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SUMMARY

A combined analytical and experimental study is made of the acoustic

radiation efficiency of a truncated conical shell. Previous work in

the acoustic radiation efficiency of cylindrical shells is utilized

in order to develop an approximating technique. The conical shell is
then approximated hy a series of cylindrical segments and the acoustic
radiation efficiency of each segment is calculated. This method yields
an upper bound solution for the acoustic radiation efficiency of trun-
cated conical shells. The experimental program verifies the fact that

the method yields an upper bound solution for the acoustic radiation

efficiency.
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INTRODUCTION

In this presentation, a twofold study is made of the vibrational
and acoustical characteristics of truncated cenical shells. Utilizing
statistical energy concepts, an analytical.graphical technique is
developed which determines the acoustical radiation efficiency of the
truncated conical shell. An experimental study is also made to evalu-
ate the accuracy of the analytical.graphical method.

The analytical-graphical method of evaluating the acoustical
radiation efficiency of the truncated conical shell is developed by
approximating the conical shell by a number of cylindrical segments
varying in radii and lengths, The choice of cylindrical segment approx-
imations depends upon the frequency range of interest. This method
yields a set of values of acoustical radiatien efficiency of the trun-
cated conical shell which may be called upper bound values. The nature
of the calculation is such that the determined valued of acoustic radia-
tion efficiency are the maximum possible values at a given frequency.

The approximation technique invelves cheoosing a cylindrical seg-
ment of the same thickness and material as the truncated conical shell
and calculating its acoustic radiation efficiency. The method by which
the cylindrical segment is chosen is of prime importance and will be
described briefly here. The range of applicable frequencies is deter-
mined through a consideration of the frequency range lying between the
lower ring frequency and the upper ring frequency of the conical shell.
Then, for any frequency in this range, a cylindrical segment is chosen

which has a ring frequency the same as the frequency in question. The



length of this cylindrical segment is chosen such that the defined
eylinder length is equal to the length of the conical shell which has a
radius greater than or equal to the radius of the cylinder mentioned
previously. Thus, by choosing any frequency in the applicable range,
the radius and length of the equivalent cylinder is specified.

Once the equivalent cylinder is defined, the acoustic radiation
efficiency for that particular cylinder is calculated by the analytical-
graphical technique. This value of radiation efficiency is the value
assigned to the truncated conical shell at the frequency in question.

It is known that there is a peak in the acoustic radiation effi-
ciency of a circular cylinder in the vicinity of the ring frequency so
long as the ring frequency is less than the critical frequency.

Because of this peak in radiation efficiepcy near the ring frequency,
this solution technique yields an upper bound solution for the radia-
tion efficiency.

The net result of the analytical.graphical determination is a
graph of acoustic radiation efficiency versus frequency for a particu-
lar truncated conical shell.

The experimental investigation was carried out to determine the
accuracy of the preceding operation and also to establish certain pro-
cedures governing the experimental technique. This experiment relied
upon the determination of a group of parameters for the conical shell
and using these quantities in an equation which determined the acoustic
radiation efficiency.

The ability of being able to determine the acoustic radiation

efficiency of a truncated conical shell is significant for a variety of
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application purposes. In spacecraft, aircraft, landcraft, and undersea
vehicles, conical shells are often used in the structural makeup. Be-
cause of the acoustical environment to which many of these structures
are exposed, transmission and response phenomena are important. Struc-
tures thus mentioned can generate appreciable sound fields. They often
receive appreciable energy from sound fields as well, Thus the cou-
pling between a structure and a sound field is very significant.
Knowledge of the-acoustic radiation efficiency of these conical shell
structures will provide much knewledge needed to predict the amount of
acoustic energy that will accelerate a body and how much of that energy
will be dissipated., This knowledge will also enable one to predict how
much vibrational energy input to a structure will go to acoustic energy
and how much will be dissipated.

The value of acoustic radiation efficiency is very significant in
structural vibration work and it is felt that this presentation will be

a valuable practical tool in determining acoustic radiation efficiency.



REVIEW OF LITERATURE

When a structure is immersed in a sound field, the vibrations of
the structure and the sound field are coupled in a unique manner. A
generalization of this phenomena has been discussed by Lyon and
Maidanik (1962) through a consideration of the power flow between
linearly coupled oscillators. 1In this study, the power flow between
structural vibrational modes of an oscillator and a reverberant sound
field was studied. Introducing the concept of equipartition of energy
between the two classes of oscillators, they were able to quantify the
parameter that couples the two vibrational fields and this parameter
is referred to as the acoustic radiation resistance. They develop
several theoretical expressions for the acoustic radiation efficiency
of structures and another equation that is used widely in experimental
determination of acoustic radiation efficiency.

Maidanik (1962) extended the analysis of structural vibrations to
the behavior of flat panels in reverberant acoustic fields. He found
that a statistical method for predicting the response of panels in
reverberant acoustic fields could be utilized giving good practical
results. He showed that the acceleration spectrum of the vibrating
panel was related to the pressure spectrum of the reverberant field by
a coupling factor which is a simple function of radiation and mechani-
cal resistance of the structure. The overall aim of this work was to
estimate the response of the structure when it was immersed in a
reverberant acoustical field, knowing the gross structural parameters.

This analysis considered the power radiated from a vibrating panel and
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related it to the acoustic radiation resistance, The modal behavior of
plates is discussed and the work finishes with the development of an
experimental equation whereby the radiation resistance of a panel can
be determined from experimental data,

A later analysis was carried out by Manning and Maidanik (1964)
in which a theoretical approach was developed similar to that done by
Maidanik (1962) except it developed the radiation efficiency of
cylindrical shells, A statistical-.graphical technique was developed
which ylelded the acoustic radiation efficlency of a cylindrical shell,
Tbis statistical.graphical approach gave a theoretical solution which
was verified by an experimental program similar to these previously
done. The major consequence of this research was that it extended the-
ory which had previously been restricted for use on flat panels to

three.dimensional structures, that is cylindrical shells,



DEVELOPMENT OF MATHEMATICAL MODEL

General Comments on Acoustic Radiation

The simplest type of acoustic radiation normally encountered is
that from a pulsating sphere in a non-reflecting enviromment. This
is a sphere whose radius varies in length sinusoidally with time.

