

30UND PROPAGATION FROM A MOVING SOURCE

by

C. Eugene Buell Duane Stevenson

Final Report, Contract No. NAS8-11348

KN-70-698-(FR)

November 24, 1970

N71-14081

Q	(THPI)
G (ACCESSION NUMBER)	12
¥ <u>104</u> _	(2)
(PAGES)	(CODE)
E CD-10-2945	23
(NASA CR OR IMX OR AD NUMBER)	(CATEGORY)

Kaman Nuclear DIVISION & KAMAN SCIENCES CORPORATION

1700 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO 80907

SOUND PROPAGATION FROM A MOVING SOURCE

by

C. Eugene Buell Duane Stevenson

Final Report, Contract No. NAS8-11348

KN-70-698-(FR)

November 24, 1970

Contract Monitor: O. E. Smith R-AERO-YT Chief, Terrestrial Environment Group Aerospace Environment Office National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

TABLE OF CONTENTS

- I. Summary
- II. Ray Tracing Method
- III. Inputs to the Program
 - 1. Trajectory Data
 - 2. Sounding Profile Data
 - 3. Source and Field Point Information
- IV. Subroutine Descriptions
 - 1. Subroutine RAYTRAC
 - 2. Subroutine INTERP
 - 3. Subroutine DIVDIF
 - 4. Subroutine PARAB
 - 5. Subroutines RDTRAJ and RDMET
 - 6. Subroutine FIX AREA
- V. Flow Charts
- VI. Sample Run
- VII. Program Listing

I. SUMMARY

The following pages are the final report on contract number NAS8-11348 and contain the program for estimation of sound intensity from a rising space vehicle.

The second chapter contains a summary of the ray tracing methods used and the modifications that are required to apply the technique to the case of a moving sound source. Chapter III is devoted to a discussion of the inputs to the program. The description of the various program subroutines is contained in Chapter IV. The program flow charts constitute Chapter V. Chapter VI contains the input and output data for several sample runs. The listing of the program and subroutines is conuained in Chapter VII.

II. RAY TRACING METHOD

The basic ray equations in the form

 $dx/dt = c \cos \varphi + u$ $dz/dt = c \sin \varphi$ (1)

and Snell's law in the form

 $c/\cos \varphi + u = c_0'\cos \varphi_0 + u_0 = K = constant$ (2)

lead to the integral for the ray displacement in the horizontal when penetrating a layer in the vertical

 $x_2 - x_1 = \int_{z_1}^{z_2} [(c \cos \varphi + u)/c \sin \varphi] dz.$ (3)

If the layer z_1 , z_2 is completely penetrated, the phase normal inclination, φ , does not become zero within the layer and the integral is perfectly proper. If the ray is refracted earthward within a layer, z_2 is the level at which the ray becomes horizontal. In this case $\varphi(z_2) = 0$, and the integral is improper. Under most circumstances the way in which $\varphi(z_2)$ approaches zero is such that the improper integral is convergent and may be evaluated by elementary methods. (The exceptional cases are of no importance as far as the problem being discussed is concerned.)

It is obvious that one may obtain $\partial r/\partial \phi$ from $\partial x_2/\partial \phi_0 - \partial x_1/\partial \phi_0$ by addition of values through the layers penetrated. Using (3) for this purpose, the result is

$$\frac{\partial x_2}{\partial \phi_0} - \frac{\partial x_1}{\partial \phi_0} = -(c_0 \sin \phi_0 / \cos^2 \phi_0) \int_{z_1}^{z_2} [(c + u \cos \phi) \cos^2 \phi / c^2 \sin^3 \phi] dz$$
(4)

where use has been made of

$$\partial \varphi / \partial \varphi_0 = c_0 \sin \varphi_0 \cos^2 \varphi / c \sin \varphi \cos^2 \varphi_0$$
 (5)

from (2). The integrand may also be expressed as

$$(c+u \cos\varphi)\cos^2\varphi/c^2\sin^3\varphi = Kc/[(K-u)^2-c^2]^{3/2}$$
 (6)

As long as the ray penetrates the layer (z_1, z_2) the integral (4) is proper and is evaluated with no difficulty. When z_2 is the level at which the ray becomes horizontal, then $\varphi = 0$ at that level and the integral is improper at the upper limit. It is readily seen from (6), if (dc/dz)+(du/dz) is not zero at the level z_2 , that sin φ approaches zero proportionally to $(z_2-z)^{1/2}$ and consequently the integrand behaves like $(z_2-z)^{3/2}$. This means that the integral is divergent. Another item that needs consideration is the fact that at the crest of the ray, the value of z_2 is dependent on φ_0 . In other words, the process of differentiating under the integral sign to obtain (4) is no longer valid. To avoid the difficulties, the process is started anew for a ray that becomes horizontal at z_2 . Let $z^* = z_2 - \epsilon$ and consider the limit for $\epsilon \to 0$. Then

$$\frac{\lim_{\partial \mathbf{x}_{2}} \partial \varphi_{0} - \partial \mathbf{x}_{1}}{\partial \varphi_{0}} = \epsilon \rightarrow 0 \left[(c \cos \varphi + u) / c \sin \varphi \right]_{z}^{*} (\partial z^{*} / \partial \varphi_{0})$$

$$- \lim_{\epsilon \rightarrow 0} \left\{ c_{0} \sin \varphi_{0} / \cos^{2} \varphi_{0} \int_{z_{1}}^{z_{*}} \left[\cos^{2} \varphi(c + u \cos \varphi) / c^{2} \sin^{-3} \varphi \right] dz.$$
(7)

Since $z_2 = z_2(\phi_0)$ is given by Snell's Law in the form

$$c(z_2) + u(z_2) = c_0 / \cos \varphi_0 + u_0$$

then

$$\partial z_2 / \partial \omega_0 = [c_0 / (c' + u')] \sin \omega_0 / \cos^2 \omega_0$$

and replace $\partial z_* / \partial \phi_0$ by its limit, $\partial z_2 / \partial \phi_0$ so that the expression becomes

$$\frac{\partial x_2}{\partial \varphi_0} - \frac{\partial x_1}{\partial \varphi_0} = \left[\frac{\cos (\varphi_0)}{\cos (\varphi_0)} \right]_{z^*}^{z^*}$$

$$= \frac{\lim_{\epsilon \to 0} \left\{ \int_{z_1}^{z^*} \frac{\cos^2 ((\varphi_1 + \omega_1) \cos (\varphi_0))}{\cos (\varphi_1)} \right\}_{z_1}^{z^*} \frac{((\varphi_1 + \omega_2) \cos (\varphi_1))}{\cos (\varphi_1)} \frac{(\varphi_1 + \omega_2)}{\cos (\varphi_1)} \frac{$$

The last expression contains two terms that become large in the limit for \in . Let the integral expression in the above be indicated by I. If the variable of integration is changed from z to φ , then

$$I = - \int_{\varphi_1}^{\varphi_*} [(c+u \cos\varphi)/(c'+u' \cos\varphi)] [\cos\varphi/\sin^2\varphi] d\varphi$$

- 4 -

a nd

$$I = - \left[(c_0 + u_0 \cos \varphi_0) / \cos \varphi_0 \right] \int_{\varphi_1}^{\varphi_2} \left[\cos \varphi / c (c (c' + u') \cos \varphi] d (1 / \sin \varphi) \right] \varphi_1$$

The last expression may be integrated by parts to give

$$I = \left[(c_0 + u_0 \cos \varphi_0) / \cos \varphi_0 \right] \left\{ \left[\cos \varphi / c (c' + u' \cos \varphi) \sin \varphi \right]_{\mathcal{O}_1}^{\varphi_*} - \int_{\mathbf{Z}_1}^{\mathbf{Z}_*} \frac{d}{d\mathbf{z}} \left(\frac{\cos \varphi}{c (c' + u' \cos \varphi)} \right) \right] \frac{d\mathbf{z}}{\sin \varphi} \right\}$$

where, in the second term on the right, z has been restored as the parameter of integration. Then carrying out the differentiation with respect to z in the integrand on the right

$$I = \left[(c_0 + u_0 \cos \omega_0) / \cos \omega_0 \right] \left\{ \left[\cos^2 \omega / c \sin \omega (c' + u' \cos \omega) \right]_{z_1}^{z_2} + \int_{z_1}^{z_2} \left[\cos \omega (c'' + u' \cos \omega) / c \sin \omega (c' + u' \cos \omega)^2 \right] dz \right\}.$$

The final limit to be evaluated then becomes $\partial x_2 / \partial \varphi_0 - \partial x_1 / \partial \varphi_0 = [c \sin \varphi / \cos^2 \varphi] \lim_{\epsilon \to 0} (A-B+C-D)$

where

$$A = [(u+c \ cos_{0})/c(c'+u') \sin_{0}]_{z}^{*},$$

$$B = [(c_{0}+u_{0}cos_{0}/cos_{0}][cos_{0}/c(c'+u'cos_{0})sin_{0}]_{z}^{*},$$

$$C = [(c_{0}+u_{0}cos_{0}/cos_{0}][cos_{0}/c(c'+u'cos_{0})sin_{0}]_{z}^{*},$$

$$D = \int_{z}^{z} (\cos_{0}/cs_{0})/c \ sin^{2} (c'+u'cos_{0}) dz.$$

It may be readily verified that $\lim_{\epsilon \to 0} (A-B) = 0$ so that the final result is

$$\frac{\partial x_{3}}{\partial \varphi_{0}} - \frac{\partial x_{1}}{\partial \varphi_{0}} = (c_{0} \sin \varphi_{0} / \cos^{2} \varphi_{0}) [(c_{0} + u_{0} \cos \varphi_{0}) / \cos \varphi_{0}]$$

$$x \left\{ [\cos \varphi / c (c' + u' \cos \varphi) \sin \varphi]_{z_{1}}$$

$$= \int_{z_{1}}^{z_{2}} [\cos \varphi (c' + u'' \cos \varphi) / c (c' + u' \cos \varphi)^{2} \sin \varphi] dz \right\}.$$
(8)

In the above the integral is convergent provided that the denominator factor $c'+u'\cos \omega$ is not zero.

Another formulation for (8) is

, 1

١.

$$\frac{\partial x_{2}}{\partial \phi_{0}} - \frac{\partial x_{1}}{\partial \phi_{0}} = (c_{0} \sin \phi_{0} / \cos^{2} \phi) \left\{ K(K-u) / [(K-u)c' + cu'] [(K-u)^{2} - c^{2}]^{\frac{1}{2}} \right]_{z_{1}}$$

$$= \int_{z_{1}}^{z_{2}} \left\{ K(K-u) [(K-u)c'' + cu''] / [(K-u)c' + cu'']^{2} [(K-u)^{2} - c^{2}] \right\} dz$$

where K is the Snell's Law constant from (2) and the explicit dependence on u=u(z) and c=c(z) as functions of altitude is shown.

In order to reduce redundant efforts in computations it is of primary importance to consider conditions, such as particular initial ray inclination angles and/or speed of sound profiles, for which rays will not be returned to the ground. The ray (ray tangent or phase normal) for which C + U is equal to $C_0/\cos \phi_0 + U_c$ is parallel to the layers of the sound profile. This relation determines conditions under which rays can or cannot be returned to earth.

If one lets V_1 be the maximum value of the C + U profile at or below the source level and lets V_2 be the maximum above the source, then φ_1 and φ_2 will be the values from Snell's laws giving the phase normals for V_1 and V_2 respectively. These values are a function of the source altitude in that the values of C₀ and U₀ are C and U at the source. The rays may now be listed in the following categories:

(1)	$-\frac{\pi}{2} < \varphi_0 < -\varphi_1$	descending rays that reach the ground
(2)	$-\varphi_1 < \varphi_0 < 0$	descending rays that are refracted upwards
(3)	$0 < \varphi_0 < \varphi_1, \ \varphi_1 < \varphi_2$	ascending rays that are trapped.
(4)	$\varphi_1 < \varphi_0 < \varphi_2, \varphi_1 < \varphi_2$	ascending rays that are refracted to earth
(5)	$0 < \varphi_0 < \varphi_2, \varphi_2 < \varphi_1$	ascending rays that are trapped
(6)	$\varphi_2 < \varphi_0, \varphi_2 < \varphi_1$	ascending rays that continue upward

- 6 -

Descending rays that are refracted upward may be returned towards earth, but will again be refracted upwards so they ultimately will be attenuated in the atmosphere without ever returning to earth. Ascending rays that are trapped likewise are unable to reach the ground because of a maximum in the sounding profile below the source which is larger than the maximum above the source. Ultimately, then, there are only two cases to consider for which rays reach the ground, Cases 1 and 4. Thus one need only find the two maximum, calculate the phase normal for those points and initiate rays from the scurce with inclination angles which satisfy Cases 1 and 4 above.

Classification of Sounding Profiles

ł

Consideration of multiple reflections implies . necessity to organize sounding profiles into types for calculation of distance, time and the partial derivatives for ascending or descending leg of the ray path. These are needed for evaluating the focusing factor and ultimately the sound intensity at the field points.

TYPE 1: A sounding profile for which the maximum $\mathbb{C}(2)$ occurs below the source level \mathbb{Z}_{s} with no effective maximum (one which is larger than the maximum below the source) above the source will return a ray to the ground only for $\mathbb{Z}_{s} \leq -\phi_{1}$. The ϕ_{1} is calculated from Snell's Law at the maximum $\mathbb{C}(z)$ below the source. All rays which are reflected at the ground will escape and one need only calculate the down leg.

TYPE 2: A sounding of Type 2 is one where an effective maxim n of C(z) occurs above the source level Z_s while C(z) < C(Z_s) for 7 < Z_s , i.e., there are no maximums in the sounding profile below the source level. If a ray is initiated at an angle less than $-\varphi_2$, it will not be returned after the first reflection from the ground. Thus one need: to compute the down leg only. For $-\varphi_2 < \varphi_0 < 0$, i.e., ground level dust, the rays will reach the ground at CL, 3DL and 2 UL, 5DL + 4UM, etc. Under the condition $0 < \varphi_0 < \varphi_2$, ground based dust, rays reach the ground at DL + 2UL, 3DL + 4UL, 5DL + 6UL, etc.

TYPE 3: There is a sounding profile in which there is an effective maximum in C(z) both above and below Z_s . The value of the maximum above Z_s is the larger, and $o_2 \cos \beta$ sponds to this larger maximum.

The ranges for φ_{0} are

- i) $-\frac{\pi}{2} < \phi_0 < -\phi_2$ for which rays escape after the first reflection,
- ii) $-\varphi_2 < \varphi_0 < -\varphi_1$, ground based duct for which rays reach the ground at DL, 3DL + 2UL, 5DL + 4 UL, etc.
- iii) $-\phi_1 < \phi_0 < +\phi_1$ an elevated duct which is trapped
- iv) $\varphi_1 < \varphi_0 < \varphi_2$ ground based duct whose rays reach the ground at DL + 2UL, 3DL + 4UL, 5DL + 6UL, etc.
- v) $\varphi_2 < \varphi_0 < \frac{\pi}{2}$, all rays escape.

Ň

CASE	TYPE OF SOUNDING PROFILE				
1	Effective Max C(z), $Z < Z_s$; no effective				
	Max C(r), Z > Z _S				
2.	Effective max C(z), $Z > Z_s$; No effective Max				
	$\operatorname{Max} C(z), \ Z < Z_{S}$				
3.	Effective Max C(z), $Z > Z_s$: Effective				
	Max C(z), Z < Z _s such that May above $Z_s >$				
	Max below Z				

TABLE 1

SUMMARY OF SOUNDING PROFILES

- 8 -

One could conceivably run a set of rays with initial inclination angles running the gamut from $-\frac{\pi}{2}$ to $+\frac{\pi}{2}$ to get values of sound intensity at their respective field points from r = 0 to $r = r_{max}$. If an area of field points is of particular interest, a method to select the ray azimuth which will "deposit" rays in that area is described in the section on fix area.

Table 2 summarizes the necessary calculations for multiple reflections. DL is the horizontal distance traveled on the down leg, UL is that for the up leg. Travel times and necessary partial derivatives are calculated simultaneously.

CASE	INITIAL INCLINATION ANGLE	NECESSARY CALCULATIONS	LANDING DISTANCES FOR MULTIPLE REFLECTIONS
1	$-\frac{\pi}{2} < \phi_0 < - \phi_1$	DL	DL only
2	$-\frac{\pi}{2} < \varphi_0 < -\varphi_2$ $-\varphi_2 < \varphi_0 \le 0$ $0 \le \varphi_0 < \varphi_2$	DL DL and UL DL and UL	DL only DL, 3DL+2UL,5DL +4UL, DL+2UL, 3DL+4UL,
3	$-\frac{\pi}{2} < \varphi_0 < -\varphi_2$ $-\varphi_2 < \varphi_0 < -\varphi_1$ $\varphi_1 < \varphi_0 < \varphi_2$	DL DL and UL	DL only DL, 3DL+2UL, JDL +4UL,

TABLE 2

III. INPUTS TO THE PROGRAM

ų V

> Due to the numerous types of data which must be input to calculate sound intensities from a moving source, the formats will all be either twelve column field for non-integer or ten column fields for integer data. Thus, one need not refer to format statements to check data inputs. The majority of data can be categorized as

- i) trajectory information
- ii) sounding profile data or
- iii) source and field point information.

These sets will be considered as separate units in preparation of data to execute the program. These sets of data are read in subroutines called RDTRAJ, and RDMET, except for the information about the source and field points.

1. Trajectory Data

The trajectory information is read as three groups of cards all in twelve column fields. A card preceding these sets contains the number of trajectory points. The groups are as follows:

(1)	Time	Altitude	Mach No.	Pitch	Yaw
(2)	Time	Latitude	Longitude		
(3)	Time	Relative Velocity	Angle from Horizontal		

2. Sounding Profile Data

The first card is again a control card containing (a) number of radiosonde data levels, (b) number of wind data levels and (c) control parameter IMET where IMET is:

- (1) for wind data interpolated to radiosonde levels
- (2) for radiosonde
- (3) radio and radiosonde combined into one table
- (4) combined table input (for which number of radiosonde and wind levels are input the same)

Card two contains the measured dew point.

Options (IMET) one through four have the following two sets of data:

- (a) Card three number of radiosonde levels + 2
 altitude pressure temperature relative humidity
- (b) Card NMET + 3 through NMET + 3 + MWND + 2
 altitude direction speed.

The variables are defined as follows:

- meteorological data

 altitude in meters
 pressure in mb
 temperature in degrees centigrade
 dew point temperature
- ii) wind data altitude in meters direction degrees clockwise from north speed in meters per second

End of sounding profile data.

3. Source and Field Point Information

CARD 1: minimum and maximum source altitude. Source altitude will be selected from the meteorological data levels from the minimum and maximum altitude in kilometers indicated above. CARD 2: Location of points, in form X, Y, X_2 , Y_2 , X_1 positive north from source, Y_1 positive east from source in kilometers, of interest. From these locations, sound intensities will be calculated through the gamut of azimuths and approximately a kilometer on either side of the line.

If there is only one datum card for the field point, calculations are made every 30 degrees around the source.

IV. SUBROUTINE DESCRIPTIONS

The various subroutines of the program are described in the following sections.

1. Subroutine RAY TRAC

The necessary quantities for calculating the focusing factor, r, τ , $\frac{\partial r}{\partial \phi_0}$, $\frac{\partial r}{\partial \phi_0}$, $\frac{\partial r}{\partial z}$, where

$r = \sum_{z} \int_{z_{i}}^{z_{i+1}}$	$\frac{c^2 + u(K - u)}{c\sqrt{K - u + c}}$	$\frac{dz}{\sqrt{K - (u + c)}}$
$\tau = \sum_{\mathbf{z}} \int_{\mathbf{z}_{\mathbf{i}}}^{\mathbf{z}_{\mathbf{i}+1}}$	$\frac{K - u}{c \sqrt{K - u + c}}$	$\frac{dz}{\sqrt[4]{K - (u + c)}}$
$\frac{\partial \mathbf{r}}{\partial \phi_0} = c_0 \frac{\sin \phi_0}{\cos^2 c_0}$	- <u>31</u> - <u>31</u>	Ĭ
$\frac{\partial \mathbf{r}}{\partial \mathbf{z}} = \left(\frac{\mathbf{c}}{\cos\varphi_0}'\right)^{\mathbf{r}}$	$+ u^{o} = \frac{9K}{9L}$	
$\frac{\partial \tau}{\partial \varphi_0} = c_0 \frac{\sin \varphi_0}{\cos^2 \varphi}$	$\frac{1}{\mathbf{K}} \frac{\partial \mathbf{r}}{\partial \mathbf{K}}$	
$\frac{\partial \tau}{\partial z} = \left(\frac{c_{o}'}{\cos \varphi_{o}} + \right)$	$u_{o}' = \frac{1}{K} \frac{\partial \mathbf{r}}{\partial \mathbf{K}} ,$	

are evaluated from the results of RAY TRAC.

Inputs to the subroutine are as follows: LCMAX is the total number of layers in the atmosphere after subdivision in subroutine PARAB; AAA, CGG and ZZZ are the parameters of the parabolic fit to the speed of scund plus wind component for each of the LCMAX layers of the form

$$\mathbf{v} = \mathbf{A} + \mathbf{G} (\mathbf{z} - \mathbf{z})$$

where $G_i \equiv GGG(I)$, $A_i = AAA(I)$ and $z_o = ZZZ(I)$, CCC and UUU are the tabulated values of the speed of sound and wind components in azimuthal direction from which a numerical diferentiation with respect to altitude. JS is the altitude level at which the source is located , ICASE indicates calculations are to be made for down legs of the ray and/or up legs, UTEST is the Snell's law constant.

The computations for each ray for the layers passed through are

$$\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1 = \int_{\mathbf{z}_1}^{\mathbf{z}_2} \frac{\mathbf{c}^2 + \mathbf{u}(\mathbf{K}-\mathbf{u})}{\mathbf{c}\sqrt{\mathbf{K}-\mathbf{u}+\mathbf{c}}} \frac{\mathrm{dz}}{\sqrt{\mathbf{K}-\mathbf{v}}}$$

$$\Delta \tau = \tau_2 - \tau_1 = \int_{z_1}^{z_2} \frac{K - u}{c\sqrt{K - u + c}} \frac{dz}{\sqrt{K - v}}$$

and
$$\frac{\Delta \mathbf{r}}{\Delta \mathbf{K}} = \frac{\partial \mathbf{r}_2}{\partial \mathbf{K}} - \frac{\partial \mathbf{r}_1}{\partial \mathbf{K}} = -\int \frac{\mathbf{c}\mathbf{u}}{(\sqrt{\mathbf{K}-\mathbf{u}+\mathbf{c}})^3} \frac{\mathrm{d}\mathbf{z}}{(\sqrt{\mathbf{K}-\mathbf{v}})^3}$$

These are evaluated as

$$\Delta \mathbf{r} = \mathbf{F}_{1}(\xi) \int_{z_{1}}^{z_{2}} \frac{dz}{\sqrt{\mathbf{K}-\mathbf{v}}}$$

$$\Delta \tau = F_2(\xi) \int_{z_1}^{z_2} \frac{dz}{\sqrt{K-v}}$$

$$\frac{\Delta \mathbf{r}}{\Delta \mathbf{K}} = \mathbf{F}_{3}(\xi) \int_{z_{1}}^{z_{2}} \frac{dz}{(\mathbf{K}-\mathbf{v})^{3/2}}$$

where

$$F_{1}(\xi) = \frac{c^{2} + u(K-u)}{c\sqrt{K-u + c}} \bigg|_{\xi}$$

$$F_{2}(\xi) = \frac{K - u}{c\sqrt{K-u + c}} \bigg|_{\xi}$$

$$F_{3}(\xi) = \frac{cK}{(\sqrt{K-u + c})^{3}} \bigg|_{\xi}$$

These values are averaged between the top and bottom of each layer.

In those lavers for which the ray becomes horizontal z_2 is evaluated at the turning point

$$z_2 = z_0 \pm \sqrt{\frac{K-A}{G}}$$

where

$$K = A + G (z - z_0)^2$$

The integrals are evaluated the same for Δr and $\Delta \tau$ and the $\frac{\Delta r}{\Delta K}$ integral becomes

,

1911, TANK 1919

$$\frac{\Delta \mathbf{r}}{\Delta \mathbf{K}} = \mathbf{F}_4(\mathbf{z}_1) + \mathbf{F}_5(\xi) \sqrt{\frac{2}{2}} \frac{d\mathbf{z}}{\sqrt{\mathbf{K}-\mathbf{v}}}$$

where

$$\mathbf{F}_{4} = \frac{K(K-u)}{[(K-u)c' + cu']\sqrt{(K-u)^{2}-c^{2}}} \Big|_{z_{1}}$$
$$\mathbf{F}_{5}(\xi) = \frac{K(K-u)[(K-u)c'' + cu'']}{[(K-u)c' + cu']^{2}\sqrt{K-u+c}} \Big|_{\xi}$$

where $z_1 < \xi < z_2$.

The integrals $\int_{z_1}^{z_2} \frac{dz}{\sqrt{K-v}}$ and $\int_{z_1}^{z_2} \frac{dz}{(K-v)^{3/2}}$ are evaluated in

three regions depending upon the sign of (K-A) and G where $v(z) = A + G(z - z_0)^2$.

Case 1: G > o, (K - A) > o

$$\int_{z_1}^{z_2} \frac{dz}{\sqrt{K-v}} = \frac{1}{\sqrt{G}} \quad \arcsin \quad \frac{z_2 - z_0}{\sqrt{\frac{K-A}{G}}} \quad - \arcsin \quad \frac{z_1 - z_0}{\sqrt{\frac{K-A}{G}}}$$

$$\int_{z_1}^{z_2} \frac{dz}{(K-v)^{3/2}} = \frac{-1}{\sqrt{G}(K-A)} \frac{z_2 - z_0}{\sqrt{\frac{K-A}{G} - (z_2 - z_0)^2}} - \frac{z_1 - z_0}{\sqrt{\frac{K-A}{G} - (z_1 - z_0)^2}}$$

Case 2: G < o, (K - A) > o

$$\int_{z_1}^{z_2} \frac{dz}{\sqrt{K-v}} = \frac{1}{\sqrt{-G}} \log \frac{z_2 - z_0 + \sqrt{\frac{K-A}{-G}} + z_2 - z_0}{z_1 - z_0 + \sqrt{\frac{K-A}{-G}} + z_1 - z_0}$$

$$\int_{z_{1}}^{z_{2}} \frac{dz}{(\sqrt{K-v})^{3}} = \frac{-1}{\sqrt{-G}(K-A)} \left[\frac{z_{2} - z_{0}}{\sqrt{\frac{K-A}{-G} + (z_{2} - z_{0})^{2}}} - \frac{z_{1} - z_{0}}{\sqrt{\frac{(K-A)}{-G} + (z - z_{0})^{2}}} \right]$$

Case 3: G < o, (K-A) < o

$$\int_{z_1}^{z_2} \frac{dz}{(\sqrt{K-v})} = \frac{1}{\sqrt{-G}} \log \frac{z_2 - z_0 + \sqrt{z_2 - z_0 + \frac{K-A}{G}}}{z_1 - z_0 + \sqrt{z_1 - z_0 + \frac{K-A}{G}}}$$

$$\int_{z_{1}}^{z_{2}} \frac{dz}{(K-v)^{3}} = \frac{1}{\sqrt{-G}(K-A)} \frac{z_{2} - z_{0}}{\sqrt{\frac{K-A}{-G} + (z_{2} - z_{0})^{2}}} \frac{z_{1} - z_{0}}{\sqrt{\frac{K-A}{-G} + (z_{1} - z_{0})^{2}}}$$

These integrals were accomplished by using the substitution $x = z - z_0$, and it is readily seen that the solution

$$\int \frac{d!}{a^2 + x^2} = \log (x + \sqrt{x^2 + a^2})$$

is not symmetric in the variable x. This is seen by supposing that a is small compared to x, then if x < o we have $\log(-|x| + \sqrt{x^2}) = \log(-|x| + |x|)$ which is $\log(0)$.

In this case, the substitution $x = (z - z_0)$ is used; the limits are interchanged and the solution for Case 2 is

$$\int_{z_{1}}^{z_{2}} \frac{dz}{\sqrt{K-v}} = \frac{1}{\sqrt{-G}} \log \left\{ \frac{-(z_{1} - z_{0}) + \sqrt{\frac{K-A}{-G} + (z_{1} - z_{0})^{2}}}{-(z_{2} - z_{0}) + \sqrt{\frac{K-A}{-G} + (z_{2} - z_{0})^{2}}} \right\}$$

There is the analogous expression for Case 3.

The integrals $\int dx/(a^2 + x^2)^3$ are symmetric in x thus the substitution $x = (z - z_0)$ gives the same solution as $x = (z - z_0)$. The output of this routine is

CL the horizontal travel during descent of ray DU the horizontal travel during ascent of ray TAUD the time of travel during descent of ray TAUU the time of travel during ascent of ray DRDDK $\Delta r/\Delta K$ during descent of ray DRUDK $\Delta r/\Delta K$ during ascent of ray

The partial derivatives used in calculating the focus factor are used in the main program in order that multiple reflections may be taken into account. The values for reflections are integer multiples of the output variables from RAY TRAC.

2. Subroutine INTERP

Subroutine INTERP does a linear interpolation after searching the independent variable table for the pair which bound the point of interest; i.e. $x_i \le x \le x_{i+1}$. The result is given as

$$y = y_i + \frac{(y_{i+1} - y_i)}{(x_{i+1} - x_i)} (x - x_i)$$

In case the value of x is outside the range of tabular points, the subroutine does an extrapolation.

3. Subroutine DIVDIF

The subroutine DIVDIF makes use of the standard divided difference formulas for interpolating function values and values of the first and second derivatives of a function that is tabulated at unequal intervals. These relations are as follows.

$$f(x) = f(a_0) + \alpha_0 f(a_0, a_1) + \alpha_0 \alpha_1 f(a_0, a_1, a_2) + \alpha_0 \alpha_1 \alpha_2 f(a_0, a_1, a_2, a_3)$$

$$f'(x) = f(a_0, a_1) + (\alpha_0 + \alpha_1) f(a_0, a_1, a_2) + (\alpha_0 \alpha_1 + \alpha_0 \alpha_2 + \alpha_1 \alpha_2) f(a_0, a_1, a_2, a_3)$$

$$f''(x) = 2[f(a_0, a_1, a_2) + (\alpha_0 + \alpha_1 + \alpha_2) f(a_0, a_1, a_2, a_3)]$$

- 17 -

where

$$\alpha_{0} = x - a_{0}$$

$$\alpha_{1} = x - a_{1}$$

$$\alpha_{2} = x - a_{3}$$

$$f(a_{0}, a_{1}) = \frac{f(a_{0}) - f(a_{1})}{a_{0} - a_{1}}$$

$$f(a_{1}, a_{2}) = \frac{f(a_{1}) - f(a_{2})}{a_{1} - a_{2}}$$

$$f(a_{2}, a_{3}) = \frac{f(a_{2}) - f(a_{3})}{a_{2} - a_{3}}$$

$$f(a_{0}, a_{1}, a_{2}) = \frac{f(a_{0}, a_{1}) - f(a_{1}, a_{2})}{a_{0} - a_{2}}$$

$$f(a_{1}, a_{2}, a_{2}) = \frac{f(a_{0}, a_{1}, a_{2}) - f(a_{2}, a_{3})}{a_{1} - a_{3}}$$

$$f(a_{0}, a_{1}, a_{2}, a_{3}) = \frac{f(a_{0}, a_{1}, a_{2}) - f(a_{1}, a_{2}, a_{3})}{a_{0} - a_{3}}$$

4. Subroutine PARAB

Subroutine PARAB is used to obtain the parameters of a parabolic layer model of the speed of sound plus wind component profile v(z) that exactly fit the observed data. The formula for these parabolic layers is in the form

$$v(z) = A + G(z - z_0)^2$$

where the parameters A, C, z_c are given by the following relations. The layer between Jata values is divided in half and the two "half-layers" are represented by different parabolic formulas. Let z_2 and z_1 , $z_2 > z_1$, be the neight values at the data points. Then in the bottom "half-layer," $z_1 < z < (z_1+z_2)/2$, the relations are

$$A - A_{1} - B_{1}^{2}/4C_{1}$$

$$z_{0} = z_{1} - B_{1}(z_{2} - z_{1})/4C_{1}$$

$$G = 4C_{1}/(z_{2} - z_{1})^{2}$$

$$A_{1} = v_{1}$$

where

$$B_{1} = v_{1}'(z_{2} - z_{1})/2$$

$$C_{1} = [(v_{2} - v_{1}) - v_{2}' + 3v_{1}')(z_{2} - z_{1})/4]/2$$

In the top "half-layer," $(z_1 + z_2)/2 < z < z_2$, the relations are A = A₂ - B₂²/4C₂

$$Z_{o} = (z_{2} + z_{1})/2 - B_{2}(z_{2} - z_{1})/4C_{2}$$

 $G = 4C_{2}/(z_{2} - z_{1})^{2}$

where

$$A_{2} = [v_{1} + v_{2} - (v_{2}' - v_{1}')(z_{2} - z_{1})/4]/2$$

$$B_{2} = v_{2} - v_{1} - (v_{1}' + v_{2}')(z_{2} - z_{1})/4$$

$$C_{2} = - [(z_{2} - z_{1}) - (3v_{2}' + v_{1}')(z_{2} - z_{1})/4]/2$$

The values v_1 , v_2 are for speed of sound plus wind component at the levels z_1 and z_2 respectively. The values of v'_1 and v'_2 are the slopes of the speed of sound plus wind component at z_1 and z_2 respectively. These slopes were computed using the secant approximation

$$v'_i = (v_{i+1} - v_{i-1})/(z_{i+1} - z_{i-1})$$

where i is the data level index.

