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Applications of Partial Orderings to
the Study of Position Definiteness, Monotonicity,
and Convergence of Iterative Methods for Linear Systems

1. Introduction

Consider a system of linear equations
(1.1) AX = b

where A 1is a real nonsingular n x n matrix, X and b are elements
of real Euclidean n-space, E" . Most of the theorems which guarantee

that the sequence {Xk} , defined by an iteration such as
(1.2) Xk+1 = BXk +¢ , k=0,1,...

converges to the solution of (1.71) require A to be positive definite,

or else the inverse of A must be nonnegative:
-1
(1.3) A" x0.

(A matrix which satisfies this latter condition is said to be monotone.)
For example, a theorem of Reich (1949) says that if A is symmetric then
the Gauss-Seidel method converges if and only if A is positive definite.
For nonsymmetric matrices, the theory of M-matrices (see, for example,

Varga (1962)) shows that if

(1.4) a4 % 0 for i4#73

and (1.3) holds, then both the Jacobi and Gauss-Seidel methods converge.

Finally, the theory of reQu]ar splittings, also discussed by Varga (1962),



provides a rather general technique for obtaining iterative methods
which are known to converge when applied to monotone matrices.

The theory of monotone matrices has received much attention, inde-
pendent of its connection to convergent iterations. Bramble and
Hubbard (1964), Bramble, Hubbard, and Thomée (1969), Price (1968), and
othérs, have used properties of monotone matrices to obtain error bounds
for discrete approximations to partial differential equations. For
applications such as these, it is important to find conditions which
are readily verified and which imply monotonicity. In this context, the
theory of Stieltjes matrices, and results of Fan (1958) and Fiedler and
Ptak (1966) are of interest. Fan showed that (1.4) together with

(1.5) AX >0 for some X x0

implies that A 1is monotone, and Fiedler and Ptdk studied monotone
matrices using a somewhat strengthened form of (1.5).

The purpose of this paper is to introduce a new concept, called
K-semi positivity, which provides an important link between convergence
theory, monotonicity, and positive definiteness. A necessary tool for
this discussion is the theory of partial orderings, which are discussed
briefly in the next section. In Section 3, K-semi positivity is defined
and several fundamental facts are proved. The connections to positive
definiteness and monotonicity are developed in Section 4, and the final
section contains applications of these results to Jacobi's method and

the theory of regular splittings.
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2. Partial Ordering in g

The notation used here is essentially that of Vandergraft (1968).
In particular, a cone in E" will be a closed subset K which has a
nonempty interior and satisfies oKc= K, o0 >0, K+ K<K , and
KM {-K} = {0} . The boundary of a cone K is denoted by &K , the
interior by K° . The partial ordering induced by K is denoted by
K

> ; that is, X > means X - v ek » and X XY means X-Ye KO .

If A dis an n x n matrix, then A 1is called K-nonnegative (A zKO)

if AXe K forany XeK,and A is K-positive (A>Ko) if Axe «°
for all Xe K, X#0 . Finally, A 1is K-monotone if
AX € K implies Xe K. It is simple to prove that, if A 1is non-

Ko .

singular, then A 1is K-monotone if and only if LIS
Throughout this paper, results concerning K-nonnegative matrices
will be used. Most of these results are direct extensions of the class-
ical Perron-Frobenius theory of nonnegative matrices (see Gantmacher
(1960)), and will not be restated here. There are, however, two rather

special results, concerning K-nonnegative matrices, which will be of

some use.

Lemma 2.1 If A 1is a nonsingular matrix, then A zKO if and only

if X eK° implies AX ¢ K° .

Proof Suppose AX e K° for any X e K . It suffices to show
AY ¢ K for any Y e 8K, But, if AY £K for some Y € & ,
then since K 1is closed, there is a neighborhcod S of Y

with A(S)NK=¢ . But S contains points in K°
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so A(S) YK # @ . This contradiction implies AY € K . Conversely,

>K0 but AX € K for some X € K° . Using Lemma 2.1 of

suppose A
Vandergraft (1968) it follows that the set S = {Y: 0 Ky ¢ X} has
the property that A(S) < H where H is a subspace of dimension less
than n . But using the fact that X e K® , it follows that for any
ZekK,olZeS forsome o>0. Thus oAZ = A(oZ) € H , and hence
AZ e H. Butany Y e E" can be written as Y = Z] - 22 where
Z],Z2 e K . The above analysis shows that AY € H , and hence A is
singular.

