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A COMPUTER PROGRAM FOR THE MIXED ANALYSIS OF VARIANCE
MODEL BASED ON MAXIMUM LIKELIHOOD

by

H. O, Hartley and W, K. Vaughn
Institute of Statistics, Texaes A&M University
College Station, Texas 77843 U.S.A,

CHAPTER 1
INTRODUCTION

In this paper we present & computer progrem for an analysis ~f
variance of unbalanced data sssumed to arise from & "mixed model”.
The analysis is based upon the principle of maximum likelihood estimation
developed by Hartley and Rao (1967). 1n order to fix the ideas it will
be necessary to summarize the specification of the model and the estimation
theory by meximum likelihood given by these authors. This is done in
Sections 1, 2 and 3. Section 4 then spells out in some detail the computational
procedure devreloped. In Section 5, we then proceed to apply the numerical
procedure to obtain point estimates of the components of variance involved
in the mixed model. The examples chosen comprise both situations for
balanced data (when comparison will be made with conventional analysis of
variance estimates) as well as unbalanced data. The comparisons .for '

balanced data show excellent agreements for all those situations in which
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maximum likelihood estimation agrees with the analysis of variance estimates
on theoretical grounds. In the remai:.ing situations good agreement is
maintained, Whilst we clearly do not advocate the use of maximum likelihood
for balanced data the comparisons should inspire confideﬁce for use with
unbalanced data. We should also state here that the doctoral dissertetion
of one of us (W. K. Vaughn) also contains details of the computer code es
well as formulas for the asymptotic variances and covariances of the
estimates of the ratios of the components of variance. These are of
considerable importance in the estimation of measures of heritability and

L]

related studies., It is anticipated that these will be published elsewhere.
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CHAPTER II
TECHNIQUES FOR POINT ESTIMATION
2.1 The General Mixed Model

The specification of the general mixed analysis of variance
model will be sufficiently general to cover most of the problems
arising from unbalenced data. The linear model discussed herein

is given by

Y=X0*Ulbl+U2b2* ) ‘hUcbc"“'e (201—)

where

X is an n x k matrix of known fixed numbers, k < nj;

Ui is an n x mi mnatrix of known fixed numbers, m, <n;

o is a k x 1 vector of unknown constants;
t, is anm, x 1 vector of independent variasbles from N(O, o?)s
e is an n x 1 vector of independent varisbles from N(O, 02)

The random vectors hl, ba,..., bc’ and e are mutually independent.

Further it is assumed that the design matrices X and Ui )
i=1, 2,..., ¢ are all of full rank. 'In the model givea by (2.1)
the fixed effects and random effects are seperated so that a contains
all levels of all fixed effects and the ¢ random factors are

separated so that all elements of bi have the same variance af.

N B s
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An sdditional importantc assumption about the design matrines
is made which essures that the likelihood will tend tc zero as any
of the retios y, = af/c:v2 tends to infinity. See Hartley and Reo
[1967]. This is the following assumption of estimebility:

Denote by
. c
TN
the total number of levels in all ¢ random ccmponents.. Then the

adjoined n x (k + m) maetrix

M= [x|u Uyl ... (U, ]

¢
is essumed to have as & base an n % r matrix W of the fom
W= [x|u*]

where the n x (r - k) matrix U% must contain at least one column
from each Ui 80 that

k+c<srck+n.,

2.2 The Likelihood Equations

From the definition of y in (2.1) it is clear that y follows

a multivariate normal‘ distribution with mean x& eand variance-

covariance matrix
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cHe=[I+ lelUl * Y UUL * el * chcUé]

vhere
Y; = qf/aa R

Then the likelihood of y is

(2.2)

(2.3)

Le (2n)7® 0™ [5] ™ expl- 25 (v - x0)' By - xo)} o (2.1)

¢

Writing A = ln L

A = «%n 1n(2n) - % in 6° - %1n 5| - ;-1'3 (y - Xot)'H"l(y-Xa)
o

and differentiating A with respect to a, 02 and Yy yields the

equations
-g-:-“- s - ..;J:.é. {-2 X'H"ly + 2(x'H'lx)a} =0
2c
{
A .n 1 =
.7 SRS < S (y - Xa)' B (y - Xa) = 0
302 2::2 -2?;

(2.5)

(2.6)

(2.7)
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end
8 . ._;ﬁh.(g"l L) T . (y - Xa)' .3}:.1.:?'. (y - Xa)
Ty ;" 242 vy
p
= gtr(HL0,U!) * 2= [(y = Xo)' B0, U0'E Yy - Xa)]. (2.8)
i7i 202 i’i
= 0 . ‘ﬂ
The maximum likelihood estimators for a end 02 in terms of the
\

unknown Y, are cbtained from equations (2.6) and (2.7). They are

alyy) = (x50t xwly (2.9)

-

m;a('yi) = y'E Yy - prE R E) " E Yy, (2.10)

However, the soluticn of equation (2.8), aA/SYi = 0 cannot be found
explicitly for Yys Yoseees Yoo thus meking some numericel technique

essential, . '
2.3 Bolution by Steepest Ascent .

