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Abstract 

Transient exhaust pressure h is tory  shows a 
large i n i t i a l  pressure pulse (30 psec wide) follow- 
ed by lower order signals. The var ia t ion of this 
pulse with source parameters and duct position is  

lo4 H/m2 and s t a t i c  pressures a re  about lo2  N/m2. 
A t  a fixed position, the pulse increases with power, 
and/or magnetic f ie ld .  Generally, the pulse occurs: 
about 10 microseconds after plasma l i g h t  arrives, 
about 10 t o  50 microseconds before plume current 
arr ives  and Faraday cup signals occur. 
neutral  pulse dominates the  time integrated pres- 
sure f o r  approximately 100 microseconds: 

+ discussed. The peak dynamic pressures are of order 

5: 

This narrow 

Introduction 

In the  l i t e r a t u r e  on MPD-ARC thrusters ,  dis-  
t inc t ions  are made between s ta r t ing  t ransients ,  
quasi-steady conditions, and steady, D. C. l ike ,  
operation. 
cause the dominant physics of the  processes might 
well be d i f fe ren t  f o r  each case. Most investiga- 
to rs  have not examined the s ta r t ing  t ransients  of 
MPD ARC thrusters. It has been assumed t h a t  quasi- 
steady operation (equivalent t o  steady operation 
f o r  much of the pulse time) could be achieved i n  a 
time of the  order of seconds. T h i s  assumption 
seemed t o  be jus t i f ied  by experimental observations, 
plasma l igh t ,  probe t races ,  or terminal character- 
i s t i c s  t h a t  appeared t o  be quite steady, at l e a s t  
f o r  the 100 microsecond time periods or so des- 
cribed i n  Refs. 1 t o  4. Brief qual i ta t ive des- 
cr ipt ions are made of the  s ta r t ing  t ransients  as 
depicted i n  plasma l i g h t  traces, (4) probe traces, (3) 
and terminal character is t ics .  (1-3) 

These dis t inct ions are  important be- 

Quasi-steady s ingle  pulse operation has been 
examined i n  more d e t a i l  at high power leve l  since 
thrus te rs  having such pulses have possible applica- 
tion. Also, i f  “steady“ operation could be a t ta in-  
ed f o r  a s ingle  pulse then very high power opera- 
t i o n  can be simulated without the  problems of anode 
cooling and large power supplies needed f o r  steady- 
state operation. Studies a t  Princeton Univer- 
sity,(5-9) ban l e y  Research Center,(lO) Lewis Re- 
search Center, 74,111 University of California, 
San Diego,(Z,12) and a t  Avco Corporation(l3) all 
examined d e t a i l s  of quasi-steady operation (100 t o  
200 9sec duration). 

In this paper r e s u l t s  of t ransient  pressure 
measurements i n  the  exhaust are  presented. 
time-varying nature of exhaust pressure ( for  100 
psec) is discussed. 
t ransient  pressure and later pressure f o r  the  100 
t o  200 microsecond test times is  described. The 
significance of these and other measurement f o r  
understanding the physical processe3 i n  high power 
MPD-ARC thrusters is  evaluated. 

The 

The re la t ion  between s ta r t ing  
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Apparatus 

Capacitor Bank 

The thrus te r  was energized by a 10 ki lojoule  
capacitor bank. 
described i n  Ref. 4.. After the bank switch w a s  
closed, arc  current was allowed t o  develop t o  i t s  
peak value (21psec) .  
closed, forcing current t o  decay monatonically with 
time. The L/R decay time ranged from 250 t o  
350 microseconds depending on arc resistance. This 
allowed an almost l inear  decay of arc current f o r  
100 microseconds a f t e r  crowbarring time. It is.dur- 
ing this time t h a t  the data  was gathered. 

Details of the  capacitor bank are  

Then a crowbar switch w a s  

Plasma Thruster 

A photograph of the single-shot th rus te r  is  
shown i n  Fig. 1. The arc chamber i s  hidden from 
view a t  the center of the toroidal  dewar f o r  the  
superconducting magnet. 
ply the  auxi l iary magnetic f i e l d  f o r  the  acceler- 
a tor .  
in to  a 15 centimeter inside diameter evacuated 
glassware system. 

