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SURVEY OF HEAT TRANSFER TO NEAR-CRITICAL FLUIDS 

by Robert C. Hendricks, Robert J. Simoneau, and Ray V. Smi th*  

Lewis Research Center 

SUMMARY 

This report  surveys near-critical heat transfer, including the following areas:  
thermal properties; heat-transfer boundaries of the near-critical region; f ree ,  natural, 
and forced convection experiments; oscillations; geometric effects; parameters which 
appear to be  significant to heat transfer in the critical region; and theories which have 
been proposed for  the region. 

theories o r  correlations a r e  not available for  heat t ransfer  in the cr i t ical  region. It 
does, however, indicate the most promising and widely used correlations and suggests 
procedures for  approaching a critical-point heat-transfer problem. 

The report  points out that the state of the art is such that completely satisfactory 

INTRODUCTION 

Transport processes, particularly heat transfer, in  the near-critical region have 
been of interest  for about the last 15 years.  Current emphasis s tems from applications 
which require the use  of a fluid in the near-critical condition, f rom inadequate informa- 
tion to produce satisfactory design expressions, and from an inadequate understanding 
of the mechanics which produce the peculiar behavior in the near-critical region. 

Applications which a r e  current o r  proposed include the use of near-crit ical  helium 
to cool the coils of superconducting electromagnets and superconducting electronic o r  
power-transmission equipment, the use  of supercritical hydrogen as a working fluid or 
fuel for both chemical and nuclear rockets; the use of supercritical water in  electricity 
generating plants, and the use of methane as a coolant and fuel fo r  the supersonic trans- 
port. 

*National Bureau of Standards, Cryogenics Division, Boulder, Colorado; work 
partially supported by U. S. Atomic Energy Commission. 



Before and during World War II, Erns t  Schmidt and his associates conducted re-  
search in heat t ransfer  by natural convection. They found the heat-transfer coefficient 
for a near-critical fluid to be quite high, because the specific heat and the compressi- 
bility both appeared to  approach infinity at the critical point. The application they had in 
mind was the  cooling of turbine blades in the then new jet  engines. 

In the mid-l950's, a substantial number of papers began to  appear which reported 
a rather  wide range of results and proposed mechanisms underlying some of the unique 
heat-transfer behavior. Several authors suggested that the heat-transfer characterist ics 
of a fluid near its critical point resembled boiling. This idea persists in the literature 
today, but the extent and influence of this boiling-like behavior still remains to  be finally 
established. The dominant near-critical working fluids have been hydrogen, water, 
carbon dioxide, Freons, and ammonia. 

The reported research may be divided into two broad classes:  forced and natural 
convection in heated tubes, and f ree  or natural convection from heated wires and flat 
plates. The first class provided experimental turbulent-heat-transfer data for use in 
design and in establishing the reliability of correlations and theoretical analyses. The 
second class of studies focused more  attention on the detailed mechanisms. The data 
from both these studies showed substantial contradiction, but there  is an ever-increasing 
understanding of the conditions likely to produce such contradictions. 

Theoretical heat-transfer analyses have not been very successful; however, this 
approach still shows promise in unravelling the mysteries of the near-critical region. 
By contrast, flow oscillations, characterist ic of this region, have been examined ana- 
lytically and found to be reasonably well predicted by using rather conventional concepts 
in mechanics. 

This report surveys near-critical heat transfer,  including the following areas;  
thermal properties; heat-transfer boundaries of the near-critical region; free, natural, 
and forced convection experiments; oscillations; geometric effects; parameters which 
appear to be significant to heat t ransfer  in the cri t ical  region; and theories which have 
been proposed for the region. 

The report is written with a twofold purpose: The first is to  bring the information 
in this region together and to examine these data from a designer's point of view. The 
second is to examine the flow mechanisms underlying the behavior. Within the limita- 
tions of knowledge in this field, this examination lends itself not so  much to  selection of 
prime variables influencing the flow, but, more  to  recommendations for future work in 
the area. 

researchers  in the fields of near-critical heat transfer and near-critical thermody- 
namics for the material presented herein. In particular we are indebted to several  in- 
dividuals who made available their  original figures for  use in this report. They are 

Since th is  is a survey report ,  the authors are indebted to the entire community of 
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Dr. J. M. H. Levelt Sengers, National Bureau of Standards; Dr. J. V. Sengers, the 
University of Maryland; Dr.  R. S. Brokaw, NASA Lewis Research Center; Dr.  R. S. 
Thurston of Los Alamos Scientific Laboratory; Dr . P. Giffith, Massachusetts Institute 
of Technology; Dr.  M. Cumo, Centro Studi Nucleari, Rome, Italy; Dr. C. Gazley, 
Rand Corp; Dr.  G. E. Tanger, Auburn University; Dr. J. R. Bartlit, Los Alamos 
Scientific Laboratory; Mr. S. S. Papell, NASA Lewis Research Center; Dr. L. W. B. 
Hall and J. D. Jackson, University of Manchester, Manchester, England; Mr. R. G. 
Deissler, NASA Lewis Research Center; Dr. N. Zuber, New York University; Dr.  A. J. 
Cornelius and J. D. Parker ,  Oklahoma State University; Dr. R. C. Williamson, NASA 
Electronics Research Center. 

NEAR-CRITICAL FLUID PROPERTIES 

Thermodynamics of the Cr i t ica l  Point  

The exceptional heat-transfer behavior of a near-critical fluid must ultimately be 
due t o  the influence of the unusual property behavior of a fluid near its crit ical  point, as 
shown in figure 1. This is manifested both in the changes of the thermal properties 
themselves, and in the modifications of the flow structure caused by these changes. For 
any analysis t o  succeed, a good knowledge of the thermal properties is required. 

The classical approach to the thermodynamics of the cri t ical  point is well docu- 
mented in Hirschfelder, Curtiss, and Bird (ref. 1) and in Rowlinson (ref. 2). For ex- 
cellent surveys of some of the more recent ideas, the reader is referred t o  Hammel 
(ref. 3), Widom (ref. 4), and Sengers and Levelt Sengers (ref. 5). 

The Van der  Waals equation of state 

where a1 is an attraction force constant and bl is a repulsion force constant, is 
representative of the classical approach. (All symbols a r e  defined in appendix A. ) 
Among other things, at the cri t ical  point the Van der  Waals equation (eq. (1)) yields an  in- 
finite specific heat at constant pressure and an infinite thermal expansion coefficient 
(-8 In P / ~ T ) ~ ,  which Schmidt (ref. 6) cited as  reasons why the critical fluid was an at- 
tractive heat-transf e r  medium. 

The Van der Waals equation of state (eq. (1)) yields a cubic curve for the critical 
isotherm on the pressure-density (P-p) plane and a quadratic for the coexistence curve. 
In reality (ref. 3), the critical isotherm is more nearly fifth degree, and the coexistence 
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(bl Transport properties. (a) Thermodynamic properties. 

Figure 1. -Typical thermodynamic and transport properties of near-cri t ical parahydrogen. Ratio of pressure to cr i t ica l  pressure, 1.05. 
(Data taken from refs. 10 and 17). 

curve is almost a cubic. This does not affect the primary condition for determining the 
crit ical  point, that of equal saturation densities. It does, however, interject uncertainty 
as to the nature of the higher derivatives of P with respect to p .  

The Van der Waals equation also yields a finite discontinuity for the specific heat at 
constant volume Cv at the cri t ical  point. Experimental evidence by Bagatski:, et al. 
(ref. 7) indicates that Cv has a logarithmic infinity with a superimposed finite discon- 
tinuity along the critical isochore. Widom's recent qualitative survey of his activities 
(ref. 4) proposes a three-dimensional lattice gas model to account for these difficulties. 

Since near-critical thermodynamic data a r e  somewhat scarce,  the heat-transfer in- 
vestigator is likely to have to  extrapolate f rom other regions or other fluids. This 
prompts a comment on the law of corresponding states.  T o  a good first-order approxi- 
mation, it can be said that the thermal properties of all fluids collapse to a single curve 
when normalized by the appropriate cri t ical  constants. There a r e  some problems. The 
second-order deviations are more severe near the cri t ical  point. For spherical non- 
polar gases such as hydrogen and nitrogen, Zc = 0.304 and 0.292, respectively; where- 
as, for the polar molecule water, Zc  = 0.224, approximately a 25 percent difference. 
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The hydrocarbons fall in between (ref. 1). When dealing in corresponding states, it is 
best  to subdivide the fluids by molecular-type. For quantum fluids, like helium, corre-  
sponding s ta tes  should be avoided. 

A final area of importance t o  heat transfer is the nonequilibrium phenomenon asso- 
ciated with the cri t ical  point. Maass (ref. 8) found that a hysteresis loop in density near 
the cri t ical  point could be obtained by first heating and then cooling along an isobar, as 
shown typically in figure 2. The results were very stable and reproducible even under 

Density 
Pressure constant 

Temperature 

Figure 2. - Typical near-cri t ical isobar exhibit ing hysteresis loop 
according to Maass' experiment (ref. 8). 

conditions of st irring. Another hysteresis example can be found in light scattering. 
Light scattering caused by severe density fluctuations near the critical point causes the 
fluid to  become opaque as it passes through the cri t ical  point. The growth of the opaque 
condition, known as crit ical  opalescence, is quite different depending on whether heating 
or cooling through the cri t ical  point is occurring. (For an excellent visual record of the 
critical opalescence phenomenon, the reader is referred to  a motion picture produced 
by Siemens Aktiengesellschaft, Postfach, West Germany, entitled "Boiling and Evapora- 
tion Phenomena with Water. ") These experiments demonstrate that, near the cri t ical  
point, large relaxation t imes are required for a thermally disturbed system to  return to 
equilibrium. One consequence of this is that the near-critical fluid under the dyna.mic 
conditions of heat t ransfer  can be expected t o  experience some degree of thermodynamic 
nonequilibrium. This, in turn, will result in some uncertainty in applying an equation 
of state. In a private communication, Walter G .  Zinman (Grumman Aircraft) argues 
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that fluctuations are inherent to  the thermodynamic cri t ical  point and that therefore the 
experimentalist may not be able to precisely locate such a point. 

Also, since the paths a r e  different, the heat-transfer process involved in cooling a 
near-critical fluid may be quite different than that associated with heating the same fluid. 

Most of the truly severe behavior, such as the singulariti2s in C Cv, A ,  and P,, 
occur precisely on the cri t ical  point. Normally, operation is not precisely on the criti- 
cal point. This will tend to  attenuate the influence of some of the anomalies. On the 
other hand, the overall large property changes, the suggested first-order effect, persist  
over a considerable region near the critical point. 

P' 

Pressure-Density-Temperature Data - Equations of State 

The availability of actual P-p-T data near the critical point var ies  considerably 
from fluid to  fluid. 
been in carbon dioxide by Michels, Blaisse, and Michels (ref. 9) and in hydrogen by 
Goodwin, et al. (ref. 10). For other fluids of interest, like nitrogen, there  is little, if 
any, actual data. For the most part, the heat-transfer researcher  must rely on prop- 
ert ies computed from an equation of state. 

Equations of state come in al l  s izes  and shapes. The most common a r e  the virial  

t Y  Pe 

Probably the most detailed investigations near the cri t ical  point have 

(2) 
2 3 4 P = A(T)p + B(T)p + C(T)p + D(T)p +. . . 

Obert (ref. 11) and Hirschfelder, et al. (ref. 1) have good surveys. They list coeffi- 
cients for various equations and fluids; however, they were not determined with the cri t-  
ical point specifically in  mind. In cryogenic fluids, the Benedict-Webb-Rubin (ref. 12) 
equation of state, as modified by Strobridge (ref. 13) and Roder and Goodwin (ref. 14), 
has been very popular: 
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An alternate form of the Benedict-Webb-Rubin (BWR) equation was used by Vennix 
(ref. 15) to correlate h i s  near-critical-methane data. The coefficients a r e  of a different 
type than equation (3), and the exponentials a r e  linear in p and T. The main difficulty 
with these or any curve-fit equation is determining other properties, such as specific 
heat Cp, since this requires derivatives which a r e  often not very satisfactory near the 
cri t ical  point. For specific discussions of accuracy, the reader  is referred to  the in- 
dividual references (table I). 

Table I lists source references for equations of state for the fluids discussed here- 
in. The table includes an indication as to  whether the particular authors suggest com- 
putation of other useful thermodynamic properties. In some cases ,  P-p-T a r e  not used 
as primary variables. The table also lists transport  properties. These will  be taken 
up in the next section. For some fluids, such as hydrogen, entire computerized prop- 
er ty  packages a r e  available (e. g . ,  refs.  16 and 17 and a National Bureau of Standards 
(NBS) property package based on refs. 10 and 14). 

Recently there  has been considerable interest in the use of the Ising model for 
ferromagnets t o  describe the lattice gas near the cri t ical  point (refs. 18 and 19). This 
is discussed in the  surveys (refs. 3 to  5) mentioned ear l ier .  In drawing the analogy 
with the Ising model, chemical potential appears to be a more fundamental variable than 
pressure.  Green and his co-workers (refs.  20 and 21) have offered the following equa- 
tion, in which chemical potential is expressed as a function of density and temperature: 

1 4  
where t = (T - Tc)/Tc and x1 = t - pc)/pc] 

seen graphically (fig. 3(a)). In a more recent paper (refs. 22 and 23), Vicentini- 
Missoni, Levelt Sengers, and Green have succeeded in developing a closed-form ex- 
pression for h(xl) 

/I: 
In reference 21 the function h(xl) had yet t o  be determined analytically but could be 
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(b) Analytic correlation of h(xl) for carbon dioxide (ref. 22). 

Figure 3. - Scale-reduced chemical potential as function of scale-reduced density. (Data reproduced from refs. 21 and 22). 

The resul ts  are shown for carbon dioxide in  figure 3(b). Thus a closed-form equation of 
state is now available which is directed specifically at the cri t ical  region and which is 
subject t o  a very few adjustable constants, P,, 6 1, El, EZ, and xo. Of these, only xo 
is very sensitive. Its major limitation is range. It is presently limited t o  -+30 percent 
in Ap and -0.01 < t < 0.03. Thus in a practical property package, such as references 
16 and 17, equations (4) and (4a) will have to be merged with the more common virial  
equations such as equation (3). 

Transport Properties 

Most of the remarks  made concerning P-p-T data can be made about transport  
property data. Again, the more popular fluids are better documented. There  are 
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near-critical thermal conductivity data for carbon dioxide by Sengers (ref. 24) and by 
Guildner (ref. 25), for hydrogen by Diller and Roder (ref. 26), Ior methane and ammonia 
by Sokolova and Golubev (refs. 27 and 28), and for nitrogen by Ziebland and Burton 
(ref. 29). Viscosity has been measured for carbon dioxide by Kestin, Whitelaw, and 
Zien (ref. 30) and for hydrogen by Diller (ref. 31). 

tivity above its "atmospheric" value at a given temperature and pressure was a function 
of density alone: 

P r io r  to Sewers '  work, it was thought the excess of viscosity o r  thermal conduc- 

where fib) and f2b) may be determined to almost the cri t ical  temperature for a gas 
by a density variation of the form: 

fl(o) =Alp + A $ l n p  +A2p 2 + .  . . 