Substitution of equations (2.9) and (2.10) in (2.8) yields

the simultaneous nonlinear equations
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'g:%,: {;‘(Yi)’ 52(\'1), vy} = <htr (H"J'Uivi) | .

1 - - '-l ~
+ oo [y - Xaly,)] B0 U™y - Xaly,) 1= 0 (2.11)

for the ¢ values of the Yy

The solution to this system of equations can be cbtained as the

asymptotic limits of a system of ¢ simultaneous differentiel

equations, the equations of steepest ascent given by

b &3 _ o - -2
-';ig= '5';: {u(yi). o (Yi)’ vy} (2.12)

”xﬁﬁf -  where the varisble of integration, t, is auxillary and the numerical
integration commences at trial values oYy usually chosen as
consistent estimators so the Yy = oYy 86 v = 0. The solution yi(t)

BRIV

“."j? converges to & solution point y, which is a root of

-

EZ:"-‘. a)‘=0
at 3y ’

See Hartley and Rao [1967] for proof of convergence.

A modification of the steepest ascent will ensure that Y4 >0

along the path of integration. Defining

R .
WEY (2.13)
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which is symmetrical at Ty =0, we see that if T, is used as a
peranmeter in place of Yy that
A8 o (2.14)
Ty avi i .

Thus, the steepest ascent differential equations can dbe replaced by

.

|
e B (i), SRy )y vy} 2 (2.15) '
a " ey, UM O 3Yg/s Yg) €74 ¢ g

Agein,the integration would commence at positive velues 0%4? but
should the path of integration reach a point where one or more of
the Ty = 0 the integration would continue along the boundary‘until
the Runge~Kutte procedure would allow the Ty to agein become
positive., This procedure ignores end avoids any possible solutions

of the likelihood equations with ;i < 0.
2.4 Application of the Runge-Kutta Procedure
2.4,1 Polynomial approximation

The technique selected for the numerical integration of the
system of ¢ simultaneous differential equations given by equation
(2.12) is a fifth order Runge-Kutts procedure. Basically, any
Runge-Kutta procedure provides an approximation to a truncated
Taylor's series expansion of the independent variebles. For the

fifth order Runge-Kutta method the approximation is carried out in
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such & way that it agrees with the Teylor's séries expension
through terms involving hs. To apply a fifth order Runge-Kutta
procedure to the system of steepest ascent equations it is necessary
to evaluate equation (2.11) six times for every iteration. Clearly,

since (2.11) involves gt

and since a large number of iterations
mey be required for convergence, excessive amounts of computer time
will be necessary to obtein a solution to the system of equations.

For this reason, & second degree polyncmial of the form

4z ¢ e e
{ (1) (1) (1)
— = P "'+ T DHPE, + £ IV, 7886 (2.16)
dat 0 j=1 4 J 4=l k=l Jk "3k
Jzk

is used to approximate the right hand sides of the equations of

éi), bsi) and bgi) are coefficients to

be estimated and the 63’ J=1, 2,..., ¢, represent a coded point

steepest ascent., Where b

on & grid in the delte space. The criterion used to fit the poly-

nomial to the equations of steepest ascent is least squares, The

following steps are taken when fitting the polynomiael approximation:
(1) 8Since there are (c + 1)(¢ + 2)/2 coefficients to be

estimated at least this many points on the grid in the {&-space must

be selected. In fact, one more'ﬁoint on the grid than neces.ary

is used to obtain an estimate of the residuals. The set of points

selected must be selected so that the matrix A, defined in (3) below

has full column rank, that is so (A’A)"l exists.
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(2) Defining

ori t+0 be the initial trial value of Ti for the numerical

integration, and

0 1 to be the grid increment in the t-space

the points in the t-space corresponding to the points in the §-space

are found from the equation

1; = 515011 * 0Ty (2.17)

(3) Defining

F, to be the right hand side of (2.15) evaluated at the grid

points in the t-space,
A to be the matrix of squares and cross producte of the
delta's whose ith row is

2 2
(1, ¢ 2 oo 6c6 ot 63, 6162, 6163 cos ac-léc] y and

h(i) to be the vector of estimates of the coefficients for

the 1*P equation (2.15), that 1is

f()r L pn(d) 2(1)n(1) “(i) (i) (1) “(i) (1)2(4)  2(38)
CRSE N ) e Sl PP M e S Sy P NS N N B

the least squares solutions* are found from

¥Least squares is used to obtain & mathematical approximation to a
mathematical function. The Justification of this procedure must be

sought by monitoring the truncetion error of the spproximation
obtained.
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) o (ara)tatr,  1=1, 2,..., c (2.18)

i

Upon obtaining the least squares solutions of the coefficients
of the polynomial approximation for each equation of the system,
& Runge~Kuttea procedure is now applied to these approximetions.

