
ALLMAT: A TSS/36O FORTRAN IV
SUBROUTINE FOR EIGENVALUES
AND EIGENVECTORS OF A
GENERAL COMPLEX MATRIX

by Gale Fuir

Lewis Reseurch Center
Clevehnd, Ohio 44135

NATIONAL AERONAUTICS A N D SPACE ADMINISTRATION WASHINGTON, D. c. . J A N U A R Y ' 1971

TECH Ll6RARY KAFB, NM

7. Author(s1

Gale Fair

9. Performing Organization Name and Address

Lewis Research Center
National Aeronautics and Space Administration

I11Il1111111 lHll11111 /I111 11111 lllll1111 Ill

8. Performing Organization Report NO.

E- 5885
10. Work Unit No.

129-02
11. Contract or Grant No.

. 0133471
1. Report No. I 2. Government Accession No. 3. nrcipienrs ura iog IYO.

19. Security Classif. (of this report)

Unclassified

NASA TN D-7032 1 I
ALLMAT: A TSS/360 FORTRAN Iv SUBROUTINE 1 '' Date

Januarv 1971
4. Title and Subtitle

21. NO. of Pages 22. Price" 1 29 1$3.00 20. Security Classif. (of this page)

. _ _ _ Unclassified

I 1 6. Performing Organization Code FOR EIGENVALUES AND EIGENVECTORS OF A GENERAL

Cleveland, Ohio 44135
'2. Sponsoring Agency Name and Address

13. Type of Report and Period Covered

Technical Note
14. Sponsoring Agency Code i National Aeronautics and Space Administration

Washington, D. C. 20546
-

5. Supplementary Notes

_ _ - ~ - -
6. Abstract

Subroutine ALLMAT is descr ibed and listed. ALLMAT computes the eigenvalues and eigen-
vectors of a general (non-Hermitian) complex matrix. The p rogram u s e s the complex QR
algorithm to compute eigenvalues and inverse i terat ion to compute eigenvectors. The u s e r has
the option of computing only the eigenvalues, if desired. An entry point EVDATA is available to
provide the u s e r with t iming and accuracy information, as well as the number of i terat ions
necessa ry for each eigenvalue and eigenvector.

-
17. Key Words (Suggested by Author(s))

Matrix algebra; Computer program,
FORTRAN; Eigenvalue; Eigenvector;
Hermitian matrix; QR Transformation;
Inverst i teration, Wielandt

18. Distribution Statement

Unclassified - unlimited

For sale by the National Technical Information Service, Springfield, Virginia 22151

ALLMAT: A TSS/360 FORTRAN N SUBROUTINE FOR EIGENVALUES

AND EIGENVECTORS OF A GENERAL COMPLEX MATRIX

by Gale Fair

Lewis Research Center

SUMMARY

A subroutine is described and listed that computes the eigenvalues and eigenvectors
of a general (non-Hermitian) complex matrix.
plex QR algorithm to compute eigenvalues and inverse iteration to compute eigenvectors.
The u s e r has the option of computing only the eigenvalues, if desired. An entry point
EVDATA is available to provide the use r with timing and accuracy information, as well
as the number of iterations necessary for each eigenvalue and eigenvector.

The program, ALLMAT, uses the com-

INTRODUCTION

Many areas of physics, mathematics, statist ics, and engineering require the eigen-
values and eigenvectors of square matrices.
t imes called the algebraic eigenvalue problem, holds a place that is as important as the
more familiar areas such as numerical integration, curve fitting, and numerical in-
tegration of differential equations. A general l ibrary of subroutines fo r a computer
installation is commonly limited to one such program, and quite often this one sub-
routine is of only limited applicability.

The ideal subroutine for the algebraic eigenvalue problem should have many fea-
tures: it should be fast and accurate; it should give a matrix of eigenvectors that are
linearly independent; it should be capable of computing only eigenvalues at a corre-
sponding increase in speed; it should have minimal storage requirements; and it must
be able to treat all matrices, real or complex, symmetric or nonsymmetric, regardless
of the condition of the matrix. Unfortunately, probably no such procedure exists.
usefulness of any subroutine may be judged on the basis of how many of these c r i te r ia
are fulfilled, as balanced against the needs of the individual user .

This area of numerical analysis, some-

The

There are many different techniques fo r diagonalizing a square matrix. The
treatise by Wilkinson (ref. 1) is evidence fo r this. Reference 1 describes the state-of-
the-art fo r the algebraic eigenvalue problem as of 1965. Typically, one chooses a
p a r t i c d a r method because he believes that his matrix has some feature that requires
special handling, because a subroutine is conveniently at hand, o r because h e knows only
that one method. Two of the most commonly used procedures are the power method and
the Jacobi transformation.

The power method is a special-purpose procedure that computes the largest eigen-
value of a matrix by the formation of a sequence of powers of the matrix acting upon an
arbi t rary vector. This procedure is useful fo r the computation of a few eigenvalues
(the largest in magnitude) and their eigenvectors.
eigenvalues and eigenvectors is both t ime consuming and inaccurate.

of a sequence of unitary transformations that diagonalize 2 x 2 submatrices of the full
matrix.
particularly useful when the eigenvectors are required to be orthogonal to a high degree
of accuracy. The limitations of the Jacobi transformation are that the accuracy of the
eigenvectors is usually limited, and as yet no extension to nonsymmetric o r non-
Hermitian matrices has been made. The most common computer l ibrary subroutine
f o r the algebraic eigenvalue problem is a real-symmetric version of the Jacobi method
(ref. 2).

been derived to compute the eigenvalues and eigenvectors, respectively. The input
matrix is reduced to a Hessenberg form (ref. l), and the QR transformation of Francis
(refs. 3 and 4) is used to compute the eigenvalues. With a lmowledge of the eigenvalues,
the Wielandt inverse iteration method (ref. 1) generates the eigenvectors. The QR
transformation and inverse iteration appear to be the best currently available for their
respective tasks (ref. 1) in t e rms of accuracy and speed. This combined procedure has
been coded at the Oak Ridge National Laboratory (ref. 5) f o r an IBM 360/50 using the
H-level FORTRAN compiler and COMPLEX*16 arithmetic. This program was used as
the basis f o r the subroutine to be described in this report.

additions were made to the ORNL program, as follows.
the Hessenberg form may be decomposed into disjoint submatrices is incorporated in
both the QR transformation and the inverse iteration to reduce computational time. A
perturbation method is used to obtain linearly independent eigenvectors when eigenvalues
are either degenerate o r very nearly the s a m e value (meaning that the matrix itself may
be ill-conditioned (ref. 1)). An auxiliary entry point is provided to give the u s e r in-

The computation of a full set of

The Jacobi transformation, as it applies to a complex Hermitian matrix, consists

This procedure generates the eigenvectors along with the eigenvalues and is

For a general (i. e. , nonsymmetric o r non-Hermitian) matrix, two procedures have

In o rde r to make the subroutine as general as possible, some modifications and
The fact that for some matrices

2

formation about the number of iterations required, timing data (measured as central
processor o r CPU t ime elapsed in the computation), and e r r o r data for the resulting
eigenvalues and eigenvectors. Finally, a flag has been provided to allow the u s e r to
compute only the eigenvalues, with the use of the QR transformation. The relative con-
tribution made by the present work is seen from the observation that approximately
60 percent of the coding of the current form of the subroutine ALLMAT is the ORNL
coding while the remaining 40 percent is new.

pute the eigenvalues and eigenvectors of a square matrix.
to be the final work in such procedures, the algebraic eigenvalue problem is an area
of extensive research in numerical analysis. On the other hand, this subroutine does
satisfy most of the c r i te r ia mentioned earlier f o r the ideal subroutine, at least to some
degree. The criterion that is least satisfied is minimal storage. Because ALLMAT is
written with COMPLM*16 arithmetic and has some l a rge scratch-pad a r r ays , the sub-
routine uses a large amount of storage. On a TSS/360 system this storage requirement
is not a basic limitation on the subroutine, but it does imply that the CPU time is af-
f ected.

warning to the prospective use r of ALLMAT. If only a small number of the (largest)
eigenvalues of a matrix are desired, the power method is more efficient than ALLMAT.
F o r a real, symmetric matrix, a problem that requires eigenvectors along with the
eigenvalues would be better suited to a real Jacobi subroutine. On the other hand, for
the computation of eigenvalues alone, o r for the eigenvalues and eigenvectors of a real,
nonsymmetric matrix o r for a complex matrix, ALLMAT seems to be the best choice,
at this time.

The end result of the work described he re is a subroutine fo r the IBM/360 to com-
Certainly, this is not meant

This brief mention of storage requirements is an opportunity to interpose a slight

The next section of this report describes schematically the construction of the sub-
routine ALLMAT. This includes the information necessary fo r a programmer to use
ALLMAT. Also included are brief descriptions of the mathematical procedures used in
ALLMAT. The following section discusses the special features that have been incorpo-
rated in ALLMAT, including a description of the subsidiary ENTRY EVDATA that pro-
vides timing and accuracy information fo r the user. Finally, a number of test matrices
are used as examples fo r ALLMAT. These examples give an indication of running
t imes and accuracy obtainable with the program, even with some ill-conditioned input
matrices. A FORTRAN listing of ALLMAT is given in the appendix.

and as such it described the call vector for the subroutine and the rules f o r usage. In
addition, enough information is provided the prospective use r to allow an intelligent
application of this program to his particular problem.

