq

NID(®, Jai ,

b^ " NID(0 s %) It

NID(©, a2

ei jh " NID(o, a2^ ,

and ai , bj$ 
aij 

and eijk are all mutually independent.

Table 3.12 gives the analysis of variance for this data.
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AOV for Vlectronic Components

Source of Variation d,. f. Dean Square ENS

Oven 2 4623.17 02 t 302 + 602

Temperature 1 136-67.56 ®2 + 30a + 9%

Oven x Temperature 2 137.39 o2 + 300

Error 12 69.78 02

From Table 3.12 the analysis of variance estimates are

A

Yc = .323
A

Yb 21.54

A

Ya 11.19
A2

0 69.73

The initial trial values selected for this example are

o4a 
a (0ya )h a (9)h, oTb a ( Oyb );l a (12)h, 

OTC =
(QYe ); (.5)

d
®Ta a 

5, ®oTb a 6, Qozc =. 4

The polynomial approximations for the first cycle are
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i

t
I

I	 .

r

r

d4&
dt - W .047 - . .63361 + .087962 + .02663 + .39162

w .04622 ..025623 .. ' 0698 a2 + .03758 a3 + .0366263

d- 'b W .0398 + .0826 p .3896 + .0226 « .034962dt	 1	 2	 3	 1

+,2362...018962 -605576182 + .035616 3 + .01678 a8

. a ..,31 + .024a + .5226 ...6296 + .0075762dt	 1	 2	 3	 1

.026762 + .28662 +.0826162 	.08261a3 - .01876 a8 .

At the end of the first cycle the revised estimates are

ya = 9.296 , yb a 12.48 , yc a .337 •

At the and of the fifteenth cycle convergence is established and

the maximum likelihood estimates are

d	 M	 M

ya w 9.54 , yb w 12.82 , yc a .326

a2 = 69.75 and u a 180.33 .

Comparing the maximum likelihood estimates with the analysis

of variance estimates we see that yc and y  and a and a2 agree
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ft	 y	 A	 A

quite well While y  and y  do not agree with Ya and yb. This
M	 er

Failure to agree occurs because Y. and Yb e t biased.
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C M IV

DOCUME MATION FOR THE CO1 'U ER PROGRAM

4.1 Description of the Program

This chapter is concerned with a description of the computer

program mentioned in section 3.2.5. This computer program is

designed to obtain the maximum likelihood estimates for the

parameters of the mixed analysis of variance model. The computer

program, which contains several subroutines, is written in Fortran IV

in double precision for the operating system of the I.R.M. 360/65.

The general flow of the program, which is illustrated in

figure 4.1 can be described as follows. The main program reads all

data necessary to complete the problem including the dimension of

the variance-covariance matrix of the observations, the number of

variance ratios, the column dimension of the U matrices, the number

of points in the grid for the polynomial approximation, the initial

estimates of the variance ratios, all design matrices and the

observation vector y.

The grid in the gamma space is determined and control is

transfered to the subroutine FOFX where the right hand side of

(2.15) is evaluated for all grid points. Control is transfered

back to the main program where the least squares equations are

obtained and then subsequently solved in subroutine SKINNY. Control

is then transfered back to the main program where the optimum step

M
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size for the Runge-Kutta procedure is determined. Subroutine RUNGS

is entered and the solution to the polynomial approximation (2.16)

is determined. Control is transfered back to the main program and

if convergence has been established the large sample variance-

covariance matrix, is computed. Otherwise a new cycle is started

using as initial values the solutions from the previous cycle.

The following is a description of the subroutines used in the

computer program.

4.1.1 RUNGE

Subroutine RUNGE is a subroutine designed to solve systems of

first orde ,: differential equations. The following is a definition

of the input parameters to RUNGE.

(I) h is the number of equations in the system to be solved.

(2) NN is the number of K values needed for the Runge-Kutta

formula. In this case since we are only concerned with a fifth

order Runge»Kutta procedure NN is always 6.

(3) H is the 'step size for the procedure.

(4) xNI1N is the lower limit for the independent variable.

(5) XMAX is the upper limit for the independent variable

always chosen large.

(6) KOUT is a variable indicating how frequent along the path

of integration the current values of the variance ratios are.

outputted. For example, if KOUT has the value 5,then on every fifth
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Iteration the current value of all variance ratios is printed out.

(7) Y is the observation vector.

(8) EPIL is tolerance used to determine if a solution to the

system has been found.

(9) XPX is a matrix containing the estimates of b's for the

polynomial approximation.

(10) NDEL is the number of b's.

(11)DELGAM is the grid increment in the gamma space.

(12) TZhR is an error flag indicating that the path of inte-

gration has reached a boundry point. If LERR has the value 1 an

error has occured and an error message so indicates. Otherwise$

LERR has the value of zero.

4.1.2 ALPSIG

37

ALF'SIG is the

for a given set of

described as follol

(1) X is the

(2) N is the

subroutine which

(Y19 y2 ,..., To)

Mrs .

full rank design

dimension of the

2
computes the value of a and v

The input parameters may be

matrix for the fixed effects.

variance covariance matrix of

the observations.

(3) NX is the number of columns of X.

(4) HINV is the inverse of the variance covariance matrix

of observations.

(5) Y is the observaion vector.
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(6) ALPHAH is the vector of estimates of all fixed effects

in the model.

(Z) SIGMA2 is the estimate of the error variance.