When attaining, via the Runge~Kutta procedure, a set of ;i so that

laz, /at| < e

for every 1 the procedure terminates. Then, if the estimates of
Ty obteined from the present cycle, say ;i, are sufficiently close

to the initial trial values for the cycle, sey ;g, that is if
-' _ ~"
|t - til <e

for ell values of i, then convergence is esteblished and the
estimates of the variances and covariances can be computed., If
convergence is not established then the current cycle of the
Runge~Kutta procedure is terminated, another polynomial approxime-
tion is obtained and with these right hand sides & new Runge-Kutta
cycle is started using the terminal values Ty of #he previous

cycle a8 initial trial values for the new cycle.
2.4.2 Selection of optimum step size for Runge-Kutta

The selection of the step size, h, that is the increment in

the variable of igtégration t, in a Runge~-Kutta procedure is
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important, since it governs the rate of convefgence as well as the
accuracy of the finel solution. For example, if the step size is
t00 small convergence may be very slow, To chose a step size the
empiricel principle of forcing the second order term in the Teylor's
series expansion to be one-tenth the first term was used., This

gives for the first order term

ar
i 3
h at h 311
and for the second order term
2
ndT nf | 23| 2
2 dta 2 araaxi ard‘
T'efining
32
3T e to be the matrix of second partial derivatives of
J i

the log likelihood,

[-5-%—"] to be the vector of first partisl derivatives of
1

the log likelihood, and

522 to indicate the length of 2Al the principle
™ ari

described sbove leadé to
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b2 35| oAl = 2n | aaf
51331i ara | 311
' Solving for h in terms of lengths of the vectors involved ylelds
be g |23/l 33 a .
* o, 313311 arJJ
More explicitly we obtain for tne vectors and matrices involved
o '
k) A A
R« o s e
(1) (1) (1)
bl 2’:1 b2 21:2 voo 'bc 210‘
8071 8o72 8oYe
(2) (2) (2)
821 ] 'bl 21'!__ 2?_ 2‘:2 e ‘be 2«:6‘
ardari . 8471 AOYZ AOYc
§=0 :
(c) (e)
Ol 21’1 e s o » bc 2"0
8071 8oYe
- o 9
and
=1¢g 0 i i, 20 i “i,.,.8°0 Y1 ‘i
9 97y | |97y =1 "A {=1 peee .
- o1 =1 b1y i=l Ay, J
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These expressions lead to the following optimum h for the numerical

Vi BT

¢ | e |2
(3).(4)
t {z a2
i=1 {3-1 0 4 4

AOTJ

integration

A computer progrem has been implemented making use of the
above derivations to solve the likelikood equations (2.6), (2.7),

(2.8). Documentation for the computer progrem is given in Chapter V.
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CHAPTER III
- EXAMPLES FOR POINT ESTIMATION
3.1 Introduction

This section is concerned with epplying the techniques
derived in sections 2.1 to 2.4 to specific examples. The mejority
of the examples are small, balanced date examples to facilitate
comparisons between meximum likelihood and analysis of variance

estimators. While analysis of variance estimators are unbiased,

such is not always the case with maximum likelihood, but agreement

between anelysis of variance end maximum likelihood is obtained,
in the balanced case, when meximum likelihood yields unbiased

estinmators.

3.2 The Two-Fold Nested Model

Snedecor and Cochran (1967 p. 286] cite date on the caleiwm
concentration in turnip greens. Four plants were taken at random,
then three leaves weré randonly selected from each plant. From
each leaf two samples of 100 mg. each were teken and the calcium

content was determined by microchemical methods giving rise to

the data in Table 3.1.
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Table 3.1

Calcium Concentration in Turnip Greens

Plant Leat Determinations
b § 1 3.28 3.09
2 3.52 3.48

3 2.88 2.80

‘2 1 2.46 2.hh
e 1.87 1.92

3 2.19 2.19

3 1 2,17 . @2.66
2 3.7h 3.bb

3 2.55 2.55

4 1 3.78 3.87
e 4,07 4,12

3 3.31 3.3

The model used for this analysis is

s ﬁ + a, +D

. 4 + e

where

&, represents the effect of the ith level of plants,

b,, represents the effect of Jth leaf from the ith plant,

ij
e. .. is the effect of the k'O
13k
h

leaf from the i°

determination from the Jth

plent, end i = 1, 2, 3, &4,

J=1,2, 3, and k=1, 2,
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The following assumptions are made: |
&, ~ N(o, oi) .
" 2
bia %0, ab) .
w 2
e 5k - B0 o)
&, bij’ qu °iJk ere all mutually independent.
Table 3.2 gives the analysis of variance for the above data,
Table 3.2
Anelysis of Variance for Turnip Green Data
Bource of Variation a.f, Mean Square EMS
- 2 2 2
Plants 3 2,520115567 ¢ + 20, + 6o
e b a
Leaves/Plants 8 .328775 o + 202
Determinations/Leaves 12 .0066541667 oi

