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COULOMB  CORRECTIONS TO THE BETHE-HEITLER CROSS 
SECTIONS FOR ELECTRON-NUCLEUS BREMSSTRAHLUNG 

SUMMARY 

The  electron-nucleus  bremsstrahlung  cross  section is computed by 
using  the  closed  analytic  expression  for  the  Born  approximation  and  a  more 
elaborate  calculation  based upon a  partial wave  expansion.  Theoretical  details 
and  a  comparison of the results obtained  by the two methods  are  presented. 

A correction  factor  based upon the  two  methods is obtained.  This 
factor is then  used  to  correct  the  Born  approximation  for  Coulomb  effects 
that  have  been  neglected  due  to  the  use of plane  waves  for  the  electron  in  the 
matrix  element. 

The  corrected Born approximation  gives  relatively  accurate  results 
at  the  lower  portion of the  energy  region ( 0 .  I to  2.0 MeV) under  investiga- 
tion.  However,  because of a  lack of data  at  the  upper  portion of the  energy 
region,  the  correction  produces  an  overestimation of the  cross  section  for 
higher  energies. 

The  correction  factor  may  be  extended  to  higher  energies  when  data 
from  the  partial wave approach  become  available.  The  limitations  at  the 
present  t ime  are  computer  storage and  long  computation  time  resulting  from 
the involved   na ture  of the partial wave method.  

SECTION 1 .  I NTRODUCT I ON 

Radiation  protection  for  man  and  sensitive  instruments  in  the  environ- 
ment of space  involves  two  primary  sources of radiation:  high  energy 
nucleons  and  the  radiations  trapped  in  the  earth's  magnetic  field.  The latter 
source,  consisting of high  energy  charged  particles, is often of the  greatest 
importance  because of its abundance,  spatial  distribution, and energy 
spectra.  

To  determine  the  radiation  that  penetrates  the  spacecraft, one must 
have  a  knowledge of the  radiation  sources  and  understand  the  interaction 

. . . . . . . . . . . ." . . . , 



of the  radiation  with  matter. Also, among  other  processes,  an  evaluation of 
the  penetration  and  transport of the  electron  must  be  made,  which  requires 
accurate  knowledge of the  basic  physical  processes  involved.  This  paper is 
devoted  to  a  study of the  basic  process  involved  in  the  loss of electron  kinetic 
energy  because of radiation  emission  in a medium. 

It is well known from  classical  electromagnetic  theory  that  whenever 
a  charge is accelerated  as  it passes through  matter,  radiation  emission will 
occur.  This  radiation is known as  bremsstrahlung  (braking  radiation).   The 
acceleration,  in  the  case of electron-nucleus  bremsstrahlung, is the  result 
of deflecting  the  path of the  electron  as it is scattered by the  repulsive 
Coulomb  field of the  atomic  nucleus. 

The  calculation of the  electron  bremsstrahlung  cross  section is a 
problem of long  standing  in  theoretical  physics.  The  exact  solution of the 
nonrelativistic  bremsstrahlung  problem  has  been  obtained by Sommerfeld 
[ 13 . Bethe  and Heitler [ 21 first formulated  the  relativistic  theory by using 
Dirac's  electron  theory  and  the  Born  approximation.  (Throughout  the 
literature,  the  synonymous  terms  Bethe-Heitler  theory  and  Born  approxima- 
tion  for  bremsstrahlung  production  are  used.  The  same  convention will  be 
followed  in  this  paper. ) Schiff [ 31 developed  a  theory  that  included  screening 
effects  due  to  the  atomic  electrons, but this  theory is only  valid  for  high 
energies  and  small-to-moderate  angles of deflection.  Bethe  and  Maximon  [4] 
have  presented  a  theory,  exclusive of the  Born  approximation,  that is valid 
only  in  the  extreme  relativistic  region  above 20 MeV. Subsequent  develop- 
ments  have  included  various  corrections  to  the  Born  approximation,  valid  in 
specialized  energy  ranges,  that  account  for  atomic  screening  and  Coulomb 
effects not included  in  the  Bethe-Heitler  theory [ 51 . 

For  incident  electron  energies  below  approximately 10 MeV, the 
Bethe-Heitler  theory  gives  incorrect  results  for  the  cross  section  over  the 
entire photon energy  spectrum [ 51 . This  inaccuracy  can  be  attributed  almost 
entirely  to  the  use of plane  waves  in  the  Born  approximation,  since  for  low- 
to-moderate  energies,  the  plane wave is distorted by the  Coulomb  field of the 
nucleus. For example,  in  the  region  near 0. 1 to  about 2 . 0  MeV, the 
accuracy, when theory is compared  with  experiment, is only  within * 20 
percent [ 51. For  incident  electron  energy  from  0.5  to 1. 0 MeV [ 61 and a t  
I. 7 MeV [ 71 , the  experimental  data  are  higher  than  the  theory  predicts, 
while at  2.72 MeV [ 81 the  theoretical   results  are  higher  than  the  experi-  
mental results. This would suggest  that  a  "transition  region"  exists  between 
the  latter  two  energies. 
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Elwert [ 91 has  developed  an  analytical  Coulomb  correction  factor, 
valid up to  approximately 0. I MeV, on  the  basis of a comparison  between  the 
nonrelativistic  Sommerfeld  theory  and  the  nonrelativistic  Born  approximation. 
However,  in  the  energy  range  from 0. I to  2.0 MeV, Coulomb  corrections  to 
the  Bethe-Heitler  theory are not available  in  analytical  form [ 5, IO] and are 
presently  estimated by  using a corrective  multiplicative  factor.  This  factor 
is the  ratio  between  the  experimental  total  radiation  cross  section  and  the 
calculated  one  using  the  Born  approximation.  Interpolation  and  extrapolation 
techniques  are  then  used when experimental  data are not available  for  specific 
energy  regions  and/or  materials. 

Exact  results  using  the  relativistic  theory  for  bremsstrahlung  cross 
sections  are  nonexistent.  However,  Brysk,  Zerby,  and  Penny [ 111 have 
attempted a formulation of the  problem  using  exact  Coulomb  wave  functions 
instead of the  plane  waves  used  for  calculating  the  matrix  elements  in  the 
Born  approximation.  This  formulation  essentially  involves a partial wave 
expansion  for  the  incident  and  scattered  electron  and  for  the photon.  Since 
the  incident  electron  energy  dictates  the  number of matrix  elements  required 
for  a solution of the  problem,  computer  precision  and  storage  limitations 
become  limiting  factors  for  higher  energies.  Therefore,  this  approach is 
practical  only  for  low-to-moderate  energies. 

The  Born  approximation  for  bremsstrahlung  cross  sections is 
available  in  closed  analytic  form  and is relatively  easy  to  calculate on 
modern,  high  speed  digital  computers,  while  the  partial  wave  approach is 
not.  Therefore, it would be  advantageous  to  develop a Coulomb  correction 
factor  to  the  Born  approximation,  valid  in  an  energy  range  that  is  higher 
than  the  energy  at  which  the  Elwert  factor is valid.  This  factor  could  be 
obtained  based upon a comparison  between  the  Born  approximation  and 
experimental  data.  However, it is desired  to  obtain a correction  factor  based 
upon two  theoretical  approaches.  Therefore,  the  correction  factor  here is 
based upon a comparison  between  the  relativistic  Born  approximation  and 
the  partial  wave  solution,  that  will be essentially  an  extension of the  Elwert 
factor  to  higher  energies. 

The  primary  energy  range of interest  is the  "transition  region. I '  

Therefore,  our  efforts  have  been  applied  to  the  area of 0. I to  2 . 0  MeV with 
possible  extensions  to  higher  and/or  lower  energies. 
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SECTION 1 1 .  THEORY 

A. The  Genera l   Bremsst rah lung  Prob lem 

The  bremsstrahlung  problem  may  be  formulated as follows:  Assume 
that  an  electron of known kinetic  energy  collides  with a thin  material  of 
atomic  number Z .  Find  the  probability  that a photon  with energy  between 
given  limits  will be emitted  into a solid  angle  measured  with  respect  to  the 
direction of the  incident  electron. A more  general   form of the  problem would 
be to  determine  the  polarization of the photon and  scattered  electron. How- 
ever,   for  purposes  herein,  it will  be  assumed  that  the  incident  electrons are 
unpolarized  and  the  polarizations of the  emitted  or  scattered  particles  will 
not be of interest .  

The  events  occurring  in  the  process are illustrated  in  Figure I. An 
electron,  incident  along  the  vector < is deflected  by  the  nuclear  Coulomb 

0 ,  

field of the  scattering  atom with the  resulting  emission of a photon  along  the 
direction  and  the  scattering of the  electron  along  direction p . -* 

The  problem of calculating  the  bremsstrahlung  cross  section  can  be 
formulated by two  principal  methods.  First,  the  Born  approximation  can  be 
utilized  with  the results limited  to  the  applicability of the  Born  approximation; 
i.e. , 27r Z/137 << Po, p ,  where p o ( p )  is the  ratio of the  incident  (scattered) 

electron  velocity  to  the  velocity of light.  This  restriction is relatively  severe 
for  low energies  and/or high atomic  numbers. On the  other  hand, one  could 
attempt  to  calculate  the  cross  section  using  exact  Coulomb  wave  functions 
instead of the  plane  waves  for  the  electron  initial  and  final states. This is a 
more  difficult  approach.  In  fact,  the  scattering  problem  using  the  Dirac 
wave equation  with a Coulomb  field  has not been  solved  in  closed  form.  The 
second  approach  could  be  approximated by using  partial  wave  expansions  with 
various  numerical  techniques. 

To  illustrate  the  difficulty  encountered  in  obtaining  the  exact  solution, 
one first assumes  that  the  range of the  force is on the  order of the  dimensions 
of the  atom.  The  number of important  values of angular  momentum  that  must 
be  included is then  approximately  b/d,  where b is the  Bohr  radius  and x 
is the  de  Broglie  wavelength of the  incident  electron  divided by 27r. It  can be 
shown [ 41 for  the  extreme  relativist ic case that b/% is approximately  equal 
to  137 Eo, where E is the  incident  energy  in m c2 units.  For  example, 

0 0 
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Figure I. Geometry of the  bremsstrahlung  problem. 

consider  an  electron  with  a  kinetic  energy of 20 MeV; this  gives 

b/d M (20/0.511) 137 , 

o r  5480 important  values of angular  momentum  to  be  considered  and 
approximately 3 x I O 7  matrix  elements  required  for  the  exact  solution. 



The  obvious  advantages  and  disadvantages of the  two  methods,  in  the 
energy  range of interest ,   are   that   the   former is simpler  but less accurate, 
while  the latter i smore   accu ra t e  but more  difficult  to  apply. 

To present  the  theoretical  results  necessary  to  obtain  the  desired 
correction  factor  to  the  Born  approximation,  one first derives  the  expression 
for  the  Born  approximation  using  Feynmanls  method [ 121 to  obtain  the  matrix 
elements.  The  Coulomb  wave  function  partial-wave  expansion is then 
formulated  beginning  with  the  separation of the  Dirac  equation  into  polar 
coordinates,  solving  the  radial  equations,  and  then  making  the  necessary 
expansions  to  obtain  a  calculable  form  for  the  cross  section. 