Many acoustic radiators behave similar to pulsating spheres if their
significant dimensions are small compared to the acoustic wavelength
of the radiated éound. Quantities such as the acoustic pressure
generated, particle velocity, source strength, acoustic wave intensity,
power radiated, and other significant parameters can readily be com-
puted for the pulsating sphere (Kinsler and Frey, 1962).

Slightly more complex than the simple spherical source is the
simple source in an infinite baffle in an environment with non-
reflecting boundaries. Here, acoustic radiation is confined to one
side of the plane. One model of this would be the hemispherical source
if it were in an infinite plane baffle as shown in Figure 1.

Many of the equations governing the acoustic parameters of the
simple pulsating sphere can be modified to yield equations for the
hemisphere in the infinite baffle. It can be easily verified (Kinsler
and Frey, 1962) that the pressure produced by hemispherical source in
an infinite baffle is twice as great as that produced by a spherical
source of the same strength. Kinsler and Frey (1962) also derive the
expressions for acoustic power and intensity for the hemisphere in an
infinite baffle.

Acoustic radiation from an extended surface does not have the

symmetric radiation patterns as does the simple source. Such is the



case concerning acoustic radiation frem a vibrating piston. The pres-
sure produced at any point in an acoustic medium by such a surface is
determined by summing the discrete pressures which would be produced

by an equivalent array of simple sources. Theoretically, one could
determine the pressure produced by such a vibrating body by formulating
a differential pressure and integrating it over the surface of the body.
The mathematical difficulties enceuntered in this method are, however,
very great except in the more simple cases.

The nature of the kinds of approximations that can be made concern-
ing acoustic radiation, while maintaining adequate numerical descrip-
tion, can be illustrated through a discussion of the piston problem.
When the piston radius is large compared to acoustic wavelength, that
is when ka >> 1, where k is the wave number and a is the radius of the
piston, the radiation pattern of the piston is shown by Kinsler and
Frey (1962) to be like that in Figure 2. Obviously, when ka is small,
the directivity factor approaches unity for all angles, and the pres-
sure amplitudes approach those of a hemispherically radiating source of
the same strength. This fact can be ascertained from Figure 3 and
Kinsler and Frey (1962). Thus for small ka, the flat piston acts

essentially like a simple source,

General Comments on Acoustic Radiation Resistance and Reactance

In the preceding developments the main coencern was the development
of pressures and intensities of acoustic waves set up in a medium sur-
rounding a vibrating source. The main parameters needed were assumed

to be known. These parameters were the amplitude and the frequency of
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vibration of the surface. 1In practical problems, often neither of
these two parameters are shown, but, many times what is known is the
driving force or the driving power. Under such circumstances, the
amplitude of vibration is a function of frequency. Consequently, the
dynamic constants of the driver are needed as expected, but, in addi-
tion, the reaction force with which the medium acts on the surface of
the body are needed. To illustrate this concept of reaction force and
to give an intuitive feel for the interaction of the fluid medium on
the surface, the piston is used as a model.

Consider two elements of area dS and dS', on a piston. Let dp be
the pressure increment that dS produces in the medium at a point in the
medium at a point adjacent to dS'. To find the acoustic pressure in
the medium adjacent to dS', Kinsler and Frey (1962) integrate over the

piston to get:

jp_ckU .
- o o _j(wt-kr)
p = — e ds ¢
where r is the distance between dS and dS'. This piston is shown in

Figure 4. The total reaction force acting on a piston is,
fr=-ff pds' . (2)

Substituting the value of p from equation (1) into equation (2) yields:

- jpockaejwt - kr
B- —2 9 [jast [ as . 3

Kinsler and Frey (1962) integrate the preceding equation to get:

Er = -pocnazerJwt(Rl(Zka) + le(Zka)) (4)
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and also define Rl(x) and Xl(x) to be:

4 6
Ry (X) = mp = g + s - (5)
1 2:4 7 9456 2.4%.6%.8 ’
3 5
4 x X X
X, (%) = = (= - + - e ) . (6)
1 R B S e 2

Rl(x) is called the piston radiation resistance function and Xl(x) is
called the piston radiation reactance function. To determine the
acoustic radiation efficiency of this piston, a function of equation
(5) must be divided by the radiation resistance of a flat plate with
high ka. The divisor is pocoA, where o is the ambient density of
the sound field, <, is the séeed of sound in the surrounding medium and
A is the area of the piston.

Assuming small ka for the piston as discussed previously, Rl(x)
and Xl(x) are approximated by the first term in equation (5) and equa-

tion (6). Thus

xZ
£~ 2 (8

When x or ka is large, it can be shown (Kinsler and Frey, 1962) that

equation (5) and equation (6) reduce to

Rl(x) ~ 1 ®
and

X, () = %x. (10)
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Tables are often used for determining the acoustic radiation
resistance function and the acoustic radiation reactance function for
pistons. It is clear that knowing the radiation resistance of a piston
or any other object, its radiation efficiency can be determined.

Another important parameter is acoustic radiation impedance, Zr
This is the ratio of the force exerted by a surface on its surrounding
acoustic medium to the velocity of that surface. For the piston, the
force has been defined in equation (4). Since the velocity of the

piston is

u=uy el (11)
)
then the radiation impedance is
_Er 9
z_ = ____.U i = p,cna” [R;(2ka) + jX;(2ka)] . (12)

(o}

The real part of Zr is the radiation resistance and the imaginary part
is the radiation reactance. As mentioned previously, the radiation
efficiency of the piston is the ratio obtained by dividing the real
part of equation (12) by pocoA. If radiation efficiency is denoted by

o, then, for a piston,

o = ﬂa(Rl(zka)) . (13)
The radiation impedance is useful in determining the reaction force on
the piston. This force'is,

P o= _z U et (14)
r r o
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The acoustic power radiated from a body such as a piston is equal
to the rate of doing work against the radiation resistance Rrad° The

average power generated is

W= %Rradug 2 (13)
or
W= (%)pocnazUoRl(Zka) . (16)

Obviously, the preceding equations apply only to pistons and to struc-
tures which may be approximated by pistons, but they serve as a basis

for further discussion of the concept of acoustic radiation.
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DYNAMICS OF SHELL STRUCTURES