($) IRT is an indicator variable so that if Ili' = 1 the large

sample variance covariance matrix of the fixed effects will be

outputted.

4.1.3 FOi

FORM is a subroutine which computes H`l as given in (2.2).

This subroutine goes the fact that if Z is the matrix of U1 	 4

2,..., c adjoined as

Z a 
[U1 ^ 2 U,2 ^ . .. l	 TTc )	 ^ 5.1)

then

H = (I + ZZ')

and

H-1=I-Z(I+Z'Z)-1'Z'

necessitating the inversion of only a Em  x Emi as opposed to an

n x n. A description of the input variables is as follows.

(1) GAM is the vector of estimates of the variance ratios.

(2) X is the vector of mils.

(3) N is the dimension of H.

(k) U is the three dimensional: array of the design matrices 	 ,
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for the random components in the model. The first subscript

indicates one of the design matrices U  i o 1,... 9 a the second

and third give the dimensions of that design matrix.

(5) NC is the number of variance components.

(6) HINV is as previously defined.

.
4 .1.4 F'OFx

Subroutine FOFX is designed to compute the right hand side

of (2.11). The input variables to this subroutine are the same as

previously defined with the exception of F. F" is the c x 1 vector

or right hand sides of (2.15).

4.1.5 FORMZ

Subroutine FORM is the subroutine which adjoins the U' i as

in equation ( b .1) to obtain Z. The input variables are the same

as previously defined. Z is the matrix returned to the calling

routine.

4.1.6 GTPRb

This subroutine accepts an input matrix A of dimension

NRA x NCA and returns in C a matrix of dimension NCA x NCA

containing A'A.
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4.1.7 GMPRD

This subroutine receives matrices A cf dimension NRA x NCA

and B of dimension NCA x NCR and returns in C a matrix of dimension

NRA x NCB containing AR.

4.1.8 OMTRA

This subroutine receives a matrix A of dimension NRA x NCA

and return, in B a matrix of dimension NCA k NRA containing A'.

4.1.9 SKINNY

SKINNY is a subroutine designed to (1) invert real symmetric

matrices and (2) to solve systems of simultaneous linear equations

with multiple right hand sides. The following is saa, description
r

of the input parameters to SKINNY.

(1) S is the matrix containing the coefficient matrix in

the first N columns.

(2) if a system of equations with K right hand sides is to

be solved, the right hand sides are placed in columns N + 1 to

N+K=MofS.

4.1.10 FOFXR

Using a firth order Runge-Kutta it is necessary to evaluate

the right side of (2.15) six times "for every Runge-Kutta iteration..

The purpose of FOFXR is to receive the NDEL X NC matrix of
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coefficients and return in p dTi/dt.

Presently the program is designed to accept a maxims of 60

observations with 5 variance ratios and no more than 20 levels

within each random classification. The maximum length of the

alpha vector is 10.

The mount of time needed to solve a problem is difficult to

estimate. ;;ertainly, the larger the number of observations the more

time will be needed. However, time is also a function of the

initial trial values of the variance ratios as well as the step

raise for the numerical integration.

4.2 Description of Input Data

The following is a description of the control and data cards

which are input to the computer program.

(l) Control Card 1 has the format ( 2oW . Table 4.1 gives

the description of card one.
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Table: 4.1

Control Card T

Column	 Variable	 Item
Nance

	

1-4	 N	 N is the total number of observations.

	5-8	 NC	 NC is the total number of variance

>	 ratios, Yi,.

	9-12	 NX	 NX is the number of columns of the design

matrix for the fixed effects.

	13-16	 M	 NPT is the number of points on the grid

containing the maximum likelihood estimates.

(2) The second card in the data set has format (20A) and is

a header card. Any information the user wishes to print on the

first page of output should 	 punched in this card.

(3) The third card contains the values of m  for

^. 1, 2,..., NC. This data is punched on this card using format

(2014). Table 4 .2 gives the description for this card.
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Table 4.2

Control Card III

Cohn Variable Item
Name

1-10 M(1) is the number of corns

of U1.

11-20 M(2) M(2) is the number of columns

of U2.

10(c r 1) + 1	 100 Mic) M(c) is the number of columns

of Uc.

(4) The fourth card contains the initial trial values of

the gammas as well as the grid increments in the gamma space.

The format for this card is (8 p 10.5) with 'Y1 ,...,` e punched in

the first 10c columns and the grid increments punched in the last

10 c columns.

The rest of the data follows in this order.

(5) The design matrices for the random effects are input in

numerical order using fomat (4012).

(6) The design matrix for the fixed effects is input as

X transpose using format (40n.0)

(7) The NW x NDEL matrix b as defined in 2.4.1 is input

laut using format (26F3.0).

.	 .

1
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Since the program returns to the first read statement at the

end of a problen t to indicate the end of all problems the last

card should contain 9999 in r; *lumps 1 • r
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Read Header Card
Control Cards and is

the
all data previous se	 N®

of Yon less than
the present

FOFX
	CAL not

FOF"X Evaluates
the right hand Yoe

side of WaY

Compute the Estivate
RETURN of the large sample`

MAIN variance covariance
matrix

Bet up the system
of least squares
equations

T
CALL toto Star t

SKINNY I	 -

Solve the system
" of least squares
f equations Use 	re4ent set	 fg	 s	 or starting;

point for new
po^.ynomial approx.

MAIN
RETURN

Determine the
optimum step

size  H

Figure 4.1 Flow of the Program
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