UNITS, SYMBOLS, AND NOTATION 

Throughout  the  following  development,  unless  otherwise  specified, 
nuclear  dimensionless  units  will  be  used  where 6 = m = c = I. The  units of 

energy  will  then  be  m  c2;  momentum,  m  c;  angular  momentum, 4; 
length,  4i/moc;  and  the  cross  section  will  be  in  units of (h/m  c)  ’. 

0 

0 0 

0 

A s  an  illustration of the  units  and a calculation of some  required 
quantities,  one  notes  that  the  total  energy  for  a  system is given  by 
E2 = m  2c4 + p2c2,  where  m is the  particle rest mass  and  p is the 

momentum.  Denoting,  for  the  present, by primes  the  energy  in  m c2 
units,  one  writes 

0 0 

0 

or  El2 = I + p2/(moc) . However,  the  units of p are   m  e ;   then 
0 

El2 = I + p f 2  . Hence,  the  momentum 
relationship p’2 = E’’ - I. 

Relativistically,  the  energy is 

E = m e 2  = m  c 2 ( i  - p o 2 )  -1/2 

0 0 

can  be  calculated  from  the  simple 

given  by 

Y 
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where p = vo/c ; v = the  velocity of the  particle.  Likewise, 
0 0 

= m v (I - p:) -'I2 = m0c po( I - p:) -1/2 -1/2 

0 0  o r  Po'= P, ( i  - P,2 )  

Thus,  p /E = p and p = p/E,  where p ( p) denotes  the  initial 

(final)  momentum, etc. (The  primes  have  been  dropped,  since  these  units 
will  be  used  henceforth unless otherwise  specified.) 

0 0  0 0 

The  following  symbols will be  used  unless  otherwise  indicated: 

p o ( 3  = initial  (final)  electron  momentum 

E ( E )  = total  initial  (final)  electron  energy 

k (Tf) = photon energy  (momentum) 

0 

p , ( p )  = ratio of initial  (final)  velocity of electron  to  the  velocity of 
light,  c 

m = r e s t  mass of the  electron, 0.5110062 MeV 

e2/6c = CY = the  fine  structure  constant  1/137.0367 

r = e2/m  c2 = classical   electron  radius,  2.82 x 10 cm 

0 

-13 

0 0 

T  (T)  = initial  (final)  electron  kinetic  energy 

eo ,  e ,  q5 are  the  angles  defined  in  Figure I 

do = the  differential  cross  section  for  bremsstrahlung 

0 

s( = h/m c = the  Compton  wa,velength of the  electron, 
0 0 3.86 x I O - "  cm 

The  following  notations  will  be  used  throughout  unless  otherwise 
indicated: 

4 

r - a  vector  (three-dimensional) 

A 
r - a unit  vector 

- - a - a matr ix  

7 
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+ 
- - a - a  matrix  vector 

p - a four  vector 

pP 
- a four  vector  component 

p y = p.y. + p4y4, i = I, 2 , 3 ,  where y are   the well-known y 

matrices;  for  example, see Reference 12, p. 39. 
P P  1 1  P 

Q>:c =the  complex  conjugate of Q 

Q = the  Hermetian  conjugate of Q 
+ 

Q = the  transpose  conjugate of Q 

B. Cross  Sect ion  for   Bremsstrah lung  Product ion 

The  cross  section  for  bremsstrahlung  production  can be calculated by 
using  the  methods of time-dependent  perturbation  theory.  The  cross  section 
for  one  photon emission  will  be  calculated  in  a  cube of side L from  the 
transition  probability per  unit t ime  for one atom,  given  a  current  density of 
one electron per  unit a rea  per  unit  time  in  the  initial state. 

&r=- d E  d Q   d Q k  , W 

J Y P  

where 

dc 

J 

d Q k =  

is the  differential  cross  section  for  the  scattering of one  incident 
electron  into  a  solid  angle  d Q and  the  emission of a  photon, 

P 
between  the  energies of E and E + d E , into  the  solid  angle 

Y Y Y 
d Q k ;  

is the  incident  electron  current  density ( J  = lv l/L3 , where 

v is the  electron  incident  velocity  and L3 is a  volume  large 

compared  to  other  dimensions) ; 

the  element of solid  angle  in  the  direction of r. 
( d Q  k =sinf30df30d@o) ; 

- 
0 

0 
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dQ = the  element of solid  angle  in  the  direction of p . - 
( d Q   = s i n e d e   d Q )  ; 

P 

and 

w = transition  probability  per unit time. 

w is given  by  the  well known expression (e.  g., see Reference 13) 

where M is the matrix element  for  the  transition of the  system  from  the 

state before photon emission  to a final  state  occurring  after photon emission 
and p is the  density of final  states  derived  in,  the  next  section. 

f i  

f 

Equation ( I) can be rewritten if  one considers  the  incident  velocity 
of the  electron.  Since P o  = po/Eo,  then v = po/Eo,  and  equation ( I) 

becomes 
0 

E 
dD = w L 3 d E   d n  d!d 

y P k .  

After substitution of equation ( 2 ) ,  one  has 

E 
do = 2~ - 0 L3 IMfi12pf d E y d O p d Q k  - 

DENSITY OF FINAL  STATES 

The  density of final  states is defined to  be the  number of states 
available  to a particle  per unit energy  interval.  To  calculate  this, first 
consider a free particle  in a cube of side L. The  conditions  for  quantization, 
found  by solving  the  Schrb'dinger  equation  for a particle in this  cube,  are 

pX 
= nX6/L, py = n 4 /L ,  and p = n d / L  ; where p is the x component 

Y z z  X 
of momentum, etc. and n  n and n are positive  integers.  This is 

written as 
x) y7 Z 
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o r  n + n + n = (pL /d i )  , the  equation of a  sphere of radius pL/r+i . 
X Y Z  

Now consider  the  octant of this  sphere  where  all  the  integer 
coordinates  n. a r e  positive.  The  number of the  quantum  states with 

momentum 5 p is equal  to  twice  the  volume of this  octant; i. e. 
1 

N e = 2 [  ($)(%n-) ( p L / ~ . h ) ~ ]  . 

The  factor of two is included to  account for the  two  possible  spin  orientations 
of the  electron.  For  the  total  number of states,   the photon must  also be 
included;  thus, 

Now the  density of final  states is 

thus , 

dP E  dk 
dE: P 

and  since - = - and - dE 
= I, then 

Y 

6 E  
pf 

= 4 ( 4 n p  (&) p P2k2 

Since  the  interest  here is scattering  into  specific  solid  angles  d 0 and  d 0 
P k’ 
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instead of the  integrated  solid  angles  implied by equation (4) , one multiplies 
by ( 47r) . Therefore, -2 

Since  only  unpolarized  incident  electrons  are of interest   here,  and  the 
polarization of the  scattered  electron or  photon is not of concern, one writes 

where  the  factor 2 comes  from  averaging  over  the  polarization  states of the 

incident  electron  and  implies  a  summation  over  the  electron  spins  in 
P P  
Y e  

the  final  state  and  a sum over  the photon polarizations. 

C. The Bethe-Heitler  Formulation of the Bremsstrahlung 
Problem 

To  present  an  outline of the  theory  required  to  obtain  the  Bethe-Heitler 
formula  for  the  bremsstrahlung  differential  cross  section, one  follows 
Feynman's [ 121 approach. It is not the  purpose of this  paper,  however,  to 
consider  in  detail  the  theoretical  aspects  underlying  Feynman's  procedure. 
The  primary  purpose is to  investigate  the  recent  calculations  utilizing  the 
other  major  approach  to  solving  the  bremsstrahlung  problem; i .e . ,  the 
partial wave  method [ I I] . It is hoped  that  this  investigation will  yield  a 
correction  factor  which  can  be  applied  to  the  Bethe-Heitler  formula  and  thus 
make it possible  to  obtain  accurate  results  more  easily  than  was  previously 
possible.  Therefore,  this  section is included  only  for  completeness  and  the 
details not included  here  may  be  obtained  from  the  literature [ 2 , 1 2 , 1 4 ] .  The 
derivation of the  Bethe-Heitler  formula  presented  in  this  paper  was,  in  part, 
taken  from  the book  by Akhiezer  and  Berestetskii [ I S ]  . 

To  illustrate  Feynman's  procedure  for  obtaining  the  matrix  elements 
directly  from a Feynman  diagram, one considers  the  following:  The  matrix 

I1 

I 



elements  in  the  momentum  representation,  for a free particle  under  some 
perturbation  potential -i e#( 2) , are found to   be [ 121 

The  various  factors  in  the  above  equation  are  interpreted  as  follows 
(Fig. 2) : The  particle  enters  the  region  at  point I and  moves  to point 3 a s  a 
free particle.  The  particle is then  scattered by  a  photon that  has  momentum 
,tfi under  the  action of the  potential -ied( si) . After this  momentum is 
absorbed by the  electron, it then  moves  to  point 4 again  as  a  free  particle. 
A second  photon scatters  the  electron  at  point 4 imparting  the  momentum J&. 
The  particle  then  moves  to  a point 2 a s  a  free  particle  with  momentum 

/132 =dl + ,c& +H2 and is described by wave  function  u2. Note that  the  inte- 
gra l  of the  matrix  elements is only taken  over  qi  since  q2 is determined 
from  the  other  momenta. 

2 

Figure 2. Feynman  diagram  used  to  interpret  the  amplitude  factors in the 
matrix  element  for  a free particle-photon  interaction [ 121 . 
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Feynman sets forth  several   rules  to be followed  in  writing down the 
matrix  element  amplitude  factors. 

Consider  the  matrix  element  given by 

The rules for  writing down the  factors in M a r e  [ 151 : 

I. Every  external  electron  line  corresponds to a  spinor 

of one of the  following  types  u (p)  , T€ (p)  - , 
u  and Ur corresponding  to  the  annihilation  and 
creation of an  electron of momentum p and  polariza- 
tion r . . .  

r -  r -  

r - 
2. Every  external photon  line  representing  a  photon  cor- 

responds  to  a  matrix d / m ,  where k is the 
(momentum)  and  e is the unit polarization  vector 

(p = e y - - - ). Every  external photon line  repre- 

senting  an  external  electromagnetic  field  corresponds 
to  a  matrix A( q)/( 2n) '. 

P 

P P  

3. Every  internal  electron  line of momentum  p  cor- 
responds  to a matrix -i/( ig+ m) . 

4. . . . . . . . . . . . . . .  
5. To  each  vertex of the  diagram  there  corresponds  a 

6 -function  containing  the  momenta of all  the  lines 
converging at this  vertex,  with  the  momenta  at  the 
two  ends of an  internal  line  being  taken of opposite 
sign. 

6 .  . . . . . . . . . . . . . .  
7.  . . . . . . . . . . . . . .  
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..... m , , . ,  , . 

8. The  numerical  factor  which  appears  in M in  front 
of the  product of the  spinors u, v, E, 7 and  the  matrices 

7, -i/(W+m) is equal to (-1) dP (27r) 4(n-F) , where 
n+l 

F is the  total  number of internal  lines, l is the 
number of electron  loops  with  an  even  number of electron 
lines. . . 