In the case of a "linear layer" (for which the parabolic approximation is not appropriate), the value of z_0 was entered as zero and the parameter G was used for the slope of the speed of sound plus wind over the layer.

In the case that there is a minimum or maximum of v within a "half-layer," i.e. $z_1 < z_0 < (z_1 + z_2)/2$ or $(z_1 + z_2)/2 < z_0 < z_2$, the layer is further subdivided so that the maximum or minimum occurs at a layer division point.

5. Subroutines RDTEAJ and RDMET

The RDTRAJ and RDMET subroutines are described in the section on program inputs.

A STATISTICS AND A STATISTICS

6. Subroutine FIX AREA

Nominal inputs to the program include, in the form of field point information data, locations of particular areas for which calculations are to be made. This subroutine utilizes the input information to calculate the ranges to the border of the area for a set of azimuthal ray angles in constant increments.

The method used is calculation of the points of intersection of all of the boundary lines for the ray azimuth of interest. In general a point on the boundary can be written (see accompanying figure)

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

and a point on the azimuthal line from the source is given by

$$x_{s} = r_{v} \sin \theta_{v} + r_{s} \sin \theta_{s}$$
$$y_{s} = r_{v} \cos \theta_{v} + r_{s} \cos \theta_{s}.$$

The intersection of these lines is the point on the boundary given by

$$\theta_{s} = \tan^{-1} \qquad (\frac{x_{i} - r_{v} \sin \theta_{v}}{y_{i} - r_{v} \cos \theta_{v}})$$

and

$$r_{s} = \frac{r_{v} [(y_{2}-y_{1}) \sin \theta_{v} - (x_{2}-x_{1})\cos \theta_{v}] + (x_{2}y_{1} - x_{1}y_{2})}{(x_{2}-x_{1}) \cos \theta_{s} - (y_{2}-y_{1})\sin \theta_{s}}$$

This equation is valid at both points where the ray azimuth crosses the boundary. The program uses the output $([r_i, \theta_i], i = 1, NRAY)$ where NRAY is the number of rays) to calculate initial inclination angles which will deposit rays in the area, and ultimately the associated intensities.

In case there is only one datum point for areas, the program calculates intensities every thirty degrees from zero to 360. Due to the very nominal computer time required for the computations, this is the easiest way to run the program.

V. FLOW CHARTS

The following flow charts, Figs. 1, 2, and 3, present a graphical picture of the organization of the program.

VI. SAMPLE RUN

The trajectory data for the ascending vehicle was extracted S&E-AERO-GT-5-70 dated Feb. 4, 1970, for shuttle trajectory with 3.0-g limit for longitudinal acceleration. The relevant portion of this trajectory data is given in Tables I, II, and III. The meteorological data used is tabulated in Table IV.

Sound propagation was calculated in the northward, eastward, southward, and westward directions. For these directions, the speed of sound plus wind component was represented by parabolic arcs through the data points. The form used was

$$\mathbf{v} = \mathbf{A} + \mathbf{G} \left(\mathbf{z} - \mathbf{z}_{0}\right)^{2}$$

The parameters A, G, and ZO are tabulated in the first three columns of Tables V, VI, VII, and VIII. The values of speed of sound (C), wind component (U), and speed of sound plus wind component (V) are shown as a function of altitude (Z) in the remaining columns. The four tables correspond to the northward, eastward, southward, and westward propagation directions.

The speed of sound plus wind component profiles for the northward, eastward, southward, and westward propagation of sound are illustrated in Figs. 4, 5, 6, and 7 respectively. .

Figure 1. Flow diagram of computer program.

•

3	میں مادی میں اور	_
a 		 51

Figure 2. Flow diagram of computer program. (Contd.)

•

مىلەربەر كەلىرىمى مەلەرمۇر بىلىرىمىلەر

.

۰.

7. A 2

ميدين. موجدين معمقات م

.

۰.

- 25 -

,

•

.

.

مي. معد د مديند

A Start

•

۰.

Figure 5:

۵.

SOUND PROFILE

7

-·.

٩

1.4.

₹.

••

į

-29-

TRAJECTORY DATA

TIME	ALTITUDE	MACH NO	PITCH		YAH
0.	2.5000E-01	0.	0.	-0.	
0.	2.5000E-01	0.	0.	-0.	
4.0000E+00	3.8440E+01	5.6400E-02	-9.0000E-03	-0.	
8.00002+00	1.5770E+02	1.1570E-01	-1.6000E-02	-0.	
1.2000E+01	3.6070E+02	1.7810E-01	-2.7000E-02	-0.	
1.6000E+01	6.5090E+02	2.4380F-01	-3.0000E+00	-0.	
2.0003E+01	1.0320E+03	3.1340E-01	-6.0010E+30	-0-	
2.4000E+01	1.5090E+13	3.8810E-01	+9.0010F+00	-0-	
2.8000E+01	2.0830E+03	4.6910E-01	-1.2000F+01	-0-	
3.2000E+01	2.7580E+03	5.5720F-01	-1.5000E+01	-0.	
3.50005+01	3.3330E+03	6.2870E-01	-1.7250F+01	- 0.	
3-6000E+01	3.5380E+03	6.5360E-01	-1.78605+01	-1.	
4.0000E+01	4.4230F+83	7.59505-01	-2.10205+01	-0.	
4.60000E+01	5.4170F+03	8.7680E-01		_0	
4.4000E+01	5.5110E+03	0.03605-01	-2 77805+01	-0.	
5.20006+01	7.60305403	1 11805-08	-20130UEVUI		
5.6000E+01	R 0550C+03	1 25785408	-7 77505+01	-0-	
5 01505+01	1 0000E+03	1.20000000	-7 62205+04	-0-	
5 0000E+01	4 02005406		-3.6000001		
6 70005+01	1 4 7 705 104	1.40102+00	-3.090UE+U1	-U.	
		1.52202+00	-3.9230E+01	-0.	
		1.55202+00	-3.993UE+U1	-0.	
	1.24101+04	1.05302+00	-4.1520E+01	-U.	
	1.35302+04	1.79302+00	-4.3750E+91	-9.	
7.02492+91	1.40005+04	1.05202+03	-4.4660E+01	-0.	
7.2000E+01	1.4680E+04	1.9380E+00	-4.5930E+01	-0.	
7.50000000	1.58/UE+U4	2.0880E+00	-4.8040E+01	-0.	
7.80000++01	1./090E+04	2.2370E+00	-5.0070E+01	-0.	
8.1000E+01	1.8340E+04	2.3760F+00	-5.2030E+01	-0.	
8-4000E+01	1.9630E+04	7+5240E+00	-5.3900E+01	-0.	
8.7000E+01	2.0950E+04	2.5790E+00	-5.5690E+01	-0.	
9.0000E+01	2.2300E+04	2.8430E+00	-5.7400E+01	-0.	
9.3000E+01	2.3680E+04	3.0150E+00	-5.9030E+01	-n.	
9.6000E+01	2.5090E+04	3.1980E+00	-6.0570E+01	-0.	
9+9000E+01	2.6530E+04	3.3900E+00	-6.2050E+01	-0.	
1.0200E+02	2.5000E+04	3.5910E+00	-6.3450E+01	-0.	
1.0500E+02	2.9490E+04	3.7900E+00	-6.4780E+01	-0.	
1.0800E+J2	3.1000E+04	3 . 9950E+00	-6.6040E+01	-0.	
1.1100E+02	3.2530E+04	4.2040E+00	-6.7250E+01	-0.	
1.1300E+02	3.3560E+04	4.3460E+00	-6.8010E+01	-0.	
1.1300E+02	3.3560E+04	4.3460E+00	-6.8010E+01	-0.	
1.1400E+02	3.4080E+04	4.4180E+00	-6.8390E+01	~0.	
1.1700E+02	3.5640E+04	4.6300E+00	-6.9480E+01	-0.	
1.2000E+02	3.7220E+04	4.8390E+00	-7.0520E+01	-0.	
1.2300E+02	3.8810E+04	5.0470E+00	-7.1510E+01	-0.	
1.2600E+02	4.0400E+04	5.2520E+ú0	-7.2460E+01	-0.	
1.2900E+02	4.1990E+04	5.4580E+00	-7.3370E+01	-0.	
1.32062+02	4.3580E+04	5+6640E+00	-7.4240E+01	-0.	
1.3500E+02	4.5170E+04	5.8750E+00	-7.5080E+01	-0.	
1.3800E+02	4.6740E+04	6.0910E+00	-7.5890E+01	-0.	

TABLE I. Trajectory Data (Altitude, Mach No., Pitch, and Yaw as a function of time).

٠ċ.

•

-31-

TRAJECTORY POSITION DATA

TIME	LATITUDE	LONGITUDE
0.	2.8371E+01 -8	•0555E+01
0.	2.8371E+01 -8	•0565F+01
4.0000E+00	2.8371E+01 -8	•0565E+01
8.0000E+00	2.83718+01 -8	•0565E+01
1.2000E+01	2.8371E+01 -8	•0565F+01
1.6000E+01	2.83718+01 -8	.0565E+01
2.0000E+01	2.8371E+01 -8	.0565E+01
2.4000E+01	2.8371E+01 -8	.0565E+01
2.8000E+01	2.8372E+01 -8	.0564E+01
3.2000E+01	2.8373E+01 -8	.0563E+01
3.5000E+01	2.8374E+01 -8	.0562E÷01
3.6000E+01	2.8375E+01 -8	.0562E+01
4.0000E+01	2.8377E+01 -8	.05605+01
4.4000E+01	2.8380E+01 -6	•0557E+01
4.8000E+01	2.8384E+01 -8	.0554E+01
5.2000E+01	2.8388E+01 -8	•0550E+01
5.6000E+01	2.8394E+01 -8	.0545E+01
5.9150E+01	2.83995+01 -8	.0540E+01
6.0000E+01	2.8401E+01 -8	.0539E+01
6.3000E+01	2.8406E+01 -8	.0534E+01
6.3923E+01	2.8408E+01 -8	+0532E+01
6.6000E+01	2.8413E+01 -8	.0528E+01
6.9000E+01	2.8420E+01 -6	.0522E+01
7.0236E+01	2.8423E+01 -8	+0519E+01
7.2000E+01	2.3428E+01 -P	.0515E+01
7.5000E+01	2.8437E+01 -8	.0507E+91
7.8000E+01	2.8447E+01 -8	.0498E+01
8.1000E+01	2.8458E+01 -8	.0488E+01
8.4000E+01	2.9470E+01 -8	.0478E+01
8.7000E+01	2.8483E+01 -8	.0466E+01
9.0000E+01	2.8497E+01 -8	.0453E+01
9.3000E+01	2.8513E+01 -8	.0440E+01
9.6000E+01	2.8530E+01 -8	.0425E+01
9.9000E+01	2.8548E+01 -8	.0408E+01
1.0200E+02	2.8568E+01 -8	.0391E+91
1.0500E+02	2.8589E+01 -P	.0372E+01
1.0800F+02	2.8612E+01 -8	.0352E+01
1.1100E+02	2.8636E+01 -6	.0330E+01
1.1300E+U2	2.8653E+01 -8	.0315E+01
1.1300E+02	2.8653E+01 -8	.U315E+01
1.1400E+02	2.8662E+01 -8	3.0307E+01
1.1700F+02	2.8690E+01 -#	.0282E+91
1.2000F+02	2.8719E+01 -8	3.0256E+01
1.2300E+02	2.8750E+01 -8	3.0228E+01
1.2500E+02	2.8783E+01 -8	3.0198E+01
1.2900E+02	2.8818E+01 -8	8.0167E+01
1.3200E+02	2.8854E+01 -6	3,0135E+01
1.3500E+02	2.8892E+01 -8	.0100E+01
1.3800E+02	2.89328+01 -8	3.0064E+01

TABLE II. Trajectory Data (Latitude and Longitude as a function of time).

A

. .

. .

۰.

--- ,

7.86

TRAJECTOPY	VELOCITY DAT	A	
TIME	VELOCITY	ALGLE FROM	HORI7.
0.	0.	-6.7100F-01	
0.	0.	-6.7100E-01	
4.0000E+01	0 1.9568E+01	8.9839E+01	
8.0000E+01	0 4.0065E+01	8.9837E+01	
1.2000E+0:	1 6.1505E+01	8.9835E+01	
1.6000E+0:	1 8.3895E+01	8.8706E+01	
2.0000E+0:	1 1.0739E+02	8.5819E+01	
2.4000E+0:	1 1.3233E+02	R.2357F+01	
2.8000E+0	1 1.5905E+02	7.8804F+01	
3+5000E+0	1 1.8768E+02	7.5355E+01	
3.5000E+0	1 2.1056E+02	7.2869E+01	
3.6000E+0:	1 2.1846E+02	7.2094E+01	
4.3000E+0	1 2.5149E+02	6.8954E+01	
4.4000E+0:	1 2+8634E+02	6.5787E+01	
4.8000E+0	1 3.20F4E+02	6+2514E+01	
5.2000E+0:	1 3.5476E+02	5.9439E+01	
5.6000E+0	1 3.3994E+02	5.6276E+01	
5.915UE+U	1 4.1878E+U2	5.38085+01	
5.0000E+0	1 4.2577E+U2	5.3146++91	
0.3000E+0	1 4.55052+02	5.0033E+01	
5.3423E+U	1 4.67476+82	5.U129E+U1	
	1 4.07305+02	4+070UE+91	
0.9000ETU.	1 9.611UE+U2 4 6 76776+03	4+0339E+UL	
7 3000CAU	1 7037775782	4.54705.01	
7 5000540	1 70774/5702	4+4179**J1 1. 2080E+01	
7 8000540	1 6 78785102 1 6 78785102	4.2007EVUL	
9 1000540	1 6 8707E+U2	3 8160540740	
8.4000540	1 7.3212F+02	3.62896401	
8.700000+0	1 7.8343E+02	3.4522E+01	
9.00000000	1 8.3772E+02	3,2839F+01	
9.300000000	1 8.9485F+02	3.1238E+01	
9.6000E+0	1 9.5487F+02	2.9718E+01	
9,90000000000	1 1.0177E+03	2.8275E+01	
1-8200E+9	2 1.0333E+03	2.6907E+01	
1.0500E+0	2 1.1515E+03	2.5609E+01	
1.0800E+0	2 1.2226E+03	2.4380E+01	
1.1100E+0	2 1.2963E+03	2.3214E+01	
1.13005+0	2 1.3471E+03	2.2471E+01	
1.1300E+0	2 1.3471E+03	2.2471E+01	
1.1400E+0	2 1.3728E+03	2.2110E+01	
1.1700E+0	2 1.4503E+03	2.1062E+01	
1.2039E+0	2 1.5283E+03	2.0058E+01	
1+23002+0	2 1.6068E+03	1.9122E+01	
1.2600F+0	2 1.6857E+03	1.8221E+01	
1.2909E+0	2 1.7650E+03	1.7363E+01	
1.3200E+0	2 1.8448E+03	1.6543E+01	
1.3500E+0	2 1.9249E+03	1.5759E+01	
1.3800E+0	2 2.0054E+03	1.5010E+01	

TABLE III. Trajectory Data (velocity and angle from horizontal as a function of time).

R -

17.

· •

•

\$.

i

WE

.

7	P(NB)	T(C)	DEN PT	DIR	SPD	C
A.	1.013F+83	9.8905+00	9.*905+00	1.3005+02	3.1005+00	3-3825+02
1.330E+02	1.001F+03	9.790F+00	9.7905+00	1.663E+02	2.700F+00	3.381F+02
2.860E+02	9.770E+02	9.090F+00	9.0905+80	1.7475+82	8.000E+00	3.377F+02
4-330E+52	9.660E+02	8.790F+00	8.7905+00	1.8005+02	1.2485+01	3.3756+02
5.740E(?	9.430F+02	8-690F+00	8.6905+00	1.8766402	1.6105+01	3.3745+02
7.540E+02	9.200E+82	8.8905+00	8-890F+00	2-005E+02	1.9405+01	3.376E+02
9.000E+02	9-090F+02	8.390E+00	8.3905+00	2.118F+02	2.160E+01	3.3735+02
1.011E+03	8.980E+02	8.390F+01	8.390F+00	2.197F+02	2.250E+01	3.373E+02
1.181E+03	8.770E+62	7.990E+00	7-990E+00	2.256E+02	2.1705+01	3.370F+02
1.314E+03	8.660E+02	6.490E+80	5.490E+00	2.316E+02	2.0985+01	3.361F+02
1.450E+03	8.550E+02	5-490E+00	5,4905+00	2.363E+02	2.170E+01	3.354F+02
1.567E+03	8.350E+02	3.390:+00	3.390E+00	2.421E+02	2.430F+01	3.341F+82
1.705E+03	8.250E+02	3.090E+00	3.090F+00	2.328E+02	2-370E+01	3.3395+02
1.856E+03	8.040E+02	2.4986+00	2.490E+00	2.241E+02	2.2705+01	3.335F+02
1.989E+03	7.950E+02	1.790E+00	1.790E+00	2.278E+02	2.3505+01	3.331F+82
2.123E+G3	7.850E+02	7.900E-01	7.900F-01	2.247F+02	2.510F+01	3.324F+02
2.249E+03	7.750E+02	3.900E-01	3.9005-01	2.237E+02	2.690F+01	3.322F+02
2.408E+03	7.56JE+02	-1.2102+00	-1.210E+00	2.225E+02	2.780E+01	3-312F+82
2.559E+03	7.370 +02	-1.710E+00	-1.710E+00	2.217E+02	2.800E+81	3.309F+02
2.690E+03	7.280E+02	-3.910E+00	-3.910E+00	2.198E+02	2.860F+01	3-295E+02
2.835E+03	7.190E+02	-4.510E+00	-4.510E+00	2.162E+02	2.980E+01	3-291 F+02
3.004E+03	7.010E+02	-4.010E+00	~4.010E+00	2.143E+02	3.030-+01	3.294E+82
3.130E+03	6+920E+02	-6.110E+00	-6.110E+00	2.143E+02	3.050E+01	3.291E+02
3.292E+03	6.740E+02	-8.410E+00	-8.410E+00	2.170E+02	3,100E+01	3.266E+02
3.422E+03	6.660E+02	-8.610E+00	-8.610E+00	2.175E+02	3.250F+01	3.265E+02
3.565E+03	6.490E+02	-8.810E+00	-8.810E+00	2+184E+02	3.5005+01	3.263E+02
3.711E+03	6.410E+02	-1.011E+01	-1.011E+01	2.224E+02	3.7005+01	3.255E+02
3.872E+03	6.240E+02	-1.061E+01	-1.0615+01	2.2272+02	3.7305+01	3.252E+02
4.023E+03	6.160E+02	-1.181E+01	-1.181E+01	2.214E+02	3.690F+01	3.244E+02
4.163E+03	6.000E+02	-1.271E+01	-1.271E+01	2.225E+02	3.8005+01	3.239E+02
~ T16E+03	5.920E+02	-1.351E+01	-1.351E+01	2.266E+02	3.910F+01	3.233E+02
4.477E+03	5.770E+02	-1.481E+01	-1.481E+01	2.305E+02	3.840E+01	3.225E+02
4.624E+113	5.690E+02	-1.561E+01	-1.561E+01	2.328E+02	3.810E+01	3.220E+02
4.774E+03	5.550E+02	-1.661E+01	-1.661E+01	2.357E+02	3.960F+01	3.214E+02
5.JODE+03	5.400E+02	-1.990E+01	-2.5J0E+01	2.500E+02	4.000E+01	3+193E+02
5.590E+03	5.050E+00	-2.200E+01	-3.000E+01	2.550E+02	4.200E+01	3.285E+02
6.000E+03	4.720E+02	-2.500E+01	-3.300E+01	2.600E+02	4.400E+01	3.160E+02
6.500E+03	4.410E+02	-2.800E+01	-3.500E+01	2.650E+02	4.6005+01	3.141E+02
7.000E+03	4.110E+02	-3.100E>01	-4.000E+01	2.700E+02	4.800E+01	3.121E+02
7.500E+03	3.830E+03	-3.400E+01	-4+500E+01	2.750E+02	5.0005+01	3+101E+02
8.000E+03	3.560E+02	-3.700E+01	-5.000E+01	2.870E+02	5.200E+01	3.0825+02
8.500E+03	3.310E+02	-4.000E+01	-5.000E+01	2.750E+02	5.400E+01	3.062E+02
9.000E+03	3.070E+02	-4.300E+01	-5.500E+01	2.700E+02	5.600E+01	3.042E+02
9.500E+03	2.020E+02	-4.600E+01	-6.00JE+01	2.600E+02	5.800F+01	3.023E+02
1.000E+04	2.640E+02	-4,900E+01	-6.500E+01	2.500E+02	6.000E+01	3.003E+02

TABLE IV. Meteorological Data as a function of altitude.

-33-
- 34 -

-

THE REAL PROPERTY AND ADDRESS OF TAXABLE PARTY.

.

.

•

7,77

-- --, . ÷.,;

PAPABOLIC DAT	Δ.
---------------	----

	PARADOLIC UP	414					-
	A	G	20	C	U	V	Z
1	3 .3991E+02	1.1162E-04	4.7137E+01	3.3816E+02	1.99265+90	3.4016F+92	0.
2	3.4003E+02	1.3161E-04	6+0173E+01	3.3811E+02	2.62322+19	3.4073*+02	1.3300E+02
3	3.4969E+02	-5.7423E-05	5.5174E+02	3.3790E+02	5.0706E+30	3.4297E+02	2.0950E+02
5	3+6923E+02	-9.8695E-06	1.8321E+03	3.3767E+32	7.96588+30	3.4564E+02	2.8600E+02
ñ	3+02408+02	-1.4441E-05	1.3660E+03	3.3756E+02	1.0272E+01	3.47#3E+02	3.5950E+02
5	2.4639E+82	1.7539F-06	-7.2487F+03	3.3749F+02	1.24008+91	3.4989E+02	4.3300E+02
7	3.5473E+32	-6.3076E-05	7.19055402	3.37446402	1.43528401	3.5180E+02	5-03502+02
, A	3.565654432	-2 57135-85	0 20845402	3 3766ELG2	1 50507+01	3.53605+02	5.74005+02
	1.200004405	-2 70025-02	9 66705402 9 66705402	7 77676102	4 72046404	7 54865100	6 6600E+02
	3 550LE102	-C 50495 00	0.44322702	3 3750E+92		J#2404LTUC 7 66766+09	7 64005+02
10	3622446492	-0.29402-02	0.07922+92	3.37942402	1.01/12/31	3.77/01 402	7 +7400E402
11	3+55342+82	-5.5947E-U2	5.05921 +02	4.3749E+32	1.74552+01	5.55946+02	0.05922+02
12	3+5585E+J2	-1.4090E-05	7.2833E+02	3.3745E+32	1.8465E+71	3.5591E+02	8-2700E+02
13	3.5573F+12	-5.0742E-05	8.6021E+02	3.3727E+02	1.8355E+01	1.55632+02	9.0000E+02
14	3.02065+02	-4.8774E-06	-2.3207E+02	3.3727F+92	1.7902E+11	3.5518E+02	9.5550E+02
15	3.2548E+02	1.2661E-06	5 . 7997E+03	3.3728E+02	1.7234E+01	3.54525+02	1.0110E+03
16	3.54495+02	-3.5950E-05	9.30348+02	3.3723E+02	1.6267E+01	3.5350E+02	1.0960E+03
17	3.5314E+82	-8.8409E-05	1.0791E+03	3.3704E+02	1.5183E+91	3.5222E+02	1.1810E+03
18	3.4820E+02	9.1094E-05	1.4110E+03	3.3659E+02	1.4043E+91	3.5064E+02	1.2475E+03
19	3-4803E+02	7.5767E-05	1.4306E+03	3-3608E+02	1-2982E+01	3.4906E+02	1.3140E+03
20	3-4848F+02	-5.0496E-05	1.30915+03	3-3579E+02	1-24215+01	3.4821F+02	1-3820E+03
21	3.4788F+02	-1.2464F+04	1.39295+03	3.35436402	1.20405401	3.4747E+ 02	1.45005+03
22	7.45655102	2.21625-84	1 6466403	3.26735+02	4.16915191	3.46215.02	1 60855+03
22	7 65655400	2 06045-04	4 55075+87	7 76605402	1417010111	7 LELCEL02	1 50000000000
23	3047475702	2034010-04	1.77976783	3.34095402	1.13/02+01	3+47405407	1.70/02+03
24	3+40/20+02	-1.19916-04	1.77022+03	3.3922+02	1.27102+31	3.40035-82	1.03002+03
25	3.5152E+82	-1./3/1E-05	2.1404E+03	3.3390L+J2	1.4329E+71	3.4823E+02	1.70502+03
26	3.4985E+U2	-6.7920E-05	1.4/25E+03	3.3373E+02	1.5540E+91	3.4927E+02	1.7805E+03
27	3+4984E+02	-1.4049E-04	1.8640E+03	3.3353F+02	1.6301E+31	3.4983E+02	1.8560E+93
28	3.4984E+02	-1.4049E-04	1.8640E+03	3.3350E+02	1.6335E+91	3.4984E+02	1.8640E+C3
29	3.4886E+02	1.36455-04	1.9827E+03	3.3332E+02	1.6033E+71	3.4936E+02	1.9225E+03
30	3.4886E+02	9.8996E-05	1.9804E+03	3.3308E+02	1.5785E+31	3.4887E+02	1.9890E+03
31	3.5117E+02	-3.2135E-05	2.2890E+03	3.3275E+82	1.6674E+91	3.4943E+02	2.0560E+03
32	3.4912E+02	2.4476E-05	1.9051E+03	3.3244E+02	1.7841E+01	3.5029E+02	2.1230E+03
33	3.5173E+02	-7-0498E-05	2-2835F+83	3.3234F+02	1.8719E+01	3.5105E+02	2.1860E+03
34	3.51778+02	-4- 4750E+05	2.30346+03	3.3219E+02	1.94685401	3.5164F+02	2.2490E+03
35	3.51776+02	-4.47506-05	2.30345403	3.31845402	1.99306401	3.5177F+82	2.3034E+03
25	3.51675402	1 68065-05	2 30575403	3.31685102	2 00645494	3.51755402	2.32855+03
30	7 54675+00	7 64 275-86	2 77025+07	7 74405+02	2 01045 + 31	7 54675102	2 10000100
31	3.51575402	1 + 4127E-00	2+3/925 +03	3.31105+92	2+04702+01	3.510/2402	2.440002703
30	3.51/91402	-1+29245+07	2.70192480	3.31000+02	2.00912.401	3471775482	2.40372103
39	3.5179E+U2	-1.59946-05	2.5319E+03	5.3044E+02	2.00702+91	3.91/95+02	2.53191+03
40	3.5178E+02	-4.0805E-05	2.5582E+03	3.3087E+02	2.09062+01	3.51//2+02	2.55902+03
41	3+2137E+02	9.2670E-05	2.6637E+03	3.3017E+02	2.1339E+91	3.5151E+02	2.6245E+03
42	3.5135E+02	7.7344E-05	2+6584E+03	3.2946E+02	2.1973E+91	3.5143E+02	2.6900E+03
43	3.5363E+02	-4.4951E-05	2 . 9416E+03	3.2915E+02	2.3040E+01	3.5219E+02	2.7625E+03
44	3.4922E+02	5.8740E-06	2.0196E+03	3.2907E+02	2.4047E+01	3.5312E+02	2.8350E+03
45	3.5444E+02	-5.9957E-05	3.0077E+03	3.2931E+0?	2.4662E+01	3.5397E+02	2.9195E+03
45	3.5444E+02	-1.1210E-04	3.0060E+03	3.2941E+02	2.5031E+91	3.5444E+02	3.0040E+03
47	3.5444E+02	-1.1210E-04	3.00602+03	3.29398+02	2.5049E+01	3.5444E+02	3.0060E+03
48	3-5201E+02	2-3290E-05	3.3608E+03	3-2883E+02	2.5190E+91	3.5402E+02	3.0670E+03
49	3-5407F+02	-3.5300F-05	2.9777F+03	3-2806E+02	2.51965+01	3-5325E+02	3-1300E+03
50	3.5130F+02	8.0353E+05	3.3135E+03	3.27235+02	2-49178+01	3-5215E+02	3-2110E+03
51	3.51326482	1.12326-04	3.30746403	3.2658F+02	2.47586+01	3.51345+02	3.2920E+03
52	7.57785100	-1.74075-05	3.67605192	3.26485×02	2.61445404	3.51505109	2.25705102
27	2 E486E104		2 22005103	J+LUTJETUC 7.96LEF+07	2.574475701 2.57417404	マーシュンフルマ サビーマー ビククムビー ウク	2.1000000000
73 E+	J+7104ETU2	44 07 FOE-U7	0.0009E700 7 E7EEF.A4	J 96115 40	68787888781 9 86868484	シャプビビサビア ひどうま ビアンクマンクロ	J + 462UETUJ
74	3.73/52402	-7.07USE-U5	3.77772+U3	3.2044142	C+0000E+U1	J+731324UZ	3.49371403
77	3+55/82+02	-7.784/2-05	3477562403	3+20346+02	C. (429E+01	3.73/72+02	3.76702+03
55	3.5378E+02	-9.5847E-05	3.5/56E+03	3.2628E+02	2.7499E+01	3.5378E+02	5-5756E+03
57	3.5277E+02	5.6021E-05	3.7448E+03	3.2593E+02	2.7474E+01	3.5340E+02	3.5380E+03
58	3.5269E+02	2.5145E-05	3.7863E+03	3.2551E+02	2.7323E+01	3.5283E+02	3.7110E+03
59	3.5269E+02	-1.6047E-05	3.7997E+03	3.2534E+02	2.73435+01	3.52652+02	3.7915E+03
60	3.5269E+02	-1.6047E-05	3.7997E+03	3.2533E+02	2.7360E+01	3.5269E+02	3.7997E+03

TABLE V. Parabolic fit to wind component (U) plus speed ofsound (C). The values of A, G, ZO are the parabolicparameters. Direction of propagation is toward the north.