Single Oscillator Response Analysis

An explanation of how a simple oscillator radiates sound into a
surrounding acoustic medium has been described in the preceding section.
This simple source can be visualized as an analog to more complicated
systems. Another analog can be used to represent acoustical systems.
This analog is the linearly coupled oscillator. This analog is
applicable both éo simple and complex systems. It has merit because it
utilizes the energy flow between the oscillator and its surrounding
medium,

A reverberant acoustical field is one in which the sound is
diffuse regardless of location in the field, The study of acoustical
systems interacting with reverberant acoustic fields has been analyzed
by Lyon and Maidanik (1962). The oscillators spoken of here are in
reality the structure and the sound field. Thus there is a power flow
between the structure and the acoustic field. Lyon and Maidanik (1962)
use another analogy to find the power flow between the structure and
the sound field. This second analogy is the thexrmal bath., The struc-
ture is considered to be a source of heat and it is immersed in a fluid
which represents the acoustic medium. A net heat flow results between
the heat source and the fluid and it is shown to be representative of
the power flow between a sound source and its acoustic field. Power
flows between the vibrating modes of the structure and the modes of the
reberberant field

To illustrate the concept of the power flow between the oscilla-

tors, consider an oscillator in a diffuse sound field as shown in
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Figure 5. Suppose the oscillator which is immersed in this field
resonates at a frequency w, as shown in Figure 6. At frequency @, the

spectral density of the mean square pressure is given by Lyon and

Maidanik (1962) to be
_ 2
Sp(wl) =< p° >/ . (17

The frequency Wy is the only frequency which the oscillator senses.
With respect to the thermal analogy, the sound field in this interval
has a temperature related to the spectral density and the systems will
reach steady.state vibrations only at that temperature corresponding
to (J.)l.

Lyon and Maikanik (1962) also state that in a reverberant room of

volume V the acoustic energy is

_ 2 2
E.=<p >V/poc . (18)

This acoustic energy is divided into nr(a))Aa)modes of the room. Here,
nr(a)) is the modal density of the room. Thus the average energy per

mode is

E 2 S (w)V
r _ <p >V - p() ) (19)

n_ (02D 2 2
T P,C nr(w)Aa) P, nr(w)

An expression for the modal density of a room is (Morse and Bolt, 1944)

a)ZV

nr(a.)) = 53 . (20)
27 ¢
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Therefore the average energy per mode can be expressed as

R S (a»anc
0 () = Bgr .

pw

In order to illustrate the heat analogy, let er = KT where K is
Boltzmann's constant and T is the temperature. Thus, in the thermal
analogy, the oscillators have a given temperature which is a function
of their frequency and amplitude.

If a mechanical oscillator is placed in a sound field it will in-
teract with oscillators which represent this field and anet power flow will
result between the two. The interaction between the mechanical oscil-
lator and the field oscillators is confined mainly to the oscillators
of the field which oscillate in a frequency band centered around the
natural frequency of the oscillator. If a number of mechanical
oscillators are placed in a field, the same type of interaction will
result., Each of the mechanical oscillators will oscillate around its
resonant frequency.

A structure consisting of many modes may be thought of as being a
number of oscillators. For such a structure Lyon and Maidanik (1962)

give its average energy per mode as:

6°(® = s (@) / (en (@) (22)

where ns(ab is the structure modal density. Further, Lyon and Maidanik
(1962) show that when a structure alone generates a reverberant sound

field, the radiation resistance can be given by

Rogg = (5, / 8,(@) 5 By (2xnp(@) (23)



17

and the radiation efficiency of the structure in this case is
o= (S (@ /S, () 5 By (2xn (@) (26)
P a pZa R R :

Thus the steady state relations for the flow into and from a structure
in an acoustic environment may be predicted by use of equations (23)

and (24).

General Shell Structural Vibration Patterns

When considering acoustic radiation from shells, the charactéris-
tics of the shell vibration patterns are important. The amount and
characteristics of the acoustic radiation from shells is directly
affected by the vibration patterns which produces the radiation. A
strip mode in a shell is a mode of vibration which looks like a strip
on the shell surface. Acoustic energy is radiated from such a vibrat-
ing strip. A piston mode on a shell is a mode of vibration of the
shell which radiates acoustic energy from that portion of the shell
similar to the way a vibrating piston would if it were in the same
position as the piston mode. A circumferential strip mode on a shell
would be the strip which would go around the shell at any circumfer-
ence, This circumferential strip mode would produce acoustic radiation
similar to a vibrating ring segment around the shell's circumference.
Circumferential strip modes are often found in cylinders. Axjial.strip
modes are modes which may be visualized as strips on the surface of a
shell oriented in a direction parallel to the axis of the shell.

The need for the classification of vibrational modes in shells is

obvious. When these modes are separated from each other and classified,
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they may be analyzed more efficiently. That is, if all the strip modes
in a vibrating shell could be distinguished, they could be analyzed
simply as radiating strips. If all the piston modes in a shell could
be isolated and characterized, they could be treated as an array of
piston radiators. The ability of being able to categorize the types of
modes becomes obvious when the different types of radiation from each
of these modes is analyzed. That is, the radiation from piston modes
has typical characteristics which may be analyzed. The fédiation from
strips has characteristics which differ with that from pistons and this
strip radiation may also be analyzed by treating it separately.

Thus, once the radiation from a shell may be categorized by the
radiators which produce it, the modal radiation analyses may be ex-
tended further. This fact will become evident in a following section
which makes use of the categorization of radiating modes into

circumferential-strip modes, axial strip modes and piston modes.