9. Integration is carr ied out  over  the  four-momenta of the 
internal  lines  representing  virtual  particles  and  over  the 
variables q associated  with  the  external  potentials, 
and  summation is carr ied out  over  the  four-dimensional 
polarizations of the  virtual  photons. 

(The  numerical  factor  indicated  in  rule 8 of Akhiezer  and  Berestetskii 

omitted  the  factor e where e is the  electron  charge  and  n is the 
number of vertices  in  the  Feynman  diagram. ) 

n 

The  factor x ( q )  is proportional  to  the  Fourier  Transform of the 
potential: 

x ( q )  = sx(x) exp( - iq .  x) d k  

and 

For example,  in  the  case of the  Coulomb  potential,  one  has 

To  illustrate  this, first assume  that one has  an  infinitely  heavy  nucleus. 
The  potential is thus  that of a  stationary  charge; i. e. , $J = Ze/r, A = 0 , 
and x (  x) = i y4 Ze/r . Substitution of x(x) into  the  integral  for x (  q)  gives 

- 
us 
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A "convergence  factor" CY must now be  introduced  to  complete  the 
integration; i. e.  , 

The  matrix  element  for  the  cross  section  contains 6 -function  that  implies 
energy-momentum  conservation.  This 6 -function  contains  the  three- 
momentum  transfer  to  the  external  field,  but  there is no  energy  transfer 
since  a  statie  field  has  been  assumed;  thus,  the  presence of the  function 
6( qo) . Therefore  write V (  q) , the  three-dimensional  Fourier  transform of 

the  potential,  as 

-c 

Under  the  assumption  that  the  Coulomb  potential of the  nucleus  acts 
only  once  (since  this is the  Born  approximation) , t he re   a r e  two  indistin- 
guishable  sequences  that  the  bremsstrahlung  process  may  follow.  The 
Feynman  diagrams  for  these  two  sequences  are  shown  in  Figure 3. In  the 
first case (Fig. 3a) , the  electron  enters  with  momentum p interacts 

with  the  Coulomb  potential of the  atom, V( q) , and  receives  an  additional 
momentum q. Later,  the  electron  emits  a  photon  with  momentum k and is 
scattered  with  momentum p. The  interaction  responsible  for  the latter 

0 ,  
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process is denoted by e, the  polarization of the  photon.  The  second  sequence 
that  the  process  can  follow (Fig. 3b) is t o  first emit  a photon  and la ter  
interact  with  the  Coulomb  potential. 

Figure 3. Feynman  diagrams  for  bremsstrahlung  production [ 121. 

Following  Feynman's  approach,  one  defines  the  matrix  element for 
bremsstrahlung  production  as M = (Tif Mu.)   or  

f i  1 

IMfiI2 /(Tif Mui)12 , 
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where M is the  matrix  element  given  in  equation  (7-b)  and uf ( ui) is the 

final  (initial)  wave  function of the  electron.  In  the  Born  approximation  these 
are  assumed  to  be  plane  waves. 

f i  

Since  the  final  states  can  be  obtained  in  two  different  ways,  the  total 
amplitude is found to be the sum of the  two  individual  amplitudes.  Thus, 
M = M( process   a)  + M( process b) . Using  Feynman’s  rules, a s  presented 
by Akhiezer  and  Berestetskii [ 151, one  writes 

and 

- 
Therefore, 

The  matrices  in  the  denominators  may  be  eliminated by noting  that 
[ - i ( p ’ + , @ + m ]   [ i ( @ + H   + m ]   = p 2 + 2 p k + m 2 = 2 p k ,   s i n c e   ( i y p ) 2 = - p 2 ,  
p2 = -m2 , and  k2 = 0 . Likewise, [ -i(g0-M +m] [i(,gf0-M +m] = -2 p k . 
Thus, 

0 

The  following  definitions  are  given  to  simplify  our  calculations [ 151 : 
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NOW, 

f, = p2 + 2pk + k2 = -m2 + 2pk + k2 2 

and 

f2 = -m2 - 2p k + k2; 2 

0 

or   s ince k2 = 0 , 
2 2 fi = -111 + 2pk 

and 

f 2  = -m2 - 2p k . 2 

G 

One further  defines 

then, 

m2Ki = 2pk, m K~ = -2p k , 2 
0 

Thus, 

Now K( q) = y4i V ( z  2n 6( go) ; then L 
I 

X 6(po+9-p-k) d3c . "* "4 

After integrating  over  d3T one  finds 

Following  Akhiezer  and  Berestetskii,  one  writes  the  differential  cross 
section  as 



pE dE dS2  d31;' , 
P 

where 

and 

Then, 

Now 

d g  = k2  dk dOk ; 

then 

Integrating  over  E  to  eliminate  the 6 -function  gives 

+ 
or  since J = IV I = I p I/E the  differential  cross  section  may  be 

writ ten  as 

-L 

0 0 0 '  

In  computing  cross  sections  for  various  processes, one first ar r ives  
at  a  cross  section  for  particles  with  definite  spin  states.  However,  in  our 
current  problem, it is assumed  that  the  incident  electrons  are  unpolarized 
and  the  spin states of the  outgoing  particles  are not observed.  Therefore, 
one  must  average  over  the  spins of the  incoming  electrons  (since  there is 
equal  probability of initial  spin  in  either  direction if the  electrons  are 

19  
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unpolarized)  and sum over  the  spins of the  outgoing  particles.  Akhiezer  and 
Berestetskii  present  a  convenient  method  to  perform  these  operations. A 
brief  outline of the  method  used  follows. 

Assume  that  the  cross  section is given by do Q! IC2 QuiI 2,  where 

u E u y4 . To find  do a! - c IU2 Qul l 2  where c implies  the 

summation  over  the  final  spin  states of only  one  sign of the  energy  and c 
is the sum over  the  initial  spins of one sign of the  energy, one first writes 

+ i 

s p i  sp2  SP2 

SP 1 

Now, 

M u1 1 = i i 2  M u1 (c2 M ul) , + 

since 
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where 

- + 
M =  Y4M Y4 

One then  notes  that ( g u )  = u u - 
OP (2 P 

;u= c u" u = s p  ( U q  . 
a a !  

a! 

Therefore, 

- E Q u1I2 
i 

s p i   s p 2  

Now, Q contains a: = y e , To sum over  photon  polarizations one 

writes Q = g G ,  Q =z, where G does not contain  the photon polarization 
e .  

P 

P P  - 
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+ 
Now 3 = y4 e y4 = -& , since 

p = e e y + i e   y 4 ; t h e n g  = e y - i e  y4 and e  e = e 2 - e 2 - e  2 = i  . - + -  
0 0 P P  0 

Thus, = -E@ and 

1 2 = “  I 
8E E Sp {$?G(i.r”’, - m) E@( ip’- m)} . 

0 

Since  definite  polarization  states of the  photon a r e  not of interest ,  
one sums over  the  two  independent  directions of e . 

I-L 

Let be  the  space  part of the photon  propagation  vector  and  the 
coordinate  system  be  chosen  such  that  the  z-axis is along  k.  Thus,  the  two 

polarization  vectors  are  taken  to  be e (I)= ( i , O , O , O )  and e 
I-L 

then, 

( 2 ) =  ( 0 ,  I ,  0,O) ; 
CL 

If in  equation ( 8-b) , one of the  polarization  vectors e is replaced 
P 

by  kp, then X =  y k = y1 k1 + y2  k, + y 3 k 3  + yak4 . However,  kl = k2 = 0 

by choice, s o  k3 = lkl , k4 = i  lcl; then y k = ( y3  +iy4)   lkl  . Therefore, 
I - 1 2  4 

P P  

and 

Sp y4 G (  ipo-m) e( y 3  + i y 4 )   ( i p - m )  = 0 . 
If one  multiplies  the  second  equation  above  by -i and  adds it to  the 

1 1 
f i rs t ,  one  obtains 

Sp  (y3G(i,po-m) G3( i@-m)  + y4G(i# 0 -m)  &4(ip-m) 
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If, in  addition,  one  multiplies  this  equation by -1/8E 0 E and  adds it 

t o  equation ( 8-b) , one  finds  the  summation  carried  out  over  the  four  values 
of j a s  follows: 

where v = I, 2, 3, 4. 

In  this  case,  one  desires  to  calculate  the  cross  section 

e4 Iv(3I2 I 
2k ( 2 ~ ) ~  [ 2 do = - - lr2 Q uiI2 1 E Ek2dk dCLk  dCL . (8-C) 1 0 P 

' a  'el 

Therefore,  the  operation of summation  over  polarization states may 
A 

be  performed by the  replacement ICz Q ui 1'  - 8E E SpF,  where 1 

0 

and 
- + (if -m) ( i f - m )  
Q = ~4 Q, 7 4  = ~4 Y, + Y ,  7 4  * 

I-1 
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The  spur of F in  equation (8-d) can  be  writ ten  as 

and 

Since  the  substitutions  p -p, p-,, q"q, and k--k in F2 will 
0 

result in  an  interchange of K ~ - V C ~ ,  K ~ - - K ~ ,  f1-f2, and f2-f1, then 

Therefore,  one  will  calculate Fi only  and  then  make  the  above  interchanges 
to  obtain F2. 

Making  the  substitutions  for Q one  finds 
P' 
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The  latter  equation is a result  of the  fact  that 

Other  useful  identities are: 

Sp (,db’g’. . . ) = 0, if an  odd number of operators is present ( 9-c) 

y4b = -b::: y4 , b = any  four  vector ( 9%) 

yP d y p =  - 2 6  ( 9-i) 

y ,dSy = 4ab 
P I - 1  

YI-l 
= 4 s  , s = any  scalar 
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To  calculate  the  spur of the  matrices,  first commute  the  y4  matrices 
s o  that  they  are  next  to  each  other by using  equation ( 9-g) . Next, use 
equation  (9-1) to  calculate y: . The sum over  the  gamma  matrices is then 
accomplished  through  equations ( 9-k) through ( 9-n) . After performing  the 
first operation,  one  has 

where 

Next,  one  considers  each  spur  separately.  First, write F,= F,, + FI2 ; 

then 

Summing  over  the  gamma  matrices,  using  equation (9-c) to  eliminate  the 
spurs  with  an odd number of operators,  and  noting  equation ( 9-a), one writes 
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Equation ( 9-h) is now used  to  evaluate  the  spurs  to  obtain 

The  next  step  in  this  calculation is to  compute F,, , where 

Following  the  same  procedure  as  before,  one  finds 

in  which  has  been  added  the  relationship  given by equation ( 9-n) . 
The  spur  can  be  computed by the  previous  method  to  obtain 

Therefore,  for Fly one  has  the  expression, 

27 
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After performing  the  required  algebra,  one  obtains 

After interchanging x i  with K~ and  E  with  E  one  obtains F2 ; 
0 

i.e. 