The next result follows easily from Theorem 3.1 of Vandergraft
(1968).

Lemma 2.2 If A is symmetric and positive definite, then there'is

a cone K with A ZKO .



3. K-Semi Positive Matrices

Throughout this section, K will denote some fixed cone in EN R
and A is an n x n matrix. We begin with our basic definition, which

is an obvious generalization of (1.5).

Definition The matrix A is called K-semi positive if

AKOYM KO # 6 .

If K 1is the usual cone of vectors with nonnegative components,
then the class of K-semi positive matrices is identical with the class
S defined by Fiedler and Ptdk (1966). The justification for introduc-
ing new terminology is two-fold. First, it is convenient to show
explicitly the dependence on the cone K , and secondly, Lemma 2.1
shows that, for nonsingular matrices, K-nonnegativity is equivalent to
A(K°)<::K0 . The above definition is merely a weakening of this condition.
It is important to note, however, that unlike K-nonnegativity, the concept
of K-semi positivity does not induce a partial ordering on the space of
n x n matrices. For example, if A = [ m? —; 1, and K is the cone of
vectors with nonnegative components, then both A and -A are
K-semi positive. Finally, it is clear that a condition which is
equivalent to that of the definition is A(K) MK® # ¢ .

In the next lemma, we summarize some useful facts about nonsingular

K-semi positive matrices.

Lemma 3.1 If A 1is nonsingular, then
i) A dis K-semi positive if and only if L K-semi positive.

ii) If A 1is K-monotone, then A s K-semi positive.
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The proof is a trivial application of the definition and will be
omitted. Simple examples show that the converse of part ii) is not true.
We next prove a fundamental result connecting K-semi-positivity
and convergence. Recall that a matrix A s convergent if the spectral

radius p(A) 1is less than 1; or equivalently, Ak converges.
=0

Theorem 3.1 If A sKI then A s K-semi-positive if and'on1y if
I - A is convergent. (Equivalently, if B zKO then B 1is convergent

if and only if I - B is K-semi-positive.)

Proof If A {is K-semi-positive, then AY ¢ KO for some Y ¢ K°.
Let X be an eigenvector in K of I - A corresponding to the eigenvalue

p = p(I-A), and let

ty = sup{t >0 : X gKY}e

Since Y ¢ KO, such a number to exists, is positive and finite. Further-

more,

oty X = t(I-A)X M(I-A)Y = v - Ay Ky

hence pto < to and thus p < 1 which says that I - A is convergent. Converse-
1y, if I - A is convergent, then the series ; (I-A)k converges to A_]y and
since each term is K-nonnegative, it f011owsk£gat the sum is also K-non-
negative. Thus A—] > KO, so A 1is K-monotone, and by Lemma 3.1, A is
K-semi-positive.

This proof actually shows that if A sKI and I - A is convergent, then
A']ZKDa For K the cone of vectors with non-negative components, this was

proven by Kuttler (1970).



The auxillary condition A gKI , which appears in this theorem,

js related to condition (1.4) (a.

ij <0 , i#3) . In fact, a

direct generalization of (1.4) is

(3.1) aA sKI for some o > 0

In Section 4, this condition will be discussed further.

We next give a spectral characterization of K-semi positivity.

Theorem 3.2 If A<K

I then the following statements are equivalent.
i) A is K-semi positive
ii) A1l eigenvalues of A have positive real part

iii} A1l real eigenvalues of A are positive.

5K

Proof If I - A>"0 then p(I-A) ds an eigenvalue of I - A .

Thus, if A has eigenvalues Aq.h,,....A, then o(I-A) =1 - -

n
where Xr is real, and

(3.2) -2, 319, d=1,2,..n.

This shows that the eigenvalues of A 1lie inside a circle, with center

at 1 , which passes through Ar » where Ap satisfies

(3.3) Ao, Ai real

Now, if i) holds, then by Theorem 3.1, I - A is convergent so
] - Ar <1. Hence 2 >0 and (3.2) implies i) while (3.3) implies

iii). Conversely, if either ii) or iii) holds, then A > 0 and
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p(I-A) =1 - Ap< 1 so I - A is convergent. Again invoking
Theorem 3.1, we conclude that 1) is true.

Fan (1958) showed that if A satisfies (1.4) and is nonsingular,

then A'1 > 0 if and only if all eigenvalues of A have positive real

part. Hence the above theorem is an extension of Fan's result.