The magnet is  used t o  sup- 

Plasma flows t o  the r i g h t  from the  thrus te r  

F’rior t o  operating the  thruster ,  the  magnet 
dewar was f i l l e d  with l iquid helium, and a f t e r  it 
became cold the  magnet w i r e  became superconducting. 
Then the magnet w a s  energized t o  a given magnetic 
f i e l d  se t t ing  (0  t o  2.0 T) and maintained a t  t h a t  
condition f o r  t h e  tes t ing  period. The capacitor 
bank was charged next. It was not switched u n t i l  
propellant had properly f i l l e d  the  arc chamber 
(650 psec) . For operational convenience, the cath- 
ode w a s  not preheated f o r  the experiments described 
here. 

Nitrogen propellant w a s  introduced in to  the 
arc chamber by a high speed gas valve t h a t  w a s  op- 
erated by  an electromagnetic actuator, All t e s t s  
were run a t  7 g/sec nitrogen. The t ransient ,  cold 
flow, gas pressure i n  the arc chamber w a s  measured 
by a commercially available piezioelectr ic  pres- 
sure transducer i n  a previous experiment. T h a t  
pressure and the o r i f i c e  equations f o r  steady flow 
were used t o  calculate  the mass flow r a t e  f o r  a l l  
the t e s t s  of t h i s  report. From the  t ransient  pres- 
sure records it w a s  found t h a t  s table  flow occurred 
after 650 microseconds. The arc w a s  s ta r ted  a t  t h a t  
time. Thereafter, a t ransient  plasma flows f o r  a 
few hundred microseconds i n t o  t h e  evacuated glass- 
ware section. 

A cross-sectional view of the  arc  chamber is  
An i ron f i l i n g s  map of the  m a g -  shown i n  Fig. 2. 

net ic  f i e l d  is  a l so  shown. The cathode i s  a tung- 
s ten ribbon measuring 1 cm wide, 2 cm long, and 
1 nrm thick. The anode is  a 4.2 cm inside diameter 
copper ring. 



A sequence control ler  actuates gas puff in-  
jection, delay f o r  gas dis t r ibut ion,  bank switch 
closure, crowbar switch closure, and then da ta  
gathering "start" times. The system can be recy- 
cled every two minutes. A s e r i e s  of 500 separate 
shots were gathered f o r  this report. 
gathering, a similar number of shots were made t o  
proof the  instruments and se lec t  in te res t ing  da ta  
areas. 

Pr ior  t o  d a t a  

Instrumentation 

Piezoelectric pressure probe. - The possibi l i -  
t y  of carrying out detai led diagnostics of pres- 
sure i n  t rans ien t  plasma dischar es has been con- 
sidered by one of the  authors(147 and the optimum 
effectiveness of piezoelectric transducers w a s  de- 
termined. The d,esign and response of unique high 
performance transducers f o r  this application has 
also been reported. (15) 
es a piezoelectric ceramic element supported on a 
s t ructure  of backing rod i n  an insulated housing 
(f ig .  3). Based on e a r l i e r  investigations of the 
discharge environment (4) two probing uni t s  were 
fabricated, both using ET-SA (Clevite' Corp. ) 
piezo-ceramic : a low frequency, high s e n s i t i v i t y  
probe with sensing surface 1.25 c m  i n  diameter, 
0.d. 1.9 cm, 60 *V per N/m2 output, and 2.5 psec 
risetime; a high frequency, low s e n s i t i v i t y  uni t  
with 0.64 cm sensing diameter, 1 .25  cm o.d., 15 pV 
per N/m2 output, and 0.4 psec risetime. In each 
case the sensing surface w a s  e l e c t r i c a l l y  insulated 
by a th in  layer  (-0.1 cm) of epoxy with a definable 
s ignal  delay time of -0.2 ysec. T h i s  f igure com- 
bined with the  specified risetinre values is an 
order of magnitude smaller i n  time than the event 
being considered. The output of these uni t s  w a s  
cal ibrated i n  a simple shock tube fabricated f o r  
t h a t  purpose, w i t h  a 2.85 em diameter i.d., 1.0 m 
long dr iver  and driven sections. 
response with 1.0x.105 N/m2 (15.0 psia) a i r  driven 
by 42.0 ps ia  helium is  presented i n  Fig. 4. Con- 
cerning the  low frequency response, a calculated 
RC t i m e  constant of 650 psec f o r  the probe system 
w a s  ver i f ied experimentally i n  the shock tube 
t e s t s .  