If l i z Q  u1 l 2  is replaced  in  the  differential  cross  section, 

' y  'e I 
equation  (8-b)  by - 8E E 

( F, + F2) , one has 
0 
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Now a = e2 , and, a s  will  be seen in  the  ensuing  section, 
IV(q) l 2  = ( Z2/q4) [ I - F( q, Z ) I 2  , where F( q, Z )  is the  atomic  form  factor. 

Since 

m 2 ~ 2  = -2(p0*  k - E  k) = 2k(Eo - po cos B o )  , 4 +  

0 

q2 = m2Ki + m 2 ~ 2  - 2m2 + 2 E  E - 2pOp , 
0 

2 = E 2 - m 2 ,  and p 2 = E 2 - m  2 , 
0 

one writes da   a s  

p2 sin2 e p sin2 e 
( 4E;-q2) + 0 

0 
( 4  E2-q2) 

(E-P COS e )  

2 p p  sin 8 s in  0 cos @ - 0 0 ( 4 E  E - q 2 + 2 k 2 )  
( E  -p COS eo)  ( E  - P  cos e )  

0 0  
0 

This is the  Bethe-Heitler  cross  section  for  bremsstrahlung  production, 
differential  in photon energy  and  angles.  The  atomic  form  factor, F( q, Z )  , 
is available  only  in  numerical  form;  therefore, one  cannot  integrate  equation 
( 13) in  closed  form.  However,  from  the  discussion  in  the  next  section  one 
can,  for  present  purposes, set F( q,  Z) = 0 . 

The  momentum  transferred  to  the  nucleus,  q,  can be written  in 
" - 4  

t e r m s  of the  angles.  Since q = p - p - k,  then 
0 
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q 2 = p n 2 + p 2 + k 2 - 2 p  k c o s 8  + 2 p k c o s 8  
s 0 

- 2 p  p (cos 8 cos 8 + s i n 8   s i n  8 cos  $I) . 
0 0 0 

The  element of solid  angle  in  equation ( 13) is 

di2 d Q k = s i n 8   d e   s i n 8 d 8 d $ I o d @  . 
P 0 0  

The  integration of equation (13) over  the  angles is straightforward 
but tedious.  (The  integration is indicated  in  Reference 16. The  result  of 
the  integration  over  angles is [ 21 

E E + p  

2 POP 

+ 

where 

E = E + k  , 
0 

EoE + POP - 
L = 2 1 n  

E = 2 1 n ( E   + p )  , 
0 0 0  

e2 
m c  E = 2 In ( E + p )  and 7 ~r . 
0 

0 
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Equation ( 15) gives  the  bremsstrahlung  cross  section  differential i n  
photon energy, k, and is the  expression  for  which  one  wishes  to  obtain a 
Coulomb  correction  factor. Note that  equation ( 15) contains k explicitly; 
thus,  a  spectrum of photon energies  for  a  given  incident  electron  kinetic 
energy is obtained. 

SCREENING BY THE ATOMIC EIXCTRONS 

Equation ( 8-a)  included a factor $(cy), where f( q) is the  Coulomb 
potential  in  the  momentum  representation. To determine  the  importance of 
including  screening  effects  in  one's  calculations,  this  factor  will  be  investigated 
further. 

One first writes  the  potential  in  the  momentum  representation  by 
performing  a  Fourier  transform  on  the  interaction  potential  for  bremsstrahlung 
[ 141: 

where is the  radius  vector  and q is the  momentum  transferred  to  the 
nucleus  in  the  process. Note that V( 1') = Vn + Ve , where V is the 

potential  resulting  from  the  nuclear  charge  and V is the  potential  resulting 

from  the  atomic  electrons. 

4 

n 

e 

If the  atom is assured  to  be  spherically  symmetric,   the  total   charge 
density  can  be  defined as 

where p is the  nuclear  charge  density and p is the  electron  charge 
n e 

density  with p (3 > 0 and p (3 > 0 . Then, n  e 
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NOW, Fn( q) = I , if pn( r )  = Z e  6 (3 ; then 
4 

27r 
Z e  

- - - r 2 d r   p e ( r )  e d  (cos e )  - i q r  cos0 

- - J d r  r2 p e ( r )  - s i n   ( q r )  
Z e  q r  

where p = q r  and jo (CL) = 1-1 . Thus, Id( q) l 2  is proportional  to 

( Z/q2) [ I - Fe] . If screening is not important  for  a  given  problem,  then 

F = O .  

s in p 

e 

To  determine  the  quantitative  importance of screening  in  our  energy 
and  atomic  number  range, one first investigates  the  important  impact 
parameters of the  process. If a  classical  approach  were  applied  to  the 
problem, one  would  investigate  whether  the  Coulomb field is screened  to  a 
great  extent  for  the  main  contributing  impact  parameters [ 141.  Since  a 
plane  wave is involved,  however,  an  exact  definition  cannot  be  given  to  an 
impact  parameter.  This is generally  true  in  quantum  mechanics. To give  a 
rough  indication,  however,  note  that  the  integral  in  equation ( 16) implies  an 
averaging  over all impact  parameters. 

If one examines  the  zero-order  Bessel  function  in  equation ( 17) 
(Fig. 4) , one  finds  that  the  main  contribution  to  the  integral  comes  from 
around  qr I I, since  for  qr > I the  function  follows a damped  oscillation. 
However,  for  qr < I, the  factor r2 in  the  volume  element is small.  Thus, 
the  main  contribution  comes when q r  = I o r  r = i/q.  This is defined a s  
b;  i. e.,  b = l/q,  the  most  important  impact  parameter  for  bremsstrahlung 
production. Now q  will  have  a  minimum  value  when  the  momentum of the 
electron,  both  before  and after photon emission, is parallel  to  the  emitted 
photon [ 121. By equation ( 14) in  the  preceding  section, it can  be  seen  that 
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If we assume  E >> i, then  E - Ip I = 1/2E or, upon temporarily  restoring 

the  units, 

+ 

0 

1 ,o 

0.6 

0.4 

h 
L 

Y = 0.2 
0 .- 

0 

-0.2 

Figure 4. Amplitude of the  radial  function of the  atomic  form  factor. 

Since  b  will  be  a  maximum when q is a  minimum, 

b =~c / s , .  = ( h / m   c )   2 E   E / ( m   c k )  max In 0 0 0 

b M % E E/k . max 0 

Thus, for a given  k/E,  bmax  will  be  greater  for  higher  incident  electron 

energies. It would therefore  be  expected  that  for  higher  energies,  the 
screening of the  Coulomb  field  by  the  atomic  electrons  will  be  important. 
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Next the  extreme  case  will  be  considered; i. e., b >> a , where 
rnax 

a is the  atomic  radius.  This is defined as complete  screening [ 141 . If the 
atom is assumed  to  correspond  to  the  Thomas-Fermi  model,   then 

-1/3 -1/3 
a = a  Z 

0 
= 137 x z 

0 Y 

where  a is Bohr’s  radius of the  hydrogen  atom.  Since  bmax >> a , one 

obtains  the  correct  order of magnitude if  one replaces  b by a, then 
0 

rnax 

137 ?i Z = 4 E E/k . -1/3 

0 0 0  

Therefore  for  incident  electron  energies, E on  the  order of 137 Z 

(k/E) , there  will  be  complete  screening. 

-1/3 

0’ 

A comparison  will now be  made  between  the  radius of the  Thomas- 

Fermi  atom ( r  = 137 Z in our units)  and  the  maximum  impact 

parameter. If b is much  greater  than  the  nuclear  radius but less  than 

the  atomic  radius  and if one  excludes  screening  effects,  the  differential 
cross  section  will not be  overestimated  significantly [ 51. 

-1/3 

T F  

rnax 

To  investigate  the  specific  conditions of interest  here ( i .  e . ,  incident 
electron  energy  from 0. 1 to 2 . 0  MeV and  atomic  numbers 13 through 7 9 ) ,  
one  follows  the  technique  used  by  Koch  and  Motz [ 51 and  compares  the 
maximum  impact  parameters  and  the  Thomas-Fermi  radius  over  a  wide 
range of incident  electron  energies.  (Figure 13 of the  review  article  by Koch 
and Motz has  an  error  in  the  ordinate  units.  The  results  are  plotted  in  units 
of io-’ cm  instead of K as indicated. ) One first calculates  b for 

these  energies  and  for  a  spectrum of photon energies  in  units of the  electron 
Compton  wavelength, K . The results of these  calculations  are  shown  in 

Figure 5 where r has  been  superimposed  for  several  values of Z .  It 

should be noted that  for  lower  energy  photons,  screening is important  (electron 
deflections  occurring  at  a  large  distance  from  the  atom).  For  incident 
electron  energies  in  the  range 0. 1 - 5 2 . 0  MeV, screening is not too 

important  except  for low energy  photons  in  high Z materials.  However,  as 

0 max 

0 

T F  

< To 
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Figure 5. Comparison of maximum  impact  parameter  and  radius of 
Thomas-Fermi  atom for beryllium,  aluminum,  and  gold. 
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can  be  seen  in  Section 111, the  Born  approximation is relatively  accurate at 
the low frequency  end of the  spectrum  when  compared  with  experimental 
results. 

Therefore,  since  the  primary  interest  here is Coulomb  corrections  to 
the  Bethe-Heitler  theory  and it has  been  demonstrated  that  in  this  area of 
interest  screening is not too  significant, it will  be  assumed  that F ( q, Z) = 0 

and  that  the  derived  correction  factor  will  correct for Coulomb  effects  of'the 
Born  approximation  only. 

e 

0. The Bremsstrahlung Problem  Using Coulomb 
Wave Functions 

In  Section 11. C  the  electron  initial  and  final  state  wave  functions  were 
assumed  to be  plane  waves.  This  resulted  in  the  Born  approximation  for 
bremsstrahlung  cross  sections.  The  theoretical  results,  at  moderate 
energies,  may  be  improved  significantly by using  Coulomb  wave  functions 
instead of plane  waves  in  the  matrix  element. 

The  second  formulation of the  problem  will  be  approached by first 
separating  the  Dirac  equation  into  polar  coordinates  (Appendix C) . The 
radial  equations  will  then  be  solved  for  a  pure  Coulomb  potential.  The  matrix 
elements  will  next  be  obtained  by  partial wave expansions  for  the  incident 
and  scattered  electron and for  the  photon.  Finally,  the  expression  for  the 
differential  cross  section  will be derived  in  a  form  applicable  to  a  computer 
solution. 

I .  THE MATRIX ELEMENT FOR BREMSSTRAHLUNG PRODUCTION 

The  Hamiltonian of the  Dirac  equation  in  the  case of electromagnetic 
interactions,   as is the  case  for 

4 

H = c  CY ( p  -r A) + - e -  
- - 

bremsstrahlung  production, is 

where A' is the  vector  potential of the  radiation  field  and p, CY , and p 
a r e  defined  in  Appendix C. 

" 

- - - - 

-H 

The  term - e p - A' in  the  Hamiltonian is the  perturbation  responsible 
for  the  transition of the  system  in  the  bremsstrahlung  process. 
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The  matrix  element  for  bremsstrahlung  production is then 

where $. ( $ ) is the  initial  (final)  electron  wave  function.  The  final  state 

wave  function may be written  (Appendix C): 
1 f  

(Throughout  this  and  the  following  section,  the  unprimed  variables  and 
quantum  numbers refer to  the  incident  electron,  while  primed  variables 
refer to  the  scattered  electron.) 