This report is intended to be used as a user 's manual for the subroutine ALLMAT,

The prospective use r should not

3

apply this program to his problem without some understanding of the numerical methods
involved and of the construction of the subroutine.

GENERAL CONSTRUCTION

Usage

The information to be discussed in this section is aimed at explaining the program

The user 's access is through the statement (see the appendix fo r the complete
as a FORTRAN subroutine, along with a description of the ENTRY EVDATA.

FORTRAN listing of the subroutine):

CALL ALLMAT (AA, LAMBDA, M, MM, EVECT, NCAL)

where

AA

LAMBDA

M

MM

EVECT

NCAL

input COMPLEX*16 matrix, of dimension M I MM. Upon return from
ALLMAT, ith column of AA is ith eigenvector, corresponding to i
eigenvalue.

th

COMPLEX*16 vector of length M that contains 'eigenvalues upon return
from ALLMAT.

actual dimension of input matrix AA.

dimension of AA as it appears in a dimension statement in the calling pro-
gram. MM is the upper bound fo r the s i z e of matrices used. As
ALLMAT is currently written, MM must be no greater than 50.

a logical switch. If EVECT = . TRUE. , the eigenvectors of AA are calcu-
lated, and returned in the matr ix AA. If EVECT = .FALSE., no eigen-
vectors are calculated and AA contains no useful information upon return
f rom ALLMAT.

number of eigenvalues successfully computed by ALLMAT. If NCAL < M
some attempts of the QR transformation did not converge within 10' iter-
ations. The value of the element of LAMBDA that corresponds to this
eigenvalue has been set to zero by ALLMAT.

In addition to the pr imary entry point, a secondary ENTRY EVDATA is available to
give the u s e r information on the CPU time taken fo r the eigenvalue and eigenvector
procedures. Also available are the number of QR iterations required f o r each eigen-

4

value, the number of inverse iterations required for each eigenvector, and the Euclidean
norms of the residual vectors. A more complete description of these quantities is given
later. The usage fo r this optional entry point is

CALL EVDATA (ITS,KTS,NCO, MC0,RNORM)

where

ITS

KTS

NCO

MCO

RNORM

elapsed t ime for QR transformation for eigenvalues, including t ime to re-
duce to upper Hessenberg form. ITS is an integer, in microminutes.

elapsed t ime for inverse iteration for eigenvectors. Does not include t ime

an integer vector of dimension MM that has as its ith element the number

represented by ITS. Also an integer in microminutes.

of QR iterations for the ith eigenvalue. NCO (i) 5 10. If NCO (i) = 0,
this eigenvalue was obtained along with another, no separate QR iteration
w a s required. If NCO (i) < 0, no convergence w a s obtained for this eigen-
value within ten QR iterations.

inverse iterations necessary to obtain the ith eigenvector. MCO (i) 5 10.
integer vector of dimension MM that has as its ith element the number of

REAL*8 vector of the norms of the residual vectors of AA. See section
SPECIAL FEATURES OF ALLMAT for a more complete description.
RNORM also has a dimension MM.

As an example of the usage of ALLMAT, consider a 6x6 complex matrix AA that
is to be diagonalized. Let u s assume that the TYPE statement in the calling program
that specifies the dimensions of AA and LAMBDA has the form

COMPLEX*16 AA (10, lo) , LAMBDA(10)

The a r r ays have been overdimensioned for more generality. Let us further assume
that eigenvectors are desired from ALLMAT, s o that EVECT has been assigned a value
.TRUE.. Then the call to ALLMAT is

CALL ALLMAT (AA, LAMBDA, 6,10, EVECT,NCAL)

Upon return from ALLMAT the integer variable NCAL contains the number of eigen-
values that have been successfully computed by ALLMAT. The ith column of AA (I. E.

5

AA (1 , l) to AA (6 , l)) contains the ith eigenvector, corresponding to the eigenvalue
LAMBDA (1).

then the statement
If the timing and e r r o r information provided by EVDATA are desired by the user ,

CALL EVDATA (ITS, KTS, NCO, MCO, RNORM)

is used, where NCO, MCO, and RNORM have been dimensioned at least six in the calling
program. The conversion from ITS o r KTS (in microminutes) to milliseconds is ob-
tained by multiplying either integer by 0.06 and assigning the result to a floating-point
variable.

QR TRANSFORMATION

The basis of the QR transformation is a theorem by Francis that states any non-
singular matrix A has a unique decomposition into the product of a unitary matrix Q
and an upper triangular matrix R (ref. 3) , o r

A = QR

The QR algorithm consists of forming a sequence of matrices s imilar to A (=A
such that

) (1)

and then

where A
shows that this sequence of matrices has as its limit an upper triangular matrix, the
diagonal elements of which are the eigenvalues of the original matrix A. Furthermore,
even if the original matrix is singular, the algorithm still gives convergence to a unique
triangular matrix, even though some of the intermediate Q and R may not be unique.

A detailed discussion of the convergence properties and the e r r o r analysis of the QR
algorithm is given in references 1, 3, and 4. It is sufficient to note for our purpose

is the form of the matrix after the Kth decomposition. Francis (ref. 3)
(K 1

A full description of the QR transformation is certainly not relevant to this report.

6

that the QR algorithm is an extremely stable, rapidly converging procedure to calculate
the eigenvalues of a general matrix (ref. 1). The version of the QR transformation
that is pa r t of ALLMAT, one that includes origin shifts to accelerate convergence, is
powerful enough to satisfy nearly all of the needs of the average user.

ployed that the prospective use r should be aware of. A preliminary s tep in any im-
plementation of the QR transformation is the reduction of the input matrix to Hessenberg
form. An upper Hessenberg form (i. e., A.. = 0 if i > j + 1) is used in ALLMAT. The

11
reduction is accomplished by a sequence of elementary transformations (ref. 1) . The
elements of these elementary transformations are stored in the unused portion of A (the
lower subtriangle of A)and in the integer vector JNT. This information is used at the
end of the inverse iteration to recover the eigenvectors of the original matrix from the
eigenvectors of the Hessenberg matrix. The point of caution for the u s e r is that the
working matrix f o r the subroutine is the Hessenberg form, which in general bears no
simple relation to the input matrix. Thus, if the u s e r attempts to debug this subroutine
at an intermediate stage, the relation between the Hessenberg form and the original form
must ge kept in mind.

The advantage of using the Hessenberg form is apparent in the t ime needed to com-
plete the computation of the eigenvalues. Most methods that operate on the entire input
matrix, such as the Jacobi method, require a number of operations that is approxi-
mately 30N (ref. 2), where N is the order of the matrix. The reduction to Hessenberg
form is a one-pass operation and requires a N 3 operations, where Q, is of o rde r unity.
The QR algorithm applied to the Hessenberg form only requires something of the order of
N
conditions the QR transform produces eigenvalues in less time than the Jacobi trans-
fo r mation.

There is one unusual feature of the standard way in which the QR algorithm is em-

3

2 operations. One interesting result of this is the observation (ref. 5) that under many

Inverse Iteration

The basis of the inverse iteration procedure is the observation that, if X is an
eigenvalue of the matrix A, the quantity (A - X I) , where I is the unit matrix, will be
singular. Thus, if X is a good approximation to an eigenvalue of A, the matrix
(A - XI)-' may be iterated to obtain an approximation Y to the eigenvector X. The
iteration process is carried out until after the Kth iteration the norm of the iterated
vector, (A - XI)-1 YK is greater than some preselected value (see the appendix). This
procedure is equivalent to the power method, but in inverse powers of the matrix
(A - XI). The speed with which this iteration produces an eigenvector depends on the
accuracy of the estimate fo r the eigenvalue, but rarely does this procedure, combined

7

with the QR algorithm, require more than 2 iterations to produce eigenvectors to at
least six o r seven place accuracy. Again, the interested u s e r is referred to Wilkinson
(ref. 1) for a complete description of the method and the e r r o r analysis.

SPECIAL FEATURES OF ALLMAT

As mentioned in the introduction, the basic elements of ALLMAT, the reduction to
Hessenberg form, the QR transformation, and the inverse iteration, are taken from an
ORNL subroutine (ref. 5). There are several features that have been added to this basic
program to either add effectiveness to the program o r provide timing and accuracy in-
formation to the user . These special features will be discussed in this section, more
o r less in the order that they appear in the program.

Decomposed Heasenberg Form

The reduction of the original matrix to Hessenberg form is a procedure that de-
c reases the number of operations necessary for the QR algorithm. In a la rge number
of cases the nature of the Hessenberg form allows fur ther simplifications. To illustrate
this, sketch (a) shows an upper Hessenberg matrix, of order N. The X's in the sketch

X

X

0

0

X

x

X

X

0

X

X X

X

0

0

X

X

0

X

x

X

X

X

X

8

indicate matrix elements, generally nonzero, whose values are unimportant. Now let
one of the subdiagonal elements vanish, for example A(R, R - 1) = 0. Then the
Hessenberg matrix may be decomposed into four submatrices as shown in sketch (b).

4 x x .
I
I
I B
I
I

x X I

0

C

D

X

The submatrices B and D are upper Hessenberg matrices of order R - 1 and
N -R + 1, respectively. Submatrix C is a nonzero matrix with N - R + 1 columns
and R - 1 rows. The remaining submatrix of this partition of A is entirely filled
with zeroes.