This probe concept u t i l i z -  

Low frequency 

For the  probing uni t s  ins ta l led  i n  the MPD- 
ARC discharge apparatus, an emitter follower 
(f ig .  5) w a s  u t i l i zed  t o  avoid excessive s ignal  
attenuation. In  order t o  more precisely define 
trends i n  the  pressure data, an electronic low-pass 
f i l t e r  (Spectrum Analog Electronic F i l t e r  Type 
H-18) was used at times; corrections f o r  s igna l  
delay and attenuation could be accounted f o r  rea- 
sonably accurately i n  those cases when ut i l ized.  
Figure 6 shows a comparison of typ ica l  f i l t e r e d  
and unfi l tered pressure traces. 
tinguish real gas-kinetic pressure s ignals  from 
spurious response, several s teps  were taken. A 
"dummy" probe s t ructure  without act ive sensing ele- 
ments w a s  used t o  evaluate electromagnetic pickup; 
this proved t o  be negligible on the  scale  of the 
data  signal. Extraneous response due t o  acceler- 
ations i n  the thruster-probe s y s t e m  w a s  evaluated 
with an act ive sensing probe, capped t o  deny con- 
tact  with the  plasma. 
measurable and of lower order; they were recorded 
f o r  every da ta  condition. 
were then subtracted from records k i t h  plasma con- 
t a c t  t o  obtain gas-kinetic pressure values. 
order t o  control s urious stress osc i l la t ions  i n  
t h e  probe body,(lsf) a s o f t  rubber co l la r  of 3.2 cm 

In order t o  d is -  

Acceleration s ignals  w e r e  

These t a r e  readings 

In 
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diameter w a s  a t  times f i t t e d  over the low frequency 
probe body. Interference e f fec ts  proved t o  be neg- 
l ig ib le ,  allowing a more precise determination of 
plasma pressure values. 

Rogovsky loop. - A glass  tubing enclosed 
Rogovsky loop, with 2.5 cm inside diameter sensing 
area, was  used t o  measure gross currents flowing i n  
the  discharge that threads the loop. The loop w a s  
aligned so that its leading edge w a s  positioned at 
the  same axia l  s ta t ion  and usual ly  at a duct radius 
position equal but opposite t o  the pressure probe 
location. Thus, simultaneous loop and pressure 
t races  could be gathered. 
t i v e l y  integrated and then presented on an osci l lo-  
scope. The act ive area of the  loop w a s  normal t o  
the  duct radius, it thus intercepted r a d i a l  compo- 
nents of the plume currents. Calibration w a s  ac- 
complished by passing a w i r e  carrying a t rans ien t  
current through both the  loop and a PEARSON CURRENT 
WSFORMER used as a secondary standard f o r  ca l i -  
brations. Typical cal ibrat ion traces are shown i n  
Fig. 7. These cal ibrat ion t e s t s  show that the s ig-  
na l  amplitude and waveshape are  well preserved .for 
the time durations of these t e s t s .  

The loop s ignal  was ac- 

Faraday cup probe. - A Faraday cup probe was 
used t o  cd l lec t  ions from the streaming plasma. It 
w a s  biased with a 45 V ba t te ry  so as  t o  repel  elec- 
trons. Various pin holes could be used. T h i s  
probe was used i n  much the same manner as t h a t  d i s -  
cussed i n  Ref. 4, except t h a t  a b e t t e r  attempt w a s  
made t o  keep not only the electronics  but the meas- 
uring oscilloscope floating. The amplifiers were 
also much fas te r .  1.0 microsecond response times 
were achieved t o  obtain b e t t e r  "a r r iva l  time" de- 
tails of the  ions streaming i n  the exhaust. 

R e s u l t s  and Discussion 

Cold Flow Total  Pressure 

The low frequency piezo-pressure probe was 
used t o  measure "cold" gas flow i n  the  duct. The 
propellant w a s  injected without s ta r t ing  t h e  arc. 
A t  the  da ta  gathering times used i n  this report, 
the  cold gas propellant t o t a l  pressure is  two or- 
ders  of magnitude l e s s  than the measured pressures 
f o r  the powered case. Specifically, at arc  i n i t i -  
ation time the  t o t a l  pressure magnitude on axis at 
a distance downstream from the anode face of 5 cm 
( Z  = 5 cm) is  340 N/m2, w h i l e  f a r ther  downstream, 
on axis, a t  Z = SO cm, the  t o t a l  pressure sensed 
is  6 N/m2 (see f ig .  8). 
indicate s t a t i c  pressures are  approximately one- 
ten th  of the t o t a l  cold gas pressure. 
f ront  noted i n  Fig. 8 w a s  found t o  propagate a t  
730 m/sec, as compared with an estimated expansion 
speed f o r  nitrogen of 1770 m/sec. 
discharge i n i t i a t e s  a t  a region of high gas densi ty  
i n  the  arc chamber. The neutral  gas t o t a l  pressure 
decreases rapidly downstream of t h e  chamber, t o  the 
extent t h a t  it is approximately at vacuum condi- 
t ions  a t  30 cm from the anode, the  da ta  gatheripg 
region. 