Of course, this required a precise knowledge of p as a function of P and T; never- 
theless, it allowed a very simple representation for  viscosity and thermal conductivity. 
Furthermore, it could be  reduced to general form by the law of corresponding states. 
This is sti l l  true away from the cri t ical  point, except possibly for quantum liquids such 
as hydrogen and helium (see refs.  26 and 32). The functional relations of equations 
(5) and (6) have been established for most fluids of interest by Thodos and co-workers 
and a r e  summarized in  a paper by Stiel and Thodos (ref. 33). Equations (5) and (6) re- 
main valuable as a base line. In a private communication, H. J. Hanley of NBS, 
Boulder, Colorado, examined the hydrogen viscosity data of Diller (ref. 31) and inter- 
preted the results to  mean that there  exists, at best, a weak anomaly; however, it does 
not occur at the critical density. Therefore, for viscosity the best evidence indicates 
only a weak anomaly, which can be disregarded for most fluid flow and heat-transfer 
calculations. 

All the thermal conductivity data cited above exibit an "anomalous spike" in the 
conductivity at the cri t ical  density along near-critical isotherms, as shown in figure 4 
(taken from ref. 34). 
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Figure 4. -Thermal  conductivity of carbon dioxide exhibiting the 
anomalous spike. (Data reproduced from ref. 34). 

The computation of the anomaly is still in developmental stages. Brokaw (ref. 35) 
suggests treating a near-critical fluid as a dissociating polymer and that conductivity 
consists of two parts 

k X f + X  r 

Here X- represents the contribution due to diffusion of the dissociating clusters and 
I 

Xf the normal conductivity expressed by equation (5). 
are 

=PD - (CP), 
D r 

(7) 

The results of Brokaw's analysis 

where D is the self-diffusion coefficient, Dln is the binary diffusion coefficient of the 
hypothetical polymer, and is the specific heat in excess of the low-pressure value. 
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- Calculated - -  Given by eq. (51 

Experimental 
(Sengers, ref. 34) 

0 31.2' C 
n 32.1' C 

0 
0 

0 
/ 

Brokaw's calculations are compared t o  Sengers' data in figure 5. Unfortunately, the 
theory requires a good equation of s ta te  for computing C 

not been tried for other fluids. 

and Childs (ref. 32) for helium place in considerable doubt the dependence of X - X o  

on p alone, even away from the cri t ical  point, equation (5) will probably have to be 
treated as  the best available in all cases,  except for liquid hydrogen and helium. 

tion (7) using equation (5) to  obtain Xf and by Brokaw's theory, where an adequate equa- 
tion of state is available, for Xr .  Viscosity can be computed directly from equation (6). 

tension, and oth.r?rs) can be found in the NBS compendium by Johnson (ref. 36). 

and Dln/D. So far it has ( p)r 

Even though the data of Diller and Roder (ref. 26) for  hydrogen and the data of Hanley 

For the present, we can recommend Computation of thermal conductivity by equa- 

Many additional related properties (vapor pressure,  heat of vaporization, surface 
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The unusual property behavior in the near-critical region shown on figure 1 can be 
examined as an extension of saturation properties. 

Frequent reference is made in near-critical work to the transposed crit ical  tem- 
perature T*. This is normally defined as the temperature where the specific heat C 
attains a maximum for a given supercritical pressure (see fig. 1). The locus of the 
T* points for  hydrogen is shown in figure 6 and seems to  be  a very natural extension of 
the saturation curve. It is not, however, the same as an extension of the vapor pressure  
curve by the Clapeyron equation using enthalpy difference for latent heat (fig. 6) 
(refs. 37 and 38). Near the critical point, however, the T* locus can be considered a 
pseudosaturation temperature. The T *  locus can be considered to approximately sep- 
a ra te  the pseudoliquid from the pseudovapor. Notice also on figure 6 that the T* (or 
max C ) effect has  pretty well diminished at a P/Pc corresponding to  the maximum in 
the Joule-Thompson inversion locus. Thermodynamically then, it can be said that the 
cri t ical  region is confined within the inversion locus. 

vapor pressure curve must be defined. Typical of these is latent heat of vaporization. 

P 

P 

In order t o  use pseudoboiling models, certain two-phase quantities in addition to  the 

Figure 6. -Thermodynamic region of in f luence of t he  cri t ical point o n  heat transfer. Basic locus i s  for hydrogen. (Clapeyron ex- 
tension of saturation curve from ref. 37.) 
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Figure 7. - Pseudo-two-phase properties; extrapolation procedure for equivalent latent 

enthalpy of vaporization. (From ref. 40.) 

Figure 7 shows a way of defining a pseudoheat of vaporization from the enthalpy curves, 
as used by Thruston and others (refs. 39 and 40). Other pseudo-two-phase quantities, 
such as "saturated" liquid and vapor densities, can be approximated in the same way 
(refs. 41 and 42). 

In summary we can say: 
(1) Classical Van der  Waals models do not accurately describe the state of a near- 

cri t ical  fluid, but may be satisfactory in first-order considerations. 
(2) The discrepancies in the law of corresponding states a r e  accentuated in the 

cri t ical  region, and the law should be used only between fluids of s imilar  molecular 
structure. 

turn to equilibrium. 

a near-critical P-p-T surface; however, they are not good for thermal properties 
requiring derivatives of the equation of state. 

(5) A new analytic equation of state involving chemical potential, density, and tem- 
perature, based on the k i n g  lattice gas model, has been developed for  the near-critical 
region. 

(3) A thermally disturbed near-critical fluid requires long relaxation t imes to  re- 

(4) Equations of state of the conventional virial  type can be made t o  accurately map 

14 



(6) The evidence for  the existence of a strong anomalous spike in thermal conduc- 
tivity at the cri t ical  point is overwhelming. The spike can be estimated by treating the 
fluid as a dissociating polymer and superimposing the results on the conventional 
x - A* = fl@) curve (eq. (5)). 

Thus, 71 - q* = f2(p) (eq. (6)) will adequately describe viscosity. 

saturation properties and relations into the near-critical region. 

(7) If a s imilar  spike occurs in viscosity, it is sufficiently weak to be ignored. 

(8) Pseudo-two-phase thermal properties can be generated by extrapolation of 
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The heat-transfer problem will be broken into four parts: gases (regions I and Ia), 
liquids (region II), and two phase (region m), which are the three regions adjacent to  
the cri t ical  region; and region IV, the near-critical region itself. These four regimes 
are illustrated in figure 8. Although this map is based on extensive hydrogen data, a 

0 10 20 30 40 50 
a- 

In le t  bulk entropy, J/(g)(KJ 

Figure 8. - Heat-transfer regions as funct ion of in le t  con- 
ditions. Region I, gas o r  fluid; region Ia, gas (low 
temperature); region 11, liquid (fluid); region 111, two 
phase; region IV, near critical. 
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similar  map could be  anticipated for  other fluids. In order to determine the heat t rans-  
f e r  and pressure drop, the region of interest must first be determined. Such a procedure 
is discussed and flow-charted in appendix B. In the following sections, before going to  
the near-critical heat-transfer problem (region IV), recommendations are offered for 
the adjacent regions I, Ia, n, and Ill. 

Region I - Gas-Fluid 

The data of McCarthy and Wolf (refs. 43 and 44) and Taylor (ref. 45) for hydrogen 
and helium give extensive heat-transfer and pressure-drop coverage of region I. The 
recommended equation is that of Taylor, which includes entrance effects and reduces to  
the successful equation of McCarthy and Wolf (refs. 43 and 44) at X/d > 25. 

-(O. 57 - 1.59 d/X) 
NU = @ ? U ) b e )  (9) 

where 

  NU)^ = O.023(Re)is 8(Pr)i' (1 0) 

Taylor (ref. 46) and McCarthy and Wolf (ref. 44) also determined friction factor €or 
the data of region I. The equation of Taylor is recommended. It approaches the classic 
equation of Koo-Drew and McAdams at low Tw/Tb. Taylor's equation is 

Region I a  - Near-Saturation, Low-Temperature Gas 

This  region represents an extension of region I, with gas-like behavior and strong 
property variations. Perroud and RebiGre (ref. 47) and J. Gladden of Lewis (personal 
communication) investigated pressures  ranging from atmospheric to several  atmos- 
pheres, with inlet temperatures near saturation. Perroud's equation is 
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  NU)^ = 0.0032(Re);' 95(Pr);' 

Taylor was able to  correlate much of these data by using equation (9). 

Region I1 - Liquids 

Region II of the map (fig. 8) would be classified as liquid, with a process at low- 
to-moderate temperature differences. The conventional techniques of handling liquid 
heat transfer as given by McAdams (ref. 48), and also by equations (9) and (lo), are 
expected to  be valid (perhaps modifying the constant 0.023). 

Region 111 - Two Phase 

The two-phase regime, region III in figure 8, has been actively explored for many 
cryogens and noncryogens. Perroud and Rebikre (ref. 47), Hsu, et al. (ref. 49), 
Giarratano and Smith (ref. 50), Hendricks, et al. (refs. 41 and 51), and others, have 
explored cryogens. Noncryogen works are extensively covered in a text by Tong 
(ref. 52). 

Heat transfer to two-phase cryogenic fluids at high heat fluxes can be adequately 
correlated by the theoretical approach of Hsu, et al. (ref. 49) and the semiempirical 
approach of Perroud and R e b i k e  (ref. 47). The latter is quiet similar to that of 
Hendricks, et al. (refs. 41 and 51). In most cases, the pressure drop is due to momen- 
tum changes, and friction pressure drop is difficult to assess. 

Hsu, suggested that two-phase heat transfer could be treated with traditional single- 
phase correlations if  the thermal and transport properties were weighted according to 
the void fraction; that is, 

(Nu)- = 0.023(Re)? 8(Pr)% 
cp cp cp 

where 

and cp represents  any and all the fluid properties in equation (12). The reference con- 
dition x was  determined empirically for hydrogen and, so far, has not been checked 
with other fluids (see ref. 49). 
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The equations given by Perroud have been applied to tubes and channels, as well as 
to several different cryogens. In all cases, the basic form remains the same: 

however, the function f(+t) is altered slightly by differences in fluids and geometry 
(e. g. , for hydrogen flowing through a tube, a = 1.16, b = 0.16, c = 0.3, and d - 1; and 
for hydrogen flowing through a channel, a = 1.08, b = 0.135, c = 0.20, and dl = 1.0 
(ref. 53). 

Phenomenologically, at sufficiently high Tw/Tb values, vapor can be expected at 
the wall and fluid particles (filaments) in the core, while just the opposite is t rue  for 
low Tw/Tb values. The occurrence of large temperature differences or large T /T 
is more  natural in cryogenic fluids, and is one of the major reasons for the once pre- 
valent opinion that heat transfer to  cryogens and noncryogens differed. In both boiling 
and near-critical fluids, the range in Tw - Tb or Tw/Tb is pertinent to  heat transfer 
and will be considered more fully in the section NEAR-CRITICAL HEAT-TRANSFER 
REGION. 

1 -  

w b  

Boundaries of Region I V  - Near-Crit ical Region 

It is difficult to define the boundaries which separate the near-critical region 
(region IV) from its adjacent regions. There a r e  several  reasons for this: (1) For most 
fluids, the data are not sufficient; (2) the transition is not abrupt and sharp  demarcations 
a r e  difficult to determine; and (3) the near-critical influence will persist  further into the 
adjacent regions, depending on the path (process) the fluid took to  a r r ive  at a given state 
point (see appendix A).  This last point is particularly elusive. A gas can be precooled 
at cri t ical  pressure down to, and possibly even below, the transposed crit ical  tempera- 
ture  T*; and, when run in a heated-tube experiment, it will behave as a precooled gas  
(i. e. , similar to region I). On the other hand, if liquid is heated up through region N 
to  the same state point in a heated tube, the resul ts  will be quite different. Part of the 
near-critical heat-transfer problem is how the fluid a r r ives  at a given state point (i. e.,  
pr ior  history does make a difference). This is discussed more fully in appendix A. 

Nevertheless, classification of the heat-transfer regions by s ta te  conditions is con- 
venient, uesful, and generally reasonable. For hydrogen (as shown in fig. 8), the pres- 
su re  boundaries are 0.8 < P/Pc < 3. The lowest temperature boundary is TSat, cor- 
responding to P/Pc = 0.8, and the upper boundary is the vicinity of T*, the transposed 
crit ical  temperature. Other fluids have not been explored extensively enough to  establish 
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their boundaries or  to confirm the universality of the hydrogen boundaries. In the ab- 
sence of data, the hydrogen boundaries can probably be  taken as reasonable for other 
fluids. 

these boundaries is that outside of them the influence of the cri t ical  point can be con- 
sidered to be negligible and conventional variable property correlations will prevail. It 
does not mean that in every case within region IV conventional methods will  fail. Some 
combinations of parameters within region N will be amenable to  conventional approaches; 
but, in general, this region will  require analyses directed specifically at the near- 
cri t ical  heat- transf e r  phenomenon. 

A comment is in order here concerning boundaries. What is meant in establishing 

The problem of heat-transfer regions can be summarized in the following manner: 
(1) The near-crit ical  heat-transfer region and its adjacent regions can be delineated 

(2) It is not possible to se t  precise near-critical heat-transfer boundaries for the 
in an approximate manner on a temperature-entropy state diagram. 

following reasons: 
(a) Data are generally insufficient. 
(b) The transition from region to region is not abrupt. 
(c) Most important, the extent of influence of the cri t ical  point on heat transfer 

(3) Heat transfer in the adjacent regions can be correlated by conventional methods 
is a function of the process (or path) by which the fluid approaches the cri t ical  point. 

appropriate to  that region. In fact, the correlatable nature of the adjacent regions helps 
determine the near-crit ical  boundaries. 

NEAR-CRITICAL HEAT-TRANSFER REGION 

Peculari t ies of t h e  Near-Crit ical Region 

In region IV (fig. 8), standard techniques of correlating data break down. The ordi- 
dary Dittus-Boelter equation (eq. (10)) does not correlate near-critical forced convection 
phenomena; ordinary Rayleigh relations do not correlate pool data; standard boiling 
equations exhibit discontinuities; and oscillations a r e  commonplace. Standard theoreti- 
cal  techniques a r e  no better than the empirical techniques. The problem, at the r isk of 
oversimplification, is that the heat-transfer coefficient has a strong and complex tem- 
perature dependence unlike an ordinary gas (fig. 9). 

The early experiments of Schmidt, Eckert, and Grigull (ref. 6) found f ree  and 
natural convection in the vicinity of the critical point to exhibit a sharp increase in heat- 
transfer coefficient. On the other hand, Powell (ref. 54) reported a sharp minimum in 
heat-transfer coefficient in the T* region for forced convection flow of liquid oxygen 
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Figure 9. - Comparison between subcrit ical and supercrit ical heat-transfer behavior in forced and free convection 

and nitrogen. Since then, many other investigators have found similar ?‘peaks’’ in the 
axial wall temperature profile (refs. 42, 55 to 57). In direct  opposition, there  a r e  
several  researchers  (refs. 58 to 61) who have reported a maximum heat-transfer coef- 
ficient (fig. 9(a)). The forced convection results of figure 9(a) a r e  for hydrogen (ref. 42) 
and carbon-dioxide (ref. 59), while figure 9(b) represents pool heat transfer for hydro- 
gen (ref. 62) and water (ref. 63).  The similari t ies in wall temperature profiles for sub- 
and supercritical hydrogen data a r e  also shown. 

which bear further investigation. 
(ref. 57) showed heat-transfer coefficients, when plotted against bulk enthalpy, to be a 
minimum near the critical enthalpy and also reported pressure oscillations in  the same 
region. Second, all the reports of a maximum in heat-transfer coefficient came from 
experiments (refs. 58, 60, 61, and 64  to 66) in which the temperature difference be- 
tween the wall and the bulk fluid was small  when compared to  experiments in which a 
minimum occurred (refs. 56, 57, 67, and 68).  