The result of this decomposition is that the problem of finding the eigenvalues of
B and D becomes entire disjoint; that is, the eigenvalues of B and D, collectively,
are the eigenvalues of A. The submatrix C plays no part in the eigenvalue problem.
Thus, instead of the solution of a single matrix of order N, the problem has been re-
duced to the solution of two matrices, of order N - R + 1 and R - 1. Since
N > (N - R + 1) + (R - 1) for N 2 3 and R that is not trivial, this decomposition
implies a significant reduction in the total number of operations in the QR transforma-

2 2 2

9

tion. For many input matr ices , particularly those matr ices that are sparse , a number
of such decompositions may be performed and the gain in machine t ime is important.

although some improvement is made. The eigenvectors corresponding to eigenvalues
of D (see sketch (b)) depend upon the submatrices B and C, s o that the entire matrix
must be used in the inverse iteration procedure. The eigenvectors corresponding to
the eigenvalues of B, on the other hand, do not require matrices C or D, so that only
B is used in the inverse iteration. Thus, some advantage is gained from the decom-
position f o r the calculation of the eigenvectors. On the whole, though, the main ad-
vantage of the decomposition enters in the QR transformation.

This decomposition is not as important for the calculation of the eigenvectors,

Perturbation of Close Eigenvalues

One difficulty with the inverse iteration method arises when two o r more eigen-
values a r e very nearly the same. Since every calculated eigenvalue differs f rom the
"true" eigenvalue by an amount that depends on many factors, these eigenvalues may
not produce linearly independent eigenvectors. The way chosen to resolve this acci-
dental degeneracy was to perturb each successive close eigenvalue by an amount small
enough to not disturb the convergence of the iterative procedure, but la rge enough to
resolve the eigenvectors into linearly independent vectors (ref. 1). The choice of the
perturbation, EPSIL, is arb i t ra ry and a better choice could be made fo r particular types
of matrices.

Since the existence of close but distinct eigenvalues implies that the matrix may be
ill-conditioned (ref. l), the accuracy of the calculated eigenvectors will be in doubt. In
this sense, the use of a perturbation to separate the eigenvalues is an attempt to re-
cover some useful information from a badly posed problem. Thus, for most matrices
encountered, the existence of close but distinct eigenvalues should be rare. The occur-
rence of multiple eigenvalues is more common.

Multiple Eigenvalues

The existence of a set of multiple eigenvalue is a not uncommon occurrence in phys-
ical problems. The existence of such a set implies that there is a subspace of eigen-
vectors that one des i res the basis vectors of. In this situation the perturbation is of
some help. If, by the process of perturbing the degenerate eigenvalues within the in-
verse iteration process , one can obtain a set of distinct eigenvectors, even ii they are
not linearly independent, then there is a standard solution to the problem of determini):;;

10

t h e b a s i s vectors. F o r this purpose ALLMAT takes the set of distinct eigenvectors
produced by the perturbation technique just discussed and uses a Gram-Schmidt (ref. 1)
orthogonalization procedure to give a set of linearly independent eigenvectors. Since
the Gram-Schmidt process involves taking the differences of nearly equal numbers in
many cases , the accuracy of such a procedure is less than the accuracy of an inverse
iteration vector for a distinct eigenvalue. Again, however, this represents an attempt
to salvage as much information as one can from an undesirable situation. In practice,
as shall be seen in the section TESTS, the results of this perturbation and orthogo-
nalization procedure are good.

ENTRYEVDATA

The remaining special feature of ALLMAT is represented by the secondary entry
point, EVDATA, as discussed in general construction. A typical u se r of an installation-
supplied mathematical subroutine is usually blissfully unaware of any e r r o r consider-
ations for his problem. Since the accuracy of any matrix eigenvalue evaluation strongly
depends upon the properties of the input matrix, ignoring e r r o r information is equi-
valent to shutting one's eyes to avoid an oncoming truck. Additionally, since some
eigenvalues and eigenvectors may in fact be absent due to nonconvergence either in QR
or inverse iteration, the information provided by EVDATA is-important to a user .
u se of the TSS/FORTRAN multiple-data set capability means that this information is
readily available to the use r , without so much as the disturbance of an art ist ic output
format.

The information available in EVDATA includes the number of iterations, the CPU
t ime elapsed for the eigenvalue and the eigenvector computations, and an e r r o r estimate
fo r each eigenvalue-eigenvector pair. The timing and counting variable provided in
EVDATA were discussed sufficiently under usage, but the e r r o r information requires
some further comment.

the vector AX - hX will be identically zero. Since neither h nor X can ever be
computed exactly, this vector (AX - AX), called the residual vector, will be nonzero.
The magnitude of this vector is then a measure of the e r r o r in X and X. The length of

a vector, as used in ALLMAT, is the Euclidean norm, 1 IX I I =(c(x(i)I ") . The vec-
t o r RNORM of EVDATA contains the norm of the residual vector for each eigenvalue-
eigenvector pair, scaled to the Euclidean norm of the input matrix.

The data entry point EVDATA may be used even if no eigenvectors are computed
(i. e., if EVECT = .FALSE.) In this case only ITS and NCO contain meaningful values.

The

If X and X are an exact eigenvalue and an exact eigenvector of the matrix A, then

1/ 2

11

TESTS

.14E-16 r;;

Seven matrices were chosen as examples fo r ALLMAT. The dimensions of these
matrices vary from four to 19. All but two matr ices are real but not symmetric, one
of the remaining matr ices is Hermitian, and the final example matrix is complex, but
not Hermitian. Some of these matr ices were chosen to illustrate ill-conditioning of one
type o r another. Since the numerical values of the eigenvectors are not of general use,
they are not displayed.

;

Matrix 1

-0.7

0.2

AI = ([m! 0.5

0.2

-0.4

-0.1

0.5

0.5

0.7

0.4

This real, but unsymmetric, matrix of order four has the exact eigenvalues 0.9, 0.6,
-0.3, and 0. In addition, the computed eigenvalue corresponding to 0. is 0.14E-16.
The information available f rom EVDATA on this test includes:

iterations

_ _ ~
Jumber of inverse I RNORM

iterations

3
3
3
3

0.653-16
.43E- 16
.16E- 16
.91E-16

The total t ime f o r the QR transformation, including the initial reduction to Hessenberg
fo rm w a s 0.053 second, and the t ime for the inverse iteration was 0.046 second.

1 2

Matrix 2

0.25000025 -1.0 -0.49999975 -0.99999975

-0.50000050 0.5 0.24939950 0.25000025

A 2 = (1.00000025 1.25 1.00000025 1.25000025

-0.4999975 -0.25 0.25000025 0.50000025

This matrix has eigenvectors identical to those of matrix 1, but has a different set of
eigenvalues. The exact eigenvalues of A2 are given in the following table:

Eigenvalue

1 . 5
.75000075
. 7 5

-. 75

I

The closeness of the second and

iterations iterations

0
1

RNORM

~

0.68E- 16
.10E-15
.46E-14
.64E-15

third eigenvalues hint at some e r r o r problems with the
eigenvectors. The t ime for QR transformation was 0.020 second, and the t ime for the
inverse iteration was 0.090 second. The difficulties anticipated from the closeness of
the eigenvalues are evidenced in the degradation of the third value of RNORM in the
table.

Matrix 3

0.009 5.00101 -8.999 3.999\

-0.001 5.01101 -8.999 3.999

*3= (- 0.001 4.91101 -8.899 3.999

- 0.001 4.96101 -8.999 4.049

13

This matrix A3 is an example of an ill conditioned matrix, in contrast with the pre-
vious example. Here, A2 had two nearly alike eigenvalues even though the matrix is
not mathematically ill conditioned (ref. 1).

~

3
3
3
1

~

E igenvalu f

3
3
3
3

0.01
. O l O O l
.1
-05

RNORM-

~ ~-
0.253-16

.14E-16

.18E-16

.233-16

The t ime for QR transformation w a s 0.038 second; that fo r inverse iteration w a s 0.025
second. Apparently, the ill conditioning did not effect the inverse iterations, as all
values of RNORM a r e satisfactory.

Matrix 4

5.

-2.

3 .

1.

- 4 .

0.

4. 3 . 2. 1.

1. 6 . 3 . 2.

2. -2. 4. 3 .

- 3 . -1. 5. 5.

2. 0. 1. 4.

1. 3 . 6. 6.

Unlike the first three test matrices, A4 has a pair of complex eigenvalues.

Eigenvalue

3.0929
.1772+. 95E-16i
.42295+4.39541
.42295-4.39541

15.247+. l lE-14i
-7.3630

Number of QR
iterations

6
6
5
4
1
1

\lumber of inverse
iterations

RNORM

0. 783-16
.24E-15
. l lE-15
.17E-15
.56E-15
.473-15

14

The time f o r QR transformation w a s 0.142 second; that for inverse iteration was 0.314
second. The imaginary par t of the sum of the eigenvalues (which should be 0.) is
0.355E- 14.