Supplementary measurements 

The pressure 

The e l e c t r i c a l  

Figure 9 shows typica l  5-trace overlays of the  
t o t a l  pressure s ignals  f o r  two d i f fe ren t  peak arc 
current cases, 7.4 kA and 13.4 kA. For both cases, 
low frequency pressure probe s ignals  all show one 
common feature, the  t o t a l  pressure appears as a 



single  pulse, 18 t o  20 psec wide, w i t h  a t  l e a s t  an 
order of magnitude lower pressure thereaf ter  f o r  
100 t o  200 psec. T h i s  l a t e r  low pressure is  not 
measurable with the  present probe. The probe is 
somewhat acceleration sensi t ive and this a l t e r s  the 
later par t  of the waveshape i n  a manner t h a t  is 
predictable but complicated. Consequently, only a 

* qual i ta t ive interpretat ion w i l l  be given. In all 
t h e  da ta  t o  follow, only the peak pressure signal 
values w i l l  be discussed. 
sure probe has a r e l a t i v e l y  large sensing area. 
check of the  e f fec t  of probe area was made by ex- 
amining t h e  exhaust w i t h  t h e  high frequency pres- 
sure probe (one-quarter t h e  area of the  low f re -  
quency probe). No differences i n  pressure ampli- 
tude o r  waveshape were noted. 

The low frequency pres- 
A 

The f ive- t race overlays of pressure serve t o  
i l l u s t r a t e  the avount of shot-to -shot da ta  sca t te r .  
The 7.4 kA case shown i n  Fig. 9(a) shows severe 
scat ter ,  even though the  m a s s  per shot is  held t o  
within 10 percent variation. A t  higher arc  current 
( f ig .  9(b))  t h e  sca t te r  is  not as serious. T h i s  is 
generally the  case. The da ta  of the  replaining f ig-  
ures are  5-shot averaged t o  smooth this scat ter .  

The other set of simultaneous t races  i n  Fig. 9 

These s ignals  provide an indication of t h e  
show Rogovsky loop s ignals  at the same Z loca- 
t ion.  
gross current i n  the plume t h a t  extends out from 
the thruster. The point t o  be noted here is the  
fac t  that the  plume current occurs over 20 psec 
l a t e r  than the  pressure pulse. This point w i l l  be 
discussed l a t e r .  

The pressure probe was also oriented so as t o  
sense t rans ien t  s t a t i c  pressure. 
t h i s  pressure was  approximately an order of magni- 
tude less than t h e  corresponding t o t a l  pressure 
for a part icular  s ta t ion  and thrus te r  condition. 

Phenomenoloa 

It w a s  found t h a t  

The dominant pressure phenomenon i n  the ex- 
haust f o r  the  f i r s t  100 t o  200 microseconds is the  
narrow transient  t o t a l  pressure pulse. The second 
most important observation r e l a t e s  t o  the sequence 
of events occurring i n  the  exhaust at  a par t icular  
s ta t ion.  Rogovsky loops, Faraday cup probes, pres- 
su re  probes, and r e s u l t s  described i n  an e a r l i e r  
paper on laser scat ter ing diagnosis of the  exhaust 
were used j o i n t l y  t o  determine this sequence of 
events. 
t i c u l a r  s ta t ion.  

The sequence w i l l  be described at a par- 

Exhaust l igh t .  - Exhaust l i g h t  i s  the earliest 
s ignal  t o  be observed a t  a specif ic  s ta t ion  i n  the  
duct. In Fig. 10, the  sequence of events is  dem- 
onstrated with simultaneous records of s t a t i c  pres- 
sure and exhaust l i g h t  at Figure lO(a) 
is f o r  a 7.4 kA peak arc current and 2.0 T magnetic 
f ie ld ,  and Fig. 10(b) is  f o r  13.4 kA and 1.0 T. 
The waveshape i n  Fig. 10(b) is  an ear ly  spike, a 
pedestal ( las t ing  about the 40 psec) and a decaying 
section. T h i s  sequence w a s  discussed earlier i n  
Ref. 4. 