ŧ.,

...

manner finder

61	3.5271E+02	-1.2415E-05	3.7786E+03	3+2519E+02	2.7412E+31	3.5260E+02	3.87202+03
62	3.5196E+02	1.1103E-05	4.1364E+03	3.2483E+02	2.7528E+01	3.5236E+02	3.9475E+03
63	3+202E+02	2.7072E-05	4.0695E+03	3.2443E+02	2.7679E+01	3.5211E+02	4.0230E+03
64	3.5207E+02	-5.6911E-05	4.1042E+03	3.2413E+02	2.7934E+01	3.5206E+02	4. R930E+03
65	3.5207E+02	-5.5911E-05	4.1042E+03	3.2408E+02	2.79A5E+01	3.5207E+02	4.1042E+03
66	3.5217E+02	-3.7365E-05	4.0734E+03	3.2386E+02	2.8016E+01	3.5187E+02	4.1630E+03
67	3.5262E+02	-2.5601E-05	3.9994E+03	3+2361E+02	2.7594E+01	3.5120E+02	4+2345E+03
68	3.5182E+02	-3.8299E-05	4.10105+03	3+2335E+02	2.6865E+01	3.5021E+02	4.3060E+03
69	3.4506E+02	3.5057E-05	4.7088F+03	3+2293E+02	2.5658E+91	3.4859E+02	4.3915E+03
70	3.4452E+02	2.7260E-05	4.7751E+03	3+2252E+02	2.4425E+31	3.4694E+02	4.4770E+03
71	3.4159E+02	8.7103E-06	5+2535E+03	3.2226E+02	2•3639E+11	3.4589E+02	4.5505E+03
72	3.4471E+02	9.1209E-05	4.6841E+03	3.2201E+02	2 .30 35E+01	3.4504E+02	4.6240E+03
73	3.4474E+02	-2.2235E-04	4.7051E+03	3.2172E+02	2.3008E+01	3.4473E+02	4.6990E+03
74	3.4474E+02	-2 2235E-04	4.7051E+03	3.2170E+02	2.3045E+01	3.4474E+02	4.7051E+03
75	3.4498E+02	-1.8139E-04	4.6895E+03	3.2137E+02	2+2315E+91	3.4369E+02	4.7740E+03
76	3c3349E+02	2.9049E-04	5.0103E+93	3.2017E+02	1.77402+91	3.3791E+02	4.8878E+03
77	3.3340E+02	7.4395E-05	5.0402E+03	3.1984E+02	1.3680E+01	3.3352E+02	5.0000E+03
78	3.3964E+82	-8.2201E-05	5.4399E+03	3.2501E+02	1.1667E+01	3.3668E+02	5.2500E+U3
79	3.3964E+02	-8.2201E-05	5.4399E+03	3+2764E+02	1.2000E+01	3.3964E+02	5.4399E+03
80	3.3967E+02	-7.4718E-05	5.4339E+03	3.2847E+02	1.0870E+01	3.3934E+02	5.5000E+03
81	3.2146E+02	5.1946E+05	6.2047E+03	3.2290E+02	9 .3060E+ 90	3.3220E+02	5.7500E+03
82	3.1997E+02	3.0806E-05	6.3452E+03	3.1600E+02	7.63976+00	3.2364E+02	6.0000E+03
83	3.2101E+02	-1.1297E-05	5.9903E+03	3.1437E+02	5.8727E+39	3.2025E+02	6.2500E+03
84	3.6161E+02	-7.6131E-07	-1.0624E+03	3.1407E+02	4.00822+90	3.1807E+02	6.5000E+03
85	3.5937F+02	-7.9985E-07	-6.6604E+02	3.1310E+02	2.0490E+90	3.1515E+02	5.7500E+03
86	3.5378E+02	-9.0721E-07	2.2355E+02	3.1212E+02	-1.0258E-03	3.1212E+02	7.0000E+03
87	4.0151E+02	-4.3922E-07	-7.2630E+03	3.1113E+02	-2.1385E+00	3.0899E+02	7.2500E+03
88	3.1006E+02	-9.8172E-06	6.8395E+03	3.1014E+02	-4.3589E+10	3.0578E+02	7.5000E+03
89	2.9839E+02	2.7227E-05	8.0783E+03	3.0916E+02	-7.2375E+00	3.0192E+02	7.7500E+03
90	2.9898E+02	2.5578E-05	8.0802E+03	3.U819E+02	-9.0309E+10	2.9915E+02	8.0000E+03
91	3.0234E+02	-7.8715E-06	8.8233E+03	3.0721E+02	-7.4554E+00	2.9975E+02	8.2580E+03
92	3.0304E+02	-4.2410E-06	9.1000E+03	3.0622E+02	-4.7076E+90	3.0151E+02	8.5000E+03
93	3.0238E+02	1.5687E-05	8+6554E+83	3.0524E+02	-2.7137E+98	3.0252E+02	8.7500E+03
94	3.0238E+02	1.56928-05	8+6555E+03	3+0425E+02	-1.1968E-03	3.0424E+02	9.00v0E+03

.

مب

Ť.

- ----

- .

•

TABLE V. (Contd.)

tic,

. مى

~:**_**

-

- 35 -

PARABOLIC DATA

I

	Δ	G	70	C	u	¥	Z
1	3.38442+02	4.53335+05	2,1502F+02	3-3816E+02	2-3747E+90	3.4054E+02	0.
2	3.38516+02	5.79455-05	1.07175402	3.38116402	6.39428-01	3.3875F+82	1.3300F+02
7	7.38575402	-3.68105-05	2.28015402	3.37905402	6.20400-01	3.3852E+02	2.0950F+02
1.	7.78575402	-3 58105-05	2 28014402	3 3786 FA	6 01315-11	3. 3853F+02	2.2891E+02
5	7 70+15+02	-5.50100-09	-5 8520510402	3 37675482	7.38805-11	3. 38416+02	2.8600E+02
۰, د	343714CTJC 7 74018100	-3 86585+05	- J+ NJC UC TUL	7 77565102	- 1211E-91	3. 3887F+02	3.59506402
2	- JAJO <u>C45</u> TUC - 2 20265740	- 3. 35586-35	2 56475+02	7 77605402	-2 65005-04	3.3760FA02	6.3300E+02
r	3.33442732	-3-8430E-89	2.70135702	7 77455402	-2+02002-34	7 76545102	4 + 3 3 8 9 L + 0 L
8	3+3/952+02	*4+10446*07	3+2007E+02	3.3/442+02	-0+0/40E-U1	3+3020L+82 7 75745+02	5.0000000
	3+33796+02	-2. 7/000-07		3+3/445702	-6.20075420	3.37316+32	5 6 6 6 6 6 E + 02
	3.41262+02	-1.99546-05	2.9900E+01	3.37332742	-4.2997E+10		7 54005402
11	3+3435E+UZ	->, 9051E-05	5.0934E+02	3.31952+02	-0.73472799	3,30005702	7 + 7400E + 02
12	3.21128+92	4.553UE-U5	1.21352+93	3.37452+02	-9.07 302+30	3.20372402	0 0000E+02
13	2+9535E+32	1.5801E-06	2.40732+03	3.3727E+U2	-1.1383E+01	1.25092+92	9.00002+02
14	3-2250E+02	1.2698E-04	1.07205+03	3.3/2/E+02	-1.3048E+01	3.2423E+U2	9.555UE+U2
15	3.2211E+02	6.9071E-05	1.1732E+03	3-3728E+02	-1.4309E+01	3.2298E+U2	1.01192+03
1 5	3.2224E+92	-4.15/8E+05	1.0:095+03	3.3723E+02	-1.5073E+01	3.22162+02	1.0960E+03
17	3.2258E+02	-2.80332-05	9.0/995+02	3.3704E+02	-1.5505E+01	3.2154E+02	1.1810E+03
18	3.2843E+02	-6.8416E-06	1.8419E+02	3.3659E+02	-1.5898E+91	3-2069E+02	1.2475E+03
19	3.17098+02	2.2895E-05	1.65165+03	3.3608E+02	-1.6380E+91	3.1970E+02	1.3140E+03
20	3.1908E+02	-1.1512E-04	1.3284E+03	3.3579E+02	-1,70355+01	3.1875E+02	1.3820E+03
21	3.1804E+02	-2.3804E-04	1.4030E+03	3.3543E+02	-1.8054E+01	3.1738E+02	1.4500E+03
22	3.1257E+02	4.5839E-04	1.5771E+03	3.3473E+02	-2.0012E+91	3.1472E+02	1.5085E+03
23	3.1254E+02	2.8947E-04	1.5830E+07	3.3409E+02	-2.1476E+01	3.1261E+02	1.5670E+03
24	3+1586E+02	-9.41575-05	1.79915+93	3.3392E+02	-2.0572E+01	3.1335E+02	1.6360E+03
25	3.1357E+02	5.3985E-05	1.5410E+03	3.3390E+82	-1.8875E+01	3.1502E+02	1.7050E+03
26	3.1774E+02	-1.5611E-04	1.8633E+03	3.3373E+02	-1.7065E+91	3.1667E+02	1.7805E+03
27	3.17748+02	-2.1702E-04	1.8613E+03	3.3353E+02	+1.5798E+01	3.1773E+02	1.8560E+03
82	3.1774E+02	-2.1702E-04	1.8613E+03	3.3351E+02	-1.5776E+01	3.1774E+02	1.8613E+03
29	3.1541E+02	1.1697E-04	2.0361E+03	3.3332E+02	-1.6402E+01	3.1692E+02	1.9225E+03
30	3.1512E+82	5.4474E-05	2.0901E+03	3.3308E+02	-1.74092+91	3.1567E+02	1.9890E+03
31	3.1529E+02	-3.1522E-05	1.9970E+03	3.3275E+02	-1.7573E+01	3.1518E+02	2.0560E+03
32	3-1555F+82	-2-0853E-05	1.9326E+03	3-3244E+02	-1.7656E+11	3.1479E+02	2.1230E+03
33	3-1258E+82	1.7215E-05	2.4929E+03	3.3234E+02	-1.8130E+91	3.1421E+02	2.1860E+03
34	3.19756+82	-2. 8698E-06	7.8564F+02	3-3219F+02	-1-8585F+31	3.1361E+02	2.2490E+03
35	3-1222E+82	2.7947E-05	2-4869F+03	3-3168E+02	-1.8760F+91	3-1292E+02	2.3285E+03
36	3-1229E+02	4.4918F-85	2.4571E+03	3-3118F+02	-1.8782E+01	3.1240E+02	2.4080E+U3
37	3.1235E+82	-4. 4951F-05	2.5099F+03	3-3106F+02	-1.8739F+01	3-1232F+02	2.4835E+03
3R	3.12355+82	+4+951E 05	2.50945+03	3.3099F+02	-1-8642E+11	3.1235E+02	2.5099E+03
30	3-12315+02	-6.5999F-15	2-5255E+83	3-30875+02	-1.8627F+01	3.1224F+02	2.5591F+13
60	3.11125402	7.84955-05	2.7077E+03	3-3017F+02	-1.85018+91	3.1167F+02	2.6245E+03
61	3.11116402	L. 6593E-05	2.7108F+03	3.29465482	-1.83086401	3.1115F+02	2.6900E+03
41	7 17075402	-1 44365-06	L. 13025+03	3.20155482	-1.79585481	3.11195+02	2.7625F+03
チヒ	3 11375402	2 2778E_06	2.77765+83	3.20076402	-1.7601F401	3.1147F+02	2.8350E+03
43 h1.	2 42355402	-6 72225-05	2 08875183	3+23076+02	-1.72855481	3.12035+02	2.01055403
47 66	341237E702	-6 72238-85	2.98875103	3.20305+02	-1.70425401	3.1235F+02	2.9887F+03
49 1. C	3+12392+02	-0.07875-85	2 00775483	2 2061Ex02	-1 70765401	3.12375402	3.00405+03
40	3+12345402	-5. 93030-03	4 79785107	3+27415482	-1 70278401	7 44945402	3 8 6 7 8 E + 6 3
41 1. D	3+21102992	-7-00046-00	1.70305703	3+200JETU2 7 0806E100	-1 71885401	2 40875102	3 4 200F UE + US
40 LO	3+12401702	- 34 90 376-07	207673E703 7 15675107	3 4 2000ETUC	-1.70546484	3010075402	2 244 06107
47 80	3+00172402	4.30775-47	3447716783 7 60778407	3 36545-04	-1 86676101	J. U JJOLT UC	2 2020510
ジリー	3.0748F.00	6.4CO2L*U5	3.443/2443		-1 044907484	JOU173ETU2 2 87375-89	3 78705107
91 60	3.00000-00	-4. / D3/E+05	3.294ULTU3	3+20492402	-1.71022401	J.U/C/L+U2 7 06675-00	3.37/UETU3
92 	3.39056+02	-1.1440E-66	-1.0800E+U3	3.2040L+U2	-1.97702401	J. UOD/L+U2	3.42202+03
25	3.0642E+02	-0.1552L-05	3.39312+83	3.20441402	-2.00402+01	3.470UL+U2	3.49376.483
94 ~~	3.0352E+02	-1.09182-04	3.4001E+U3	3.20346402	-2.1/412+01	3.0400L+02	3.70702+03
55	3.0016E+02	1.49286-04	3.7623E+U3	3.2593E+02	-2.3460E+31	3.UZ47E+02	3.0300E+03
26	2.9995E+02	9.7812E-05	3.7899E+03	3-2551E+02	-2.4950E+01	3.00562+02	5./110E+03
57	2.9996E+02	-1-25382-05	3.8038E+03	3.2534E+02	-2.5391E+01	2.9995E+02	3.7915E+03
58	2.9996E+02	-1.2538E-05	3.8038E+03	3.2532E+02	-2.53662+01	Z.9996E+02	3.8038E+03
59	2.9958E+02	4.7608E-05	3.8900E+03	3.2519L+02	-2.5296E+01	2.9990E+02	3.8720E+03
66	3.00145+02	-7.5297F-N5	3.9839F+03	3.24835+02	-2.4792F+01	3_88846+82	3-9475F+03

TABLE VI. Parabolic fit to speed of sound plus wind component Direction of propagation is toward the east.

----- •

R. -

¢

٠,

61	3.0014E+02	-7.5297E-05	3.9839E+03	3.24648+02 -2.44988+01	3.0014E+02	3.9839E+03
62	3.0017E+02	-6.0533E-05	3.9743E+03	3.2443E+02 -2.4403E+01	3.0002E+02	4.0230E+03
63	3.0131E+02	-2.5799E-05	3.8146E+03	3.2413E+02 -2.48132+91	2.9931E+02	4+0930E+03
64	2.9934E+82	-6.9981E-05	4.0346E+03	3.2386E+02 -2.5673E+01	2.9818E+02	4.1630E+03
65	2.9402E+02	7.7740E-05	4-4145E+03	3.2361E+02 -2.7069E+01	2.9654E+02	4.2345E+03
66	2.9306E+02	3.7895E-05	4.5286E+03	3.2335E+02 -2.8410E+01	2.9494E+02	4.3060E+03
67	2.3673E+02	4.7289E-07	1.5375E+04	3.2293E+02 -2.9160E+91	2.9377E+02	4.3915E+03
68	2.9222E+02	3.9990E-05	4+6859E+03	3.2252E+02 -2.9631E+01	2.9289E+02	4.4770E+03
69	2.9242E+02	-6.6770E-05	4.5173E+03	3.2226E+02 -2.9911E+01	2.9234E+02	4.5505E+03
70	2.9289E+02	-4.1088E-05	4.4507E+03	3.2201E+02 -3.0349E+01	2.9166E+02	4.6240E+03
71	2.9375E+02	-3.0707E-05	4.3667E+03	3.2172E+02 -3.1365E+31	2.9036E+02	4.6990E+03
72	2.9055E+02	-8+23886-05	4.6222E+03	3.2137E+02 -3.2714E+01	2.8866E+02	4.7740E+03
73	2.8225E+02	1.8848E-04	5.0027E+03	3.2017E+02 -3.5390E+01	2.8478E+82	4.8870E+03
74	2.8225E+02	5+7897E-05	5.00896+03	3.19846+02 -3.75888+01	2.8225E+02	5.0000E+03
75	2.8821E+02	-7.5000E-05	5.4361E+03	3.25018+02 -3.93968+01	2.8561E+02	5.2500E+03
76	2.8821E+02	-7.5000E-05	5.4361E+03	3.2759E+02 -3.9377E+01	2.8821E+02	5.4361E+03
77	2.8822E+02	-7.3475E-05	5.4348E+03	3.2847E+02 -4.0569E+91	2.8790E+02	5.5000E+03
78	2.7085E+02	5.3321E-05	6-1844E+03	*.2290E+02 -4.1981E+01	2.8092E+02	5.7500E+03
79	2.6966E+02	3.2122E-05	6.3051E+03	3.1600E+02 -4.3332E+01	2.7267E+02	6.0000E+03
80	2.7009E+02	-9.8788E-06	6.0677E+03	3.14371+02 -4.46158+91	2.6976E+02	6.2500E+03
81	2.3850E+02	6.1335E-07	1.3464E*04	3.1407E+02 -4.5825E+01	2.6824E+02	6.5000E+03
82	2.3989E+02	6.4581E-07	1.31262+04	3.1310E+02 -4.6955E+91	2.6614E+02	6.7500E+03
83	2.3350E+62	5.1104E-07	1.4742E+04	3.1212E+02 -4.8000E+01	2.6412E+02	7.0G00E+03
84	2.4778E+02	1.0177E-06	1.1012E+04	3.1113E+02 -4.8953E+01	2.6218E+02	7.2500E+03
85	2.5529E+02	2.53 36E- 06	8.9107E+03	3.1014E+02 -4.9810E+91	2.6033E+02	7.5000E+03
86	2.6084E+02	-4-0368E-06	7.0215E+03	3-09166+02 -5-04616+01	2.5870E+02	7.7500E+03
87	2.6092E+02	-3.95765-06	7.0020E+33	3.0819E+02 -5.1210E+91	2.5698E+02	8.0000E+03
88	2.4413E+02	2.2961E-06	1.0401E+04	3.0721E+02 +5.2452E+01	2.5475E+02	8.2500E+03
89	2•5243E-02	-8.7306E-03	0.	*+0622E+02 -5-3794E+01	2.5243E+02	8.5000E+03
90	2 .4359 E+02	2.8542E-06	1.0277E+04	3.05246+02 -5.49896+01	2.5025E+02	8.7500E+03
91	2.3860E+02	1.3775E-06	1.1646E+04	3-0425E+02 -5-6000E+01	2.4825E+02	9-0000E+03

TABLE VI. Continued

t

- 37 -

- 38 -

D 51	DA	0.01	tr	n A 1	r a 👘
		~			
					_

	ANMOULID ON	1.7					-
	۵	5	Z 0	C	U	V	Z
1	3.3646E+02	-1.3115E-04	4.6832E+01	3.3816E+02	-1.9927E+00	3.3617E+02	0.
2	3.3646E+02	-1.3115E-04	4.6832E+01	3.3815E+02	-1.68552+30	3.3646E+02	4.6832E+01
3	3-3529E+02	-1.5880E-04	6.1835E+01	3.3811E+02	-2.6232E+90	3.3549E+02	1.3300E+02
<u> </u>	3.2595F+82	7-99835-05	5-0267F+02	3.3790E+02	-5-0707F+30	3-3283E+02	2.0950E+02
Ċ.	3 46777162	2 32085-05	1.03276407	3 37675402	-7.96585400	3.2971E+02	2.8600E+02
5	2 4 2 3 4 2 4 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3 4 7 3	4 82005-05	1-03275+03	7 77565+02	-4 00700+04	7 77706+02	1 60505402402
0 7	3410345786		1+213/5+03	3.37705442	-1006166491	3 25 2 25 4 25	- J-2320C+0C
	2.71122+02	3+7783E-06	4.21242+03	3.37446402	-1.24907+31	3.25092+02	4.33002+02
8	3.23426+82	7.3530E-05	6.9408E+02	3.3744E+02	-1.4351E+71	3.2309E+02	5,03502+02
9	3.1961E+02	4.1642E-05	7 . 8603E+02	3.37446+02	-1.5958E+31	3.2148E+02	5.7400E+02
10	3.18212+02	1.2748E-05	1.0626E+03	3.3753E+02	-1.7304E+01	3.2023E+02	5.6400E+02
11	3.1881E+02	2.5355E-05	9.0917E+02	3.3759E+02	-1.8171E+31	3.1942E+02	7.5400E+02
12	3.1889E+02	4.5358E-05	8.7293E+02	3.3745E+02	-1.8465E+01	3.1898E+02	A.2700E+02
13	3.1890F+12	1-0353F-04	8-8814F+02	3.3727E+02	+1-8357E+11	3-1892F+02	9.0000E+02
46	3.20076402	-3.12945-86	1.17835+03	3.37276+02	-1.70025401	3.1037F+02	9.5550F+02
4 C 4 C	3420332492	7 70545-00	_E 7778E440	7 77205+02	-1 7026401	2 20055102	3 014 0E 407
12	3+11/96702	2.24215-90	-2010000000	3.3/202442	-1.12346+01	3+20092+02	
16	3.2621E+02	-5,3040E-06	2.0466E+03	3.3723E+U2	-1.6266E+91	3.2096E+02	1.99602+03
17	3.1662E+92	4.82098-06	1.3884E+02	3.3704E+02	-1.5182E+31	3.2186E+02	1.1810E+03
18	3.2331E+02	-3.7510E-05	1.3900E+03	3.3659E+02	-1.4042E+31	3.2255E+02	1.2475E+03
19	3.2342E+02	-2.5072E-05	1.42775+03	3.3608E+02	-1.2981E+91	3.2310E+02	1.3140E+03
20	3.2341E+02	-2.7793E-05	1.4232E+03	3.3579E+02	-1.2420E+91	3.2337E+02	1.3820E+03
21	3.2341F+82	-2.7793E-05	1.4232F+03	3.3557E+02	-1.2158E+01	3.2341E+02	1.4232E+03
22	3.23435+02	-1.5595F-05	1-40235+03	3.3543E+02	-1-2039E+01	3-2339E+02	1-4500F+03
27	3.23285182	-9.97495-15	1.60105403	3.36735482	-1.16805401	3.2325E+82	1.50856+03
20	3423292702	-74 77 475-07	1047175703	3 34005.03	-1014005131	7 22725102	1 56705107
24	3+23292+02	-9.0009E-07	1.49106+03	3.34096+02	-1-10090+91	3+22722702	1.70/02103
25	3.1827E+02	6.9516E-05	1.04172+03	5.3342E+92	+1.27095+91	1.2121E+U2	1.03000+03
25	3.1010E+02	9.5255E-06	2.7C23E+03	3.3390E+J2	-1,4328E+91	3.1957E+82	1.7050E+03
27	3.1697E+02	6.3249E-05	1.9193E+03	3.3373E+02	-1.5540E+01	3.1819E+02	1.7805E+03
28	3.1711E+02	1.3525E-04	1.8856E+03	3.3353E+02	-1.63012+91	3.1723E+02	1.8560E+03
29	3.17465+02	-1.4888E-04	1.9560E+03	3,3332E+02	-1.6032E+91	3.1729E+02	1.9225E+03
30	3.1746E+02	-1-4888E-04	1.9560E+03	3.3320E+02	-1.5743E+01	3.1746E+02	1.9560E+03
31	7 1740F+02	-1.2472F+04	1.9496F+03	3.3308E+02	-1.5786P+01	3.1730F+02	1.9890E+03
72	. 13675102	6.74045-05	2 25285+03	3 3275FA82	-1-66738+01	3.1608F+02	2.05605+03
77	3013416446	0.14046-05	2.4C9C9C703	7 70666400	-1.0000000000	7 46606406	2 1 2705+02
33	3.11966+02	2.09005-07	2.42985+03	3.32442402	-1.784UE+U1	3.4760E+02	2.123UE+U3
34	2.4548E+02	1.0405E-07	1.20245+04	3.3234E+02	-1.8/19E+01	3.1362E+U2	2.186UL+U3
35	3.2172E+02	-5.2788E-06	9.4533E+02	3 .3 219E+02	-1.9447E+01	3.1275E+02	2.2490E+03
36	3.1011E+02	3.5362E+05	2.5350E+03	3.3168E+02	-2.00532+01	3.1162E+02	2.3285E+03
37	3.1037E+02	6.3685E-05	2.4785E+03	3.3118E+02	-2.0495E+J1	3.1058E+02	2.4080E+03
38	3.1037E+02	-7.9284E-05	2.4875E+03	3.3106E+02	-2.0690E+01	3.1037E+02	2.4835E+03
39	3.1037F+02	-7.9284E-05	2-4875E+03	3-3105F+02	-2-0679E+31	3-1037E+02	2.4875E+03
L n	3.10325+02	-9.1717E-15	2.4965F+03	3-3087E+02	-2-0905E+01	3-0996F+02	2.5590E+03
	7 05525402	1 874EE-0E	2 00065487	2 20175102	-2 17785401	3.0.8875+02	2.62655402
41	3403725402	440749E-07	2030346403	7 20165402	-2410300+41	7 07405402	2 60806407
42	3+12935+02	-1.40/20-07	2.00002703	3.29405702	-2+19/25+31	3.06445400	
45	3-04682+02	5.9/41t-07	2.9050E+03	3.29152+02	-2.30392+31	3.00110+02	2.10292403
44	3.0465E+02	6.4064E-05	2.9122E+03	3.2907E+02	-2.4047E+01	3.0503E+02	2.8350E+03
45	3.0465E+02	-4.8974E-05	2.9290E+03	3.2931E+02	-2.4662E+01	3.0465E+02	2.9195E+03
45	3.0465E+02	-4.8974E-05	2.9290E+03	3.2932E+02	-2.4668E+91	3.0465E+02	2.9290E+03
47	3.0457E+02	-6.8553E-05	2.9504E+03	3.2941E+02	-2.5030E+01	3.0438E+02	3.0049E+03
48	3.0251E+02	5.65962-05	3.2082E+03	3.2883E+02	-2.5189E+91	3.0364E+02	3.0670E+03
49	3-0212F+02	2.6377F-85	3-2978F+03	3-2806F+02	-2-5195F+11	3-0286F+02	3.1300F+03
50	3.02645402	-1.7##05-05	3.08305403	7. 2723EA02	-2.40167401	3.02325+02	3.21105+03
20	2.1224E+0C		2.2607F+47	7.965654C		2.04.825109	3.2020510
21	J 004 4F 402	-0404/32-00	2 001JCTUJ 7 00127-01	7 0000TU2	-2077716701	J 04 7055786	- JAC 7607 TUJ 7 76707 - 07
22	3.U2462+U2	-1. 203/L+U5	3.U040E+U3	3.20472402	-2+71442+91	3.013UC+U2	3+37/02+03
53	3.0161E+02	-3+U522E-05	3.2469E+03	3.2646E+02	-2.5783E -01	5.0060E+02	3.4220E+03
54	2.9850E+02	4.4991E-05	3.6608E+03	3.2644E+02	-2.66852+01	2.9976E+02	3.4935E+03
55	2.9835E+02	3.3165E-05	3.6949E+03	3.2634E+02	-2.7428E+91	2.9891E+02	3.5650E+03
56	2.9340E+02	7.0495E-07	6.3167E+03	3.2593E+02	-2.7473E+01	2.9846E+02	3.6380E+03
57	2.9799E+02	1.7396E-05	3.8166E+03	3.2551E+82	-2.73222+01	2.9819E+02	3.7110E+03
58	2.9801F+02	-2.3175E-85	3.7727E+03	3.2534F+02	-2.73422+01	2.9800E+02	3.7915E+03
59	2.98815+82	-2.2786F+AS	3.771 NE+A3	3.2519F+02	-2.74117+01	2.9778F+02	3.8720F+03
60	2.96675102	9. 8975F_HE	4.3897F403	3.24835402	-2.7527F101	2.9730F+02	3.94755403
.	ニモ ファノブレマリビ		7400J7L700	~~~~~~~~	ビー・シビー ビー・ス		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE VII. Parabolic fit to speed of sound plus wind component. Direction of propagation is toward the south.

1.256

æ.,

۱

---,

61	2.97375+02 -1.7839E-05	3.8360E+03	3.2443E+02 -2.7678E+01	2.96752+02	4.0230E+03
62	2.9584E+02 5.8760E+05	4.1710E+03	3.2413E+02 -2.7933E+01	2.9619E+02	4.0939E+03
< T	2.9584E+82 4.7551E-05	4.1729E+03	3.2386E+02 -2.8015E+01	2.9534E+02	4.1630E+03
ı'+	1.1.1 1.1.2 9.2106E-06	3.9165E+03	3.2361E+02 -2.7592E+01	2.9602E+02	4.2345E+03
65	2.9535E+12 2.4362E-05	4-15372+33	J.2335E+J2 -2.6864E+01	2.9648E+02	4.3060E+C3
50	2. 3884E+02 -2. 0507E-05	4.6680E+03	3.2293E+02 -2.5657E+91	2.9727E+02	4.3915E+03
57	2.9979E+02 -9.5229E-06	4.8883E+03	3.2252E+02 -2.4424E+01	2.9809E+02	4.4770E+03
68	2.9999E+82 -2.1717E-05	4.6986F+03	3.2226E+02 -2.3638E+01	2.9862E+02	4.5505E+03
69	2.9900E+02 -8.8792E-05	4.6423E+03	3.2201E+02 -2.3034E+01	2.9897E+02	4.6240E+03
73	2.3900E+02 -8.8792E-05	4.6423E+03	3.2194E+02 -2.2935E+01	2.9900E+02	4.6423E+03
71	2.9859E+02 1.9466E+04	4.7249E+03	3.2172E+02 -2.3007E+31	2.9872E+02	4+6990E+03
72	2.9809E+02 9.4850E+05	4.6732E+03	3.2137E+02 -2.2314E+01	2.9906E+02	4.7740E+03
73	3.0862E+02 -6.6407E-05	5.1924E+03	3.2017E+02 -1.7739E+01	3.0743E+02	4.8870E+03
74	2.5330E+82 1.2691E-05	3.9934E+03	3.1984E+02 -1.3679E+01	3.0616E+02	5.0000E+03
75	3-1763E+02 -5-9395E-05	5.5185E+03	3.2501E+02 -1.1665E+01	3.1334E+02	5.2500E+u3
75	3.1762E+02 -7.3004E-05	5.51515+03	3.2847E+02 -1.08o8E+01	3.1761E+02	5.5000E+03
77	3-1762E+02 -7-3004E-05	5.5151E+03	3.2814E+02 -1.6516E+01	3.1762E+02	5+5151E+03
78	3-0809E+02 5-3516E+05	6.0705E+03	3.2290E+02 -9.3042E+00	3.1359E+02	5.7500E+03
79	3.0792E+02 3.2459E-05	6.1162E+03	3.1600E+02 -7.6378E+00	3.0836E+02	6.0000E+03
80	3.1042E+02 -9.8328E-06	6.6915E+03	3.1437E+02 08E+90	3.0850E+02	6.2500E+03
81	3-0557E+02 8-0827E-07	4.1698E+03	3.1407E+02 -4. 063E+**	3.1006E+02	6.5000E+03
82	3.0294E+02 5.3622E-07	2.8607E+03	3-13105+02 -2-94702+90	3.1105E+02	6.7500E+03
83	3.0327E+02 5.5623E-07	3.0096E+03	3.1212E+02 3.0774E-93	T : 13E+02	7.0000E+03
84	3.0584E+02 7.4825E-07	4.0978E+03	3.1113E+02 2.1406E+00	3.1327E+02	7.2500E+03
85	3.1385E+02 1.0058E-05	7.2469E+03	3.1014E+02 4.3610E+90	3.1450E+02	7.50002+03
86	3.1734E+02 -2.7373E-05	7.9349E+03	3.0916E+02 7.2396E+00	3.1640E+02	7.7500E+03
87	3.1734E+02 -2.7373E-05	7.9349E+03	3.0844E+02 8.8954E+00	3.1734E+02	7.9349E+03
88	3-1734E+02 -2-5627E-05	7.9330E+03	3.0819E+02 9.0331E+00	3.1722E+02	8.0000E+03
89	3-8555E+02 7-8202E-06	9-3292E+03	3.0721E+02 7.4577E+00	3.1466E+02	8.2500E+03
90	3.0090E+02 4.1908E-06	1.0047E+04	3.0622E+02 4.7099E+00	3.1093E+02	8.5000E+03
91	3.0983E+02 -1.5739E-05	8.4045E+03	3.0524E+02 2.7160E+00	3.0795E+02	8.7500E+03
92	3.0983F+02 -1.5743F-05	8.4047F+03	3-04256+02 3-59036-03	3.0425E+02	9.0000E+03

and the good of

. . . .