The  initial  electron  wave  function  has  the  asymptotic  form ( r  -c 03 ) 
of the  superposition of a plane  wave  and  an  outgoing  spherical  wave 

where a is the  amplitude of the  scattered  wave  and  m is the  z  component 
of spin  associated  with  the  plane  wave. 

To  obtain  a  calculable  form  for  the  initial  wave  function, one  expands 
the wave  function  into  spherical  waves.  The  expansion of $. in  spherical 

waves,  normalized  in  the  energy  scale,  can  be  shown [ 171 to  have  the  form 
1 
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where 

and s are  constants,  the  values of which are determined  from  the 

asymptotic  form of the  radial  functions.  In  the  Coulomb  case, one  finds  that 
the  difference  between  the  Coulomb  phase  shift  and  that of the  plane  wave 

is given by 6 ' and s = e (Appendix B) . For z,b one  may  write 

K 

i 6 '  
K 

K K i' 

This  can  be  simplified by taking  the  direction of propagation of the  incident 
electron  along  the  axis of quantization;  say,  the  z  axis. One first writes 
the  spherical  harmonic  as 

and from the  recurrence  relations for P one has [ 181 L Y  

P; + (x) + PLM (x) + (Q+M)  (1-M+l) Pa 
2M M-I 

( x ) = ( )  Y 

( i-x2)1/2 

where x = cos 8 . For propagation  along  the  axis of quantization, 

e = 0, x = I, and  the  recurrence  relation  becomes 
0 

0 
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PQM+I ( 1 )  + 2M PI ( I) + (Q+M) (4 "+I) PQ 
M M-I 

(I)= 0 .  
( 1-1) 

The first and  las t   terms  are   f ini te  but  the  second  term  becomes  infinite as 

x - I unless M = 0, PIM (I) = 0, o r  both.  That is, either Y = 0 o r  

M = 0 . One must  choose M = 0 (1.1 = m) ; otherwise,  the  wave  function  would 
Q 

28 + I vanish. Now [ 191 , YQo ( e ,  0) = ( 4n ) P (cos e )  ; and  since P (I) =I , Q 

After  substitution  and  simplification,  this  expansion  becomes 

Expansion " of the  Electromagnetic " Wave 

The  electFmagnetic  wave  denoted by the  vector  potential of the 
radiation  field, A- in  equation ( 18) , can  be  written  as  a  linear  combination 

of waves  that  are  circularly  polarized [ I91 . ,,One first assumes  that  the wave 
is propagating  along  the z axis.  Thus -if= k ] - i f 1  and  one  may  write 

k 

( 19-a) 

where, by  definition,  a = + I for  a left-hand circularly  polarized photon  and 

a = - I for  a  right-hand  circularly  polarized photon. 
P 

P 
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Following  the  method  used  by  Rose [ 191 , the  electromagnetic  wave 
denoted  by A’ in  equation ( 19-a) is expanded a s  follows. For a  plane  wave 

propagating  along  the  vector k one writes  the  vector  potential   as 
P * 

( 19-b) 

where N is a  normalization  factor  to  be  determined  and E is the  polarization 
vector for the  photon; i. e. , a unit vector  perpendicular  to  the  propagation 
vector k and  pointing  in  the  direction of the  electric  field  vector. 

A 

One then  writes 

with P = +I ( -1) for  right (left) circular  polarization by  definition. 

If the  z  axis is chosen  to  correspond  to k, then l = e e2 = e 
4 A A  A A  

A A  A A  
X, Y Y  

E,, = e where e e and e are   the  unit  vectors  along  the x, y,  and 

z axes. The  vector E may  then  be  written  in  terms of the  spherical  basis 
vectors [ 191 where  the  vector B in  the  Cartesian  basis  can  be  transformed 
to  the  spherical  basis, 5, by 5 = v where 

Z,  x, J ,  Z 

“-L 

- 

o r  

A 

B = -  I ( B x - i B )  . 
- G  Y 
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Therefore one writes E in   terms of the  spherical  basis 
A 

h A 
E = -P 5, y 

where 5, are the  spherical   basis  vectors 

A plane  wave  may  be  expanded  by  using  the  well known Rayleigh 
expansion;  for  an  example, see Reference 19. 

where j ( k  r) are  the  spherical  Bessel  functions  that  are  defined  in  terms 

of the  regular  Bessel  functions  as 
Q 

From  the  spherical  harmonic  addition  theorem, 

one may  express  the  plane  wave as 
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However, P (cos  0 )  = 
Q 

; then, after substitution,  one 

has 

co 
i k z  = (47r)I/2 (-i) Q (2Q+1)1/2 jQ ( k r )  YQo ( r )  . e 

A 

Q =O 

Therefore, 

A' = - P 5, N 2 (-i) [ 47r( 2Q+1)]1/2 YQo ( r )  jQ ( k r )  . A Q A 

P 
Q 

The  normalization  factor, N, will  next  be  determined  to  complete  the 
expansion. 

One first writes  the  vector  potential  representing  a  classical  plane 
wave  in t e r m s  of time  and  position; i. e . ,  

++ 
A ( x ,  t) = N n e 

A i(E * X - w t) 

where N is the  normalization  factor  and  n is the  direction of propagation. 
This  may  be  written  as 

A 

A 
' = N n  [cos (E. % - u t ) ]  . 

Following  the  method  presented by  Feynman [ 121, AR is 
- 

normalized  to  give unit probability  per  cubic  centimeter of finding  the  photon. 
The  average  energy  density is a w  . 
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Prom Maxwell's  equations, the electric field is 

NOW 1 1 3 1  = 151 fo r  a  plane  wave.  Thus,  one  may  write  the  average  energy 
density  as 

-L 

o r  

since 

@)AV 
8nc% 

However, = f i w  ; then, , and  in  dimensionless 
units 

Thus,  

-L I/' A 

A R ~ ~ ~  = (:) n [cos ( k  * x - u t ) ]  

o r  
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By taking  the  minus  exponent,  since  one is considering  the  emission 
of a photon,  and  noting  that w - k , in  our  system of units  one  has 

where. E is the  polarization  vector.  (See  equations ( 19-a)  and ( 19-b) . ) A 

Finally,  using  equation (20) and  the  above  normalization  factor,  the 
expansion  for  an  electromagnetic  wave  propagating  along  the z axis is 

4 A 1/2 
A p =  - P 5, (%) C ( -i) P [ 47r( 28 YPo ( r )  ja ( k r )  . A 

Q 

Next one  defines  the "vectorial  spherical  harmonic"  as [ 191 

m'-v A 

v yP 5 -  
V 

However, 

has  the  inverse  expansion 

This  implies  that it is possible  to  write  equation (21 )  a s  

where h is the  parity  operator, h = P , P 5 I . 
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I 

The  expanded  vector  potential  may now be  written 

%? = - P  (~)i'z(h)i/z (-1) (21+i) i /2jI  ( k r )  C o p  ThIP 
1 I l h  

1, 

To obtain a photon  propagating  along  an  arbitrary  direction,  one 
utilizes  the  rotation  operator [ 191 , which  has  the  property 

The  vector  potential  for  a  plane  electromagnetic  wave  propagating 
along  an  arbitrary  direction  may  then  be  written 

From  equation ( 18) , it is noted  that 

since L- = a p  Kp . k P=*i 

Since  the  purpose of this  section is to  derive  the  bremsstrahlung 
cross  section  differential   in photon energy,  the  angular or polarization 
details of the  scat tered  e lectron  are  not of interest.  Therefore,  one  may 
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express the  final  electron  wave  function a s  

If an  investigation of the  angular  distribution of the  scattered  electron 
were  within  the  scope of this  paper, one  would  expand I) in  spherical  waves. 

These  waves  would  behave  asymptotically a s  plane  waves  plus  convergent 
spherical  waves [ 111 with an  expansion of the  form 

f 
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Equation (24)  will  next  be  integrated  over  the  angles of the  volume 
element.  The  square of the  absolute  value of the result will  then  be put in  

the  form lM . I = M 'f: Mfi . This  expression  will  then  be  used  to  obtain f l  f l  
the  desired  differential  cross  section. 

The  integral  in  equation (24) may  be  written  as 

0 1  
since k * p 

V 

where - _a and b are   any two matrices.   Thus,  - 

One also  defines  the  radial  integrals a s  

00 

K( K ' K )  J jl ( k r )   g K T  f K  d r  
0 

m 

Y 

47 



then, 

The  quantity  in  square  brackets in equation (26) may be  expanded as 
follows : 

Now , 

From Reference 19, one has  the  expression 

then, 

V d-F $ &  
e v ) m a  

= 2(-1) 6 m, a+v 2 a+v,-v . - 

Therefore, 
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Now the  integral  over  the  angles  can be evaluated by using: 

then, 

B B  8 1 8  8 
' K  K '  ' K  K '  

x coo  C m'-m+a! , p-a! 

Thus  equation (26 )  becomes 

1 .  1 .  P Q  8 P B  B 
x c  C C - K  K '  -K K '  

pf-my  m p-a!, a! m,m+a! ' 0 0  m'-m+a! &-a! 

Note that  the only difference  between  the  angular  portion of 1, and I2 
is the  changing of K' t o  -K '  and -K to  K ; then, 
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Now, define 

I +i I 3 j  i d  
x i  ( 2 1  COm K K K  K 

e [I1 - I21 
K 

or  

I I  I I 1  I 
K -K' K -K'  C m,m+a '00 m'-m+cr ,p-a 

Therefore,  the  matrix  element,  equation  (24) , can be written  as 

( 32-a) 

x p c ~ ~  m ' P  k k  
' I h  D h  ( c p  0 0 )  A ( h L K ' p f m a )  , 
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( 32-b) 

These matrix elements  will now be  used  to find an  expression  for  the 
differential  cross  section  for  bremsstrahlung  production. 