The enelysis of variance estimates can be obtained from Table 3.2
by equating the mean square column to the expected mean square
column and solving for the unknown parameters. This gives

62 = (2.520115267 - ,326775)/6 = .3652233778

8§ = (.328775 - .0066541667)/2 = .1610604167, and
o2 |

= ,0066541667.
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From these we obtain the estimates of v, and'yb es v, = 54,8864
and -'}b = 24,204,
The two-fold nested model given by (3.1) may be rewritten

using the notation of equation (2.1) as

y =Xy Ud, +Uby +e (3.2)

where

ne 2k, m, = L, my,=12, ¢c=2,k=1,

and vhere X is the 24 element unitary column vector and U, end U,
are the usuael 24 x 4 and 24 x 12 design matrices of 1's and O's
representing 'Plante' and 'Leaves within plants' respectively.

Finally the vectors of effect varisbles bl and ba are defined vy

! =
by = (011201 3P0 200030312320 33041 020 3] -

To obtain the maximum likelihood estimates for the parameters
of the mixed model several complete Runge-Kutte cycles, that is
refitting of thé polynomial epproximation, were necessary to
achieve convergence for this example. The first complete cycle

will be discussed in detail. The steps of this cycle are:

(1) All necessary constants and design matrices as well

es the §-grid are input to the computer program.




19

From the §~grid the t-grid is obtained using the initiel
triel velues T, = (39)% oT2 ™ (21@)k and the grid
increments Aotl = 5, and Aora = 5,

(2) From oy and T, initisl values of ;(eti) end gz(ori)
are obtained, For this example they are ;(ori) = 3,0121
and o%(_1,) = .0066612.

(3) Using the estimates of o and o together with the grid

obtained from the initial triel values of the 1, and the

i
grid increments the polynomial approximaetions are
obtained as described above. For the first cycle for

this example they are:.

dty 2
et .000157 - .oh7hel + .021762 + .006166l
2
- .0061952 + .0008956162 (3.3)
dra 2
2
+ .050662 - .00826162 . (3.4)

(4) The Runge-Kutte procedure is now applied to this system

of differential equations yielding, at the end of the

2

= ,00666 and
e

tirst cycle, jv, = 39.093, 172 = 24,19, 19
u = 3,0121.

1
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(5) Bince convergence has not been established another
cycle is started with the initial triel values obtained
from (4) avove.

For this example & total of three complete cycles were
necessary to establish convergence. The number of cycles required
for convergence mey vary and will always depend on the initiel
trial values for the first cycle. For this example the final
values were ;a-= 39.095, ;b = 24,1999, ;i = ,0066549 end
; = 3,0121.

It is well known theat the analysis of variance procedure
produces estimates that are unbiesed. While in some cases
maximum likelihood also provides unbiased estimates there is no
guarantee that this is the cese. In this exemple it is obvious
that ;a is biased while ;b a8 well as ;5 sre unbiaesed. Hartley
and Rao [1967] show that their procedure gives the following
meximum likelihood estimates for the balanced two-fold nested

model of example one:

u(éi ‘ a§§ ' 535) - iz (Fy00 - F...0%, (3.5)
Jk
(02 + 202) = £ (F,.. - 5...)%/8 , (3.6)
e b 14k i i

~2 - 2 ‘
6C = I (¥, = Feae) /22,  (3.7)
e 13k i3k iJ
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Table 3.3

Comparison of Meximum Likelihood and Anslysis of Variance

’ Estimetors for Turnip Green Date
' 2
o Ya Y Ce
R 54,8864 2l 20l .0066542 | K

M.L.E. FROM

Computer Program 39.095 2L,1999 .0066549

M.L.E. FROM

Teble (3.2) 39.106 2k, 20! 0066542

We see from Table 3.3 that the analysis of variance estimate

of y& and the maximum likelihood estimate of Y &¥e not the same,

: .o?,. L=

As was indicated in equation (3.5) this happens because the
meximum likelihood estiamte is biased., However, if the sum of
squares for plents in line one of Teble 3.2 is divided by U instead
of 3, thus making the analysis of varlance estimate comparable

to meximun likelihood, we see from lines 2 and 3 of Table 3.3 that
there is very close egreement between ;a obtained from the two
different methods. Since maximum likelihood gives unbiased

e estimates of Yo ané “3 there is no need for this adjustment for
comparison. In all cases where the maximum likelihood estimate
should agree with the analysis of varience estimate the two agree
to at least two decimal places and the estimates of the error

meen square agree to five places. Indeed, if a more stringent

eriterion for convergence is imposed in the computer program better
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agrecment can be attained. Although this technique of meaximum
likelihood does not guarantee a global maximum of the likelihood

function for this exemple it was in fact obtained.
3.3 Unbalenced One-Way Claessification