2 = 20 cm. 

Pressure pulse. - Following the  l i g h t  f ront  is  
a narrow pulse of s t a t i c  pressure, .from a few t o  
t e n  microseconds l a t e r  depending on thrus te r  param- 
eters (f ig .  10). A gas-kinetic ( t o t a l )  pressure 
pulse occurs near the  time of the  s t a t i c  pressure 
pulse. This pulse is  shown i n  Fig. 11 f o r  the  

Auxiliary 
magnetic 

T 
f ie ld ,  

0 
0 

1.0 
1.0 

2.0 I 2.0 

same conditions as i n  Fig. 10, but a t  Z = 30 cm. 

Ion arr ival .  - Faraday cup s ignals  (a l so  shown 
i n  f i g .  11) indicate  ion  a r r i v a l  at t i m e s  later 
than the  pressure pulse. Table 1 lists the  t i m e  
difference between i n i t i a l  occurrence of t o t a l  
pressure pulse and i n i t i a l  occurrence of Faraday 
cup s ignal  ( ion arrival) as the  auxi l ia ry  magnetic 
f i e l d  parameter i s  varied. 

TABLTC 1 TlME DIFFEEiENCE BETWEEN TOTAL 
FRESSURE AND I O N  ARRIVAL 

Peak arc 
current, 

kA 

7.4 
13.4 

7.4 
13.4 

7.4 
13.4 

79 
59 

72 
64 

65 
56 

Arrival t i m e ,  

95 
65 

145 
120 

110 
85 

- 
a, 
Vsec 

- 
16 

6 

73 
56 

45 
29 - 

It lists the data  f o r  two peak arc  current cases. 
A n  independent check of this behavior w a s  made ear- 
l i e r  and b r i e f l y  described i n  Ref. 4. In t h a t  re f -  
erence laser scat ter ing diagnosis showed no signi- 
f ican t  e lectron number density u n t i l  the  Faraday 
cup s ignal  a r r i v a l  t i m e .  Thus Faraday signal ar- 
r i v a l  time (or electron number density i n i t i a l  
occurrence) heralds the a r r i v a l  of plasma at t h a t  
s ta t ion,  much l a t e r  than exhaust l i g h t  and the  t o t a l  
pressure pulse. 

Plume currents. - The Rogovsky loop s ignals  
indicate current conduction i n  the exhaust. 
n i f icant  current arr ives  much l a t e r  than the pres- 
sure pulse. T h i s  is  dramatically evident i n  Fig. 9 
f o r  Z = 25 cm. The resu l t  is much the  same at  
30 cm. Within the  accuracy of these tests, the in-  
tense plume current onset i s  coincident with i n i t i a l  
Faraday cup s ignals  f o r  a par t icular  s ta t ion.  

Sig- 

Within t h e  l imitat ions of t h e  several instru-  
ments used i n  gathering the data, the sequence of 
events at a par t icular  s ta t ion  can be summarized as: 

(a) Exhaust l i g h t  arr ival ,  
(b) Narrow t o t a l  (and s t a t i c )  pressure pulse, 

arriving, a f e w  microseconds later, 
(c)  Ion arrival, or plasma arr ival ,  tens  of 

microseconds l a t e r ,  
(d) Plume currents i n i t i a t i n g  a t  about the  

same time as (c) ,  and 
(e) Decaying plasma conditions a f t e r  (c ) .  

This sequence is  much l i k e  t h a t  which occurs i n  a 
t ransient  plasma gun. 
veloci ty  current sheets ( o r  plumes) and b e t t e r  
s t ruc tura l  plume def ini t ion.  
appears t o  a c t  as a plow pushing neutral  gas ahead 
of it. T h i s  large amplitude neutral  gas pulse then 
dominates as the  important component of impulse f o r  
at least 100 microseconds. That is, the  thrus t  
during t h i s  period i s  mostly due t o  a t ransient  i m -  
pulse ra ther  than the steady "blowing" provided by 
steady-state thrusters .  The pressure measurements 
show t h a t  the  time integral  pressure is  dominated 
by a t ransient  pulse f o r  at least the period of 
100 microseconds or so. 