Hsu (ref. 69) suggested that the two resul ts  can be thought of qualitatively in boiling 
te rms .  When the temperature difference is small, it can be  likened to  nucleate boiling, 
a region of very good heat transfer,  thus the maximum. When the temperature differ- 
ence is large, it can be compared to film boiling, a region of poor heat transfer,  thus 
the minimum. In support of this line of thinking, examine Hauptmann’s data (ref. 70) 

There  a r e  two associated results which may shed some light on this problem and 
First, both Shitsman (ref. 56) and Yamagata, et al. 
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shown in figure 10. The small-temperature-difference data (i. e.,  usually small  heat 
flux q) exhibit a clear maximum, while the large-temperature-difference data (q = 8.4 
W/cm2) show, if anything, a minimum. A similar trend was found by Styrikovich, et al. 
(refs. 71 and 72) and is shown in figure 11. Wood (ref. 66) showed the heat-transfer 
coefficient to  be a maximum near the critical point when plotted as a function of bulk 
temperature, and Kahn (ref. 73) showed the maximum to  be a function of wall tempera- 
ture. Shiralkar and Griffith (ref. 74) have found the heat-transfer coefficient to be 
strongly dependent on heat flux when wall temperatures are above T*  and bulk tem- 
peratures below T*. 

Pressure oscillations a r e  a natural phenomenon of this regime and at t imes can be 
quite large, 0 .3  Ptest o r  400 psi (27.2 atm) in nitrogen tetroxide as reported by 
McCarthy, et  al. (ref. 75). Hines and Wolf (ref. 76) reported pressure oscillations of 
sufficient amplitude to  damage their heated tubes. 

Pressure drops a r e  large and a r e  primarily due to momentum changes (ref. 41). 
Friction losses become increasingly important as the heat-transfer process moves away 
from the near-critical regime. 

pressure oscillations between subcritical and the near-critical regimes is remarkable. 
In the early phases of the hydrogen work, the sounds of two-phase flow and supercritical 
flow were recorded (ref, 77). The sounds were similar,  but supercritical sounds were 
not as "noisy. ? ?  Goldman (ref. 78) has noted the same phenomenon. Researchers in 
this area (refs. 71, 79, and 80) often think of the fluid as pseudo-two-phase. Some of 
the strongest evidence in support of a pseudo-two-phase fluid comes from figure 6, from 
visual studies (refs. 62, and 81 to  83), and from heat-flux-against-temperature plots 
such as figure 9 (refs. 62, 63, and 83). Griffith and Sabersky (ref. 81) and Knapp and 
Sabersky (ref. 82) found the heated globules to be  easily taken for bubbles. The film 
supplement to the work of Graham, et al. (ref. 62) gives the viewer a statist ical  feel 
for the nature of these similarities, as opposed t o  the instantaneous picture provided by 
the published photographs (e. g. ,  ref. 82). Cumo, et al. (ref. 84) have documented the 
the change in fluid structure for Freon from atmospheric to  the near-critical region as 
shown in figure 12. Nishikawa and Miyabe (ref. 83) published a set of photographs for 
the nucleate-film-boiling cycle and a comparative set  at the reduced pressure of 
P/Pc = 1.065. The similari t ies at the film-boiling heat fluxes are particularly striking. 
The heat - flux-against -t em perat me-dif fer ence plots cited above, particularly those of 
Holt and Grosh (ref. 63), show the heat-transfer coefficient to be a function of heat 
flux - a phenomenon not found in normal gas heat t ransfer ,  but a trademark of boiling. 
One possible explanation of the unusual wall temperature profiles discussed ear l ier  is a 
"boiling" model. 

a supercritical fluid in equilibrium is clearly single phase. Pseudo-two-phase-fluid 

22 

The similarities in heat transfer,  pressure drop, wall temperature profiles, and 

The strongest argument against such a pseudo-two-phase fluid is thermodynamic; 
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Figure 12. - Heat t ransfer to Freon-114 at various pressures. (From ref. 84). 
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advocates recognize this, and most, such as Miyabe (ref. 83) and others, claim that it 
is a nonequilibrium situation. Experimentally it is very interesting that the single-phase 
proponents use  the same visual evidence presented by the two-phase advocates. 
Hauptmann (ref. 70) uses his own very dramatic photographs and reexamines the other 
visual experiments (refs. 70 and Sl ) ,  and concludes that all of the unusual results can 
be explained in single-phase terms.  A careful examination of all the available photo- 
graphs (refs. 62, 70, and 81 to 83) reveals as many nonsimilarities to  boiling as there  
a r e  similarities. Really, the analyst has his choice because a strong case can be  made 
for either model; however, it is clear that there  are no sharp discontinuities in the 
heat-transfer data(refs. 67 and 63) .  Any analytic model (pseudo-two-phase or single- 
phase) should work throughout region IV (fig. 8) and provide smooth transition from 
liquid to gas if properly formulated. 

u re  13 illustrates changes in heat transfer for hydrogen as tube diameter is changed. 
At the larger diameter, the L/d effects are large and not accounted for by the pseudo- 
fluid or single-phase models. Thus the results appear to be system-dependent, s o  
geometry effects must also be carefully assessed. 

The heat-transfer results change from apparatus to apparatus. For example, fig- 

I Tube diameter. 

(a) Hess and Kunz correlat ion dependence o n  pseudo- 
Mar t ine l l i  parameter and diameter (ref. 41). 

Lengthdiameter  ratio, Xld 

(b) Taylor equation behavior for  two dif ferent tube 
diameters. 

Figure 13. - Some geometry effects in near-cri t ical- 
f lu id  heat transfer. 
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In summary we can say 
(1) Some characterist ics of the near-critical region a r e  

(a) Nonlinearities in heat flux against temperature difference 
(b) Wall temperature excursions (spikes) 
(c) Similarities to the two-phase regime 
(d) Oscillations 
(e) Large momentum pressure drops 
(f) System-dependent results 
(g) Failure of conventional correlations 

(2) Modeling should be required to work throughout region IV, and should exhibit a 
smooth transition to  the adjacent regions shown in figure 8. 

Heat Transfer in Free Convection Systems 

The f ree  convection pool studies discussed in this section deal primarily with heat 
transfer from small tes t  sections, such as wires, filaments, and plates. In a subsequent 
section, the heat transfer from natural convection loops will be considered. 

The effect of the wide variations of properties appears to  have a more direct in- 
fluence in the pool-heat-transfer case. This is probably t rue because in this situation 
temperature differences are usually small. Pool results almost universally show en- 
hancement in heat transfer near the critical point. Some typical experimental data where 
enhancement occurred a r e  those of Dubrovina and Skripov (ref. 85) shown in figure 14. 

20x103 r 
12x103 
I- 

Isobars 15 

I 6x106N/m2 
I1 8x106 N/m2 
111 9 . 3 ~ 1 0 ~  N/m2 

10 

5 

6 7 8 9 10 11x106 0 4 8 12 16 

Figure 14. - Free convection heat t ransfer for  carbon dioxide. Data show heat-transfer-coefficient behavior as the  properties 
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near t h e  cr i t ica l  point, when temperature differences are  very small. (From ref. 85). 
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ia t io  of pressure 
to critical 
pressure,  

p f i C  

Ratio of temper- 
a ture  to critical 

temperature, 

T/Tc 

0.28 to 1.7 0.77 to 1.04 

0.72 to 1.5 0.65 to 0.74 
(fluid) 

0.71 to 1.06 
(surface) 

0.82 to 1.25 

1 

L . 5 ~ 1 0 - ~  to 1.25 

1.00 to 1.02 

0.98 to 1.07 

0.75 to 1 .0  
(fluid) 

0.75 to 2.0 
(surface) 

0.99 to 1 .3  

1.03 to 1.40 

1.00 to 1.33 

0.32 to 1.38 

1.01 to 1.03 

1.00 to 1.03 

0.93 to 1.09 

0.98 to 1.63 

0.76 to 1.19 

0.98 to 1.04 

TABLE 11. - FREE CONVECTION - POOLS 
~ 

Investigator Fluid Geometry Range of conditions Constants 

Ioughty and Drake Horizontal wire  n = 1/3 
C = 0.14 

3onilla and Sigel n-pentane 

(‘sH12) 

Horizontal plate q 
1963 

0.42 to 1.15 0.725 to 1.08 Horizontal wire  3riffith and 
Sabersky 

3kripov and 
Potashev 

Vertical wire  

Brodowicz and 
Bialokoz 

Vertical plate 

Holt and Grosh H20 Horizontal wire  
and vertical 
ribbon I 

Fritsch and Grosh 1963 1 190, 191 H20 Vertical ribbon 1.03 to 1.06 1.0036 to 1.0086 

Dubrovina and 
Skripov 

1964 I 85 Horizontal wire, 
horizontal and 
vertical ribbon E 

1966 192 

Knapp and 
Sabersky 

Horizontal and 
vertical wi re  

CO2 

C02 Nishikawa and 
Miyabe 

Horizontal wire Pseudocritical 
properties analysis 

Graham, Hendricks, 
and Ehlers 

H2 0.25 c n 5 0.35 Horizontal 
ribbon 

Larson and 
Sc ho en hals 

Vertical ribbon 

Eq.(15) b = 0.247 
c = 0.137 
x = 0.5 I a = 1/3 

__________- - - - -  
-I 

Goldstein and Aung c o 2  1967 1 86 Horizontal wire 1.03 to 1.21 0.94 to  1.09 + 0. 79 to 1.16 0.86 to 1.03 Daniels and 
Bramall 

Horizontal 
Monel wire 

1 I 
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The enhancement of the heat-transfer coefficient is very pronounced but a lso limited to 
a very small  temperature range. Also the enhancement peaks somewhat away from the 
cri t ical  point and in the region of the transposed critical temperature. 

Unlike a forced convection system, the free convection system has no constraining 
boundaries. Consequently, it is able to  respond to favorable property variations with 
enhanced heat transfer.  

Although boiling-like behavior has been reported for pools (refs. 63 and 81), the on- 
set of this behavior was not characterized by a marked change in the heat-transfer coef- 
ficient, as is the case with the onset of nucleate boiling. This can be seen in the super- 
cri t ical  curves of figure 9. Although the mechanisms for nucleate boiling and near- 
cri t ical  heat transfer may be similar,  some aspects of the energy transport must be dif- 
ferent. 

Some interesting near-critical f ree  convection experiments a r e  those of references 
82, 86, and 87 using a small-diameter horizontal wire. Knapp and Sabersky (ref. 82) 
were the first to photograph an oscillation back and forth between laminar and turbulent 
flow while heating near-critical carbon dioxide. Their data indicated a sharp increase 
in heat t ransfer  in going from the all-laminar to the all-turbulent region; however, the 
transition through the oscillating region appeared to be smooth. The authors indicate 
that this is probably because the data were average data, and that they suspect an oscil- 
lation in wire  temperature to  go with the laminar-turbulent oscillation. Goldstein and 
Aung (ref. 86) reported similar oscillations but no sharp increase in heat transfer.  The 
phenomenon remains unexplained at present; however, such oscillations may well be 
fundamental to our understanding of the oscillations noted in forced convection and natural 
convection loops. 

two horizontal plates, using supercritical carbon dioxide. He found "spindle-like" 
structures,  rather than the classic Benard cells. 

The pool experiments in the near-critical region a r e  summarized in table 11. Most 
of the data analyses of the papers shown in table 11 employ rather conventional dimen- 
sionless groups. In some cases, there  have been modifications, primarily to account 
for the variable properties in the boundary region (refs. 89 to  91). There appears to be 
general agreement that somewhat away from the cri t ical  and transposed crit ical  points 
the conventional correlations will hold for all  fluids and for all  systems, as discussed 
in the section HEAT-TRANSFER REGIONS. Thus, away from the critical point, 
McAdams basic equation (ref. 48) 

Recently, Hahne (ref. 88) conducted the classic f ree  convection experiment between 

(Nu)f = C(Ra)" (14) 

should work. Closer to the cri t ical  point, modifications of the following basic form a r e  
employed: 
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Specific details a r e  listed in table 11. Very close to the critical point, Simon and Eckert 
(ref. 92) recommend 

In summary, 
(1) Pool results almost universally show an enhancement in heat transfer near the 

critical point. In all cases,  the temperature differences a r e  small  and the enhancement 
occurs over a limited temperature range and peaks somewhat away from the cri t ical  
point. 

spond favorably to property variations. 

increase in heat-transfer coefficient of nucleate boiling. 

However, close to the critical point, modifications such as equations (15) and (16) a r e  
employed (see table 11). 

phenomenon has not been explained. These oscillations may well determine the character 
of near-critical oscillations found in natural and forced convection systems. 

Large temperature differences diminish the peak. 
(2) Free convection systems have no constraining boundaries and consequently r e -  

(3) Boiling-like behavior in near-critical pools is not accompained by the marked 

(4) Most researchers  employed conventional techniques away from the cri t ical  point. 

(5) Laminar-to-turbulent oscillations have been observed, but the origin of this 

Heat Transfer in Loops - Natural Convection Systems 

Historically, there has been considerable interest in the use  of a natural convection 
loop or  column (fig. 15). Here a fluid in the supercrit ical  region can operate at high 
heat flux. 

(refs. 6, and 93 to 95). A s  in pools, the results of loop experiments a r e  universally 
an enhancement of heat t ransfer  near the cri t ical  point when compared to noncritical 
fluids under similar heat-transfer conditions. And as in forced convection systems, 

Experiments and analyses in natural convection loops begin with the work of Schmidt 
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f 
Loop half 
length, LT 

Figure 15. - Schematic of a typical natural convection loop. 

oscillations appear to be dependent on the proximity to the cri t ical  point, as will be dis- 
cussed in a later section. The laminar-to-turbulent-flow oscillations noted in near- 
cri t ical  pools could be the origin of the oscillations noted in natural convection loops. 

low flow (discussed under geometry effects) and heat transfer at low AT = Tw - Tb. 

Schmidt’s basic loop equations to  the form 

Further evidence of similari t ies to forced convection are the body force effects at 

In an effort to correlate near-critical data, Holman and Boggs (ref. 96) rearranged 

2 Nu = 16(Re) (Pr)(Gr) 

Nu = 0. 0 7 9 ( R e ) 1 1 / 4 ( P r ) ) ( G r ) - 1 / ~ ~ ~ ~ ~  (turbulent) 

To tes t  the geometry effects, Tanger, et al. (ref. 97) compared sulfur hexafluoride 
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Reynolds number, Re 

(a) Test loop 1. (b) Test loop 2. 