Matrix 5

This test matrix is a 19 by 19 real, unsymmetric matrix given by Francis (ref. 4)
to demonstrate the QR transformation. The matrix is too complicated to list here, but
the e r r o r information is informative. The t ime to produce the eigenvalues was
2 seconds, and the t ime to calculate the 19 eigenvectors was 22 seconds. Although this
t ime is large when compared with the previous examples, it is quite reasonable when
compared with other methods (ref. 5). Even with a matrix of this order, the residual
vectors all had norms less than l.E-16.

Matrix 6

A =
6

0. - . q 1 3 7 6 1 0 3 1 0 . 0 . 0 . 0. 0. 0. 0 . 0. -
0 . 0 . 0 .

' 0 . 0 . 0. .
. 9 1 3 7 6 1 n 3 i 0. 0 . 0 . 0. 0 . 0.

0. 0. 0. 0. 0 . 0 . 0.
0. 0. 0. - . 3 8 8 2 1 3 0 6 1 0 . 0 . - . I 4 4 3 3 3 7 6 1 , 0 . 0. - . 9 4 6 7 4 0 9 0 1 -
0. 0 . . 3 8 8 2 1 3 O f i i 0 . 0. - . 1 4 4 3 3 3 7 6 ; 0. 0. - . 9 4 6 7 4 0 9 O i 0. -
0. 0. 0. 0. 0 . 0 . 0 . 0. 0 . 0 . -
0. 0 . 0. . 1 4 4 3 3 3 7 6 i 0 . 0. - 1 . 0 2 1 4 0 6 8 3 i 0 . 0 . . 0 3 9 6 6 8 1 0 i *
0. 0. . 1 4 4 3 3 3 7 5 i 0. 0 . 1 . 0 2 1 4 0 6 R 3 i 0 . 0 . - . 0 3 9 6 6 8 1 0 1 0. -
0 . 0 . 0. . 9 4 f i 7 4 O q n i 0 . 0 . . 0 3 9 6 6 8 1 0 1 0 . 0 . . 7 4 7 0 5 5 4 O i -
0 . 0 . . 9 4 5 7 4 O q O i 0. 0. - . 0 3 1 6 6 8 1 0 1 0 . 0 . - . 7 4 7 0 5 5 4 0 i . 0 .

This matrix has several features that make it useful as an example. Each nonzero
element of A6 is a purely imaginary number and, in addition, A
the eigenvalues of A6 are real and, since the t race of A6 vanishes, the eigenvalues
occur in positive-negative pairs. There is a pair of degenerate eigenvalues with the
value 0, s o that the orthogonalization procedure must be used to obtain the eigenvectors.
Finally, A6 is sufficiently spa r se that the decomposition of the Hessenberg form is
effective in reducing the t ime required f o r the computations.

is Hermitian. Thus, 6

15

Eigenvalue

-0.91376103
.91376103

-1.03872417
-. 38452612

.38452612
1.03872417

-1.53711192
1.53711192
0
0

Number of QR
iterations

3
3
7
6
5
4
1
1
3

~ 1. .

Number of inverse
iterations

3
3
3
3
3
3
3
3
3

3-

RNORM

3.263-16
.16E-16
.31E-15
.96E- 16
.55E-15
.74E-15
.15E-14
.21E-14

1
1

The time f o r QR transformation was 1.07 second; that fo r inverse iteration was
1.50 second.
lated by the QR algorithm. Since the reduction to Hessenberg form and the u s e of the
decomposed Hessenberg form rearrange the matrix, the eigenvalues are not computed
in pairs, necessarily. This s a m e effect caused the QR routine to take three iterations
to compute a zero eigenvalue. The degenerate eigenvalues caused no loss of accuracy
in the computation of the eigenvectors. Furthermore, the sum of the eigenvalues is
purely imaginary, and has the magnitude 0.4E-14, reflecting the zero t race of A6.

The eigenvalues appear in this table in the o rde r in which they are calcu-

Matrix 7

The final example matrix was generated from matrix A4 by taking each element of
this 6 by 6 real, nonsymmetric matrix and multiplying by the imaginary unit i. The
result, A7, is a complex non-Hermitian matrix whose eigenvalues are the eigenvalues

Eigenvalue

3.09291

4.3954+. 422951
-4.3954i. 42295

15.2471

.95E-16+. 17721

.44E- 15- 7.36301

Number of QR
iterations

6
6
5
4
1
1 -

Vumber of inverse
iterations

RNORM

0. 77E-1€
.28E-1!
.10E-1!
. 16E- 1E
.48E-1:
.52E-1!

16

I

of A4 multiplied by i. The Qr transformation t ime was 0.140 second, and the inverse
iteration t ime was 0.319 second.

example A4 shows that ALLMAT handles the non-Hermitian form with comparable
speed, at no loss of accuracy in the eigenvalues and eigenvectors. The sum of the
eigenvalues is 0.31E-14+12.i.

These seven examples were chosen to be representative of the application of
ALLMAT. Some matrices (A1,A4,A5, and A7) pose no particular problems, while the
remaining (A2,A3, and As) were included to demonstrate one of more special charac-
te r i s t ics of the program. It is seen from the results given above that ALLMAT had no
difficulty with any of these test matrices. The norm of the residual vectors is typically
less than 1.E-15, and all computed eigenvalues that were also known exactly were in
agreement to at least 14 places. At no point did either the QR algorithm o r the inverse
iteration fail to give convergence within the allotted l imit of 10 iterations. In fact, only
once did the inverse iteration procedure require more than three iterations to satisfy
the convergence criterion.

A comparison of the results indicated in the preceding table with the results f o r

CONCLUDING REMARKS

This report is intended to be a use r ' s guide f o r the prospective use r of ALLMAT.
The information presented here about the construction of ALLMAT should be considered
a minimum for the use of this matrix eigenvector program. No program of the com-
plexity of ALLMAT should be used without some understanding of the basic algorithms
involved. Certainly, though, most u s e r s will apply ALLMAT without consideration of
even the simplified discussion presented here.
should be required usage as an indicator when ALLMAT does fail on a matrix.

eigenvector correct to sufficient accuracy.
iterates until the norm of the iterated vector, (A -
computing t ime is at a premium, this criterion can be easily changed to a test on the
number of iterations. The current limitation on ALLMAT is to matrices of dimension
no larger than 50. This restriction may also be changed easily.

subroutine. Almost any matrix, including the most general case of a complex, non-
Hermitian matrix, is amenable to diagonalization by ALLMAT.

F o r these u s e r s the entry point EVDATA

Experience has shown that two inverse iterations are usually enough to give an
The current version of ALLMAT, however,

X, is greater than 1. E40. If

ALLMAT w a s designed to be a general purpose matrix eigenvalue and eigenvector

Furthermore, timing

17

test (ref. 5) indicate that the QR transform may be preferred to the Jacobi method for
the eigenvalues of real and symmetric matrices.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, September 16, 1970,
129-02.

18

APPENDIX - FORTRAN LISTING

0 0 0 0 1 0 0 SUBROUTINE ALLMAT (4-A, LAMBDA,M,MM, EVECT, NCAL)
0 0 0 0 2 0 0 - I M P L I C I T REAL*8 (A-H,O-%)
0 0 0 0 3 0 0 - COMPLEX*l f i AA(MM,MM)
0 0 0 0 4 0 0 C G,

o o o o f i o o c DIMENSIONS I N THE 2 L I N E S FOLLOWING THIS COMMENT YUST
0 0 0 0 7 0 0 C BE CHANGED FROM 5 0 TO A S I Z E TO S U I T THE USER.
0 0 0 0 8 0 I l C
0 0 0 090 0 ' C O M P L E X * l f i A(50,50,),H(50,50),HL(50,50), LAMB!7A(MM)
0 0 0 1 0 0 0 ~ COMPLEX*lFi VECT(5 0) ,MULT(501, S H I F T (3) ,TEMP, S I NT, COST,TEMPl,TEMPZ
0 0 0 1 1 0 0 COMPLEX*16 E 1 C , CONJ 1
0 0 0 1 2 0 0 LOG I CAL EVECT, 1 N T I i (5 0)
0 0 0 1 3 0 0 D l M E N S l ON NCOUNT(50),MCOUNT(50)
0 0 0 1 4 0 0 INTEGER JNT(SO),R,RPl,RPZ
0 0 0 1 5 0 0 DO l n 0 O J = l , M

0 0 0 1 7 0 0 1 0 0 0 A (I , J) = A A (I , J)

0000500C I F THE USER REQUiREs,,&+'MENsiON LARGER THAN 50, THE

0 0 0 1 6 0 0 DO 1 0 0 0 I = ~ , M

0 0 0 1 8 0 0
0 0 0 1 9 0 0
0 0 0 2 0 0 0
0 0 0 2 1 0 0

0 0 0 2 3 0 0 C
0 0 0 2 4 0 0 C
0 0 0 2 5 0 0 C
0 0 0 2 6 0 0 C
0 0 0 2 7 0 0
0 0 0 2 8 O O C
0 0 0 2 0 0 0 c
0 0 0 3 0 0 0 C
0 0 0 3 1 0 0 C
0 0 0 3 2 0 0 C
0 0 0 3 3 0 0 C
0 0 0 3 4 0 0
0 0 0 3 5 0 0
0 0 0 3 6 0 0

0 0 0 3 8 0 0
0 0 0 3 9 0 0
0 0 0 4 0 0 0
0 0 0 4 1 0 0
0 0 0 4 2 0 0
0 0 0 4 3 0 0

n o o 2 2 o o c

n o 0 3 7 0 0

CALL CPUTIFI(I T I P I)
ITSUM = 0
KTSUFI = 0
CONJI = (0 . , -1 .)