However such guns have higher 

The current plume 

T h i s  occurs even though 
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non-changing, or 'slowly-$hanging, terminal charac- 
t e r i s t i c s ,  l i g h t  signals, or  probe s ignals  might 
have suggested the experiment w a s  i n  a par t ly  
steady or quasi-steady realm. Thus, is a megawatt 
pulsed l e v e l  MPD-ARC thrus te r  is  t o  simulate a 
steady MPD-ARC thruster ,  then it w i l l  have t o  be 
operated f o r  longer pulse durations. 

The t i m e  constant assoeiated with at ta ining 
an impulse per shot t h a t  i s  dominated by steady 
"blowing," ra ther  than t rans ien t  pulse is  c lear ly  
longer than the  experiment times of t h i s  report. 

Total Pressure Profi les  

In  this sect ion the  amplitude of the  t o t a l  
pressure pulse is  described f o r  various auxi l iary 
magnetic f i e l d  cases and a t  various ax ia l  and ra- 
d i a l  s ta t ions.  Only 5-shot averaged peak values of 
the  pulse are described. The peak total pressure 
variat ion with applied magnetic f i e l d  i s  considered 
pr ior  t o  prof i le  effects .  T h i s  var ia t ion is  shown 
i n  Fig. 1 2  for  the  case where the pressure probe 
is  located at r = 0, Z = 25 cm, and the 5-shot 
averaged data  is f o r  one peak arc-current condition 
of 13.4 MI. The peak pressure ranged from 12,500 
N/m2 f o r  no auxi l iary magnetic f i e l d  t o  25,000 
N/m2 a t  2.0 T. The mean deviation of t h e  5-shot 
average i s  shown (as an error bar) f o r  each data  
point. There is  some evidence t h a t  the peak pres- 
sure pulse amplitude saturates  for magnetic f i e l d  
greater than 1.0 T. Similar mean deviations were 
evident i n  all the data  of l a t e r  f igures  but w i l l  
not be shown t o  simplify the graphs. 

Peak t o t a l  pressure prof i les  are presented i n  
Fig. 13. These are  shown f o r  three d i f fe ren t  
axial  positions down the duct, Z = 25 cm, 30 cm, 
and 35 cm, and f o r  two d i f fe ren t  peak arc  current 
cases, 7 .4  kA and 13.4 MI. Magnetic f i e l d  is the 
parameter. 

For the  no-field case, a t  Z = 25 cm, there  

This prof i le  f l a t t e n s  and decays fa r ther  
Is some evidence of a prof i le  maximum a t  r = 2 
cm. 
downstream at  Z = 30 cm and Z = 35 cm. 

A t  1.0 T magnetic f ie ld ,  the  prof i le  f o r  the  
7.4 MI condition s t i l l  shows a maximum at  r = 2 
for  Z = 30 cm and Z = 35 cm but has much la rger  
values of peak pressure. For the 13.4 kA condi- 
t ion  at 2 = 25 cm, the peak t o t a l  pressure a t  
r = 0 i s  21,000 N/m2. A t  this current condition, 
the prof i le  shape inverts  such t h a t  a t  the  r = 4 
cm position the pressure i s  higher valued than at 
r = 0 cm f o r  Z = 30 cm, and Z = 35 cm. 

A t  2.0 T magnetic f ie ld ,  the peak t o t a l  pres- 
sure for a corresponding case is  only s l i g h t l y  
higher showing the  "saturation" e f fec t  with f i e l d  
more markedly than for  the data  of Fig. 12. 

The inversion of t h e  prof i le  shape with in-  
creasing f i e l d  noted above appears re la ted t o  the  
e f fec t  of the magnetic f i e l d  forcing ions (and 
ahead of the  ions, neutrals  swept up through col- 
l i s ions)  t o  follow t h e  expanding f i e l d  l i n e s  ra th-  
er than focusing them on centerline. T h i s  e f fec t  
is more pronounced as t h e  magnetic f i e l d  is  in-  
creased from 1.0 t o  2.0 T at the 13.4 kA condition. 