Conical Shell Structure Vibration Patterns

The acoustic radiation which a conical shell produces'is dependent
upon the vibration patterns producing the radiation. Around the cir-
cunference of the conical shell there exist modes which are
circumferential.strip radiators. Down the axis of the conical shell
there exist modes which are axial.strip radiators. At the edges of the
shell are coner modes which are corner radiators. At high frequencies,
where many modes are uncoupled, there exist piston modes which radiate

like piston radiators.
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The radiating modes of a conical shell are strongly affected by
structural characteristics of the shell. Curvature along the circum-
ference of the conical shell affects the behavior of the
circumferential-strip modes. Curvature effects make some
circumferential-strip modes increase in their flexural.wave speed. End
discontinuities affect axial-strip modes and sometime cause them to
behave like piston modes in the region of the discontinuity. Once the
different modes which exist in a conical shell may be separated from
each other, an examination of the radiation they produce may be made.
Thus it is of prime importance to be able to distinguish the different

vibration modes which occur in a vibrating piston.
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METHOD OF CALCULATION OF ACOUSTIC RADIATION EFFICIENCY

OF CYLINDERS

Manning and Maidanik (1964) develop an analytic method by which
the radiation efficiency of cylinders can be calculated. The author
has analyzed this method and has extended the technique to broader
cylinder radiation analyses. In the presentation by Manning and
Maidanik (1964) an example of the determination of the radiation effi-
ciency by theorefical means is presented. That particular analysis
will be presented here in much greater detail in order to clarify the
theoretical method of determining acoustic radiation efficiency of
cylinders. This example of calculation of acoustic radiation efficien-
cy should help clarify the techniques of analysis of acoustic radiation
efficiency of truncated conical shells,

A technique of computing the radiative properties of flat panels
developed by Maidanik (1962) showed that the use of typical modal
vibration patterns could yield good values of acoustic radiation
efficiency. 1In order to perform this analysis the vibrational modes of
the structure had to be classified. The classifications were (1) acous-
tically fast modes, where ¢, > R for which o

b f

tically slow modes where ¢y < c - Strip modes and piston modes make

=~ 1, and (2) acous-

up the acoustically slow modes., Strip modes are modes whose vibration-
al characteristics can be represented by a vibrating strip and piston
modes are modes whose vibrational characteristics can be represented by
a vibrating piston. The acoustically fast and acoustically slow modes
were determined by an investigation of the frequency equation of the

structure.
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Thg work done by Maidanik (1962) was inadequate for the analysis
of cylindrical shells. The reason for this inadequacy was the fact
that the analysis did not consider the effects of curvature on acous-
tically fast and acoustically slow modes. With certain modifications
for curvature, the technique can be used for analysis of acoustic radia-
tion from cylinders.

To investigate the effect of curvature upon the modal radiation of
a cylinder, consider the frequency equation of a cylinder developed by

Heckl (1962),

2 h%a? 2 2.2 2 K;
v =13 K, + Ky) + (1-p )(——7————7—3? . (25)
' (Kx + Ky)

In this equation the circumferential wave number is given by K.x where,

_ 2x
K = 5+ > (26)

x

_ 2na
N T R (27)
cir = 2ma , (28)

so that

R, = n/a . (29)

Also, the axial wave number ky is given by

_ 2x
Ky = (30)

where

N T w2 Gh
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so that

K. = == (32)

Substituting equations (29) and (32) into equation (25) yields,

2 _b%a?  n2  mg2 2 "
v =—1—2—-{(3) +(—L—)}+(1—i~t)( mﬁzz}’ (33)

(D + 3%

Equation (33) is the frequency equation for a cylinder in terms of the
mode numbers m and n. Equation (33) is shown plotted in Figure 7 for
a particular cylinder.

Continuing with the cylinder's modal modification, Manning and
Maidanik (1964) explain that if the cylinder is represented by an
equivalent plate, the only vibrational modes which radiate in the
equivalent-plate formalism are the circumferential-strip modes. These

circumferential-strip modes satisfy the relation,

(@]

_ L
aKX = E-;— v (34)

Equation (34) is also plotted on Figure 7 and is designated by a dashed
line. Manning and Maidanik (1964) describe that the modes which lie to
the right of this line are the only ones which radiate if the cylinder
is considered to be an equivalent plate.

To establish the region in which the circumferential-strip modes
exist, a parameter which is called the critical frequency must be
defined. This is the frequency at which the flexural-wave speed in a
flat panel of thickness equal to that of the structure in question is

equal to the speed of sound in the surrounding acoustic medium. The
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critical frequency is given by

Ve = TTBRC. T (35)

where fr is the ring frequency‘of the cylindrical segment and fr is the
frequency at which the longitudinal wavelength in the cylinder material
is equal to its circumference, Equation (35) is shown plotted in
Figure 7 and is the vertical line labeled vg. Thus, according to
Manning and Maidanik (1964) all modes lying on Figure 7 to the left of
the line labeled Vg and to the right of the curve of equatibn (34) are
circumferential-strip modes. in the equivalent-plate formalism.

As mentioned previously, the equivalent-plate formalism is inade-
quate for cylinders because it lacks curvature modifications. Some
modification of Figure 7 must be made to account for curvature. Manning
and Maidanik (1964) determine the modification for curvature. They say
that some of the circumferential-strip modes are altered by curvature
effects to the extent that they become acoustically fast modes. They

say that modes satisfying the relation,

sk, 2ty re (DY - v 1 - 92 1RY (36)
0 g
as well as satisfying the previously stated requirements for
circunferential-strip modes, are acoustically fast modes. The radia-
tion efficiencies for the acoustically fast modes is approximately
unity. Equation (36) then constitutes the modification for curvature.

The plot of equation (36) is shown in Figure 7 by the heavy dark line,

The region to the right of the curve of equation (34), above the curve
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of equation (36), and to the left of the line Vg contains only
acoustically fast modes with radiation efficiency approaching unity.

As previously stated, the radiation efficiency of acoustically
fast modes is much greater than that of circumferential-strip modes.
Thus, in the range of frequencies where acoustically fast modes exist,
the radiation efficiency of the structure is controlled mainly by those
acoustically fast modes, It is for this reason that Manning and

Maidanik (1964) say that in this region

(37

where ng is the total number of acoustically fast modes lying in that

frequency band and Dot is the total number of modes in that same band.

Using the equations (33), (34), (35) and (36), a graph like the
one shown in Figure 7 can be constructed for a particular cylinder.
The acoustic radiation efficiency can then be calculated from this
graph alone. The calculation procedure is to select a band of fre-
quencies of interest and outline it on the graph. In that band, count
ng and n . and. then use these values in equation (37).

Manning and Maidanik (1964) present an example determination of
the acoustic radiation efficiency of a cylinder. That calculation is
repeated here in greater detail for illustrative purposes. The radia-
tion efficiency of the same cylinder will be determined near its ring

frequency. The structural parameters of this cylinder are shown in

Table 1.



Table 1.

Structural and acoustical parameters for cylindrical shell

Shape

Material

Length (L).