4, Monotonicity and Positive Definiteness

In this section we will investigate further the relationship between
K-monotone, positive definite, and K-semi positive matrices. Observe,
first, that Theorem 3.2 shows that, if A 1is symmetric, K-semi positive,

K

and A <°I , then A 1is positive definite. The converse of this is

contained in our next theorem.

Theorem 4.1 If A dis symmetric, then A is positive definite if

K

and only if for some cone K , A is K-semi positive and qA ¢I for

some o > 0 .

Proof If A is K-semi positive and aA <KI then Theorem 3.2,

applied to «A , shows that oA , hence A , is positive definite.

Conversely, if A 1is positive definite, with p(A) = p, then for

any @ > 0 such that a < 1/p, I - oA 1is also positive definite.

By Lemma 2.2, T - aA zKO , for some cone K . Moreover, all eigenvalues

of A have positive real part, so by Theorem 3.2, A 1is K-semi positive.
The number o 1in this theorem cannot, in general, be replaced by 1 .

To verify this, consider the matrix

1 1

1 -7 7

_ 1 1

(4']) A—' "'z ] "‘?
1 1

7 "7 1



whose eigenvalues are -% 5-% , 2 . Clearly, A 1is positive definite,

K

but if there were a cone K with A <"I , then p(I-A) would have to

be an eigenvalue of I - A, which certainly is not true. Thus, the

K

condition " A is K-semi positive and A <1 " is somewhat stronger

then positive definiteness.
We next consider K-monotone matrices and show how they are related

to K-semi positive matrices.

K

Theorem 4.2 If A dis K-semi positive, and oA <"I for some

a >0, then A 1is nonsingular and K-monotone.

Proof Since a >0, oA is also K-semi positive, and Theorem 3.1

shows that I - oA 1is convergent. Furthermore, O éKZ(ImaA)K = (uA)"] =

u']A’] hence A'1>KO and A is K-monotone.

The condition oA SKI , o >0 , is a special form of

(4.2) BA <K for B Ko

Using this more general condition, we obtain:

Theorem 4.3 Let A be nonsingular. Then A 1is K-monotone if and

K

only if A 1is K-semi positive, and there exists a nonsingular B >0

with BA <K .

Proof If A 1is K-monotone then A 1is K-semi positive, and B = A']

satisfies the conditions of the theorem. Conversely, if B %K

BA <KT then, by Theorem 4.2, A”1B™' = (BA)"' Ko . since B30, this

implies A1 5Ko which shows that A s K-monotone.

0 and
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A simple rephrasing of a theorem of Price (1968) shows that A
is monotone if and only if there is a nonsingular matrix B with
B>0,BA<I and I - BA convergent. This result can also be
obtained from Theorem 4.3 together with Theorem 3.1.

Condition (4.2) has been used by Ortega and Rheinboldt (1967) in
the study of iterative methods for nonlinear equations. In keeping
with their terminology, we will call a matrix B which satisfies (4.2)
a K-positive left subinverse of A . (Obviously the proof also holds

if B 1is a right subinverse, AB gKI .)

We conclude this section with the following summary of several of

our results.

A s A is K-semi positive,
T A s
positive| A= and has a K-positive | &
K-monotone
definite subinverse
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5. Convergence Theorems

The results of preceding sections will now be used to prove some
useful convergence theorems. We begin with a simple application to

Jacobi's method.

Theorem 5.1 Let A be a matrix which has unit diagonal. If, for

K

some cone K , A s K-semi positive and A <°I , then the Jacobi method

converges.

Proof The Jacobi iteration matrix is J =1 - A . The hypotheses
say that J BKO and I -J=A is K-semi positive, so by Theorem 3.1,

J is convergent.

If A ds symmetric, with unit diagonal, then the convergence of the
Jacobi method implies that all eigenvalues of I - A are less than 1 ,
in modulus. Clearly, this implies that A 1is positive definife. Using
Theorem 4.1 we conclude that, if the Jacobi method converges, then A
is K-semi positive, and for some o > 0 , GA SKI . Note that this

statement is nearly the converse of Theorem 5.1. The matrix

IR
A= |- 1 -
Foobo

whose eigenvalues are %-, %-,-% , shows that we may not take o =1 1in

this statement. On the other hand, the matrix (4.1) shows that oA Ky

for some o >0 , is not sufficient to prove Theorem 5.1.
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If Reich's theorem, which was stated in the introduction, is
reworded, using Theorem 4.1, we obtain a theorem for the Gauss-Seidel

method which is quite similar to the above results for Jacobi's method.