The pressure prof i le  maxima at  r = 2 cm f o r  
the  se l f - f ie ld  case and the 7.4 kA condition with 
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1.0 T f i e l d  i s  not unexpected, since t h i s  is  about 
t h e  mid annulus position of t h e  arc. T h i s  e f fec t  
i s  seen t o  change a t  higher arc  current, higher 
f i e l d  cases, t h e  influence of the  auxi l iary mag- 
net ic  f i e l d  a l te r ing  the effect .  E a r l i e r  work, in-  
volving l a s e r  scat ter ing diagnosis of the  lasma 
density that arr ives  l a t e r  at t h a t  s t a t i o n h -  
dences a much d i f fe ren t  prof i le  effect .  The self- 
f i e l d  cases for  plasma number densi ty  a re  somewhat 
the  same p r o f i l e  as for  pressure, but the f i e l d  
cases for  plasma number densi ty  show a reduced den- 
s i t y  on axis, and a lower peak value of number den- 
s i t y  as magnetic f i e l d  increases. 
arr iving s igni f icant ly  later than the  t ransient  
neutral  pressure pulse thus exhibi ts  d i f fe ren t  pro- 
f i l e  and trends as a function of magnetic f ie ld .  
Such behavior serves t o  emphasizethe seriousness of 
accurately determining the  time period of each 
measurement and identifying dominant effects .  

The plasma 

The decay of t o t a l  pressure prof i le  with d is -  
tance down the  duct i s  expected t o  be influenced by 
the 15 cm diameter exhaust duct. A t  large axial  
distances the  e f fec t  of magnetic nozzling appears 
d i f f i c u l t  t o  examine i n  such a s m a l l  diameter duct. 

Pulse Velocity 

The .transit time f o r  the t o t a l  pressure pulse 
t o  pass by s ta t ions  a t  
used t o  calculate  the pulse velocity. 
ing calculated veloci ty  prof i les  are  shown i n  
Fig. 14. The 7.4 kA condition indicates  veloci t ies  
i n  the  range from 5000 t o  10,000 m/sec. Increasing 
the magnetic f i e l d  again inverts  the  prof i les  
with veloci t ies  a t  
even la rger  f o r  2.0 T. 
tion, 13.4 kA, evidences generally higher veloc- 
i t i e s .  The prof i les ,  except f o r  the  se l f - f ie ld  
case (which peaks at r = 2 cm) show inverted 
shapes f o r  1 .0  and 2.0 T with the  highest veloc- 
i t i e s  at r = 4 cm. 

Z = 25' and Z = 35 c m  is  
The resu l t -  

r = 4 cm la rger  f o r  1.0 T and 
The higher current condi- 

Calculated Heavy Par t ic le  Number Density 

Calculation of the  heavy par t ic le  number den- 
s i t y  w a s  carr ied out assuming Newtonian flow f o r  
the z = 30 cm position using the  peak t o t a l  pres- 
sure and the  mean pulse veloci ty  evaluated above. 
Since no ionized species are  present i n  the region 
of maximum pressure, the density then can be at- 
t r ibuted t o  neutral  par t ic les .  Assuming then t h a t  
t o t a l  pressure i s  the simple product of density and 
the square of velocity, prof i les  of number densi ty  
s i m i l a r  t o  those f o r  veloci ty  were derived. How- 
ever, c lear ly  definable trends are not evident, 
and so those r e s u l t s  w i l l  not be presented here. 
Rather, when an average number densi ty  across the  
rad ia l  p rof i les  i s  evaluated (R = 0 - 4 cm), an 
interest ing var ia t ion w i t h  applied magnetic f i e l d  
can be observed ( f ig .  15). For t h e  7.4 kA condi- 
t i o n  the average number density i n  the  front  re- 
gion can be seen t o  increase markedly, w h i l e  i n  
the 13.4 kA condition the  swept densi ty  i n  the 
central  core region is  seen t o  decrease with ap- 
plied f ie ld .  
strong evidence that the arc s t a r t i n g  t ransient  i s  
qui te  sensi t ive t o  the magnetic f i e l d  configura- 
tion. 

Such confl ic t ing trends provide 

The neutral  number dens i t ies  shown i n  Fig. 15 
are about an order of magnitude la rger  than the  
plasma number densities(4) measured i n  the sub- 



sequent plasma portion of the  flow. 

Swept Mass i n  the Pressure Pulse 

If t h e  pulsed MPD-ARC is considered as a form 
of plasma gun f o r  i t s  i n i t i a l  t ransient  period, an 
interest ing question is t h e  extent t o  which the  
current sheet "sweeps up" and accelerates t h e  pro- 
pellant. An e f f i c i e n t  "sweep-up" f o r  the t rans ien t  
pulse would make the thrus te r  operate "gas-starved" 
f o r  a time period while it rebuilds a s table  mass 
flow again. 
r e s u l t  i n  electrode erosion, and electrode material 
would be i n  t h e  exhaust. 