2 .  THE DIFFERENTIAL CROSS SECTION 

Recall  from  equation  (7-b)  that  the  differential  cross  section is given 
bY 

The  density of final  states  (equation 6) included  in  equation  (33-a) is 

Pf = (k) 6 Epk '  . 
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However,  one  assumes,  for  present  purposes,  that  the photon is 
observed  and  the  scattered  electron is not observed.  Therefore,  since  the 
Coulomb  wave  functions  have  been  normalized  in  the  energy  scale,  one 
writes  the  density of f inal   s ta tes   as   (s ince p = 1 ) : f e' 

and  equation  (33-a)  becomes 

o r  

(33-b) 

The  matrix  elements,  M (  P,   m,Kf,pl)  , included  in  equation (32)  a r e  
related  to  the  matrix  elements of equation ( 18) by  the  expression 

Therefore,  the  differential  cross  section is given by [ ii] 

where 

E 
-2 0 + 

dC&p = (2n) - M ( P1mK',ul) M( PmK'p') k2 dk d(  cos e o )  d cp . 
rnK'I-1' 0 

(35) 
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Using  equation ( 3 2 )  for  M (P'mK'p')  M(PmK'p')  and  since  the 
+ 

azimuthal  angle of the photon is not of interest   here,  one writes 

To perform  the  integration  over  the  angle,  the  integration  over  the 
rotation  operators is first considered; i. e .  , 

Since  the  rotation  operators  are  independent of q one may  immediately 

write . 
0' 

However, 

Then, 

I = 2n ('I) 
pt-m-P' 

Dhl -p'+m, - P I  Dh2 pl-rn, P 
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Now, since 

and -p'+m+p'-m = O  , the  integral  becomes 

then, 

one  writes 

(The  fact  that ( -i) = i has  been  used.) 
P' -P 

The  spherical  harmonic  can  be  written a s  
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where 

are the  associated  Legendre  functions.  Thus, 

I =27r c ( 4 )  
p' -m-P' h2 j & 1 2  j 

-,uf+m,p'-m 
j 

-Ply P 

The  differential  cross  section,  equation  (36) , may  then  be  written 
(since a = e2 in  nuclear  dimensionless  units) 

For unpolarized  photons,  equation  (34)  reduces  to  do ' = 2doi, . 
(The  factor 2 has  been  included  in  the  density of final  states. ) Using 
equation  (40)  for do;, , one obtains  the  cross  section for  unpolarized 
photons 
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This  may  be  simplified by considering  the  orthogonality  relation  for the 
C-coefficients 

Therefore,  equation (41) becomes 

The  purpose of this  report is to  obtain  the  bremsstrahlung  cross  sec- 
tion  differential  in photon  energy.  Therefore,  one  integrates  over  the  photon 
angle , . Note that  the  only  angular  dependence  comes  from  the 

associated  Legendre  function;  one  thus  considers  the  integral 
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The  only  value of j 

One then  has 

that  contributes  to  the  summation  is,  therefore, j = 0 . 
the  bremsstrahlung  cross  section  differential  in photon 

energy,  for  unpolarized  incident  electrons, and  without  regard  to  the 
scattered  electrons  or  polarization of the  emitted photon 

where A" ( h l , l i , ~ ' ,  p'm) A ( A2,12, K ' ,  p'm) is given by equation (31) . 

SECTION 1 1 1 .  CROSS  SECTION  RESULTS 

A computer  program  was  developed by the  author  to  calculate  the 
Bethe-Heitler  cross  sections  for  any  desired  incident  electron  kinetic  energy, 
a  complete  spectrum of photon energies,  and  the  scattering  media of interest. 
Results  were  initially  obtained  for  incident  energies  from 0. I t o  2 . 0  MeV 
for  aluminum,  copper, tin, and  gold.  These  materials  were  chosen s o  that 
available  experimental  data  could  be  utilized  for  comparison  purposes  and 
so  that  a  wide  range of atomic  numbers would be  used  in  the  calculations. 
The results of these  calculations  are  shown  in  Figures 6 through 9. 
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Z =  y. 13 

0.05 0.10 0.15 0.m 

PHOTON ENERGY (MeV) 

Figure 6 .  Bremsstrahlung  cross  sections  differential  in photon energy  for 0 .2  
MeV electrons  incident on aluminum,  copper,  tin,  and  gold. 
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PHOTON  ENERGY  (MeV) 

Figure 7. Bremsstrahlung  cross  sections  differential  in photon energy  for 0 .5  
MeV electrons  incident on aluminum,  copper,  tin,  and  gold. 
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Figure 8. Bremsstrahlung  cross  sections  differential  in photon energy  for I. 0 
MeV electrons  incident  on  aluminum,  copper,  tin, and gold. 
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PHOTON  ENERGY (MeV) 

Figure 9. Bremsstrahlung  cross  sections  differential  in photon energy for I. 7 
MeV electrons  incident on aluminum,  copper,  tin,  and  gold. 
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The  experimental  data  for 0.2, i. 0,  i. 7, and 2 . 5  MeV were  obtained 
from  Dance, et al .  [ 71 while  the  data  for 0 .5  MeV were  obtained  from Motz 
[ 61. It is noted  that  the  experimental results of Motz give,  in  general,  a 
higher  value  for  the  differential  cross  sections  than  the  results of Dance, 
et al . ,  who attribute  this  difference  between  the  two  experiments  to  the 
presence of background  in  the  experiment of the  former.  Since  experimental 
data  between 0 .2  and i. 0 MeV were  required  for  comparison  purposes,  the 
author had t o  use the 0 .5  MeV data  from Motz as   the  only  available  data  in 
this  range. 

The  computer  program  first  written by Zerby  and  Brysk [ i l l  and 
expanded,  reprogrammed,  and  improved  by  the  Space  Sciences  Laboratory 
of NASA's Marshall  Space  Flight  Center  was  used  to  calculate  the 
bremsstrahlung  cross  sections  using  Coulomb  wave  functions.  These  results 
a r e   a l so  included  for gold  and  aluminum. 

It is noted from  Figure 6 that  for low incident  electron  kinetic  energies 
the  deviation of the  Bethe-Heitler  theory  from  the  experimental  results is 
appreciable.  This  deviation  increases  markedly  for  higher  atomic  numbers, 
as  expected.  In  fact, it can be  noted  from  Figure 6 that  the  theoretical 
( Bethe-Heitler)  cross  section  for gold is actually  below  the  experimental 
resul ts   for   t in   as   the high  frequency  limit is approached.  However,  the  Bethe- 
Heitler results  improve when compared  with  experiment a s  the  incident  electron 
kinetic  energy  increases,  as  expected. 

The  broken  lines  in  Figures 6 through 8 indicate  the  differential  cross 
sections  that  were  calculated by  using  the  correct  Coulomb  wave  functions 
and  the  partial  wave  expansions. Note the  very good agrement,  in  this  energy 
range,  between  the  experimental  results of Dance, et a l .  and  the  theoretical 
calculations. 

Table I illustrates  the  importance of including  the  Coulomb  effects 
for  the  energies  that  are  considered  here,  Table I iists the  relative  error of 
the  Bethe-Heitler  theory  because of the  exclusion of Coulomb  effects,  assuming 
that  the  partial  wave  expansion  approach  results  in  the  correct  differential. 
cross  section. 

From  the  discussion  in  Section 11. C, subsection  entitled  Screening 
Effects  by  the  Atomic  Electrons,  one  can  see  that  the  small  deviation of the 
Bethe-,Heitler  theory  above  the  experimental  values  at  the low frequency  end 
of the photon spectrum  (Figs.  6 through 8) is a  result of the  exclusion of 
screening  in  making  the  calculations.  In  addition,  note  that  the  differential 

62 



z=79 

- .  

Z=13 

TABLE i. THE  APPROXIMATE  RELATIVE ERROR O F  THE 
BETHE-HEITLER  THEORY WHEN COMPARED TO THE 

PARTIAL WAVE RESULTS 

q 
0.2 

0.5 

I. 0 

0.2 

0.5 

0.2 

0.05 

" 

" 

0.02 

" 

Relative  Error 

0.4 

0.26 

0.23 

0.18 

0.04 

0.01 

0.6 

0.48 

0.41 

0.37 

0.16 

0.12 

0.8 

0.65 

0.61 

0.53 

0.29 

0.16  

0.9 

0.76 

0.75 

0.62 

0.54 

0.43 

cross  sections  calculated by  using  the  unscreened  partial  wave  approach  are 
also  too  large  at  the low frequency  end of the  spectrum.  The  much  larger 
deviations of the  Bethe-Heitler  theory  at  the high  end of the  spectrum  are  
almost  entirely a result of Coulomb effects. This is shown  schematically  in 
Figure 10 where  the  differential  cross  section is plotted as a  function of the 
ratio of the photon energy  (k)  to  the  incident  electron  kinetic  energy  (T ) . 

0 

SECTION IV. COULOMB  CORRECTION FACTOR 

A. Extension of the  E lwer t   Factor  

The  general  approach  used  to  obtain a correction  to  the  Bethe-Heitler 
theory  was  to first calculate  the  cross  sections,  differential  with  respect  to 
photon energy,  using  both  the  Born  approximation  and  the  partial  wave 
expansion  approach. Next ,  it was  assumed  that 
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Figure 10. Schematic  representation of screening  and  Coulomb  regions. 

where 

is the  differential  cross  section  using  the  partial wave 

A expansions ; 

( 3  is the  differential  cross  section  obtained  from  the  Born 
B approximation; 
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po = po/Eo , p = p/E as  previously  defined; 

Z is the  atomic  number of the  scattering  medium; 

and 
f ( p ,  po, Z)  is the  correction  factor  to  be  derived. 

That is, it was  initially  assumed  that  the  correction  factor would be a function 
of the  speed of both  the  incident and scattered  electrons  and  the  atomic  number 
of the  scattering  material.  The  correction  factor  may  then  be  written 

To get an  indication of the  analytic  form of this  factor,  the  ratio of the 
cross  sections  was first computed  and  plotted a s  a function of the  ratio of the 
photon energy ( k )  and  the  incident  electron  kinetic  energy ( T  ) , a s  shown  in 

Figure 11. From  the  resulting  curve, it was first noted  that  the  factor  was 
similar  to  the  Elwert  factor in form  (Fig.   A-i(b) of Appendix A ) .  There- 
fore,  as  an  initial  approach, it was  assumed  that  the  factor  has  the  form 

0 

and  determined  the  function,  g( Z )  . 
Using  multiple  regression  techniques,  based upon a least   squares 

criterion,  values of g( Z)  were  obtained  using  gold  and  aluminum as  the 
scattering  media.  The  most  accurate  function,  assuming  that t he  form given 
by  equation  (46) is correct ,  is shown  in  Figure 12. The  solid  curves  are  the 
actual  correction  factors  obtained  from  equation  (45)  while  the  broken  line 
curves  are  from  the  regression  equations. It was  noted  that  the  results  are 
not very  accurate;  therefore,  this  analytic  form  for  the  factor  was  abandoned. 
It is of interest  to  note  in  passing,  however,  that,  at  an  incident  electron 
energy of 0.2 MeV, the  results of the  regression  equation  are  almost 
identical  to  those of the  Elwert  factor. 
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Figure 11. The  ratio of the  differential  cross  sections  calculated by the 
partial  wave  method  to  the  Bethe-Heitler  theory. 

B. Al ternat ive  Forms 

From  Figure 11, one can  see  that  the  curve  has  a  value of 1. 0 a t  
k/T = 0 and  has  the  general  shape of a  hyperbolic  cosine  function.  Since 

0 

a  cosh  (x/a) = a/2 [exp(x/a) + exp( -x/a)] , 
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Figure 12. Extension of the  Elwert  factor  to  higher  energies  for  incident 
electron  energies of 0 . 2  and 0 . 5  MeV incident  on  gold. 

it was  assumed  that  the  correction  has  the  analytic  form 

where y = k/T and  g(p,, Z )  is an unknown function  to  be  determined. 
0 
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A curve  f i t   for f in terms of g(p  , Z) was  f i rs t  obtained.  This 
0 

resulted  in  different  values of g for  a given  atomic  number  and  specified 
value of p . The  resul ts  are shown  in  Figure 13, where  the  regression 

0 

curve is compared  with  the actual curve. 