Figure 16. -Correlation of near-critical sulfur hexafluoride data in  natural convection 
loops of different geometries. (From ref. 97.) 

data obtained in two different loops. For a fixed IT and 'd,  the geometry factors of 
equations (17) and (18) of loop 1 were approximately 1 . 8  those of loop 2. They found no 
effect due to geometry varations. For the cri t ical  region, they recommend 

WWf 11/4 = 0.00982(Re) 
Pr 

The results a r e  shown in figure 16. Merlini (ref. 98) found a very strong influence of 
the transposed critical temperature on both heat transfer and oscillations. He used the 
experimentally determined film-to-centerline fluid temperature ratio Tx/T t o  corre-  Q 
late his  data 

Nu = Const(Re) 0 . 6 5  (Pr) 0. i5GZ]'' - 27 

L.287  2, 1 . 2  

-I Const = 
TQ 



TABLE III. - NATURAL CONVECTION - LOOPS 

Refer- 
- 
Date 

of 
work 

- 
1939 

Fluid Geometry 
~~~ ~ 

Range of conditions 

97 

195 

Sulfur 2 loops: 43 in. i.d., 
hexafluoride 
(SF6) varied vertical 

28 and 38 f t  long, 

distribution between 
condition and heater 

C02 Closed inclined tube 

Investigator 

Schmidt, Eckert, 

Ratio of 
pressure 

to critical 
pressure, 

p/pc 

0.52 to 1.29 

Ratio of 
temperature 

to critical 
temperature, 

T/T, 

0.6 to 1.25 
I and Grigull  7.4 ft long 

1951 1 0.77 to 1.07 Turbine blades 
(hollow core) 

Schmidt 

Van Putte and Grosh 

Merlini 

Holman and Boggs 

1960 Test section: 5 ft long, 
0.245 in. i.d. lg4 I H20 I 0.03 to 1.25 up to 1.12 

1968 

- 
1966 

1.06 to 1.24 0.735 to 1.016 Loop: 0.742 in. i. d., 
42 f t  long 

0.84 to 1.5 0.88 to 1.39 

1964 

- 
1965 

Freon-114 Loop: 0.93 in. i. d., 
(C2C12F4) 49 ft long 155 I I Harden and Boggs 

Freon-114 Loop: 0.93 in. i. d., 
(C2C12F4) 49 ft long 151 I I 1.0 to 1.1 0.86 to 1.0 Cornelius and 

Parker 

1968 

- 
1965 

- 

0.98 to 1.64 0.995 to 1.14 

I Hahe 

Constant volume and temper- 
ature experiment 
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Because of this equation's extreme dependence on T /T 
familiar with reference 98 and exercise caution where applying equation (19a). The ex- 
periments in natural convection loops a r e  summarized in table In. 

The results obtained in f r e e  convection pools bear many similari t ies to the results 
for  natural convection loops; however, there  a r e  also many similari t ies between loops 
and forced convection systems. 

the reader  should become x &' 

In summary, 
(1) In  f ree  convection pools and natural convection loops, close proximity of the fluid 

to the critical point appears to enhance heat transfer.  This is possibly the result of a 
f r ee  boundary system being able to respond to  enhancing property variations when the 
temperature differences a r e  low. A s  will be shown, forced convection systems at low 
temperature differences exhibit similar trends. 

(2) Reasonable success has been achieved in correlating the data of both the pools 
and natural convection loops by variable property modifications to  the standard equations 
for the given configuration. 

modeling of a near-critical fluid. On the other hand, the success of single-phase corre-  
lations indicates either approach may be successful. 

(3) The pool experiments have produced considerable support for a pseudo-two-phase 

(4) To date no single correlation has been tested against all  the available data. 
(5) Since these experiments operate very close to the cri t ical  point, there  is a con- 

(6) System oscillations which a r e  commonplace in a natural convection loop near the 
tinuning need for improved property data and equations of state. 

cri t ical  point are similar to those observed in forced convection systems. 

Heat Transfer in Forced Convection Systems 

The experimental work in near-critical forced convection can be broken into two 
major categories. First a r e  the conventional heated-tube experiments which have been 
used so successfully in determining Nusselt correlations for gases. In the second cate- 
gory a r e  experiments which examine one or two details of the heat-transfer process in 
order  to explain the mechanism of near-critical heat transfer.  

vection heat transfer to supercritical fluids, which fall into the broad classification 
known as heated-tube experiments, have been conducted. All these experiments were 
very similar in design, operating procedure, measurements, and to  some extent, re- 
sults. These experiments can be surveyed as a group, pointing out specifics where 
necessary. The range of these experiments, which by now is quite extensive, is sum- 
marized in table IV. The most popular fluids have been water, hydrogen, and carbon 

Heated-tube experiments. - In the past 17 years,  over 30 experiments in forced con- 
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TABLE N. - FORCED CONVECTION - HEATED-TUBE EXPERIMENTS 

Correlation attempts 
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TABLE IV. - Concluded. FORCED CONVECTION - HEATED-TUBE EXPERIMENTS 
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.................... 
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______ 
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dioxide; and the flow is normally vertically upward. The emphasis in many of these ex- 
periments was on data correlation. 

centered on reference temperature modifications to the basic Dittus-Boelter equation: 
The correlation attempts can be treated in a general manner as to form. Early work 

where x means that the fluid properties a r e  evaluated at Tx = Tb + x(Tw - Tb). Eckert  
(ref. 99) suggested that x may be a function of a dimensionless temperature frequently 
called the Eckert  parameter 

x = fc;--;) 

Bringer and Smith (ref. 100) and Schnurr (ref. 101) have plotted these functions, as 
shown in figure 17. While this treatment handles quite a bit of data, it has never been 
generalized to other data and no analysis is available to predict the function. 

x 
t 
x- 

cri t icai pressure, / 
.6 - 

. 4  - 

. 2 -  

-. 2 0 . 2  . 4  .6 .8 1.0 0 -. 6 -. 4 
Eckert parameter, E = (T" - Tb$Tw- Tb) 

Figure 17. - Effect of relative proximity to the  cr i t ica l  point o n  Eckert reference tem- 
perature (refs. 59, 101, and 135). 
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Another early correlation directed specifically at heat transfer near the cri t ical  , 
point was that of Miropolskii and Shitsman (ref. 102); using water experiments they pro- 
p s  ed 

i 

0 .8  0 .4   NU)^ = 0. 023(Re)b (Pr)min 

where (Pr),in is the minimum Prandtl number, defined as 

This  amazingly simple modification to  the Dittus-Boelter equation produced some re- 
markable results. Miropolskii and Shitsman (ref. 103) made a plot (redrawn in fig. 18) 
for water at 230 atmospheres (Pc = 218.2 atm) using equation (22). Figure 18 shows a 
sharp  peak in heat-transfer coefficient at Tb - T* and the peak decreases with in- 
creased heat flux until, with an order of magnitude increase in q, there  is practically 
no peak. Compare this to the data from Hauptmann's experiment (ref. 70) for carbon 
dioxide flowing over a flat plate, shown in figure 10. The qualitative similari t ies be- 
tween these data and the Miropolskii and Shitsman calculations (fig. 18) a r e  striking. In 

I Heat flux, 
6 -  q, 

,- 116 

I W/cm2 I - 
bi - 

5 -  N- 

3 
- 5 
-... 

J=- 4 -  

c W .- 
.c" L 3 -  
m 
8 

z 2 -  
L a 

I 
610 620 630 640 650 660 670 680 

Bulk temperature, Tb, K 

Figure 18. - Calculations of heat-transfer coefficient for 
water by Miropolsky and Shitsman correlat ion (eq. (22)). 
Ratio of pressure to cr i t ica l  pressure, 1.052; mass flow 
rate, 100 grams per square centimeter per second; tube 
diameter, 30 mill imeters. (Data f rom ref. 103.) 
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Hauptmann's data, however, the heat-transfer coefficient first increased, then decreased 
with heat flux. The  data also showed a marked transverse body-force effect which, of 
course, the correlation could not comprehend. Shitsman (ref. 104) successfully ex- 
tended this correlation to include the water data of Dickinson and Welch (ref. 64), the 
oxygen data of Powell (ref. 54), and the carbon dioxide data of Bringer and Smith 
(ref. 100). Particularly interesting was the fact that the correlation comprehended both 
the maximum in heat-transfer coefficient reported by Dickinson and Welch and the mini- 
mum reported by Powell. Later,  however, using water, Shitsman (refs. 103 and 105) 
also discovered experimentally the same temperature "spikes, 
u re  11, that Powell (ref. 54) reported for oxygen. He called this a region of "impair- 
ment" to  heat t ransfer  and likened it t o  boiling crisis. H e  cautioned his readers  that 
equation (22) would not correlate this region despite the fact that it had earlier handled 
Powell's s imilar  conditions. The authors have tried this equation on the hydrogen data 
of Hendricks, et al. (ref. 41) with unsuccessful results. 

shown typically in fig- 

Another correlation directed at the cri t ical  point is of the form 

where (NU)b is the Dittus-Boelter value (eq. (10)) and c = (Hw - Hb)/(Tw - Tb). Ver- 
sions of equation (23) have been used for carbon dioxide (refs.  60 and 106), for water 
(refs. 61  and 107) and for propane (ref. 108). The key characterist ic would seem to be 
the integrated specific heat 

The  concept of using not only integrated specific heat, but all physical properties on 
an integrated average basis was put forth by Brokaw (ref. 109) for a reacting N204  sys-  
tem. The properties would be  expressed as 

P 

P' 

where cp(t) is any fluid property. This has a tendency to  smooth out the sharp  near- 
cri t ical  property changes, as shown in figure 19 for density. Since near-critical fluids 
can be thought of as dissociating, this approach could have merit .  Furthermore,  if  the 
temperature profile is known, or a reasonable assumption for the profile is made, the 
integral average property becomes 
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Figure 19. - Integral average properties as defined by Brokaw (ref. 109) 
in comparison to equi l ibr ium properties, for  parahydmgen. 

Hess and Kunz (ref. 110) proposed a correlation of the form 

This has worked reasonably well for hydrogen (ref. 55). 
Most authors have been reluctant to  propose "pseudoboiling" models for forced con- 

vection heat transfer.  Hendricks, et al. (refs. 41 and 42) have suggested modification 
of two boiling concepts, t he  Martinelli parameter (ref. 111) and the Stermann parameter 
(sometimes called boiling number) (ref. 112), for  use in the supercrit ical  region: 
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where 

and 

q f lv  Sr =- 
ub AH 

where the subscript 1 refers  to the liquid o r  heavy species. While the functional re -  
lation has not been specified, these parameters have shown some success in grouping the 
data. 

Wilson (ref. 113) used a somewhat s imilar  concept: 

-- - a + bNsk 1 

where 

and 

a = 1 . 0 3 3 ~ 1 0 - ~ ;  b = -1.708xlO- Nsk<  - 0.2 

a = 7 . 8 6 8 ~ 1 0 ~ ~ ;  b = 1 . 6 1 3 ~ 1 0 -  3 Nsk > - 0.2 

If an equation is listed as a correlating equation in table IV, it is intended to imply 
that the particular author used a nondimensional correlation which is one of the basic 
forms of equations (20) to  (26), as indicated in the table. The reader is referred to the 
actual reference for  the specific form of the correlation. 

In forced convection, in addition to subdividing regions by state conditions as in 
figure 8, some success has been had by Yamagata, et al. (ref. 114) and others (refs. 41 
and 42) in determining correlating regions by flow parameters.  Figure 20 shows a typi- 
cal  map of heat flux against mass  flow. Basically, for  combinations of high flow o r  low 
heat flux, conventional correlations of the type shown in equation (9) will work even in 
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Abnormal region: 

Noncorrelatable 
- Temperature "spikes" 
- Heat-transfer impairment 
- 

- 

Correlatable 
No temperature "spikes" 
No heat-transfer impairment 

t Mass f l ux  

Figure 20. -Typical map of heat f l ux  as a funct ion of mass flux. 
(From refs. 74 and 114.) 

region IV of figure 8. 
fail and the peculiarities of the near-critical region, such as wall temperature spikes 
appear. This information helps considerably in reducing the s ize  of the region of non- 
correlation (region IV). Unfortunately, for the present, only water and carbon dioxide 
have been explored in this manner. 

Detailed investigations into mechanisms. - There have been several  experiments 
directed to more specific and detailed information than available from the heated-tube 
experiments (refs.  66, 70, 73, and 113 and a paper entitled "Turbulent Heat Transfer 
to  Carbon Dioxide Near the Critical Point" by R. J. Hanold, submitted to the 1970 
International Heat Transfer Conference). Probably the most useful details concerning 
the flow are  velocity and temperature profiles. The only experiments in which profiles 
have been measured were performed by Wood (refs. 66 and 115) and by Wilson (ref. 113). 
In both cases, they surveyed radially across  a vertically oriented heated tube near the 
exit. Wood used carbon dioxide at an L/d of 30.7, and Wilson used hydrogen at an 
L/d of 128. 5. Wilson's data included hot wi re  measurements, in addition to tempera- 
tu re  and dynamic head profiles. In both cases ,  the major result  was the appearance of 
the so-called M-shaped velocity profiles when the bulk temperature was near the t rans-  
posed critical temperature, as shown typically in figure 2 1  and predicted analytically by 
Hsu and Smith. These a r e  similar to the profiles shown in reference 116. Recent 

For high heat flux or low flow, however, conventional correlations 
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Figure 21. -Typical M-shaped profi les as found by Wood and by 
Wilson (refs. 66 and 113). 

experiments of Bourke et al. (ref. 117) indicate the hot wire  to be a useful tool in this 
regime. 

Kahn (ref. 73) and Hanold (in the paper mentioned on p. 40), both using carbon 
dioxide, conducted experiments designed to isolate some of the many interacting vari- 
ables and to highlight the influence of a single parameter. Kahn's method (refs. 73 
and 118) was to flow carbon dioxide at its critical point between parallel plates of large 
aspect ratio, with one plate heated and the other cooled at exactly the same ra te  so that 
no increase in the heat content of the fluid occurred. The heat-transfer coefficient 
peaked sharply when the hot wall (which was always the upper wall) approached the trans- 
posed crit ical  temperature. The peaks became sharper as the temperature difference 
between the walls was decreased. Hanold used a horizontal rectangular channel with one 
wall heated. By changing the heated wall  from upward to downward, he could compare 
t ransverse body-force effect. He found a negligible difference between the two cases  
and attributes it t o  a dominance of the flow by Kelvin-Helmholtz instability as opposed to 
Raleigh- Taylor type. 

cri t ical  carbon dioxide over a horizontal heated flat plate. Among his resul ts  are an in- 
A different result  was observed by Hauptmann (refs. 70 and 119), who flowed near- 
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dication of a 30-percent increase in heat t ransfer  for the same conditions with the heater 
oriented upward. Hauptmann's major contribution was a set of excellent, color, high- 
speed motion pictures coupled with good heat-transfer data. H i s  data have already been 
discussed in figure 10. 

with near-critical carbon dioxide, which are discussed in the next section. 

tions can be made: 

but the nature of the response is not uniform and the question of increased o r  decreased 
heat transfer is unclear. 

discontinuity in going from high-pressure boiling to the supercrit ical  region. However, 
since the fluid is not two phase, the formulation is somewhat arbitrary. 

have produced some very interesting variable groupings which deserve continued in- 
vestigation. Among these are 

Shiralkar (ref. 74) and Jackson (ref. 120) have reported wall temperature spikes 

In summary of the current, forced convection work, the following general observa- 

(1) Proximity to the critical point produces a sharp response in wall temperature, 

(2) There is evidence of a strong similarity to  boiling and there  seems to  be  little 

(3) Analyses and experiments directed specifically at critical-point heat t ransfer  

(a) Average specific heat, and integrated average properties, for example, 

- Hw - H b  
c =  P 

Tw - Tb 

(b) Minimum Prandtl number, (Pr)min 
(c)  Eckert reference temperature parameter 

T' - Tb 
E =  

Tw - Tb 

(d) Turbulence enhancement factors (see the section Theoretical Considerations 
in Force Convection) 