Ostle [1963 p. 287) cites date on the moisture content of
pine boards., Five storage conditions are studied to determine
the effect on the moisture content of white pine lumber, Table 3.4

gives the date arising from this example.
Table 3.4

Moisture Content of Fourteen Pinp Boards

8torage Conditions

1 2 3 L 5
7.3 5.4 8.1 7.9 T.1
8.3 Tk 6.4 7.5
7.6 7.1 | 10.0

8.k

8.3

The model used to analyze this dats is

Yig = e 8 *+ ey, (3.8)
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where

&, repreaenté the effect of the it§ level of storage conditions,
represents the effect of the Jth board subjected to the
th

e

17" storage condition, £ = l,ee¢y 5, J =1, 25000 B

s, ~ (0, oi) .
e ~ x(0, ci), and

&, and °1J are all mutuelly independent,
The analysis of.variance for this date is given in Table 3.5.
Teble 3.5

Anelysis ¢f Variance for Pine Board Data

Source of Variation a.f. Mean Squeres BMS
Btorage Conditions 4 2.67 ag + 2.6&05
Experimental Error 9 .80 az

~n
The enalysis of variance estimates for oi, 65 end y, are o; = .70,

Ge = .80 and ;a = .87.

Writing the model (3.1) using the notation of (2.1) we have

y=Xu+ Uibl + e

where n = 1k, m =5 ¢=1, k=1, and X is the 14 element
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unitary vector and U, the 14 x 5 desizn matrix representing

storage conditions whilst
bl = [al. 52’ &3. ah’ &5] °

For the initiel cycle for this exampie the trial value chosen

was T, = (oyl)% = (.9)‘5 and the grid increment was bty = .8?.
: Teble 3.6 gives & concise presentation of what happens during each

cycle for this example.,
. Teble 3.6

Runge~Kutta Cycles for Pine Board Date

~

Cycle Yy Polynomiel Approximation®

! 0 9 -.1518 - 1.5208, + .TLh562
X 2
l 0675 "olsh -~ 062261 - 'hhhél
M 2
; 2 402 852 = L9718, + 11582
3 669 .0080k - 7038, + .1565§

L 672 .000316 - ,6995, + .1555?

5 673 .000077 - .6998, + .1555?

*These spproximations change from cycle to cycle berause
P

of the changes in origin and width of the grid in the

T-space résulting in different t = & relations.
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Teble 3.7 gives & comparison of the analysis of variance

and maximum likelihood estimates for this example,
Table 3.7

Comparison for One-Way Classification

Yy °§
Analysis of .87 .70
Veariance
Maximum 673 «T73
Likelihood

Comparisons between maximum likelihood and analysis of
variance is difficult for unbalanced data. Even for this simplest
case of the one~way classification the likelihood equations
cennot be solved explicitly for the estimates of ai and az and
hence, Vg However, for this example maximum likelihood does not

give answers too different from those from the customary enalysis

of veriance.
3.4 Two-Fold Nested Model When One Variance Ratio is Zero

Snedecor and Cochran [1967 p. 289] cites data on pig breeding.
Five sires are to be cvaluated in pig raising. Each sire is mated
to a random group of dams, each mating producing a litter of pigs.

Table 3.8 gives the average daily gain of two pige from each

littef.
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Table 3.8

Average Dally CGaln of Two Pigs

Bire Dam Pig Gains

1 1 2.77 2.38

| 2 2,58 2.94
| ~ 2 1 2,28 2,22
| 2 3.01 2.61
3 1 2.36 2.71
§ 2 2.72 2.4
4 1 2,87 2.46
) 2 2.31 2.2k
. 5 1 2.7h 2.56
2 2,50 2.48

In this example Snedecor regarded 'sires' as & fixed effect.
However, for purposes of illustrsting the maximum likelihood
technique when one variance ratio is zero, the same model and

* assumptions areused as in section 3.2 equaticn (3.1). Table 3.9

gives the analysis of variance for this data.
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Table 3,9
Analysis of Verience for Pig Datae

Source of Veariation a.fr. Mean 8quare EMB

\ 2 2 2
Sires L 0249325 O * 20, + hoa

: 2 2

Dams~-Same 8Bire 5 11271 Og *+ eab
Pairs~-Seme Dem 10 0387 ag

e 2 2

Analyeis of, varience estimates of Oes % and o, &re

obtained as above., Since the mean square for dams within sires

is larger than the mean square for sires the analysis of variance
method gives & negative estimate for ci. The estimeate generally
used when this happens is 32 = 0, We can then obtain the estimates

of c% in two ways as follows:
(1) The estimate, 3%, can be obtained from

102 = (11271 - .0387)/2 = 037005

which is the usual analysis of variance estimate.