Theorem (Reich) If A s symmetric, then Gauss-Seidel converges

if and only if oA gKI and A 1is K-semi positive, for some cone K ,

and some o > 0 .

We next turn to the theory of regular splittings. Following Varga

(1962), we will say that A =M - N is a K-regular splitting if

N %KO , M is nonsingular, and M"] ZKO . For the case where K is

the cone of nonnegative vectors, Varga proves that the iteration

1 1

(5.1) Xep1 = MTINX £ M

converges to the solution of AX = b , whenever A'T > 0 . The next

theorem improves and extends this result.

Theorem 5.2 Let A=M - N be a K-regular splitting. Then (5.1)

converges if and only if A 1is K-semi positive.

1 1

Proof By definition, I - M 'A =M

1

N>0 ., hence if A s

A , and Theorem 3.1 shows that M_]

1

K-semi positive, then so is ™M N

is convergent. Conversely, if M 'N 1is convergent, then
o Ktk = ()T = At But M Ko so AT Ko and
hence A is K-semi positive.

-1 K

Using Theorem 4.2, we can replace the hypothesis M ' >0 by

a somewhat simpler condition.
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Corollary Let A=M- N where N 2K0 , oM gKI for some

a<0,and M is K-semi positive. Then (5.1) converges if and only

if A 1is K-semi positive.

We conclude by applying these results to a matrix derived by
BrambTle and Hubbard (1964). If a certain fourth order discretization
is applied to a linear two-point boundary value problem, the resulting

matrix, after dividing by diagonal elements, is

1 0 0 0 0
2+h“q(h) 2+h*q(h)
A:
1 -4 -4 1
5 5 1 5 5
24+12h2q(2h)  6+3h%q(2h) 6+3h%q(2h)  24+12h%q(2h)
0 1 -4 1

24+12h%q(3h)  6+3h%q(3h)

where h > 0 is the mesh spacing, and q{x) >0 {s a coefficient in
the differential equation. After a rather long and tedious analysis,
Bramble and Hubbard show that A 1is monotone, and that the "backward-

forward Gauss-Seidel method"
(5.2) Xepy = (1) (1-0)Thux, + (1-0)7T(1-0) 7T

converges. (Here, we have written A=1-L - U where L , U are Tower

and upper triangular, respectively.) Using the results of this section,
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we can simplify this analysis considerably. First of all, from the

fact that, for small h > 0 , the row sums for rows 3, 4, .., h - 2 are
negative, one can construct a nonsingular matrix B with B>0, BA<T .
(Start with a matrix of all 1's. Modify the first few and last few rows,
so that BA has nonpositive off-diagonal. Next modify further, so that
B is nonsingular, and multiply by a small constant so that BA < I .)
Next, if h 1is small enough, it is easily seen that AX > 0 where

X = (1,5,10,]0]0,101010...)T so A 1is semi positive. Theorem 4.3 can
now be applied to show that A'] 2 0 , for small h .

To prove convergence of (5.2) consider the cone

T n n j
K={UP“U%):.2M>O,.ZGUxigm
i=] i=]
A sufficient condition for B >K0 is that
n
(5.3) 2 b.. >0, j=1,2,...,n
i=y
and either
n ; .
(5.4) sgn( J (-1)"b.4) = (-1)
i=1 J
or
_qyitd
(5.5) (-1) bij >0

Now, Tlet Ao be the matrix A , with h =0 , and write Ao =1 -L~-U.

Then the iteration (5.2) is of the form (5.1) , where
N = LU

M= (I-L)(I-U)
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By examining L and U , one sees that -L and -U both satisfy

(5.3) and (5.5). Hence -L zKO , =U zKO and N=1L - U zKO .

Next, we note that for small o, I - oM has positive diagonal

elements, which approach 1 as o becomes small, and the off-diagonal
elements tend to zero as o - 0 . Hence, for small o, I - M satis-

fies (5.3) and (5.4), so oM K1 for some o >0 . Finally, if
X=(1,0,...,0)7 then X eK and AX=M = (1,-1/2,1/24,0,...,0) e K° ,
S0 AO and M are K-semi positive. But then, the hypotheses of the
corollary to Theorem 5.2 are satisfied, and hence (5.1) converges. By

continuity, (5.1) also converges for all h sufficiently smail.
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