THE CONSTANT EPS I L DETEEblI P!ES THE CONVEPGENCE OF THE
QR ALGOR I TtiH, AND ALSO I S THE PERTURB4T I ON PARAMETER
FOR THE I NVERSE I T E R A T I O N .

E P S I L = 1.OD-12

THE CONSTANT EPSI4AX DETERMI FlES THE COb!VERGEb!CE OF THE
INVERSE I T E R A T I O N . T H I S NUMBER I S THE LOGARITHM OF
NORM O F THE ITERATED E l GENVECTOR Tt iAT 1 S S U F F 1 C I ENT
FOR CONVERGENCE.

EPSMAX = 40.
NSTOP = M
N = NSTOP
NSTART = 1
MN1 = 1
NCAL = 0
I F (N.NE.1) G O T O 1
LAMBDA(1) = A (1 , l)
A (1 , l) = 1 . 0
GO TO 9 2

19

o n 0.4 4 0 0
0 0 0 4 5 0 0
0004f iOO
0 0 0 4 7 0 0

0 0 0 4 9 0 0
0 0 0 5 0 0 0
0 0 0 5 1 0 0
0 0 0 5 2 0 0
0 0 0 5 3 0 0

0 0 0 5 5 0 0
0 0 0 5 6 0 0
0 0 0 5 7 0 0
0 0 0 5 8 0 0
0 0 0 5 9 0 0
0 0 0 6 0 0 0
0 0 0 6 1 0 0
0 0 0 6 2 0 0
0 0 0 6 3 0 0
0 0 0 6 4 0 0
0 0 0 6 5 0 0
0 0 0 6 6 0 0

0006F!OOC
0 0 0 6 9 0 0 c
0 0 0 7 0 0 0 C
0 0 0 7 1 0 0
0 0 0 7 2 0 0
0 0 0 7 3 0 0
9 9 0 7 4 0 0
0 0 0 7 5 0 0
0 0 0 7 6 0 0
0 0 0 7 7 0 0
0 0 0 7 8 0 0

0 0 0 8 0 0 0
0 0 0 8 1 n 0
0 0 0 8 2 0 0
0 0 0 8 3 0 0
0 0 0 8 4 0 0
0 0 0 8 5 0 0
0 0 0 8 6 0 0
0 0 0 8 7 0 0
0 0 0 8 8 0 0
0 0 0 8 P O O

0 0 0 9 1 0 0
0 0 0 9 2 00
0 0 0 9 3 0 0
OOi)P400
0 0 0 q 5 0 0
0 0 0 9 6 0 0
OOOc1700
QOO(380rJ
0 0 0 ~ 9 0 0

0 0 0 4 8 0 0

n o 0 5 4 0 0

o o n ~ i 7 0 0

o o n 7 9 0 0

o o n g o o o

1 ICOUNT = 1
S H I F T (1) = 0.
I F (N.NE.2) GOTO 4

TEI IP = (/\(FISTAPT, MSTART)+A(NSPl ,NSPl)+CDSQ!?T -
1((A(NsTART,NSTART)+A(NSPl,NSPl)) * * 2 - 4 . * (A !NSP l , -'
1NSP1) *A(NSTAF?T, NSTART) - A (NSP1, NSTART) *A(NSTART, - '

1NSP1) 1)) / 2 .

2 N S P l = NSTART + 1

RELTECl = TEClP
AMGTEP.1 = CONJ I *TEtnP
I F (RELTEM. NE. 0.. OR. AKGTEM. NE. 0 .) GOTO 3
LAMBDA(NSTOP1 = S H l F T (1)

NCOUNT(NSTOP1 = I COUNT
NCOUNT(MN1) = I CC)UF!T
GO TO 3 7

LAMBDA(MNl)= (A(NSTART, NSTART) * A (NSP1, N S P l) -

LAf4 B D A (M N 1) = A (N ST A RT , NS TART 1 + A (bI S P 1, NS P 1) + S F I 1 F T (1

3 LAFIBDA(NSTOP1 = TEMP + S H I F T (1)
- '

l A (N S P 1 , NSTART)*A(NSTART,NSPl)) / (LAF lBDA(NSTOP) -'
2 - S H I F T (l)) + S H l F T (l)

NCOUNT(NST0P) = I COUNT
NCOUNT(MN1) = I COUNT
ICOUNT = 1
GO TO 3 7

REDUCE MATRIX A TO HESSEMBERG FORM.

4 NM2 = N-2

R P l = R + 1
RP2 = R+2
A B I G = 0.

DO 5 I = R P l , N
R E L A I R = A (I , R)

A B S S Q = R E L A I R * * 2 + AMGAIR**2
I F (ABSSO.LE.ABIC) GOTO 5
J N T (R) = 1
ABlS = AGSSQ

I NTEP. = Jr. IT(R)
! F (A B I G . E Q . 0 .) GOTO 1 5
I F (INTER.EQ.RP1) GnTO 8
D O 6 I=R,N
TEMP = A(RP1, 1)
A(RP1, I) = A (1 NTEP., I)

6 A (INTER, 1) = TE t lP
DO 7 I = l , N
TEMP = A (I , R P l)
A (I , R P l) = A (I , I N T E R)

7 A (1, I N T E R) = TEMP
8 DO 9 I=RP2,N

M U L T (I) = A (I , R l / A (R P l , R)
9 A (I , R) = M U L T (I)

DO 11 I = l , R P 1

DO 1 5 R=l,NP,l2

J N T (R) = R F l

AP.1GAIR = C O N J I * A (I , R)

5 CONTINUE

20

o n i o n o o
o o i n i n o

o n 1 0 3 0 0

o n i n 5 0 0

0 0 1 0 2 0 0

0 0 1 0 4 0 0

0 8 1 0 6 0 0
0 8 1 0 7 0 0
0 0 1 0 8 0 0
0 0 1 0 9 0 0
0 0 1 1 0 0 0
0 0 1 1 1 0 0

0 0 1 1 3 0 0 C
0 0 1 1 2 n o

o n i i 4 o o c
n o i i 5 o o c

n o i i 8 o n

0 0 1 1 6 0 0
0 0 1 1 7 0 0

0 0 1 1 9 0 0
0 0 1 2 0 0 0
0 0 1 2 1 0 0
0 0 1 2 2 0 0

0 0 1 2 4 0 0

0 0 1 2 6 0 0
0 0 1 2 7 0 0

n o 1 2 3 0 0

n n i 2 5 0 0

o o i 2 8 n o c
n o i z q o o c
0 0 1 3 0 0 0 C
0 0 1 3 1 0 0
0 0 1 3 2 0 0
0 0 1 3 3 0 0
0 0 1 3 4 0 0
0 0 1 3 5 0 0
0 0 1 3 6 0 0
0 0 1 3 7 0 0 C

0 0 1 3 9 0 0 C
0 0 1 4 0 0 0 C
0 0 1 4 1 0 0 C
0 0 1 4 2 0 0
0 0 1 4 3 0 0
0 0 1 4 4 0 0
0 0 1 4 5 0 0
0 0 1 4 6 0 0
0 0 1 4 7 0 0
0 0 1 4 8 0 0
0 0 1 4 9 0 0
0 0 1 5 0 0 0
0 0 1 5 1 0 0 C

o o i 3 8 n n c

n o i 5 2 o o c
o n i 5 3 n o c
o n i 5 4 o o c
o n i 5 s o o

TEMP = 0.
DO 1 0 J=RP2,N

1 0 TEMP = TEMP + A (I , J) * M U L T (J)
11 A (I , R P l) = A (I , R P l) + TEMP

DO 1 3 I=RP2,N
TEMP = 0.
DO 1 2 J=RP2,N

1 2 TEMP = TEMP + A (I , J) * M l . l L T (J)
1 3 A(I ,RP1) = A (I,RF'l)+TEMP-P*IUI-T(I) * A (R P l , R P l)

DO 1 4 I=RP2,N
DO 1 4 J=RP2,N

1 4 A (I , J) = A (I , J) - M U L T (l) * A (R P l , J)
1 5 CONTINUE

CALCULATE EPS I LON.

EPS = 0.
DO 1 6 I = l , N

PO 1 8 I=2,N
SUM = 0.
I M 1 = I - 1

DO 1 7 J = I M l , N

1 6 EPS = EPS + C D A B S (A (l , I))

1 7 SUM = SUM + C D A B S (A (I , J))
1 8 IF(SUM.GT.EPS) EPS=SUf4

EPS = b$QRTCl3,FLOAT(FJ)) * E P S * l . D - 2 0
I F (EPS. EQ. 0 .) E P S = l . D - 2 0
EPS I L = D F I A X l (EPS, EPS I L)

SAVE THE HESSENBERC, FORF.1 I'N THE ARRAY H.
F.'

2 0 DO 1 9 I = l , N
DO 1 9 J = l , N

19 f i (l ,J) = A (I , J)
NSM1 = NSTOP - 1
I F (NSM1.NE.D) GOTO 1 0 0
R = l

START SCANNING FOR ZEROES I N THE SUB-DIAGONAL. T H I S
D E F I NES THE SUB-BLOCKS OF THE DECOMPOSED HESSENBERG
FORM.