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(e) Pseudoboiling parameters such as Stermann number and Martinelli param- 

(f) Stability limit (wall temperature spikes) defined by q = f(G) (see fig, 20) 
e ter  

(4) Despite the fact that analysts developing the various correlation o r  mixing length 
methods have been able to substantiate their work with data, subsequent investigators 
have usually found it necessary to  modify the method to  fit their  own data. No analysis 
is currently widely accepted nor has any analysis been thoroughly tested against the 
available data. 

Near-Crit ical Heat Transfer in Relation to Conventional Geometric Effects 

Curved tubes. - Systematic studies of the effects of curvature on a near-critical 
fluid are lacking. W. S. Miller (Rocketdyne Division, North American-Rockwell) has 
recently completed such a study, but the data are  not yet available. Several studies have 
been made at higher pressures  and for gases. The basic effect of curvature is to in- 
stigate a secondary flow such that the boundary layer is thinned at  the concave surface 
(see fig. 22), and thickened at the convex surface. The flow patterns indicate that the 
core  moves toward the concave surface and then flows back along the periphery to dump 
in the region of the convex surface. While the classical works of It5 (ref. 121) for tur- 
bulent flows and of Dean (ref. 122) for laminar flows deal with single-phase fully de- 
veloped fluids, the results of their analyses have been applied with varying degrees of 
success to the near-critical fluids (refs. 123 to 126 and a personal communication from 
W. S. Miller). 

Basically, It5 found that, for high-Reynolds-number fluids, the average friction 
factor for a curved tube was increased over that for a straight tube by the relation 

0. 05 fer = [..(:TI = I  0.05 

fst 

Hendricks and Simon (ref. 123) pointed out some effects of curvature on near- 

(1) Rather conventionally, at high Reynolds numbers the concave surface enhances, 
cri t ical  hydrogen, which a r e  summarized as follows: 

and the convex surface degrades, heat transfer.  The magnitude of these effects de- 
pends on fluid conditions, curvature-to-tube-radius ratio, and angular position along 
the bend. 

fluid is centrifuged to the concave wall rather than swirled in the normal secondary flow 
(2) Visual studies with small-bend-angle tubes, using liquid nitrogen, indicate this 
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Figure 22. - Models of f lu id  flow in curved tubes. (Information on l iqu id  f i lm boundary 
I received froin K. J. Bell, Oklahoma State University.) 

patterns. Visual studies with steam indicated that droplets impinge on the concave wall, 
flow around t o  the convex surface, and a r e  carr ied downstream. 

heat-transfer coefficients. 
of the bend and appear to  be propagated upstream as well. 

For example, little circumferential variation in h was found for some subcritical pres- 
su re  hydrogen tests at low Tw/Tb. 

could vary a s  though the fluid was oscillating around the tube in some harmonic manner. 
Such oscillations were apparently instigated by a nonuniform heat-flux pattern at the 

uniform inlet velocity profile, or by the secondary flow itself as it moves from the core 
region along the periphery back to the core  region. 

The  effects of radius of curvature to tube radius R/r for  hydrogen are shown in 
figure 23. A t  large R/ r ,  the effect is small  and approaches that of the straight tube. 

(3) Entrance conditions, profile similarity, and fluid history greatly influence the 
Furthermore, the effects of curvature persist  downstream 

The magnitude of these effects appears to depend on whether the wall is "wetted. " 

In subsequent tests at supercritical pressure and high Tw/Tb, it was found that h 

I upstream heating flange. They could also be induced by other factors,  such as a non- 
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Figure 23. - Concave-surface heat-transfer coefficient as funct ion of ratio of radius of 
curvature to tube radius. 

A t  smaller R/r, the effects a r e  quite large (2:1), but data seem to indicate two possible 
paths at lower R/r ,  as shown in figure 23. Which one is correct  awaits experimental 
verification. 

McCarthy et al. (ref. 75) investigated near-critical nitrogen tetroxide and noted a 
nonuniform surface temperature phenomenon along the convex surface and a persistence 
of the curvature effects in the downstream region. Their experiment was complicated 
by the dissociation of nitrogen tetroxide; however, they still found up to a 2:l  increase 
in hcv due to curvature. In the work reported in reference 124, Thompson and Geery, 
investigating liquid hydrogen at P/Pc - 5, also found a 2:l increase in heat t ransfer  
because of curvature; however, they found no effects due to asymmetrical heating on 
noncir cular flow pas sages. 

McCarthy, et al. (ref. 125), using hydrogen, found the heat-transfer coefficient to 
increase as 

L her hst(l + 0.1 :) - d 5 10 

up to (L/d) = 10 and to  become fully developed thereafter. He  suggested the following 
equations : 
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0.1551 

0. 519 
(Nu)cv = (Nu)s t l  + 1. 867(:) ][O. 0822(Re)b 

0 .894  
(NU),, = @ U ) s t l  + 2.21(:) ][O. 

where 

could be adequately correlated by using Ita's parameter: 

is given by table IV-C of reference 55, and by equation (25). 
Taylor (ref. 126) investigated the data of references 124 and 125 and found they 

(Wcv 

(Nu)calc 
= Ib O s o 5  Concave 

where (NU)calc is given as equation (9). While equations (28) to (32) were developed for 
hydrogen, similar correlations could be anticipated for other fluids, at high Tw/Tb 
values ("nonwettedTt walls). 
K. J. Bell of Okalahoma State University. He found a substantial increase in h on the 
convex wall for wetting two-phase fluids at low Tw/Tb (private communication). The 
visual steam flow patterns noted by Hendricks and Simon lend credence to these results. 

Twisted tapes and rifle boring. - If the bulk fluid is near the wall, an augmentation 
in the heat-transfer coefficient will occur. Bartlit and Williamson (ref. 127) induced 
swirl  flow in liquid hydrogen using a twisted tape in a long tube and found the heat- 
transfer coefficients to be approximately those predicted by the standard Dittus-Boelter 
equation. This is in contrast to  the same pipe without a swirl  inducer, where the ex- 
perimental h was much less than the predicted h (fig. 24, s e e  also ref. 128). 

strated a similar effect with near-critical water (personal communication, s e e  also 
ref.  129). The lands of a rifle-bored tube both induce swir l  and t r ip  the flow; these 
geometry effects eliminated the wall temperature "spike" noted in a s imi la r  smooth 
tube under the same conditions (fig. 25). 

The enhancements, of course, require a pressure-drop penalty. J. H. Van Sant 
(Laurence Radiation Laboratory, University of California, Livermore, Calif. ) analyzed 
the results of Kidd (ref. 130) and found that the enhancement in heat t ransfer  was at the 

"WettedTt walls and boiling have been investigated by 

E. Michaud and C. P. Welsh (Badcock and Wilcox, Barberton, Ohio) have demon- 
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0. x 0, 
S 
\ 

t" 

E3 ,-S moot h tu be 

A Swir l  inducer f i rs t  14 ft 
0 No swirl inducer 

- 0 Swir l  inducer for 46 ft 

8- 

6- 

4-  r Twisted tape 

2-  

I 

Lengthdiameter ratio, Xld 

Figure 25. - Schematic comparison of rif le-bored (ribbed) 
tubes to smooth tubes in near-crit ical region. (Figure 
f rom E. Michaud and C. P. Welsh.) 
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direct expense of pressure drop (personal communication). The  optimization of heat 
transfer,  pressure drop, and heat-exchanger compactness requires much effort. 

Body-force orientation. - Orientation of the heat-transfer apparatus with respect to  
gravity can have considerable influence on the results.  Hall, et al. (refs. 131 and 132), 
Jackson and Evans-Lutterodt (ref. 120), Wood (ref. 115), and Shiralkar and Griffith 
(ref. 74 and 128) have found that parallel buoyancy effects can substantially alter the 
velocity profiles. Shiralkar et al. (ref. 74) and Jackson and Evans-Lutterodt (ref. 120) 

reference 120 the spikes were eliminated by downward flow. The effects also seem 
quite dependent on whether the bulk temperature is above or below T*. However, the 
present authors found no noticeable effect with high-velocity, near-crit ical  hydrogen in 
up- and downflow\configurations. The first-order answer lies in the ratio of buoyancy 

2 4 to  inertia forces which, for the authors case, was quite small  (Gr)f/(Re)f = 4x10- . 
2 3 Shiralkar and Griffith (ref. 74) found the effect to  be  noticeable when Gr/(Re) 2 4x10- 

with the computations of Hsu and Smith (ref. 133). 

on p. 40), have already been discussed. 

near-critical hydrogen. The experimental h at high heat fluxes were 1. 5 t imes higher 
for an undeveloped entrance than for a hydrodynamically developed entrance, as illus- 
trated by figure 26. This effect persisted an  abnormally long distance down the tube. 
Little effect was found for the low-heat-flux case. 

I found wall temperature spikes in carbon dioxide at elevated fluxes for  upward flow. In 

, for water and for carbon dioxide. These values and conclusions are in agreement 

Transverse effects, studied by Hauptmann (ref. 70) and Hanold (in the paper cited 

Entrance effects. - Papell and Brown (ref. 134) investigated entrance effects in 
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In summary, the geometric effects of significant interest in near-critical heat t rans-  
fer  are 

(1) An increase of about 2:l in the heat-transfer coefficient on the concave side can 
be expected because of curvature for gases and fluid systems at high Tw/Tb. This en- 
hancement seems to  be a centrifuging effect, particularly in small-bend-angle tubes. 

(2) The magnitude of enhancement (or degradation on the convex side) appears to  be 
related to the It5 parameter.  A s  a reference for computing enhancement, for the "dry- 
wall" case, correlations of the type given in equation (9) appear to be the most satis- 
factory. 

density boundary layer, such as twisted tapes and spiral  grooves, enhance near-critical 
heat transfer significantly . 

2 3 fluence heat transfer when Gr/(Re) > 5x10- . 

than in gases. 

For the "wet-wall" case, the augmentation can shift to the convex wall. 
(3) Devices which centrifuge the high-density core  to the wall o r  break up the low- 

(4) Experiment and analysis suggest that a parallel body force should begin to  in- 

(5) Tube entrance effects persist  much further down the tube in near-critical fluids 

Theoret ica I Con side rat  ions in Forced Convect ion  

In the free and natural convection areas, reasonable success has been realized by 
using conventional variable-property approaches. For example, in natural circulation 
loops, the arguments of Schmidt, et al. (ref. 6) have stood the tes t  of t ime and can be  
seen in use today in such correlating equations as equations (17) and (18). In forced 
convection, the fluid is not allowed to naturally seek its own circulation patterns. Con- 
sequently, the complex flow interactions caused by the rapid expansion of the near- 
cri t ical  fluid a r e  superimposed on the normal forced convection patterns, and conven- 
tional forced convection approaches seem inadequate. A fair amount of analytic atten- 
tion has been turned toward explaining these phenomena. This will be briefly recapped 
in this section. 

Mixing length analyses. - By far the most widely used approach is the Prandtl 
mixing length concept. The basic idea is that the Reynolds stress t e rms  of the Navier- 
Stokes equations can be made to look like laminar shear t e rms  by the introduction of a 
turbulent viscosity o r  eddy diffusivity. The shear and heat flux expressions assume the 
popular form: 

(33) 
du du 

7 = 17- + p €  - 
dY dY 
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dT dT 
dY h d y  

q = - X - - p C E  - (34) 

Subject to the following nondimensionalization, Deissler (refs. 135 and 136) proposed that 
these equations apply throughout a supercrit ical  flow field: 

+ u*y y =-  
U 
0 

where u* is the well-known shear velocity 

The nondimensional equations become, for Eh = E 
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Deissler (ref. 135) numerically integrated these equations for water at P/Pc = 1. 56, 
with moderate success. He suggested using a reference temperature Tx (discussed in 
the section Heat Transfer in Forced Convection Systems) for evaluating properties, and 
Eckert (ref. 99) consolidated the data spread by introducing the following dimensionless 
temperature: 

T* - Tb 
E =  

To - Tb 

In that same year, Goldman (ref. 137) introduced a technique to transform the 
variable-density problem to the constant-density form. This was done by using a vari-  
able density in the shear velocity: 

u* (39) 

The form of equations (36) and (37) remains unchanged, but all the nondimensional vari- 
ables are changed. They a r e  usually designated u++, y++, and T++ to  indicate the 
change (see table V). Goldman also suggested a different form for the heat-transfer 
coefficient, which evolves from the Dittus-Boelter equation (ref. 138): 

GO. 8 

These modifications have been popular, but universal success has not been achieved. 
Most of the research in mixing length theories for near-critical fluids has centered 

on adapting the eddy diffusivity to  comprehend the near-critical phenomenon. To review 
the basic eddy diffusivity concept, look at two prominent examples, those of Van Driest 
(ref. 139) and Deissler (ref. 135): 

(2) multiple part. In the continuous case, Van Driest (ref. 139) argues that one form of 
E should apply over the entire regime; while for the multiple-part case,  Deissler 
(ref. 135) points to  a near-the-wall region and an away-from-the-wall region. These 
and other eddy diffusivities a r e  present in table V. 

Van Driest  continuous approach: 

Most eddy diffusivities E can be placed into two categories: (1) continuous, and 



TABLE V. - EDDY DlFFUSlVlTY EXPRESSIONS 

3nergy-momentu 
solution 

Diniensi(,nless sddy diffusivlty. 
+ -  

i = <  I '  

Zonstrain Reference 

Deissler and P res l e r  (ref. 21: 
I1 ~ 0 124 
K = 0 .  36 

t v :  2 

t u  2 

k"in Driest  (ref. 139) 
K = 0 . 4  A + = 2 6  

;oldman (ref. 78) 

(Note: e&, 
can also 
be used) 

PO 

)ecoupled less  and Kunz (ref .  110) 

Isu and Smith ( r e f .  133) 'oupled 

lall, Jackson, and Kahn 
ref. 118); T(Y) is l inear ;  
, = 0.4;  du++/dy++; conven- 
ional velocity profile 

'elukhov and Popov (ref. 214) 

oupled 

r 

Decoupled 

'opov ( r e f .  215) 
Leichart (ref. 216) 

ouplcd lelik-Pashaev (ref. 217) 

ecoupled 'anaka, Nishiwaki, and 
Iirata ( ref .  651 
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Deissler multiple-part approach: 

c 

E = K' E 

V 
-2 y+ NN ~ 

Equations (41) and (42) were developed primarily for constant-density analyses. They 
have been used successfully for variable-property gases (Deissler, ref.  135). The near- 
cri t ical  research has required modification of these basic forms. These modifications 
a r e  summarized in table V. A few a r e  discussed in this section. 

Hess and Kunz (ref. 110) found that, for near-critical hydrogen, the damping factor 
of equation (41) had to include a te rm dependent on kinematic viscosity. Their work in 
this a rea  led to  the correlating equation most frequently used for near-critical hydrogen 

Hsu and Smith (ref. 133) proposed that, in the presence of a strong density gradient, 
h. (25)). 

shear should be represented as the ra te  of change of momentum. The resulting eddy 
diffusivity expressions may be written in te rms  of equations (41) and (42) as 

'rn = (1 + Fm)€-) 

1 = (1 + Fh)€ 

where E is given by equation (42), and 

F =  dY+ 
d lnu' 

dY+ 

F -  

dy+ . J 

(43) 

(44) 

Equation (43) reduces properly for constant density, and either form of E (eq. (41) 
or (42)) may be  used. Hsu and Smith (ref. 133) also performed a first-order force 
balance on a differential volume to derive an equation relating shear ,  buoyancy, and 

53 



pressure  drop. The success of their  equation in correlating the data of Bringer and 
Smith (ref. 100) indicates that such a modification is warranted, and is another step in 
the proper direction. The main problem here seems to be that, while each researcher  
has success correlating his own data, subsequent researchers  had troubles. Further,  
Hall (ref. 131) using several  different techniques on the data of Koppel (ref. 140) also 
found a degree of insensitivity in the theories, as illustrated in figure 27. 

Hall (ref. 132) developed a model for flow in a vertically oriented pipe o r  channel 