TAPLE VII. Continued

44

- 39 -

•

	0.101001.70.0						
	PARAPULIC DI			•			-
	A	G	ZU	C	U	V	2
1	3.3753E+02	-6.4848E-05	1.6384E+02	3.3816E+02	-2.3746E+90	3 . 3579E+02	0.
2	3.3752E+02	-8.5125E-05	1.5652E+02	3.3811E+02	-6.3930E-01	3 . 3747E+02	1.3300E+02
3	3.3752E+02	-8.5125E-05	1.5652E+02	3-3804E+02	-5.2738E-91	3.3752E+02	1.5652E+02
4	3.3694E+02	5,9365E-05	2.8547F+02	3.3790E+02	-6-2028E-11	3.3728E+02	2.0950E+02
5	3.36948+82	1.94365-05	2.86375402	3.37676102	-7.38468-11	3. 3694F+ 02	2.86005+02
ć	7 76005482	L 34855-85	7 95075+09	7 77565402		7 770/5+02	7 50505402
	3430996402	4+ (4U)C-U)	3+29076+02	343790ETUC	-2+120/6-01	3.37045702	3+33206+02
(3+36912+02	3.5909E-U5	3.05/5E+02	5.3749E+02	7.45005-04	3.31492+02	4.33002+02
8	3+3733E+92	5.1493E-05	3.6537E+02	3.3744E+02	8.68095-01	3.3831E+02	5.0350E+02
9	3.3674E+02	4.0689E-05	3.0997E+02	3.3744E+02	2 . 1304E+00	3.3957E+02	5.7400E+02
10	3.8169E+02	-5.2072E-06	3.4304E+03	3.3753E+02	4.3004E+00	3 . 4184E+02	6.6400E+02
11	3.3386E+02	1.84552-05	-1.16285+00	3.3759E+02	6.7953E+00	3.4439E+02	7.5400E+02
12	3.6005E+02	-1.7262E-05	1.7124E+03	3.3745E+02	9.0738E+00	3.4652E+02	8.2700E+02
13	3-4306F+02	3.5159F-05	5.0114F+02	3-3727F+02	1.13867+01	3.4866F+82	9-0000F+02
14	3.5189F+02	-1.63148-04	1.05345+03	3.3727F±02	1.30600401	3.5032F+02	9.55506402
4 2	2 59765A09	-6 66075-05	1 11875+87	7 77295102	4 67400401	2 54505+02	1 01105+02
12	3 6 7075.02		1011032403	7 77275.02		7 59705.00	4 000000403
10	3+03935+42	-1.7700E-U/	9.101/2+03	3.37232702	1.50/46+11	3.52302+02	1.09002+03
17	3+5258E+U2	->+>>>/L-U>	1.20662403	3-3704E+02	1.55056+31	5.5255E+U2	1.10102+03
18	3.5258E+02	-5.5557E-05	1+2066E+03	3.3687E+02	1.5715E+31	3.5258E+02	1.2066E+03
19	3+241E+02	6.0426E-05	1.2851E+03	3.3659E+02	1.5893E+01	3.5249E+02	1.2475E+03
20	3.5235E+02	2.7802E-65	1.2512E+03	3.3608E+02	1.6380E+01	3.5246E+02	1.3140E+03
21	3.5246E+02	3.6832E-05	1.2832E+03	3.3579E+02	1.7036E+01	3.5282E+02	1.3820E+03
22	3-5325F+02	1.5779F-04	1-4111F+03	3-3543F+02	1.8054F+01	3.5349F+02	1.4500F+03
23	3.5557F+02	-2.86505-04	1.56225+83	3.3673F+02	2.00136401	3.5476F+02	1.50856403
26	7 55575+02	-2 #6505-04	1 56225+07	7 76465102	2 46705401	7 55576+02	1 56995403
24	3.555712402		1.90222403	3.34142442	2014302491	3.77776702	
25	3.77712+82	-1.54026-04	1.55952+03	3.3409E+02	2+14/62+31	3.77702+02	1.50/02+03
ZP	3.5034E+02	4. // 50E=U5	1.931UE+U3	5.3392E+02	2.0572E+91	3.54502+02	1.63502+03
27	3.5466E+02	-6.1829E-05	1.5305E+03	3.3390E+02	1.8879E+J1	3.5278E+02	1.7050E+03
28	3.4922E+02	1.5143E-04	1.8826E+03	3.3373E+02	1.7065E+01	3 . 5080E+02	1.7805E+03
29	3.4925E+02	2.1176E-04	1.8750E+03	3.3353E+02	1.5798E+91	3.4933E+02	1.8560E+03
30	3.5051E+02	-1.2939E-04	2.0002E+03	3.3332E+02	1.6403E+91	3.4973E+02	1.9225E+03
31	3.5052E+02	-8.0191E-05	2.0071E+03	3.3308E+02	1.74108+31	3.5049E+02	1.9890E+03
32	3.5052E+02	-8.0191E-05	2.0071E+03	3.3299E+02	1.7525E+01	3.5052E+02	2.0071E+03
33	3.5010E+02	6.5786E-05	2.1147E+03	3.3275E+02	1.75748+01	3.5033E+02	2.0560E+03
34	3.5010F+02	7.4306E-05	2.1156E+03	3-3244E+02	1.7657#+01	3.5010E+02	2.1230F+03
35	3.5078E+02	-8.7009E-05	2.24626403	3.3234E+02	1.81308401	3.5047F+02	2.1860E+03
36	8.5078F402	-8 70095-05	2.24625483	3.32285482	1.85805101	3.50785+02	2.24625+03
77	3 50795+02	-6 74505-05	2 24 2854 02	7 72406402	4 85865184	7 50705+05	2 24005402
37	3.70705402		2424382703	3.32196+02	1.07005111	3.90/05/02	2.24702703
30	3.49/02+02	2.422UE-U5	2+49372+03	3.3100E+U2	1.07002+01	3.70441.+02	2+3287E+33
39	3.4980E+02	2.5187E-05	2.48/1E+03	3.3118E+02	1.87836+01	3.4996E+02	2.40802+03
41	3.4980E+02	-5.0286E-05	2.4816E+03	3.3106E+02	1+8740E+91	3.4980E+02	2.4835E+03
41	3.4970E+02	-7.3522E-05	2.5061E+03	3.30876+02	1.86285+91	3.4950E+02	2.5590E+03
42	3.4729E+02	5.49228-05	2.7830E+03	3.3017E+02	1.8502E+91	3.4867E+02	2.6245E+03
43	3.4614E+02	1.6081E-05	3.0077E+03	*+2946E+02	1.8309E+01	3.4777E+02	2.6900E+03
44	3.4652E+02	2.6231E-05	2.9128E+03	3.2915E+82	1.79598+01	3.4711E+02	2.7625E+03
45	3.4656E+02	3.7159E-05	2.8899E+03	3-2907E+02	1.7602E+91	3.4668E+02	2-8350E+03
45	3.4663F+02	-4.17105-05	2.9458F+03	3,2931F+02	1.7286E+01	3.4660E+82	2-9195E+03
47	3.4663EA02	-6.17105-05	2.04585403	3 20346402	1.72858101	3.4667E182	2.04585403
	7 66565409		2034302403	7 20646404	4 70770+01	7 466 464 49	7 00605+07
40	3440202402		2+7/42E+UJ 7 AFF0F:03	3463416406	1+10112711	3440405702	3.004402403
49	3.4519E+U2	0. 5504E=U5	3.1552E+U3	3.2883E+02	1.70256+01	5.4576L+U2	3.06/0E+03
50	3.4509E+02	2,9169E+05	3.2039E+03	3.2806E+02	1.718°E+01	3.4524E+02	3.130nE+03
51	3.4508E+02	1.8612E-05	3.1999E+03	3.2723E+02	1.7855E+91	3.4509E+02	3.2110E+03
52	3.4517E+02	3.9210E-05	3.2483E+03	3.2558E+02	1.8658E+01	3.4524E+02	3.2920E+03
53	3.4437E+02	1.4372E-05	3.0604E+03	3.2545E+02	1.91832+01	3.4563E+02	3.3570E+03
54	3.4485E+02	1.9401E-05	3.1541E+03	3.2646E+02	1.97872+91	3.4625E+02	3.4220E+03
55	3.4268E+02	9.8352E-06	2.8240E+03	3.2644E+02	2.0647E+01	3.4709E+02	3.4935E+03
56	3.46945482	4.6488F-05	3.4082F+03	3.2634F+02	2.1742P+01	3.4808F+02	3.5650F+03
57	3.5062F4#2	-9.2548F-05	3.7534F+03	3.2593F+02	2.34617401	3.4939F+02	7.6380F+03
58	3.50745402	-5. 44685-08	3.78315403	3.25515402	2.49619481	3.5046F402	3.71105403
50	3.51765483		3.78746182	3.2676546	2.53702.04	2.50745105	7.7874EAN7
17	3 20722-09	-7. 54818-AF	2.7712E143	2 92212×HA	2.570776701	3470196736 2.60766×00	1.704EEA#3
31	J& 70772782	-2400075-07	3411435483	J+C734E7U2	ときフリマリモマリ1	J # 7U / YET UC	ふりょ シャンピエのう

A.

TABLE VIII. Parabolic fit to speed of sound plus wind component. Direction of propagation is toward the west.

. .

·· • • • • • • • •

. .

₩.

R -

NE SHE BARA

•

- 1.

61	3.5057E+02 -8.2807E-05	3+8405E+03	3.2519E+02	2.5297E+01	3.5049E+02	3.8720E+03
62	3+4880E+02 9+5493E-05	4.0403E+03	3+5483E+02	2.4793E+01	3.4962E+02	3.9475E+03
63	3.4879E+02 6.9764E-05	4.0466E+03	3.2443E+02	2.4404E+91	3.4883E+02	4.0230E+03
64	3.4856E+02 2.7645E-05	3.9760E+03	3.2413E+02	2.4814E+01	3.4894E+02	4.0930E+03
65	3.4920E+02 8.0163E-05	4.0985E+03	3.2386E+02	2.5675E+01	3.4953E+02	4.1630E+03
65	3.5194E+02 -9.4128E-05	4.3503E+03	3.2361E+02	2.7071E+01	3.5068E+02	4.2345E+03
67	3.5209E+02 -5.1832E-05	4.3865E+03	3.2335E+02	2.8411E+01	3.5176E+02	4.3060E+03
68	3.5209E+02 -5.1832E-05	4.3865E+03	3.2295E+02	2.9138E+01	3.5209E+02	4.3865E+03
69	3.5209L+02 1.4078E-05	4.4100E+03	3.2293E+02	2.9161E+31	3.5209E+02	4-3915E+03
70	3.5219E+02 -2.2250E-05	4.5194E+03	3.2252E+02	2.9632E+91	3.5215E+02	4.4770E+03
71	3.5219E+02 -2.2250E-05	4.5194E+03	3.2237E+02	2.9823E+01	3.5219E+02	4.5194E+03
72	3.5216E+02 5.3762E-05	4.5634E+03	3.2226E+02	2.9912E+01	3.5217E+02	4.5505E+03
73	3.5211E+02 4.3507E-05	4.5491E+03	3.2201E+02	3.0350E+11	3.5236E+02	4.6240E+03
74	3.3895E+02 3.0089E-06	2.5315E+03	3.2172E+02	3.1366E+91	3.5309E+02	4.5990E+03
75	3.6504E+02 -4.1551E-06	6.3979E+03	3.213/E+02	3.2715E+01	3-54095+02	4.7749E+03
75	3.5445E+02 3.5607E+05	4.7107E+03	3.2017E+02	3.5390E+91	3.5556E+02	4-8870E+C3
77	3.5380E+02 2.9191E-05	4.6471E+03	3.1984E+02	3.7589E+01	3.5743E+02	5.0000E+03
78	3.6906E+02 -6.6597E-05	5.5143E+03	3.2501E+02	3.9397E+11	3.6441E+02	5.2500E+C3
79	3.6906E+02 -7.4247E-05	5.5128E+03	3.2847E+02	4-0570E+91	3.6904E+02	5.5000E+03
80	3.6906E+02 -7.4247E-05	5.5128E+03	3.2819E+82	4-0867E+91	3.6906E+02	5.5128E+03
81	3.5893E+02 5,2142E-05	6.0878E+03	3.2290E+02	4-1981E+01	3.6488E+02	5.7500E+03
82	3.5866E+02 3.1143E-05	6.1469E+03	3.1600E+02	4-33328+91	3.5933E+02	6.0000E+03
9 3	3.5990E+02 -1.1251E-05	6.5353E+03	3.1437E+02	4-4615E+01	3.5899E+02	6.2500E+03
84	3.5017E+02 -5.6639E-07	7.2008E+03	3.1407E+02	4.5825E+01	3-5989E+02	6.5000E+03
85	3.6013E+02 -9.0943E-07	7.9307E+03	3-1310E+02	4-6955F+11	3.6005F+02	6.7500F+03
86	3.6013E+02 -8.6202E-07	7. 3.24E+03	3.1212E+02	4-8000E+01	3-6012E+02	7.0000F+03
87	3.6013E+02 -8.6202E-07	7.03245+03	3.1200E+02	4.8130E+91	3.6013E+02	7.0324E+03
88	3.6013E+02 -7.0863E-07	6.9853E+03	3.1113E+02	4-8953F+31	3-6008E+02	7.25005+03
89	3.6000E+02 -2.2931E-06	7.3410E+03	3.1014E+02	4-9809E+11	3.5995F+02	7-5000E+03
90	3.5939E+02 3.8913E-06	7.9910E+03	3.0916E+02	5-0461E+01	3.5962E+02	7.7500F+03
91	3.59396+02 3.90956-06	7.9911E+03	3.0819F+02	5-1209E+01	3.5940E+02	8.0000E+03
92	3.6009E+02 -2.3476E-06	8.6812E+03	3.0721E+02	5.2451F+91	3.5966F+02	8-2500E+03
93	3.0240E+02 -7.5898E-08	1.4104E+04	3 0622E+02	5.37948+91	3.6002E+02	8.50005+03
94	3.6028E+02 -2.9057E-06	8.8898E+03	3-9524E+02	5.49896+11	3.6022F+02	8.7500F+03
95	3.6028E+02 -2.9057E-06	8.8898E+03	3.0468E+02	5.55996+01	3.6028F+02	R.RRQRFART
96	3.60322+02 -1.42812-06	8.7759E+03	3.8425E+82	5-60005+01	3-6025E+02	9_0000000000

TABLE VIII. Continued.

٩.

1

÷

-

.

- 41 -

Tables IXa through XXc contain the tabulation of the computed sound intensity on the ground and summarize the initial condition. Each Roman numeral table is divided into three parts; a, b, and c. Part (a) contains the pertinent information applicable to the sound source. Part (b) contains the sound intensity on the ground as a function of the ray elevation at the sound source. Part (c) contains the sound intensity on the ground as a function of distance from the ground point beneath the vehicle.

The tables are grouped into three sets of four tables each. Tables IX, X, XI, XII are for the sound source at 955.5 m altitude Tables XIII, XIV, XV, XVI are for the source at 1450 m altitude. Tables XVII, XVIII, XIX and XX are for the sound source at 1989 m altitude. In each set of tables, the direction of sound propagation is toward the north, east, south, and west respectively.

The sound pressure level as a function of distance from the point below the source is shown in Figs. 8, 9 and 10 for the 955.5 m, 1450 m, and 1989 m source elevations respectively. The four directions of propagation are shown in each figure. SOURCE PARAMETERS

1

SOURCE ALTITUDE	=	9.5550E+()2			
X-COORD	=	0.				
Y-COORD	=	0.				
HORIZ RANGE	=	0.				
VEHICLE AZIMUTH	=	7.2159E-0)1			
VEHICLE PITCH	=	-5.4809E+0	0			
VEHICLE YAW	=	0.				
VEHICLE MACH NO	=	3.0095E-0	01		•	
VEHICLE Z-VELOC T	¥ =	1.0302E+0	12			
VEHICLE X Y-VELOCIT	Y =	6.2512E+0	00			
T (ZS)	=	8.3490E+0	00			
DEW-POINT	=	8.3490E+0	0 0			
C (ZS)	=	3.3725E+1	12			
P (ZS)	3	9.0378E+0	12			
SOUND RAY AZIMUTH PLAN	E =	0.				
TABLE IXa. Paramet altitud	er fo le, no	or sound so orthward p	curce a ropagat	t 953 ion.	5.5 m	eters
	ie.	TTME	FORUE	510	CNO	DOCCO
PHIZ KAULU	12	1745	L0002	FAG	2MN	LKC 22

PHIZ	RADIUS	TIME	FOCUS FAC S	SND PRESS(DR)
-8.5871E+01	1.0342E+02	2.8373E+00	6.7122E-01	1.4366E+92
-2.6284E+01	1.8896E+03	6.0716E+00	9.4039E-01	1.1989E+02
-1.2823E+01	3.5569E+03	1.0508E+01	4.7733E-01	1.11455+92
-8.0844E+00	4.9619E+03	1.4377E+01	4.0054E-01	1.0779E+92
-5.9064E+00	6.3955E+03	1.8378E+01	1.4958E+00	1.1131E+92
-4.8816E+00	7.3963E+03	2.2020E+01	2.5259E+00	1.1198E+92
-4.3156E+00	9.1729E+03	2.6162E+01	3.6434E+00	1.12058+02
-4.0666E÷00	1.0303E+04	2.9333E+01	4.3411E+00	1.1180E+02

TABLE IXb. Sound conditions at the ground as a function of ray inclination. Source at 955.5 meters, northward propagation.

1. A. P. S. P.

۰.

_

---.

÷.

.

- 44 -

SUMMARY FOR	AZIMUTH OF	0.
R	FOCUS FACT	SND PRESS (DB)
1.0000E+02	0.	0.
1.0000E+03	8,8633E-01	1.2477E+02
2.0000E+03	9.0973E-01	1.1927E+02
3.0000E+03	6.3200E-01	1.1416E+02
4.0000E+03	4.5311E-01	1.1022E+02
5.0000E+03	4.2966E-01	1.0805E+02
6.0009E+03	1.1936E+00	1.1091E+02
7.0000E+03	1.9745E+00	1.1175E+02
8.0000E+03	2.7557E+00	1.1204E+02
9.0000E+03	3.5125E+00	1.1207E+02
1.0000E+04	4.1542E+00	1.1185E+02
1.1000E+04	0.	0.
1.2000E+04	0.	0.
1.3000E+04	0.	0.
1.4000E+04	0.	0.
1.5000E+04	0.	0.

TABLE IXc. Sound conditions on the ground as a function of distance. Source at 955.5 meters, northward propagation.

SOURCE PARAMETERS

SOURCE ALTITUDE	3	9.5550F+02
X-COORD		0.
Y-COORD	#	û .
HORIZ RANGE	2	0.
VEHICLE AZIMUTH	z	7.2159E-01
VEHICLE PITCH	=	-5.4809E+00
VEHICLE YAW	Ξ	0.
VEHICLE MACH NO.	z	3.0095E-01
VEHICLE Z-VELOCITY	Ξ	1.0302E+92
VEHICLE XY-VELOCITY	=	6.2512E+00
T (ZS)	=	8.3490E+00
DEW-POINT	2	8.3490E+00
C (ZS)	2	3.3725E+02
P (ZS)	z	9.0378E+02

SOUND RAY AZIHUTH PLANE = 9.0000E+01

TABLE Xa.Parameter for sound source at 955.5meters, eastward propagation.

PHIZ	RADIUS	TIME	FOCUS FAC S	ND PRESS(09)
-3.5732E+01	6.3284E+01	2.8380E+00	1.1212E+00	1.5015E+02
- 2.6399E+01	2.2766E+03	7.3725E>00	5.8464E-01	1.1620E+02
-1.9269E+01	4.3525E+03	1.32985:01	1.1538E+00	1.13536+02
-1.7823E+01	5.9988E+03	1.8112E+01	5.7897E+00	1-17758+12

TABLE Xb, Sound conditions on the ground as a function of ray inclination. Source at 955.5 meters, eastward propagation.

- - - - - - - -

SUMMARY FOR	AZINUTH OF	9.0000E+01
R	FOCUS FACT	SND PRESS (DB)
1.0000E+02	1.1123E+00	1.4616E+02
1.0000E+03	8.9412E-01	1.2521E+02
2.0000E+03	6.5169E-01	1.1782E+02
3.0000E+03	7.8297E-01	1.1510E+02
4.0000E+03	1.0571E+00	1.1390E+02
5.0000E+03	2.9771E+00	1.1646E+02
6.00065+03	0.	0.
7.0000E+03	0.	0.
8.0000E+03	0.e	0.
9.0000E+03	0.	0.
1.0000E+04	0.	0.
1.1000E+04	0.	0.
1.2000E+04	0.	0.
1.3000£+04	g.	0.
1.4000F 04	0.	0.
1.5000E+04	0.	0.

TABLE Xc. Sound conditions on the ground as a function of distance. Source at 955.5 meters, eastward propagation.

the second secon

SOURCE PARAMETERS

SOURCE ALTITUDE	=	9.5550E+02
X-COORD	=	0.
Y-COURD	=	0.
HORIZ RANGE	=	0.
VEHICLE AZIMUTH	=	7.2159E-01
VEHICLE PITCH	= -	5.4809E+00
VEHICLE YAN	=	Û.
VEHICLE MACH NO.	=	3.0095E-01
VEHICLE Z-VELOCITY	Ξ	1.0302E+02
VEHICLE XY-VELOCITY	3	6.2512E+00
T (ZS)	=	8.3470E+00
GEN-POINT	=	8.3490E+00
C (ZS)	1	3.3725E+02
P (ZS)	2	9.0373E+02

SOUND RAY AZIMUTH PLANE = 1.8000E+02

TABLE XIa. Parameters for sound source at 955.5 meters, southward propagation.

PHIZ	RADIUS	TINE	FOCUS FAC S	ND PRESS(DB)
~8.5710E+01	3.7460E+01	2.8381E+00	1.9059E+00	1.5701E+02
-2.6145E+01	2.0978E+03	7.0576E+00	1.1078E+00	1.1969E+02

TABLE XID. Sound conditions on the ground as a function of ray inclination. Source at 955.5 meters, southward propagation.

SUMMARY FOR	AZINUTH OF	1.*000E+92
R	FOCUS FACT	SND PRESS (DR)
1.0000E+02	1.8816E+00	1.4845E+02
1.0000E+03	1.5330E+00	1.2756E+02
2.0000E+03	1.1456E+00	1.2027E+02
3.0000E+03	0.	0.
4.0000E+03	0.	0.
5.0000E+u3	0.	0.
6.0000E+03	0.	0.
7.0000E+03	0.	0.
8.0000E+03	0.	0.
9.0000E+03	0.	0.
1.0000E+04	0.	0.
1.1000E+04	0.	0.
1.2000E+04	0.	0.
1.3000E+04	0.	0.
1.4000E+04	0.	9
1.5000E+04	0.	0.
1.6000E+04	0.	0.
1.7000E+04	0.	9 .
1.8000E+04	0.	0.
1.9000E+04	С.	0.
2.0000E+04	0.	0.

TABLE XIC. Sound conditions on the ground as a function of distance. Source at 955.5 meters, southward propagation.

· · · ·

R.

•

Ł

۰

.

- 47 -

SOURCE PARAMETERS

SOURCE ALTITUDE	Ħ	9.5550E+02
X-COORD	=	0.
Y-COORD	Ŧ	0.
HORIZ RANGE	:	0.
VEHICLE AZIMUTH	Ŧ	7.2159E-01
VEHICLE PITCH	=	-5,4809E+00
VEHICLE YAW	=	0.
VEHICLE MACH NO.	2	3.0095E-01
VEHICLE Z-VELOCITY	1	1.0302E+02
VEHICLE XY-VELOCITY	Ŧ	6.2512E+00
T (ZS)	Ŧ	8.3490E+00
DEN-POINT	z	8.3490E+00
C (ZS)	Ŧ	3.3725E+82
P (ZS)	=	9.0378E+02

SOUND RAY AZIMUTH PLANE = 2.7000E+02

TABLE XIIa. Parameters for sound source at 955.5 meters, westward propagation.

. _ _ _ _ _ _ _ _ _ _ _

PHIZ	RADIUS	TIME	FOCUS FAC S	SND PRESS(78)
-8.5886E+01	7.6880E+01	2.8373E+00	8.9837E-01	1.4750E+02
-2.6069E+01	1.7516E+03	5.8612E+00	1.3110E+00	1.21998+02
-1.0151E+01	3.0079E+03	9.2042E+00	3.1213E+00	1.2106E+02
-1.0151E+01	6.1684E+04	1.7952E+02	1.8281E+01	1.02508+02
-1.0151E+01	1.2036E+05	3.4983E+02	2.8868E+01	9.8675E+01
-1.0151E+01	1.7903E+05	5.2015E+02	3.4486E+01	9.5999E+01
2.4409E-01	4.3129E+03	1.2892E+01	2.5398E+02	1.3703E+92
2.4409E-01	1.2937E+04	3.8673E+01	1.2349E+03	1.34362+02
2.4409E-01	2.1562E+04	6.4434E+01	2.3670E+03	1.3275E+02
2.4409E-01	3.0186E+04	9.0235E+01	3.3406E+03	1.31328+92

TABLE XIIb Sound conditions on the ground as a function of ray inclination. Source at 955.5 meters, southward propagation.

SUMMARY FOR	AZINUTH OF	2.7000E+02
R	FOCUS FACT	SND PRESS (DB)
1.0000E+02	9.0407 2 -01	1.4526E+02
1.0000E+03	1.12582+00	1.2621E+02
2.0000E+03	1.6590E+00	1.2190F+02
3.0000E+03	3.1099F+00	1.2109E+02
4.0000F+03	3. 3776E+00	1.18945+82
5.000000000	3.35765+02	4 36085402
6.0000E+03	6.6976F+02	1 76675102
7.0000E+03	5.6376E+02	1 76745+02
8.00005433	6.7775E+02	1 750512702
0.000000403	7 04755402	4 76605402
5.0000C+03	0 05765±02	4 75975+09
	3+87145TUC	1.37272402
		1.34900+02
1.20002+04	1.1337E+03	1.34662+02
1.30002+04	1.2486E+U3	1.3439E+02
1.4000E+04	1.3804E+03	1.3418E+02
1.5000E+04	1.5119E+03	1.3397E+02
1.6000E+04	1.6434E+03	1.3378E+02
1.7000E+04	1.7749E+03	1.3358E+02
1,8000E+04	1.9065E+03	1.3340E+02
1.9003E+04	2.0380E+03	1.3322E+02
2.0000E+04	2.1695E+03	1.3304E+92
2.1000E+04	2.3010E+03	1.3287E+02
2.2000E+04	2.4245E+03	1.3270E+02
2.3000E+04	2.5376E+03	1.32518+02
2.4000E+04	2.6508E+03	1.3233E+02
2.5000E+04	2.7639E+03	1.3216E+02
2.6000E+04	2.8771E+03	1.3199E+02
2.7000E+04	2.9902E+03	1.3183E+02
2.800JE+04	3.1034E+03	1.3158E+02
2.9000E+04	3.2165E+03	1.3153E+02
3.0000E+04	3.3296E+03	1.3138E+02
3.1000E+04	1.0353E+01	1.0602E+02
3.2000E+04	1.0612E+01	1.0585E+02
3.3000E+04	1.0870E+01	1.0569E+02
3.4000E+04	1.1128E+01	1.0553F+02
3.5000E+04	1.1387E+01	1-0538F+02
3.6000E+04	1.1645E+01	1.05246+02
3-70005+04	1.1903F+01	1.0509E+02
3.8000F+04	1.2162F+01	1.0495F+02
3.9000F+04	1.2420F+01	1.04825+02
4.0000E+04	1.26785+01	1.0469F+02
4.100002+04	1.29376+01	1.04555402
4,20005404	1.31956401	1.04446400
4.3000E+04	1.37225704	1.04325402
4.500002404	1.37125404	1.86285192
4-50006404	1.30705104	1.86806489
4470092404	1.1000CAN4	1.0707570C
4.76AAEL04	1.144676404	1 AZ8751A2
	1.4745544	1 07765103
T+UUUUETU4	ホッサイサフにてリネーター このカムビックイ	10070E782
	1.570042401	T* 19005405
フォリリリリヒキリカ	1.92025401	1.03702402

TABLE XIIc. Sound condition on the ground as a function of distance. Source at 955.5 meters, westward propagation.

See. 8

ŧ.,

-

SOURCE PARAMETERS

SOURCE ALTITUDE	=	1.4500E+03
X-COORD	Ξ	0.
Y-COORD	=	0.
HORIZ RANGE	=	U.
VEHICLE AZIMUTH	Ξ	7.21596-01
VEHICLE PITCH	± •	-8.6755E+00
VEHICLE YAN	2	0.
VEHICLE MACH NO.	=	3.7961E-01
VEHICLE Z-VELOCITY	=	1.2849E+02
VEHICLE XY-VELOCITY	=	1.6284E+01
T (ZS)	Ŧ	5.4900E+00
DEW-PCINT	=	5.4900E+00
C (ZS)	3	3.3543E+02
P (ZS)	H	8.5600E+02

SOUND RAY AZIMUTH PLANE = 0.

_ .

TABLE XIIIa. Parameters for sound source at 1450 meters, northward propagation.

_ _ _ _ _ _ _ _ _ _ _ _ _

PHIZ	RADIUS	TIME	FOCUS FAC S	ND PRESS(DB)
-8.5848E+01	1.5185E+02	4.3105E+00	6.5138E-01	1.3964E+02
-4.6884E+01	1.45438+03	5.9282E+00	9.3068E-01	1.22128+02
-2.6994E+01	3.1087E+03	9.8234E+00	6.0622E-01	1.1366E+02
-2.0121E+01	4.5336E+03	1.3517E+01	3.0063E-02	9.73212+01
-1.6843E+01	5.8161E+03	1.7093E+01	6.4202E-01	0846E+02
-1.4994E+01	6.9711E+03	2.0267E+01	1.3241E+00	1.10036+02
-1.3847E+01	8.2863E+03	2.4205E+81	2.1597E+00	1.1055E+02
-1.3292E+01	9.7713E+03	2.8079E+01	2.8567E+00	1.1044E+02
-1.3015E+01	1.1041E+04	3.1636E+01	3.4204E+00	1.10168+02
-1.2865E+01	1.2499E+04	3.5726E+01	3.9976E+00	1.0976E+02
-1.2798E+01	1.3516E+04	3.8582E+01	4.3548E+00	1.0945E+92

TABLE XIIIb. Sound conditions on the ground as a function of ray inclination. Source at 1450 metors, northward propagation.

SUMMARY FOR	AZIMUTH OF	0.
R	FOCUS FACT	SND PRESS (DB)
1.0000E+02	0.	0.
1.0000E+03	8.3250E-01	1.2490E+02
2.0000E+03	8.2366E-01	1.1884E+02
3.0000E+03	6.2754E-01	1.1413E+02
4.0000E+03	2.4732E-01	1.0759E+02
5.0000E+03	2.5079E-01	1.0571E+02
6.0000E+03	7.5061E-01	1.0889E+82
7.0000E+03	1.3411E+00	1.1007E+02
8.0000E+03	1.9316E+00	1.1050E+02
9.0000E+03	2.4686E+00	1.1054E 3?
1.0000E+04	2.9582E+00	1.1041E+02
1.1000E+04	3.4021E+00	1.1019E+02
1.2000E+04	3.8002E+00	1.0991E+02
1.3000E+04	4.1736E+00	1.0963E+02
1.4000E+04	0.	0.
1.5000E+04	0.	0.
1.6000E+04	0.	0.
1.7000E+04	0.	0.
1.8000E+04	0.	0.
1.9000E+04	p_	0.
2.0000E+04	0.	0.