Figure 13. Comparison of calculated  to  actual  correction  factor. 

The  second  step  was  to  obtain  the  analytic  form of g (p  Z)  . It 0) 

can  be  seen  from  Figures 6 through 9 that  the  magnitude of the  correction 
should  increase  with Z and decrease with  increasing p . Therefore g 

was  plotted  versus  the  parameter a = p o / Z  since  the  exponents in 
0 
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equation  (47)  are  defined  as  y/g . Using  standard  regression  techniques 
[ 201, the  following  function  was  obtained: 

g(p , Z)  = 0.394 + 9.47 (po/Z) . 
0 

Slightly  more  accurate  functions  were  obtained  but  these had more 
complicated  forms,  Therefore,  since  the  linear  relationship  gave  relatively 
accurate  results, it was  used  in  these  calculations. 

The  final  form 

f = - 1 exp I 
2 

of our  correction  factor  was found to  be 

where 

g = 0.394 + 9.47 (po/Z) . 
This  can  be  written 

= ‘Osh 1 ( 0.39%Z-+-9.47 p 
Z 

0 

(48-b) 

C. Comparisons  With  Exper imental   Cross  Sect ions 

The  corrected  cross  sections  were  next  calculated,  using  equation 
(48-a)  in  conjunction  with  equation  (44),  to  make  a  comparison  with  the 
experimental   cross  sections.   The  results of these  calculations  are  shown in 
Figures  14  through 16. 

An inspection of Figures  14  through 16 indicates  that  the  corrected 
Born  approximation  gives  relatively good results  for  the  energy  range of 
primary  interest.  However, it may  be  noted  from  the  2.5-MeV  curve  in 
Figures  14  and 15 that  the  correction  factor  does not accurately  predict  the 
transition of the  Born  approximation  from below to  above  the  experimental 
results.  This  occurs  between I .  7  and  2.5 MeV and  was  discussed  in 
Section I. The  failure is particularly  apparent  for high-Z materials.  It is 
therefore  concluded  that  the  uncorrected  Born  approximation  gives  more 
accurate  theoretical  results  in  the  energy  range  above,  say, 2 . 0  MeV. 
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Figure 14. Comparison of Bethe-Heitler  and  corrected  differential  cross 
sections  for 0.2, I. 0, I.  7, and 2.5 MeV electrons  incident on  gold. 
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Figure 15. Comparison of Bethe-Heitler  and  corrected  differential  cross 
sections  for 0 . 2 ,  I. 0, I. 7, and 2.5 MeV electrons  incident on t in.  
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Figure 16. Comparison of Bethe-Heitler  and  corrected  differential  cross 
sections  for 0.2,  I. 0, I. 7, and 2 . 5  MeV electrons  incident on aluminum. 
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It may be noted from  Figures 14 through 16 that  the  corrected 
differential   cross  sections are closer  to  the  experimental  results for  lower 

. energies.  This is most  likely because of the fact that  the  partial  wave  data 
used in the  derivation of the  correction  factor  were  limited  to  lower  energies. 

SECT I ON V. CONCLUSIONS 

The  bremsstrahlung  cross  section  has  been  calculated  using  both a 
partial  wave  expansion  that  includes  correct  Coulomb  wave  functions  and  the 
Born  approximation. It was found that  the  former  approach  gives better 
agreement  with  experiment  in  the 0.1- t o  I. 0-MeV energy  range.  In  fact, 
the  Born  approximation  differs  appreciably  from  the  experimental  data, 
especially  for  high  atomic  numbers  and  lower  energies.  For  example,  the 
greatest  deviation  was found to  be  about 75 percent  for 0.2-MeV electrons 
incident on gold if  the photon received 90 percent of the  incident  electron 
kinetic  energy. On the  other  hand,  at  2.5 MeV the  Born  approximation  gave 
relatively good agreement with experimental  results. 

Screening effects due to  the  atomic  electrons  were found to  be 
insignificant  in  the  energy  range of interest ,   except  for photons  with  a low 
percentage of the  incident  electron  kinetic  energy.  Therefore  these effects 
were not included in  these  calculations. 

A correction  factor  to  the  Born  approximation  was  derived by 
comparing  the  two  theoretical  approaches.  This  factor is a function of the 
photon share  of the  incident  electron  energy  (k/T ) , the  velocity of the 

incident  electron ( P  /E ) , and  the  atomic  number of the  scattering  media. 
0 

0 0  

The  corrected  Born  approximation  was  then  calculated  for  incident 
electron  energies  from  0.2  to  2.5 MeV, and for  a  range of atomic  numbers. 

It  was found that  the  corrected  cross  sections  gave  relatively  accurate 
results  at  the  lower  portion of the  energy  region  under  investigation;  while, 
at energies  above  this  range, e. g. , a t  2 .5  MeV, the  uncorrected  cross 
sections  were  more  accurate. 

The  correction  factor  failed  to  give  accurate  results  after  the  Born 
approximation  passed  through  the  "transition  region.  This  was  most  likely 
a result of the  limitation of the  data  available  from  the  partial  wave  method. 
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A t  the  present  time,  this  method  has  an  upper  limit of around I. 0 MeV. 
However,  should  improvements  be  made  in  the  computer  program, it may  be 
possible  to  obtain a correction  factor  that is more  accurate  in  the  higher 
energy  range  than  the  present  case  seems  to  indicate. 

George C. Marshall  Space  Flight  Center 
National  Aeronautics  and  Space  Administration 

Marshall  Space  Flight  Center,  Alabama, A p r i l  27, 1970 
124-09-11-14 
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APPENDIX A 

ELWERT COULOMB  CORRECTION FACTOR FOR LOW ENERGIES 

To  cor rec t   for   the  Coulomb effects not  included  in  the  born 
approximation,  Elwert [ 91 developed a correction  factor  valid up to   an  
energy on the  order  of 0 .1  MeV. This  factor  was  derived by applying  the 
techniques of mathematical  analysis  to a comparison  between  the non- 
relativistic  Born  approximation  and  the  exact  Sommerfeld  results. It is 
therefore a semi-empirical  factor  limited  to  electrons  with  velocities  in  the 
nonrelativistic  range.  The  Elwert  factor  may  be  written as 

The  corrected  cross  section is then  obtained  by 

( 
atomic 

- - 

Figure A - I (  a)  shows  the  magnitude of this  factor  for  a  range of 
numbers, photon energies,  and  incident  electron  kinetic  energy. 

Figure A-2 illustrates  the effect of the  Elwert  factor on the  Bethe- 
Heitler differential   cross  sections and makes a  comparison with the  experi- 
mental  results  obtained  from  Reference  7. 

Note that f - I a s  k - 0. This is t rue  s ince f approaches 1 E E 
asymptotically as p - P o ;  i.e. , a s  k - 0. 

The  maximum  energy  that  can  be  radiated  in a bremsstrahlung 
collision is limited  to  the  incident  kinetic  energy, 

known as the "high frequency  (short  wavelength)  limit. A s  this limit is 
approached,  the  Bethe-Heitler  theory  breaks down since,   contrary  to 
experimental  data, it predicts a vanishing  cross  section [ 51. The  Elwert 
factor  does not correct   for   this .  To illustrate  this, one first notes  that  the 
Elwert  factor [ 51 is valid  only if 

(hv )max  o = T . This is 
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Figure A-i(b)  . Elwert  factor  for 0 . 3  MeV incident  electrons 
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Figure A-2.  Effect of Elwert  factor on bremsstrahlung  cross  sections  for 
0 . 2  MeV electrons  incident on aluminum,  copper,  and  gold. 
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(Z/137) (p-' - Po ) << I . -1 

Since p = ( E2 - and p = ( E t  - I) , one may  wri te  
0 

then  our  restriction  becomes 

-1/2 
- E  0 ( E t  - I . 

Now E = k + E by conservation of energy;  and,  since  Eo = To + I ,  
0 

then E = T + i - k. A s  the high frequency  limit is approached, k - T 

then E - i and  one has  in  the 
0 0 ,  

lim 
k - T  Z/137 [E(  1 - 1) - Eo(Eo 

-1/2 - I) -I"]<< I . 
0 '  

E - 1  

Thus,  the  second term approaches  infinity  and  the  Elwert  factor is 
not  valid at the high frequency limit ( Fig. A - I (  b) ) . 

It can be  concluded from  the  data  presented  and  the  above  argument 
that  the  Elwert  factor is valid  for  lower  energies  and  increases  as  the high 
frequency limit is approached or  the  atomic  number of the  scattering 
medium  increases.  Furthermore,  the  factor  cannot  be  used  at  the high 
frequency limit, since it increases without bound at  that  point. 
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APPENDIX B 

NORMALIZATION OF THE RADIAL  WAVE  FUNCTIONS 

The  radial  functions  for  the  continuum  states  are  normalized  on  the 
energy  scale.  This  requires  that [ 171 

First, consider  the  asymptotic  form of the  radial  functions. A s  
r - w  

The  asymptotic  form is also  given  by  letting r - 03 in  equation ( C - i i )  , 
Appendix C; i.e. 

r g  - ( E+I) 1'2 N r (2y+ i )  ( 2 p r )  +iy)  exp( i p r  +iq) 
r ( y  +i+iy) 

Now [17], 

y+iy - exp[ -i ARG I7 ( y +iy)] 
( y  +i+iy) I r ( y + i y )  I 

- 
9 

79 

I 



I 

and  since 
m- 

and 

the first term in  square  brackets of equation  (B-2a)  can  then  be  written as 

-Y 
7r 

7r 
ip r  - - 2 y  

(2pr) exp[ i( -ARG I7 (y+iy)+y In 2pr - 2 y+q)]  e I r (y+iy) I 

Define 6 = y In (2pr)  - ARG r (y+iy)+q - 2 y ; then, 
7-r 

r f - i (E- i )1 /2  N r ( 2 y + i )   ( 2 ~ r ) ~   ( 2 ~ r ) ~  (eXP[ i ( P r  -7 7r Y +6) ] 

- exp [ -i (Pr - 2 Y + 6)] } , 
7r 

o r  - - 7 ,  
7-r 

2( E-1)1/2 N I? (2y+I)  e 
I r ( y + i y ) I  

2 y  
rf - s i n   ( p r  + 6 )  ( B -2b) 

A comparison of equations (B-I) and  (B-2b)  indicates  that  these  equations 
will  be  equal a s  r - 00 , if 

TY 

Now use  the  rule  for  normalization of the  eigenfunctions of the 
continuous  energy  spectrum [ 211 
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00 P+A P 1 r 2 d r   f p  ( r )  fp , ( r )  dp' = 1 , 
0 P-A P 

The  asymptotic  form of f is given  by  equation (B-I) a s  

f = A / r  [ cos (p r  + 6 ) ]  . 

Consider  the  second  integral  in  equation (B-4) 

'7' d;' 2 - cos(   p ' r  + 6 )  = - cos (p r  + 6) s i n   A p  r 
Y r  r 

P-A P 

where  values on the  order of i / p r  and  A  p/p  have  been  neglected. 
Substitution of this  result  into  equation (B-4) gives,  after  replacing  the 
oscillating  function  cos2(  pr + 6 )  by its average  value & , 

A 2  s i n   A p r  d r = i  . 
0 

r 

This  integral  can  be found in  any  standard  table of integrals;  then, 

This is the  normalization  factor on the  energy  scale. 