in order  to demonstrate some of the buoyancy effects which have been found with near- 
cri t ical  fluids (see the section Body-force orientation). Halls' theoretical approach, 
while limited and analogous to the two-phase o r  two-component flow approach, meri ts  
attention because it isolates some governing parametric forms. The first model as- 
sumes a discontinuous change in transport  properties and density at y = 6 ,  with "gas- 
like" properties at y < 6 and liquid properties for y > 6 (e. g. , s e e  fig. 28). The 
shear distribution is a two-part linear form (see fig. 28). The velocity profile is lami- 

4 0  
Bulk fluid ~~: 30 "0 10 20 30 40 50 60 70 BO trrnprrllurr W 100 

AXIAL POSITION - equ~volmt d~arnt ten  

Figure 27. -Comparison of various correlations and 
mixing length theories to carbon dioxide data of 
Koppel. Ratio of pressure to cri t ical pressure, 
1.028; mass flow rate, 92.2 grams per centimeter 
per second; heat flux, 22.5 joules per centimeter 
squared per second; characteristic diameter, 
0.493 centimeter. (Reproduced from ref. 131.) 
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Figure 28. - Property variation and shear distr ibut ion for the  models of 
Hall (ref. 132). 
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nar for y 5 6 and follows the conventional velocity defect law for y > 6.  With these 
assumptions, the momentum equation 

where Ap/AX = Constant, can be reduced to 

Here b& = y+ evaluated at the tube radius o r  channel half width, 5 = 6/bH, and 
(Gr)' = pw(pCore - pw)gbi /p i  is the conventional Grashof number as defined for two- 
phase or two-component flows. 

Van Driest 's eddy diffusivity, equation (41). However, the shear s t r e s s  distribution 
T / T ~  was assumed to  be  of two parts (see the Deissler approach, eq. (42)): 

In the second model, Hall (ref. 132), employed equations (36) and (37) with 

- = 1 - Y  7 [ l + ( l - A ) -  (l ')] near the wall 
'0 bH 

2 = (1 - :)Al in the core  
'0 

where A1 = T ~ / T ~ .  Hall (ref. 132) found little difference in the resul ts  given from the 
two models, which reinforces an earlier remark regarding the insensitivity in the 
theories. Hall  and Jackson (ref. 141) and Leontiev (ref. 142) have tried to relate this 
phenomenon to that of lamarization. 

sented in each author's respective papers. Using near-critical hydrogen, we at NASA 
and also Szetela (ref. 143) have t r ied the techniques of Deissler (refs. 135 and 136) and 
Goldman (ref. 137) with very limited success.  The technique of Hess and Kunz (ref. 110) 
was tried, and success was limited, in the main, to those data with bulk temperatures 
above the T* regime. The integral average property approach of Goldman (ref. 137) 
gave s imilar  limited results.  The modifications of Hsu and Smith (ref. 133) and Brokaw 
(ref. 109) were  also t r ied again, with only limited success. Modifications of the modi- 
fications, such as using different dampening factors, including upstream effects, etc. , 
were also attempted; however, the results were very disappointing. 

Each theoretical technique has a great deal of merit  and correlates the data pre- 
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The solution of equations (36) and (37) (or modifications, eqs. (43) and (44)) involves 
the iteration of a numerical integration to attain a solution. The iteration is required 
to satisfy the continuity equation and to determine one parameter. In pipe flow, this 
parameter can be P = qou*/~p);OTo, 70, or r + . However, r+ is usually fixed at the 

pipe centerline and T 
able constants, within the parameter P .  In the boundary-layer flows, at the edge of the 
boundary layer 6+, either P or T~ can be considered to be the parameters; usually 
6' is altered at a fixed P and 70 to  give the solution. The point is that for near- 
adiabatic flow of a gas there  exists an adjustable parameter to force a solution to the 
problem. However, this freedom becomes compounded when applying these equations in 
the near-critical region because the following factors a r e  not known: 

attained by the authors (unpublished computer programs by Robert C. Hendricks) were 
for €/eh > 1. 

is considered to be known; thus q and To remain as adjust- 
0 0 

(1) Does €/eh - l?  (Some of the best results for near-critical fluids in a pipe 
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Curve Theory of -  

1 Deissler (ref. 135) 
2 Goldman (ref. 137) 

Emperical equations of- 
3 Miropulski i  and Shitsman 

4 Krasnoshchekov and P ro toppv  

5 Swenson, et. a l  (ref. 61) 

---_ 
(ref. 103) 

(ref. 145) 
-- -- 
-- -- 

Wall temperature, Tw, K 

Figure 29. - Heat-transfer coefficient as 
funct ion of wall temperature for water. 
Pressure, 345 atmospheres (at 417" C ) ;  
rat io of wall temperature to f i lm  tem- 
perature, 1.25; mass flow, 2150 k i lo-  
grams per square meter per second; 
characteristic. length, 9.4 mill imeters. 
(From ref. 144.) 



(2) A r e  the expressions for E or eh correct? 
(3) Is the functional form of T / T ~  and q/q 

(4) Do the convective te rms  in the momentum and energy equations significantly 

realist ic (i. e . ,  constant, linear, 
0 

cubic, etc. ) ? 

alter the resu l t s?  These te rms  a r e  considered in the next section. 
In view of these unknowns, several  different velocity and energy distributions may in- 
tegrate out to give the same solution. However, the convergence may be quite slow and 
difficult to achieve; and furthermore, the result  may be meaningless. 

Some of these difficulties have also been encountered by Petukhov. In a recent sur-  
vey article (ref. 144), he l ists  three basic difficulties in attaining solutions for heat 
transfer in the near-critical regime: 

(1) The nonlinearity of the governing equations with variable properties 
(2) Ignorance of the laws of turbulent heat transfer with variable physical prop- 

ert ies:  To determine these laws will require detailed profile measurements in 
the near-critical regime - a task of considerable difficulty. 

(3) Difficulty of interpretation and generalization of near-critical data because heat 
t ransfer  and pressure losses a r e  functions of many variables 

In figure 29, Petukhov (ref. 144) compares the theoretical resul ts  of Deissler (ref. 135) 
and Goldman (ref. 137) and the empirical equations of Miropulskii and Shitsman 
(ref. 103), Krasnoshchekov and Protopopov (ref. 145), and Swenson, et al. (ref. 61). 

Petukhov (ref. 44) points out that t h e  theoretical analyses a r e  in considerable dis- 
agreement with the experimental results although no data are given in figure 29 for com- 
parison. In reference 144, Petukhov also presents an analysis of Popov which is valid, 
unfortunately, only for carbon dioxide data. Petukhov (ref. 144) classifies the near- 
cri t ical  heat-transfer regimes as 

(1) Normal: where the dependence of Nu on R e  and Pr is approximately the same 

(2) Reduced heat transfer:  where Tbuk < T*, and certain combinations of mass  
as for the constant properties case 

flow and heat flux lead to  a sharp decrease in heat transfer and a rapid in- 
c rease  in the wall temperature 

amplitude ("whistling") and high frequency (1400 to  2200 Hz) at higher heat 
fluxes to cause a flattening of the axial w a l l  temperature profile 

(3) Improved heat t ransfer :  where Tbulk < T*, with oscillations of sufficient 

These classifications a r e  in agreement with those presented herein but, perhaps, are 
formulated in a different manner. 

or  deceleration) to be important in turbulent heat t ransfer .  
fects of longitudinal acceleration on homogeneous turbulence intensities are shown in 
figure 30. 

Acceleration - st rain ra tes .  - Deissler (ref. 146) found the s t ra in  ra te  (acceleration 
For example, the s t ra in  ef- 

The ordinate is the square of the turbulence intensity of the t ransverse v e h -  

57 



I I I I I I I I  
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Axial position, Xt - X/(-Xo) 

Figure 30. - Effect of acceleration o r  
longi tudinal  s t ra in  on heat t ransfer 
for positive s t ra in  rates. (From 
ref. 146.) 

of a Stanton number ratio (St)/(St)O where the denominator is the initial Stanton number 
before acceleration 

[$j2 = 

(iq2 
2 

U 

0 
n 

(4 5) 

The abscissa of figure 30 is axial position; the parameter s+ is a s t ra in  rate. Fig- 
ure  30 shows that the local intensity, o r  Stanton number, progressively decreases when 
subject to a s t ra in  rate. 

Under heating conditions, a near-critical fluid would undergo large longitudinal ac- 
celerations while expanding in a constant-area pipe. Experiments by Weiland (ref. 147) 
and Taylor (ref. 148) with gases at high heating ra tes  suggest that such expansion effects 
occur. Deissler (ref. 146) showed that the data trends in references 147 and 148 could 
be explained by s t ra in  or acceleration effects. Such an analogy could also be drawn for  
the laminarization data of Moretti and Kays (ref.  149). Perhaps some of the unusual 
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Figure 31. - Concept of simultaneous hydrodynamic and penetration mechanisms. 
(From ref. 1%). 

distributions of heat-transfer coefficient noted for near-critical hydrogen (refs. 41 and 
134) relate to s t ra in  effects. 

Penetration model. - An analogy between heat transfer in fluidized beds and near- 
cri t ical  forced convection has been suggested by Graham (ref. 150). Using the penetration 
theories of fluidized beds, Graham proposed a penetration model for near-critical fluids. 
The mechanism (see fig. 3 1) was assumed to  be a disruption of the sublayer by the peri- 
odic migration of fluid packets from the outer edge of the boundary layer to the wall, 
where they absorb energy in a transient manner. The average heat-transfer coefficient 
can then be expressed as a linear sum of the conventional film-heat-transfer coefficient 
and a penetration coefficient with the proper area weight fraction assigned to  each 

d¶ 

hav=-h + 
P 

%Ot 

(4 5 4  

where 
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(4 5b) =2i"pA)b 7 'contact 

The theory suffers  f rom the lack of a theoretical means of determining T ~ ~ ~ ~ ~ ~ ~ ,  

but has the distinct advantage of reducing to the proper expression outside the near- 
cri t ical  region and integrates the physics of the near-critical problem in a realist ic 
manner. The technique has been used to correlate near-critical hydrogen, carbon di- 
oxide, and water data. 

In summary, the theoretical investigation in forced convection in the near-critical 
region suggests 

(1) Conventional mixing length theories must be modified to account for the tremen- 
dous fluid expansion in the near-critical region. These modifications could be in the 
equations, following Goldman's example (ref. 137); or in the eddy diffusivity, following 
Hsu and Smith (ref. 133); or  in forming a penetration mechanism, Gral am (ref. 150). 

(2) Applications of these and other modifications of mixing length theory to near- 
cri t ical  data have met with limited success. The theory will probably also have t o  be 
made to comprehend upstream history, acceleration, e tc . ,  in order to achieve wide 
success. 

(3) Further analysis of accelerated flows should consider the effects of s t ra in  rates.  
While the theory of Deissler predicts the proper trends, the magnitudes associated with 
a real  near-critical fluid are not correct.  Thus, the boundaries and the variation in 
fluid properties must be properly considered (not an easy task). 

Osci I lation s 

General remarks.  - Fluid oscillations play a major part in near-crit ical  phenom- 
ena, and several heat-transfer studies (refs. 42, 75, 98, 125, and 151 to 153) have re- 
ported some type of instability in natural and forced convection systems. The frequency 
of reported oscillations varies from 1/20 to 10 000 hertz over a considerable range in 
amplitude (as high as 0.3 of test  pressure).  The higher-frequency oscillations, 300 to 
10 000 hertz, seem to be associated with longitudinal and lateral  oscillations - a gas- 
like fluid behavior; and the lower-frequency modes a r e  most common t o  the near-crit ical  
region. Thus, discussion is restricted mainly to the low-frequency spectrum. 

Fluid behavior in the two-phase and near-critical regimes appears to be similar,  
and different modes of oscillations have been identified and analyzed. The analyses have 
been successful in predicting the onset and frequency of oscillation but less  so in pre- 
dicting the amplitudes. Flow excursions, as well as periodic flows, have been studied 
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Ratio of heat f l ux  per u n i t  area to single-tube liquid-oxygen 
flow rate, qA/G, Btu/(ft2)(lb) 
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Ratio of  heat f l ux  per un i t  area 

to single-tube liquid-oxygen flow 
rate, qAIG, kJ/(m2)(kg) 

Figure 32. - Percentage of  heat-exchanger-test data samples showing 
steady operation against heat f lux per un i t  area for  unit mass flow rate. 
Single-tube data coi l  pressure, 40 to 47.5 atmospheres. (From ref. 39.) 

by Zuber (ref. 39). Similar oscillations in natural and forced convection have been re-  
ported. Several authors after observing oscillations (refs. 39 and 41) have delineated 
correlatable and noncorrelatable data based on mass flow rate  and heat flux, as illus- 
trated in figure 32 (see also fig. 20). 

Oscillations in the near-critical regime have the common characterist ic of persist- 
ence for a significant period of time. This means they occur at, o r  very near, a natural 
frequency of the system, and the damping forces a r e  insufficient to quickly arrest them. 

Oscillations may be divided into four types, of which three may be separated by their 
frequencies. The other type is associated with the oscillation of a near-critical fluid be- 
tween laminar and turbulent flow. Due to the sensitive nature of near-critical fluids t o  
fluctuations, the laminar-turbulent oscillations may be characteristic of any heat- 
t ransfer  system of equal sensitivity. These oscillations were discussed in the section 
Heat Transfer in Free Convection Systems. 

The other three types of oscillations may be classified as (1) thermal-acoustic 
(5 to 300 Hz); (2) system oscillations (1/20 to  5 Hz), which are concerned with the be- 
havior of a l l  the fluid in a loop o r  system; and (3) external oscillations (e. g . ,  in pipes, 
in fluid conduits, and in valves). This latter type would be induced and sustained by the 
equipment and have a frequency which is that of the static system. They will not be dis- 
cussed further. 

These oscillations appear to have a significant density change as the source of their  be- 
havior, which is characteristic of the onset of the two-phas? and near-critical regimes. 
Here, the density change becomes very sensitive to  further additions in energy o r  
changes of temperature. Generally, oscillations will occur when the bulk of the fluid is 

Examples of both thermal-acoustic and system oscillations are shown in figure 33. 
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(a) Thermal-acoustic oscil lations (ref. 40). (b) System oscil lations (ref. 151). 
Figure 33. - Examples of thermal-acoustic and system oscil lations reproduced from references 40 and 151. 

in a liquefied condition and the boundary layer appears to  be occupied by a lower-density 
fluid. Most analyses of oscillations assume density to change abruptly at the saturated 
liquid and vapor points and at the equivalent points in the near-critical region. This as- 
sumption tends to  more sharply define the oscillating behavior. 

Thermal-acoustic oscillations. - The thermal-acoustic oscillations (5 t o  300 Hz) 
may be assumed to occur from localized events, in contrast to  those of the fluid-body 
type, which involve the motion of the entire fluid system. Thurston (ref. 152) identified 
two types of these oscillations in his forced convection system. The first type is a 
Helmholtz oscillation, which is associated with a cavity connected to a large plenum, 
such as the atmosphere, with a substantial restriction between the two elements. The 
natural frequency of this system may be expressed by the equatjon 

This Helmoholtz resonance has not been reported in most of the systems concerned with 
this type of study and may be presumed to occur only when the system obviously fits the 
analytical assumption rather closely. 

The second type of acoustical oscillation is a sonic-wave resonance, identified by 
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Thurston and others, and is associated with the velocity of sound and the  length of fluid 
in the flow loop or  fluid system considered. The natural frequency of this system may 
be expressed by the following equation: 

W n = -  C 

2 L’ 
(47) 

The period for these oscillations is that time required for the acoustic wave to tran- 