TABLE XIIIc. Sound conditions on the ground as a function of distance. Source at 1450 meters, northward propagation.

.......

SOURCE	PARAMETERS		
SOURCE X-COORD Y-COORD	ALTITUDE		1.4500E+03 0. 0.
HORIZ R	ANGE	=	0.
VEHICLE	AZIMUTH	=	7.2159E-01
VEHICLE VEHICLE	PITCH Yaw	=	-8.6755E+00 0.
VEHICLE VEHICLE	MACH NO. Z-Velocity	=	3.7961E-01 1.2849E+02
VEHICLE	XY-VELOCITY	=	1.6284E+01
T (ZS)		Ŧ	5.4900E+00
DEN-POI	NT	=	5.4900E+00
C (ZS)		=	3.3543E+02
P (ZS)		=	8.5600E+02

SOUND RAY AZIMUTH PLANE = 9.0000E+01

TABLE XIVa. Parameters for sound source at 1450 meters, eastward propagation.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

PHIZ	RADIUS	TIME	FOCUS FAC S	ND PRESS(DB)
-8.5758E+01	7.5850E+01	4.3112E+00	1.3880E+00	1.4939E+02
-4.6806E+01	1.3952E+03	6.0593E+00	8.9472E-01	1+2230E+92
-2.8188E+01	3.2354E+03	1.0718E+01	1.4776E-01	1.0718E+02
-2.3280E+01	4e 8398E+03	1.5267E+01	1.6965E+00	1.1428E+02
-2.1505E+01	6.3742E+03	1.9727E+01	5.8197E+00	1.1724E+92
-2.0802E+01	7.9512E+03	2.4350E+01	2.3586E+01	1.2140E+32

TABLE XIVb. Sound conditions at the ground as a function of ray inclination. Source at 1450 meters, eastward propagation.

- 52 -

AZINUTH OF	9.0000E+01
FOCUS FACT	SND PRESS (DR)
1.3793E+00	1.4710E+02
1.0426E+00	1.2588E+02
6.4923E-01	1.1780E+02
2.4332E-01	1.1002E+02
8.8581E-01	1.1313E+02
2.1269E+00	1.1500E+02
4.8141E+00	1.16962+02
1.2870E+01	1.1989E+02
0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0.	<u>0</u> -
0.	0.
0.	0.
û.	0.
	AZINUTH OF FOCUS FACT 1.3793E+00 1.0426E+00 6.4923E-01 2.4332E-01 8.8581E-01 2.1269E+00 4.8141E+00 1.2870E+01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

TABLE XIVc. Sound conditions on the ground as a function of distance. Source of 1450 meters, eastward propagation.

۰

2 - - E.

æ,

: 🛥

SOURCE PARAMETERS

SOURCE ALTITUDE	=	1.4500E+03
X-COORD	=	0.
Y-COORD	Ξ	0.
HORIZ RANGE	=	0.
VEHICLE AZIMUTH	=	7.2159E-01
VEHICLE PITCH	= •	-8.6755E+00
VEHICLE YAW	=	0.
VEHICLE MACH NO.	=	3.7961E-01
VEHICLE Z-VELOCITY	=	1.2849E+02
VEHICLE XY-VELOCITY	=	1.6284E+01
T (ZS)	Ŧ	5.4900E+90
DEN-POINT	=	5.4900E+00
C (ZS)	=	3.3543E+02
P (25)	=	8.5600E+02

SOUND RAY AZIMUTH PLANE = 1.8000E+02

TABLE XVa. Parameters for sound source at 1450 meters, southward propagation.

PHIZ RADIUS TIME FOCUS FAC SND PRESS (98) -8.58888+01 5.0986E+01 4.3108E+00 2.0808E+00 1.5473E+92 -4.6600E+01 1.3053E+03 5.9405E+00 1.0731E+0G 1.2367E+02 -2.5509E+01 3.00162+03 1.0238E+01 1.1390E+00 1.1670E+02 -1.8701E+01 4.5391E+03 1.4650E+01 1.1200E+00 1.1303E+02 -1.60845+01 6.6647E+03 2.0936E+01 1.7793E-01 1.0171E+02

TABLE XVb. Sound conditions on the ground as a function of ray inclination. Source at 1450 meters, southward propagation.

SUMMARY FOR	AZTMUTH OF	1.8000E+02
R	FOCUS FACT	SND PRESS (DB)
1.0000E+02	2+0413E+00	1.4880E+02
1.000AE+03	1.3183E+00	1.2690E+02
2.0000E+03	1.1001E+00	1.2009E+02
3.0000E+03	1.1390E+00	1.1672E+02
4.0000E+03	1.1267E+00	1.1418E+02
5.0000E+03	9.1569E-01	1.1134E+02
6.0000E+03	4.7252E-01	1.06882+02
7.0000E+03	0.	0.
8.0G00E+03	0.	0.
9.0000E+03	0.	0.
1.0000E+04	0.	0.
1.1000E+04	0.	0.
1.2000E+04	0.	0.
1.3000E+04	0.	0.
1.4000E+34	0.	0.
1.5000E+04	0.	0.
1.6000E+04	0.	0.
1.7000E+04	Q •	0.
1.8000E+04	0.	0.
1.9000E+04	0.	0.
2.0000E+04	Π <u>_</u>	Π_

TABLE XVc. Sound conditions on the ground as a function of distance. Source at 1450 meters, southward propagation. SOURCE PARAMETERS

.

SOURCE ALTITUDE	z	1.4500E+03
X-COORD	*	0.
Y-COORD	7	0.
HORIZ RANGE	Ξ	0.
VEHICLE AZIMUTH	=	7.2159E-01
VEHICLE PITCH	=	-8.6755E+00
VEHICLE YAN	7	0.
VEHICLE MACH NO.	z	3.7961E-01
VEHICL. Z-VELOCITY	=	1.2849E+82
VEHICLE XY-VELOCITY	2	1.6284E+01
T (ZS)	=	5.4900E+00
DEW-POINT	=	5.4900E+00
C (ZS)	=	3.35435+02
P (ZS)	z	8.56002+02
SOUND RAY AZIMUTH PLANE	2	2.7000E+02

TABLE XVIa. Parameters for sound source at 1450 meters, westward propagation.

S

•

. . .

۹.

•

PHIZ	RADIUS	TIME	FOCUS FAC S	ND PRESS(DB)
-8.5908E+01	1.3558E+02	4.3101E+00	7.6847E-01	1.4189E+02
-4.6692E+01	1.3694E+03	5.8254E+00	1.0901E+00	1.2332E+92
-2.4410E+01	2.9221E+03	9.4791E+00	1.3555E+00	1+1769E+02
-1.5432E+01	4.1743E+03	1.2765E+01	1.9277E400	1.16125+92
-1.5432E+01	4.0803E+04	1.2191E+02	1.7724E-01	8.59535+01
-1.54325+01	7.7433E+04	2.3104E+02	1.7323E+00	9.02 89E +01
-1.5432E+01	1.1406E+05	3.4017E+02	2.6712E+00	8.8805E+01
-1.0115E+01	5.2517E+03	1.5721E+01	3.1005E+00	1.16198+92
-1.0115E+01	5.2614E+04	1.5437E+02	5.6643E+00	9.8790E+01
-1.0115E+01	9.9975E+04	2.9303E+02	1.0652E+01	9.5957E+01
-1.0115E+01	1.4734E+85	4.3168E+D2	1.3412E+01	9.3590E+01
-5.8895E+00	6.5951E+03	1.9460E+01	5.3660E+00	1.1659E+02
-5.8895E+00	2.1918E+04	6.4407E+01	4.8444E+01	1.1572E+02
-5.8895E+00	3.7241E+04	1.0935E+02	1.0056E+02	1.1428E+02
-5.J895E+00	5.2565E+04	1.5430E+02	1.4380E+02	1.1284E+02
-3.4951E+00	7.7751E+03	2.2779E401	9 .9007E+00	1.1782E+02
-3.4951E+00	2.5538E+04	7.4593E+01	1.0400E+01	1.07712+32
-3.4951E+00	4.3302E+04	1.2641E+02	1.1367E+01	1.0351E+02
-3.4951E+00	6.1065E+04	1.7822E+02	1.1606E+01	1.0061E+02
-1.7381E+00	8.8439E+03	2.5796E+01	2.1836E+01	1.2014E+02
-1.7381E+00	2.8003E+04	8.1549E+01	7.4272E+01	1.15448+92
-1.7381E+00	4.7163E+04	1.3734E+C2	1.0676E+02	1.1249E+02
-1.7381E+00	6.6322E+04	1.9306E+92	1.2357E+02	1.1017E+32
-1.4418E-01	9.7828E+03	2.8451E+01	2.7984E+02	1.3034E+02
-1.4418E-01	2.9493E+04	8.5763E+01	3.2882E+03	1.31462+02
-1.4418E-01	4.9203E+04	1.4307E+02	7.8483E+03	1.3079E+02
-1.4418E-01	6.8914E+04	2.0039E+02	1.2636E+04	1.2993E+32
1.7672E+00	1.0315E+04	2.9956E+01	7.1677E+01	1.2397E+02
1.7672E+00	2.9455E+04	8.5657E+01	1.0683E+02	1.1658E+02
1.7672E+00	4.8596E+04	1.4136E+02	1.3047E+02	1.1310E+32
1.7672E+00	6.7736E+04	1.9706E+02	1.4081E+02	1.1055E+92
3.2666E+00	1.0052E+04	2.9217E+01	8.7241E-01	1.0504E+02
3.2666E+00	2.8012E+04	8.1583E+01	6.6326E+00	1.0495E+02
3.2666E+00	4.5971E+04	1.3395E+02	1.0230E+01	1.0253E+02
3.2666E+00	6.3930E+04	1.8632E+02	1.2151E+01	1.00412+02
4.1495E+00	9 . 7908E+03	2.8479E+01	2.8014E+00	1.1034E+02
4.1495E+00	2.6998E+04	7.8726E+01	2.6277E+00	1.01256+02
4.1495E+00	4.4204E+04	1.2897E+02	2.2095E+00	9.6214E+01
4.1495E+00	6.1411E+04	1.7922E+02	1.8185E+00	9.2513E+01
4.7794E+00	9.5939E+03	2.7925E+01	3.54152+00	1.11538+02
4.7794E+00	2.6284E+04	7.6718E+01	5.0697E+00	1.0434E+02
4.7794E+00	4.2975E+04	1.2551E+92	5.6749E+00	1.0056E+02
4.7794E+00	5.9665E+04	1.7430E+02	5.8042E+00	9.7804E+01
5.3107E+00	8.8395E+03	2.5798E+91	2.6256E+01	1.20942+02
5.3107E+00	2.4526E+04	7.1763E+01	3.2741E+01	1.1304E+92
5.3107E+00	4.0212E+04	1.1773E+02	3.8589E+01	1.09478+92
5.3107E+00	5.5899E+04	1.6369E+02	4.1173E+01	1.0588E+02
1.0408E+01	4.1540E+04	1.2135E+02	9.4292E+00	1.0306E+02
1.0408E+01	8. 8264E+04	2.5823E+02	1.4851E+01	9.8483E+01
1.0408E+01	1.3499E+05	3.9511E+02	1.7725E+01	9.5561E+01

. |

0

TABLE XVIb. Sound conditions on the ground as a function of ray inclination. Source at 1450 meters, westward propagation.

.

PHIZ	RANIUS	TIME	FOCUS FAC S	ND PRESS(DR)
1.0408E+01	1.8171E+05	5.3200E+02	1.8856E+01	9.32482+01
1.0880E+01	4.0660E+04	1.1891E+02	8.6611E+00	1.0287E+92
1.0880E+01	8.5399E+04	2.5306E+02	1.3751E+01	9.8334E+01
1.0880E+01	1.3214E+05	3.8722E+02	1.6457E+01	9-54248+01
1.0880E+01	1.7788E+05	5.2137E+02	1.7530E+01	9.3116E+01
1.1371E+01	3.9788E+04	1.1649E+02	7.6875E+00	1.02545+02
1.1371E+01	8.4550E+04	2.4795E+02	1.2118E+01	9.7973E+01
1.1371E+01	1.2931E+05	3.7940E+02	1.4469E+01	9.50528+01
1.1371E+01	1.7407E+05	5.1085E+02	1.5394E+01	9.2740E+01
1.1874E+01	3.8931E+04	1.1412E+02	7.0337E+00	1.0235E+02
1.18745+01	8.2725E+04	2.4290E+02	1.1180E+01	9.7813E+01
1.1874E+01	1.2652E+05	3.7168E+02	1.3387E+01	9.4905E+01
1.1874E+81	1.7031E+05	5.0046E+02	1.4264E+01	9.25988+01
1.2395E+01	3.8090E+04	1.1180E+02	6.4261E+00	1.0214E+02
1.2395E+01	8.0932E+04	2.3796E+82	1.0309E+61	9.7651E+01
1.2395E+01	1.2377E+05	3.6411E+02	1.2382E+01	9.4756E+01
1.2395E+01	1.6662E+05	4-9027E+02	1.3213E+01	9.2457E+01
1.2936E+01	3.7264E+04	1.0953E+02	5.8591E+00	1.01932+02
1.2936E+01	7.9175E+04	2.3312E+02	9.4952E+00	9.7484E+01
1.2936E+01	1.2109E+05	3.5672E+02	1.1443E+01	9.4604E+01
1.2936E+01	1.6300E+05	4.8031E+02	1.2232E+01	9.2312E+01
1.3497E+01	3.6456E+04	1.0731E+02	5.3255E+00	1.0171E+02
1.3497E+01	7.7454E+04	2.2840E+02	8.7284E+00	9.7309E+01
1.3497E+01	1.1845E+05	3.4950E+02	1.0558E+01	9.4446E+01
1.3497E+01	1.5945E+05	4.7059E+02	1.1306E+01	9.21628+01

-

.

•

.

TABLE XVIb. Continued

٠

.

.

- 58 -

SUMMARY FOR	AZIMUTH OF	2.7000E+02
R	FOCUS FACT	SND PRESS (DB)
1.0000E+02	0.	0.
1.0000E+03	9.9380E~01	1.2567E+02
2.0000E+03	1.1979E+00	1.2046E+02
3.0000E+03	1.3911E+00	1.1759E+02
4.0000E+03	1.8481E+00	1.1633E+02
5.0000E+03	2-8265E+00	1.1623E+02
6.0000E+03	4.3624E+00	1.1653E+02
7.0000E+03	6.9220E+00	1.1720E+02
8.0000E+03	1.2412E+01	1.1858E+02
9.0000E+03	8.6154E+01	1.2597E+02
1.0000E+04	2.7695E+02	1.3012E+02
1.1000E+04	3.2643E+02	1.3001E+02
1.2000E+04	3.0462E+02	1.2895E+02
1.3000E+04	2.8281E+02	1.2794E+02
1.4000E+04	2.6101E+02	1.2694E+02
1.5000E+04	2 . 392 0 E+02	1.2597E+02
1.6000E+04	2.1739E+02	1.2499E+02
1.7000E+04	1.9558E+02	1.2400E+02
1.8000E+04	1.7378E+02	1.2299E+02
1.900GE+04	1.5197E+02	1.2194E+02
2+0000E+04	1.3016E+02	1.2082E+02
2.1000E+04	1.0835E+02	1.1960E+02
2.2000E+04	8.7247E+01	1.1826E+82
2.3000E+04	7.3998E+01	1.1716E+02
2+4000E+04	6.0749E+01	1.1593E+02
2.5000E+04	4-1339E+01	1.1390E+02
2.6008E+04	3.1907E+01	1.1244E+02
2.7000E+04	5.0913E+01	1.1414E+02
2.8000E+04	8.0775E+01	1.1583E+02
2.9000E+04	2.2997E+03	1.3007E+02
3.0000E+C4	3.1786E+03	1.3118E+02
3.1000E+04	2.7527E+03	1.3027E+02
3.200GE+94	2.3268E+03	1.7926E+02
3.3000E+04	1.9009E+03	1.2812E+02
3.4000E+04	1.4750E+03	1.2576E+02
3.5000E+04	1.0491E+03	1.2503E+02
3.6000E+04	6.2322E+02	1.2252E+02
3.7000E+04	2.0558E+02	1.1747E+02
3.8C00E+04	8.5551E+01	1.1343E+02
3.9000E+04	5.8090E+01	1.1152E+02
4.0000E+04	4.5982E+01	1.1028E+02
4.1000E+04	1.0015E+01	1.0345E+02
4.2000E+04	1.3763E+01	1.0462E+02
4.3000E+04	1.5620E+01	1.0497E+02
4,4000E+04	3.1408E+01	1.0780E+02
4 * 2000E+04	5.9152E+01	1.1036E+02
4.6000E+04	5.9606E+01	1.1197E+02
4.700000+04	1.6012E+02	1.1430E+02
4.8000E+04	3.3867E+03	1.2737E+02
4.9000E+04	7.2024E+03	1.3347E+02
5.0000E+04	6.1356E+03	1.2960E+02

TABLE XVIc. Sound conditions on the ground as a function of distance. Source at 1450 meters, westward propagation.

-59 -

.

•

- 60 -

SOUPCE PARAMETERS

SOURCE ALTITUDE X-C00PD 7.4523E+01 = 3.4697E+01 Y-COORD = HORIZ RANGE 1.12*1E+02 = VEHICLE AZIMUTH = 7.2159F-01 VEHICLE PITCH = -1.1555E+R1 VEHICLE YAN Ξ Ο. VEHICLE MACH NO. = 4.5650E-01 VEHICLE Z-VELOCITY = 1.5224E+02 VEHICLE XY-VELOCITY = 2.8654E+01 T (ZS) 1.7900E+00 Ξ DEW-POINT 1.7900E+00 Ξ C (ZS) 3.3708E+02 = P (ZS) = 7.9500E+02

.

1.9890E+03

Ξ

SOUND RAY AZIMUTH PLANE = 0.

ļ

TABLE XVIIa. Parameters for sound source at 1989 meters, northward propagation.

PHIZ	RADIUS	TIME	FORUS FAC S	ND PRESS (JA)
-8.5878E+01	2.2356E+02	5.9291E+00	6.4216E-01	1.3677E+32
-5.7554E+01	1.3683E+03	7.0233E+00	9.8126F-01	1.2287E+02
-3.7659E+01	2.7374E+03	9.7482E+00	1.0112E+00	1.1698E+92
-2.7457E+01	4.0756E+03	1.3017E+01	9.9091E-01	1.13445+32
-2.1842E+01	5.3449E+03	1.6341E+01	9.5940E-01	1.1094É+72
-1.8387F+01	6.5506E+03	1.9588E+01	9.5999F-01	1.09185+02
-1.6011E+01	7.7800E+93	2.2951E+01	9.4465E-01	1.9751E+92
-1.4371E+01	8.9273E+03	2.5106E+01	9.1401E-01	1.06?8E+32
-1.3244F+01	1.0204F+34	2.9653F+81	8.4225E-01	1.0476F+02
-1.2567F+01	1.1490E+J4	3.3246F+01	7.9889E-01	1.0350E+12
-1.2169E+01	1.2759E+04	3.6800E+01	7.9770E-31	1.02585+32
-1.1922E+01	1.4195E+04	4.0825E+01	7.8988E-J1	1.0151E+02
-1.1807E+01	1.5596E+04	4.4757E+01	9.3102E-01	1.0102E+12
-1.1739E+01	1.6710E+04	4.7881E+01	8.5639E-01	1.00555+12

TABLE XVIIb. Sound conditions on the ground as a function of ray inclination. Source at 1989 meters, northward propagation.

SUMMARY FOR	A7TMUTH OF	0.
R	FOCUS FACT	SND PRESS (DA)
1.0000E+02	0.	0.
1.0000E+03	8.7215E-01	1.2511E+92
2.0000E+03	9.9505E-J1	1.1966E+02
3.0000E+03	1.0072E+00	1.1619E+02
4.0000E+03	9.9205E-01	1.1362E+02
5.0000E+03	9 .679 65-01	1.1158E+02
6.3000E+03	9.5972E-J1	1.J996E+02
7.0000E+03	9.5438E-01	1.0860E+02
8.0000E+03	9.3877E-01	1.0736E+02
9.0000E+03	9.0992E-01	1.0621E+02
1.0000E+04	8.5371E-01	1.0501E+02
1.1000E+04	8.1542E-01	1.0399E+02
1.2000E+04	7.9842E+01	1.0314F+0?
1.3000E+04	7.9639E-01	1.0243E+02
1.4000F+04	7.9095E-01	1.0176E+12
1.5000E*04	0.1352E-01	1.0128E+02
1.6000E+04	8.4022E-01	1.0086E+02
1.7000E+04	Ŋ.,	0.
1.8000E+04	0.	0
1.900000+04	0.	0.
2.0000E+04	0.	· Ŋ.

•

ļ

TABLE XVIIc. Sound conditions on the ground as a function of distance. Source at 1989 meters, northward propagation.

- 61 -

- 62 -

.

SOURCE PARAMETERS

SCURCE ALTITUDE	=	1.9890E+03
X-COOPD	=	7.4523E+01
Y-COORD	=	8.46975+01
HORIZ RANGE	=	1.1281E+02
VEHICLE AZIMUTH	H	7.2159E-01
VEHICLE PITCH	=	-1.1555E#01
VEHICLE YAW	=	9.
VEHICLE MACH NO.	=	4.5650E-01
VEHICLE Z-VELOCITY	=	1.5224E+02
VEHICLE XY-VELOCITY	=	2.8654E+01
T (ZS)	=	1.7900E+00
DEW-POINT	=	1.7000F+00
G (ZS)	=	3.3308E+02
P (ZS)	=	7.9500E+02

SOUND RAY AZIMUTH PLANE = 9.0000F+01

. .

i

TABLE XVIIIa. Parameters for sound source at 1989 meters, eastward propagation.

PHIZ	RADIUS	TINE	FOCUS FAC S	ND PRESS (19)
-8.5795E+01	8.6583E+01	5.9300E+00	1.6750E+00	1.49175+12
-5.7455F+01	1.2366E+03	7.0816E+90	1.0227E+00	1.23935+12
-3.7916E+01	2.6679E+03	1.0144E+01	9.2219E-01	1.15918+72
-2.8958E+01	4.1056E+03	1.3935E+11	6.6855E-01	1.11668+02
-2.4800E+01	5.51275+03	1.7900E+01	1.2090E-01	1.0158E+02
-2.2791E+01	6.9314E+03	2.2001E+01	9.7294E-01	1.0875E+32
-2.1845E+01	5.3896E+03	2.6264E+01	3.6205E+00	1.1279E+02

TABLE XVIIIb. Sound conditions on the ground as a function of ray inclination. Source at 1989 meters, eastward propagation.

SUMMAPY FOR	A7INUTH OF	9,0000F+01
ĸ	FOCUS FACE	SND PRESS (DA)
1.0000E+02	1.5673E+00	1.4792E+82
1.0000E+03	1.1569E+00	1.2633E+92
2.0000E+03	9.6911E-01	1.1954E+92
3.0000E+03	8.6360E-01	1,1552E+02
4.9000E+03	6.8717E-01	1.1203E+92
5.0000E+03	3.20445-01	1.9678E+92
6.0000E+03	4.1356E-01	1.0630F+02
7.0000E+03	1.09765+00	1.0920E+02
8.0000E+03	2.91315+00	1.1228E+02
9.0000E+03	J.	0.
1.0000E+04	I.	Ū.
1.1000E+04	Ŋ.	<u>0</u> .
1.2000E+04	ŋ.	0.
1.3000E+04	9 .	0.
1.4009E+04	0.	С .
1.5000E+04	0.	n.
1.6000E+04	0.	Ũ.
1.7000E+94	9.	ñ.
1.8000E+04	0.	0.
1.9000E+04	0.	0.
2.0000E+04	0.	0 •

TABLE XVIIIC. Sound conditions on the ground as a function of distance. Source at 1989 meters, eastward propagation.

SOURCE PARAMETERS

SOURCE ALTITUDE	=	1.9890E+03
X-COORD	=	7.4523E+01
Y-COORD	=	8.4097E+01
HORIZ RANGE	=	1.1281E+02
VEHICLE AZIMUTH	=	7.2159E-71
VEHICLE PITCH	-	-1.1555E+01
VEHICLE YAW	=	0.
VEHICLE MACH NO.	2	4.5650E-01
VEHICLE 7-VELOCITY	=	1.5224E+02
VEHICLE XY-VELOCITY	=	2.8654E+01
T (ZS)	=	1.7900E+00
DEW-POINT	=	1.7900E+30
C (ZS)	t	3.3308E+02
P (ZS)	z	7.9500E+0?

SOUND RAY AZIMUTH PLANE = 1.8000E+0?

ł

i

•

TABLE XIXa. Parameters for sound source at 1989 meters, southward propagation.

.

PHIZ	RADIUS	TIME	FOCUS FAC SI	<pre>ND PRFSS(DB)</pre>
-8.5819E+01	6.8089E+01	.5.9298F+00	2.1223E+00	1.5229E+02
-5.7399F+01	1.2040E+03	7.0621E+00	1.0657F+00	1.2434F+02
-3.7259E+01	2.6079E+03	1.0072E+01	9.9650E-01	1.1734E+02
-2.7584E+01	4.0011E+03	1.3772E+01	8.1358E-01	1.1274E+02
-2.2738E+01	5.3514E+03	1.7617E+01	3.3549E-01	1.0637E+02
-2.0181E+01	6.7959E+03	2.1851E+01	1.0823E+00	1.0938E+12
-2.0181E+01	6 .79 59E+03	2.1851E+01	1.0823E+00	1.0938E+12
-1.9092E+01	9.2300E+03	2.9077E+01	7.0002E+00	1.1483E+02

TABLE XIXD. Sound conditions on the ground as a function of ray inclination. Source at 1989 meters, southward propagation.

- 65 -	
SUMMARY FOR AZIMUTH O	F 1.POD4E+92
R FUGUS FAC	T SND PRESS (DP)
1.0000E+02 2.0927E+	00 1.4891E+02
1.00005+03 1.2554E+	UU 1.2569E+12
3.00001+0.5 9.45025-	U1 1+1591E+92
4.0099E+93 3.1372E+ 5.0590E+93 4 50005	ul 1.1275E+92
5 3000E+03 4 3094E	91 1.19352+92
7 000000+03 0+7081L= 7 00000+17 4 F70F5	JI 1.9849F#92
7.9000000000000000000000000000000000000	UU 1+10/8F+02
	UU 1.1367F+02
4.00005:04 0.00	UU 1.14/0 <u>F</u> +02
1.40005494 6.	ין -
1.1000E+04 C.	C •
1.20005+04 0.	η
1.30708404	0.
1.40092+04 0.	0.
1.5000++64 0.	й •
1.6030E+04 0.	0.
1.7000E+04 C.	n •
1.3003E+04 0.	0.
1.9000E+04 N.	9 .
2.0000E+94 0.	n .
TABLE XIXc. Sound conditions	on the ground as a function
of distance. Source at 198	9 meters, southward propagation.
SOUPEF PARAMETERS	
SOURCE ALTITUDE	= 1.9P90E+03
X-COORD	= 7.4523E+01
Y-COORD	= 8.4697E+91
HOPIZ RANGE	= 1.1281E+92
VEHICLE AZIMUTH	= 7.2159E-01
VEHICLE PITCH	= +1.1555f+01
VEHICLE YAW	= 0.
	-
VEHICLE MACH NO.	= 4.5650E+01
VEHICLE Z-VELOCITY	= 1.5224E+02

SOUND PAY AZIMUTH PLANE = 2.7009E+02 TABLE XXa. Parameters for sound source at 1989 meters, westward propagation.

VEHICLE XY-VELOCITY = 2.8654E+01

= 1.7900E+00

= 1.7900E+00

= 3.3308E+92

= 7.9500F+02

T (ZS)

C (ZS)

P (7S)

DEW-POINT

ļ

- 66 -	
--------	--

PHIZ	PADIUS	TIME	FOCUS FAC SI	ND PPESS (79)
-8.5884E+01	2.0559E+02	5.9290E+00	6.97065-31	1.7786F+32
-5.74842+01	1.33775+03	7.0078F+00	1+01535+00	1.23?25+92
-3.7049E+01	2.5912E+03	9.7074E+00	1.0634E+00	1.17350+32
-2.6320E+01	4.9171E+03	1.29525+01	1.US6#E+30	1.13*85.02
-2.0291E+01	5.2310E+03	1.5134E+01	1.10255+00	1.11735+32
-1.6332F+01	6.4813E+03	1.9515E+01	1.0757F+0C	1.0976E+32
+1.6332F+01	4.55C7F+04	1.35205+02	1.17025+00	9.3262E+11
-1.6332F+01	8.4533E+04	2.5089E+02	9.9536E-01	8.7121F+11
-1.6332F+01	1.23565+05	3.6658E+92	R.2890(-)1	8.30292+01
-1.3814E+01	7.5931F+13	2.2561E+01	1.1222E+00	1.0857E+12
-1.3814F+01	5.2014F+04	1.5307E+02	7.2451E-J1	8.99602+11
-1.3814F+01	9.5436F+04	2.8358F+02	3.7174E-01	R.1699E+11
-1.3814E+01	1.40.66E+05	4.1410E+02	1.255#E-01	7.36955+31
-1.1987F+91	8.8082F+03	2.5926E+01	1.1960E+30	1.07225+12
-1.1987E+01	5.8164F+04	1.7012E+02	1.1478E+00	9.09715+11
-1.1987E+01	1.0752E+05	3.1432E+02	9.5754-11	8.4863F+11
-1.1987E+01	1.5688E+95	4.58515+02	7.8823E-01	R.0737F+01
-1.0826E+01	1.0:33E+04	2.9627F+11	1.0576E+00	1.0585E+12
-1.0826F+01	6.3856F+14	1.8503E+02	1.1163F+30	9.00556+31
-1.0826F+01	1.175AE+05	7. 4244F+02	9.64125-01	9.4116E+11
-1-0826F+01	1.71305+05	4.98845+02	P 1976F-91	8.4135F+31
-1.0197E+01	1.1642F+04	3.3863E+91	1_0384E+00	1.0449E+12
-1.0197F+01	6.8844F+04	2.00035+02	4.24C1F+10	9.5197E+11
-1.0197E+01	1.2605E+05	3.6620E+02	6-0505E+00	9.14255+11
-1.0197E+01	1.8325E+05	5.3237E+02	6.9748E+00	8 8 8 56 - + 11
-9.9577E+00	1.42205+04	4.1122F+01	1.1012E*00	1.0336F+12
-9.9577F+00	7.5918F+04	2.1995E+02	5.3570E+00	9.53675+11
-9.9577F+00	1.3761F+05	3.9877E+02	A.6026E+00	9.135(7+31
-9.9577F+00	1.9931E+05	5.7750E+92	9.3915E+00	8.941 - + 11
-9.9392F+00	4.8553E+04	1 35+02	3-0703E+30	9.6320.+91
-9.9392E+00	1-1264E+05	3.26296+02	5.0363E+00	9.7455-+11
-9.9.92F+00	1.7673E+05	5.1185E+02	7.6648F+00	8.95.235+01
-9.9392E+00	2.4082E+05	6.4741F+02	A.3972E+00	8. 38E+11
9.9609F+00	4.7349E+04	1.37345+02	5.1694E+00	1 2-986+12
9.9609F+00	1.0876E+05	3.15375+02	9.33432+00	4.44525+11
9.9609E+00	1.7017E+05	4.93398+82	1.12476+01	5735+31
9.9609F+00	2.3159E+05	6.7141E+02	1.27466+0;	5.9195E+31
9.9910E+00	4.5726F+04	1.3559E+02	R.00837+00	1.01335+12
9-9910F+00	1.0668E+05	3.0952E+02	1.0808E+01	4.54565+11
9,9910F+00	1.5664E+05	4.8345F+02	1.2740E+01	9,22975+11
9-9910F+00	2.2660E+05	6.5737E+02	1.352CE+01	8.98852+01
1.0079E+01	4.6059E+04	1.3371E+02	7.0149E+00	1.00475+32
1.0079E+01	1.0439E+05	3.0306E+02	9.6637E+90	9.51595+11
1.0079E+01	1.5272E+05	4.7241E+02	1.1407F+01	9.20245+11
1.00795+01	2.2106E+05	6.4175E+02	1.2109E+01	R.9622E+01
1.0284E+01	4.5256E+04	1.3145E+02	2.5014E+00	9.65495+31
1.0284E+01	1.0183E+05	2.9587E+02	4.4782E+00	9.2034E+11
1.0284E+01	1.5841E+05	4.6029E+02	5.5670E+00	8.9141E+N1
1.0284E+01	2.1499E+05	6.2470E+02	6.0415E+00	8.6844E+71
1.0524E+01	4. 44 P7E+04	1.2929E+92	5.5423E-01	9.01575+01

TABLE XXb. Sound conditions on the ground as a function of ray inclination. Source at 1989 meters, westward propagation.