(2) 8ince gi = 0, end assuming this implies 6§ = 0, the
mean square for sires has the same expectation as the
mean square for dams - same sire, This suggests a

pooling of the two sums of squares which gives

235 = (,073698 - .0387)/2 = .01TL99 .
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From these two estimates 1"y and oYy 8re

1Yy, = +9562
and

2Yb s .h5217 o

Turning now to the computer program for this example the

initial trial values vere T e o¥a )k (1)*, oty © ( 7b)k =],
Abr =1 and A T = «9. From these intial trial values four
complete cycles were required to establish convergence. The final

meximum likelihood estimates are ;& =0, ;b = ,35696, ;5 = ,0387
and ; = 2,57T40. The computer program solves the equations (2.7 )

and (2,14) and since Yg = 0 the computer program solves the

equations 2a_, o, 2, 0 and ; = 0, Now Hartley and Reo
302 ayb a
(1967 p. 100-101] spell out the above likelihood equations for
the special case of a balanced two~fold nested model. For a%
have ( )
W [ B
6§=5]-&-<déd2+mqaa Dofy+ —2B !
1+rY,, l*wbﬂrva
L 4
where
aa, = |2 E(F, 0= 50002 L E(Fyee = Four)
~ +« = .o v qQ Yeee = Youo .
22 1+r?5 ij 4 i 1+rﬁ¢qry i i

T T T am—




8ince Yo " 0 this reduces to
'
R Y 4
~ ry - - .
%.c—-—{ -.-:g—- z(yia. -yi'.)z
»n 1¢ryb iJ

\

VR Y
ry - -
+ E qE (}'100 -yooo)a'.'
142y, i 1+rvy,

Y ~
bmaa’ )

'which leads 10
f

~2~2i--2
Og * Oy = =¥ ;Z(yid. - Fgo )+ ar

- - 12
x(y .o"yooo)
{ i

\
B From these it can be seen that oi should be estimated by the

'Pairs/same dam' mean square and ai

+ 205 by the 'pooled mean
square' 'Sires + Dems/Same Sire' using the 'wrong' degrees of

freedom 5 + 5 a8 & divisor. This computation yields exactiy
%
The comparisons are summarized in Teble 3.10.

= 0,35695 confirming the computer program scluiion exactly.
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Teble 3.10

Comparisons for Pig Date

2

Ya 7b ae
AV, 0 .9562 0387
AoV, 0 A521T  .0387

on; 0  .35695 .0387

M.L.E. 0 35696  .0387

# Baged on between dems sum of squares/10.

3.5 Two-Way Classification with Interaction

Bowker end Lieberman [1963 p. 362] cites date on the
variebility among ovens used in life testing various electronic
components. Three ovens and two temperatures normelly used for
life testing of electrounic componentg are selected. A single
type of component is selected and operated in en oven until it

i feils. Table (3.11) gives the date arising from this experiment

[l ey



ey e, .
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Table 3.11

Electronic Component Date

Oven ‘
1 . e 3
37 208 192
Temperature
550°F 25k 178 186
L6 187 183
. 178 146 12
600°F 179 145 125

183 b1 136

The model used for this eanelysis is

Vigp SV Y8yt Dy eyt
Vhere i = l.o.o’ A’ J = l, 2’000’ B’ k = l,o.‘. N’

s, " NID(O, ui) ,

. 2

b, ¥in(o, o) ,
e,, = NID(0, ¢°)

i3 ? Yol

~ N1D(0, ) .

¢k

T bJ, eiJ and eiak are all mutually independent.

Table 3.12 gives the analysis of variance for this data.

and a
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Teble 3.12

AOV for %lectronic Components

Source of Variation Mean Square

;

4823,17 o

13667.56

Temperature

Oven x Tempersture

+ 66°

+ 30 .

o N

02 + 30

2 2
o + 300

0%

O N

+ 90§

From Table 3,12 the analysis of variance estimates are

;c e ,323
;s = 21,54
§‘ = 11.19

32 = 69,78

The {nitial trial values selected for this example are

o5, = (r ) e 9% nm (e 12)%, = (y )R e (L)

Aﬁta. s 5, AO% = 6, Ao"c = b,

b

The polynomial approximations for the first cycle are
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4"& 2
?&"" = .0‘67 - ‘063361 + .087962 + 002663 + 039161
b 2 2

d‘&‘b 2
'a't-"' o 00398 L .98261 - 038962 + 002263 Lad 003)4961 . | ‘\‘

] 2
d‘rc 2
" -3l * .021}61 + .52262 - .62963 + .0075751

e e
- o026762 + -28563 + .0826162 - .0825163 - .01875263 .

At the end of the first cycle the revised estimates are

Y, = 9.296 , ¥ =128, y = .337.