verse  one-half the fluid length. The frequency of these oscillations has been found ex- 
perimentally to be a very weak function of heating rate, and appropriately it changed 
with fluid length. 

Several authors have proposed mechanisms which would produce and reinforce these 
acoustic oscillations. These mechanisms examine the behavior of the boundary layer 
during the passing of a pressure wave. Thurston (ref. 152) suggested that such a wave 
would tend t o  compress the boundary layer,  improve its thermal conductivity, and cause 
an increased heat-transfer rate. Immediately following this process there  would be a 
tendency for the boundary layer to expand, with a subsequent decrease in thermal con- 
ductivity and dec-ased heat-transfer rate. This mechanism would reinforce the acous- 
t ic  wave as it proceeds through the field. 

onset and amplitude of the thermal-acoustic oscillations. One is a function of the 
Stermann parameter (boiling number) and the other a function of properties, fluid con- 
ditions, flow rate ,  and geometry of the system. 

Thurston, et al. (ref. 40) proposed that the onset of these oscillations can be em- 
pirically determined as a relation between t h e  Stermann parameter and the specific 
volume number described by the following expression: 

Thurston, et al. (ref. 40) developed two similarity parameters to determine the 

0.75 Sr  5 0. 0045(Sv)- 

where 

q0 Sr =- 
Gh* fg 

v f*g s v  =-  
Vf 



The locus of the onset of oscillations is described by the equality in equation (48) (Sr)o 
and the stable points by the inequality. Other authors have identified this threshold by 
applying stability cr i ter ia  to the fluid system, employing the general conservation equa- 
t ions. 

tion of Stermann number 
The amplitude parameter developed by Thurston was roughly correlated as a func- 

Amplitude parameter: 

(48c) 

(49) 

Amplitude correlation: 

Am = O . O l l [ S r  - (Sr)o]0'66 

Svstem oscillations. - Thermal-ascoustic oscillations are confined to the heater 
section, while system oscillations involve the motion of the fluid in the entire loop. 
System oscillations (1/20 to 5 €12) seem to  be present to some degree in nearly all near- 
cri t ical  heat -transf e r  experiments. 

Thus, while the thermal-acoustic oscillations may have a significant amplitude and 
this, in turn, may affect the heat-transfer and general system behavior, most facilities 
will not fail to function because of their presence. System oscillations however, could 
very conceivably prevent the operation of the loop in several  different ways (e. g . ,  a 
pressure variation effecting cyclic heat-transfer conditions t o  produce forces which may 
cause mechanical failure). The frequency of these oscillations is somewhat lower than 
for the thermal-acoustic oscillations. Also, they a r e  one function of the energy input 
to the fluid, and another function of the system geometry. 

Analysis of system oscillations, whether in a two-phase o r  in a supercrit ical  re -  
gion, tend to assume a boiling-like phenomenon with substantial density changes. The 
basic approach is to supplement the time-dependent, one-dimensional conservation 
equations (continuity, energy, and momentum) by an equation of s ta te  which exhibits a 
discontinuity at the saturated liquid line o r  at the equivalent point in the near-critical 
regime. Two general methods have been used to predict the onset of these oscillations. 
The first, attributed to Craya and Bour6 (ref. 154), is called the density effect model. 
This method has been used and extended by a number of authors (refs. 155 to 157). 
Walker and Harden (ref. 156) found six independent variables which would influence the 
inception point. Three of these a r e  concerned with geometry and the friction factor 
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which could be considered essentially constant for any given system. The remaining 
three variables a r e  fluid velocity, gravitational force, and subcooling. The crit ical  
frequency, the same as that of an oscillating manometer, is given by 

( 50) 

Walker and Harden (ref. 15’7) were able to compute a threshold surface involving the 
three variables and t o  predict instabilities in a Freon- 114 natural convection loop with 
good reliability. 

The second cr i ter ia  used the Nyquist-type of test to determine the stability of the 
system. This method is widely used for  electrical systems and can be  employed in fluid 
systems by utilizing analogous behavior. For example, the resistance and capacitance 
of fluid system components can be modeled electrically. Examples of such modeling can 
be found in the work of Zuber (ref. 39), Friedly et al. (ref. 158), and Wallis and Heasley 
(ref. 159). Examples of working heat-exchanger oscillations are found in reference 160. 

The following remarks can be  made in summary: 
(1) Oscillations in near-critical flow can be  divided into four groups: laminar to 

(2) The large density changes of a near-critical fluid a r e  the basic source of the 

(3) The crit ical  frequency for the thermal-acoustic and system oscillations can be 

(4) Conventional stability cr i ter ia  may be employed to predict the thermal-acoustic 

(5) Attempts to predict the amplitude of the oscillations has met with only limited 

turbulent, thermal acoustic, system, and external. 

oscillating behavior. 

predicted by utilizing simple concepts of mechanics. 

and system oscillations with a fair degree of reliability. 

success. 

Choking Phenomenon 

Although the  authors a r e  aware of only one reported work and their  own current 
work on this subject, choking flow in the near-critical region may be  unique and of con- 
siderable interest. Choking flow, often referred to as crit ical  flow, may be defined as 
the condition where the mean velocity and the mass flow ra te  a r e  at a maximum with re-  
spect to further reductions in the downstream pressure (refs. 161 and 162). 

various cr i t ical  phenomena ( e .  g. , choked flow, detonations, shock waves, critical points 
of ferromagnets, thermodynamic critical point) and suggests there  should be some com- 

W. G. Zinman, in a private communication, points to the observed similari t ies in 
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mon theoretical base for  each system. For example, the thermodynamic cri t ical  region 
and choking flows a r e  essentially unstable phenomena, and experimental measurements 
to  determine either a r e  destined to some degree of failure. The experimental problems 
encountered in obtaining data for  either of these cri t ical  conditions a r e  monumental. A s  
cri t ical  conditions a r e  approached, changes occur very rapidly. In the thermodynamic 
cri t ical  region, these a r e  property changes; and in choking flow, they a r e  usually char- 
acterized by pressure changes in the flow direction. Because of these very rapid 
changes, relaxation t imes become important. It follows that for many systems, at the 
rates  of change required to  maintain equilibrium, it is unlikely that equilibrium will be 
achieved nor can the system be assumed to  be frozen. Therefore, the problem of 
choking flow near the thermodynamic critical point is compounded by the necessity of 
considering two crit ical  and elusive phenomena combined. 

For a single-phase, homogeneous fluid, the cri t ical  flow ra te  may be described by 

G2 = -t3 process 

If the process is assumed to be isentropic, the choking velocity is equivalent to  the sonic 
velocity. 

If it is assumed that the fluid is homogeneous in properties and velocity and in ther-  
mal equilibrium at the cri t ical  point, the choking and sonic velocities as described by 
u2 = aP/ap would be zero.  This is because the derivative in equation (51) goes to  zero  
at the critical point. Also, in the near-critical region, the value of this derivative tends 
to be quite low. Some experimental work reported by Williamson and Chase (ref. 163) 
gives the measured sonic velocity of helium in the near-critical region. This is shown 
in figure 34. Examination of the figure shows that, indeed, the velocity does appear to 
approach zero near the critical point and to be at a relatively low minimum in the region 
of the transposed critical. Van Dael, et al. (ref. 164) reported similar results for 
argon. Further, they indicate a practical lower limit on sonic velocity of about 
100 meters  per second. 

It would appear that i f ,  indeed, the very low choking velocities were probable in the 
near-critical region, some experimental measurements (a discontinuous pressur e pro- 
file accompanied by abnormally large pressure loss, or visual observations) would have 
been reported which would indicate the presence of choking flow in the system. Since 
none of these conditions has been reported in the near-critical fluid flow and heat- 
transfer studies, it must be assumed that the choking velocities a r e  somewhat higher 
than those indicated by the sonic velocity or by studies which assume thermal equilib- 
rium with a homogeneous fluid. The work of Hesson and Peck (ref. 165) with carbon 
dioxide appears to be the closest to  the cri t ical  region. Hesson and Peck mapped two- 
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K 
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Figure 34. - Overall view of sound velocity of hel ium-4 as funct ion of pressure near 
cr i t ica l  point. (From ref. 163.1 

phase cri t ical  flow for stagnation pressures  up to the critical; however, no data were 
taken above crit ical  pressure or for throat pressures in the near-critical region. A 
similar experimental program for nitrogen flowing in a converging-diverging nozzle is 
currently under way at Lewis Research Center (unpublished data by R. E. Henry, 
R. J. Simoneau, R. C. Hendricks, and R. Watterson). Preliminary data have been 
taken for stagnation temperatures ranging from 85 to 128 K and for stagnation pressures 
in the range of 26.4 to  41.8 atmospheres. These results indicate that the choking phe- 
nomenon in this region is characterized by a nonequilibium expansion. In addition to  
the conditions listed, the stagnation pressure range will be extended to  68 atmospheres 
in an attempt to create near-critical conditions at the nozzle throat. 

two-species choking flow, it has been shown that assumptions of nonequilibrium o r  of 
different phase velocities are necessary to  explain the experimental data (refs. 166 
to 168). 

For the two-phase-flow case, which should represent an  extreme of the near-critical 

In summary it can be  said that 
(1) If a near-crit ical  fluid were in thermodynamic equilibrium, the sonic velocity 

(2) None of the normal indications of choking have been observed in the near-critical 
would be low and the flow might be expected to choke very easily. 

experiments. This suggests the possibility of thermodynamic nonequilibrium in these 
flows, which is also consistent with two-phase choking experience. 
data for near-critical nitrogen indicate the expansion to be nonequilibrium. 

Preliminary nozzle 
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Zero  -G rav i ty  Operation 

The authors are aware of only one qualitative heat-transfer study of a near-critical 
fluid at very low gravity. Potter and Bril l  (ref. 169) placed 2. 5 l i ters  of liquid nitrogen 
on an Atlas ballistic flight. They present data for nearly 1500 seconds, during which 
time the gravity force increased from 6X10-4 to 0.1034 g's. 
level was controlled by an internal heater and periodic flows. Although Potter and Bril l  
report  that zero-gravity operation of the vessel  was not significantly different from 
earthbound tests, their pressure profiles do indicate some differences. Data in this 
a r ea  a r e  lacking and work should be performed. 

Liquid-nitrogen pressure 

SUMMARY OF RESULTS 

Various areas of research on near-critical heat-transfer have been surveyed. The 
resul ts  for each area  have been summarized at the end of that particular section. These 
summaries a r e  repeated here for the convenience of the reader. 

Flu id  Properties 

1. Classical Van der Waals models do not accurately describe the state of a near- 

2. The discrepancies in the law of corresponding states are accentuated in the cri t-  
cri t ical  fluid, but may be satisfactory in first-order considerations. 

ical region, and the law should be  used only between fluids of s imilar  molecular struc- 
ture.  

3. A thermally disturbed near-critical fluid requires long relaxation t imes t o  return 
t o  equilibrium. 

4. Equations of state of the conventional virial  type can be made to accurately map 
a near-critical pressure-density-temperature surface; however, they a r e  not good for 
thermal properties requiring derivatives of the equation of state. 

5. A new analytic equation of state involving chemical potential, density, and tem- 
perature, based on the Ising lattice gas model, has been developed for the near-critical 
region. 

tivity at the cri t ical  point is overwhelming. The spike can be estimated by treating the 
fluid as a dissociating polymer and superimposing the results on the conventional 
X - A* = f l @ )  curve (eq. (5)), where X is thermal conductivity, X* is the thermal con- 
ductivity at low pressure,  and fib) is a function describing variations in thermal con- 
duct iv ity . 
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6. The evidence for  the existence of a strong anomalous spike in thermal conduc- 



7. If a similar spike occurs in viscosity, it is sufficiently weak to be ignored. 
Thus, q - q* = f2b) (eq. (6)) will adequately describe viscosity, where q is viscosity, 
qo is viscosity at low pressure and f 6) is a function describing variations in vis- 
cos ity . 

uration properties into the near-critical region. 

2 

8. Pseudo-two-phase thermal properties can be generated by extrapolation of sat- 

Heat-Transfer Regions 

1. The near-critical heat-transfer region and its adjacent regions can be delineated 

2. It is not possible to set precise near-critical heat-transfer boundaries for the 
in an approximate manner on a temperature-entropy state diagram. 

following reasons: 
(a) Data a r e  generally insufficient. 
(b) The transition from region to region is not abrupt. 
(c) Most important, the extent of influence of the cr i t ical  point on heat transfer 

3.  Heat transfer in the adjacent regions can be correlated by conventional methods 
is a function of the process or path by which the fluid approaches the critical point. 

appropriate to that region. In fact, the correlatable nature of the adjacent regions helps 
determine the near-critical boundaries. 

Near -C r it ica I Heat -Tra nsfer Pecu la r it ies 

1. Some characterist ics of the near-critical region are 
(a) Nonlinearities in heat flux against temperature difference 
(b) Wall temperature excursions (spikes) 
(c) Similarities to the two-phase regime 
(d) Oscillations 
(e) Large momentum pressure drops 
(f) System-dependent results 
(g) Failure of conventional correlations 

I 
1 

2. Modeling should be required to work throughout region IV, and to exhibit a smooth 
transition to the adjacent regions of figure 8. 
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Free and Natural Convection 

1. Pool results almost universally show an enhancement in heat transfer near the 
cri t ical  point. In all  cases,  the temperature differences are small  and the enhancement 
occurs over a limited temperature range and peaks somewhat away from the cri t ical  
point. Large temperature differences diminish the peak. 

2. Free convection systems have no constraining boundaries and consequently re -  
spond favorably to  property variations. 

3. Boiling-like behavior in near-critical pools is not accompanied by the marked in- 
c rease  in the  heat-transfer coefficient associated with nucleate boiling. 

4. Most researchers  employed conventional techniques away from the cri t ical  point. 
However, close to the cri t ical  point, modifications such as equations (15) and (16) a r e  
employed (see table 11). 

nomenon has not been explained. These oscillations may well determine the character 
of near-critical oscillations found in natural and forced convection systems. 

5. Laminar-to-turbulent oscillations have been observed, but the origin of this phe- 

Loops - Natural Convection Systems 

1. In the  f ree  convection pools and natural convection loops, close proximity of the 
fluid to the critical point appears to enhance heat transfer.  This is possibly the result  
of a free boundary system being able to respond to enhancing property variations where 
the temperature differences a r e  low. A s  will be shown, forced convection systems at 
low temperature differences exhibit similar trends. 

2. Reasonable success has been achieved in correlating the data of both the pools 