A br ie f  "gas-starved'' condition could 

To examine the  question of propellant sweep- 
ing, i n  the  present experiment, an estimate was  
made of the  amount of mass i n  the  pressure pulse 
f o r  one par t icu lar  case, 13.4 kA peak arc current, 
and 1.0 T magnetic f ie ld .  The pressure pulse am- 
plitude and width f o r  t h e  r a d i a l  p rof i le  measured 
at  Z = 25 cm w a s  approximately integrated t o  de- 
termine the m a s s  i n  the pressure pulse.. It was  
found t o  be about 10 percent of the  mass of the 
propellant having l e f t  the thrus te r  by t h a t  t i m e .  
That is  t o  say, the  e f fec t  of the arc current sheet 
"sweep-up" i s  poor and should not cause a "starved" 
condition; the  l i t t l e  electrode and insulator  ero- 
sion noted supports such a conclusion i n  the pre- 
sent case. However, such a r e s u l t  does not pre- 
clude the poss ib i l i ty  of more e f f i c i e n t  sweeping i n  
other cases. 

Conclusions 

Measurements of t ransient  pressure and veloc- 
i t y  were made f o r  a megawatt, pulsed MPD-ARC 
thruster, operating s ingle  shot. These measure- 
ments and some e a r l i e r  work using l a s e r  scat ter ing 
diagnosis on the  exhaust have aided i n  drawing the 
following general conclusions; 

1. In the  i n i t i a l  exhaust, there  i s  a narrow 
( tens  of microseconds wide) t ransient  t o t a l  pres- 
sure pulse which dominates the  time integral  pres- 
sure f o r  over 100 microseconds. Thus, the  impulse 
provided by the thrus te r  f o r  this i n i t i a l  period is  
dominated by  this pulse. 

2. I f  the  t ransient  pressure component of the  
exhaust impulse dominates over the steady "blowing" 
component, t h e  t o t a l  impulse cannot be considered 
a steady or quasi-steady thrus t  condition. This i s  
the case for the megawatt-level pulses studied i n  
this paper. Much longer powering t i m e s  w i l l  have 
t o  be used t o  insure steady thrust ing is  the dom- 
inant condition. 

3. The sequence of events a t  a given s ta t ion  
i n  the  exhaust f o r  a s ingle  shot megawatt-level 
MPD-ARC thruster is: 

a. Exhaust l i g h t  arr ives  
b. After a f e w  microseconds, a narrow (20 

microseconds wide) t o t a l  pressure pulse 
of neutral  gas passes 

c. Arc current sheet (plume) arrives tens  of 
microseconds later, and a t  the same t i m e  
t h a t  plasma is  f i r s t  detected. 

d. A flowing plasma is  noted. 

4. Auxiliary magnetic f i e l d  increases the  
i n i t i a l  peak t ransient  t o t a l  pressure pulse up t o  
2.0 T where some degree of "saturation" is noted. 

A t  2.0 T, the  pressure prof i les  suggest t h a t  the 
magnetic f i e l d  d i rec ts  some of t h e  ions (and thus 
some neutrals  by col l is ions)  outward toward the  duct 
w a l l .  
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Figure 1. - Megawatt MPD-arc plasma source. 
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Figure 2. - A r c  chamber. 
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Figure 3. - Cross section sketch of piezoelectric pressure probe. 
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Figure 4. - Shock tube pressure signal. 
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Figure 5. - Emitter follower circuit. 

Figure 6. - Comparison of filtered and unfiltered 
pressure signals. 
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Figure 7. - Rogovsky loop calibration traces. 
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Figure 8. - Total pressure (unfiltered), cold gas flow at 
Z = 30 cm, R = 0. 
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Figure 9. - Typical total pressure and Rogovsky loop traces. 
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Figure 10. - Simultaneous exhaust l ight and static 
pressure signals at z = 20 cm. 
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Figure 12. - Peak gas-kinetic pressure 
variation wi th applied magnetic field at 
r = 0, z = 25 cm, for 13.4 kA case. 
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Figure 13. - Peak gas-kinetic pressure profiles. 
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Figure 14. - Putse velocity profi les 
at z = 30 cm. 
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Figure 15. - Average number density 
variation with applied magnetic 
field. 