Radius (a).
Thickness (h).
Young's Modulus (E).
Density (p)

Ring Frequency
Critical Frequency .

Velocity of Wave
Propagation (CL).

Poisson's Ratio ().

Dimensionless Critical
Frequency vg = £ /f

g r’

Medium .
Air Density (po).

Local Speed of Sound
(co)m

cylindrical shell
steel

24 inches

18 inches

0.125 inch

27.6 x 10° 1b_/in’
0.28 lbm/in’

1,726 Hz

3,986 Hz

1.952 x 10° in/sec

0.3

2.31
Air

0.077 lbm/ft>

13,550 in/sec
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The frequency band in which the acoustic radiation efficiency will
be calculated is the 1/3 octave band which encloses the ring frequency
of 1726 Hz, This band covers the frequency range of from 1416 Hz to
1784 Hz or from v = 0.82 to v = 1.03 as seen on Figure 7. Using the
cylinder's structural parameters, equations (33), (34), (35) and (36)
are plotted on Figure 7.

On Figure 7 the region which contains the acoustically fast modes
is cross hatched. The region from v = 0.82 to v = 1,03 which contains
the acoustically fast modes is double cross hatched. This double
cross-hatched region is the area from which ne will come. The points
in this area where the frequency equation curves (labeled m = 1,2,...)
intersect with the integral values of circumferential mode numbers will
be designated with dark dots. The total number of these dots deter-
mines . Counting these dots indicates that n. = 10, Outside the
double cross-hatched area, but between v = 0.82 and v = 1.03, the other

points where the frequency equation curves intersect the integral

values of circumferential mode number are counted. These number of

intersections are added to get noe Since there are 16 of these other
intersections,

D =g ¥t 16 (38)
so

noe = 10 + 16 = 26 . (39)

Thus utilizing equation (37),

10

—2—6- = O. 39 o (40)

[e)) =
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One customary way to express radiation efficiency is on a logarithmic

scale, The value in this case is

10 logy, o = -4 . (41)

Thus equations (40) and (41) express the acoustic radiation efficiency
of the cylindrical shell in the one-third octave band centered at
1600 Hz. These results are the same as those found by Manning and
Maidanik (1964). .

The pﬁrpose of the preceding example has been to clarify the work
done by Manning and Maidanik (1964) and to serve as a basis for the

determination of the radiation efficiency of the truncated conical

shell,
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ACOUSTIC RADIATION EFFICIENCY OF TRUNCATED CONICAL SHELLS

Conical Shell Structure Represented by Equivalent Cylinders

When a truncated conical shell is immersed in a diffuse sound
field, it will vibrate with that field around certain frequencies.

This range of frequencies is of concern with respect to the determina-
tion of acoustic radiation efficiency. The geometry of a typical
truncated conical shell is shown in Figure 8. This conical shell
possesses an uppér and a lower ring frequency. A ring frequency is a
frequency of vibration of the conical shell at which the longitudinal
wavelength of the wave in the conical shell material is equal to a
given circumference. Obviously, since the radius, and hence the cir-
cumference, of the conical shell, vary infinitely between the smaller
and larger radii, there exist an infinite number of different ring
frequencies in a conical shell. The two ring frequencies correspbnding
to the smallest and largest diameter are the upper and lower ring
frequencies, respectively. It is in the range of frequencies between
the upper and lower ring frequencies that the investigation of aco;stic
radiation efficiency will be conducted,

The approximation of the truncated conical shell will be made by
starting at fL, the lower ring frequency and approximating the conical
shell by a cylindrical segment with the same thickness and made of the
same material as the conical shell., The length of this segment will be
chosen to give a reasonable approximation. The radius of this segment
is defined as the radius of the conical shell corresponding to fL. The

radiation efficiency of the conical shell seen in Figure 9a at the
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frequency fL is approximated by the radiation efficiency of the cylin-
drical segment shown in Figure 9b.

For a frequency fi between fL and fu, the following holds as the
approximation procedure:

(1) Determine the frequency fi needed.

(2) Find the radius of a cylinder of the same material and thick-
ness as the conical shell with ring frequency fi'

(3) Signify this radius a, (see Figure 10Db).

(4) Find the length of the cylindrical segment, Li’ governed by
a; (see Figure 10Db).

(5) The radiation efficiency of the truncated conical shell at
frequency fi will be approximated by the radiation efficiency of the
cylinder (see Figure 10b).

The maximum frequency for which a value of radiation efficiency
can be calculated by this method is fu’ the upper ring frequency.
Above fu it is deduced that the radiation efficiency of the truncated
conical should approach unity since Miller (1969) says that above the
upper ring frequency the modal behavior of the truncated conical shell
is the same as that of a flat plate. The aim of the preceding proce-
dure is to determine a set of upper bound values for the acoustic
radiation efficiency of the truncated conical shell. It has been

shown1 that a truncated conical shell may be approximated by a series

1K. L. Chandiramani, Bolt Beranek and Newman, Inc. (Cambridge,
Massachusetts). 1967. Response of a conical shell to a turbulent
boundary layer pressure field. Paper presented at the 74th meeting
of the Acoustical Society of America in Miami Beach, Florida.
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FIGURE 8. GEOMETRY OF TRUNCATED CONICAL SHELL

(a) (b)

FIGURE 9. TRUNCATED CONICAL SHELL WITH RADIUS a AND
CYLINDRICAL SEGMENT WHICH APPROXIMATES THE

SHELL AT FREQUENCY f,

aaly |
,wf”””&””’/fj

(a) (b)

FIGURE 10. TRUNCATED CONICAL SHELL WITH INTERMEDIATE RADIUS
a, AND CORRESPONDING APPROXIMATING CYLINDER
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of finite cylindrical segments. It has also been shown that there is a
peak in the acoustic radiation efficiency of a cylindrical segment at
or near the ring frequency of that segment (Manning and Maidanik, 1962).
It is thus concluded that a conical shell can be approximated by a
series of cylindrical segments. If the radiation efficiency is deter-
mined for these segments at each of their ring frequencies, then the
net result will be a series of upper values of radiation efficiency for
the conical shell., The net result is what may be called the upper
bound solution.