and natural convection loops by variable property modifications to t h e  standard equations 
for the given configuration. 

3. The pool experiments have produced considerable support for a pseudo-two- 
phase modeling of a near-critical fluid. On the other hand, the success of single-phase 
correlations indicates either approach may be  successful. 

4. T o  date, no single correlation has been tested against all the available data. 
5. Since these experiments operate very close to the cri t ical  point, there  is a con- 

6. System oscillations which a r e  commonplace in a natural convection loop near the 
tinuing need for  improved property data and equations of state. 

cri t ical  point are similar to those observed i n  forced convection systems. 
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Forced Convection - Experimental 

1. Proximity to  the critical point produces a sharp response in wall temperature, 
but the nature of the response is not uniform and the question of increased or  decreased 
heat transfer is unclear. 

discontinuity in going from high-pressure boiling to the super-critical region. However, 
since the fluid is not two phase, the formulation is somewhat arbitrary.  

3. Analyses and experiments directed specifically at critical-point heat t ransfer  
have produced some very interesting variable groupings which deserve continued in- 
vestigation. Among these a r e  

2. There  is evidence of a strong similarity to boiling and there  seems to be little 

(a) Integrated specific heat c and other integrated average properties, P' 

- S m H b  c =  
Tw - *b 

P 

where Hw and Hb a r e  wall and bulk enthalpy, respectively, and T 
and bulk temperature, respectively. 

and Tb are wall 
W 

(b) Minimum Prandtl number (Pr)min 
(c) Eckert reference temperature parameter 

T* - Tb 
E =  

Tw - Tb 

where T* is the transposed or  pseudocritical temperature. 
(d) Turbulence enhancement factors (see the section Theoretical Considerations) 

such as 

d(ln u') 

dY+ 

where p is density, y is the coordinate normal to  the  flow field, y+ is dimensionless 
distance, and u+ is dimensionless velocity. 

(e) Pseudoboiling parameters such as Stermann number and Martinelli param- 
e te r  
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(f) Stability limit (wall temperature spikes) defined by 

q = f(G) (see fig. 20) 

where q is the heat flux and G is mass  flow per unit area. 

methods have been able to  substantiate their  work with data, subsequent investigators 
have usually found it necessary to  modify the method to fit their own data. No analysis 
is currently widely accepted nor has any analysis been thoroughly tested against the 
available data. 

4. Despite the fact that analysts developing the various correlation or mixing length 

Geometry Effects 

1. An increase of about 2 : l  in the heat-transfer coefficient on the concave side can 
be expected as a result  of curvature for  gases and fluid systems at high Tw/Tb. This 
enhancement seems to  be a centrifuging effect, particularly in small-bend-angle tubes. 

2. The magnitude of enhancement (or degradation on the convex side) appears to  be 
related to  the It; parameter. A s  a reference for computing enhancement for the dry- 
wall case,  correlations of Taylor's type (eq. (9)) appear the most satisfactory. 
wet-wall case, the augmentation can shift to the convex wall. 

density boundary layer, such as twisted tapes and spiral  grooves, enhance near-critical 
heat transfer significantly. 

4. Experiment and analysis suggest that a parallel body force should begin to in- 
fluence heat transfer when Gr/Re > 5 ~ 1 0 - ~  (where Gr is the Grashoff number and Re 
is the Reynolds number). 

that) in gases. 

For the 

3. Devices which centrifuge the high-density core  to the wall or  break up the low- 

2 

5. Tube entrance effects persist  much further down the tube in near-critical fluids 

Theoretical Con side rat ions in Forced Convection 

1. Conventional mixing length theories must be modified to account for the tremen- 
dous fluid expansion in the near-critical region. These modifications could be in the 
equations, following Goldman's example (ref. 137); or in the eddy diffusivity, following 
Hsu and Smith (ref. 133); or  in forming a penetration model, Graham (ref. 150). 

cri t ical  data have met with limited success. The theory will probably also have to  be 
2. Applications of these and other modifications of mixing length theory to near- 
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made to  comprehend upstream. history, acceleration, etc. , in order  to achieve wide 
success.  

3. Further analysis of accelerated flows should consider the effects of s t ra in  rates. 
While the theory of Deissler predicts the proper trends, the magnitudes associated with 
a r ea l  near-critical fluid a r e  not correct.  Thus, the boundaries and the variation in 
fluid properties must be properly considered (not an  easy task). 

Osci I sat ion s 

1. Oscillations in near-critical flow can be divided into four groups: 1a.minar to 

2. The large density changes of a near-critical fluid are the basic source of the 

3. The critical frequency for the thermal-acoustic and system oscillations can be 

4. Conventional stability cr i ter ia  may be employed to  predict the onset of thermal- 

5. Attempts to predict the amplitude of the oscillations has met with only limited 

turbulent, thermal acoustic, system, and external. 

oscillating behavior. 

predicted by utilizing simple concepts of mechanics. 

acoustic and system oscillations with a fair degree of reliability. 

success. 

Choking 

1. If a near-critical fluid were in thermodynamic equilibrium, the sonic velocity 

2. None of the normal indications of choking have been observed in the near-critical 
would be low and the flow might be  expected to  choke very easily. 

experiments. This suggests the possibility of thermodynamic nonequilibrium in these 
flows, which is also consistent with two-phase choking experience. 
data for near-critical nitrogen indicates the expansion to be nonequilibrium. 

Preliminary nozzle 

Zero-G ravity Operation 

The operation of a 2. 5-liter dewar with internal heaters a.t supercritical pressure 
and low gravity was reported as not significafitly different from operation for earthbound 
tests.  Data in this a rea  a r e  lacking. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 15, 1970, 
129-01. 
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APPENDIX A 

SYMBOLS 

constant 

amplitude parameter, PWnd/GhFg 

virial coefficient 

% l r w  
dimensionless parameter of Van Driest  (table V) 

a rea  

attraction force constant 

v i r  ial coefficient 

channel half-w idth 

repulsion force constant 

constant 

virial coefficient 

specific heat at constant pressure 

average specific heat, @I, - Hb)/(Tw - Tb) 

specific heat at constant pressure,  1 atm 

excess specific heat, C - 
p ( C d O  

specific heat at constant volume 

sonic velocity, wave propagation velocity 

self -diffusion coefficient 

virial coefficient 

binary diffusion coefficient 

characteristic length (diameter) 

constant 

Eckert parameter, (T* - Tb)/(Tw - Tb) 

adjustable constants in analytical equation of s ta te  (eqs 



Fh 

Fm 
f 

G 

Gr  

g 

H 

h 

L 

I LT 
I L' 
I 

I K 

I ~ 

IT 
I 

i m  

Nu 

n 

"1 to "16 
P 

Pr 

I P* 
~ 

energy (heat) eddy diffusivity modification 

momentum eddy diffusitivy modification 

function factor 

functional form 

functions describing varations in thermal conductivity and viscosity, r e -  
spec t iv ely 

mass  flow per unit area, G ~ U ) ~  
Grashoff number: two component, p(pl - p)Z 3 g/q2; single component, 

Pl  AT13g/q2 

acceleration 

ent ha1 py 

heat- transf er coefficient 

function defined by equation (4a) 
modified heat-transfer coefficient, god 0 2 /G  0.8 

latent heat o r  pseudolatent heat of vaporization 

16 Parameter (eq. (27)) 

axial position, length 

one-half total loop length 

uniform fluid column length between mixing reservoirs  

constant 

char act er is t ic length 

tes t  section length 

mass  

Nusselt number, hd/X 

constant 

constants in modified BWR equation of s ta te  

pres  su r  e 

Prandtl number, qC X p/ 
equivalent pressure amplitude when different modes of oscillations occur 

simultaneously 
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Q 
q 

R 

Ra 

Re 

r 

S 

Sr 

St 

s v  

T 

T* 

t 

U 

U+ 

U++ 

* 
U 

vg 

vf*g 

V 

V' 

V'  

w 
X 

- 

X+ 

X 

x 
0 

x1 
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total heat generated 

heat f lux 

radius of curvature 

Rayleigh number, Gr  Pr 

Reynolds number, pubd/q 

gas constant 

tube radius 

entropy 

Stermann parameter (boiling number), q 4v, db AH 

Stanton number, Nu/RePr 

specific volume number, v* /v 

temperature 

transposed critical o r  pseudocritical temperature (see fig. 6) 

dimensionless temperature, (T - Tc)/Tc 

velocity 

dimensionless velocity, u/u* 

dimensionless velocity (table V) 

friction velocity, {x 
volume of gas in resonator cavity 

specific volume, l/p 

change in specific volume, fluid to gas 

velocity component normal to flov field 

average velocity component normal to flow field 

fg 2 

frequency 

axial position, length 

dimensionless position 

thermodynamic quality 

adjustable constant in analytical equation of s ta te  (eqs. (4) and (4a)) 
1 /P ,  

dimensionless parameter of equation (4), t/b - pc)/pc] 



Y 

Y+ 

Y++ 

Z 

Z 

CY 

P 

P l  

P2 

Y 

Y 
+ 

E 

‘h 
E +  

+ 
‘VD 
17 

17* 

x 

coordinate normal to  flow field 

dimensionless distance, u*y/vo 

dimensionless distance (table V) 

compressibility factor , P/@” 

pressure head between heater and cooler 

void fraction (two-phase system) 

reference temperature, gou */(q;oTo 

expansion coefficient 

adjustable constant in analytical equation of state (eqs. (4) and (4a)) 

ratio of specific heats (isentropic expansion coefficient), C /C 
P V  

changeover point in equation (42) 

change in a function 

boundary-layer thickness 

adjustable constant 

dimensionless boundary-layer thickness, u’6 /vo 

momentum eddy diffusivity 

energy (heat) eddy diffusivity 

dimensionless eddy diffusivity, E / .  

dimensionless eddy diffusivity (Deissler form, eq. (42)) 

dimensionless eddy diffusivity (Van Driest form, eq. (41)) 

viscosity 

viscosity (o - 0 , ~ )  

therm a1 conductivity 

thermal conductivity given by equation (5) 

dissociation contribution to thermal conductivity 

thermal conductivity (o - 0, T) 

chemical potential 

Joule-Thompson coefficient, pl = (i3T/aP)H = 0 
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v kinematic viscosity, q/p  

5 dimensionless distance, d/bH 

P density 

7 shear force 

'contact 
cp property parameter (eq. (24)) 

cp integral averaged property 

fluid residence t ime (eq. (45b)) 

- 

Xtt 

Subscripts : 

av 

b 

C 

calc 

cor e 

Martinelli parameter, turbulent-turbulent flow; 

modified Martinelli parameter, where x is pseudoquality 

mass  flow rate 

average 

properties evaluated at bulk conditions 

critical 

calculated 

core of fluid 

+ center line 

c r  curved 

cv concave surface 

cx  convex surface 

f 

fm 

H at constant enthalpy 

properties evaluated at film conditions 

properties evaluated at mean film conditions 

g gas 

1 

m in 

n natur a1 

properties evaluated at liquid conditions 

properties evaluated according to equation (22a) 

0 properties evaluated at wall conditions 
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P 

Pg 

sat 

st 

test 

tot 

W 

X 

6 

cp 

0 

1 

2 

- 

penetration 

perfect gas 

saturation 

straight 

conditions of experimental test 

total 

properties evaluated at wall conditions 

properties evaluated at reference conditions 

edge of boundary layer 

properties evaluated at void weighted conditions 

initial 

heavy Do not apply to equations (4), (4a), (5a), and (Sa), 

where 1 and 2 are ordinary subscripts. 

f ree  stream 00 
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APPENDIX B 

HEAT-TRANSFER REGIMES AND THE PROCESS MAP 

The heat-transfer problems can be loosely classified into the four regimes, as 

For example, a 
illustrated in figure 8. However, it is not sufficient just to know what regime is of in- 
terest ,  the process path within these regimes must also be known. 
process in region IV (fig. 8) may exhibit very few of the pecularities discussed in the 
text if the process t raverses  only a small  part of this regime. A s  a consequence, the 
designer would have little difficulty in applying a correction to the ordinary Dittus- 
Boelter equation (ref. 138) and in predicting the heat transfer with reasonable accuracy. 

problem of establishing the process path. 

be examined (i. e . ,  the operating temperature, the pressure,  and the enthalpy (or en- 
tropy rise). With these data and a figure similar to  figure 8, some decision can be 
made as to the regime. Such a procedure is flow charted as figure 35. Basically, the 
message of figure 35 is that i f  you can avoid operating in the near-critical regime you 
a r e  better off as far as predicting heat transfer is concerned; however, if you must op- 
erate  in this regime, the material  of this text should be beneficial in delineating prob- 
lems which must be considered. 

In determining the process path assume that a figure s imilar  to figure 8 has been 

Consider first the problem of establishing the regime of interest, and second the 

In establishing the regime of interest, usually only the thermodynamic limits must 

constructed, for example, figure 36. 
strated in  the figure: 

tus  (perhaps with moderate precooling) and exiting as a low-Mach-number gas. The 
heat-transfer and pressure-drop equations a r e  available and cited herein (see the main 
text, the section HEAT-TRANSFER REGIONS). 

(2) Process path 2: Such a process is closely related t o  the standard case, except 
that the working fluid is a liquid at the system inlet and a subcooled liquid at the system 
exit. This fluid may be at  either subcritical or supercritical pressure in a system with 
low temperature differences - and, of course, there  would be no change in phase o r  
pseudophase. Again, standard equations s imilar  to  those presented in the main text 
(see sections HEAT-TRANSFER REGIONS and the NEAR CRITICAL HEAT-TRANSFER 
REGION) should apply to yield heat transfer and pressure drop. 

the prediction of heat transfer and pressure drop. The process starts as a subcritical, 
subcooled liquid and terminates in the two-phase regime. While it is difficult to  a s ses s  

Now examine the five typical process paths illu- 

(1) Process path 1: This represents the standard case of a gas entering the appara- 

(3) Process path 3: In such a process, there  is a change of phase which complicates 
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1 
Properties 

1 

Q 

Q 
Lwk at characteristics 
or region I V  + out? 

Look at geometry effects 
and possible alterations 

Alter 
process 
map? 

Investigate sections on properties, wls, IwPS, 
oscillations, forced conMction, choking, as 
needed to help delineate problem 

& Good luck Output? 

Figure 35. -Flow chart showing procedureof characterizing the heat-transfer process within the four heat-transfer regimes. 
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Process 1: 
Process 2: 
Process 3, 3: Starts l iqu id  o r  two phase and ends two phase o r  gas 
Process 4: 

Starts and ends as a gas away f rom cr i t ica l  (sub- o r  supercri t ical pressure) 
Starts and ends as a l iquid away from cr i t ica l  (sub- o r  supercri t ical pressure - low AT) 

Tinlet<T:j<Toutlet and h igh  AT and h igh heat fluxes. Usually starts as near-cri t ical l iqu id  

Process 

d;’ 
,r Desired process path 

Entropy, S 

(a) Process path map. (b) Superposition of process on reqion map. 

Figure 36. -Typical process paths and characterist ic heat-transfer regions. 

the region around the saturation locus, several  analyses, as discussed in the text, a r e  
available which predict heat transfer and pressure drop with reasonable accuracy. 

ever, the exhausted fluid is gaseous o r  perhaps droplet-laden. This is a difficult regime 
to assess;  however, the techniques of Hsu, et al. (ref. 49) should be applicable. 

where, as a general rule, heat-transfer predictions a r e  poor. However, if the bound- 
a r ies  of region IV are not crossed (see fig. 36), it appears to  be possible to make a 
reasonable prediction. If in the final analysis, the process crosses  the boundaries, the 
problem will be a real  challenge. Some of the problems involved in analyzing such a 
system a r e  covered in the main text of this report. 

(4)Process path 3a: Such a process enters the system as a two-phase fluid; how- 

(5) Process path 4: These a re the  systems operating in the near-critical regime, 
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