GO TO 1 0 2

R = NSTOP - I + 1
RELAP11 = A(R, R - 1)
APlGAM1 = CONJ I *A(R, R - 1)
IF ((- , R A B S (R E L A M l > + ~ A B S (A ~ ~ ~ A ~ ~ l)) . L E . E P S I L) GOTO 1 0 2

1 0 0 DO 1 0 1 I = l , N S M l

1 0 1 CONTINUE
R = l

1 0 2 NSTART = R

NSTART AND NSTOP ARE THE I NDI CES OF THE BEG1 N N I NG AND
END OF A DECOMPOSED HESSENBERG BLOCK.

NS = NSTOP - NSTART + 1

21

0 0 1 5 6 0 0
0 0 1 5 7 0 0
0 0 1 5 8 0 0
0 0 1 5 9 0 0
0 0 1 6 0 0 0
0 0 1 6 1 0 0
0 0 1 6 2 0 0
0 0 1 6 3 0 0
0 0 1 6 4 0 0

0 0 1 6 6 0 0
0 0 1 6 7 0 0
0 0 1 6 8 0 0
0 0 1 6 9 0 0
0 0 1 7 0 0 0
0 0 1 7 1 0 0
0 0 1 7 2 0 0
0 0 1 7 3 0 0
0 0 1 7 4 0 0
0 0 1 7 5 0 0
0 0 1 7 6 0 0
0 0 1 7 7 0 0
0 0 1 7 8 0 0
0 0 1 7 9 0 0 C
0 0 1 8 0 0 0 c
0 0 1 8 1 0 0 C
0 0 1 8 2 0 0
0 0 1 8 3 0 0
0 0 1 8 4 0 0
0 0 1 8 5 0 0
0 0 1 8 6 0 0
0 0 1 8 7 0 0
0 0 1 8 8 0 0
0 0 1 8 9 0 0
0 0 1 9 0 0 0
0 0 1 9 1 0 0
0 0 1 9 2 0 0
0 0 1 Q 3 0 0
0 0 1 9 4 0 0
0 0 1 9 5 0 0
0 0 1 Q 6 0 0
0 0 1 9 7 0 0
0 0 1 9 8 0 0
001c1900
0 0 2 0 0 0 0
0 0 2 0 1 0 0
0 0 2 0 2 0 0
0 0 2 0 3 0 0
0 0 2 0 4 0 0
0 0 2 0 5 0 0
0 0 2 0 6 0 0
0 0 2 0 7 0 0
0 0 2 0 8 0 0
0 0 2 0 9 0 0 c
0 0 2 1 0 0 0 c
0 0 2 1 1 0 0 c

o n 1 6 5 0 0

NC = NS
M N 1 = NSTOP + NSTART - N

1 0 3 I F (NS.NE.1) GOTO 2 1

NCOUNT(t lN1) = 1 COUNT
GO TO 3 7

LAMBDA(MN1) = A(NSTA’?T,NSTART) + S H I F T (1)

2 1 IF (NS.EQ.2) GOTO 2
d 2 2 RELANN = A(N,N)

AFIGANN = CONJI*A(h’ ,N)
-RLNNMl = A (N , N - l)
-AMNNF,11 = COhlJ l * A (r J , N - l)

R L N O N l = A(PI,N-I.)/A(V,N)
AMNDNl = C O N J I * (A (N , N - l) / A (N , N))
I F (RELANN.NE.0. .OR. MGANN.NE.0.) -

~ 1 I F (, ABS(RLNDFI1) + D c B S (A M N D N l) - l . D - l t ?) 211,24,23
2 5 IF (0 f B S (R L N N f l l) + Q A B S (A P I V N M l) .GE. EPS) GOTn 2 5
24 LAFIBDA(blN1) = A(hI,N) + S H I F T (1)

NCOUNT(MN1) = 1 COUNT
1COl.INT = 1
N = N - 1
NS = NS - 1,
I4N1 = M N 1 + 1
GO TO 2 1

DETERM I NE SH I F T

2 5 SHI FT(2)=(A(N-l,N-l>+A(N,N)+CDSQRT((A(\!-l, -
l N - l) + A (N, N)
2 * A (N - l , N)))) / 2 .

* * ? - 4 . * (A (Y , N) *A (N-1, N - 1) - A (N, N-1) -
RELSHF = S H I F T (2)
AMGSHF = C O b ! J I * S H I F T (2)
I F (RELSHF. NE. 0.. OR. AFIGSHF. NE. 0 .) GOTO 26
S H I F T (3) = A (N - l , N - l) + A (N , N)
GO TO 2 7

2 6 SH I FT (3) = (A (\ I , N) * A (?I- 1 N- 1 -A (N, N- 1) * A (N- 1, N 1 1 / SH 1 F T (2 1
2 7 I F (C h A B S (S Y 1 F T (2) -A (V , N) 1 . LT. ChARS (SH I FT (3)

INDEX = 3
GO TO 2 9

28 I N D E X = 2

-
l - A (N , N))) GO TO 2 8

29 I F (C ’ D A B S (A (N - l , N - 2)) . G E . E P S) GOT0 3 0
LAPlBDA(t IN1) = S H I F T (2) + S H I F T (1)
L A M B D A (f I N l + l) = S H I F T (3) + S H I F T (1)
NC@UNT(MNl) = ICOIJ?lT
N C O U N T (M N l + l) = 0
ICOUNT = 1
N = N - 2
NS = NS - 2
MN1 = MN1 + 2
GO TO 1 0 3

DO 3 1 I=NSTART,N
3 0 S H I F T (1) = S H I F T (1) + S H I F T (I N O E X)

3 1 A (I , I) = A (I , I) - S H I F T (I N D E X)

PERFOR/-I G I VENS ROTAT I ONS, Q R ITERATES.

22

0 0 2 1 2 0 0
0 0 2 1 3 0 0
0 0 2 1 4 0 0
0 0 2 1 5 0 0
0 0 2 1 6 0 0
0 0 2 1 7 0 0
0 0 2 1 8 0 0
0 0 2 1 9 0 0
0 0 2 2 0 0 0
0 0 2 2 1 0 0
0 0 2 2 2 0 0
0 0 2 2 3 0 0
0 0 2 2 4 0 0
0 0 2 2 5 0 0
0 0 2 2 6 0 0
0 0 2 2 7 0 0
0 0 2 2 8 0 0
0 0 2 2 9 0 0
0 0 2 3 0 0 0
0 0 2 3 1 0 0
0 0 2 3 2 0 0
0 0 2 3 3 0 0
0 0 2 3 4 0 0
0 0 2 3 5 0 0
0 0 2 3 6 0 0
0 0 2 3 7 0 0
0 0 2 3 8 0 0
0 0 2 3 9 0 0
0 0 2 4 0 0 0
0 0 2 4 1 0 0
0 0 2 4 2 0 0
0 0 2 4 3 0 0
0 0 2 4 4 0 0
0 0 2 4 5 0 0
0 0 2 4 6 0 0
0 0 2 4 7 0 0
0 0 2 4 8 0 0 C
0 0 2 4 9 O O C
0 0 2 5 0 0 0 C
0 0 2 5 1 0 0
0 0 2 5 2 0 0
0 0 2 5 3 0 0
0 0 2 5 4 0 0
0 0 2 5 5 0 0
0 0 2 5 6 0 0
0 0 2 5 7 0 0
0 0 2 5 8 00
0 0 2 5 9 0 0
0 0 2 6 0 0 0
0 0 2 6 1 0 0
0 0 2 6 2 0 0
0 0 2 6 3 0 0
0 0 2 6 4 0 0
0 0 2 6 5 0 0
0 0 2 6 6 0 0

I F (ICOUNT.LE.10) GOTO 3 2
NCOUNT(MNP) = -1COUNT
NC = NC - NS
GO TO 3 7

3 2 NM1 = N - 1
T E M P l = A(NSTART,NSTART)
TEMP2 = A(NSTAPT+l ,NSTART)
DO 3 6 R=NSTART,NMl
NN = R
R P 1 = R + 1
R E L T M l = T E M P l
AMGTFll = CONJ I *TEMP1

AMGTM2 = CONJ I *TEMP2
RHO = *+DSQRT(RELTM1**2+AMGTM1**2+RELTM2**2+AMGTM2**2 1

RELTM2 = TEMP2

" IF (RHO.EQ.O.) GOTO 3 6
COST = TEMPl/RHO,
S l N T = TEC1P2/RHO
INDEX = MAXOCNN-1,NSTART)
DO 3 3 I=INDEX,N
TEMP = ~ C O N J G (C O S T) * A (N N , I)+$CONJG(S I N T) * A (R P i , I
A(RP1, I) = -SINT*A(NI\ l , I)+COSV*A(RPl , I .)

3 3 A(NN, I) = TEMP
T E M P l = A(RP1,RP l)
TEt.IP2 = A (N N + 2 , R + l)
DO 3 4 I=NSTART,R
TEMP=COST*A(I,NN)+SINT*A(l,RPl)
A(I , R P 1) = -0 CON J G (S I NT) * A (1 , NN 1 +'D CON J I; (COST * A (I , R P1)

3 4 A (I , N N) = TEMP
INDEX = MINO(NN+2,N)
DO 3 5 I = R P l , I N D E X
A (I , N N) = S I N T * A (I , R P l)

3 5 A (I ,RP l)=DCONJG(COST)*A(1 ,RP1)
3 6 CONTINUE

ICOUNT = ICOUHT + 1
GO TO 2 2

CALCULATE VECTORS.