The appropriate lengths of the cylindrical segments are of prime
importance, Chandiramani2 describes the vibrational behavior of the
truncated conical shell in a way which facilitates the correct choice
of length of the approximating cylinder. He says, in effect, that
radiating modes exist in the portion of the conical shell with radius
greater than the radius of the segment which has a ring frequency near
the frequency of excitation. Thus the length of the corresponding
segment at a particular frequency will be the length of the conical
shell which possesses modes of vibration. This is the portion of the
conical shell which has radius greater than or equal to the radius of
the segment whose ring frequency is the excitation frequency.

As an example of the vibrational behavior of the conical shell
consider the behavior of the structure shown in Figure 11l. The lower
ring frequency fL corresponds to a; and the upper ring frequency fu

corresponds to a If the conical shell in Figure 11 is immersed in

2°

Ibid.
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an acoustic field with excitation frequency, fi where fL S~fi

IA
Hh

there is a segment of the conical shell of radius a;, where a, < a; < a
with ring frequency equal to fi' Then, as previously described, the
length of the conical shell with radiating modes is the portion with
radius greater than a;, that is Li° Using this technique, a cylindri-

cal element is extracted and the acoustic radiation efficiency is

calculated for that segment.

Computational Technique for Radiation Efficiency of
Truncated Conical Shell

In a way similar to that done for the cylinder, an illustrative
example is presented in Which‘the radiation efficiency for a truncated
conical shell is computed. This is done under the assumption that the
reader understands the cylindrical segment representation previously
discussed. The truncated conical shell which will be analyzed is shown
in Figure 12a. The structural and acoustic parameters for the shell
are presented in Table 2. According to previous discussion, the coni-
cal shell will be divided into several cylindrical segments. In the
first approximation, the conical shell will be divided up as shown in
Figure 12 b, ¢, d, e, £, g. The ring frequencies corresponding to
these segments are shown in Table 3.

The frequencies listed in Table 3 are the frequencies for which
values of radiation efficiency will be calculated. Thus, six dif-
ferent values of the radiation efficiency of the truncated conical
shell will be computed. These values of radiation efficiency will be
the upper bound solutions of the radiation efficiency of the truncated

conical shell,



34

RADIATING PORTION ——;/& _‘f_‘

Ll/ar %
92 i?‘_"‘“"-i""""’l

: =

FIGURE I1I. TRUNCATED CONICAL SHELL IMMERSED IN A SOUND FIELD
WITH _EXCITATION FREQUENCY f

e—— 36" — — 6 — 127

\iT i T
/

<~ 18"

TL L I

(a) (b) (c) (d)"

fe— 24" — fe— 30" —

T. ¥ TF— 36" —
10" g" 6"
1 4 t

(e) (f) (g)

FIGURE 12. EXPERIMENTAL CONICAL SHELL AND APPROXIMATING
SEGMENTS
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Table 2. Structural and acoustical parameters for experimental conical

shell
Shape . Truncated Conical Shell
Material . Stainless Steel 304
Length. 36 inches
Smallest Radius. 3 inches
Largest Radius . 9 inches
Thickness. 0.0625 inch

Young's Modulus,
Density

Lower Ring Frequency .
Upper Ring Frequency .
Critical Frequency.

Velocity of Wave
Propagation (CL)

.Poisson's Ratio.
Medium.
Air Density .

Ambient Speed of Sound
(c))

27.6 x 10° 1b /in’

0.28 lbm/in’
3,450 Hz
10,360 Hz

7,971 Hz

1.952 x 10° in/sec
0.3
Air

0.077 lbm/ft>

13,550 in/sec




Table 3,

Cylindrical segment ring frequencies
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Segment Number

Ring Frequency (Hz)

3,885

b, 440

5,179

6,215

7,729

10, 360
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Consider first the six-inch long segment. The value of ¢ will be
calculated around its ring frequency of 3,885 Hz. The analytical-
graphical method for determining the radiation efficiency of a cylinder
previously described will be used on this segment. The graph which
applies to this particular segment is Figure 13, The actual numbers
involved in the calculation of radiation efficiency of the conical
shell can be seen in Table 4. The value of n_. is 11 and the value of

£

n is 19. Here n

tot £ is the number of acoustically fast modes in the

frequency band and noe is the total number of modes in that same
frequency band. Referring to Figure 13 it is noticed that the nearest
third-octave center frequency to the ring frequency is chosen as the
frequency around which the computation is made. The reason for this is
because in the experimental program the conical shell will be excited
with one-third octave frequency bands. 1In this case, the ring frequen-
cy is 3885 Hz so the nearest one-third octave center frequency is

4000 Hz. The frequency band ranges from 3540 Hz to 4460 Hz or from

vy =0.91 to v = 1,15, It is in this band that ne and n_ . are found.
Ifn,. is 11 and n is 19 then

£ tot

9|yg5 wz = ng / np = 0.58 (44)

This is the value of radiation efficiency of that cylindrical segment
at 3885 Hz and is by definition the upper-bound value of radiation
efficiency of the truncated conical shell at 3885 Hz.

In the same manner and using Figures 14, 15, 16, 17, 18, 19, ne
and n were found for segments 2, 3, 4, 5, and 6, shown in Figure 12,

tot

and their radiation efficiencies were found. This comprised the first
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Table 4. Values of ne and n
of length

to

t
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for cylindrical segments as a function

Segment Length

(inches) Nf tot
2 0 0
3 14 14
4 0 8
6 11 19
8 2 13
9 17

10 9 23
12 21
14 11 28
15 9 28
16 13 36
18 11 36
20 11 42
21 16 48
24 13 53
26 14 50
27 13 54
28 39 68
30 %* %8
32 * %2
33 * %3
36 * %2

& % For these lengths n
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set of results for the upper bound solution of acoustic radiation
efficiency of the truncated conical shell. These results are plotted
in Figure 19.

Next, the conical shell is approximated by nine segments, equally
incremented in length frem four inches to thirty-six inches by four-
inch increments. A more precise solution is gained by approximating
the conical shell in smaller increments., The results of this approxi-
mation are plotted in Figure 20.

A still smaller length increment of three inches is chosen for the
next approximation. The cone is approximated first by a three-inch
length segment and incremented by three inches each. The cone is thus
approximated by twelve segments. The results of this approximation are
plotted in Figure 21.