At the end of the fifteenth cycle convergence is established and

the maximum likelihood estimates are

Y, = 9.5, v, =12.82, v, = .326,

o = 69.75 and 3 = 180.33 .

Compering the maximum likelihood estimates with the analysis

of variance estimates we see that ¥ o and vy o and aa‘and 02 agree




’( il v, 'ﬂ\' 1
- iy . - 1 |
L
p e
- 3k
!
E 3 ;
| |
r |
S z
E ' - ~ a 'S . ‘l
E quite well vwhile Yo and Y 4o not agree with Y, and Y This |
& ~ ~
| faiiure to agree occurs because e and Yy, 8re biased.,
|
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CHAPTFR 1V
DOCUMENTATION FOR THE COMPUTER PROGRAM
k.l Description of the Progrem

This chepter is concerned with e description of the computer
program mentioned in section 3.2.5. This computer program is
designed to obtﬁin the maximum likelihood estimates for the
parameters of the mixed analysis of variance model. The computer
program, which contains several subroutines, is written in Fortren IV
in double precieion for the operating system of the I.B.M, 360/65.

The general flow of the progr;m, which is illustrated in
figure U.1 can be described es follows. The main progrem reads all
date necessary to complete the problem including the dimension of
the variance-covariance matrix of the observations, the number of
variance ratios, the column diménsion of the U matrices, the number
of points in the grid for the polynomial approximetion, the initial
estimates of thé variance ratios, all design matrices and the
observation véctor Yo

The grid in the gamme spece is determined and control is
transfered to the subroutine FOFX whéré the right hand side of
(2.15) is evaluated for all grid points. Control is transferéd
back to the main program where the least squarés equations are
obtained and then subséqnently solvéd in subroutine SKINNY., Control

is then transfered back to the muin program where the optimum step




size for the Runge~Kutte procedure is determined, SBubroutine RUNGE
is entered and the solution to the polynomiel approximstion (2.16)
is determined. Control is transfered back to the mein progrem and

if convergence has been established the large semple variance-
covariance matrix, is computed, Otherwise e new ecycle is started

using as initial values the solutions from the previous cycle.

The following is a description of the subroutines used in the

computer program.
L,1.1 RUNGE

Subroutine RUNGE is & subroutine designed to solve systems of
first orde- differentiel equations. The following is & definition
of the input parameters to RUNGE.

(1) N 1s the number of equations in the system to be solved.

(2) NN is the number o K values needed for the Runge-Kutta
formula. In this casé since wé aré only concérnéd with a f£ifth
order Rungé-Kutta procédure NN is always 6.

(3) K is the step size for the procedure.

(4) X¥MIN is the lower limit for the independent varisble.

(5) XMAX is the upper limit for the independent varisble
always chosen large.

(6) KOUT is a varisble indicating how frequent aléng fhe path

of integration the current values of the variance ratios are.

outputted, For example, if KOUT has the value 5,then on every fifth
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iteration the current value of all variance ratios is printed out.

(7T) Y is the observation vector.

(8) EPIL is éolerance used to determine 1f a solution to the
system has been found.

(9) XPX is & matrix containing the estimetes of b's for the
polynomial approximation.

(10) NDEL is the number of b's.

(11) DELGAM is the grid increment in the gamma space,

(12) LEKR is en error flag indicating that the path of inte-
gretion has reached & boundry point., If LERR has the velue 1 an
error has occured and an error messege so indicates. Otherwise,

LERR hes the value of zero.

L ,1.,2 ALFSIG

ALFSIG ie the subroutine which computes the value of o and 02

for a given set of (Yl’ Yoseees yc). The input paremeters may be
described as follows.

(1) X is the full renk design mstrix for the fixed effects.

(2) N is the diménsion of thé variancé coveriance matrix of
the observations.

(3) NX is the number of columns of X.

(4) HINV is the inverse of the variance covariance matrix

cf observations.

(5) Y is the observatiion vector.
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(6) ALPHAH is the vector of estimates of all fixed effects
in the model.
(7) SIGMA2 48 the estimate of the ‘error varience,

(8) IRT is an indicetor variable so that if IRT = 1 the large
sample variance covariance matrix of the fixed effects will be

outputted,
4,1.3 FORMH

FORMH is & subroutine which computes H"l a8 given in (2.2).

This subroutine tses the fact that if Z is the matrix of Ui .

1 =1, 2,004, ¢ adjoined as

-::5-‘- 7 = M}; Ullffa‘ Ua‘l. . .!/-Tc'ucl ~(5.1)
then ‘ .
He [I+22')
and
gl =1 - 21+ 202)" 2

necessitating the inversion of only a Im X Zmi as opposed to an

i
n x n, A description of the input variables is as follows,
(1) CAM is the vector of estimates of the variance ratios.
(2) M is the vector of m, '8,
(3) N is the dimension of H.