:

•

1

PHIZ	RADIUS	TIME	FOCUS FAC S	NO PRESS(18)
1.0524E+01	9.9664E+34	2.8978E+02	1.4830E+JC	8.74225+01
1.05.74E+01	1.5484E+35	4.50265+02	1.99566+30	8,4894=+71
1.9524E+01	2.1002E+05	5.1074F+02	2.2406E+00	8.27405+01
1.0753E+01	4.3801E+34	1+2737E+02	2.29065-01	8.64725+71
1.0753E+01	9.7855E+04	2.84705+02	7.5378E-02	7.46424+11
1.0753F+01	1.5191F+05	4.4204F+02	2.53675-01	7-60925+31
1-07535+01	2.0596E+05	5,9937E+12	3-5564E-01	7-49155+11
1.0972F+01	4.3173E+04	1.25616492	6.239 -01	9-6927E+11
1.0972F+01	9.52595+14	2.80235+02	7.824	8.4478F+11
1.09725+01	1.4935E+05	4.3486F+02	7.3004 -01	8.18765+31
1.0972E+01	2 02635+05	5 RGLREA02	7 208 5-01	7.8436541
1.4183E+01	6 25285+05	1 27075402	9 51605-01	0 27065111
1.11R7F±01	9.68116404	2 76185402	1 1801540	8 68675231
1.11875401	1 67075+05	6 - 7939E+02	1 7/505400	9 76075+14
1 11870101	1 00265435	E #0505+02	1.0347~5730	9 44205134
1 17075101	1.77205407	2.1025EFU2	1.39746400	
1 17975104	4 - 10 41E + 14 0 - 76 7 E E + 06	2 72546192	9 • 91 4 9 C • 91	9+31/02+31
1 4 7 9 7 1 + 0 4	9.24795+04 4.5404Ex0E	C+12445+02	1.49215+00	N. NUUS55+91
1.12078491	1.44~16+95	4+22455+82	1.75555+30	8.48982+11
	1. 10346+35	5+72495+92	1.45358+00	8.24445+11
1+17075+91	4.15255+94	1./1005+02	1.05052490	4.4651E+11
1.15551+01	9.2235+04	2.6847E+02	1.79325+90	8.86465+11
1.15851+91	1.42946+05	4.15455+12	2.0332E+30	8.56695+31
1.15858491	1.93552+35	5.6492E+02	2.15295+00	8.32916+31
1.1//9E+J1	4.1044E+34	1.15-5-+02	1.64965-01	8.55005+11
1.1779E+01	9.1082E+04	2.6575E+02	2.5465E-91	8,05522+11
1.1779E+01	1.4112E+05	4+1185-+12	3.03C0E-J1	7.75045+31
1.1779E+01	1,9116E+J5	5.5795E+02	3.21996-01	7.5172F+41
1.2162E+01	4.0142E+J4	1.17145+02	7.51712-32	8.2369E+31
1.2162E+91	8.8947E+14	2.5980E+02	1.1843E-02	6.743E+]1
1.2162E+01	1.3775E+05	4.0246E+02	2•6453E-02	6 . 7124E+01
1.2162F+01	1.8655E+05	5.4512E+02	4.0479E-02	6.7209E+31
1.2563E+91	3.9260E+04	1.1469F+02	4.3753F-02	9.0212E+31
1.2563F+01	8.5877E+04	2+5405E+02	1.2562E-01	7.78945+91
1.2563F+01	1.3449E+05	7.9341E+92	2+2531E-01	7。66355+31
1.2563F+01	1.8211E+05	5.7277E+92	2.7952E-01	7.49792+71
1.2985E+01	3.8391 <u>5</u> +04	1.1228F+02	4.13665-02	8.0163E+11
1.29855+01	8.4855E+04	2.44445+02	?.J6C8E=01	8,02485+01
1.2985i+01	1,3132E+05	3.8460E+02	3.5205E-01	7.8781E+01
1.29855+01	1.7778E+05	5.2077E+02	4.3074E-01	7.70255+11
1.3429E+01	3.7535E+04	1.09905+02	5.5521E-02	8.1637E+01
1.3429E+01	8.2879E+94	2.4297E+02	2.59892-01	9.1397E+01
1.3429E+01	1.2822E+05	3.7603E+02	4.32H0E-01	7.98855+91
1.34295+01	1.7357E+05	5.0909E+02	5.3124E-01	7.8145E+11
1.3895E+01	3.6683E+04	1.07555+02	1.0536E-01	8.4614E+J1
1.3895E+01	8.0916E+04	2.3754E+02	2.0301E-01	8.0595E+J1
1.3895E+01	1.2515E+05	3.6753E+02	3.8764E-91	7.9617E+31
1.3895E+01	1.5938E+05	4.9752E+02	4.8957E-01	7.8002E+01
1.4378E+01	3.5857E+04	1.0527E+02	1.36225-01	8.5932E+01
1.4378E+01	7.9016E+04	2.3230E+02	2.0324E-01	8+0807E+11
1.4378E+01	1.22175+05	3.5932E+02	4.0803E-01	8.0048E+01

TABLE XXb. Continued

- 67 -

PHIZ	RADIUS	TIME	FOCUS FAR S	ND PRESS(7P)
1,4378E+91	1.6533E+05	4.8635E+02	5.2209E-31	7.84912+71
1.4884E+01	3.5049E+04	1.0305E+02	1.7340E-01	8.7178E+11
1.4884E+01	7.7164E+04	2.2720E+02	1,8815E-01	8.0678E+31
1.4894F+01	1.1928E+05	3.51365+02	4.0910E-01	P.02575+31
1.4884F+01	1.5139E+05	4.7551E+02	5.3194E-01	7.87825+31

y

**

•

TABLE XXb. Continued.

۴.

_

۱

SUMMAPY FOR	AZIMUTH OF	2.7000E+12
R	FOCUS FACT	SND PRESS (DB)
1-00005+02	0_	n_
1 000000000	0 20505-01	1 26365402
2.000000000	1.03886400	1.19442+112
3.000000000	1.0642E+00	1.1643E+02
4.0000E+03	1.0667E+00	1.1394E+N?
5.0000E+03	1.09575+00	1.1212E+02
6.0000E+03	1.08606+00	1.1050F+02
7 00005407	4 00745+00	1 60205+02
0.00000000	1.11-75-00	1.03122+02
9.0000E+07	1.1905E+00	1.0703E+02
1.0000F+94	1.0715E+00	1.9603E+02
1.1000E+04	1.0462E+00	1.0507E+02
1.2000E+04	1.0402E+00	1.0429E+02
1-3000F+04	1-06775+00	1-0371E+02
1.400000000404	1.0051E+00	1.03175+02
1 50005104	1.04010400	4 00605+00
1.500000+04	1.10296700	1.025057.00
1.60005+04	1.10515+00	1.0205E+02
1.7000E+04	1.1073E+99	1.0153E+02
1.8000E+04	1.1095E+)0	1.0105E+02
1.9000E+04	1.1117F+00	1.0058E+02
2.0000E+04	1.1139E+00	1.0015F+02
2.1000F+04	1.11515+90	9-9733F+01
2 20005+04	1.1187E+30	9.93376+81
	1.11001+00	0 0000010101
2.30002704	1.12075-00	~•0900E+01
2.40308+04	1.1227E+JU	4.85492411
2.5003E+04	1.12495+00	9.82522+01
2.6000E+04	1.1271E+00	9.7920E+01
2.7000F+04	1.1294E+00	9.7601E+01
2-8000E+04	1.13165+00	9.7294E+91
2.9000F+04	1.1338E+00	9.69975+01
3-0000E+04	1-1360E+00	9-67115+11
7 10005494	1 17825430	0 64755481
7 20000.004	1 100000400	0 64675+04
3.20092704	1.14042700	4.0107E+01
3.30002+04	1.14202+00	9.54096411
3.4000E+04	1.1448E+00	9.5658E+01
3.5000E+04	1.1470E+30	9.5414E+01
3.6000E+04	1.2801E+00	9.5646E+01
3.7000E+04	1.2382E+00	9.5264E+01
3.8000E+04	1.2014E+30	9.4901E+01
3-9000F+04	1.1989E+00	9.4666E+81
4.0000E+04	1.22815+00	9.4551F+01
40000E.04	1.32086490	0.46575101
4.20006104	2 46000400	0 6C04E104
4. 200002-04		7.07012701 0.57465-54
4.5000E+04	1.000/2+00	M.9/101+01
4-4000E+04	1.4895E+00	9.4561E+01
4.5000E+04	3.0231E+00	9 . 7440E+01
4.6000E+04	7.8190E+00	1.0138E+02
4.7000E+04	8.2684E+00	1.0143E+02
4.800DE+04	5.4930E+00	9.9473E+91
4.9000E+04	3.9562E+00	9.7869E+01
5,00005104	3.78705+00	9.75046401
~~~~~~		*** ********

TABLE XXc. Sound conditions on the ground as a function of distance. Source at 1989 meters, westward propagation.

1 .....

......

-

- 69 -
150 I SOUNDING FOR 31 JAN 1964 SOURCE ALTITUDE 1 KM (FICTITIOUS DATA ABOVE 5 KM) 140 - NORTH -EAST -SOUTH - -WEST 130 SOUND PRESSURE LEVEL (DB) 120 110 100 90 80^L 0 10 40 20 30 50 RANGE (KM)

- 70 -



**:**A



Figure 9:

i



Figure 10:

## SOUND PRESSURE LEVEL

## VII. PROGRAM LISTING

The following pages, numbered independently, contain a complete listing of the program and the subroutines used. An index to these is as follows:

		Page
PROGRAM SOU	ND	0
SUBROUTINE	DD TRAJ	6
SUBROUTINE	FIXAREA	7
SUBROUTINE	RAYTRAC	9
SUBROUTINE	POSITN	14
SUBROUTINE	RD MET	16
SUBROUTINE	FIX MET	17
SUBROUTINE	PARAB	19
SUBROUTINE	INTRP	22
SUBROUTINE	RELHUM	23
SUBROUTINE	DIVDIF	24
SUBROUTINE	JORT	26
SUBROUTINE	FIXVEH	27

-----

```
PROGRAM SOUND (INPUT, OUTPUT, PUNCH)
                                                                             SOUN
                                                                                    Ð
                                                                                    5
      DIMENSION R(251), TM(250)
                                                                             SOUN
                                                                                   10
                                                                             SOUN
      JIMENSION FFACT(250),FINTS(250)
      COMMON/TRAJ/NVEH, TIM(160), ZVEH(100), AMACH(100), PCH(100), YAW(100)
                                                                             SOUN
                                                                                   15
                                                                             SOUN
                                                                                   29
           ALONG (100), ALAT (100), VFL (130), GAMMAR (100)
     X
      COMMON NMET, LCMAX, C(100), U(130), V(100), Z(100), VYY(100), VVV(100),
                                                                             SOUN
                                                                                   25
     1JJU(1)),TTT(100),T(100),P(100),RH(100),SPD(10P),OIP(100),ZWND(10)SOUN
                                                                                   39
                                                                             SOUN
                                                                                   35
     2),ZMET(101),AA4(100),ZZZ(100),GGG(100),CCC(100)
      COMMON/PARAM/ZS, YPOS, ZPOS, RNGV, 4ZV, PPCH, YYAW, AMCH, VVZ, VVXY,
                                                                             SOUN
                                                                                   40
                                                                             SOUN
                                                                                   45
     1 TZRO, PHZRO, CZRO, PZRO
                                                                             SOUN
                                                                                   59
      DIMENSION AZS(50), RNGS(50), XA(5), YA(5), 7RAY(25)
                                                                             SOUN
                                                                                   55
      JIMENSION PHI2(10), V2(10)
                                                                             SOUN
                                                                                   60
      COMMON/TPACE/RD,RU,DRDDK,DRUDK,TD,TU
                                                                             SOUN
                                                                                   65
   18 FORMAT (3I19)
                                                                             SOUN
                                                                                   79
   12 FORMAT(11812.4)
                                                                             SOUN
                                                                                   75
   14 FOPMAT (19X,10E12.4)
                                                                             SOUN
                                                                                   80
      CALL RD TRAJ
                                                                             SOUN
                                                                                   35
      CALL PD MET
                                                                             SOUN
                                                                                   90
SOUN
                                                                                   95
      PEAD 10, NRAY
                                                                             SOUN 190
      READ 12, (ZRAY(I), I=1, NRAY)
                                                                             SOUN 105
      PEAD 10, NAPEA
      READ 12, X4
                                                                             SOUN 119
      READ 12, YA
                                                                             SOUN 115
                                                                             SOUN 120
      READ 12, RSTEP
                                                                             SOUN 125
      READ IN, NREFL
                                                                             SOUN 130
      RFAD 12, DZRO,RFACT
                                                                             SOUN 135
SOUN 140
      LOOP ON VEHICLE LEVELS USED FOR RAYS
С
                                                                             SOUN 145
      30 198 IRAY=1, NRAY
      SET UP SOURCE PARAMETERS OF VEHICLE
                                                                             SOUN 150
C
      ZS=ZPAY(IRAY)
                                                                             SOUN 155
                                                                             SOUN 169
      CALL POSITN
                                                                             SOUN 165
      CALL FIXAREA (AZV, HAPEA, XA, YA, HAZS, AZS, RNGS, PNGV)
                                                                             SOUN 170
      PRINT 5
    5 FORMAT (*0
                            FIELD POINT DATA*/
                                                                             SOUN 175
                                                                             SOUN 130
                       X-Y COORD OF FIELD POINTS*)
     1*9
                                                                             SOUN 185
      PPINT 14, (X&(I), YA(I), I=1, NAREA)
                  RANGE AND AZIMUTH TO REACH LINE RETWEEN FIELD POINTS*) SOUN 190
   24 FORMAT(*0
                                                                             SOUN 195
      PPINT24
      100 25 I = 1, NAZS
                                                                             SOUN 200
                                                                             SOUN 205
      AZSD = AZS(I)
   25 PPINT 12 ,AZSD,RNGS(I)
                                                                             SOUN 210
                                                                             SOUN 215
      00 180 J=1,NAZS
                                                                             SOUN 220
      FIRSTP = 0.
                                                                             SOUN 225
      LOOP 01X AZIMUTH ANGLES
C
      GETS V(I)=U(I)+C(I) FOR THIS AZIMUTH
                                                                             SOUN 239
C
                                                                             SOUN 235
                         RRNGS=RNGS(J)
      AZSD=AZS(J)
                    $
      AZSS=AZSD/57.295
                                                                             SOUN 240
      00 52 I=1,NMET
                                                                             SOUN 245
      CONSTRUCTS PARABOLIC MODEL FOR V(I)
                                                                             SOUN 250
C
   52 V(I) = C(I) + SPD(I) * COSF(AZSS-(180.- DIR(I))/57.295)
                                                                             SOUN 255
                                                                             SOUN 260
      CALL PARAB
                                                                             SOUN 265
      DO 54 I=1, LCMAX
                                                                             SOUN 270
      IF(ZS- YYY(I))58,56,54
```

L

```
74
0-
```

54	CONTINUE	SOUN	275
55	I2=I	SOUN	280
	50 TC 60	SOUN	285
58	JS=I+1	SOUN	290
60	CONTINUE	SOUN	235
	ZS= YYY(JS)	SOUN	300
	CALL POSITN	SOUN	395
	PPINT 51, A7SD	SOUN	310
61	FORMAT(+0 SOUND RAY AZIMUTH PLANE =+,E12.4)	SOUN	315
	VZPO = AAA(JS) + GGG(JS) * (ZS-ZZ7(JS)) **2	SOUN	320
	IND=3	SOUN	325
	CALL UIVDIF(ZS,YYY(JS-1),CCC(JS-1),4,ANS1,CP,CPP,IND)	SOUN	330
	IN0=3	SOUN	335
	CALL DIVEIF(ZS,YYY(JS-1),UUU(JS-1),4,ANS1,UP,UPP,IND)	SOUN	349
	JZRO = ANS1	SOUN	345
	$VP = 2 \cdot *GGG(JS) * (ZS - ZZZ(JS))$	SOUN	350
	CZRO = VZRO - UZRO	SOUN	355
	PICKS UP LARGEST V(I) .GT. V(JS), J .LT. JS, AND ASCENDING	MAXIMUMSOUN	360
	V(I) .GT. V(JS)	SOUN	365
	INPUT DATA JS=LEVEL NO. OF SOURCE (AMET DATA LEVEL)	SOUN	373
	V.I), U(I), C(I) = FROM MET SOUNDING	SOUN	575
	LCMAX = NO, FOR TOP OF MET DATA	SOUN	388
	$0.11901 0A(4 V1 \neq MAX V(1) + 61 + V(1S) + 1 + 15$	SUUN	333
	PHIL = CORRESP PHIZ VALUE	SOUN	333
	IVI = LEVEL NO. FUR VI, PHIL	SUUN	337
	V2(K) = V(1) VALUES AT MAXS 1 .61. J	SOUN	411
	PHIZ(K) = PHIZ VALUES AI VZ(K)	SOUN	437
	KMAX = IUTAL NU. UF SUCH MAXS	SUUN	419
	PHIZMAX = PHIZ(KMAX)	SUUN	417
	¥22 = ¥2(KMAX) N700 - X(10)	SOUN	423
	42R) = 4(05)	SOUN	427
	10 - 15+4	SOUN	430
	0° - 0071 1700 - 101/101	SOUN	435
	9240 - 9993007 316 - 6.0	SOUN	445
	710 - 000 Tut - A	SOUN	447
	DD 64 T=1, IM	SOUN	455
	VV = VVV(T)	SOUN	460
	IF (VV .GT. BTG) 62.64	SOUN	465
62	PTG = VV	SOUN	470
	IVI = I	SOUN	475
64	CONTINUE	SOUN	433
•	IF(8IG .GT. VZR0) GO TO 66	SOUN	485
	V1 = 0.	SOUN	490
	IV1 = 0	SOUN	495
	PHI1 = 0.	SOUN	500
	GO TO 68	SOUN	535
66	V1 = BIG	SOUN	510
	PHI1 = ACOSF(CCC(JS)/(V1-UUU(JS)))	SOUN	515
68	V22 = 0.	SOUN	520
	K = 0	30UN	525
	PHI2MX = 0.	SOUN	530
	IMAXM = LCMAX-1	SCUN	535
	DO 70 I=JP,IHAXH	SOUN	540
	VV = VVV(I)	SOUN	545
	•		

.

,

I, I I I I

۰.

75 1 -•

```
IF ( (VV .GT. VZ90) .AND. (VV .GT. V1) .ANU. (VV .GT. V22)
                                                                             SOUN 550
     1.4ND. (VV .GT.VVV(I-1)) .AND. (VV .GT.VVV(I+1))) 59,70
                                                                             SOUN 555
   59 \times = 8+1
                                                                             SOUN 560
      V22 = V2(K) = JV
                                                                             SOUN 565
      PHI2(K) = ACOSF(CCC(JS)/(VV-UUU(JS)))
                                                                             SOUN 573
   70 CONTINUE
                                                                             SOUN 575
      KMAY = K
                                                                             SOUN 533
      IF (K .6T. 3) 72,74
                                                                             SOUN 535
   72 PHI2MX = PHI2(KMAX)
                                                                             SOUN 590
      V22 = V2(KMAX)
                                                                             SOUN 595
   74 CONTINUE
                                                                             SOUN 600
C
      SOPTS OUT THE THPEE CASES
                                                                             SOUN 605
      IF((V22 .E.J. 0.) .AND. (V1 .GT. VZ20)) 76.74
                                                                             SOUN 613
   76 ICASE = 1
                                                                             SOUN 615
      GC T1 89
                                                                             SUUN 620
   78 IF((V1 .LQ. 0.) .AND. (V22 .GT. VZR0)) 83,82
                                                                             SOUN 625
   B) ICASE = 2
                                                                             SOUN 631
      30 TO 49
                                                                             SOUN 635
   32 IF((V1 .GT. VZRJ) .AND. (V2? .GT. V1)) 84,86
                                                                             SOUN 649
   84 \text{ ICASE} = 3
                                                                             SOUN 645
      60 TO 58
                                                                             SOUN 651
   86 PPINT 1303, 4Z
                                                                             SOUN 655
 1133 FORMAT(* SOMETHING WRENG ON AZIMUTH*, F6.2)
                                                                             SOUN 663
      50 TO 180
                                                                             SOUN 665
   38 CONTINUE
                                                                             SOUN 670
      CONTROL SECTION FOR RAY TRACING
Ĉ
                                                                             SOUN 675
С
      STAPTER
                                                                             SOUN 640
      L = 0
                                                                             SOUN 635
      ILEG=1
                                                                             SOUN 693
      PHIZ =-PHI1-0.5
                                                                             SOUN 695
      AKD = CZPO/COS(PHIZ)+UZRO
                                                                             SOUN 700
      R0=0.
                                                                             SOUN 705
      RJ=0.
                                                                             SOUN 713
      1)°1)3K=0.
                                                                             SOUN 715
      DPUDK=0.
                                                                             SOUN 729
      19=3.
                                                                             SOUN 725
      TU=0.
                                                                             SOUN 730
      CALL RAYTRAC (JS, ILEG, AKO)
                                                                             SOUN 735
      PHIZ = -1.5
                                                                             SOUN 749
C
      RETURN POINT FOR PAYTPO
                                                                             SOUN 745
      DPDP =ABS(DRDDK*CZRO*SIN(PHIZ)/COS(PHIZ)**2)
                                                                             SOUN 751
   B9 OPHIZ =ABS( RSTEP/DRDP)
                                                                             SOUN 755
      PHIZ = PHIZ + DPHIZ
                                                                             SOUN 760
      PHDG = PHIZ *57.295
                                                                             SOUN 765
      SPHZRO=SIN(PHIZ)
                                                                             SOUN 770
      CPHZRO=CCS(PHIZ)
                                                                             SOUN 775
      OKDPHD = CZRO
                        * SIN(2.*3.1416 - PHIZ) / CPHZRO**2
                                                                             SOUN 783
      DKDPHU = CZRO
                        * SINC
                                           PHIZ) / CPH7RO##2
                                                                             SOUN 785
      AK0 = CZRO / CPHZRO + UZRO
                                                                             SOUN 790
      CPHP = CCC(1)*CPHZRO/(CZRO +(UZRO - UUU(1))*CPHZRO )
                                                                             SOUN 795
      IF(CPHP .GE. 1.) GO TO 89
                                                                             SOUN 830
      SPHP=SQRT(1.-CPHP++2)
                                                                             SOUN 835
      GO TO (90,94,94), ICASE
                                                                             SOUN 810
   90 IF(PHIZ .LT. (-PHI1#1.001))92,170
                                                                             SOUN 815
   92 ILEG=1
                                                                             SOUN 820
```

N

```
76
```

- 2 -

		50 TO 39			SOUN	825
	74	IT(PHIZ .LT. (-PHI2MX)) 96,97			SOUN	834
	96	TLCG = 1			SOUN	835
		GO TO 99			SOUN	84)
	37	IF (PHIZ .LT. (-PHI1-1.E-4))198,192			SOUN	845
	109	ILEG = 2			SOUN	853
		GA TO 39			SOUN	355
	132	IF (FIPSTP .E1. C.) FHIZ =-PHIZ + DPHIZ			SOUN	86J
		FIRSTP = 1.			SOUN	365
		IF (PHIZ .GT. PHI2MX * 0.80) 170,98			SOUN	373
	33	ILEG = 3			SOUN	012
	33	D)=].			SOUN	073 102
					SOUN	801
		UPU0K=9.			SOUN	ROG
		100033-9. 10-1			SOUN	931
		1 /~U• T(f=1			SOUN	915
c		DAY TRACTNG CNDED THTS AZTMETH, NOW TIME TO			SOUN	911
ε		ADDEST INTENSITIES AND FIND FORT.			SOUN	915
ñ		TEST FOR INFINITERAY FETWEEN OR ON INCREMENTED			SOUN	923
Ť		CALL RAYTRAC (JS.ILEG.AKO)			SOUN	925
		UKDZ=CP/C-HZRO+UP			SOUN	933
		HPEFL = 3			JOUN	935
		495FL1=N9EFL+1			SOJN	941
		IF(L .6T. 243) 60 TO 179			SOUN	945
		GO TO (12),12),140),ILEG			SOUN	953
					SOUN	955
					2001	460
	120				SOUN	707
		1+((L + L/5/1+50) •EU• 1) PPINI 15	TIME	100-15 CAC	SOON	773
	15	FUNDUTE NUT ANTO	1745	FUGUS FAG	SO IN	0.80
	1	0/1 )-0D			SOUN	945
		TM(1)=TD			SOUN	990
		0202415			SOUN	995
		DRDP=DPDFHT			SOUN	1000
		DPDZ=0PD0<*0K9Z			SOUN	1605
		JTOPHI=DRJPHI/AKO			SOUN	1019
		UTDZ=DRDZ/AKO			SOUN	1015
		FFACT(L)=1.			SOUN	1020
		FINTS(L)=1.			SOUN	1025
		₹2=Z\$**2+ <b>₹{L}**2</b>			SOUN	1030
		PDRNPT=R(L)*(ORDPHI-DTOPHI*(VVZ*NRDZ+VVXY)/			SOUN	1035
	•	L(1.+VVZ*DTDZ))			SOUN	1049
		IF (A95(RURDPT) .LT.1.E=50)G0 10 124			SUUN	1047
		FFAULLJ=495(K2*GPHZRUZRUZRUZRUPIZSPHP) 				1320 1920
	4.7%	$\frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} $			SOUN	1060
	164	Ki 1=Ki 2=i			SOUN	1065
		IF (TLEG.EQ.1)89.130			SOUN	1079
					SOUN	1075
					SOUN	1050
	130	DO 135 I=2,NREFL1			SOUN	1935
		L = L + 1			SOUN	1099
		IF(( L - L/50*50) .EO. 1) PRINT 15			SOUN	1035

L

• | 77 3 -