3 7 I F (.NOT.EVECT) GOTO 6 4
CALL CPUTIM (J T IM)
LTSUM = ITSUFI + (JTIF4 - I T l I \ l)
I F (NC.EQ.0) GOTO 6 4
NPNCAL = NSTART + NC - 1
N = NSTOP
NS = NSTOP - NSTART + 1
NM1 = N - 1
I F (N - N E . 2) GO TO 3 8

I F (EPS. EQ. 0.1 EPS=EPS I L
H (1 , l) = A (1 , l) .
H (2 , l) = A (2 , l)
H (1 ,2) = A(1 ,2)
H (2 , 2) = A (2 , 2)

E.PS = QFl AX 1 (CB.A BS (LAPI BD A (1) , CD,A B S (L Ab4 B D A'(2 1 1 1 * 1. D- 1 6

38 D O 6 3 L=NSTART,NPNCAL
0 0 2 6 7 0 0 A B l G = 0.

23

’ 002’6800
0026900
0027000
0027100
0027200
0027300
0027400
0027500
0027600
0027700
0027800
0027900
002 8000
0028100
0028200
0028300
0028400
0028500
0028600
0028700
00 2 88 00
0028900
0029000
0029100
0029200
0029300
0029400
0029500
0029600
0029700
0029800
0029900
0030000
0030100
0030200
0030300
0030400
0030500
0030600
0030700
0030800
003 09 00
0031000
0031100
0031200
0031300
0031400
0031500
0031600
0031700
0031800
0031900
0032000
0032100
0032200
0032300

EIG = LAMBDA(L1
IF (L.EQ.NSTART) GOTO 4 0
LM1 = L - 1
RELEIG = EIG
AMGE I G = CONJ 1 *E I G
DO 39 I=NSTART,LMl
RELAMI = LAMBDA(1)
AMGAM I = CONJ 1 *LAMBDA(I 1

IF (DABS(AMGEIG-AMGAMI).GT.EPSlL) GOTO 39
EIG = EIG + CONJI*EPSIL

IF (DABS(RELElG-RELAMI).GT.EPSlL) GOTO 39

39 CONTINUE
4 0 DO 42 I=l,N

DO 41 J=l,N
41 HL(J,I) = H(J,I)
42 HL(I,I) = HL(I,I) - EIG

DO 46 I=l,NMl
MULT(I) = 0.
INTH(I) = .FALSE.
IP1 = I + 1
IF (CDABS(HL(l+l,l)).LE.CDABS(HL(l,l))) GO TO 44
INTH(I) = .TRUE.
DO 43 J=I,N
TEMP = HL(I+l,J)
HL(I+l,J) = HL(I,J)

43 H L (I , J) = TEMP
44 RELH!! = HL(I,I)

AMGHll = CONJI*HL(I,I)
IF (RELHII.EQ.O..AND.AMGHII.EQ.O.) GOTO 46
MULT(I) = -HL(l+l,l)/HL(l,l)
DO 45 J=IPl,N

45 HL(I+l,J)=HL(I+l,J) + MULT(I)*HL(I,J)
46 CONTINUE

48 VECT(I1 = 1.
DO 48 I=l,N

IF (NST0P.EQ.M) GOTO 110
NSTPl = NSTOP + 1
DO 47 I=NSTPl,M

47 VECT(I) = 0.

49 RELHNN = HL(N,N)
110 ICOUNT = 1

AMGHNN = CONJ I *HL(N, N)

VECT(N) = VECT(N)/HL(N,N)
DO 51 I=l,NMl
K = N-l
DO 50 J=K,NMl

I F (RE LH N N . EQ . 0 . . AND AF.1 G HN N . EQ . O w HL(N,N)= PS

50 VECT(K) = VECT(K) - HL(K,J+l)*VECT(J+l)
RELHKK = HL(K,K)
AMGHKK = CONJI*HL(K,K)
IF (RELHKK.EQ.O..AND.AMGHKK.EQ.O.) HL(K,K)=EPS

51 VECT(K) = VECT(K)/HL(K,K)
BIG = 0.
DO 52 I=l,N
RELVEC = VECT(1)
AMGVEC = CONJI*VECT(I)

24

0 0 3 2 4 0 0
0 0 3 2 5 0 0
0 0 3 2 6 0 0
0 0 3 2 7 0 0
0 0 3 2 8 0 0
0 0 3 2 9 0 0
0 0 3 3 0 0 0
0 0 3 3 1 0 0
0 0 3 3 2 0 0
0 0 3 3 3 0 0
0 0 3 3 4 0 0
0 0 3 3 5 0 0
0 0 3 3 6 0 0
0 0 3 3 7 0 0
0 0 3 3 8 0 0
0 0 3 3 9 0 0
0 0 3 4 0 0 0
0 0 3 4 1 0 0
0 0 3 4 2 0 0
0 0 3 4 3 0 0
0 0 3 4 4 0 0
0 0 3 4 5 0 0
0 0 3 4 6 0 0
0 0 3 4 7 0 0
0 0 3 4 8 0 0
0 0 3 4 9 0 0
0 0 3 5 0 0 0
0 0 3 5 1 0 0
0 0 3 5 2 00
0 0 3 5 3 0 0
0 0 3 5 4 0 0
0 0 3 5 5 0 0
0 0 3 5 6 0 0
0 0 3 5 7 0 0
0 0 3 5 8 0 0
0 0 3 5 9 0 0
0 0 3 6 0 0 0
0 0 3 6 1 0 0
0 0 3 6 2 0 0
0 0 3 6 3 0 0
0 0 3 6 4 0 0
0 0 3 6 5 0 0
0 0 3 6 6 0 0
0 0 3 6 7 0 0
0 0 3 6 8 0 0
0 0 3 6 9 0 0
0 0 3 7 0 0 0
0 0 3 7 1 0 0
0 0 3 7 2 0 0
0 0 3 7 3 00
0 0 3 7 4 0 0
0 0 3 7 5 0 0
0 0 3 7 6 0 0
0 0 3 7 7 0 0
0 0 3 7 8 0 0
0 0 3 7 9 0 0

SUM = DABS(RELVEC)+DABS(AMGVEC)
I F (SUM.LE.BIG) GOT0 5 2
B I G = SUE1
I I = I
RELV = RELVEC
Ar4GV = AMGVEC

5 2 CONTINUE
I F (BIG.EQ.0.) GOTO 1 5 5
I F (AMGV.EQ.0.) GOTO 1 3 5
I F (DABS(AMGV).GT.DABS(RELV)) GOTO 1 2 5
RAT = AMGV/RELV
DEN = RELV + RAT*AMGV
DO 1 2 0 I = l , N
I F (I .EQ.11) GOTO 1 2 0
RELVEC = VECT(I)

RELVC = (RELVEC + RAT*AtIGVEC)/DEN
AMGVC = (AMGVEC - RAT*RELVEC)/DEN
VECT (1) = DCtIPLX (RELVC, AMGVC)

V E C T (I I) = 1.
GO TO 1 5 0

1 2 5 RAT = RELV/AMGV
DEN = AMGV + RAT*RELV
DO 1 3 0 I = l , N

RELVEC = V E C T (I)
AMGVEC = CONJ I *VECT(I)
RELVC = (AMGVEC + RAT*RELVEC)/DEN
AMGVC = (RAT*AMGVEC - RELVEC)/DEN

3 AMGVEC = C O N J I * V E C T (I)

1 2 0 CONTINUE

IF (1 . ~ 4 . 1 1) GOTO 1313

VECT(I) = DCMPLX(RELVC,AMGVC)
1 3 0 CONTINUE

V E C T (I I) = 1.
GO TO 1 5 0

1 3 5 DO 5 3 I = l , N

1 5 0 A B I G = A B I G + D L O G l O (B I G)

1 5 5 IF (ICOUNT.GE.10) GOTO 55

5 3 V E C T (I) = V E C T (I) / B I G

I F (ABIG.GT.EPSMAX1 GOTO 5 5

DO 5 4 I = l , N F I l
I F (. N O T . I N T H (I)) GOTO 5 4
TEMP = V E C T (I)
V E C T (I) = V E C T (I + l)
V E C T (I + l) = TEMP

ICOUNT = ICOUNT + 1
GO TO 4 9

MCOUNT(L1 = ICOUh!T
MP12 = M-2
DO 5 7 I=1,MF42
M11 = M-1-1
M I 1 = M-1+1
DO 5 6 J=FII l ,M

INDEX = J N T (M 1 1)

5 4 VECT(I +1) = VECT(I +l)+F!ULT(I) *VECT(I)

5 5 I F (M.LE.2) GOTO 6 9

5 6 VECT(J)=H(J,Mll)*VECT(t41l+l)+VECT(J)