Finally, as the most precise approximation, the cone was approxi-
mated by eighteen cylindrical segments. The first cylindrical segment
was two inches in length and the length was increased by two inches in
each approximation., The results of this approximation appear on
Figure 22. Figures 19, 20, 21, and 22 comprise the upper bound solu-
tions for the acoustic radiation efficiencies of the truncated conical
shell.

The radiation efficiency of most any truncated conical shell can
be computed by this method. The only modifications which have to be
made in the procedure are for the differing structural parameters of

the truncated conical shell to be analyzed.
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EXPERIMENTAL INVESTIGATION

Experimental Analysis of Parameters

Maidanik (1962) extensively investigated the response of ribbed
panels to reverberant acoustical fields. This work led to the develop-
ment and use of certain experimental equations which are valuable not
only in evaluating the radiative properties of panels, but which work
well on shell structures. These equations will be applied to the ex-
perimental analysis of truncated conical shells, The purpose is to
determine experimental values of radiation efficiency with which to
compare to the theoretical results. The concern is on the acoustic
radiation to and from a structure immersed in a diffuse sound field
which is assumed to be reverberant (see Figure 26).

Lyon and Maidanik (1962) note that, under the assumption of

equipartition of energy, it can be shown that

2
S (w 2 w R
T’)—a() ={__T_Ei)_}i°_{ rad . (43)
Sp @ Mp Po R'rad * Rmech

This equation was originally developed for flat panels but it can also
apply to shell structures as well,

The coupling factor of a structure expresses the ratio of energy
radiated acoustically by a structure to the amount of vibrational
energy received by the structure. The coupling factor is defined to be
L', where

Power Radiated

Total Amount of Power Dissipated (44)

w'
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or,

, Rrap

vo= (45)

RRAD * RMECH

Note that equation (45) is the last term in equation -(43). Conceptual-
ly ' can be illustrated in a simple diagram (see Figure 23). Figure
23 shows an arbitrary structure receiving vibrational energy of the
amount E, radiating an amount W'E, and storing, or dissipating, an
amount (l-u")E, ‘If equation (45) is substituted into equation (43) the

relation becomes

Sa(a» 9 ns(uD co -1
M = [ §;TE§-]'[ 21° ( W ) E; 1 . (48)

The radiation resistance R _aq must now be determined. The experimental

equation developed by Lyon . and Maidanik (1962) is:

Sp(ag 9 <,
Roga ~ [-gzzag-] [ 2n BRnR‘a» ] 5; (49)
where
13.8
g, = L3-8 (50)
R TR

After finding Rrad from equation (49), the radiation efficiency can be

calculated and is seen to be

Rrad

_rad (51)
pOCOA
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FIGURE 23. ARBITRARY STRUCTURE RECEIVING ACOUSTIC ENERGY
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To find the total resistance Rra + R the structure must be

d mech’
excited by a diffuse sound field and equation (48) must be used. To
find Rrad’ the structure is excited by a mechanically coupled shaker
and the structure excites a field in a room, The result is that the
structure is immersed in a reverberant sound field. Equation (49) is
then used to find Rrad and equation (51) is used to find o. Thus, when
the parameters of equation (49) are found, then an experimental solu-
tion for the radiation resistance and efficiency is available. This

experimental method will be used to investigate the theoretical solu-

tion.
Measurement of Radiation Resistance

Measurement of Acceleration Power Spectral Density

The subject of this section is a discussion of the aspects of
measurement of the acceleration power spectral density of the vibrating
truncated conical shell. The Bruel and Kjaer Company (1966) presents a
manual on the determination of power spectral density with respect to
both acceleration and sound pressure. In this manual is outlined theory
on the.subject of power spectral density as well as practical applica-
tions to the determination of power spectral density.

In order to experimentally determine the acceleration power
spectral density for the truncated conical shell, the shell was mounted
in a simulated free-free boundary condition. An accelerometer (B and K
type 4336) was attached to the conical shell in a random position. An
electromechanical shaker (MB No. EA 1250) was mechanically clamped to

the conical shell near the large end of the shell providing the
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vibrational excitation (see Figure 24). The shaker was driven by its
counterpart power amplifier (MB No, 2120). This power amplifier was
driven by the signal from a random-noise generator (B and K type 1402)
which was filtered by a third-octave filter (B and K type 1612). The
accelerometer output fed into a cathode follower (B and K type 2615)
through a microphone cable to a microphone amplifier (B and K type
2603) which indicated the voltage output of the accelerometer (see
Figure 25). The .entire cone structure and shaker was positioned in a
test facility whose sound field was considered to be reverberant (see
Figure 26). The electronic instrumentation (see Figure 25) was placed
in a room adjoining the test facility. The reason that the electronic
instrumentation was not located in the test chamber was because its
presence would contribute to sound absorption and thus lower the re-
verberance of the sound field. Figure 25 shows all the instrumentation
needed for the complete experimental determination of radiation effi-
ciency. Summarizing, the procedure followed to determine the accelera-
tion power spectral density is:

(1) Install all equipment;

(2) Excite the system with filtered random noise through several
frequencies;

(3) Record the output of the accelerometer.

Then Sa(aD can be found as a function of frequency.

Measurement of Sound Pressure Power Spectral Density

The experimental determination of the sound pressure power spec-
tral density was very similar to the determination of acceleration

power spectral density. The main difference between the two was that
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FIGURE 2
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FIGURE 25.
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instead of using an accelerometer as a transducer, a microphone
(B and K type 4134) was the transducer. The procedure otherwise was
identical and the power spectral density spectrogram as a function of

frequency was similar.

Measurement of Reverberation Time of Acoustic Field

The reverberation time of the test facility was determined by
exciting the facility with random noise filtered in octaves. The ex-
citation was proéided by exciting two audio amplifiers with the octave-
band signal. These amplifiers drove two speaker systems in the test
facility. At a particular instant, the excitation was terminated and
the time was recorded for the acoustic energy in the room to drop by
60 dB. This time, in seconds, is defined as the reverberation time at
a particular octave frequency. The results of the reverberation meas-
urements appear in Figure 26. This figure shows reverberation time as

a function of frequency.