(4) U is the three dimensional array of the design matrices
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for the random components in the model. The first subscript
indicates one of the design matrices Ui i=1,,00y ¢ the second
and third give the dimensions of that design matrix.
g (5) NC is the number of veriance components,
(6) HINV is as previously defined.
4,14 POFX | .
Subroutine FOFX is designed to compute the right hand side
of (2.1i). The input variebles to this subroutine are the same as
previously defined with the éxception of F. F is the ¢ x 1 vector
or right hand sides of (2.15).
e L1.5 FORMZ

Subroutine FORMZ is the subroutine which edjoins the Ui es
in equation (L.1) to obtain Z. The input veriebles are the same
”f} as previously defined., 2 is the matrix returned to the calling

routine,
4,1,6 GTPRD

This subroutine accepts an input matrix A of dimension
NRA % NCA and returne in C a matrix of dimension NCA x NCA

containing A'A.




4,1.7 GMPRD

This subroutine receives matrices A c¢f dimensiorn NRA x NCA
end B of dimension NCA x NCB and returns in C & matrix of dimension

NRA x NCB containing AB.
4.,1.8 GMTRA

This subroutine receives a matrix A of dimension NRA x NCA

and return. in B & matrix of dimension NCA x NRA containing A'.
L,1.9 SKINNY

SKINNY 48 a subroutine designed to (1) invert real symmetric
matrices and (2) to solve systems of simulteneous linear eguetions
with multiple right hand sides. The following is a description
of the input perameters to SKINNY.

(1) 8 is the matrix containing the coefficient matrix in
the first N columns,

(2) If a system of equations with K right hand sides is to
bé solved, the rig@t hand aidés aré placed in columns N + 1 to

N+K=Mof 8.
4,1,10 FOFXR

Using a fifth ordér Runge-Kutta it is necéssary to evaluate

the right side of (2.15) sii times "for every Runge-Kutta iteration.

The purpose of FPFXR is to receive the NDEL x NC matrix of

——




b1

coefficients and return 4in F dri/dt. ‘

Presently the program is designed to aceept & maximum of 60
dbservétions with 5 variance ratios and no more than 20 levels
within each random classificetion. Thq.maximum.length of the

alphe vector is 10.
The amount of time needed to solve & problem is difficult ¢o

estimate, Uertainly, the larger the numbér of observations the more
time wil; be needed. However, time is also & function of the
initial trial values of the varience ratios as well as the step

size for the numerical integration.
4.2 Description of Input Data

The following is a description of the control and data cards
vhich are input to the computer progranm, |

(1) Control Cerd 1 hes the format (20Ik). Table 4.1 gives

the description of card one.
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Teble k4,1
Control Card I
' Column Variable item
Neme
1=l N N i{s the total number of observations.
5=8 NC NC is the total number of variance
ratios, 71"
9-12 NX NX is the number of columns of the design
matrix for the fixed effects.
| 13-16 NPT NPT is the number of ﬁoints on the grid

containing the maximum likelihood estimates,

(2) The second card in the data set has format (20AL) and is

& header card. Any informetion the user wishes to print on the

first page of output should'.; punched in this car&.

(3) The third card contains the values of m, for

i=1, 2,i00y NC. Thie date is punched on this card using format

(20I4). Table 4.2 gives the description for this card.




B - T P S S S P

Tadle L2

Control Card III

Column Variable Item
Nane
120 M(1) M(1) is the number of colums
of Ui.
11-20 M(2) M(2) is the number of columns
10(c = 1) +1 =10 Me) M(c) is the number of columns
of Uc‘o

(4) The fourth card contains the initial trial values of
the gammas as well as the grid increments in the gamma space.
The format for this card is (8 F 10.5) with {i,..., Y, punched in
the first 1l0c¢ columns eand the grid increments punched in the last
10 ¢ columns.

Thé rest of the data follows in this ordér.

(5) The dbsign matrices for the random effects ave input in
numerical order using formet (L0I2).

(6) The design matrix for the fixed effects is input as
X transposé using format (LOF2.0). |

(7) Thé NPT x NDEL matrix A as defined in 2.4.1 is input

last using format (26F3.0).
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8ince the program returns to the first reud statement at the
end of a problem, to indicate the end of all problems the last |

cerd should contain 9999 in rolumns 1~k.




Read Header Card
Control Cards and
all data

NSRS SRS

CALL

g
CALL

FPFX

FPFX Evaluates
the right hand
side of 3r/3Yy

RETURN
MAIN {

Set up the systen
of least squares
equations

CALL

Bolve the syatem
of least squares
equations

Determine the
optimum step

gsize H

‘ooluxion to a systen

b5

RUNGE
Runge finds a

of 18% order differ-
entisl equations

Compute the Estimate
of the large sample
variance covariance
metrix

_to Start

>U regent set g
ammg or startin ,
oint for new 8 iigpnem
polynomial approx.

Figure 4.1 Flow of the Progrem
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