If fE  are eigenfunctions  normalized on the  energy scale, and f p  

a r e  eigenfunctions  normalized  on  the  momentum scale, they  are  relatedby [21] 

4 2  

fE =(%) fp  * 
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Since E = 4p2 , then fE = p fp . Thus, on the  energy  scale,  one 
- 1/2 

1/2 
has A = (5) . This  value of A must  be set equal  to  the  value of A 

found in  equation (B-3) to  determine N, the  radial  function  normalization 
factor.  Hence, 

. ~~ 

2 N r ( 2 y + i )  e 
" 

I r (y+iy)  I 

o r  

Z e 2 E  where y = - 
P 
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APPENDIX C 

THE DIRAC  EQUATION  IN POLAR  COORDINATES 

The  bremsstrahlung  problem is described by a relativistic  electron 
in  a  central  field.  The  equation of motion  for  this  particle is given  by the 
Dirac  equation  using  the  Hamiltonian: 

and 

H $ =  E$ 

where - $ and are the  Dirac  matrices  defined  below  and - - 

Since a central  field  has  been  assumed,  the  Dirac  equation  will  be 
separated  into  polar  coordinates  using  the  method  presented by Rose [ 191. 
(In  this  appendix,  extensive use will  be  made of two  books  by M. E .  Rose 
[ 17,191 .) 

First one writes  the  gradient  using  the  identity 

where r is the  position  vector  for  the  Dirac  particle  relative  to  the  field 
source.  Since L = -i r x V , where L is the  orbital  angular  momentum 

+ " + 
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operator,  one  has 

For  any  two  vectors A' and  whose  components  commute  with  the - 
components of (r the 2 x 2 Pauli  spin  matrix, one has (c. - ( r -  - g:?. g+iz* - ( ~ x  . 

1 0 0 0  

0 1 0 0  
I E t h e  4 x 4 unit matrix (," ~ ~ :) ' - - 

For  example, 

, etc. 
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Note that 

4 -4 "c 

Consider p * A B , where A' and Ii' are  any  vectors  whose 
components  commute  with th? components of _o . One has 

"c 

- 

Now, since p3 = p3 , then 
-1 

- - - 

where  the  subscript 4 indicates a 4 x 4 matrix. 

However,, 

then, 

- -  
Let A r and B L ; then, by using a vector  identity 

" 

one has A B = 0 . + -  
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Thus, 

\ O  

4 

4 - c  4 4 4 +  - 4  

Therefore, Q * r L = i g - r x L . Now, r Q! - I = g r  , - - - - r =  

+ "  
-L 

where Q! is a 4 x 4 matrix and i g r x L = 9 c - L ; then 
+ 

=r - - r =  

" a Also, since g * V = g - - - CY - r x L  (from  equation C-2), 
i - 4 4  

- -r 8 r  r - - 

The  Dirac  equation  can now be  written  as 

Now, define  the  operator [ 191 
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o r  

- 
NOW, (c+ ;/$' = J2 , the  total  angular  momentum  operator,  with 

eigenvalues j( j + I) . 
Define  the  eigenvalues of K t o  be - K ; i. e. , 

or 

2 
Therefore,  the  eigenvalues of K2 are K' =( j + -$ 
K = *I, * Z ,  h3 ,  . . - o r  j = I K I  -- , K f 0 ; where,  for  the  upper 

spinor  (equation C-5) 
2 

I = K  if K > O  

I = -K-I if K < 0 . 

This  could  be  written  as I = j + - S( K )  , where S( K )  is the  sign of 

kappa; i.e., S ( K )  = K / I K I  . 
I 
2 

To indicate  the  dependence of j and I on K ,  the  eigenvalues of j 
by j K  and I by lK in  the  upper  spinor  are  replaced. For the  lower  spinor 

(equation C-5) ,  define 



where 

for  K > 0 

for  K < 0 

That is, 

The wave  function  for  the  Dirac  equation is written as 

U Q 
where 9 and - $ are the  two-component,  single-column  matrices  referred 
to  as thz "upperiT  and  "lower"  functions,  respectively.  The  wave  functions 
are  proportional  to  the  angular  functions, 8 and i2 , respectively, 

where  the  eigenvalue 1-1 is the z component of the  total  angular  momentum. 
K P  -KP 

The  angular  functions  may be written as a product of the  orbital 
angular  momentum  function  and  the  intrinsic  spin  function,  coupled by the 
vector  addition or Clebsch-Gordon  coefficients: 

where  the two-component Pauli  spinors are defined as rl - 
2, 2 
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One expresses  the  wave  function p a s  
"K 

where f and g are  the  radial  wave  functions. 

Substituting - $ into  equation ( C - 3 )  one has,  after  noting  that 
- 

where  the  primes  denote  differentation  with  respect  to r .  

the  Dirac  equation  becomes 
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From  equation (C-4) , 

which  implies  that 

since _K z,b = - K . 
Then 

" - - 

One  next  considers 0 and  follows  the  proof  given by Rose [ 171 
-r  KP 

t o  find the results of carrying out this  operation. Now g is a pseudoscalar 

operator s o  that j 2 commutes with g . That is, for  j 
- - r  

- r  2 ,  

since 

( a Z y  x) = iY, (IZY Y) = -ix, (SZ' ,ax) = i a  , 
-Y 

and (S  , g ) = -i cr . Now, since o has odd parity, 
z -Y = X  =r 

r 
t 
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where a2 = I , since (T = 1 . The latter follows from  the  result  

- (T A _a B = A B + i _o ( A  x B) , which  implies  that 

(T =;. r g  . r = r  - r + i g  - (r x r) = l2 + i a  (0 )  = I . Now take r along 

the Z axis; then e = 0 . The  spherical  harmonic  in  the  definition of S2 . 

becomes 

" "+  - 4 -  

=r 

- - - 
A - A A A  - - A A  

=r - - - - 
+ A 

W 

Setting m = 0 will  then  give 

- Q  & j 8 & j  
Therefore ,   a(  21 C = 2p( 28 +I)+ c . There   a r e  K K  

K O P  K 01-1 
four  possible  cases: 

One finds,  after  substitution of these  values  and  solving  for  a,  that a = -1 
for  all  four  possibilities.  Therefore, 

and,  by  the same type of argument, one can  show  that 
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After one operates on the  angular  functions  with  the  operators 
4 4  

( i + - o L )  and ur , one's set of equations  becomes - - - 

[(E-V-i)  g + f l  + f/r - K f / r ]  fi = 0 
K P  

i[ (E-V+i) f - g' - g/ r  - K g/r l  fi -KP = 0 * 

This  implies  that  the  expression  in  square  brackets  must  equal  zero; i. e . ,  

(E-V-I) + f '  + f/r - K f/r = 0 

(E-V+l) - g' - g/r  - K g/ r  = 0 . 

For  simplicity,  one  writes ui = r g  and u2 = rf;  then  equation ( C - 6 )  
becomes 

dui = "  K 
UI + (E+I-V) ~2 

d r  r 

These  are  the  radial  equations of a  Dirac  particle  in  a  central  field.  The 
boundary  conditions  required  are  that  the  resulting  solutions  must  remain 
finite a s  r - 0 and a s  r - 03 . 

The  asymptotic  forms of equation (C-7) a r e  found  by assuming  that 
the  potential  tends  to  zero  sufficiently fast for  large r ( i .  e . ,  V - 0 as 
r - 0 3 )  . 

For  large r, equation ( C - 7 )  becomes 

9 - ( E + i )  u 2 = 0  
d r  

du3 + ( E - I )  u l = O  . 
d r  
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The  genera1.solutions  for  these  equations  are 

ui = N(e-Ir + q ( E )  eAr) 

and 

where h = ( I -E ) , 2 1/2 

N is the  normalization  factor, and 

q( E)  is found from  the  condition  that  the  solutions  remain  finite 
a s  r - 0. 

Since E > I ,  let p = ( E2 - I)’/’ so that h = i p ; equation (C-8) 
then  becomes 

where  p is the  momentum of the  particle  and 6 is the  phase  shift  that  will 
depend upon the  nature of the  external field of the  particle. 

Following  the  method of Rose [ 171 , one lets V = -ze/r Z / r  in 
equation ( C-7) ; i. e. , 

and 
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After  the  substitutions 

and 

x = 2 i p r (where $1 and @ 2  are functions of x) are made, 
one  then  has 

and 

i ZE 
dx x 

After taking  the  complex  conjugate of these  equations, i. e. 

and 

one  can see by inspection  that  the  two sets of equations  are  equal i f  
$1:: = $2 . After eliminating 5b2 one  has 

+2" x d x  * - [ $ . ( + + - - ) + + f ] $ , = O  i Z E  (C-9) 

where y = [K' - Z 2 ]  'I2 . 

94 



1 
Let M = x 2  @i to  get  equation (C-9) into  the  standard  form of 

- 

Whittaker's  equation 

Equation (C-9) becomes 

This  equation  has  the  regular  solution  at r = 0 : 

where  y = ZE/p  and F (y  + 1 + iy, 2y + i, x )  are  the  confluent 
hypergeometric  functions [ 221 

a a (a+ i )  x2 m a  m m x  + . . .  = - - C m! F ( a , c , x )  = i + - x +  
C c(c+i) 2! 

- 
m=O m 

- 1 

Now, M = x  ; then 

G l = x  e F ( y  + 1 + iy, 2y + i, x )  y -x/2 

= N ( y  + iy) eiq (2pr)  e F ( y  + i + iy, 2y + i, 2ipr) 

- N ( y + i y )  e ir7 (2PIY @ (r)  Y 

y -ipr 

where N is the  normalization  factor. Next, the  phase of 7 is chosen  such 
that G2 = @: ; this  requires  that [ 171 
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This  equation  can  be  evaluated  by  using  Kummer's  formula 

and 

xF(a + I, c + I, x) = C [F(a  + I, cy x )  - F ( a , c , x ) ]  . 

One finds  that 

2iq K - iy/E e = -  
Y + i Y  

(C-IO) 

The  radial  wave  functions  may  then  be  written 

rf = i ( E  - N(Xpr) '((y+iy) exp(-ipr + i q )  

x F(y+l+iy, 2y+i, 2ipr) + complexconjugate} , 

where N is the  normalization  factor  and q is the  phase  determined  from 
equation ( C-IO) . 

The  solutions  are  normalized  in  the  energy  scale. If $E and $ E'  
are  solutions  corresponding  to  energies  E  and  E',  then  one  requires  that 
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From Appendix B, equation (B-5), the  normalization  constant is 

TV 

Therefore,  the  radial  wave  functions  for  a  particle  in a Coulomb field 
normalized on the  energy  scale,  and  with  energy  corresponding  to  the 
continuous  energy  spectrum,  are 

(C- i2)  

x ( y  + iy) F(y + i + i y ,  2y +. I, 2ipr) - C . C . }  
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