Measurement of Modal Density of Acoustic Field

The cumulative number of resonances below a certain frequency in a
rectangular enclosure has been given by Morse and Bolt (1944). The
modal density of a rectangular enclosure is presented in equation (20).
This equation results from taking the partial derivative with respect
to frequency of the cumulative number of modes below a certain frequen-
cy in a rectangular enclosure. The modal density of the rectangular
test facility is the modal density of the reverberant field which exists
in the facility, Thus the modal density of the reverberant field is

not affected by the modal density of the structure immersed in the
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field. This statement can be partially justified by the fact that, at
higher frequencies, such as the ones in this experimental investigation,
the modes of the acoustic field and those of the structure are essen-

tially uncoupled.

Experimental Results
The results of the experimental program are seen on Figure 22,
This figure shows‘eight data points of the acoustic radiation efficien-
cy. The experimental results verify the fact that the acoustic radia-
tion efficiency increases with increasing ka. These results are found
at 1/3 octave center frequencies which can be seen on the abcissa of
Figure 22. These results are plotted in the customary way of repre-

senting radiation efficiency, that is, in terms of 10 log o.
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COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

The results of both the most precise theoretical investigation and
the experimental investigation can be seen in Figure 42. This figure
shows that there is a significant difference between the theoretical
results and the experimental results. The difference between the two
is greater at the lower frequencies than at the higher frequencies.

The difference is a maximum of 37 at 3650 Hz and a minimum of 19 at

16 KHz. These differences are attributed to the fact that there were
distinct inadequacies in the facilities used in the experimental in.
vestigation. These inadequacies centered around the fact that the test

room was not a reverberation chamber,
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SUMMARY AND CONCLUSIONS

The results of both the theoretical and experimental investiga-
tions are seen in Figure 22. The theoretical method or analytical.
graphical method, based on statistical energy concepts, has been used
after approximating the truncated conical shell by a number of discrete
cylindrical segments. Using this technique yielded a set of values of
radiation efficiency which are defined to be for the truncated conical
shell. Because éach of the determinations of radiation efficiency of
the approximating cylindrical segments were made at the ring frequency
of each, an upper bound solution set was obtained. The experimental
program was carried out with the intent to verify the upper bound solu-
tion of the acoustic radiation efficiency. The experimental program
vefified the fact that the theoretical solution was an upper bound
solution although these were significant differences between the two
sets of results,

In conclusion it may be said that the amalytical-graphical tech-
nique did determine an upper bound solution since none of the experi-
mental results exceeded the theoretical solutions., It must be said
however that the parameters which governed the experimental equation
were all determined under the assumption that the sound field in which
the structure was tested was diffuse. Because of the construction of
the test facility, it is observed that the test facility does not meet
the qualifications of a reverberation chamber. Thus the sound field
will not be completely diffuse. 1In this case, acoustic energy will be

lost through the room's boundaries and will not be reflected back to
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the excited structure. Any acoustic energy which is lost will lower
the sound pressure power spectral density which appears in the
numerator of the relation for acoustic radiation efficiency. Thus if
that term is lowered, the net result will be a lowering of the radia-
tion efficiency if all the other parameters of the equation are held
constant. It is felt that this is the main reason that the experimen-
tal results are so much lower than the theoretical results. The author
recommends that all tests of this sort should be made in a reverbera-
tion chamber of high quality.

Knowledge of the acoustic radiation efficiency and acoustic radia-
tion resistance of a body is very useful. Knowing this parameter will
facilitate an evaluation of the energy dissipated in a structure which
receives acoustic or vibrational energy. Also, the amount of energy
radiated from a structure which receives vibrational energy is directly
dependent upon radiation efficiency and radiation resistance. A method
which determines the acoustical radiation efficiency of a truncated
conical shell is of prime importance because of the widespread use of

the truncated conical shell structure in engineering and science.



62

LIST OF REFERENCES

Bruel and Kjaer Instruments, Inc. 1966. Application of B and K
Equipment to Frequency Analysis and Pewer Spectral Density
Measurements, K. Larsen and Son, Lyngby, Denmark.

Heckl, M. 1962. Vibration of point-driven cylindrical shells.
J. Acoust. Soc. Am. 34(10):1553-1557,

Kinsler, Lawrence E. and Frey, Austin R. 1962, Fundamentals of
Acoustics. John Wiley and Sons, Inc., New York, New York.

Lyon, Richard H. and Maidanik, Gideon. 1962. Power flow between
linearly coupled oscillators. J. Acoust. Soc. Am. 34(5):623-639.

Maidanik, Gideon. 1962. Response of ribbed panels to reverberant
acoustic fields. J. Acoust. Soc. Am. 34(6):809-826.

Manning, Jerome E. and Maidanik, Gideon. 1964. Radiation properties
of cylindrical shells. J. Acoust. Soc. Am. 36(9):1691-1698.

Miller, David K. 1969. Density of eigenvalues in thin circular coni-
cal shells. Unpublished Ph.D. thesis, Department of Mechanical
and Aerospace Engineering, North Carolina State University at
Raleigh, North Carolina.

Morse, P. M. and Bolt, R. H. 1944, Sound waves in rooms. Rev. Mod.
Phys. 16(2):69-150.



APPENDIX. LIST OF SYMBOLS

area of structure

radius of structure
bending.wave speed
longitudinal-wave speed
speed of sound

ambient speed of sound
circumference

Young's Modulus

acoustic energy

frequency (Hz)

critical frequency
intermediate ring frequency
lower ring frequency

ring frequency

reaction force on piston
upper ring frequency
thickness of structure
radiation intensity
Boltzmann's constant

wave number

circumferential wave number
axial wave number

length of arbitrary segment
length of cylinder or conical shell

panel mass
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Dot

axial mode number

circumferential mode number

number of acoustically fast modes
panel modal density

modal density of room

structure modal density

total number of modes

acoustic pressure

pressure on piston

rms pressure on piston

mechanical resistance

radiation resistance

piston radiation resistance function
distance from dS to dS'
acceleration power spectral density
sound pressure spectral density
temperature

reverberation time of room

time

velocity amplitude of structure
velocity of structure

volume of rectangular enclosure
average power generated

piston radiation reactance function
2ka

cylindrical segment length
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radiation impedance

room time decay constant

angular distance

thermal energy

average energy per mode in room
average energy per'mode in structure
wavelength

circumferential wavelength

axial wavelength

Poisson's ratio

coupling factor

dimensionléss frequency
dimensionless critical frequency
ambient air density

radiation efficiency

radiation efficiency of acoustically fast mode

angular frequency
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