```
SOUN1100
    -(L)= (?.*i-1.)**D+2.*(1-1.)*RU
                                                                       SOUN1105
    T4(L)= (2.*I-1.)*T0+2.*(I-1.)*TU
                                                                       SOUN1117
    J>DPHI= (2.*I+1.)*DPDDK*0K0PH0+2.*(I-1.)*DPUDK*0K0PHU
    )+07= (2.+I-1.)*DPDDK*DK97+2.*(I-1.)*DRU3K*DK07
                                                                       SOUN1115
                                                                        SOUN1121
    JTUPHI=DPJPHI/4KU
    FINTS(L)=1.
                                                                       SOUN1125
                                                                       SOUN1131
    FFACT(L)=1.
                                                                       SOJN1135
    DTAZ=DPDZ/AK3
    ~?=ZS##2+R(L)##2
                                                                       SOUN114J
    SOUN1145
   1(1.+VVZ*0707))
                                                                       SOUN1153
    IF (APS(PDR)PT) .LT.1.E-F9) .0 TO 134
                                                                       S0'JN1155
    FFACT(L)=44S(2*CPHZPO/R0PDPT/SPHP_)*PFACT**(I=1.)
                                                                       SOUN1161
    FINTS(L) = D7R0-18.32+4.3429*ALOG(FFACT(L)/P(L)**2)
                                                                       SOUN1165
134 PHINT 14, PHUS, R(L), TM(L), FFACT(L), FINTS(L)
                                                                       SOUN1171
                                                                       SOUN1175
135 CONTINUE
                                                                       SOUN1141
    <L1=L
                                                                       SOJN1185
    <L1:*KL2=L
    50 TO 89
                                                                       SOUN1139
                                                                        SOUN1195
                                                                       S0UN1200
                                                                       50UN1215
                                                                       SOUN1211
                                                                       SOUN1215
140 H: 145 I=1,NPEFL1
                                                                       50UN1223
    c = L + 1
                                                                       S0UN1225
    IFCCL -
              L/53*50)
                        .EQ. 1) PRINT 15
    TM(L) = (2.*1-1.)*T0+2.*I*TU
                                                                       S0UN1230
    R(L) = (2.*I+1.)*RE+2.*I*RU
                                                                       SOUN1235
            = (?.*I-1.)*DP00K*0K0PH0+2.*I* 0RUDK*0K0PH0
                                                                       SOUN1243
    JOJOHI
    JPU? = (2.*I-1.)*DRDDK*DKD2+2.*I*DRUDK*DKD7
                                                                        SOUN1245
                                                                        SOUN1250
    JEDENE = DP JENE AKO
                                                                        SOUN1255
    JTDZ=DPUZ/AKG
                                                                        SOUN1260
    FFACT(L)=1.
                                                                        SOUN1265
    FINTS(L)=1.
    >2=25**2+R(L)**2
                                                                        SOUN1273
                                                                        SOUN1275
    >DPDPT=R(L)*(UPDPHI+DTDPHI*(VVZ*DPDZ+VVXV)/
   1(1.+VVZ*DT)Z))
                                                                        SOUN1233
    IF (A9S(RDRDPT) .LT.1.E-50) GO TO 144
                                                                        SOUN1245
    FFACT(L)=ABS(R2+CPHZRO/RDPDPT/SPHP)+RFACT++(I-1.)
                                                                        SOUN1291
    FINT*(L) = DZRO+18.32+4.3429*ALOG(FFACT(L)/R(L)**2)
                                                                        SOUN1295
                                                                        SOUN1301
144 PPINT 14, PHOG, R(L), TM(L), FFACT(L), FINTS(L)
145 CONTINUE
                                                                        SOUN1395
    JPDP=DPDDK+DK0PHD+2.+DPU0K+DK0PHU
                                                                        SOUN1311
                                                                        SOUN1315
    KL2 =L
    GN TN 89
                                                                        SOUN1320
170 CONTINUE
                                                                        SOUN1325
                       SUMMARY FOR AZIMUTH OF *, E12.4 /
181 FOPMAT(*1
                                                                        SOUN1 333
                             SND PRESS (08) * )
   115X* P
                FOCUS FACT
                                                                        SOUN1335
    PRINT 181, AZSU
                                                                        SOUN1349
    CALL SORT(KL1,R(1),FFACT(1))
                                                                        SOUN1345
                                                                        SCUN1350
    KL=KL2-KL1
    IF(KL.EQ.J) GO TO 175
                                                                        SOUN1355
    CALL SORT((KL2-KL1),R(KL1+1),FFACT(KL1+1))
                                                                        SOUN1360
                                                                        SOUN1365
175 00 200 I=1,51
    RR=(I-1)+1000.
                                                                        SOUN1373
```

- 4 -

	IF(I.EQ.1)RR=139.	SOUN1375
	FF1=0	S0UN1380
	FF2=0	SOUN1385
	IF (RR.GT.R(1).AND.RR.LT.R(KL1))CALL INTPP(KL1,R(1),FFACT(1),PR,FF	SOUN1393
	11,0)	SOUN1 395
	IF(KL.EQ.J) GO TO 185	SOUN1433
	IF (PP.GT.R(KL1+1).AND.PR.LT.R(KL2))CALL INTRP(KL,P(KL1+1),FFACT(K	30UN1405
	1L1+1), PR, FF2,0) .	S09N1411
195	FF=FF1+FF2	SOUN1415
	FTNS=0	SOUN1421
	1F(FF.UT.3)FTNS=DZRO-18.3+10.#ALOG10(FF/RR##2)	S0UN1425
	PPINT 14, 98, FF, FTNS	SOUN1430
239	CONTINUE	SOUN1435
130	CONTINUE	SOUN1449
190	CONTINUE	SOUN1445
	END .	SOUN1457

į

79

5 -

,

CUDDOUTTNE DO TRAI	20	Ŧ	•
SUDFUUTINE KU (KAU Cennenteda langen timitadan 70-ultadan Amarutadan solitasian yanitadan	τυ 00	1	ן בי
SUTTONY INAUXING FINILUUY AVENILUUY ANAUNILUUY ANAUNILUUY ANALUUY	~0	+	2
X • ALUNGIIUU/ ALAIIIU/ ALAIIIU/ ACLIUU/ AGAMMAKIIUU/	~U 00	ł T	10
00000000000000000000000000000000000000	710	T T	7.2
KEAU 109 19679999EF Dotat 2	RU D0	Ť	20
	- 9 - DD	T T	27
A MACHINO DITCH YAN AN IIN AL'INUC	φ <u>υ</u>	T	75
	20	Ŧ	22
DU CU I - LINVER TEAT EO ERN DOTNT 2	20	Ť	
\$F\1+CU+2UF "KINF & D281, 40 - TTM/TS 7VCU/TS AMACU/TS DCU/TS VAU/TS	20	Ŧ	- 49 En
<u>~_AGCTIMLT/JCVCALJJANNOALJ/J~GALT/JTMALI</u> Dotait_4/TIMLT/JCVCALJJANNOALJ/J~GALT/JTMALIJ	~U 070	Ť	23
PP191 144 L1011948C0119989800111991988119	20	Ť	
	0	T T	63
TINE SHITLE DELIGIOU DOCTTION DELL'E ATEN STRUCTOR VENTORS S	20	+	70
ALATTING INACTING INCOMPANY INTO INTA	- U 2 n	Ť	70
22 00 26 T = 1 NVEN		Ť	9.0
TETT.EO.EAN DOTNT 3	DN	Ť	85
DEAD 40. TEMITE ALATITE ALATITE ALONGITE	20	Ť	0) 03
DOINTSL.TTHETS.ALATETS.ALONGETS	00	Ŧ	20
24 CONTINUE	20	Ť	1 8 0
PPINT L	20	Ť	105
4 FORMATICE1 TRAJECTORY VELOCITY DATAF	en.	Ť	118
1 / 13X* TIME VELOCITY ALGLE FROM HORTZ, *)	RU.	Ť	115
n0.25 T = 1.NVFH	80	Ť	121
IF(T.FG.51) PRINT 4	20	Ť	125
READ 12.TIM(I).VEL(I).GAMMAR(I)	20	Ť	131
PPINT 14.TIM(I).VEL(I).GAMMAR(I)	2n	Ť	135
25 CONTINUE	20	Ť	140
000000000000000000000000000000000000000	80	Ť	145
1E FORMAT( 2118)	80	Ť	151
14 FORMAT(10X5E12.4)	ъD	Ť	155
RETURN	٩D	Ť	161
END	RD	Ť	165

Ψ.

80

- 6 -

.

٢

3

· ...

	SUBPOLITINE EIXAREA (AZV.NAREA.XA.YA.NAZS.AZS. RNGS.RN	GV) FIXA	Э
	JIMENSION AZV(1) .XA(1) .YA(1) .AZS(1) .RNGS(1) .AA(59)	FIXA	5
	JIMENSION DA7(5)	FIXA	13
	SETS AZIMUTH AND PANGE FOR AREA COVERED	FIXA	15
	CONSTRUCTS TABLE OF AZIMUTH ANGLES TO CORNERS	FIXA	20
	IF (NAREA.E].1)40,50	FIXA	25
<b>4</b> j	00 45 I=1+12	FIXA	30
	PNGS(I)=3.	FIXA	35
45	$AZS(I) = 33.0^{+}(I-1.)$	FIXA	43
	NAZS=12	FIXA	45
	KETURN	FIXA	53
53	CAZV=COSF(AZV)	FIXA	55
	SAZV=SINF (AZV)	FIXA	6]
	00 4 I=1,NARFA	F 1XA	もう
	F1=XA(I)=RNGV*SAZV		73
	F2=YA(I) - 2NGV+GAZV	1 I XA	12
	AA(1) = A(AN2(1) + 2)	F 1 A 4 5 T V 8	- 3-J - 8-E
•	IF (AA(I) .L. J.J. 293	Г 144 Стуа	07 Ga
2	4A(1)=4A(1)+6.2831853	E T X Y	33
377	1211494933 3877748 - 48873 - 88774887 - 8	5 T X 4	100
33	UAL(1=1) = (A4(1) = AA(1=1)) / 7.	E TAN	1 3 5
4	COMPLETES DANCE TO EADTHED DOINDADY	E T YA	111
	SOMPOIES CANOL TO PARTMER SOUNDARS	FTXA	115
	N = 1 NADEA1 = NADEA = 1	ETXA	120
	$30 25 T = 1 \cdot \text{NAPPA1}$	FIXA	125
	A7SS = A7S(K) = AA(T)	FIXA	139
	90 22  II = 1.9	FIXA	135
8	SAZS=SINF (AZSS)	FIXA	140
	CAZS=COSF(AZSS)	FIXA	145
	J1=1	FIXA	150
10	DO 12 J=J1,NAREA	FIXA	155
	JP=J+1	FIXA	16J
	IF((AA(J).LE.AZSS).AND.(AZSS.LT.AA(JP)))14,12	FIXA	165
12	CONTINUE	FIXA	170
14	J1=J+1	FIXA	1/5
	I1=J	FIXA	103
	I2=J1	+ 1XA CTV8	175
		F 1 44	190
		CTVA CTVA	200
	11=74(11) Vo-VA(TO)	F 1 14	205
	16=181267	ETVA	211
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FTXA	215
	nch+ch7c+(y2-y1)=C87C+(y2+y1)	FTXA	223
	$\frac{D(R^2)R^2}{2} + \frac{E^2}{2} + \frac{E^2}{2} + \frac{D(R^2)}{2} + D(R^2$	FTXA	225
	K = K + 1	FIXA	230
	A7SS = AZS(K) = AZS(K-1) + DAZ(I)	FIXA	235
27	CONTINUE	FIXA	240
25	CONTINUE	FIXA	245
	NAZS = K-1	FIXA	250
	DO 35 I=1,NAZS	FIXA	255
35	AZS(I) = AZS(I)/57.295	FIXA	260
	AT THIS POINT THERE IS A TABLE AZS(I) AND RNGS(I)	FIXA	265
	I=1,NAZS OF AZIMUTH AND RANGE FROM VEHICLE	FIXA	270

- 7 -

C C

Ç

C C

!

Ċ.	GROUND PROJECTION THAT COVERS AREA.	FIXA 275
	RETURN	FIXA 283
	END	FIXA 235

i

é.

```
SUBROUTINE RAYTRAC (JS, IJASE, VTEST)
                                                                           PAYT
                                                                                  3
      004MON_LMAX,LOMAX,0(100),U(100),V(100),ZK(100),YYY(110),VVV(100), RAYT
                                                                                  5
     100"(186),TIT(138),T(180),P(188),RH(198),SPD(198),8IP(198),ZWND(183RAYT
                                                                                 1)
     2),ZMET(100),A44(100),ZZZ(100),GGS(190),CCC(100)
                                                                           PAYT
                                                                                 15
      COMMON/TPACE/RD, RL, DRDDK, DRUDK, TD, TU
                                                                           PAYT
                                                                                 23
                                                                           PAYT
      TEST FOR RAY EXACTLY ON LAYER TOP (K = 2) OR NOT (K = 1).
£
                                                                                 25
COMMENT
          ARITHMETIC STATEMENT FUNCTIONS --- SOLN TO INTEGRALS
                                                                           PAYT
                                                                                 30
                                                                           PAYT
                                                                                 35
С
С
                                                                           PAYT
                                                                                 40
      4T1(Z) = ASIN((Z-ZZ)/P1)/GGGQRT
                                                                           RAAL
                                                                                 45
      AI2(7) = (APS(Z-ZZ)+SORT((Z-ZZ)**2+P1**2))
                                                                           RAYT
                                                                                 51
      AI3(Z) = (Z-ZZ)/SQPT(F1++2+(Z-ZZ)++2)/(SQKT(-GT)+(VTEST-A1))
                                                                           PAYT
                                                                                 55
                                                                           RAYT
                                                                                 69
      AI4(Z) = (Z-ZZ)/SQRT(F1**2-(Z-ZZ)**2)/(SQRT(GI)*(VTEST-AI))
                                                                           PAYT
C
                                                                                 55
      JSP = JS + 1
                                                                           RAYT
                                                                                 73
      00 828 K1=JSP,LCMAX
                                                                           PAYT
                                                                                 75
      IF (VTEST.GT.(VVV(K1)+1.I-5)) 823, 893
                                                                           RAYT
                                                                                 33
  800 IF (VTEST.GT.(VVV(K1)-1.E-5)) 819. 840
                                                                           RAYT
                                                                                 95
  820 CONTINUE
                                                                           PAYT
                                                                                 99
  810 K = 2
                                                                           PAYT
                                                                                 95
      GO TO 845
                                                                           RAYT 133
  840 K = 1
                                                                           PAYT 1J5
  845 K2= K1 - 1
                                                                           RAYT 110
      IF (ICASE \bullet EQ. 1) K2 = JS + 1
                                                                           PAYT 115
                                                                           RAYT 120
      XM = 3.
      K7 = 1
                                                                           RAYT 125
      GO TO 851
                                                                           RAYT 133
С
      INDEX DELIMITING THE 1000-LOOP TO JUST FINDING THE HEIGHT CORRESPORAYT 135
       THE VTEST-VALUE OF THAT INFINITELY TRAVELING RAY (VIZ., THE PHIBORAYT 140
C
С
       OF THE NEXT MORE ELEVATED FAN AND REFRACTING LAYER NOW TO BE CONSRAVE 145
С
       WHICH TOPS OUT AT A LOCAL MAX IN THE SOUND-PROPAGATION SOUNDING. RAYT 159
                                                                           0AYT 155
  850 K3 = K2
      LOOP TO COMPUTE CURVATURE AND DISTANCE FOR EACH RAY
C
                                                                           RAYT 160
                                                                           RAYT 165
  851 00 1000 K1 =K3, K2
      K2 REFERENCES THE LEVEL AT WHICH THE PHIBOT-RAY (I1=1) OF A FAY-FARAYT 170
0
C
       OUT (K=1), OR THE BOTTOM OF THE LAYER IN WHICH THE FANS INTERNAL-PAYE 175
ſ,
       .GT.1 TC I1.LT.IM-1) TOP OUT (K=1), OR AT THE TOP OF WHICH THE PHRAYT 13]
С
       (I1=IM-1) TOPS OUT (K=2), EXCEPT IF NOT ONLY T1=1 (AND HENCE K=1)RAYT 185
C
       ALSO ITS TOP IS THE ONE AS RECOGNIZED BY THE A23-LOOP AS BEING ABRAYT 190
       LOCAL MAX (IN WHICH EXCEPTION THE RAY TOPS OUT AT THE LEVEL OF THRAYT 195
C
C
       INCIDENTALLY, BOTH BOUNDING LEVELS OF THIS LAVER ARE ADJACENT LC-RAYT 200
       (VIZ., EITHER PARABOLIC JOIN-POINTS AT ONE OF THE DATA LEVELS ANDRAYT 235
S
Ç
       LEVEL BETWEEN THEN OP ONE SUCH JOIN-POINT AND AN LC-SUBDIVISION ORAYT 213
C
       LOCAL MAX, OVER WHICH ONE PARABOLIC ARC IS CONTINUOUS). WHEREAS RAYT 215
С
       NITELY RANGING PHITOP-PAY ASYMPTOTES OUT ALWAYS AT THE TOP OF THERAYT 223
С
       SUCH LAYER SUPERJACENT TO K2, AT EXTENDED RANGE THE I1-RAY ASYMPTRAYE 225
C
       APPROACHES AS ITS ZENITH A LOCAL-MAX LEVEL WHICH IS (OFTLN WELL) PAYT 230
С
       THE ASSOCIATED K2-LEVEL. BUT, FOR SUCH AN I1-RAY, THE LEVEL TO BRAYT 235
C
       FIED AND SOUGHT SHALL NEVERTHELESS BE THAT CORRESPONDING TO ITS VRAYT 240
       VALUE, CONTAINED IN THE LAYER MENTIONED, SINCE ITS ZENITH IS OTHERAYT 245
C
C
       SPECIFIED BY THE HEIGHT-COORDINATE OF THE LOCAL MAX.
                                                                           RAYT 250
      I = K1
                                                                           RAYT 255
      GGGI = GGG(I)
                                                                           RAYT 269
      GGGQRT =SQRT (ABS (GGGI))
                                                                           PAYT 265
      IF (GGGQRT .EQ. 0.) GGGQRT = 1.E-230
                                                                           RAYT 270
```

١.

4°--- -

```
83
```

```
AAAI = AAA(I)
                                                                                                                                                             PAYT 275
             P1= SORT (ABS ((VTEST-AAAI)/SGGI))
                                                                                                                                                              PAYT 280
             2ZZI = ZZZ(I)
                                                                                                                                                              PAYT 285
C
             SHUNT FOR INFINITELY FANGING PHIBOT-RAY, TO FIND HEIGHT CORRESPONDRAYT
                                                                                                                                                                        231
               ITS ASSOCIATED VTEST VALUE.
С
                                                                                                                                                              PAYT
                                                                                                                                                                        235
C
             POUND-OFF OF REAL-VARIABLE P-FUNCTION TO FIXED ZERO FOR INFINITELYRAYT
                                                                                                                                                                        311
ſ;
               PHITOP-RAY.
                                                                                                                                                              RAYT 315
             ROUND-OFF NOW AUTHORIZED SINCE LARGEST ROUND P1 AT LOCAL MAX .LE.
C
                                                                                                                                                             RAYT
                                                                                                                                                                        313
             J = I + 1
                                                                                                                                                              RAYT
                                                                                                                                                                        315
             (L) YYY = LYYY
                                                                                                                                                              PAYT
                                                                                                                                                                        32a
             YYYI = YYY(I)
                                                                                                                                                              PAYT
                                                                                                                                                                        325
             A1 =
                                 ((YYYI-ZZZI)/P1)
                                                                                                                                                              7AYT
                                                                                                                                                                        330
                                                                                                                                                              RAYT 335
             02 = 000()
             C1 = CCC(I)
                                                                                                                                                              RAYT
                                                                                                                                                                        349
             V1 = VVV(I)
                                                                                                                                                             PAYT 345
             D1, E1, F1 AKE VALUES OF F1, F2, F3
C
                                                                                                                                                             PAYT 353
             I.E. SLOWLY VARYING PARTS OF INTEGRALS
C
                                                                                                                                                             RAYT
                                                                                                                                                                        355
       10 FOPMAT (1)X3E12.4,2110)
                                                                                                                                                             PAYT
                                                                                                                                                                        363
             IF ((VTEST+2.*C1-V1).LE.0) PRINT 13, VTEST,C1,V1,I,J
                                                                                                                                                              PAYT 365
             D1 = (C1**2 + (V1-C1)*(VTEST-V1+C1))/(C1*SORT (VTEST+2.*C1-V1))
E1 = (VTEST -(V1-C1))/(C1*SORT(VTEST+2.*C1-V1))
                                                                                                                                                              RAYT
                                                                                                                                                                        379
                                                                                                                                                              PAYT
                                                                                                                                                                        375
             F1 = C1*VTEST/SORT(VTEST+2.*C1-V1)**3
                                                                                                                                                              PAYT
                                                                                                                                                                        333
             TF(K1.NE.K2) 855, 960

KAYT 345

KAY
C
C
               THE NEXT SUPERJACENT LAYER OR AT ITS BOUNDARIES, SO RAY PENETRATERAYT 395
C
               LAYER WHOSE LOWEP BOUNDARY IS K1.
                                                                                                                                                             RAYT 400
    855 V2 = VVV(J)
                                                                                                                                                             RAYT 435
             92
                   = (C2**2 + (V2+C2)*(VTEST-V2+C2))/(C2*SQRT (VTEST+2.*C2-V2))
                                                                                                                                                             RAYT 410
             E2 = (VTEST-(V2-C2))/(C2*SQPT(VTEST+2.*C2-V2))
                                                                                                                                                             PAYT 415
             F2 = C2*VTEST/SQRT(VTFST + 2.*C2-V2)**3
                                                                                                                                                             RAYT 420
    857 DHEAN
                           =
                                   (2.*02+01) / 3.
                                                                                                                                                             RAYT 425
                                   (2.*E2+E1) / 3.
             EMEAN
                            #
                                                                                                                                                             RAVT 433
             FMEAN = -(2. +F2+F1)/3.
                                                                                                                                                             RAYT 435
    858 A2 =
                                 ((YYYJ-ZZZI)/P1)
                                                                                                                                                             RAYT 441
             IF (ZZZI
                                                                 860, 910
                                                1
                                                                                                                                                             RAYT 445
C
             REMAINS PARABOLIC
                                                                                                                                                             RAYT 450
COMMENTS
                                                                                                                                                             RAYT 455
С
                                                                                                                                                             RAYT 463
C
                                                                                                                                                             RAYT 465
C
               CASES TO BE CONSIDERED FOR RAY
                                                                                                                                                             PAYT 470
                                                                                     TRACING
C
                                                                                                                                                             PAYT 475
C
        I)
                   G.GT.0
                                         K.LT.A
                                                             NO REAL SOLUTION
                                                                                                                                                             RAYT 480
C
      II)
                   G.GT.0
                                         K.GT.A
                                                                                                                                                             PAYT 495
C
      III)
                   G.LT.O
                                         K.LT.A
                                                                                                                                                             RAYT 490
C
      IV)
                   G.LT.0
                                         K.GT.A
                                                                                                                                                             RAYT 495
С
                                                                                                                                                             RAYT 500
    860 ZI = YYYI
                                                                                                                                                             RAYT 505
             ZJ = YYYJ
                                                                                                                                                             RAYT
                                                                                                                                                                       51J
             ZZ = ZZZI
                                                                                                                                                             RAYT 515
             SI = GGGI
                                                                                                                                                             RAYT 523
             AI = AAAI
                                                                                                                                                             RAYT
                                                                                                                                                                       525
             IF(GI .LE.0.) GO TO 880
                                                                                                                                                             RAYT 530
             IF(VTEST .LT. AI) GO TO 1005
                                                                                                                                                             RAYT 535
             ADD1 = AI1(ZJ) - AI1(ZI)
                                                                                                                                                             PAYT 541
             ADD2 = AOD1
                                                                                                                                                             RAYT 545
```

..

```
84
- 10 -
```

```
PAYT 551
      IF(K1 .EQ. K2) GO TO 950
                                                                           PAYT 555
      ADD2 = AI4(ZJ) - AI4(ZI)
                                                                           RAYT 560
      GO TO 950
  HBU IF (VTEST .LE. AI) GO TO 900
                                                                           PAYT 565
      IF(ZJ .LT. 1.0001*ZZ) 882,884
                                                                           2AYT 571
  882 ADD1 = ALOG(AI2(ZI)/AI2(ZJ))/GGGORT
                                                                           PAYT 575
                                                                           RAYT 51)
      60 TO 890
                                                                           PAYT 595
  834 ADD1 = ALOG(AI2(ZJ) / AI2(ZI))/GGGQRT
                                                                           RAYT 591
  890 A002=A001
                                                                           PAYT 535
      IF(K1.LQ.K2)G0 TO 950
                                                                           PAYT 603
      ADD2 = AI3(ZJ) - AI3(ZI)
                                                                           PAYT 605
      GO TO 950
                                                                           RAYT 611
  900 IF(ZJ .LE. 1.0001*ZZ) GO TO 906
                                                                           PAYT 615
      ADD1 = ALOG(AI2(ZJ) / AI2(ZI))/GGGQRT
                                                                           PAYT 523
      60 TO 908
                                                                           PAYT 625
  306 ADD1 = ALOG(AI2(ZI) / AI2(ZJ))/GGGQRT
                                                                           RAYT 631
  998 \ A002 = 4001
                                                                           RAYT 635
      IF (K2. EQ. K1) GO TO 950
                                                                           -AYT 643
      A002 = AI3(ZJ) - AI3(ZI)
                                                                           RAYT 645
      sn te osa
                                                                           RAYT 653
                                                                           RAYT 655
C
                                                                           RAYT 663
C
C
      EPROR INSERTIONS FROM IMPOSSIBLE TESTS
                                                                           RAYT 655
      INITIAL PHIBOT-RAY OF A REFRACTING LAYER HAS ITS ZENITH ON A SOUNDPAYT 679
C
                                                                            RAYT 675
C
      LINEAR LAVER CASE
  910 IF (VTEST .LT. AAAI) GO TO 1005
                                                                           RAYT 683
                                                                            RAYT 685
      IF (VTEST .EQ. AAAI) VTEST = AAAI + 1.E-200
      ADD2=4./GGGI*(1./SURT(VTEST-01-GGGI*(YYYJ-YYYI))-1./SQRT(VTEST-01)RAYT 690
                                                                           PAYT 535
     1)
                                                                           PAYT 700
      CONSIDER SLOPE OF LINEAR SOUNDING
C
      u^n = (YYYJ - YYYI)/(APS((VTEST - AAAI)/GGGI))
                                                                           RAYT 795
      IF (GGGI .LT. -1.E-8) GO TO 929
                                                                           PAYT 710
      IF (GGGI .GT. 1.E-8) GO TO 930
                                                                            RAYT 715
      GO TO 940
                                                                           PAYT 723
      COMPUTE TRAVEL DISTANCE OF RAY PENETRATING LINEAR LAYER
                                                                           RAYT 725
C
  920 IF (QQ .LT. 0.) QO = 0.
                                                                            PAYT 730
      ADD1= 2.*(SQRT(ABS((VTEST-AAAI)))/(-GGGI))*FMEAN*(SQPT(1.+QQ) -1.)PAYT 735
      GO TO 950
                                                                            RAYT 743
  930 IF (QQ .GT. 1.) QQ = 1.
                                                                           RAYT 745
      ADD1= 2.*(SORT (ABS ((VTEST-AAAI)))/GGGI)*FME4N*(1.-SQRT (1. -QQ))RAYT 750
                                                                            RAYT 755
      GO TO 950
  940 ADD1= FMEAN* (YYYJ-YYYI)/(SOPT (ARS (VTEST-AAAI)))
                                                                            RAYT 763
        WE KNOW HAVE THE INTEGRALS AND THE SLOWLY VARYING PART OF THE
                                                                           PAYT 765
COMMENT
      INTEGRAL AND GAN USE THEM TO CALCULATE THE PARTIAL DERIVATIONS
                                                                            RAYT 770
C
      NECESSARY FOR THE FOCUSING FACTOR.
                                                                            RAYT 775
C
                                                                            RAYT 750
Rayt 755
  950 R=DNEAN#ADD1
      TAU=EMEAN+ADD1
      IF(K1.LT.K2)951,952
                                                                            RAYT 790
  951 DRDK=FMEAN#ADD2
                                                                            RAYT 795
      GO TO 995
                                                                            RAYT 800
        G AND H CALCULATED FOR HORIZONTAL RAY ONLY
COMMENT
                                                                            RAYT 805
  952 \text{ IND} = 3
                                                                            RAYT 613
      CALL DIVDIF (YYYI,YYY(I),CCC(I),4,ANS1,CP,CPP,IND)
                                                                            RAYT 815
      CALL DIVDIF(YYYI,YYY(I),UUU(I),4,ANS1,UP,UPP,IND)
                                                                           PAYT 920
```

a lá