25

0 0 3 8 0 0 0
0 0 3 8 1 0 0
0 0 3 8 2 0 0
0 0 3 8 3 0 0 C
0 0 3 8 4 0 0 C
0 0 3 8 5 0 0 C
0 0 3 8 6 00
0 0 3 8 7 0 0
0 0 3 8 8 0 0
0 0 3 8 9 0 0
0 0 3 9 0 0 0
0 0 3 9 1 0 0
0 0 3 9 2 0 0
0 0 3 9 3 0 0
0 0 3 9 4 0 0
0 0 3 9 5 0 0
0 0 3 9 6 0 0
0 0 3 9 7 0 0
0 0 3 9 8 0 0
0 0 3 9 9 0 0
0 0 4 0 0 0 0
0 0 4 0 1 0 0
0 0 4 0 2 0 0
0 0 4 0 3 0 0
0 0 4 0 4 0 0
0 0 4 0 5 0 0
0 0 4 0 6 0 0
0 0 4 0 7 0 0
0 0 4 0 8 0 0
0 0 4 0 9 0 0
0 0 4 1 0 0 0
0 0 4 1 1 0 0
0 0 4 1 2 0 0
0 0 4 1 3 0 0
0 0 4 1 4 0 0
0 0 4 1 5 0 0
0 0 4 1 6 0 0
0 0 4 1 7 0 0
0 0 4 1 8 0 0
0 0 4 1 9 0 0
0 0 4 2 0 0 0
0 0 4 2 1 0 0
0 0 4 2 2 0 0
0 0 4 2 3 0 0
0 0 4 2 4 0 0
0 0 4 2 5 0 0
0 0 4 2 6 0 0
0 0 4 2 7 0 0
0 0 4 2 8 0 0
0 0 4 2 9 0 0
0 0 4 3 0 0 0
0 0 4 3 1 0 0
0 0 4 3 2 0 0
0 0 4 3 3 0 0
0 0 4 3 4 0 0
0 0 4 3 5 0 0

TEMP = VECT(M11+1)
VECT(M11+1) = VECT(1NDEX)

5 7 V E C T (I N D E X 1 = TEMP

NORMAL I ZE E I GENVECTOR.

6 9 SUM = 0.
DO 5 8 I = l , M
RELVEC = V E C T (I)
AMGVEC = C O N J I * V E C T (I)

SUM = DSQRT(SUM)
IF (SUM.EQ.0.) GO TO 6 0
DO 5 9 I = l , M

5 8 SUM = SUM + RELVEC*RELVEC + AMGVEC*AMGVEC

5 9 V E C T (1) = V E C T (I) / S U M
6 0 CONTINUE

6 1 A (I , L) = V E C T (I)
DO 6 1 I = l , M

CALL C PUT I M (KT I FI 1
KTSUM = KTSUM + (KTIM - J T I M)

6 3 CONTINUE
NCAL = NCAL + NC

6 4 I F(NSTART. EQ. 1) GOTO 7 0
S H I F T (1) = 0.
NSTOP = NSTART - 1
N = NSTOP
GO TO 2 0

7 0 DO 8 0 L=2,M
DO 7 9 I = l , M

7 9 J N T (I) = 0
RE LAM L = LAr4BDA (L 1
AMGAML = CONJ I *LAF.IBDA(L)
L M 1 = L - 1
R = O
DO 7 1 I = l , L M l
RELAMI = LAMBDA(1 1
AMGAPII = CONJ I*LA!!BDA(1 1
IF (DABS(RELAML-RELAMI).GT.EPS) GOTO 7 1
I F (DABS (AMGAML-AIIGAM I 1. GT. EPS GOTO 7 1
J N T (1) = L
R = R + 1

I F (R.EQ.0) GOT0 8 0
DO 7 2 I=l,M

DO 7 5 l = l , L M l
I F (J N T (I 1 . N E . L) GOTO 75
TEMP = 0.
DO 7 3 J = l , M

DO 7 4 J = l , M

I F (R.EQ.1) GOTO 7 6
R = R - 1

7 1 CONTINUE

72 V E C T (1) = 0.

7 3 TEMP = TEMP + D C O N J G (A (J , L)) * A (J , I)

7 4 V E C T (J 1 = V E C T (J) + TEMP*A(J , I)

7 5 CONTINUE
7 6 SUM = 0.

26

0 0 4 3 6 0 0
0 0 4 3 7 0 0
0 0 4 3 8 0 0
0 0 4 3 9 0 0
0 0 4 4 0 0 0
0 0 4 4 1 0 0
0 0 4 4 2 0 0
0 0 4 4 3 0 0
0 0 4 4 4 0 0
0 0 4 4 5 0 0
0 0 4 4 6 0 0
0 0 4 4 7 0 0
0 0 4 4 8 0 0
0 0 4 4 9 0 0
0 0 4 5 0 0 0
0 0 4 5 1 0 0
0 0 4 5 2 0 0
0 0 4 5 3 0 0
0 0 4 5 4 0 0
0 0 4 5 5 0 0
0 0 4 5 6 0 0
0 0 4 5 7 0 0
0 0 4 5 8 0 0
0 0 4 5 9 0 0
0 0 4 6 0 0 0
0 0 4 6 1 0 0
0 0 4 6 2 0 0
0 0 4 6 3 0 0
0 0 4 6 4 0 0
0 0 4 6 5 0 0
0 0 4 6 6 0 0
0 0 4 6 7 0 0
0 0 4 6 8 0 0
0 0 4 6 9 0 0
0 0 4 7 0 0 0
0 0 4 7 1 0 0
0 0 4 7 2 0 0
0 0 4 7 3 0 0
0 0 4 7 4 0 0
0 0 4 7 5 0 0

DO 7 7 I = l , M
A (I , L) = A (I , L) - V E C T (I 1

I F (SUM.EQ.0.) GOT0 8 0
SUM = DSQRT(SUP1)
DO 7 8 I = l , M

7 8 A (I , L) = A(I ,L) /SUM
80 CONTINUE
9 2 DO 9 5 J = l , M

DO 9 5 I = l , M
TEMP = A (I , J)
A (I , J) = A A (I , J)

RETURN
ENTRY EVDATA (ITS,KTS,NCO,MCO,RNORM)
D IMENSION M C O (l) , NCO(11, RNORM (1)
DO 8 3 I = l , M

I T S = ITSUM
I F (.NOT. EVECT) RETURN
DO 8 4 I = l , M

ANORM = 0.
D O 8 5 I = l , M
DO 8 5 J= l ,M

7 7 SUM = SUFI + A(I ,L)*DCONJG(A~I ,L))

9 5 A A (I , J) = TEMP

8 3 NCO(1 1 = NCOIJNT(1 1

8 4 M C O (I) = MCOUNT(1)

8 5 ANORFI = ANORrI + A(J , I) *DCONJG(A(J , 1))
ANORM = DSQRT (ANORbZ)
I F (ANORM.EQ.0.) ANORbl=l.
KTS = KTSUM
DO 9 0 L= l ,M
VNORM = 0.
DO 8 9 I = l , M
TEMP = 0.
DO 8 2 J = l , M

8 2 TEPIP = TEMP + A (I , J) * A A (J , L)
TEMP = TEMP - L A r l B D A (L) * A A (I , L)

8 9 VNORE.1 = VNORM + (CDABS(TEMP)) * *2
9 0 R NO RM (L 1 = D S QRT (V N 0 RF1) / A N 0 RF.1

RETURN
END

27

REFERENCES

1. Wilkinson, J. H. : The Algebraic Eigenvalue Problem. Clarendon Press, Oxford,
1965.

2. Greenstadt, John: The Determination of the Characteristic Roots of a Matrix by the
Jacobi Method. Mathematical Methods f o r Digital Computers. Anthony Ralston
and Herbert S. Wilf, eds., John Wiley &Sons, Inc., 1960, pp. 84-91.

3. Francis , J. G. F. : The QR Transformation: A Unitary Analogue to the LR Trans-
formation. I. Computer J., vol. 4, Oct. 1961, pp. 265-271.

4. Francis , J. G. F.: The QR Transformation. 11. Computer J., vol. 4, 1962,
pp. 332- 345.

5. Funderlic, R. E., ed. : The Programmer's Handbook: A Compendium of Numerical
Analysis Utility Programs. Rep. K-1729, Union Carbide Nuclear Co., Feb. 9,
1968.

28 NASA-Langley, 1970 - a E- 5885

NATIONAL AERONAUTICS AND SPACE ADMINISTRA? ION

WASHINGTON, D. C. 20546
OFFICIAL BUSINESS FIRST CLASS MAIL

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS ANI

SPACE ADMINISTRATION

02U O C 1 3 3 51 3 0 s 71012 00903
A i : > , Fg"CE hEAPChS . L P P C R A T O R Y / N L C L /
K I R T L A A C 4 F B V FdEW V E X ICC 87117 ..

i .

If Undeliverable (Section 158
Posral Manual) Do Not Return

. _. ~ -.

"The aerona~tical and space activities of the United Stntes shall be
conducted so as t o contribute . . . to the expansioia of human knowl-
edge of ph&toniena in the at?~iosphere and space. T h e AdniiniJtration
shall provide for the widest prncticable and appropriate dissemination
of inf ormiation concerning its activities and the. resiilts thereof."

-NATIONAL AERON~UTICS AND SPACE ACT OF 2958

NASA SCIENTIFIC A N D TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge. ,

2

TECHNICAL TRANSLATIONS: Information
published in a foreign language consi'dered
to merit NASA distribution ,in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that map be of particular .
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

4

Details on fhe availability of fhese publications may be obtained from:

SC I ENT I F IC AND T EC ti N ICAL I N FOR MATI ON 0 F F I C E

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. PO546