```
- 11 -
```

51 = VTEST*(VTEST-(V1-C1))/(((VTES1-(V1-C1))*CP+C1*UP)* PAYT 825 x SOPT((VTEST-(V1-C1))**2-C1**2)) PAYT 831 -1 = VTEST*(VTEST-(V1-C1))*((VTEST-(V1-C1))*CPP+C1*UPP)/ PAYT 835 X (((VTFST-(V1-C1))*CP+C1*UP)**2*SQRT(VTEST-(V1-C1)+C1)) -24YT 841 IND = 3PAYT 845 CALL DIVDIF (YTOP, YYY(I), UUU(I), 6, ANS1, UP, UPP, IND) PAYT 851 IND = 3PAYT 355 CALL DIVDIF (YTOP, YYY(I), CCC(I), 6, ANS1, CP, CPP, IND) VAVT R61 H2 = VTEST+(VTEST+(V2-C2))+((VTEST-(V2-C2))+CPP+ C2+UPP) / PAYT 865 x (((vTEST-(v2-c2))*CP+c2*UP)**?*sqqt(vTEST-(v2-c2)+c2)) 2AYT 871 0PDK = G1-(H1+H2)/2.*A0D1 PAYT 875 GO TO 395 RAYT 831 COMPUTE PARAMETERS OF RAY AND LAYER IN WHICH RAY TOPS OUT €. 2AYT 545 960 IF (ZZZI.E9.3.) GC TO 990 PAYT 893 Ç SOUNDING IN LAYEP IS FARABOLIC RAYT 835 IF (VTEST .GE. AAAI .AND. GGGI .GT. J.) GO TO 963 2AYT 999 C HAVE ALPEADY REACHED THE MAXIMUM---PETURN **RAYT 995** PAYT 913 IF (VTEST .LT. AAAI .AND. GGGI .LT. 3.) GO TO 964 RAYT 915 DIFF = ABS (VTEST + AAAI) PAYT 921 961-RYPASS AUTHORIZED. С PAYT 925 60 TO 962 PAYT 933 952 IF (DIFF .LT. 1.8-6) 60 TO 963 PAYT 935 50 TO 1005 RAYT 941 FIND RAY ZENITH С PAYT 945 953 YTOP = ZZZI + P1 **RAYT 951** GO TO 980 PAYT 955 964 (TOP = ZZZI - P1 WAYT 960 EVALUATE SOUNDING AT PAY TOP C RAYT 965 990 V2 = VTEST RAYT 973 A2 = 1.**RAYT 975** SO TO 992 PAYT 931 SOUNDING IN LAYER IS LINEAR C PAYT 935 990 YTOP = YYYI + (VTEST-AAAI)/GGGI RAYT 993 Q= 1. RAYT 995 992 C2 = C1 + (C2-C1)*(YTOP-YYYI)/(YYYJ-YYYI)RAYT1000 FIND F-FUNCTION OF RAY FOR ITS TOPPING LAYER, LINEAR OR PARABOLIC PAYTIOD5 C E? = 1. / SQRT(2.*C2) PAYT1011 D2 = V2 + E2**PAYT1015** DMEAN = (2.*D2 + D1) / 3.**RAYT1023** EMEAN = (2.*E2 + E1) / 3.**RAYT1025** FMEAN = -(2. +F2+F1)/3.**RAYT1033** YYYJ = YTOP**RAYT1035** IF(ZZZI) 860, 910 **RAYT1940** 995 IF (J.LE.JS) 996, 997 PAYT1045 996 RD=RD+R **RAYT1059** TD=TD+TAU **RAYT1055** URDDK=DRDDK-DRDK **RAYT106**] IF (ICASE .EQ. 1 . AND. J.EQ. JS) RETURN **RAYT1065** GO TO 1000 **RAYT107** 997 IF(ICASE.EQ.1)RETURN RAYT1075 RU=RU+R **RAYT1099** TU=TU+TAU PAYT1035 DRUDK = DRUDK + DPDK **RAYT1090 1000 CONTINUE RAYT1095**

....

man ward

	RETURN
1-35	->D=1.€1ú
	RETURN
	END

.

٠.

N.

••••••

PAYT1133
PAYT11)5
PAYT1111
PAYT1115

- 13 -

COMMON NMET, LOMAX, C(160), U(130), V(100), Z(130), YYY(100), VVV(130), ICON 1000(100),FTT(100),T(100),P(100),PH(100),SPD(100),OI?(100),7WND(100POSI 2),ZMTT(103),A44(100),ZZZ(110),GGG(103),CCC(100) POSI ONYMOR/PARAMIZS, YEOS, ZPOS, INSV, AZV, PPCH, YYAW, AMCH, VVZ, VVXY, POST P031 1 12-91, HHZ-23, CZPU, FZPU SETS UP SOURCE PAPAMETERS OF VEHICLE POST LOCATES SOUPCE LEVEL IN DATA SYSTEM POST PUST. JS=LEVEL AT UR FIRST BELOW ZS. SETS STARTING PARAMETERS FROM DATA (JIRECTIONAL) POSI POSI 140=? CALL HIV DIF (25, ZVEH, ALONG, HVEH, ANS1, ANS2, ANS3, INJ) 203I POSI xPOS = (ANS1-ALONG(1))*6.373.6/57.295 POST 11:0=2 GALL DIVDIF (23, ZVEH, ALAT, NVFH, ANS1, ANS2, ANS3, TND) POSI POST YPOS = (ANS1-ALAT(1))+6.373E5/57.235 XPOS = XPOS * COS(ANS1/57.295) POST POSI PUGV= SURT(XPOS**2 + YPOS**2) POSI 133 30 40 T = 1.442HPOSI 195 IF(4AS((ALAT(1)-ALAT(1))/ALAT(1)) .LE. 0.00) 40,59 P05I 11] 40 CONTINUE POSI 115 50 AZV = ATAN((ALONG(I) - ALONG(1))/(ALAT(I) - ALAT(1)) POSI 123 * COS(ANS1/57.295)) X POSI 125 IN0=2 CALL DIVEIF (ZS, ZVEH, PCH, NVEH, ANS1, ANS2, ANS3, IND) PCSI 131 POSI 135 PPCH=4NS1 P03I 143 IND=? POSI 145 CALL DIVDIF (ZS, ZVEH, YAW, NVEH, ANS1, ANS2, ANS3, IND) POSI 151 YYAW=ANS1 POSI 155 1110=2 P031 161 CALL DIVDIF (ZS, ZVEH, AMACH, NVEH, ANS1, ANS2, ANS3, IND) POSI 165 AMCH=ANS1 POST 173 IN1)=2 POSI 175 CALL DIVDIF (ZS, ZVEH, VEL, NVEH, ANS1, ANS2, ANS3, IND) POST 131 VVX=ANS1 POSI 195 IN9=? P05I 133 CALL DIVUIF (ZS, ZVEH, GAMMAR, NVEH, ANS1, ANS2, ANS3, IND) POSI 195 VVXY = VVX * COS(ANS1/57.295) POSI 200 = VVX + SIN(ANS1/57.295) VVZ SETS UP SOURCE PAPAMETERS OF ATMOSPHERE (NON DIRETIONAL) POSI 205 POSI 211 IN0=2 POSI 215 CALL DIVDIF (ZS,7MET,T,NMET,ANS1,ANS2,ANS3,IND) POSI ?23 TZRO=ANS1 POSI 225 IND=2 POSI 230 CALL DIVDIH _2S, ZMET, PH, NMET, ANS1, ANS2, ANS3, IND) POSI 235 RHZRO=ANS1 POSI 241 IND=2 CALL DIVDIF (ZS, ZMET, C, NMET, ANS1, ANS2, ANS3, IND) POS1 245 POSI 251 CZRO=ANS1 IND=2 POSI 255 CALL DIVDIF (ZS,ZMET,P,NMET,ANS1,ANS2,ANS3,IND) POSI 261 PZRO=EXP(ANS1) POSI 265 PPINT 11 POSI 271

, ALON , (103), ALAT (103), VEL (133), GAMMAP (190)

COMMON/TPAJ/NV(H,TIM(103),ZVTH(103),AMACH(100),PCH(100),YA4(103)

PUSI

POST

POST

1

5

11

15

2)

25

31

?5

4)

45

5]

55

51

ヮう

7)

75

11

15

21

95

X

SUPPOUTINE POSITN

C

4 4	CODMAT	. * *	CONNECTEDE -	•	200	
11	FURMAL		SUURCE PAPAMETERS)	P04	>1 213
	4ZVV=4?	28+57+235			-09 	SI 291
	PPINT 1	13, ZS,X205	,YPOS,PNGV,AZV,PPCH,	YAW, AMCH, JVZ,	VVXY,TZ20, PO	SI 235
	18HZ R0,0	CZRO,PZRO			50.	SI 291
13	FORMAT	(*0	SOURCE ALTITUDE	= *,E12.4,/	P04	SI 295
	2	¥	X-0008D	= *,£12.4,/	P04	SI 300
	1	+	Y-COOPD	= *,E12.4,/	50c	SI 3)5
	3	#]	HOFIZ PANGE	= *,E12.4,/	> 0:	SI 313
i	iq.	¥ŋ	VEHICLE A7IMUTH	= *,E12.4,/	104	SI 315
	5	* 0	VEFICLE PITCH	= *,E12.4,/	P.).	SI 321
1	6	Ŧ	VEHICLE YAW	= *,812.4,/	.0د	SI 325
	7	* 0	VEHICLE MACH NO.	= *,E12.4,/	P0,	SI 333
	1	¥	VEHICLE Z-VELOCITY	= *,E12.4,/	504 	SI 335
	ዓ	₩ 0	VEHICLE XY-VELOCITY	= *,E12.4,/	ອງ	SI 347
	2	₩ÿ	T (ZS)	= *.F12.4./	09	5I 345
	3	* g	DEW-POINT	= *,F12.4,/	P04	SI 351
	4	# 0	C (ZS)	= *,t12.4,/	P01	SI 355
i	5	# 0	P (ZS)	= *,E12.4)	F0:	SI 76)
	PETUPN				PO:	SI 365
	END				P01	SI 373

÷.

Ξ

,

89 - 15 -

-

•

	SUBROUTINE RD MET	აე	м	3
	COMMON NMET,LCMAX,C(100),U(100),V(100),Z(100),YYY(100),V/V(100),	3 Ü	Μ	う
	1000(100),TTT(100),T(100),P(100),RN(100),SPD(100),0IR(100),ZWND(139	٥ŋ	M	17
	2),ZMET(100),4AA(100),ZZZ(100),GGG(100),CCC(100)	эÜ	M	15
	10 FORMAT (3110)	сŋ	M	2)
	12 FORMAT(11E12.3:	90	Μ	25
C	READ DATA AND INTERPOLATE AND PRINT THE PESULTS.	ŚŊ	M	3]
	READ 10, NHET, NWND, IMET	r. D	м	35
	PPINT 18, IMET, NMET	٥D	М	4]
	IF (IMET.EQ.4) 29,32	μŊ	M	45
	28 DO 30 I=1,NMET	RD	Μ	53
	PEAD 12, ZMET(I),P(I),T(I),RH(I),DIR(I),SPD(I)	۶Ŋ	Μ	- 55
	P(I)=ALOG(P(I))	20	ł.	51
	30 CONTINUE	۶Ŋ	M	63
	GO TO 40	2 0	M	7]
	32 DO 34 I=1,NMET	эŊ	M	75
	READ 12, ZMET(I),F(I),T(I),RH(I)	20	М	- 53
	P(I) = ALOG(P(I))	. י ŋ	м	- 15
	34 CONTINUE	ວມ	M	- 71
	36 I = 1, NMET	υIJ	м	95
	RFAD 12, ZWND(I),DIR(I),SPD(I)	50	Μ	131
	36 CONTINUE	КD	Μ	135
	40 CALL FIXMET (IMET, NMET, NWND; ZWND, ZMET, P, T, RH, DIR, SPO, C, DPT)	٥Ŋ	M	113
	8 FORMAT(*1 Z P(MB) T(C) DEW PT DIR	~0	м	115
	1 SPD C +//)	0ڊ	Μ	121
	LMAX=NMET	9D	M	125
	PPINT 8	6 G G	Μ	130
	DO 50 I = 1,NMET	эIJ	Μ	135
	PP = EXP(P(I))	RD	м	143
	PRINT 12, ZMET(I), PP, T(I), RH(I), DIR(I), SPD(I), C(I)	RD	М	145
	50 CONTINUE	ວມ	Μ	151
	1 FORMAT(A10)	5D	۲	155
	18 FORMAT (#1 METEROLOGICAL OPTION # 110,# NHET = #14)	ອກ	M	169
CC	000000000000000000000000000000000000000	20	M	165
	RETURN	D d	M	17)
	END	٩D	Μ	175

- 16 -

90

,

C

•

		_SURPOUTINE_FIXMET_(IMET1,NMET,NWND,ZWND,ZMFT,P,T,R4,DIK,SPU,C,OPT)	FIXM)
Ç		IMET=1 INTERPOLATES WIND INTO RADIOSONDE LEVELS	FIVM	5
C		FNDS UP WITH NMET LEVELS	-IXM	11
C,		INCT = 2 INTERPOLATES RADIOSONDE TO WIND LEVELS	FTXM	15
С		IMET = 3 MERGES THE THO	ETXM	7 1
C		ACCEPTS DATA AND MAKES UP ONE SOUNDING FOR ALL	CTYM	
c.		ADIS COMPUTED SPEED OF SOLIND	C T V M	
Ŭ		THENSTON AARADA BRINS CONTRACT CONTRACT CONTRACT ADVANT	r 1 Ar 	
		12-20-20-20-20-20-20-20-20-20-20-20-20-20	F I KM	• • •
		14F (33) AU(33) AC(0) AC(0) AC(3) AC	FIXM	-+ }
		UIMENSION ZHNU(1), ZMEI(1), P(1), F(1), Q4(1), DIR(1), GD(1), C(1)	FIXM	45
		IF (IMF11 .E.J. 4) GO TO 65	FIXM	51
-		50 10 (12,22,12), IMET1	FIXM	55
C		INTERPOLATES WIND AT PADIOSONDE LEVELS	FIXM	61
	12	30 18 I=1,NMcT	FIXM	らう
		TT=7MET(T)	FIXM	7]
		CALL INTRP(NWND,ZWND,DIR,TT,FT,IR)	FIXM	75
		IF(IP)16,14	FTXM	4 1
	14	J7(I)=3P(I)=39399.	ETYM	45
	_	G0 T0 18		
	16		r 1 * F	
		10117-11 1110-1110-1110-1110-110-100-11-01-100-11-01-100-10-1	r 1 KM	95
		Set into (Annogrand): Poil (1918)	F1XM	133
	•		FIXM	1,2
	10		FIXM	11)
		10 (19,22,22), IME 11	FIXM	115
	1	, 2J I=1,NMET	FIXM	121
		SPO(I) = EE(I)	FIXM	125
	20	01?(I)=00(I)	FIXM	133
		GN TO 50	FIXM	135
Ĉ		INTERPOLATES RADICSOND TO WIND LEVELS	FIXM	141
	22	00 24 I=1,VMET	FTXM	145
	24	PL(I)=L0GF(P(I))	FTYM	161
		DO 30 I=1,NWND	ETYM	165
		TT=7WND(I)	C T V M	127
		CALL INTRP(NHET.ZMET.FL.TT.FT.YP)	C 1 401	101
		IF (IP)2A.26	L T Y W	107
	26	AA(T) = 38(T) = 00000	- <u>1</u> - 1	173
			F T X M	175
	20		FIXM	143
	60		FIXM	195
		UNEL INTREAMETSZETSTSTSTSTSTSTSTSTST	FIXM	193
			FIXM	135
		CALL INTRP(NMET,ZMET,RH,TT,FT,IR)	FIXM	231
		CC([]=FT	FIXM	215
	30	CONTINUE	FTXM	211
		GO TO (60,32,36),IMET1	FTYM	215
	32	DO 34 I=1.NWND	CTVM	221
		P(I) = AA(I)		223
		T(I)=88(I)	CTVM	221
	34	RH(T) = GC(T)	C T AR	231
		MME AND		237
		60 TO 60	TXM	241
C		TNTERROLATES FACH INTO OTHER	FIXM	245
ř		THICKFULATED CHUR INTEDDALATED WAN WELD THE AND	FIXM	25]
U	70	SUUNDINGS ALREAUT INIERPULATED. NOW MELD INTO ONE	FIXM	255
	30		FIXM	260
		J=1	FIXM	265
		K=1	TIM	271
				- · -

.

91

- 17 -

38	IF(ZMET(J)-ZWND(K))40,40,44	FIXM 275
40	49(I)=7MET(J)	FIKM 230
	AC(I)=P(J)	FIXM 235
	AD(*)=T(J)	FIXM 23)
	AE(I)=RH(J)	FIXM 295
	AF(I)=DD(J)	FJXM 311
	4G(I)=EE(J)	FIXM 715
	IF(J.LT.NMET)42,48	FIXM 311
42	J=J+1	FIXM 315
	I=I+i	FIXM 321
	GO TO 38	FIXM 725
44	43(I)=7WNJ(K)	FIXM 331
	AC(I) = AA(K)	FIXM 339
	40(I)=-38(K)	FIXM 3+1
	AE(I) = CC(K)	FIXM 345
	AF(I)=DIR(K)	FIXM 351
	AG(I) = SPD(K)	FIXM 355
	IF (K.LT.N. + ND) 46,52	FIXM 351
46	K=K+1	FIXM 369
	I=I+1	FIXM 371
	GO TO 38	FIXM 375
48	IF(K.LT.NWND)53,56	FTXM 343
50	J=J+1	FIXM 335
	I=I+1	FIXM 391
	ZMET(J)=99999.	FIXM 395
	50 TO 38	FIXM 4J)
52	IF(J.LT.NMET)54,56	FIXM 435
54	K=K+1	FIXM 413
	[=I+1	FIXN 415
	ZWNJ(K)=93999.	FIXM 421
	GO 10 38	FIXM 425
56	NMET=NWND=I	HIXM 43J
	DO 58 I=1,NMET	EIXM 435
	ZMET(I)=AB(I)	FIXM 440
	P(I)=AC(I)	FIXM 445
	T(I)=AD(I)	FIXM 451
	PH(I)=AE(I)	FIXM 455
	DIR(I) = AF(I)	FIXM 463
58	SFD(I) = AG(I)	FIXM 465
50	CONTINUE	FIXM 473
	ON COMPLETION THERE IS ONE COMBINED WIND AND	FIXM 475
	RADIOSONDE OBSERVATION WITH NMET LEVELS OF	FIXM 431
	ZMET(I), ALT. TUDE P(I), PRESSURE T(I), TEMPERATUPE	FIXM 435
	PH(I), RELATIVE HUMIDITY, DIRECT WIND DIRECTION AND	FIXM 49]
	SPD(I), WINU SPEED.	FIXM 495
	CALCULATES SPEED OF SOUND.	FIXM 53)
65	UU /U I=I;NMLI	FIXM 535
		FIXM 511
	UPI = KR(1)	FIXM 515
	GALL KELMUN(II)UNI)YYYZJ	FIXM 520
**	={ +C/3,10}/(1,-3,**//(0,**CXP(((1)))) /////////////////////////////////	FIXM 525
1	U(1/=JJ)+47-24411(1/2/3+10)	F1XM 53]
		F1KM 535
	run .	FIXM 54]

92

- 18 -

,

```
PARA
      SUBROUTINE PARAB
                                                                                      3
     COMMON LMAX, LGMAX, C(100), U(100), V(100), Z(100), YYY(100), VVV(100),
                                                                              PAZA
                                                                                      5
     1000(100),TTT(100),T(100),P(100),PH(100),SPD(100),DIP(100),ZWND(100PARA
                                                                                     10
            (100), AAA(100), ZZZ(100), GGG(100), CCC(100)
                                                                              PAPA
                                                                                     15
     21.Y
                                                                              PARA
                                                                                     20
      DIMENSION YY(100), VV(100), CC(190), AA(100), ZZ(100), GG(100)
                                                                              PAQA
                                                                                     25
      PARABOLIC LAYER MODEL.
      ADJUSTS LAYERS AND GETS PARABOLA PARAMETERS.
                                                                              PARA
                                                                                     30
      FIRST LAYER, TWO POINTS AND ONE TANGENT PAPAROLA.
                                                                              PARA
                                                                                     35
                                                                              PARA
                                                                                     4J
      F1 - V(1)
      F2 = V(2)
                                                                              PARA
                                                                                     45
      Z1 = Y(1)
                                                                              PARA
                                                                                     53
                                                                              PARA
      Z_2 = Y(2)
                                                                                     35
      F2P = (V(3) - V(1)) / (V(3) - V(1))
                                                                              PARA
                                                                                     61
      DZ = Z2 - Z1
                                                                              PARA
                                                                                     65
      FS = (F2-F1)/DZ
                                                                              PARA
                                                                                     79
                                                                              PARA
                                                                                     75
      C1 = (F2P-FS)/DZ
      B1 = FS*2.*Z2/DZ - F2P*(Z1+72)/DZ
                                                                              PARA
                                                                                     90
      A1 = F1 + (Z2*F2P-FS*(2*Z2-Z1))*Z1/DZ
                                                                              PARA
                                                                                     35
      AA (1) = 41 - (B1^{++}2)/(4^{+}C1)
                                                                              PARA
                                                                                     90
                                                                              PARA
                                                                                     95
      GG(1) = C1
      ZZ(1) = -B1/(2.*C1)
                                                                              PARA 100
                                                                              PARA 105
      VV(1) = V(1) - V(1) = V(1)
                                                                              PARA 113
      CC(1) = C(1)
                                                                              PARA 115
      LM2 = LMAX - 2
                                                                              PARA 12]
      LC = 1
                                                                              PARA 125
      D0740L = 2,L42
                                                                              PARA 130
      LP = L + 1 + 1 + 2 + 2 + 2 + 1 = L - 1
      F1 = V(L)
                                                                              PARA 135
                                                                              PARA 140
      F2 = V(LP)
      Z1 = Y(L)
                                                                              PARA 145
      Z2 = Y(LP)
                                                                              PARA 150
      FM = V(LM)
                                                                              PARA 155
      ZM = Y(LM)
                                                                              PARA 160
      FP2 = V(LP2)
                                                                              PARA 165
                                                                              PARA 170
      ZP2 = Y(LP2)
                                                                              PARA 175
      DZ = Z2 - Z1
      DF = F2 - F1
                                                                              PARA 180
      F1P = (F2 - FM)/(Z2-ZM)
                                                                              PARA 185
                                                                              PARA 190
      F2P = (FP2-F1)/(ZP2-Z1)
                                                                              PARA 195
      BOTTOM HALFLAYER.
C
                                                                              PARA 200
      A1 = F1
                                                                              PARA 205
      B1 = F1P^{+}DZ/2.
                                                                              PARA 210
      C1 = (DF - (F2P + 3. F1P) + DZ/4.)/2.  LC = LC + 1
      IF(ABS (C1/B1).LT.1.E-3) GO TO 700
                                                                              PARA 215
      AA(LC) = A1 - (B1^{++}2)/(4.+C1)
                                                                              PARA 220
      ZZ(LC) = Z1 - B1^{+}DZ/(4^{+}C1)
                                                                              PARA 225
      GG(LC) = 4.*C1/(DZ^{++2})
                                                                              PARA 230
                                                                              PARA 235
      60 TO 710
  700 AA(LC) = A1
                                                                              PARA 240
      GG(LC) = 2.+81/0Z
                                                                              PARA 245
                                                                              PARA 250
      ZZ(LC) = 0.
      THIS ZZ(LC) VALUE FLAGS LINEAR FORM A + G(Z-ZO), ZO = VALUE AT
                                                                              PARA 255
C
       BOTTOM.
                                                                              PARA 260
C
  710 CC(LC) = C(L)
                                                                              PARA 265
      YY(LC) = Y(L)
                                                                              PARA 270
```

...

.

Į

Í

1

÷

```
93
```

- 19 -

C

		VV(LC) = V(L)	PARA	275
C		TOP HALF LAYER.	PARA	280
•		$A_1 = (F_1 + F_2 - (F_2 P - F_1 P) + D7/4_)/2_0$	PARA	285
		B1 = DF - (F2P + F1P) + D7/4	PARA	290
		C1 = -(DF - (3, FE2P+F1P) + D7/4, 1/2,	PARA	295
		10 = 10 + 1	PARA	300
		TE(ABS + (C1/B1) + T + 1 + E + 3) = 60 = TO = 723	PARA	315
			PADA	310
		77/101 - 1794711/9 - R1#07/14.#011	DARA	315
			PARA	320
		00(L0) - 40.01/(D2.2)	DADA	325
	226		DADA	323
	120	AA(LO) = 41	DADA	776
		$\frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100}$		332
		22(10) = 0		344
	730	UC(LC) = (U(L)+U(LP)+((U(LP2)+G(L))/(2P2+21)+(U(LP)+U(LR))	DADA	342
	1	1 / (72-28)) + 0274-172		374
	-	YY(LC) = (22+21)/2.	PAKA	377
	740	VV(LC) - 41	PAKA	300
_		LCMAX = LC	PAKA	365
C		CHECKS FOR MAX WITHIN HALF LAYERS AND RESUPDIVIDES.	PAKA	3/1
		LC = 0	PACA	375
		LM = LCMAX-1	PARA	353
		00770 L = 1, LM	PARA	335
		LC = LC + 1	PARA	391
		AAA(LC) = AA(L)	PARA	395
		227.(LC) = 22(L)	PARA	403
		usc(LC) = GG(L)	PARA	405
		CCC(LC) = CC(L)	PARA	410
		$AAA(\Gamma C) = AA(\Gamma)$	PARA	415
		VVV(LC) = VV(L)	PARA	423
		LP = L + 1	PARA	425
		Y1 = YY(L)	PARA	430
		Y2 = YY(LP)	PARA	435
		Y3 = ZZ(L)	PARA	440
		IF (Y3.EQ.Y1) GO TO 770	PARA	445
C		HAX/MIN/LINEARITY DOES NOT FALL AT BOTTOM OF LAYERS.	PARA	453
		IF (Y3.GT.Y1.AND.Y3.LT.Y2) 758, 770	PARA	455
C		MAX/MIN WITHIN LAYERS.	PARA	463
	750	IF (GG(L).GT.0.) 770, 760	PARA	465
C		SUBDIVIDES ON MAX WITHIN LAYERS.	PARA	470
	760	LC = LC + 1	PARA	475
		AAA(LC) = AA(L)	PARA	480
		ZZZ(LC) = ZZ(L)	PARA	485
		GGG(LC) = GG(L)	PARA	490
		CCC(LC) = CC(L) + (CC(LP) - CC(L)) + (ZZ(L) - YY(L)) / (YY(LP) - YY(L))	PARA	495
		YYY(LC) = ZZ(L)	PARA	500
		VVV(LC) = AA(L)	PARA	505
	770	CONTINUE	PARA	510
		LCMAX = LC	PARA	515
		VELS = 20.0468	PARA	520
	6	FORMAT(*1 PARABOLIC DATA */8X* A G	PARA	525
	:	1 ZO C U V Z +)	PARA	530
		00 775 I = 1, LCHAX	PARA	535
		IJ=I	PARA	540
		IF((I-I/50*50).EQ.1) PRINT 6	PARA	545

Bi the

يسمد

÷

94

- 20 -

1

į

.

```
PARA 550
    TTT(I) = ((CCC(I))/(VELS))**?
                                                                         PARA 555
    UUU(I) = VVV(I) - CCC(I)
                                                                         PARA 560
    TTT(1) = T(1) + 273.15
    PRINT 791, IJ, AAA(IJ), GGG(IJ), ZZZ(IJ), GCC(IJ), UUU(IJ), VVV(IJ), VYY(PARA 565
                                                                         PARA 573
  1.IJ)
                                                                         PARA 575
731 FOPMAT(I13,7E12.4)
                                                                         PARA 580
275 CONTINUE
                                                                         PARA 585
    RETURN
                                                                         PARA 590
    117
```

95 - 21 -

1

١

!

ı.

ł

	SUBROUTINE INTRP (NP+X+Y+T+FT+IR)	INTR	ŋ
	GENERAL LINEAR INTERPOLATION SUBROUTIVE	INTR	- 5
	X IS ABSCISSA ARRAY	INTR	10
	Y IS ORDINATE ARRAY	INTR	15
	TT IS ABSCISSA FOR WHICH ORDINATE IS REQUIRED	INTR	20
	FT IS THE REQUIRED ORDINATE	INTR	25
	TP IS RANGE INDICATOR. +1 IF IN RANGE1 IF OUT OF PANGE.	INTR	30
	OTMENSTON X (25) . Y (25)	INTR	35
	IR=1	INTR	40
1	10 2 T=1.NP	INTR	45
-	IF(X(T)-T)2.3.4	INTR	50
2	CONTINUE	INTR	55
•	T=NP	INTP	60
7	FT=V(T)	INTR	65
	60 TO 5	INTR	70
4	K=T=1	INTR	75
-	FT = Y(K) + (Y(T) - Y(K)) + (T - Y(K)) / (X(T) - X(K))	INTR	83
5	RETIRN	INTR	85
	END	INTR	90

- 22 -

ļ

	SUBPOUTINE RELHUM (TEMP.DPT.PH.IND)	RELH	0
	CONVERTS TEMPERATOP AND DEW POINT TO RELATIVE HUMIDITY WHEN IND=1	RELH	5
	IND=2 RETURNS VAPOR PRESSURE	RELH	10
	DIMENSION T(11).E(11)	RELH	15
	NATA((F(T),T=1,11)=0.27.0.77.1.98.4.99.10.02.19.39.35.65.62.76,	RELH	20
1	106.11.173.11.273.3)	RELH	25
-	DATA((T(1), T=1, 11) = 240, 250, 260, 270, 280, 290, 300, 310, 320, 320, 320, 320, 320, 320, 320, 32	RELH	30
1	33(1	RELH	35
•	T1=1	RELH	40
	X=TEMP+273.16	RELH	45
1	TF(T(1)-X)2.2.8	RELH	50
2	DO 3 T=1.11	RELH	- 55
-	TF(T(T) - X) 3 - 4 - 5	RELH	60
3	CONTINUE	RELH	65
-	60 TC 8	RELH	70
4	F1=F(T)	RELH	75
•	G0 T0 9	RELH	80
5	K=T-1	RELH	85
•	AA=ALOG(E(I))	RELH	90
	BP=ALOG(E(K))	RELH	- 95
	LINEAR INTERPOLATION ON E VS. T CURVE	RELH	100
	F1=BB+(AA-BB)*(X-T(K))/(T(I)-T(K))	RELH	105
	IF(IND-1)9.9.10	RELH	110
Ą	GG TO (6.7).I1	RELH	115
0	F1=EXPF(F1)	RELH	120
-	11=?	RELH	125
	X=DPT+273.16	RELH	130
	50 TO 1	RELH	1.35
7	F2=EXPF(F1)	RELH	140
	RH=F2/F1	RELH	145
	RETURN	RELH	150
8	RH=0.	RELH	155
	RETURN	RELH	160
	IF IND=2, OUTPUTS VAPOR PRESSURE IN RH.	RELH	165
10	RH=EXPF (F1)	RELH	170
	RETURN	RELH	175
	END	RELH	180

97 - 23 -

C

C C

ł

C

DIVD 0 SUBROUTINE DIVDIE (X,XX,YY,N,ANS1,ANS2,ANS3,IND) 5 DIVD INTERPOLATES AND GETS DERNATIVES ON BASIS OF DIVIDED DIFFS. DIVD 10 X IS ARSCISSA FOR WHICH VALUES ARE REQUIRED DIVD 15 IND IS DEGREE OF INTEPP TO BE USED WHEN INPUT DIVD 23 XX IS TABLE OF ABSCISSA IS TABLE OF ORDINATES DIVD 25 YY N IS NO. OF TABLE ENTPIES DIVD 30 ANS1 IS INTERPOLATED VALUE DIVD 35 ANS2 IS INTERPOLATED FIRST DERIVATIVE DIVD 49 DIVD 45 ANS3 IS INTERPOLATED SECOND DERIVATIVE DIVD 50 IS CUBTC DIVD 55 DIMENSION XX(1), YY(1) DIVD 60 IF(XX(1)-X)2,2,1DIVD 65 1 IND = -1DIVD 70 ANS1 = ANS2 = ANS3 = 0. DIVD 75 PETURN DIVD 80 2 DO 3 I=2,N DIVD 85 IF(XX(I)-X)3,4,4 DIVD 90 **3 CONTINUE** DIVD 95 50 TO 1 **DIVD 100** K=I-1 44 **DIVD 105** 00 TO (5,6,9), IND DIVD 110 5 A1=YY (K) **DIVD 115** A2=YY (K+1) DIVD 120 31=XX(K) **DIVD 125** 92=XX (K+1) **DIVD 130** F1 = (A1 - A2) / (B1 - B2)**DIVD 135** GO TO (51,52,52),IND DIVD 140 51 ANS1=A1+(X-B1)*F1 DIVD 145 ANS2=ANS3=0. **DIVD 150** GO TO 53 **DIVD 155** 52 ANS1=A1+(X-B1)*F1 DIVD 160 ANS2=F1 DIVD 165 ANS3=0. **DIVD 179** 53 IND=1 DIVD 175 RETURN DIVD 180 IF (K-1) 1,7,8 6 **DIVD 185** 7 K=K+1 **DIVD 190** A1=YY (K-1) 8 **DIVD 195** A2=YY(K) DIVD 200 A3=YY (K+1) DIVC 205 81=XX(K-1) DIVD 21G B2 = XX(K)**DIVD 215** B3=XX (K+1) F1 = (A1 - A2) / (B1 - B2)DIVD 220 **DIVD 225** F2=(A2-A3)/(B2-B3) DIVD 230 G1 = (F1 - F2) / (B1 - B3)**DIVD 235** X1=X-81 DIVD 240 X2=X-82 DIVD 245 ANS1=A1+X1* (F1+X2*G1) **DIVD 250** GO TO (81,82,83), IND DIVO 255 81 ANS2=ANS3=0. DIVD 260 GO TO 84 **DIVD 265** 82 ANS2=F1+(X1+X2)=G1 **DIVD 270** ANS3=0

1093

.

- 24 -

98

00000000000

C

i

	IF (IND.EQ. 3) 83.84	DIVD	275
83	ANS 3=2.*G1	DIVD	289
94	IND=2	DIVD	285
	RETURN	DIVD	290
9	IF(K-1)1,10,11	DIVD	295
10	K=K+1	DIVD	300
	60 TO 13	DIVD	305
11	IF (N-1-K) 12,13,13	DIVD	310
12	K=K-1	DIVD	315
13	A1=YY(K-1)	DIVD	320
	A2=YY (K)	DIVD	325
	43=YY (K+1)	DIVD	330
	44=YY (K+2)	DIVD	335
	B1=XX (K-1)	DIVD	340
	92=XX (K)	DIVD	345
	B3=XX (K+1)	DIVD	350
	B4=XX (K+2)	DIVD	355
	F1=(A1-A2)/(B1-B2)	DIVD	360
	F2=(A2-A3)/(B2-B3)	DIVD	365
	F3=(A3-A4)/(B3-B4)	DIVD	370
	G1=(F1-F2)/(B1-B3)	DIVD	375
	G2=(F2-F3)/(92-84)	DIVD	330
	H1=(G1-G2;/(B1-B4)	DIVD	395
	X1=X-B1	DIVD	391
	x2=x-82	DIVD	395
	X3=X-B3	DIVD	400
	ANS1=A1+X1*(F1+X2*(G1+X3*H1))	DIVD	405
	GO TO (131,132,132),IND	DIVD	410
131	ANS2=ANS3=0.	DIVD	415
	GO TO 134	DIVD	420
132	ANS2=F1+(X1+X2)*G1+(X1*X2+X1*X3+X2*X3)*H1	DIVD	425
	ANS3=0.	DIVD	430
	IF(IND.EQ.3) 133,134	DIVD	435
133	ANS3=2.*(G1+(X1+X2+X3)*H1)	DIVD	440
134	IND=3	DIVD	445
	RETURN	DIVD	450
	END	DIVD	455

- 25 -

,

-

- 26 -

	SUBROUTINE SORT(N,X,Y)	SORT	Ð
	DIMENSION X(1),Y(1)	SORT	5
	N1=N-1	SORT	19
	00 59 I=1,N1	SORT	15
	00 50 K=I,N1	SORT	20
	J=K+1	507T	25
	IF(X(J),GE,X(I)) GO TO 59	SURT	30
	S=X (J)	50-2T	35
	X(J)=X(I)	SORT	40
	x(I)=S	SORT	45
	S=Y (J)	SORT	50
	(J)Y={(J)Y	SORT	55
	Y(I)=S	SORT	61
50	CONTINUE	SORT	65
	KETUPN	SORT	73
	END	TSORT	75
			-

```
- 27 -
```

	SUBPOUTINE FIXVEH (IVEH, NVEH, TIM, ZVEH, AZV, RNG, PCH, YAW, VX, VY, VZ)	FIXV	J
	COMPUTES REQUIRED TPAJ DATA AS BEST IT CAN FROM INPUT	FIXV	5
	IVFH=1, FOR VX,VY,VZ WITH RESPECT TO TRACECTORY	FIXV	1)
	PLANE. ROTATES TO N-E-COOPDINATES	LIXA	15
	IVEH=2, VX, VY, VZ COMPUTED NO N-E-COORDS-	FIXV	20
	IVEH=1, FOH, YAW ALSO COMPUTED, YAW=0.	FIXV	25
	NVEH = NUMBER OF TRAJECTORY LEVELS	FIXV	30
	TIM(I) = TIME FROM START (SECONDS)	FIXV	35
	VFH(I) = ALTITUDE OF VEHICLE (KILOMETERS)	LIXA	40
	RMG(I) = RANGE FROM LAUNCH (KILOMETERS)	FIXV	45
	37V(I) = AZIMUTH FROM NORTH (DEGREES CLOCKWISE)	FIXV	5)
	PCH(I) = PITCH DEGREES	FIXV	55
	YAW(I) = DEGPEES FROM TPAJECTORY PLANE	FIXV	60
	VA(I) = VEHICLE SPEED (LAST COMPONENT)	FIXV	65
	VY(I) = VENICLE SPEED (NORTH COMPONENT)	FIXV	70
	VZ(I) = VEHICLE SPEED (VERTICLE COMPONENT)	FIXV	75
	<pre>JIMENSION TIM(1),ZVEH(1),AZV(1),PNG(1), PCH(1),VAW(1),VX(1),VY(1</pre>),FIXV	80
1		FIXV	- 95
	NVEHM=NVEH-1	FIXV	93
	DO S I=1,NVEHM	FIXV	- 95
	IF(I-1)2,2,4	FIXV	109
Ş	IS=?	FIXV	105
	6a TO 6	FIXV	110
4	15=1	FIXV	115
6	IP=IS+1	FIXV	123
	[M=IS-1	FIXV	125
	ANG=4ZV(I)+0.31745329	FIXV	139
	SAZV=SINF(ANG)	FIXV	135
	CAZV=CQSF(ANG)	FIXV	140
	GO TO (3,19,10), IVEH	FIXV	145
8	AX=VX(I)+3AZV-VY(J)+S#ZV	FIXV	150
	AY=VX(1)+SAZV+VY(1)+CAZV	FIXV	155
	VX(T) = AX	FIXV	167
	VY(I)=AY	FIXV	165
•		FIXV	1/0
19		FIXV	1/5
	URDI = (MNG(IP)-RNG(IM)//UI	FIXV	150
		FIXV	175
		PIXV	197
		PIXV PIXV	197
	VT(1)=UKU1+CAZA-KNG(1)+SAZA+U1HU1	P1XV ETVN	203
		5 1 X Y	232
	60 10 (14)14)12) JVEM	* 1 X V	210
12	PGM(1)=A1ANF(JZU1/UKU1) MANATA=0	1XV	215
	TAW (1)=U.	F 1 XV	220
14		F 1 X V	223
			238
	END	L T Y A	233

i

.